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Abstract1

Purpose: Four-dimensional computed tomography (4D CT) can provide2

patient-specific motion information for radiotherapy planning and deliv-3

ery. Motion estimation in 4D CT is challenging due to the reduced image4

quality and the presence of artifacts. We aim to improve the robustness5

of deformable registration applied to respiratory-correlated imaging of the6

lungs, by using a global problem formulation and pursuing a restrictive7

parametrization for the spatio-temporal deformation model.8

Methods: A spatial transformation based on free-form deformations was9

extended to the temporal domain, by explicitly modelling the trajectory10

using a cyclic temporal model based on B-splines. A global registration11

criterion allowed to consider the entire image sequence simultaneously,12

and enforce the temporal coherence of the deformation throughout the13

respiratory cycle. To ensure a parametrization capable of capturing the14

dynamics of respiratory motion, a prestudy was performed on the tempo-15

ral dimension separately. The temporal parameters were tuned by fitting16

them to diaphragm motion data acquired for a large patient group. Suit-17

able properties were retained and applied to spatio-temporal registration18

of 4D CT data. Registration results were validated using large sets of19

landmarks and compared to consecutive spatial registrations. To illus-20

trate the benefit of the spatio-temporal approach, we also assessed the21

performance in the presence of motion-induced artifacts.22

Results: Cubic B-splines gave better or similar fitting results as lower or-23

ders, and were selected because of their inherently stronger regularization.24

The fitting and registration errors increased gradually with the temporal25

control point spacing, representing a trade-off between achievable accu-26

racy and sensitivity to noise and artifacts. A piecewise smooth trajectory27

model, allowing for a discontinuous change of speed at end-inhale, was28

found most suitable to account for the sudden changes of motion at this29

breathing phase. The spatio-temporal modelling allowed a reduction of30

the number of parameters of 45%, while maintaining registration accuracy31

within 0.1 mm. The approach reduced the sensitivity to artifacts.32

Conclusions: Spatio-temporal registration can provide accurate motion33
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estimation for 4D CT and improves the robustness to artifacts.34

Keywords: deformable registration, respiratory motion, 4D CT35

1 Introduction36

The advent of four-dimensional (4D) computed tomography (CT) has allowed37

patient-specific respiratory motion information to be incorporated into radiation38

therapy planning and delivery. 4D CT provides multiple three-dimensional (3D)39

CT volumes, representing the patient at different stages of the breathing cy-40

cle42,6,15,25. The additional patient data, implies an order of magnitude increase41

in the workload required to obtain a 4D treatment plan. Deformable registration42

is the tool that can facilitate partial automation of the 4D planning process11.43

It can provide the motion fields which are required for automating tasks such44

as re-contouring of anatomic structures16, patient-specific margin definition50
45

or 4D treatment plan evaluation8. Deformable image registration is also an46

enabling tool for alternative applications of respiratory-correlated imaging such47

as ventilation imaging9, motion compensation45,28 or motion modelling19,49.48

Although extensive validation is required before extending the clinical use of49

deformable image registration, it is expected to become a standard methodol-50

ogy in radiotherapy31,12.51

Deformable image registration can be described as the task of finding a suit-52

able geometric transformation between corresponding image data, such that53

a transformed image becomes similar to another one21. While the concept of54

image registration is easily described, the underlying numerical problem is diffi-55

cult to solve. Mainly because the registration problem is ill-posed. Small changes56

of the input images may lead to very different registration results. Moreover,57

the solution might not be unique. Salient image information might be sparse or58

ambiguous, and the acquisition process might have introduced noise and arti-59

facts. To facilitate the process, prior knowledge about the deformation should60

be incorporated in the registration framework in order to favour solutions with61

plausible physical characteristics. Explicit parametric restrictions can constrain62

the optimization to transformations that represent suitable properties. This ap-63

proach can offer a reduction of the search space by making the description more64

problem-specific, and consequently improve the robustness of the optimization65

process.66

An example are spatio-temporal registration schemes, which consist in a global67

formulation of the motion estimation problem for temporal image sequences.68

Rather than estimating frame-to-frame displacements individually, the entire se-69

quence is considered simultaneously, allowing to enforce the temporal coherence70

of the deformation across the sequence. By making assumptions such as smooth-71

ness about the temporal variations of the transformation, these approaches often72

enable a more compact and restrictive description of the full motion estimation73

problem. Spatio-temporal deformable registration has received considerable at-74

tention in literature, mostly in cardiac image analysis10,4,20,3,26,14,5,39,27,33, but75

more recently also for respiratory-correlated imaging of the thorax43,35,2. Usu-76

ally, a 3D-4D formulation is utilized to find a smooth time-dependent deforma-77

tion field that aligns all images from a given input sequence with a reference78

image, which can be a frame of that same sequence4,14,5,39,43,2. Sometimes,79

spatial as well as temporal alignment of multiple image sequences is desirable,80
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leading to a 4D-4D registration framework3,26,35,27.81

In comparison to conventional diagnostic CT, 4D CT images tend to be ac-82

quired at lower spatial resolution and are characterized by higher noise levels83

because of the low radiation dose per image. In addition, an alarmingly high84

number of acquisitions contains motion-induced artifacts48, mainly due to ir-85

regular patient breathing during image acquisition. In the case of artifacts, the86

image information can be considered locally invalid, as it does not correspond87

to the patient anatomy. Clinical use of the estimated motion fields requires88

them to be as close to the unknown reality as possible. A problem-specific,89

spatio-temporal deformation model could contribute in reducing sensitivity to90

local image irregularities and render the motion estimate more plausible and91

potentially more representative of the patient’s breathing motion under these92

challenging circumstances.93

In this study, we develop a spatio-temporal registration scheme for lung94

motion quantification in respiratory-correlated sequences. Our primary objec-95

tive is to obtain a low-dimensional representation of the 4D deformation model,96

capable of accurately representing the respiratory motion, while being more ro-97

bust to artifacts and increased noise levels. The approach consists of a 3D-4D98

problem formulation in which temporal regularization is pursued by explicitly99

modelling the trajectory of moving structures. With respect to previous work100

on spatio-temporal registration, we specifically focus on respiratory-correlated101

image sequences, and develop and evaluate a cyclic trajectory model for rep-102

resenting the motion over an entire breathing cycle. In addition, the chosen103

parametrization reflects our aim to improve registration robustness by render-104

ing the deformation model more problem-specific.105

2 Method106

The spatio-temporal transformation will be developed incrementally. We first107

describe a conventional spatial registration, of which the proposed method can108

be seen as an extension. Next, the temporal dimension is considered separately109

and the method for modelling the trajectory is detailed. The sought spatio-110

temporal deformation function is obtained by combining both.111

2.1 Problem Description112

Consider a 4D sequence, represented by an intensity function f(i, k) ∈ R with113

i ∈ I ⊂ Z3 and k ∈ K ⊂ Z; I and K being the set of spatial and temporal114

sample indices, respectively. We wish to analyze the motion with respect to115

the 3D reference frame at time index kr ∈ K. The task of motion estimation116

throughout the 4D sequence is formulated as the search for the unknown spatio-117

temporal transformation Tst, defined for I×K 7→ R3, where Tst(i, k) represents118

the location of a point at time k which was at position i at time kr.119

2.2 Spatial Registration120

Consider the subproblem of retrieving the transformation Ts (in which the s121

stands for spatial) between the reference volume and the frame at time k. A122
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continuous representation is employed for the spatial transformation using free-123

form deformations based on B-splines30
124

Ts(x) = x +
∑

j∈J

ajφj(x) (1)

where x ∈ X is the continuous spatial coordinate associated with I; J ⊂ Z3
125

is the set of spatial parameter indices considered for basis functions φj(x) =126

βn(x/h− j) with h ∈ R the uniform spatial control point spacing, and βn the127

tensor product of one-dimensional B-spline kernels of degree n. We used cubic128

B-splines for the spatial basis functions (n = 3). The parameters of Ts are the129

B-spline coefficients aj ∈ R3 (one for each component of the deformation), i.e.130

Ts is fully characterized by specifying a = {aj}j∈J.131

We define a similarity criterion Js, based on the mean squared intensity132

differences with respect to the samples of the reference volume133

Js(Ts, k) =
1

NI

∑

i∈I

(

f
(

Ts(i), k
)

− f
(

i, kr

)

)2

(2)

with NI the number of spatial samples considered. We chose this criterion be-134

cause of its fast computation time and the smoothness of the resulting search135

space. For simplicity, no explicit regularization term was included in the cri-136

terion. For now, only the influence of the parametrization of the deformation137

function was explored. Evaluating the intensity function f at non-grid posi-138

tions, requires a continuous representation for which we used cubic B-spline139

interpolation140

f(x, k) =
∑

i∈I

diβ
n(x − i) . (3)

Coefficients di are found quickly from the image intensities using recursive fil-141

tering40.142

Solving the spatial registration problem for frame k comes down to estimat-143

ing the optimal parameters a∗ in the sense of the criterion Js144

a∗ = argmin
a

Js(Ts; k) . (4)

By solving (4) consecutively for all k ∈ K except kr, a solution to the 4D motion145

estimation problem can be composed. Solutions obtained for previous k values,146

can be used to initialize subsequent registrations.147

2.3 Trajectory Modelling148

Temporal sequences enable modelling the temporal variations of the estimated149

deformations. Tissue trajectories are expected to evolve smoothly and contin-150

uously over time, allowing to introduce constraints which enforce the tempo-151

ral coherence of the deformation across the sequence. This is similar to the152

approach described for the spatial dimensions. Nonetheless, the temporal di-153

mension is handled separately as it is inherently different. For instance, in the154

case of respiratory-correlated CT, the sequence is periodic and the number of155

temporal samples is low compared to spatial samples.156
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(a)

(b) (c)

Figure 1: (a) Schematic representation
of a trajectory model based on cubic B-
splines, with eight control points ( red

dots) placed uniformly inside and just
outside [0, te). Each corresponds to
a B-spline kernel ψl (dotted line) and
Tt(x, t) (red solid curve) is found by
combining the scaled kernels (dashed
red line). (b, c) Alternative, repre-
sentation with a cyclic temporal axis
wrapped around the trajectory. Large
control points indicate a constraint is
applied. (b) The smooth trajectory
model Tt and, (c) the piecewise smooth
trajectory model T ∗

t .

Trajectory Model Let t ∈ T be the continuous coordinate associated with157

K and suppose for simplicity T = [0, te). Let Tt(x, t) denote the trajectory of158

a point at position x at the reference time tr. The search for Tt is limited to159

continuous and smooth functions of t, by expressing it using a suitable set of160

basis functions {ψl}l∈L161

Tt(x, t) = x +
∑

l∈L

blψl(t) . (5)

L ⊂ Z is the set of temporal parameter indices and bl ∈ R3 the coefficients of162

the basis functions. We adopted temporal B-spline basis functions10,3,14,43 of163

order m ∈ N, ψl(t) = βm(t/s− l) with s ∈ R the temporal control point spacing,164

because of their good approximation properties, computational simplicity and165

implicit smoothness. In Ledesma-Carbayo et al. 14 temporal B-splines were166

found to work at least as well as harmonic functions4,20,5. Figure 1a shows167

a schematic, one-dimensional representation of a trajectory model based on168

cubic B-splines (m = 3), with five control points (s = te/5) placed uniformly169

along the considered interval [0, te). Evaluating Tt near the borders of the170

interval, requires taking into account control points with non-zero weight just171

outside the interval. It can be seen that a total of eight degrees of freedom is172

considered, represented by the B-spline coefficients b0 to b7.173

Smooth Trajectory Model The trajectory model can be further constrained174

by incorporating a priori knowledge of the motion, leading to a more restrictive175

parametrization. For instance, 4D CT data is inherently periodic. In addition,176

trajectories can be expected to be smooth functions of time. The trajectory177

can be made periodic and smooth throughout the entire cycle by imposing the178

same order of smoothness to the endpoints as the rest of the trajectory, thus179

obtaining Tt ∈ Cm−1(T). This leads to the set of m conditions180

∂zTt(x, 0)

∂tz
=
∂zTt(x, te)

∂tz
for z = [0, . . . ,m− 1 ]. (6)

As will be shown, each condition results in a linear equation for the model181

parameters, allowing to express one of the parameters in function of the others.182
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A schematic representation of a trajectory satisfying (6) is shown in figure 1b.183

A cyclic time axis is shown to illustrate the placement and the influence of the184

control points. The banded control points indicate that a constraint is applied.185

Piecewise Smooth Trajectory Model Due to the limited temporal reso-186

lution of 4D CT, and depending on the degrees of freedom considered in (5),187

the smoothness constraint might be too restrictive, leading to locally reduced188

representation accuracy in regions where the velocity is varying rapidly. This189

can be the case for the end-inhale phase where fast inversion of the motion190

takes place. Alternatively, we can locally relax the smoothness constraints and191

propose a piecewise smooth trajectory representation T ∗
t . A similar expansion192

as (5) is utilized for T ∗
t but, assuming end-inhale corresponds to t = 0, a single193

constraint is applied at end-inhale194

T ∗
t (x, 0) = T ∗

t (x, te) . (7)

This condition leads to periodic trajectories, but allows a discontinuity in the195

velocity at end-inhale (figure 1c). In this case, the sections near end-inhale are196

parametrized independently which implies a local increase of control points and197

degrees of freedom.198

Temporal Constraints It is instructive to consider the effect of the temporal199

constraints on the trajectory model. For instance, as deformation is estimated200

with respect to a reference, by definition201

Tt(x, tr) = x . (8)

This condition allows to express one B-spline coefficient in terms of the others,202

effectively removing one degree of freedom from the system, i.e.203

blr = −
∑

l∈L,l 6=lr

bl

ψl(tr)

ψlr(tr)
, (9)

in which we constrained the parameter blr associated to the basis function ψlr ,204

which is non-zero at tr. Following Ledesma-Carbayo et al. 14 , introducing (9)205

into (5), and regrouping terms for each of the parameters allows the temporal206

model to be expressed using a smaller set of constrained basis functions207

ψc
l (t) = ψl(t) −

ψl(tr)ψlr(t)

ψlr(tr)
, (10)

that only generates trajectories that satisfy (8).208

In the following, we will denote Lc the set of temporal indices of basis func-209

tions to which constraints (6) and (8) have been applied.210

2.4 Spatio-Temporal Registration211

Estimating the motion in a 4D CT sequence by performing consecutive spatial212

registrations using (1) fails to exploit the temporal relation between the frames.213

6



This is remedied by modelling the trajectory as in (5). A global approach is214

found by coupling the temporal and the spatial deformation model215

Tst(x, t) = x +
∑

j∈J

∑

l∈Lc

cj,l φj(x)ψc
l (t) . (11)

The result is a linear, spatio-temporal deformation function, separable in space216

and time. A straightforward extension to the temporal dimension of (2), leads217

to the criterion218

Jst(Tst) =
1

NK

∑

k∈K

Js(Tst, k) (12)

to be optimized with respect to the parameters c = {cj,l}j∈J,l∈Lc . We will use219

Tst and T ∗
st in reference to the spatio-temporal deformation models obtained220

when using the smooth and piecewise smooth temporal models Tt and T ∗
t , re-221

spectively.222

2.5 Motion Mask Extraction223

Breathing motion is characterized by sliding of the liver and lungs, resulting224

in a discontinuity of the motion at the pleural wall47,34. Accurate matching225

in these regions requires a complex spatial transformation, even though the226

remainder of the deformation can be considered smooth. We previously ad-227

dressed this issue41 by automatically extracting a motion mask, dividing the228

thorax into moving (lungs, mediastinum and abdomen) and less-moving regions229

(the remainder).230

Motion masks were computed for all frames of f . The result is the division of231

the thorax into two subregions Iin, Iout ⊂ I, roughly representing the inner and232

outer thoracic structures. For each of the subregions, a separate registration233

problem can be formulated following47, with the advantage that the search can234

be limited to spatially smooth deformations. In the following, we focussed on235

the inner thoracic structures.236

2.6 Optimization237

The spatio-temporal approach allows a more restrictive parametrization of the238

transform and reduces the total number of degrees of freedom of the 4D motion239

estimation problem compared to consecutively applying Ts. However, directly240

minimizing (12) considers all degrees of freedom simultaneously, increasing the241

dimensionality of the optimization problem with respect to one 3D-3D regis-242

tration. In response, a multiresolution approach was employed, allowing to243

gradually increase the complexity of the problem. The resolution of the spatial244

dimensions of both the image sequence and the B-spline control point grid of245

the transformation was doubled in each of three consecutive resolution levels.246

The final image resolution was set to 2 mm. We previously found that, in com-247

bination with a motion mask, a control point grid spacing h = 32 mm provided248

a good compromise between registration efficiency and accuracy. The temporal249

dimension, characterized by low resolution, remained unmodified throughout250

the optimization.251

Each level was handled using a Quasi-Newton approach in the form of the252

limited memory BFGS method23, because of its high precision and improved253
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rate of convergence with respect to simple gradient descent algorithms13. The254

procedure started from a zero deformation, and subsequent levels were initialized255

by upsampling the solution found at the previous level. The required partial256

derivatives of the similarity criterion can be calculated explicitly, for instance257

for Tst258

∂Jst(Tst)

∂cj,l

=
2

NKNI

∑

k∈K

∑

i∈I

(

f
(

Tst(i, k), k
)

−f
(

i, kr

)

)∂f
(

Tst(i, k), k
)

∂x

∂Tst(i, k)

∂cj,l

.

(13)
∂f/∂x is found by deriving (3), while ∂Tst/∂cj,l can be calculated considering259

(11). For instance, for the qth spatial component260

∂f(x, k)

∂xq

=
∑

i∈I

di

∂βn(xq)

∂xq

∏

ζ 6=q

βn(xζ − iζ) (14)

∂Tst(i, k)

∂cj,l,q

= φj(x)ψc
l (t) . (15)

2.7 Implementation261

The registration algorithms were implemented in C++. Evaluating Tst(i, k) was262

performed using B-LUTs32: a fast, low memory B-spline implementation based263

on a look-up table of B-spline tensor products βn(x). Registration algorithms264

were multi-threaded and executed on an eight-core system. The execution times265

depended on the specifics of the 4D CT data set. Consecutively registering all266

frames of f using Ts, required between 5 and 10 hours, whereas Tst and T ∗
st267

required about twice as much time.268

In comparison, the most expensive step for the spatio-temporal approach is269

the calculation of ∂Tst/∂c in (13). In the current implementation, this requires270

multiple table look-ups due to the presence of the modified basis functions ψc
l271

in (15), compared to only one for calculating ∂Ts/∂a.272

3 Experiments273

Three types of experiments were performed to validate the spatio-temporal de-274

formation model. First, we conducted a prestudy on the temporal dimension275

of the model separately. Breathing patterns are patient-specific and strong in-276

terpatient and intercycle variability has been reported which can affect cycle277

duration, motion amplitude and speed of the movement7,46,29. By fitting the278

trajectory models to motion data covering many cycles and measured on a large279

set of patients, we ensured the temporal parametrization is flexible enough to280

capture the dynamics of respiratory motion.281

The most suitable temporal parameter values were retained and used for the282

spatio-temporal deformation models. The latter were applied to the registration283

of 4D CT images of the thorax. Extensive spatial validation of the registrations284

was performed using large sets of landmarks. The registration accuracy was285

compared to the conventional frame-to-frame approach. In a final experiment,286

the benefit of the spatio-temporal approach was illustrated, by assessing the287

performance in the presence of artifacts.288
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3.1 Temporal Fit of Diaphragm Motion Data289

Data Description We used projection sequences of cone-beam computed to-290

mography (CBCT) acquired at the Netherlands Cancer Institute (Amsterdam,291

the Netherlands) for image-guidance of 33 lung cancer patients treated by radio-292

therapy with the protocol described in Sonke et al. 38 . Cone-beam projections293

consist of planar X-ray images, acquired from rotating views around the pa-294

tient. They were acquired at 5.5 fps over 200◦ with a 50◦/min gantry rotation295

speed for 4D CBCT imaging37. Their resolution was 5122 pixels of 0.82 mm2
296

(0.522 mm2 at the isocenter). 257 sequences of cone-beam projection images (5297

to 19 per patient) were analyzed.298

The motion was analyzed by extracting the cranio-caudal position of a di-299

aphragm dome using an adapted version29 of the algorithm developed to extract300

a respiratory signal for 4D CBCT reconstruction51,37. The extraction resulted301

in a 2 min 1D+t signal per acquisition with 0.52 mm and 5.5 fps resolution,302

i.e. 2 of the 4 dimensions of the sought 4D model at fine resolution but for303

only one point of space. In addition to the largeness of the dataset, the pro-304

jection images are advantageous because they have higher cranio-caudal and305

temporal resolutions than 4D CT images. As such, the diaphragm motion data306

provided a valuable benchmark for tuning the temporal parametrization of the307

deformation models.308

Experiments Each signal was split in respiratory cycles by detecting the end-309

inhale peaks after smoothing out the local minima. Each cycle was analyzed310

separately by assuming periodicity, similar to 4D CT images. The temporal311

models described in section 2.3, were fitted to each cycle with the optimal solu-312

tion in the least square sense. The influence of the trajectory model parameters313

was evaluated: we varied the B-spline order m and the control point spacing314

s, or equivalently the number of control points. In addition, we verified the315

suitability of a smoothness constraint at end-inhale by comparing Tt and T ∗
t .316

The similarity between the measured and the fitted signals was evaluated317

using the root mean square (RMS) of their difference. Results for each patient318

were averaged and the group mean over all patients was computed. The results319

were analyzed both globally and per respiratory phase by dividing each cycle320

into ten equitemporal-temporal phase bins, as it is typically done in current321

4D CT scanners.322

3.2 Spatio-Temporal Registration of 4D CT323

Data Description We used 4D CT data sets of six non-small cell lung can-324

cer patients acquired at the Léon Bérard Cancer Center (Lyon, France) for the325

purpose of radiotherapy planning on a Philips 16-slice Brilliance Big Bore On-326

cology Configuration (Phillips Medical Systems, Cleveland, OH). Acquisitions327

were performed in helical mode using a table pitch of 0.1, 400 mAs effective328

exposure (80 mA tube current) at 120 kV.329

Respiratory-correlated reconstruction was performed through simultaneous330

acquisition of a respiratory surrogate signal, provided by the Pneumo Chest331

pressure belt (Lafayette Instrument, Lafayette, IN). Reconstruction yielded ten332

3D CT frames at approximately 1 × 1 × 2 mm3 resolution.333
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Experiments The spatio-temporal deformable registration approaches Tst334

and T ∗
st , as described in section 2.4, were applied to all 4D CT data sets. In335

addition to the normal set of constraints used for Tt and T ∗
t , constraint (8)336

was enforced for all registrations. Deformable registration was performed with337

respect to the middle frame (k = 5), roughly corresponding to end-exhale. The338

position of end-exhale has been reported to be more reproducible than end-339

inhale36,38, making it a suitable reference to analyze breathing motion.340

For validation purposes, anatomical landmarks were identified in the lung341

region using a semi-automatic software tool22. The system automatically pro-342

vided a set of well-distributed, distinctive points with index pr ∈ I in the lung343

region of the end-exhale frame. Observers identified the corresponding positions344

pk ∈ I of the points in frame k, using a custom designed interface and aided by345

initial estimates provided by the system. Points coinciding with artifacts were346

excluded. The system initially provided 130 distinctive points and the procedure347

was stopped after 100 points were successfully identified in the corresponding348

frames.349

For all six patients, 100 point correspondences were provided between the350

end-exhale and the end-inhale frame, and the process was repeated by a sec-351

ond observer. The mean distance between the annotations was 0.5 mm (0.9352

mm standard deviation). For Patients 1-3, a single observer provided 100 cor-353

respondences for each of the frames of the 4D CT, resulting in a total of 900354

manually identified landmarks for each of the three data sets. The manual anno-355

tations were compared to the corresponding point positions estimated through356

registration by computing the target registration error (TRE)357

TRE = ‖Tst(pr, k) − pk‖ . (16)

The registration results were also compared to those obtained when perform-358

ing consecutive 3D registrations using Ts, described in section 2.2. The same359

multiresolution and optimization scheme was applied as in the spatio-temporal360

case. Since no temporal regularization is applied in the case of Ts, the results are361

considered as a reference indicating the achievable registration accuracy when362

allowing all temporal degrees of freedom.363

3.3 Registration of 4D CT with Artifacts364

Data Description To dispose of a ground truth, we constructed 4D CT ac-365

quisition with artifacts fa by introducing a simulated, motion-induced artifact in366

the 4D CT of patient 2, characterized by large motion. A mid-inhalation frame367

(k = 8) was altered by modifying a series of axial slices halfway the lungs. Ten368

slices starting from slice index i2 = ia in the end-exhale frame (k = 5), were369

copied to the same location in the target frame, i. e.370

fa(i, k) =

{

f(i, 5) for k = 8, i2 ∈ [ia, ia + 10),

f(i, k) otherwise.
(17)

The procedure resulted in an axial slab of 20 mm along the cranio-caudal direc-371

tion, containing an inconsistent view of the patient anatomy with respect to the372

surrounding slices. This resembles the situation of a frame locally influenced by373

erroneous tagging of the respiratory phase, or irregular breathing during image374

acquisition.375
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Spline Internal Control Points
Degree m 4 5 6 7 8 9 10

Group mean RMS (mm) of Tt

0 2.65 2.25 1.95 1.72 1.53 1.39 1.27
1 1.25 0.98 0.83 0.72 0.63 0.57 0.51
2 1.17 0.89 0.77 0.67 0.60 0.54 0.49
3 1.17 0.87 0.76 0.66 0.59 0.53 0.48

Group mean RMS (mm) of T ∗
t

2 0.70 0.56 0.47 0.40 0.34 0.30 0.27
3 0.67 0.55 0.47 0.40 0.35 0.30 0.27

Table 1: Group mean of the RMS of the difference between the measured motion
of the diaphragm dome in the cranio-caudal direction and fitted functions for
the two temporal models with different number of control points and B-spline
degrees. For degrees 0 and 1, both models are equivalent.

Experiments The simulated sequence fa was registered in the same way as376

described in the previous experiment. The registration results were compared377

to those obtained using consecutive 3D registrations. By comparing also to378

the results obtained for the original sequence, the sensitivity of the method to379

locally introduced artifacts was evaluated.380

The registration accuracy was assessed by using the landmarks identified in381

the original, unmodified 4D CT acquisition. The analysis is performed at two382

levels. First, we computed a global evaluation of the TRE, taking into account383

all landmarks. Second, a local analysis was performed by only considering384

landmarks located within five slices of the artifact.385

4 Results386

4.1 Temporal Fit of Diaphragm Motion Data387

The fitting results are summarized in table 1 for a variety of B-spline functions.388

Constant B-splines (m = 0) gave much poorer results than other degrees. This389

is not surprising, since they produce piecewise constant functions which can not390

describe the continuity of the respiratory motion. Linear B-splines (m = 1) gave391

residuals of the same order, but were found significantly worse than quadratic392

(m = 2) and cubic splines (m = 3) for all tested models (p < 3 × 10−4). Cubic393

B-splines consistently gave better results than quadratic splines, although the394

difference was not significant for all tested models in table 1. As they also395

inherently impose a stronger temporal regularization, which is our purpose,396

they were selected for the rest of the study.397

The influence of the number of control points can also be seen from table 1.398

For both models, the residual of the fit was proportional to the spacing of399

the control points s: the Pearson’s product-moment correlation coefficient was400

greater than 0.99. As expected, the number of control points is a trade-off401

between the achievable representation accuracy and the parameters of the fitted402

function.403

We used box and whisker plots to further illustrate the distribution of fitting404
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(a) (b)

Figure 2: Box and whisker plots of the RMS errors per patient after fitting the
models to the diaphragm motion data, using with five internal control points
and m = 3. (a) The RMS over the entire cycle; (b) the RMS per phase bin.

errors. The box extends from the lower (p25%) to upper quartile (p75%) of the405

data, with a red horizontal line at the median and a ∗ symbol at the mean. The406

whiskers extend from the box to the most extreme value below p25% + 0.75 ×407

(p75% − p25%), the remaining points are considered outliers. Outliers were not408

plotted for clarity.409

Figure 2 illustrates the global fitting errors and the errors per respiratory410

phase bin for Tt and T ∗
t (using five internal control points and m = 3). The411

overall performance of T ∗
t was much better than for Tt. The largest discrepancies412

can be observed near end-inhale (0%). At this phase, the change of speed was413

too sudden to be described by the smooth trajectory model Tt and the residual414

was found to be significantly higher (p < 2× 10−3) than at all other phases, for415

all tested values of m and s. This was not the case for the piecewise smooth416

T ∗
t model, which resulted in more homogeneous residuals per phase because the417

smoothness constraint is relaxed at end-inhale.418

4.2 Spatio-Temporal Registration of 4D CT419

We retained the temporal representations with four and five internal control420

points for the spatio-temporal model, which corresponds to s = 2.5 and 2 frames,421

respectively. Table 2 summarizes the temporal characteristics of the registration422

methods.423

Trajectories obtained for landmarks with large displacements are plotted in424

figure 3. The landmark positions identified manually throughout the 4D CT are425

also shown and were linearly interpolated for clarity. The estimates obtained426

using Ts were interpolated using cubic splines. The trajectories of the spatio-427

temporal methods were directly obtained from the continuous 4D transforms.428

All trajectories were projected on the sagittal plane, where motion predom-429

inantly occurs. Overall, the obtained trajectories appear very similar. The430

spatio-temporal trajectories tend to be smoother than Ts. The main difference431

between Tst and T ∗
st is visible at end-inhale (bottom of the plot). At this point,432

T ∗
st tends to be pointier and in some cases visibly closer to the corresponding433

landmark. Note that deviations between the estimated trajectories and the434

measured landmark trajectories are partially due to the landmark identification435

process, which was performed in voxel index space, while the trajectories evolve436

in the continuous space. This effect will also contribute to the registration errors437
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Properties Representation
Ts Tst T ∗

st

s = 1 s = 2 s = 2.5 s = 2 s = 2.5

Temporal CP 9 8 7 8 7
Continuity at t = 0 � C2 C2 C0 C0

Constraints 0 4 4 2 2
Temporal DOF 9 4 3 6 5

Parameters 63 882 28 392 21 294 42 588 35 490

Table 2: Summary of the temporal properties for the registration methods when
using cubic splines for the spatio-temporal methods, and a control point spacing
of either 2 or 2.5 frames. The amount of temporal control points (CP) reflect the
internal CP as well as the ones required at the border. The number of degrees
of freedom (DOF) are the number of CP, reduced by the number of constraints.
As an example, we list the resulting number of parameters required to register
the inner thoracic region (Iin) for Patient 1.

Patient TRE for 4D CT (mm)
Original Ts Tst T ∗

st

1 3.47 ± 2.14 0.96 ± 0.66 1.02 ± 0.71 1.00 ± 0.69
2 6.41 ± 3.99 1.20 ± 0.96 1.37 ± 1.13 1.27 ± 1.09
3 3.65 ± 3.04 1.11 ± 1.14 1.17 ± 1.08 1.16 ± 1.15

GM 4.51 ± 3.15 1.09 ± 0.94 1.19 ± 0.99 1.14 ± 1.00

Table 3: The mean TRE obtained over the nine frames for Patients 1-3 based
on 900 landmarks each, and its group mean (GM). The registration error (± 1
SD) of the 3D registration is compared to the accuracy obtained for the spatio-
temporal algorithms with m = 3 and s = 2 frames. The original landmark
distance (Original) is given to illustrate the magnitude of the motion.

evaluated using the landmarks.438

For Patients 1-3, landmarks were available for all frames of the 4D CT. The439

global registration accuracy is summarized in table 3 in terms of the mean TRE440

based on 900 landmarks each. For a spacing s = 2 frames, the group mean TRE441

of both spatio-temporal methods was within 0.1 mm of Ts. When increasing the442

temporal control point spacing from 2 to 2.5, the mean TRE increased gradually443

(1.27 ± 1.17 mm for T ∗
st and 1.18 ± 1.03 mm for T ∗

st), but remained comparable444

to Ts. For clarity, only results using a spacing of 2 frames will be shown in the445

following.446

For Patients 1-3, the registration errors were also analyzed for each frame447

separately. Figure 4a corresponds to the group mean TRE of the entire 4D CT448

and figure 4b shows the group mean TRE per frame. The mean TRE over the449

entire 4D CT was comparable for all methods, though Tst performed slightly450

worse. The analysis per phase revealed that most discrepancies in TRE are451

located near end-inhale (0%, 10% and 90 %). T ∗
st generally obtained an accuracy452

closer to Ts for these phases.453
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Patient 1 Patient 2 Patient 3

Figure 3: Trajectories projected on the sagittal plane, for some landmarks with
large displacements of Patients 1-3. The trajectories obtained using the respec-
tive registration methods are plotted with the manually identified landmark
positions throughout the 4D CT (pk). For all trajectories shown, at least two
landmarks positions coincided at end-exhale, corresponding to position (0, 0).

(a) (b)

Figure 4: Box and whisker plots of the group mean TRE for Patients 1-3 for
which landmarks were available in all frames, using m = 3 and s = 2 frames.
(a) The combined registration errors for the entire 4D registration. Each box
is drawn based on 2700 landmarks. (b) TRE per phase bin. For each frame,
the registration error is estimated from 300 landmarks. The 50% phase bin
corresponds to the reference frame.
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Patient TRE for End-Inhale (mm)
Original Ts Tst T ∗

st

1 6.34 ± 2.94 0.94 ± 0.51 0.98 ± 0.56 0.96 ± 0.57
2 14.00 ± 7.17 1.44 ± 1.04 1.95 ± 1.88 1.56 ± 1.34
3 7.67 ± 5.03 1.51 ± 1.66 1.63 ± 1.66 1.53 ± 1.70
4 7.33 ± 4.86 1.79 ± 2.71 1.97 ± 3.00 1.96 ± 2.92
5 7.09 ± 5.08 1.43 ± 1.39 1.54 ± 1.49 1.48 ± 1.39
6 6.68 ± 3.67 1.18 ± 0.80 1.32 ± 1.13 1.25 ± 0.95

GM 8.19 ± 4.97 1.38 ± 1.53 1.57 ± 1.78 1.46 ± 1.65

Table 4: The mean TRE (± 1 SD) obtained by evaluating the registration
only at end-inhale for Patients 1-6 based on 100 landmarks each, and its group
mean (GM). The registration error of the 3D registration (Ts) is compared to
the accuracy obtained for the spatio-temporal algorithms (Tst and T ∗

st) using
m = 3 and s = 2 frames. The original landmark distance (Original) is given to
illustrate the magnitude of the motion.

A separate, more extensive evaluation of the accuracy of the end-exhale to454

end-inhale registration is listed in table 4 for Patients 1-6. T ∗
st consistently455

outperforms Tst in terms of mean TRE. The difference in group mean TRE456

between T ∗
st and Ts was below 0.1 mm. In contrast, the difference in mean TRE457

between Ts and Tst was above 0.1 mm for five out of six patients, and the group458

mean TRE was almost 0.2 mm higher. This confirms the results reported when459

fitting the diaphragm motion data in section 4.1, where it was found that the460

smooth temporal model resulted in larger errors near end-inhale.461

Table 3 shows relatively small differences in group mean TRE over the entire462

4D CT, suggesting comparable performance for all registration methods. This463

measure was found misleading, as it tends to average out the differences due to464

the large numbers of measurements (2700 landmarks for each method). Further465

analysis showed that the performance of Tst varied considerably from patient to466

patient. While for Patient 1, all methods obtained very similar results, differ-467

ences in TRE of the order of 0.5 mm were found at certain breathing phases for468

Patient 2 (figure 5, note the change in scale with respect to figure 4).469

4.3 Spatio-Temporal Registration of 4D CT with Artifacts470

The registration accuracy obtained for the sequence fa is summarized in table 5.471

We only report results using the piecewise smooth spatio-temporal model T ∗
st .472

We also list the TRE obtained for the original 4D CT, corresponding to Patient473

2. With respect to the original 4D CT, the local and global TRE of Ts and474

T ∗
st are within 0.1 mm . After inserting the artifact, the global TRE more than475

doubles for Ts, while the TRE of the spatio-temporal method, increases only476

marginally. Locally, the influence of the artifact is even more noticeable for Ts.477

For the spatio-temporal approach however, the local TRE remains below 2 mm478

for T ∗
st .479

Figure 6 shows the motion fields obtained using Ts and T ∗
st for the inner480

thoracic region. The top row corresponds to the original 4D CT acquisition481

of Patient 2. Both methods produce very similar motion fields. The main482
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(a) (b)

Figure 5: Box and whisker plots of TRE for Patients 2 for which landmarks
were available in all frames, using m = 3 and s = 2 frames. (a) The combined
registration errors for the entire 4D registration. Each box is drawn based on
900 landmarks. (b) TRE per phase bin. For each frame, the registration error is
estimated from 100 landmarks. The 50% phase bin corresponds to the reference
frame.

Measure Data TRE (mm)
Original Ts T ∗

st

global
f

9.00 ± 3.93
1.42 ± 1.30 1.44 ± 1.16

fa 3.17 ± 3.47 1.57 ± 1.20

local
f

11.40 ± 3.74
1.38 ± 1.44 1.46 ± 1.05

fa 6.82 ± 4.38 1.90 ± 1.22

Table 5: The mean TRE for the 4D CT sequence with simulated artifacts (fa)
and for the original, unmodified 4D CT (f) corresponding to Patient 2. The
evaluation is limited to the frame where the artifact is introduced. The global
TRE is based on 100 landmarks. The local TRE is based on 24 landmarks,
all within 5 slices of the inserted artifact. The registration error of the 3D
registration (Ts) is compared to the accuracy obtained for the spatio-temporal
algorithm (T ∗

st using m = 3 and s = 2 frames). The original landmark distance
(Original) is given to illustrate the magnitude of the motion.
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(a) (b)

Figure 6: Motion fields in the presence of simulated artifacts: the top row cor-
responds to the original 4D CT acquisition of Patient 2, the bottom row corre-
sponds to the modified sequence fa in which an artifact was inserted at position
ia. (a) Coronal view of the motion field obtained for Ts, (b) corresponding view
of the motion field obtained for T ∗

st using m = 3 and s = 2 frames.

differences can be observed near the diaphragm. The bottom row corresponds483

to the sequence with artifacts fa. In this case, strong perturbations can be484

observed in the motion field obtained using Ts. The influence of the introduced485

artifact is also noticeable for T ∗
st , but the changes in the motion field are less486

dramatic.487

In figure 7, three examples are given of motion fields in the presence of real488

artifacts. The artifacts are shown in the first column and are generally most489

clearly visible near the diaphragm. The second column shows the motion fields490

obtained using Ts. Strong perturbations can be seen, mainly in the part of the491

motion field that maps to region of the artifact; i.e., slightly above the location492

of the artifacts. The spatio-temporal approach tends to be less influenced by493

the artifacts. The resulting motion fields are noticeably smoother making them494

more plausible from a physiological point of view.495

5 Discussion496

Temporal Constraints In section 4.1, the smooth and piecewise smooth497

temporal models were compared at equal control point spacing (see figure 2).498

The difference in temporal constraints between Tt and T ∗
t , results in a different499

number of degrees of freedom at equal control point spacing. We therefore also500

performed a comparison between both models at equal degrees of freedom. The501

global performance of Tt was still significantly worse (p < 4 × 10−2) compared502

to the corresponding T ∗
t models (see table 1 for T ∗

t with two control points less503

than Tt). In addition, despite the global increase in degrees of freedom, the high504

fitting residual at end-inhale remained for Tt.505
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(a) (b)

Figure 7: Three examples of motion fields in the presence of real artifacts (a)
Motion fields obtained for (b) Ts and (b) T ∗

st using m = 3 and s = 2 frames.
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This confirms that a local increase in control points (as is the case for the506

piecewise smooth model T ∗
t ) is more efficient in terms of number of parameters,507

to obtain an accurate representation throughout the respiratory cycle. It should508

not be excluded that other piecewise models can be found, requiring less degrees509

of freedom, while obtaining a similar accuracy. These could consist in making510

sensible assumptions about the trajectory near end-inhale that can be translated511

into constraints, eliminating one or both of the additional degrees of freedom.512

The end-exhale phase, though also characterized with inversion of the mo-513

tion, did not require further investigation of the constraints. It has been reported514

that respiratory motion tends to be asymmetrical18,36, spending more time near515

end-exhale than end-inhale. Phase bins near end-exhale will represent relatively516

small deformation with respect to each other. Uniformly spaced control points517

with respect to these bins will lead to a spatially higher control point density518

near end-exhale, allowing a more accurate representation, even in the presence519

of smoothness constraints. This is confirmed by the trajectories depicted in520

figure 3, where two to three landmarks coincided with the end-exhale position.521

From a temporal constraints point of view, T ∗
t is related to the trajectory522

model developed in Castillo et al. 2 , where a compressible flow algorithm is523

extended with local trajectory modelling to perform 4D motion estimation for524

4D CT. In this case however, one-way (and not cyclic) trajectories were sought525

between end-inhale and end-exhale, thus not requiring further attention at end-526

inhale. Cubic polynomials (equivalent to four degrees of freedom) were found527

to provide sufficient flexibility to parametrize the sought trajectories spanning528

six frames of the 4D CT. This corresponds well to the six degrees of freedom529

(T ∗
st with a temporal control point spacing of 2) describing the trajectory over530

10 frames.531

Spatio-Temporal Registration The principal aim of this study was to de-532

velop a low-dimensional spatio-temporal deformation model to improve robust-533

ness of the subsequent registration. We pursued a restrictive parametrization534

and strong temporal regularization, as these were expected to reduce sensitivity535

to noise and artifacts. The parametrization was thoroughly investigated, both536

spatially and temporally, to ensure an accurate representation of breathing mo-537

tion was maintained.538

Based on the fitting experiments of the diaphragm motion data, cubic tem-539

poral B-splines were found to perform best and were selected for the temporal540

parametrization. The value of the temporal control point spacing s was found to541

represent a trade-off between achievable accuracy on one hand and an increase542

of parameters on the other, the latter likely to increase sensitivity to noise and543

artifacts. In practice, its value should reflect the needs of the application and544

the quality of the images. Using s = 2, the spatio-temporal models obtained545

results comparable to the reference Ts method, and was considered a suitable546

compromise for the 4D CT images dealt with in this study.547

From a parametrization point of view, the Tst model represents interesting548

characteristics. Minimal curvature is enforced throughout the entire cycle, and549

about a third less parameters are required with respect to T ∗
st . Unfortunately,550

detailed analysis revealed larger TRE near end-inhale for Tst, indicating the551

smooth model fails to capture the full extent of the motion. Even though552

trajectories are expected to be smooth functions of time, a temporally smooth553
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parametrization was found to provide a less accurate representation, due to the554

low temporal resolution of respiratory-correlated imaging and the control point555

grid. Using T ∗
st a uniform performance over the breathing cycle was obtained556

for all patients, and the group mean TRE was within 0.1 mm of the reference557

Ts, for both s = 2 and 2.5 frames.558

The improved matching of T ∗
st at end-inhale comes at the price of two addi-559

tional temporal degrees of freedom with respect to the smooth model. Nonethe-560

less, with respect to Ts, this model reduces the number of parameters to be561

estimated during registration by 33% and 45% for s = 2 and 2.5 frames, respec-562

tively (table 2). The impact of this compact, spatio-temporal parametrization563

was illustrated in the experiment in which a simulated motion-induced arti-564

fact was introduced in a 4D CT sequence. The motion field obtained using565

spatio-temporal registration was found to be considerably less influenced by the566

artifact, in comparison to the result obtained using Ts.567

Influence of tagging and binning In section 2, we made the assumption568

that the fourth image dimension was time. This allowed us to interpret Tt as569

a trajectory in function of time, and its derivatives as velocity and acceleration.570

In the case of 4D CT imaging, each frame is composed of data acquired at571

different times and different table positions. The interpretation of the fourth572

image dimension is closely related to the binning of acquired data, which is573

usually based on a surrogate signal.574

The 4D CT data presented here was obtained from phase-based binning,575

which is by far the most common procedure. For each acquired cycle, the re-576

construction of the different frames is performed by selecting projections equally577

spaced in time. Ignoring the non-periodic nature of breathing motion, the im-578

ages obtained in this fashion can be considered equivalent to a temporal se-579

quence. Alternative binning criteria17,24 have been proposed. In particular,580

amplitude-based binning is expected to provide frames uniformly spaced with581

respect to organ displacement. For such images, other smoothness constraints582

in end-inhale and even end-exhale might be more suitable.583

For all data presented, individual cycles were detected by tagging at end-584

inhale. The diaphragm motion data was artificially made periodic at end-inhale,585

to allow fitting the cyclic trajectory models. This procedure can be held partly586

responsible for the rapid changes at end-inhale, and contributes to the fitting587

residuals. To quantify the effect, we repeated the experiments when tagging588

at end-exhale. Comparatively larger residuals were observed at end-exhale,589

indicating the influence of the tagging position. The highest residuals were590

however still observed at end-inhale, confirming they are indeed caused by the591

sudden change in motion.592

Robustness to Artifacts Thoroughly evaluating the performance in the593

presence of artifacts is difficult due to the absence of a ground truth for the594

underlying image. The improved robustness of the spatio-temporal approach595

was therefore illustrated using a simple experiment based on simulated data,596

and through visual inspection of motion fields for real artifacts. Further analy-597

sis of the behaviour of the spatio-temporal model in the presence of artifacts or598

noise is required. In particular, the influence of the temporal size and location599

of artifacts merits attention.600
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In the 3D (2) and 4D criterion (12), regularization terms penalizing un-601

desirable properties of the deformation field were not included. The present602

study was limited to investigating the impact of explicit parametric restric-603

tions. Regularization penalties will provide additional robustness and are ex-604

pected to be complementary to the parametric contributions. In addition, the605

spatio-temporal framework allows regularization schemes to be extended to the606

temporal dimension, as in1.607

Applications of Spatio-temporal Motion Analysis The spatio-temporal608

deformation model (11) was applied to 4D CT of the thorax in a 3D-4D regis-609

tration framework. The model can also be applied to spatio-temporal motion610

analysis between sequences. By relaxing the condition (8) which constrains611

the deformation at the reference frame, the model can be applied to a 4D-4D,612

frame-to-frame registration framework. By replacing criterion (12) with a suit-613

able similarity measure, other modalities and even multi-modal problems can614

be studied.615

This is similar to the 4D-4D registration method for respiratory-correlated616

images described by Schreibmann et al. 35 or the spatio-temporal alignment of617

cardiac sequences presented by Perperidis et al. 26 . In comparison, our method618

assumes only frame-to-frame spatial deformations without temporal shifts, and619

constrains deformations to a cyclic trajectory. These assumptions limit the de-620

grees of freedom, and should be well suited to analyse motion patterns between,621

for instance, respiratory-correlated 4D CT, 4D cone-beam CT37 or 4D magnetic622

resonance images44.623

6 Conclusion624

We developed a spatio-temporal deformation model for deformable registra-625

tion of respiratory-correlated images of the thorax. The model was obtained626

by extending spatial free-form deformations to the temporal domain, using a627

cyclic trajectory model based on cubic B-splines. A piecewise smooth temporal628

parametrization was found most suitable to account for the rapid changes in ve-629

locity at end-inhale. The spatio-temporal modelling resulted in a considerably630

more compact description of the deformation model. Spatio-temporal registra-631

tion leads to comparable registration results while improving the robustness to632

artifacts.633
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