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Abstract 

The use of protective coatings in biomedical field is an ongoing scientific challenge. 

Among different materials, carbon-based coatings are considered a potential surface 

treatment for orthopaedic implants. In this study, the effect of Zr incorporation in 

amorphous carbon coatings on the wear behaviour under protein containing lubrication 

was investigated. The coatings were deposited by dc unbalanced magnetron sputtering 

in Ar (non-hydrogenated) and Ar+CH4 (hydrogenated) discharges onto Ti based 

biomedical substrate. To improve the adhesion between the film and substrate a 

functional gradient Ti based layer was deposited (~550nm). The surface wettability was 

evaluated to assess the effect of the Zr and hydrogen content. The films with Zr were 

found to be hydrophobic enhancing the protein adsorption onto the surface; no 

significant differences were found when H was incorporated in the films. The 

adsorption layer characterized by X-ray photoelectron spectroscopy showed a well 

define nitrogen peak originating from the organic layer. The tribological properties of 

the film were evaluated by unidirectional pin-on-disc testing with diluted bovine serum 

lubrication and physiological solution at 37±3 C°. The friction and the wear of the 

coatings were very low compared to uncoated substrates in both lubrication conditions. 

The ability of the surfaces to adsorb proteins was considered as the driving force for 

wear resistance acting as a protecting layer. In addition, the incorporation of Zr 

decreased the wear of the counterbody (Ti alloy) due to higher albumin adsorption. 
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1. Introduction: 

 

Fatigue fracture and wear have been identified as the major problems associated with 

implant loosening, stress-shielding and ultimate implant failure. Demanding contact 

conditions coupled with the aggressive body environment lead to fatigue failure of 

almost all implant materials. The fatigue wear process causes the generation of the wear 

debris which, by acute host-tissue reactions, tend to aggravate and speed up the failure 

of the biomaterial. Wear is a critical issue for prostheses, implants and other medical 

devices and its reduction is still an ongoing scientific and technological challenge. 

Diamond-like carbon (DLC) coatings have been widely studied to enhance implant 

performance due to its inertness, wear and corrosion resistance, hardness and excellent 

bio- and hemo-compatibility [1-4]. In fact, DLC was already implanted as an artificial 

joint [5-7], surviving just 2-10 years due to delamination problems in-vivo. It is well 

known that DLC exhibits high internal stress which significantly limits the adhesion of 

the coating to metallic substrates. Thus, in order to overcome this problem, a metallic 

interlayer (Cr, Ti, Zr, Si, etc.) and/or functionally graded layers (Me/MeN/MeNC or 

Me/MeC, Me corresponds to the metallic element) have been deposited between the 

metallic substrate and the DLC coatings avoiding abrupt changes in composition and 

diminishing the stress concentration [8, 9]. The use of transition metal (Zr, Ti, Cr, etc.) 

co-sputtered amorphous carbon (a-C) films has also been widely studied as one possible 

solution to improve DLC performance [10-12]. Moreover, the incorporation of 

hydrogen can further enhance structural changes by stabilizing the covalent bonding 

network (sp
3
) and playing a key role in the mechanical and tribological behaviour of the 

coating [13]. Even thought, under the highly corrosive human body environment the 

degeneration problem still persists promoting the failure of the coating [14]. Actually, 

Hauert et al. [7] found that the main problem of DLC coatings is that, after some time in 

the body environment, the interface between substrate and functional coating can suffer 

a corrosion process by the penetration of body liquid through defects such as pinholes.  

The exact interaction between biomaterials and natural fluids is still under extensive 

studies [15]. Immediately after implantation, water and ions from the body fluid are 

adsorbed and then a protein layer is formed onto the surface. Protein adsorption is 

indeed the first event which signalizes the overall biological response of the body to the 

implanted material [16-19]. A number of factors (surface chemistry, charge, 

topography, wetting behaviour, etc.) can alter protein conformation and/or orientation 

and consequently directly influence the cell response. For the joint implant point of 

view, proteins were also found to enhance lubrication through the adsorption of a 

protein layer on the joint materials surfaces [20, 21]. The natural lubrication typically 

minimizes the shearing damage and decreases the friction energy loss. However, when 

using artificial joint, the synovial fluid lubrication ability depends on many factors, such 

as surface treatment and the sliding conditions which could provoke catastrophic failure 

of the implant with partial or complete loss of functionality The effect of the synovial 

proteins on friction and lubrication is still unclear [22-24], particularly when 
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considering realistic surface engineering solutions. In fact, only few papers dealing with 

the influence of protein on (tribo)corrosion properties of DLC coatings [25, 26] and 

even less for metal-containing DLC coatings [27] can be found in literature. In the 

present study the effects of H and Zr incorporation in the a-C-matrix were analysed 

tribologicaly using physiological lubricants (0.9% NaCl and diluted foetal bovine 

serum) in order to predict its behaviour under such adverse environments. Additionally, 

the interaction of albumin with the surfaces was also accessed using X-ray 

photoelectron spectroscopy (XPS) together with wettability tests for surface chemistry 

characterization. 
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2. Materials and methods 

2.1 Coatings deposition 

The coatings were deposited onto Ti grade 5 (Ti6Al4V) substrates and Si(111) wafers 

for the tribological testing and for coatings characterization, respectively. The Ti grade 

5 substrates were mechanically polished with SiC paper (500, 600, 800, 1200 grits), and 

then finished by using diamond suspensions (6, 3 and 1 µm) and a colloidal silica 

suspension in order to obtain a mean substrate surface roughness (Ra) lower than 50 

nm. Prior to deposition, the substrates were then cleaned in an ultrasonic bath in 

acetone, ethanol and deionised water for 15 min, and mounted on the rotating sample 

holder (18 rpm) in the deposition chamber. The coatings were deposited with a DC dual 

magnetron sputtering machine. A pure graphite target was used for the production of the 

a-C films in reactive (Ar/CH4) and non-reactive atmosphere (Ar), in order to produce 

hydrogenated and non-hydrogenated films, respectively. Zr pellets were added to the 

erosion zone of the graphite target (relative erosion area, AZr/AC, between 0 to 6%) to 

produce Zr containing films. All coatings were deposited with a constant applied bias 

voltage of -50 V and graphite target power density close to 7.5 W.cm
-2

. Moreover, a 

pure Ti target was also sputtered for the deposition of a composite gradient interlayer 

(Ti/TiN/TiCN) to improve the film adhesion on the metallic substrates. For each 

deposition conditions, the deposition time was calculated to obtain films ~1.4 µm thick. 

Further detailed deposition specification can be found elsewhere [28]. To facilitate 

reading, the coatings will be denominated as a-C_Zr(X) and a-C:H_Zr(X) for the non-

hydrogenated and hydrogenated, respectively, where X is the Zr content.  

 

2.2. Coating characterization 

The chemical composition of the coatings was analysed by a full "Total Ion Beam 

Analysis (IBA)" [29] - Rutherford backscattering (RBS), non-Rutherford elastic 

backscattering (EBS), elastic recoil detection (ERD) and particle-induced X-ray 

emission (PIXE) self-consistently - used by the DataFurnace code (NDFv9.4f [30]). 

This work was carried out at Surrey Ion Beam Centre, University of Surrey, UK. The 

analysis used an alpha particle beam of energies 3045 keV and 4315 keV with normal 

and tilted beam geometries, two backscattered particle detectors with different 

geometries, together with a forward recoil and an X-ray detector. Evaluated non-

Rutherford particle scattering cross-sections [31] were used for H, C, N, O; those for H 

using the R-matrix parameters of the very thorough treatment of Dodder et al. [32] and 

those for C and N are described respectively by Gurbich [33] and Gurbich et al [34]. 

The He-PIXE used the LibCPIXE code of Pascual-Izarra et al. [35] and the ionisation 

cross-sections of Taborda et al. [36]. SRIM2003 stopping (energy loss) cross-sections 

were used [37]. For these samples all the information was in the 4315 keV data at 15° 

incidence angle, at which energy the 4263 keV 
12

C()
12

C resonance is excited giving 

high sensitivity at the surface to C in the presence of Zr. The ERD detector was at 30° 

scattering angle, and all four spectra (backscattering at 170° and 150°, ERD and PIXE 
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at 120°) were interpreted self-consistently. The ERD detector relative solid angle was 

calibrated using a Kapton sample; the range foil thickness was 34 m Kapton. The 

X-ray detector had a 146 m Be filter to exclude backscattered particles. The PIXE 

showed the presence of Hf (assumed to be a contaminant at 0.85at% relative to Zr), and 

of Ar (from the sputtering process: <5at% relative to C).  

The structure of the coatings was analyzed by X-ray diffraction (XRD) (Philips, X’Pert 

diffractometer, Co Kα radiation) whereas X-ray photoelectron spectroscopy (XPS) 

(ESCAprobe P, Omicron Ltd., Al Kα, binding energy calibrated with Au 4f (84,1eV)) 

was used to identify chemical bonding. The hardness was measured by depth-sensing 

indentation (Micromaterials Nanotest) using a Berkovich indenter. The normal stylus 

load was 5 mN (indentation depth approx. 150 nm); 32 independent indentations from 

two distinct areas on the sample were used to analyze the hardness data. Additional 

information is given in [28].  

 

2.3 Contact angle and surface free energy 

The contact angle measurements were performed through the sessile drop method. 

Drops were generated with a Krüs GmbH G-23 goniometer at ~20 °C and room 

humidity (50%). A minimum of 5 drops were deposited on the surface and a sequence 

of images were acquired for the contact angle calculation. The surface energy was 

calculated by measuring the contact angle of various liquid solutions: water, glycerine 

(𝐶3𝐻8𝑂2), formamide (𝐶𝐻3𝑁𝑂) and diiodomethane (𝐶𝐻3𝐼2). 

 

Table 1 Liquid's surface energy and their polar and dispersive components [38, 39] 

Liquid 𝜸𝑳𝑽 (mJ.m
-2

) 𝜸𝒍
𝒅(mJ.m

-2
) 𝜸𝒍

𝒑
(mJ.m

-2
) 

Water 72.8 29.1 43.7 

Glycerin (𝑪𝟑𝑯𝟖𝑶𝟐) 63.4 37.4 26.0 

Formamide (𝑪𝑯𝟑𝑵𝑶) 58.2 35.1 23.1 

Diiodomethane 

(𝑪𝑯𝟑𝑰𝟐) 

50.8 50.8 --- 

  

The surface free energy (SFE) was calculated using the Owens equation [38]. Wetting 

behaviour is governed by the Young equation: 

𝛾𝐿𝑉 cos 𝜃 = 𝛾𝑆 − 𝛾𝑆𝐿 (1), 
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where θ is the measured solid-liquid contact angle and 𝛾𝑆 and 𝛾𝑆𝐿 are the solid-liquid 

and liquid  SFE. The surface energy (𝛾𝑆) can be expressed into polar (𝛾𝑝) and dispersive 

(𝛾𝑑) components. The dispersive component is related to London interaction, arising 

from electron dipole fluctuation. Thus, 

𝛾𝑆𝐿 = 𝛾𝑆𝑉 − 𝛾𝐿𝑉 − 2√𝛾𝑠
𝑑𝛾𝑙

𝑑 − 2√𝛾𝑠
𝑝𝛾𝑙

𝑝
 .(2) 

Combining equation (1) with (2) we obtain 

𝛾𝐿𝑉(cos 𝜃 + 1) = 2√𝛾𝑠
𝑑𝛾𝑙

𝑑 + 2√𝛾𝑠
𝑝𝛾𝑙

𝑝
. (3) 

Thus, the polar and dispersive component of the film surface energy can be calculated 

and, as a result, the total surface energy (𝛾𝑆) is obtained.  

 

2.3 Protein Adsorption 

The interaction with bovine serum albumin (BSA) was studied by immersion of the 

samples in a 2 ml BSA containing solution (4mg.ml
-1

) diluted with a basic solution 

(NaCl: 9 (g/l); EDTA: 0.2 (g/l); Tris: 27 (g/l); sodium azide: 0.3%, pH 7.6) for 24 h at 4 

ºC. The incubation time was chosen in order to take into account the Vroman effect and 

the tendency of the proteins to adjust its conformation with the surface [19]. The 

amount of total immobilized protein was calculated using the Bradford reagent against a 

standard BSA calibration curve. This technique is a powerful technique to study 

protein-to-protein variability. However, it is influenced by the presence of interfering 

substances such as detergent and different ionic compounds (such as metallic ions) 

which prevents the precise quantification of proteins. Thus, a reliable qualitative result 

can be obtained by comparison between samples as soon as the experimental 

uncertainties are considered constant. After immersion, all the samples were washed 

with water Mili-Q for eventual detachment of non-chemisorbed proteins. The detached 

proteins were also taken into account for the protein quantification using the same 

method described above. The samples were then air-dried for 24h before the XPS 

spectra were recorded. The XPS analysis was performed using a Kratos AXIS Ultra 

with VISION software for data acquisition and CASAXPS software for data analysis. 

The analysis was carried out with a monochromatic Al K X-ray source (1486.7 eV), 

operating at 15kV (90 W), in FAT mode (Fixed Analyser Transmission), with a pass 

energy of 40 eV for regions ROI and 80 eV for survey. Data acquisition was performed 

with a pressure lower than 10
-6

 Pa, and a charge neutralisation system was used. To take 

into account shifts caused by charging of the sample surface, all spectra were adjusted 

taking the C1s peak at 285.0 eV as a reference for the carbon contamination. The 

deconvolution of the spectra was performed using the CasaXPS program, in which an 

adjustment of the peaks was performed using peak fitting with Gaussian-Lorentzian 

peak shape and Shirley type background subtraction. The spin-orbital splitting in Zr 3d 
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was assumed to be the same for all phases and equal to 2.4 and the integrated intensity 

of the Zr 3d5/2 peak relative to that of the Zr 3d3/2 was considered equal to the spin-

orbital multiplicity of 2/3 [40, 41]. 

 

2.4 Tribological tests 

The tribological tests were carried out using a pin-on-disc CSM tribometer in two 

different lubrication conditions: physiological solution (PS; 0.9% NaCl water solution), 

and foetal bovine serum (FBS), prepared according to the ASTM F732 standard test 

method [42]. The temperature was maintained constant at 37±3 °C. A Ti6Al4V ball of 8 

mm diameter was used as counterbody. An applied normal force of 1 N, linear speed of 

20 cm.s
-1

, and 10 000 cycles were employed. Tests on non-coated substrates were also 

performed under the same testing conditions for comparison purposes. The tribological 

behaviour was examined with respect to the friction coefficient and the wear rate; the 

latter was evaluated on the basis of 3D profile measurements on the wear track, whereas 

the wear rates of the balls were calculated from measurements of the spherical wear cap 

using optical microscopy. 
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3. Results and discussion 

3.1 Coatings Characterization: 

 

Table 1 Chemical and mechanical properties of the coatings 

Name 
Chemical Composition Dep. 

Rate 
(nm/min) 

Density 
(g/cm3) 

Ra 
(nm) 

H (GPa) 
E 

(GPa) C (at.%) Ar (at.%) Zr (at.%) H (at.%) 

a-C_Zr(9) 90.3 0.6 9.0 0.2 8.3 3.1 103 10.7±0.5 133±2 

a-C_Zr(8) 88.1 3.0 7.5 1.5 7.3 3.9 88 11.9±0.6 126±3 

a-C_Zr(4) 91.4 3.8 3.8 0.9 5.0 3.3 85 10.4±0.4 110±3 

a-C 94.0 4.4 - 1.6 4.6 2.6 55 10.7±0.5 94±1 

a-C:H_Zr(6) 67.6 1.9 5.7 24.8 12.0 2.8 76 12.2±0.5 114±3 

a-C:H_Zr(5) 71.3 1.0 4.8 22.9 10.0 2.3 55 11.4±0.4 103±1 

a-C:H_Zr(3) 64.1 1.1 3.3 31.5 8.5 3.1 51 10.0±1.6 87±3 

a-C:H 61.3 0.6 - 38.1 8.8 1.9 76 8.9±0.3 70±1 

 

Table 1 shows the chemical composition obtained by IBA. The use of reactive 

(Ar+CH4) and non-reactive (Ar) sputtering led to the production of hydrogenated and 

non-hydrogenated coatings, respectively. The use of the reactive atmosphere promoted 

the incorporation of hydrogen in the coating in a range from 23 to 38 at.% and almost 

doubled the deposition rate compared to non-hydrogenated coatings. The increase of the 

number of Zr pellets led to an increase of the Zr content and higher deposition rate, 

particularly for the non-hydrogenated coatings. The H content diminished with the 

increase of the Zr content. The density of the coatings was determined by IBA in 

µg/cm
2
; using the thickness of the coating measured by optical profilometer, it was 

possible to calculate the density of the coatings in g/cm
3
. The density varied from 2.6 to 

3.9 for the non-hydrogenated coatings and from 1.9 to 3.1 for the hydrogenated 

coatings. The density is strongly related to the coordination defect content, H content, 

sp
3
 bonding and lattice disorder, and, obviously, zirconium content [43]. In general, the 

incorporation of H into the C-matrix led to the decrease of density compared to the non-

hydrogenated films. Moreover, Zr co-sputtered films were harder and denser than pure 

films. Zr is a transition metal which present electrons at the outer shell loosely bound to 

their nuclei. Thus, the substitution of carbon atoms by Zr metal dopant in the rigid C–C 

and C-H network may distort the electron density distribution [44] and, thus, decreasing 

the coordination defect and increasing the density. However, for Zr contents higher than 

5 at.% the density decreased. XRD diffractograms presented a weak and very broad 

peak close to ZrC (111) phase which indicates a nanocrystalline material with a grain 

size in the order of a few nanometers. Moreover, a nc-ZrC phase was also identified by 

XPS where the C1s spectra showed a peak located at higher biding energy (~283.2 eV) 

compared to the typical Zr-C (281.8-282.3 eV) which is typical coatings with 
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nanometric grain size. We can summarize here that, the increase of Zr content led to the 

formation of nanostructure with ZrC nanocrystals embedded in the C-matrix. A detail 

study of the structural characterization of the Zr co-sputtered a-C films by XPS can be 

found in Ref. [28]. The coordination number of C network can be then reduced by 

binding C atoms into carbide and, in accordance with thermodynamical models of DLC 

formation, resulting in the decrease of the local atom density in DLC film [45, 46]. 

 

3.2 Contact angle and Surface free energy 

 

Table 2 Water contact angle (θ), surface energy (ϒs), water adhesion tension values  (τ0) and BSA interfacial 
tension (ϒBSA) of the deposited films and uncoated substrate. 

Samples 
Θwater  

(°) 

Surface Energy (mJ.m-2) 
τ0 

(mJ.m-2) 
ϒBSA 

(mJ.m-2) ϒs
p ϒs

d ϒS
 

a-C_Zr(8) 67±1 5.0 40.5 45.5 28.0 13.3 

a-C_Zr(4) 66±3 5.1 45.8 50.9 30.1 13.8 

a-C 50±7 11.2 51.2 62.4 46.8 8.4 

a-C:H_Zr(6) 73±2 3.9 36.7 40.6 20.9 14.7 

a-C:H_Zr(3) 65±2 12.8 27.2 40.0 31.0 5.1 

a-C:H 57±2 14.2 33.9 48.1 40.2 4.2 

Ti6Al4V [47-49]  73±11 8.1 31.1 39.2 21.3 8.7 

 

The interaction of the films with water is very important from the biomedical point of 

view. Numerous physiological events at subcellular and cellular levels, such as cell 

adhesion and protein adsorption, are greatly affected by such property. The surface 

energy has been related to the adsorption ratio of diverse proteins and, consequently, 

cell spreading. Albumin is considered as a multifunctional transporter protein and the 

most abundant protein found in the plasma (approx. 50 mg.ml
-1

) [50, 51]. Moreover, its 

adsorption has been found to be related to the inhibition of the coagulation cascade and, 

consequently, platelet adsorption [52, 53]. Albumin has three homologous domains 

(comparable amino acid sequences) assembled in a heart-shape structure which are 

sustained by mainly hydrophobic interactions, hydrogen bonds and disulfide bridges 

[54]. Thus, surface-protein interaction should be strongly related to surface chemistry. 

Table 2 shows the wettability characteristics assessed by contact angle measurements 

for selected coated samples. The wetting character of a surface can be obtained using 

water. Thus, high contact angle values imply a less wettable surface (hydrophobic 

surface) and, on the contrary, low contact angles values indicate a more wettable surface 

(hydrophilic surface). Pure non-hydrogenated and hydrogenated carbon films were 

characterized as hydrophilic coatings (θ < 65º), which was in good agreement with the 

proposed contact angles found in literature [55, 56]. When zirconium was added into the 
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C-matrix in increasing contents, the water contact angle increased suggesting 

hydrophobic surfaces. The exact water-interaction mechanism of alloyed DLC coatings 

is still not clear and further investigation is needed. However, albumin is known to have 

a higher binding affinity to hydrophobic surfaces due to hydrophobic interactions 

between the protein and the surface [50]. Hence, Zr containing samples are expected to 

bond more proteins compared to pure films.  

As expected, pure hydrogenated and non-hydrogenated coatings presented higher 

surface energy than the respective co-sputtered films. The incorporation of Zr led to a 

decrease of the surface energy due mainly to the reduction of the polar component. The 

metallic element can decrease the presence of unsaturated bonds and consequently 

decrease the dipolar interaction with water [57]. Additionally, the presence of non-polar 

C-H bonds on the surface of hydrogenated coatings further decreased the interaction of 

the surface with polar molecules such as water and thus, for the same Zr content, the 

SFE was found to be lower compared to non-hydrogenated films. This fact is 

highlighted by the low polar component found in the Zr co-sputtered films, which 

strongly contributes to the hydrophilic functional chemical groups on the surface (Table 

2). Each protein has a hydrophobic peptide backbone where the basis of polarity of R 

group emphasizes the possibility of functional role. The protein interfacial tension, 

ϒBSA, was calculated by the following equation [58]: 

𝛾𝐵𝑆𝐴 = (√𝛾𝐵𝑆𝐴
𝑑 − √𝛾𝑠

𝑑)

2

+ (√𝛾𝐵𝑆𝐴
𝑝 − √𝛾𝑠

𝑝)

2

+ΔBSA s,   (4) 

where the value ΔBSA s describes the interdiffusion of ionic-covalent interactions which 

can be considered negligible. Further, if the interfacial tension approaches zero the 

interactions protein-surface are supposed to be lower. Albumin interfacial energy 

parameters are 𝛾𝐵𝑆𝐴
𝑑 = 31.4 mJ.m

-2 
and 𝛾𝐵𝑆𝐴

𝑝
=33.6 mJ.m

-2
 [58]. Table 2 shows the 

calculated values for the coated surfaces. Low polar component and low 

polar/dispersive ratio presented higher interfacial tensions. In fact, many authors related 

a low ratio of polar to dispersive components with plasma protein adsorption [59, 60]. 

Additionally, Vogler [53] found that the water adhesion tension, τ0, was the key 

parameter for biological reactivity of a biomaterial. The wettability is then measured by 

τ0 and calculated as a product of water tension by the cosine of the measured water 

contact angle. Hydrophobic and hydrophilic surfaces are separated by the Berg’s limit 

(τ0 = 30 mJ.m
-2

) which also limits the protein attraction/repulsion characteristic, 

respectively. Actually, the adsorption on hydrophilic surfaces was found to be 

thermodynamically unfavourable, i.e., the competition between water and proteins 

adsorption is an endothermic process [53, 58]. Once the adsorption is initiated, proteins 

tend maximize the surface interaction by exposure either hydrophobic domain (typically 

hidden toward the interior) or hydrophilic domains trough the surface. Therefore, the 

exclusion of water from the hydrophobic surface potentiates protein-surface interaction 

and, consequently, the hydrophobic interactions (except for the case when the protein in 

question has hydrophobic regions on its surface). Thus, the incorporation of Zr content 



11 
 

led to lower τ0. Besides, the films with higher Zr content were found to have τ0 < 30 

mJ.m
-2

 further highlighting the ability to adsorb protein. On the other hand, the 

adsorbed molecules through hydrophobic interaction can undergo reversible/irreversible 

conformational changes which may lead to unfavourable cell response if the proper 

binding domain is disrupted.  

 

3.3 Protein adsorption 

In order to confirm the wettability results, the protein adsorption phenomenon was 

evaluated for the non-hydrogenated samples. Coated and un-coated samples were 

immersed for 24h hours in a BSA containing solution and rinsed several times with 

ultra pure water in order to leave only the irreversibly bound proteins on top of the 

surfaces. The amount of protein absorbed was estimated using the Bradford protein 

assay and is shown in Figure 1. As expected, pure amorphous coatings showed lower 

protein affinity compared to co-sputtered and uncoated surfaces. Although, Ti6Al4V 

presented the highest affinity to protein adsorption, the incorporation of Zr co-sputtered 

films significantly improved protein affinity when compared to “inert” a-C surface. 

Although proteins often adsorbed as monolayers on metallic substrates (side-on and/or 

end-on), multilayer adsorption is not uncommon, particularly for high concentration 

solutions [20, 61]. Taking into account the albumin size and molecular weight [51], a 

close pack monolayer can be formed by approximately 4 mg/m
-2

 [61, 62]. Thus, it is 

expected that in the case of Zr-containing samples albumin adsorbed as a multilayer 

coverage. This result corroborates the observation shown above: hydrophobic surfaces 

tend to bind more protein through “hydrophobic interactions” (Figure 1) [20, 50, 63]. In 

general, the driving force for protein adsorption is the entropy gain resulting from 

dehydration of parts of the sorbent and the protein surface. a-C coating presented the 

highest surface energy together with the highest dispersive component; then, it should 

be expected to bond less protein compared to Zr co-sputtered films (hydrophobic 

surfaces). Moreover, the amount of protein desorbed after washing (i.e. not chemically 

adsorbed on surface) was around 46% compared to 4% found for uncoated samples. It 

shows that the proteins are less tightly bound to the hydrophilic surface [17].  
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Figure 1 BSA adsorption vs contact angle measurements  

 

XPS analysis was performed in order to prove the presence of the adsorbed albumin 

layer. Figure 2 shows the XPS survey spectra for uncoated samples and non-

hydrogenated coatings after immersion in BSA. In order to take into account the typical 

contamination layer, a-C_Zr(7) XPS spectrum before immersion is also shown as a 

representative of all samples in as-deposited conditions. In fact, after removing such 

contamination layer by argon sputtering (spectrum not shown here) the only visible 

changes were an increase in carbide bonds (for the Zr-containing samples) and a 

decrease in O-containing bonds, confirming the presence of a thin contamination oxide 

layer. The spectra show the peaks corresponding to oxygen (O 1s 532 eV), nitrogen (N 

1s 400 eV), carbon (C 1s 285 eV) and sulphur (S 2p 164 eV, see Figure 2 inset). The 

appearance of a well defined N 1s peak (N 1s 400 eV) for all samples after immersion is 

usually attributed to the amino acids of the protein [64, 65]. However, it can be also 

related to the basic solution used for dilution. On the other hand, the presence of the S 

weak band can only belong to S-containing amino acids, i.e., methionine (Met) and 

cysteine (Cys). Indeed such amino acids correspond to around 7% of the total 538 

amino acids residues that compose BSA [66]. For Zr-containing films another important 

feature was observed; the decrease in the intensity of the Zr 3d core level peak due to 

the presence of the organic adherent layer on the top of the sample (compare Figure 2 

(d) and (e)). Sodium and phosphorus were also detected and considered as 

contamination from the basic solution used to dilute BSA.  
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Figure 2 XPS spectra of the uncoated and coatings after immersion in BSA: (a) Ti6Al4V, (b) a-C, 

(c) a-C_Zr(4) and (d) a-C_Zr(8). a-C_Zr(8) spectrum (e) before immersion was also add for 

comparison. The inset (*) shows a zoom in of the 200-100 eV region of the a-C_Zr(4) film XPS 

spectra revealing the S 2p photo-peak. 

 

The deconvolution of the peaks in C 1s, O 1s and Zr 3d core level spectra of the films, 

before and after BSA immersion, is shown in Figure 3. Before immersion, all C 1s 

spectra were fitted using the alkyl type carbon (C-C, C-H) at 285 eV as charge 

reference; a second peak at 286.5 eV was added with the same FWHM as the main 

peak, indicating the alcohol (C-OH) and/or ester (C-O-C) functionality. Two other 

components can also be detected corresponding to the C=O and O-C=O at 2.8-3.0 eV 

and 3.6-4.3 eV, respectively [67]. When Zr was incorporated in the matrix an extra peak 

was also observed close to 283.4±0.2 eV attributed to C-Zr*, i.e. Zr-C bond in 

nanocrystal as referred to above [28, 68]. After immersion in BSA an additional peak 

appeared at 288.3±0.1 eV attributed to the O=C-N groups from the peptide backbone 

[20, 64, 65, 69]. O 1s band also revealed an extra peak at 532.6 eV after protein 

adsorption confirming the presence of such bond together with two other peaks 

revealing oxygen contamination (531.7 eV) and carboxyl groups (533.1 eV) on the film 

surface [69]. Again, for Zr-containing films a shoulder around 532.1 eV is observed 

being identified as Zr-O bond. The Zr 3d spectra show the presence of both Zr-C (181.2 

eV) and Zr-O (183 eV) bonds typically found for Zr-conatining DLC films [28, 68]. 
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After immersion in BSA, a decrease in intensity of  the Zr-C bonding component is well 

visible indirectly supporting existence of protein layer.  

 

 

Figure 3 Deconvolution of O 1s, C 1s and Zr 3d core level spectra of the coating before and after immersion for 
24h in BSA. 

 

Although XPS does not provide quantitative information about the total amount of 

adsorbed protein, it is commonly monitored by the intensity of N peak before and after 

protein adsorption [20]. The presence of N was imperceptible before the immersion in 

BSA. Figure 4 shows the N 1s core-level spectra for all measured samples after 24h 

immersion in BSA. As expected, the intensity of the N 1s peak varies in a similar way 

as expectedprotein adsorption. The deconvolution of the peaks (not shown) revealed one 

component close to 400.2 eV characteristic of O=C-N groups from the peptide bonds 

[20, 64, 65, 69] and an additional peak near to 401.8 eV which can be attributed to a 

protonate amine group (-NH
+
) of the terminal amino groups [70-72]. This may indicate 

that the BSA will bind through carboxyl acid group rather than amino group [73].  
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Figure 3 N 1s core level spectra of Ti6Al4V and non-hydrogenated coatings after immersion in BSA. 

 

3.4 Friction and wear 

To identify a promising coating composition for the articulating joints, forensic 

tribological screening tests (unidirectional pin-on-disc tests) were performed using a 

corrosive lubricants (0.9% NaCl, physiological solution - PS) and a protein containing 

lubricant (Fetal Bovine Serum – FBS). The use of physiological solution was chosen in 

order to create a synergistic effect between the wear and the corrosion due to the 

presence of water and ions that may accelerate material degradation
 
 [75, 76]. On the 

other hand, FBS was used in order to approach the physiological conditions. 

Figure 4 presents the friction data from the tribological tests in PS and FBS. 

Surprisingly, the friction coefficient of coated samples tested in PS was found to be 

similar to that of dry sliding [28] and lower than that measured in FBS. Moreover, the 

incorporation of Zr did not lead to any statistically significant difference in friction 

among the coatings. In all cases, the worn surface did not show any signs of film failure 

(Figure 5). In general, all coatings present very low wear rate (~0.5x10
-6

 mm
3
/Nm) 

compared to the uncoated surface under both lubrication conditions (7.2 x10
-4

 mm
3
/Nm 

and 5.7 x10
-4

 mm
3
/Nm for PS and FBS, respectively, see Figure 6). The incorporation 

of Zr did not significantly improve the wear compared to pure carbon coatings. 

Nevertheless, the wear of the counterbody was strongly reduced when testing against 

doped films (Figure 4). 
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Figure 4 Average friction coefficients (a) and ball wear rate (b) of the coated and uncoated 

samples under both lubrication conditions. 

 

Figure 5 Comparison between the wear tracks (cross-section) of hydrogenated and non hydrogenated films under 
PS lubrication. 

 

Figure 6 Wear profile of Ti6Al4V sample tested under PS and FBS 

 

When tested in highly corrosive medium (PS), it is expected that the production of the 

wear products and their accumulation in the wear track precipitate abrasion wear and 
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delay the repassivation [76]. The co-sputtered Zr films are known to present good wear-

corrosion behaviour. Kumar et al. [77] showed similar or better corrosion properties of 

Zr-doped DLC coatings tested in Hank’s Solution compared to the Ti alloy substrate. 

Also, Wang et al. [75] reported an excellent crevice and pitting corrosion resistance of 

Zr-DLC films. It is thus expected that the incorporation of Zr enhances the corrosion 

resistance compared to unalloyed films due to its ability to form an oxide layer as 

observed for Ti and Cr by Wang et al. [78]. The decrease of both wear debris amount 

and accumulation of corrosion products between the mating materials can consequently 

decrease the wear of the counterpart. On the other hand, when testing under FBS, the 

presence of proteins can play two roles in the sliding systems: (i) they act as a lubricant 

and (ii) they decrease the degradation process by forming a complex adsorbed film [79]. 

Moreover, protein also can interact with the metallic debris/ions forming metalloprotein 

complexes that may be processed or eliminated in vivo [80]. Protein-rich lubricants are 

known to improve the stability of the passive film on metallic substrates (SS 316L, 

Ti6Al4V alloy and CoCrMo alloy) acting as a corrosion barrier layer and minimizing 

the surface degradation [23, 24]. The presence of adsorbed proteins protected not only 

the coated surface, decreasing significantly its wear rate (negligible worn volume, see 

Figure 7), but also the counterbody (Figure 4), particularly when rubbing against Zr-

containg coatings. Adding a metallic element to the C-matrix led to higher protein 

adsorption compared to a-C pure films (see Section 3.3), which could increase 

(tribo)corrosion resistance of coating-substrate system. For all coatings the friction 

coefficient using FBS as lubricant was higher compared to PS; nevertheless, it was still 

significantly lower compared to that of uncoated substrates (~0.38). The friction 

coefficient increased up to ~2000 cycles and then oscillated around an average value 

(~0.16). The same tendency was observed for DLC films co-sputtered with Ti [81] and 

Si [82]. Figure 7 shows a schematic representation of the albumin-mediate lubrication 

on DLC-based films. Although albumin can undergo conformational change due to 

adsorption on hydrophobic surfaces, the adsorbed layer is more tightly bound compared 

to hydrophilic surfaces. Thus the wear of the counterbody was particularly decreased by 

application of Zr co-sputtered coatings. The hydrophobic character of such films led to 

the adsorption of a robust protein layer onto the surface (high adsorption rate), which 

prevented the surfaces to rub in direct contact. However, it was also noticed from the 

wear scars inspection (Figure 8) that higher surface roughness (Table 1) can be 

disruptive for such layer resulting in accelerated wear of the counterbody. 
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Figure 7 Schematic representation of the key mechanisms of the albumin-mediated lubrication on DLC films. 

 

   

   

Figure 8 Wear track prophile and ball micrograph of a-C:H film where only few 

scratches on the surface could be observed, which contrasted with the wear 

damage of the ball counterparts showing clear abrasive marks. 

 

4. Conclusions 

Zr co-sputtered amorphous films were deposited by DC magnetron sputtering under 

reactive (Ar+CH4) and non-reactive (Ar) atmosphere and tested in lubricated contact. Zr 

was added in small amounts (3-9 at.%) forming dense nanostructured coatings 

composed of ZrC nanocrystalls embedded into an amorphous C-matrix. The 

incorporation of H did not show any significant differences compared to non-

hydrogenated coatings. Zr-containing coatings showed higher contact angle (and 

therefore lower surface free energy) then a-C(:H) ones which enhanced protein 

adsorption onto the surface. XPS measurements further indicated that albumin adsorbs 

better on the surface of Zr-alloyed coatings. When tribologically tested in PS, Zr-doped 

films behaved similarly to pure carbon films. However, the wear behaviour in FBS 

lubrication clearly indicated strong dependence on the ability of the surface to adsorb 
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proteins. Although the wear of all coatings was negligible, higher protein adsorption 

rate of hydrophobic surfaces led to lower counterbody wear due to the presence of a 

robust protein layer. 
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