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Abstract Constraint Satisfaction Problem (CSP), includ-
ing its soft modifications, is ubiquitous in artificial intelli-
gence and related fields. In computer vision and pattern
recognition, the crisp CSP is more known as the consistent
labeling problem and certain soft CSPs as certain inference
problems in Markov Random Fields. Many soft CSPs can
be seen as special cases of the semiring-based CSP (SCSP),
using two abstract operations that form a semiring.

A fundamental concept to tackle the CSP, as well as
the SCSPs with idempotent semiring multiplication, are arc
consistency algorithms, also known as relaxation labeling.
Attempts have been made to generalize arc consistency for
soft CSPs with non-idempotent semiring multiplication. We
achieve such generalization by generalizing max-sum diffu-
sion of Kovalevsky and Koval, used to decrease Schlesin-
ger’s upper bound on the max-sum CSP. We formulate the
proposed generalized arc consistency in the semiring frame-
work. Newly, we introduce sum-product arc consistency and
give its relation to max-sum arc consistency and optimal
Max-sum arc consistency.

1 Introduction

The! constraint satisfaction problem (CSP) [39, 26] seeks
to find states of discrete variables that satisfy a given set
of constraints (relations). This formulation is too rough for
many applications and the attention is turning to soft CSPs,
where one seeks to optimize soft constraints rather than sat-
isfy crisp ones. A number of formulations of soft CSPs
have been proposed, such as the max-CSP, the fuzzy, par-
tial, weighted, and probabilistic CSP. References and termi-
nology can be found e.g. in [5, 2, 27].

Many properties of soft CSPs can be studied in a uni-
fied algebraic framework. This is done by introducing the
semiring-based CSP (SCSP), which uses two abstract oper-
ations that form a commutative semiring [35, 2, 5, 33].

The constraints research is multidisciplinary. This brings
the problem that closely related or identical things may
have several names. Thus, in computer vision the CSP is
more known as the consistent labeling problem by Waltz
[39] and certain soft CSPs as certain inference tasks in
Markov random fields (MRFs) or undirected graphical mod-
els [24, 38, 36]. Unlike in Al, in computer vision much
larger but typically binary and sparse instances occur.

Inference tasks in MRFs have recently attracted a lot of
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attention. In particular, maximum a posteriori (MAP) infer-
ence in MRFs (which we will call the max-sum CSP in this
paper) finds applications in low level computer vision tasks,
such as image segmentation, matching and restoration, and
3D reconstruction. It is sometimes called energy minimiza-
tion [34, 20]. Its special cases are dynamic programming
and max-flow/min-cut algorithms [21].

Ubiquitous in CSP is the concept of arc consistency, first
proposed probably by Waltz [39]. It is the simplest one of
local consistencies, surveyed e.g. in [12]. The algorithm
achieving arc consistency is also known as (discrete) relax-
ation labeling by Rosenfeld et al. [29]. Considerable ef-
fort has been devoted to generalizing arc consistency to soft
constraints [3, 10, 9, 4]. The earliest such work seems to be
done already by Rosenfeld [29] for the fuzzy CSP. For the
SCSPs with idempotent semiring multiplication (typically,
when the semiring is a distributive lattice), local consistency
algorithms are known to converge in a finite number of local
operations and the result does not depend on their order [5].

We contribute to an old and not widely known approach
by Schlesinger ef al. [31] to the max-sum CSP, based on
linear programming relaxation. We surveyed this approach
in [41, 40]; we recommend reading [41, 40] prior to our
paper. We will be interested especially in the max-sum dif-
fusion algorithm by Kovalevsky and Koval [23] (indepen-
dently by Flach [13]), which decreases Schlesinger’s upper
bound on the max-sum CSP. Max-sum diffusion resembles
belief propagation [28] but it is in fact fundamentally differ-
ent. It computes the same approximation as the sequential
tree-reweighted message passing (TRW-S) by Wainwright,
Kolmogorov et al. [19, 36], which is the most promising
algorithm for the approximative max-sum CSP [34].

We show that arc consistency algorithms for SCSPs on a
distributive lattice can be seen as the same thing as max-sum
diffusion. We conjecture that in the same manner, arc con-
sistency can be generalized even for a wider class of SCSPs.

To extend the list, we newly introduce sum-product arc
consistency. We show how the max-sum arc consistency
can be obtained as a limit (‘tropicalization’, ‘zero tempera-
ture limit’) of the sum-product arc consistency, which corre-
sponds to replacing the log-sum-exp function with ordinary
maximum. This sheds light on the question of non-optimal
max-sum arc consistent states, which is of great practical
interest because it aims at obtaining better upper bounds on
the max-sum CSP. Importantly, we give a network algorithm
to test for optimality of max-sum arc consistency.

We will denote a set by {-- -}, an ordered tuple by (- - -),
non-negative reals by Ry, and positive reals by R ;.
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Figure 1: An example of a binary CSP. Graph (T, F) is the 3 x 4
grid graph, thus it has |T'| = 12 nodes. There are |X| = 3 labels.
An example of labeling x is emphasized.
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Figure 2: Illustration of our notation and terminology.

2 Semiring-based Constraint Satisfaction

For the sake of clarity, we will consider only binary CSPs
and use notation more usual in computer vision than in
the CSP literature. However, the results can be straightfor-
wardly extended for problems with any arity.

Let T be a finite set of variables and £ C (ZQF) a set
of variable pairs, thus (T, E) is an undirected graph. By
N, = {t' | {t,t'} € E} we will denote the neighbors of
variable ¢ € T'. Each variable ¢ € T is assigned a single
label z; € X, where the label domain X is a finite set.
Labeling x = (z, |t € T) € X7 assigns label z; to each
variable ¢. This is illustrated in Figure 1.

Let (T x X,Ex) be an undirected graph with edges
Ex = {{{t,z), ", 2"} | {t,t'} € E, z,2’ € X}. By
nodes and edges we will refer to this graph, while the nodes
and edges of (T, E') will be called variables and variable
pairs. The set of all nodes and edgesis I = (T' x X)U Ex.
All edges leading from a node (¢, z) to all nodes of a neigh-
boring object t' € N; is a pencil (¢,t',z). The set of all
pencils is P = {(¢,t',z) | {t,t'} € E, = € X }. These
concepts are illustrated in Figure 2.

Let A be a set of weights. A weight g; , € A is assigned
to each node (¢,x) and a weight gy ,.v € A to each edge
{<t7 LIJ), <t/7 xl>}’ where we adopt gt/ jxx’ = GVt x'x- By gec
AT we will denote the vector with COmPpONENts Gt ., Gt/ za' -

Let A be closed under an associative and commutative
operation X, i.e., (4, X) be a commutative semigroup. Let

Fxlg) = (IToew) x ( TI owaws) O
teT {t,t'}€E

Let + be another associative and commutative operation,
forming a commutative semigroup (A, +). Let

F(g)= Y F(x|g) )
xeXT

Here, symbols [] and Y refer to operations x and +. We

will often denote a X b = ab, a + a = 2a, aa = a2.

2

Associativity and commutativity of operations x and +
is necessary for expressions (1) and (2) to be well-defined.
Later we will also need that x distributes over +. An alge-
braic structure (A, 4, X) where operations + and x are as-
sociative, commutative and distributive is known as a com-
mutative semiring. Calculating expression (2) is called the
(binary) semiring-based CSP (SCSP). Its instance is given
by (T, E, X, A, +, x,g) but when the rest is known from
context we will refer to an instance only as ‘problem g’.

Some authors require that a semiring in addition has the
zero element 0 and the unit element 1, satisfying a + 0 = a,
ax1=a,ax0=0][16]. Our definition is also used [18]
and suits us better since 0 and 1 will not always be needed.

3 Equivalence of SCSP Instances

The concept of equivalent problems is useful because it may
allow to transform a given CSP to an equivalent one with
a simpler solution (e.g. [32]). Usually two problems are
understood equivalent iff they have equal solution sets. Fol-
lowing [31], we consider a stronger form of equivalence.

Definition 1. Problems g,g' € Al are equivalent (denoted
by g ~ g') if the functions F(-|g) and F(-|g') are equal,
ie,if F(x|g) = F(x|g') forallx € XT.

Note that equivalence is defined only with respect to the
semigroup (A, X) because the operation + is absent in (1).

Two tasks related to equivalence naturally arise: (i) fest
whether two given problems are equivalent; (ii) enumerate
elements of an equivalence class. These tasks may be easy
or hard depending on (A4, x).

Example 1. Let (A, x) = ({0, 1}, min). Testing whether a
vector g is equivalent to the all-zero vector 0 means testing
the crisp CSP for satisfiability, hence it is NP-hard.

To reduce this complexity, we define a weaker concept.

Definition 2. A local equivalent transformation of prob-
lem g on pencil (t,t',x) is a replacement of weights g
and { gt o | ®' € X } with some other weights g; , and
{9t 2ar | ®' € X } such that

g;fﬂf gl’ft’,x:c’ = Gtz Gtt’ xa’ Va' € X. 3)

By (1), a local equivalent transformation preserves the
function F'( - | g). Given equivalent problems g and g’, three
cases can arise: (i) g can be changed to g’ by a finite se-
quence of local equivalent transformations; (ii) there is an
infinite sequence of locally equivalent transformations of g
that converges to g’ (see Example 3 later on); (iii) g cannot
be changed to g’ by local equivalent transformations.

An important special case is when (A, x) happens to be

a group, i.e., we have division, a/b, and the unit element,

1. Then any local equivalent transformation is given by a
weight oy, € A, assigned to pencil (¢, ¢, x), as

Giw=Gta/Ctv e Gttt aa = Gt/ a0’ P14
Composing (4) for all pencils (¢, ', z) € P yields

IT e (5a)

t’€Ny
g;&t’,mz’ = gtt! ,xx’ Pt .z Pt't,x’ (Sb)

Gt :gt,z/

s
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Figure 3: Cyclic repetition of the depicted local equivalent trans-
formations decreases edge e to an arbitrarily small value.

Following [38, 19], we call (5) a reparameterization. Any
equivalence class is fully covered by reparameterizations, as
given by the following theorem [32].

Theorem 1. Let (A, X) be a group and let the graph (T, E)
be connected. Then g ~ g' iff there are ¢y, € A such
that (5) holds.

Proof. Can be found in [40, 41]. |

Another important case is the semigroup (A’ U {0}, %),
where (A’, x) is a group and 0 is the identity element, sat-
isfying a x 0 = 0 for a € A’. This is very close to (A4, x)
being a group, yet Theorem 1 does not hold. Below are two
examples of failure of Theorem 1.

Example 2. Let A = Rg; and X be the ordinary multiplica-
tion. This semigroup has subsemigroup ({0, 1}, x), which
is the same as ({0,1}, min) in Example 1. Hence, testing
whether two problems are equivalent is NP-hard and Theo-
rem 1 does not hold.

Example 3. Let (A4, x) be as in Example 2. Consider two
problems in Figure 3, where the nodes have weights 1, the
shown edges have weights 1, and the edges not shown have
weights 0. Clearly, these problems are equivalent but are not
related by (5) for any ¢/ » € Rog.

However, there is a sequence of locally equivalent trans-
formations of the left problem that converges to the right
problem. This sequence is the infinite cyclic repetition of
transformations (4) with weights ¢y ., written next to pen-
cils (t,t',x). Alternatively, such a sequence is obtained by
running the arc consistency algorithm on the left problem,
on semiring (R4, +, X) (given later on).

4 Arc Consistency

Arc consistency and relaxation labeling were originally for-
mulated for the crisp CSP [39, 29, 17] and later underwent
many generalization to soft CSPs [29, 5, 3, 4, 10, 9]. We
observed that for a wide class of CSPs, arc consistency and
the fixed point condition of max-sum diffusion can be seen
as a single property. Based on this, we define arc consis-
tency and an algorithm to achieve it in abstract semiring-
based framework. We conjecture that the arc consistency al-
gorithm makes sense and works for a certain class of semir-
ings, which we call AC-semiring.

We will abbreviate marginalization (also known as pro-
jection in the CSP literature) over variable ¢, pencil (¢,t', x),
and variable pair {t,t'} respectively by

gt,4+= th,xa git! x+ = Z gtt' xx’s Gt/ 4+ = Z gt xa’

reX z’'eX z,x'eX

Definition 3. A pencil (t,t',x) is arc consistent if

It,x = gtt’ o+ (6)

A problem g is arc consistent if all its pencils are arc con-
sistent.

Definition 4. Local arc consistency transformation on
pencil (t,t',x) is a local equivalent transformation that
makes the pencil arc consistent.

To do the local arc consistency transformation on pencil
(t,t',z) given weights g; , and { gu 2o | @' € X }, we
need to find weights g; , and { g, ,,, | #' € X } such that

7
\TX

gz,r gzt’,zm’ = Gt,x Gtt’ xa’ V! eX (7a)
Grw = ot ot (7b)

Definition 5 introduces the class of semirings for which
there exists a unique local arc consistency transformation,
i.e., solution to (7). We omit the constant indices ¢,t’, z in
the definition, denoting a = gy 4. i = @', b; = gut o'

Definition 5. Semiring (A, +, x) is an AC-semiring if for
any a,b; € A there exist unique o', b; € A satisfying equa-
tions a'b, = ab; (fori=1,...,n)anda’ =5 b,

=1 72"

We do not know yet how to characterize AC-semirings
by more elementary semiring properties. Nevertheless, one
property of AC-semirings is apparent easily. Summing the
first equation over ¢ and substituting to the second one gives
(a')? =ad_;_, bi. As a and b; are arbitrary, for any c € A
the equation 2 = ¢ must have a unique solution, z = ¢!/2.
Thus, AC-semirings must allow for square roots.

Definition 6. For an SCSP on an AC-semiring, the arc con-
sistency algorithm is as follows:

1. Choose an arc inconsistent pencil. This choice can be ar-
bitrary, provided that every pencil has a non-zero proba-
bility to be chosen. If all pencils are arc consistent, stop.

2. Do local arc consistency transformation on the pencil.
Goto 1.

Conjecture 1. For an SCSP on an AC-semiring, the arc
consistency algorithm converges to an arc consistent prob-
lem.

4.1 Upper Bound

Let us generalize Schlesinger’s upper bound on the max-
sum CSP [31, 40] to SCSPs,

F(g) = (TToes) x (

This quantity is useful for two reasons, given by Theorems 2
and 3.

[ swss) ®

{t,t’'}eFE

Definition 7. We define the relation < on (A, +) as follows:
a = biff either a = b or thereis c € A such thata + c =b.

The relation < is reflexive and transitive, i.e., a preorder
[18]. It is often called the natural preorder on (A, +). For
many semirings it becomes a partial or even a total order.
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Theorem 2. For any semiring (A, +, x) and any g € Al
we have F'(g) < F(g).

Proof. Multiplying out the factors in (8) shows that F(g)
contains the terms present in (2) plus some additional terms.
By Definition 7, we have F(g) < F(g). [ |

In other words, F'(g) is an upper bound on F(g). This
has great practical importance because it gives an approxi-
mation (often even the exact solution) of the SCSP to solve.

We observed that all AC-semirings we discovered satis-
fied

2ab < a® + b? 9)

for any a,b € A. It can be easily verified that (9) implies
that any vectors a, b € A" satisfy

2
(D ait) = (Xa?)(Xo02) (10)
This relation is a semiring generalization of well-known
Jensen’s inequality, characterizing convexity. For the spe-
cial choice of the semiring in §6.1, (10) becomes ordinary
Jensen’s inequality [6] applied to the log-sum-exp function.
Thus, (10) characterizes ‘semiring convexity’ of semiring
addition.

Theorem 3. Let (A, +,x) be an AC-semiring and let
{t,t'} € E. Doing |X| local arc consistency transforma-
tions successively on pencils { (t,t',x) | x € X } does not
increase F(g).

Proof. Before the transformations, the upper bound is

F(g) =cgt+ g 4+ (11)

where c are the factors that do not depend on the weights
{9t | x € X }and { gt po | z,2" € X }.

Marginalizing (7a) over 2’ and substituting from (7b)
yields g . = gjy oy = (Gt i w+)'/?. Hence, after the
transformations the upper bound is

_ 2
F(g)=cgi 4 Gip s = [ > (Gra g )| (12)
zeX

Setting i = x, a? = gt.4, and b? = gy 44 in (10), we
obtain that (12) is not greater than (11). |

Theorem 3 shows that the arc consistency algorithm can
be partially understood as decreasing F'(g) by local equiva-
lent transformations. As we minimize over a subset of vari-
ables in each iteration, it can be interpreted as a co-ordinate
descent [6]. However, this interpretation of the arc consis-
tency algorithm has difficulties. First, not every transforma-
tion need to decrease F'(g). Second, the algorithm need not
find the global minimum of F'(g). Thus Theorem 3 is only
an evidence but not a proof that Conjecture 1 is true.

Important remark. In the previous sections, symbols +,
x, >, [], 0, 1 denoted abstract semiring operations. In the
sequel, they will have their ordinary meaning as addition,
multiplication, efc. Furthermore, we will denote F'(x|g),

F(g), F'(g) defined for particular concrete operations + and
X b Fy (x| 8), P x (8), P (8), respectively.

4

5 Examples

We will give examples of AC-semirings, covering most of
the existing SCSPs and also some new ones. For all of them,
we verified Conjecture 1 and Theorem 3 experimentally.

5.1 Distributive Lattice

Let < be a partial order on A. Let (A4, V, A) be a distributive
lattice defined by =<, where V is the supremum (least upper
bound), and A the infimum (greatest lower bound). By its
definition, a distributive lattice is a commutative semiring.
It is even an AC-semiring since it is easy to verify that

g;t’,zz/ = 0Gtx A gt xa’ g;,x = 0Jt,x A gtt' xv (13)

is the unique solution to (7). Expression (9), which reads
aNb = aVb,clearly also holds true.

Recall, a binary operation o is idempotent if a 0 ¢ = a
for a € A. Here, both operations V and A are idempotent.

Distributive lattices cover several important CSPs.

Setting A = {0, 1} yields the crisp CSP [26]. The algo-
rithm from Definition 6 becomes the well-known CSP arc
consistency algorithm (discrete relaxation labeling) [29].

Setting A = [0, 1] yields the fuzzy CSP. Setting A =
R U {—00,+0c0} yields the bottleneck (minimax) algebra
[11] and the corresponding CSP.

In these examples, < was a total order. An important case
when = is only a partial order is when A is a set of subsets
of some set, V is the set union and A is the set intersection.

It is known [5, 4] that if the semiring multiplication is
idempotent, local consistency algorithms converge in finite
time. However, exact algorithms differ from paper to paper
[5, 4, 10] and we have yet to unify these results with ours.

5.2 Max-sum Semiring

Semiring (R, max,+) is an AC-semiring. Often one sets
A = RU{—o0}, which again yields an AC-semiring, as one
can verify. This semiring gives rise to the max-plus algebra
and tropical mathematics, surveyed e.g. in [14, 25]. The
corresponding CSP is the max-sum CSP, also known as the
weighted CSP, MAP inference in MRFs [28, 24, 38, 36], or
finding the mode of the Boltzmann/Gibbs distribution [15].

Choosing A the rational rather than real numbers again
yields an AC-semiring. Choosing A the integers does not
yield an AC-semiring since we lose the square root.

For semiring (R U {—o0}, max, +), the arc consistency
algorithm was proposed to decrease Schlesinger’s upper
bound Fiax,+ by Koval and Kovalevsky [23]. Strictly
speaking, the algorithm belonged to the ‘folklore’ knowl-
edge in Kiev pattern recognition group in 1970’s as ‘max-
sum diffusion’ and the exact authorship was partially for-
gotten [32]. We will return to it in detail in §7.

In practice, minimizing Fyay 1 yields a very useful up-
per bound on F,ax 1 (quite often, this bound is tight). Min-
imizing Fmax# is dual to a linear programming relaxation
of the max-sum CSP, considered by many others [22, 8, 36].

Lexicographic max-sum semiring. Another AC-semiring
is (R™, maxjex, +), Where maxjey is maximum with respect
to lexicographic ordering on R™ induced by the total order
=< on R, and + is the component-wise addition on R".
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5.3 Sum-product Semiring

The CSP on semiring (R, 4, +, X} is equivalent to comput-
ing the partition function of MRFs [28, 24, 38, 7] or Boltz-
mann/Gibbs distribution [15]. Often, setting A = Rgy in-
stead of A = R, is useful and yields an AC-semiring.
However, A = R does not yield an AC-semiring.

In §6, we prove Conjecture 1 for semiring (R, +, X).
Arc consistency for this semiring has not been described.
The closest work is the [38, 37], giving upper bounds on the
partition function based on convex combination of trees.

The upper bound F'; y is not a very good approximation
of Iy, better upper bounds can be found in [38, 37]. Its
main significance is in its relation to arc consistency.

6 Sum-product Arc Consistency

In this section, we will introduce sum-product arc consis-
tency. The main result is the following theorem, which we
will prove in the rest of the section.

Theorem 4. On the semiring (R, +, X), there is a unique
arc consistent problem in every equivalence class. This
problem can be found by the arc consistency algorithm.

6.1 Log-sum-exp Function

Rather than with (R, +, X), in §6 we will work with
semiring (R, &, +) where

a®b=log(e® +eb) (14)

denotes the log-sum-exp function [6]. The two semirings
are isomorphic via the mapping a — log a.

We denote s(a) = @, a;, where a; are the compo-
nents of vector a € R™. It is well-known [6] that s is convex,
i.e, it satisfies Jensen’s inequality (10). It is strictly con-
vex in every direction except direction (1,...,1), because
s(a+b) =s(a)+bforallbeR.

The derivative of the log-sum-exp function is

W =expla — (a®b)] = eaei_:eb (15a)
ds(a) _ _ expa
I = expla—s(a)] = ST e (15b)

Since vector (15b) is non-negative and sums up to one it has
the properties of a probability distribution. It is sometimes
called soft maximum because it says “to what extent each
element of a is maximal”.

6.2 Minimizing the Upper Bound

On (R, @), the pre-order < is the ordinary total order on R.
Since (R, +) is a group, by Theorem 1 every equivalence
class can be covered using (5). Reparameterization (5) reads

Gro =Gt — Y P (16a)
t’eN,
giltt’,a:a:’ = Gt/ za’ + Pt/ x T+ Ptrt,ar- (16b)

We will rewrite (16) into a matrix form as g’ = g + pA,
where ¢ € R¥ is the vector with the components ¢, € R
and A is the appropriate matrix with entries in {—1,0,+1}.
Vectors g and ¢ are row vectors.

Minimizing the sum-product upper bound reads
min{ P . (g + A) | ¢ € RF } (17)

Since the log-sum-exp function is convex, Fg . is convex,
too. Thus, (17) is a convex minimization task; in fact, it is
a special case of geometric programming [6]. Since F@7+
is smooth, the condition necessary and sufficient for global
minimum can be found by calculus as follows.

Theorem 5. In a class of equivalent problems g, the upper
bound Fg, 1(g) is minimal iff g satisfies

Gt = Gto = Gt 2@ — Jit’ @ (18)
for all pencils (t,t',x) € P.
Proof. By (15), the derivative dFy, | (g)/dg reads

IFg,+(8) €XP gtz
: = exp(g¢,z — 9, = =" (19a)
0gt.0 (9t.e — gt.@) S exp gra
T
8F ex / ’
a 697+(g) _ exp(gtt’,xa:’ _ gtt’,EBEB) _ P it zx (l9b)
gtt! xa’ E €XP gtt’ xa’
z,x’

Denoting g’ = g + @A, one verifies by the chain rule that

0Fp +(8') _ 0Fs,+(g') _ 0F3,+(g') (20)

/ !
0V 09} » oex agtt’,m'

The minimum of (17) is attained at ¢ for which (20) equals
zero. This reveals the remarkable fact that in the optimum,
the derivatives of the upper bound are arc consistent. Sub-
stituting for g’ in (20) from (19) yields (18). ]

The condition (18) is invariant to transformations

Gio = Gta TVt iy per = Gt 0o + Ve (21)

for any ¥y, Yy € R, i.e., to adding constants to variables
and variable pairs. If ), ¢y + ., s = 0, the transfor-
mation (21) preserves also Fip ; (g). Ambiguity in choos-
ing ¢, and v can be fixed by imposing the constraint
gt.e = g @s onall {¢,¢'} € E. It follows that (18) can be
written simply as the consistency condition (6).

It remains to prove that any class of equivalent problems
contains a unique arc consistent problem. To do it, we will
show that adding constants to variables and variable pairs is
the only equivalent transformation that preserves (18).

6.3 Lagrangian Dual of Upper Bound Minimization

Let there be numbers pi; ;, (et zar € Ro4, assigned to
nodes (¢, z) and edges {(t,z), (t',2")}. By p € R{ we de-
note the column vector whose components are i g, [/ ' -

Theorem 6. Let JTRS Ré_‘_ with Ht,+ = ]., Htt! ++ = 1. Let
g € RL. Then

Fy 4(g) + (logp")u —gp >0 (22)

(Here, p" is the matrix transpose and the logarithm is meant
component-wise.) Equality in (22) occurs iff

dF,
dg
which in turn occurs iff
Mtz = Mt o+ (24)

5
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Proof. One easily verifies that (22) is invariant to equiva-
lent transformations (16). Thus, without loss of generality
we set gr = 0 and gy g = 0. Hence Fyp 1 (g) = 0.
With Fig,  (g) = 0, (22) is the Kullback-Leibler divergence
between p and exp g, which is non-negative.

The rest is verified by direct substitution and from the
fact that (22) is convex in (g, u). [ |

Theorem 7. The concave maximization task

max{ (g — IOgNT)H | >0, pe o = fleer agy pe+ =1}
(25)

and the convex minimization task (17) are related by strong

Lagrangian duality. Their optima equal iff (23) holds.

Proof. Follows from Theorem 6. Note, fi4+/ 1+ = 1 missing
in (25) is implied by pt¢ + = 1 and f4¢ » = fbee 2 [ |

Since the task (25) is strictly concave, it attains its opti-
mum at a single point, u*. By (23), expression (19) must
equal p* in the optimum. Clearly, adding %; to g;, and
adding 9y t0 g4/ zo is the only transformation preserv-
ing (19). This concludes the proof of Theorem 4.

Although Conjecture 1 has been proved for semirings
(Ry4,+, x) and (R, @, +), it holds also for (Roy,+, X)
and (R U {—oo}, ®, +). The difference is that the arc con-
sistency algorithm may converge to 0 resp. —oo, which hap-
pens when (17) is unbounded and (25) infeasible. In the
product gp in (25), we adopt convention —oo X 0 = 0.

7 Max-sum Arc Consistency

In this section, we will derive the CSP and arc consistency
on (R, max, +) by a limit of those on (R, &, +).

7.1 From Soft to Hard Maximum

Ordinary (hard) maximum can be obtained as a limit of a
sequence of smooth, non-idempotent functions. E.g., transi-
tion from semigroup (Roy,+) to (Ro4, max) corresponds
to the limit of vector 3-norms for § — oo. Transition from
(RU{—00},®) to (RU {—00}, max) is

L (Ba) @ (D)

Jim 3 = max{a, b} (26)

This is known as Maslov’s dequantization or ‘tropicaliza-
tion’, see e.g. [25, 14].
The transition for the ‘soft maximum’ (15) is
. exp fa
= lim ————— 27
K f—oo Y. €xp fa; @7
Denoting B = {4 | a; = max; a; }, one verifies that y; = 0
if i ¢ Band u; = |B|~!if i € B. Note that even in the
limit, (27) sums up to one. In statistical physics and often
in machine learning [38], transition (27) is called the zero
temperature limit (of a probability distribution).

7.2 From Sum-product to Max-sum CSP
Similarly as in (26), one can define the dequantization of a
function f(g) as

i 1 %8)

LAES) 2
e B %)

Figure 4:  An arc consistent SCSP on semiring (R, max, +),
which has non-minimal upper bound Finax,+(8)-

Dequantizing Fig(x|g) yields Finax(x|g) and dequan-
tizing Fg 1 (g) yields Fiax +(8).

Dequantizing Fip, 4 (g) yields Schlesinger’s upper bound
Finax.+(g) on the max-sum CSP. Its minimization,

min{ Fuax (g + @A) | o € RT} (29)

is an unconstrained convex nonsmooth optimization task,
which can be formulated as a linear program [31, 40, 41].

Dequantizing expression (g — log u' ) yields g and
hence dequantizing (25) yields the linear program

max{gu | >0, iy = fee' oty e+ =1} (30)

This is the linear programming relaxation of the max-sum
CSP by Schlesinger [31] and independently by others [22,
8, 36]. The programs (29) and (30) are mutually dual.

7.3 Arc Consistency Is Insufficient for Optimality

Dequantizing the stationary condition (18) yields

9t,x — Gt,max = Jtt’,x max — Jtt’ , max max (31)

Imposing the constraint g; max = g¢¢/,max max, analogical to

9t.0 = Jit’,.@a- gives the arc consistency condition (6).
One could think that similarly as in the sum-product

case, (31) is necessary and sufficient for minimality of

Finax,+(g). Surprisingly, this is false: (31) is neither suf-
ficient nor necessary and (6) is not sufficient for this.

Example 4. (by Schlesinger [30]) In the max-sum CSP in
Figure 4, the nodes have weights 0, the shown edges have
weights 0, and the unshown edges have strictly negative
weights. The problem is arc consistent but Fi,ay + can be
decreased by an equivalent transformation. The decreasing
direction ¢ is depicted by numbers ¢y , written near cor-
responding pencils (¢, ¢, ).

The phenomenon is caused by the fact that co-ordinate
descent need not find the minimum of a nonstrictly convex
function [1]. The function Fmax7+ is piecewise linear, hence
nonsmooth and nonstrictly convex. Figure 5 shows how the
contours of Flua. 1 (g + @A) as a function of ¢ can look
like, simplified to two dimensions.

Despite this, it has been justified by many experiments
that Conjecture 1 holds for the max-sum CSP. Yet there may
be many arc consistent problems in an equivalence class and
the point of convergence of the arc consistency algorithm
may depend on the order of local equivalent transformations.
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Figure 5: Co-ordinate descent did not find the minimum of a non-
strictly convex function f(z,y). Point (x*,y*) is not optimal.

7.4 Optimal Arc Consistency

It is of great practical interest to solve (29) and (30). Gen-
eral linear programming algorithms, such as simplex or inte-
rior point, are not usable for large instances (occurring e.g.
in low-level computer vision) both for space and time in-
efficiency (e.g. [42]). Instead, one needs an efficient net-
work algorithm. The max-sum arc consistency algorithm
is a good candidate. However, we are facing the problem
that max-sum arc consistency is insufficient for optimality.
Given an arc consistent problem g, we cannot even recog-
nize whether it minimizes F’maan (g) on its equivalent class
or not. We will show how to tackle these issues.

Let g’ = Cg +(g) denote the (unique) point of conver-
gence of the arc consistency algorithm on (R, ®,+). Let
@ = mg _ (g) denote the (unique) solution of (25). Recall,
they are related by (23). For increasing (3, the sequences

{Ce 4 (Bg)/B}, {mg . (Bg)} (32)

converge to a solution of (29) and (30), respectively. The
problem is that convergence of the arc consistency algorithm
on (R, &, +) will be increasingly slower for larger 3. This
can be reduced by re-using solutions from previous itera-
tions, as done by the following algorithm.

1: loop

2 g:=2Cg 1(8);

3: Otz *= Gtz — 9t.@, Gt/ ,za’ ‘= Jtt/ . za’ — Jtt/ &P

4: end loop

The factor 2 on line 2 ensures increasing (3 to 2/3, initially
having 3 = 1. The algorithm converges to a weight vector
g* such that u* = expg™ is a solution to (30). It can be
understood as a special interior point algorithm [6] to solve
the linear program (30) because pt = exp g is approaching
the boundary of the feasible region of (30) with increasing /3.
The term (log g )t is the barrier function. However, while
a typical barrier function approaches oo near the boundary
of the feasible region, (log pu" ) is bounded for feasible
and only the magnitude of its derivative approaches co.
The algorithm is not fully practical due to its slow con-

vergence and because it is not clear when to stop the arc
consistency algorithm on line 2. Nevertheless, in our ex-
periments it often achieved a better upper bound than the
max-sum arc consistency in a reasonable time. To avoid us-
ing log and exp functions, the algorithm can be translated
from (R, ®, +) to (R4 4, +, X).

7.5 Test for Optimality of Arc Consistency

Finally, we will show how to test whether a given g is op-
timal, i.e., whether Fiax +(g) is minimal for all problems
equivalent with g. The side-result of this test will be:

e if g is optimal: a solution p* to (30);

e if g is not optimal: a decreasing direction ¢.

First, set every node with g; , < g max and every edge
with g7 40r < Gtt/ ,max max 10 —00. Set the other ones to 0.
Clearly, this simplification does not change the situation.

Theorem 8. Let g € {—o0,0} .

o [fthe problem (25) is feasible (i.e., (17) is bounded) then
its solution p* = mg, 1 (g) is also a solution to (30).

o [f there exists @ such that F@’+(g + @A) < 0 then

Finax,+ (8 + ApA) < 0forany 0 < XA < 1.

Proof. Let (25) be feasible. Then its solution is p*. Since
g € {—00,0} and since (log " )p < 0 for any feasible p,
we have gpu* = 0. Since g € {—00, 0}, the optimum of (30)
can be either —oo or 0. Hence, p* is a solution to (30).
Any a,b € R U {—oo} satisfy max{a,b} < a @ b.
Hence, Fipax +(g) < Fg 1 (g) for any g. It follows that
Froax+ (g8 + @A) < Fg 1 (g + @A) < 0. Since Fax + is

convex, we have Finax 1 (g + ApA) <0for0 <A <1 ®

Thus, the test is as follows. Given g € {—oc0,0}!, we
run the (@, +) arc consistency algorithm. If Fi; | becomes
negative during the algorithm, we stop because it is already
sure that g does not minimize Fmax,—',—- In that case, we ob-
tain a decreasing direction. If the algorithm converges, we
obtain a solution to (30).

Application to the crisp CSP. The test can be used to dis-
prove satisfiability of a crisp CSP. The crisp CSP is iso-
morphic to the SCPS on ({—o0, 0}, max, +}. Therefore, if
g € {—00,0} does not minimize Fy,.x + on its equivalence
class then the corresponding crisp CSP is unsatisfiable. To
our knowledge, this test is new, and qualitatively different
from usual tests based on local consistencies [12].

8 Conclusion

The contributions of the paper are threefold.

First, in §2-5 we have unified the concept of arc con-
sistency, well-known for SCSP with idempotent semiring
multiplication, with similar algorithms for SCSPs with non-
idempotent semiring multiplications. In particular, this uni-
fies Rosenfeld’s discrete relaxation labeling with max-sum
diffusion. Here, the main result is Conjecture 1. In the
future, Conjecture 1 should either be proved or a counter-
example found. Nevertheless, even if a counter-example is
found, the result that arc consistency can be unified for many
practically important CSPs would stay valid.

Second, in §6 we have newly introduced sum-product arc
consistency. The main results are Theorems 4 and 5.

Third, in §7 we have derived the max-sum case as a limit
of the sum-product case. We have shown where uniqueness
and optimality of sum-product arc consistency are lost, and
how the sum-product arc consistency can be used to com-
pute and test for optimal max-sum arc consistency. The
main result is Theorem 8 and the algorithm in §7.4. In the
future, the algorithm should be made practical for large in-
stances, occurring e.g. in low level vision.
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