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Tomáš Werner

December 2005

Abstract

The max-sum labeling problem, defined as maximizing a sum of functions of pairs of discrete
variables, is a general optimization problem with numerous applications, e.g., computing MAP
assignments of a Markov random field. We review a not widely known approach to the problem
based on linear programming relaxation, developed by Schlesinger et al. in 1976. We also show
how this old approach contributes to more recent results, most importantly by Wainwright et al.
In particular, we review Schlesinger’s upper bound on the max-sum criterion, its minimization
by equivalent transformations, its relation to constraint satisfaction problem, how it can be
understood as a linear programming relaxation, and three kinds of consistency necessary for
optimality of the upper bound. As special cases, we revisit problems with two labels and
supermodular problems. We describe two algorithms for decreasing the upper bound. We
present an example application to structural image analysis.

Keywords: structural pattern recognition, Markov random fields, linear programming, computer
vision, constraint satisfaction, belief propagation, max-sum, max-product, min-sum, min-product,
supermodular optimization.
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1 Introduction

The max-sum (labeling) problem of the second order is defined as maximizing a sum of bivariate
functions of discrete variables. It is a general optimization problem, with applications e.g. in com-
puter vision, pattern recognition, machine learning, artificial intelligence, and statistical physics. It
has been studied in several contexts using different terminologies. One interpretation is finding a
configuration of a Gibbs distribution with maximal probability, which is equivalent to a maximum
posterior (MAP) configuration of a Markov random field (MRF) with discrete variables. The prob-
lem has also been addressed as a generalization of the constraint satisfaction problem (CSP). For
binary variables, it is part of boolean quadratic and pseudo-boolean optimization. The variables
have been alternatively called sites, locations or objects, and their values states or labels. The
max-sum problem is NP-hard, well-known algorithms for some tractable subclasses being dynamic
programming on trees and network max-flow/min-cut.

In this report, we review a not widely known approach by Schlesinger et al . [Sch76b,KS76,Sch89,
SF00, Sch76a, KK75, Fla98, SK78, Sch05b] to the max-sum problem in a unified and self-contained
framework and show how it contributes to recent knowledge.

1.1 Approach by Schlesinger et al.

In 1976, Schlesinger [Sch76b] generalized locally conjunctive predicates considered by Minsky and
Papert [MP88] to two-dimensional (2D) grammars. Two tasks were suggested. The first task
considers analysis of ideal, noise-free images: test whether an input image belongs to the language
generated by a given grammar. It leads to what is today known as the constraint satisfaction
problem (CSP). Finding the largest arc consistent subproblem provides some necessary but not
sufficient conditions for satisfiability and unsatisfiability of the problem. The second task is meant
for analysis of real, noisy images: find an image belonging to the language generated by a grammar
that is ‘nearest’ to a given image. It leads to the max-sum problem.

The paper [Sch76b] further formulates an LP relaxation of the max-sum problem and its La-
grangian dual. The dual can be interpreted as minimizing an upper bound to the max-sum problem
by equivalent transformations, which are re-definitions of the the problem that leave the objective
function unchanged. Physical models of the LP dual pair were proposed by Schlesinger and Ko-
valevsky [SK78]. The optimality of the upper bound is equal to triviality of the problem. Testing
for triviality leads to a CSP. An algorithm to decrease the upper bound is suggested in [Sch76b]
and presented in more detail by Koval and Schlesinger [KS76] and further in [KSK77]. Schlesinger
notices [Sch76a] that the termination criterion of the algorithm, arc consistency, is necessary but
not sufficient for minimality of the upper bound.

Another algorithm to decrease the upper bound is the max-sum diffusion, discovered by Ko-
valevsky and Koval [KK75] and later independently by Flach [Fla98]. It faces the same problem
with spurious minima as the algorithm in [KS76].

The material in [Sch76b,KS76] is presented in detail as part of the book [Sch89]. The name ‘2D
grammars’ was later assigned a different meaning in the book [SH02] by Schlesinger and Hlaváč.
In their original meaning, they largely coincide with MRF.

Schlesinger and Flach [SF00] consider the labeling problem on a commutative semiring . Here,
the variables are called objects and the their values labels. Particular problems are obtained by
choosing different commutative semirings, yielding the or-and (CSP), max-sum, min-max, and sum-
prod problems. This algebraic generalization was given also by others [BMR97,AM00]. The paper
[SF00] shows that the or-and and min-max problems are tractable if the bivariate functions satisfy
the interval condition. Further, it shows that if the bivariate functions satisfy the properties of
supermodularity (called monotonicity in [SF00]), then the problem is tractable and its LP relaxation
given in [Sch76b] is tight. Interval or-and and min-max and supermodular max-sum problems are
further discussed in [FS00,Fla02].
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1.2 Constraint Satisfaction Problem

The CSP [Mon74, Kum92] is ubiquitous in AI and operations research. It is known also under
different, less frequent names, e.g., the consistent labeling problem [RHZ76,HS79] or [Wal72].

The max-sum problem can be viewed as a natural generalization of CSP. Koster et al . [KvHK98,
Kos99] consider such a generalization, the partial CSP . They formulate the max-sum problem as a
0-1 linear programming and consider its relaxation. They give two classes of non-trivial facets of
the resulting partial CSP polytope, i.e., linear constraints missing in the LP relaxation.

1.3 Approaches Inspired by Belief Propagation

The max-sum problem has been intensively studied in pattern recognition as computing MAP
assignments of Markov random fields (MRF), i.e., maxima of a Gibbs distribution. Unlike in
CSP and operations research, where the typical task is to solve small or middle size instances
to optimality, here the emphasis is rather on large sparse instances, for which even suboptimal
solutions are useful in applications due to noise and data redundancy.

For graphs without cycles (trees), the max-sum problem, as well as the related sum-prod prob-
lem equivalent to computing marginals of a Gibbs distribution, can be efficiently solved by message
passing [Pea88], also known as belief propagation. When applied to cyclic graphs, these algorithms
were empirically found sometimes to converge (with the fixed points being useful approximations)
and sometimes not to. There is a large literature on belief propagation and a lot of work has been
done to understand the fixed points and convergence. See, e.g., the introduction to [Yed04].

Recently, Wainwright et al . [WJW02, WJW05] show that a convex combination of max-sum
problems provides an upper bound on the original problem. These problems can be conveniently
chosen as (tractable) tree problems. Then, the upper bound is tight in case of tree agreement
(analogous to Schlesinger’s triviality), i.e., if the optima on individual trees share a common con-
figuration. Minimizing the upper bound is a convex task, which turns out to be a Lagrangian
dual to an LP relaxation of the original problem. Besides directly solving this dual, tree-reweighted
message passing (TRW) algorithm is suggested to minimize the upper bound. Importantly, it
is noted [WJW03a, WJW04] that message passing can be alternatively viewed as reparameter-
izations (synonymous to equivalent transformations) of the problem. TRW and tree combina-
tion were considered in a broader view including other inference problems on graphical mod-
els [WJW03b,WJ03a,WJ03b].

TRW need neither converge nor decrease the max-sum upper bound monotonically. Kolmogorov
[Kol04,Kol05a,Kol05b] suggests its sequential modification (TRW-S) and conjectures that it always
converges to a fixed point characterized by a weak tree agreement (analogous to arc consistency).
He further shows [Kol04, Kol05a] that for variables with more than two states, this fixed point
might differ from a global minimum of the upper bound.

1.4 Supermodular Max-sum Problems and Max-flow

(Super-) submodularity is well-known to simplify many optimization tasks and can be considered
a discrete counterpart of convexity [Lov83]. For bivariate functions it is also called the (inverse)
Monge property [BKR96]. Topkis [Top78] explores minimizing a submodular function on a general
lattice, giving many useful theorems. The invention of the ellipsoid algorithm allowed for minimiza-
tion of a set submodular (i.e., with binary variables) function in polynomial time [GLS81,GLS88]
and even strongly polynomial algorithms have been recently discovered for submodular functions
on distributive lattices by Schrijver [Sch00] and Iwata et al . [IFF01].

The objective function of a supermodular max-sum problem is a special case of a supermodular
function on a product of chains, which is a special case of a supermodular function on a distributive
lattice. Thus, more efficient algorithms can be designed for supermodular max-sum problems than
for functions on distributive lattices. It is long known that set supermodular max-sum problems
can be translated to max-flow [Ham65, BH02]. Some authors suggested this independently, e.g.
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Kolmogorov and Zabih [KZ02]. Others showed translation to max-flow for other subclasses of the
supermodular max-sum problem: Greig et al . [GPS89]; Ishikawa and Geiger [IG98, Ish03] for the
bivariate functions being convex univariate functions of differences of variable pairs; Cohen et al .
[CCJK04] for Max-CSP problems. D. Schlesinger and Flach [Fla02, Sch05a] gave the translation
for the full class. TRW was shown optimal for set supermodular problems by Kolmogorov and
Wainwright [KW05a, KW05b]. In many works, especially in computer vision, connection with
well-known supermodularity was not noticed and the property was given ad hoc names.

Kovtun [Kov03,Kov04] uses supermodularity to find a partially optimal solution, i.e., the opti-
mal values of a subset of variables, to the (NP-hard) Potts model. Partial optimality corresponds
to strong persistency , observed by Hammer et al . in quadratic 0-1 optimization (see [BH02]).

1.5 Contribution of the Reviewed Work

Schlesinger’s LP relaxation of the max-sum problem is the same as that by Koster et al . [KvHK98],
and as that by Chekuri et al . [CKNZ01] and Wainwright et al . [WJW02]. The reviewed theory is
neither a subset nor a superset of more recent results, and is closest to the works by Wainwright et al .
and Kolmogorov. In fact, if the trees are chosen to be individual edges, Schlesinger’s upper bound
can be obtained from a convex combination of trees and CSP corresponds to weak tree agreement.
This convenient choice is w.l.o.g. because Wainwright’s max-sum bound is independent on the
choice of trees, once they cover all edges. However, the translation between the two theories is not
straightforward and thus the old theory is an alternative, possibly opening new ways of research.
The contributions of work by Schlesinger et al . to recent results are as follows.

Duality of minimizing Schlesinger’s upper bound and maximizing the max-sum criterion over re-
laxed labelings is proved more straightforwardly by putting both problems to matrix forms [Sch76b],
as is common in LP duality.

By complementary slackness, the max-sum problem is intimately related with CSP, because the
test whether a given upper bound is tight leads to a CSP. This makes a link to large CSP literature
and reveals that this test is NP-complete, which has not been noticed by others. It also naturally
leads to a relaxation of CSP, which provides a simple way [Sch76a] to characterize spurious minima
of the upper bound.

It is known [KW05a,KW05b] that the spurious minima do not occur for problems with binary
variables. This is proved in an alternative way, additionally showing that in this case there exists
a half-integral optimal relaxed labeling [Sch05b].

The max-sum diffusion [KK75, Fla98], an algorithms to decrease the upper bound, is similar
to belief propagation, however, it is convergent and monotonic. With its combinatorial flavor, the
Koval-Schlesinger algorithm [KS76] is dissimilar to any recent algorithm.

For supermodular max-sum problems, Schlesinger’s upper bound is tight and finding an optimal
labeling is tractable [SF00]. Extending works [Sch05a,Fla02,Kov03,Kov04,KW05a], we formulate
this result and its relation to CSP in lattice-theoretical terms. This has not been done before in
this extent.

1.6 Organization of the Report

The sequel is organized as follows. Section 2 defines the labeling problem on semirings. Section 3
introduces the or-and problem and arc consistency. Section 4, central to the article, presents the
upper bound to the max-sum problem, its minimization by equivalent transformations, and its
relation with the or-and problem. The next section 5 shows that the approach can be understood
as an LP relaxation. A hydraulic model of this linear program is presented in appendix D. Section 6
characterizes optimality of max-sum problem using three kinds of consistency. As special cases,
section 6.5 discusses problems with two labels and section 9 supermodular problems. Examples of
two algorithms for decreasing the upper bound are described in sections 7 and 8. Application of the
theory to structural image analysis is presented in section 10. Finally, the approach is summarized
and some open problems are outlined.
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object t

pair {t, t′}

object t
′

edge {(t, x), (t′, x′)}

node (t′, x′)

pencil (t, t′, x)

node (t, x)

(a) (b)

Figure 1: (a) The 3× 4 grid graph G, graph GX for |X| = 3 labels, and a labeling x (emphasized).
(b) Parts of G and GX .

1.7 Mathematical Symbols

In the sequel, {x, y} denotes the set with elements x and y, and {x | ψ(x)} the set of elements
x with property ψ(x). The set of all subsets or all n-element subsets of a set X is 2X or

(
X
n

)
,

respectively. The set of real numbers is R. An ordered pair is (x, y), while [x, y] denotes a closed
interval. Vectors are denoted by boldface letters. Matrix transpose is denoted by A> and scalar
product by 〈x,y). Logical conjunction (disjunction) is denoted by ∧ (∨). Function δψ returns
1 if logical expression ψ is true and 0 if it is false. Symbol argmaxx f(x) denotes the set of all
maximizers of f(x). In algorithms, x := y denotes assignment and x += y means x := x+ y, like
in the C programming language.

In expressions like maxx|ψ(x) f(x), notation x | ψ(x) is sometimes used as a shorthand for
x ∈ {x | ψ(x)}. Symbols

∑
t,
∑
{t,t′}, and

∑
x will abbreviate respectively

∑
t∈T ,

∑
{t,t′}∈E , and∑

x∈X , unless specified otherwise. Similarly in max,
∧

,
⊗

, etc.

2 Labeling Problem on a Commutative Semiring

In the sequel, we will use the ‘labeling’ terminology from [SF00]. Let G = (T,E) be an undirected
graph, where T is a discrete set of objects and E ⊆

(
T
2

)
is a set of (object) pairs. The set of

neighbors of an object t is Nt = { t′ | {t, t′} ∈ E }. Each object t ∈ T is assigned a label xt ∈ X,
where X is a discrete set. A labeling is a mapping that assigns a single label to each object,
represented by a |T |-tuple x ∈ X |T | with components xt. When not viewed as components of x,
elements of X will be denoted by x, x′ without any subscript.

Let GX = (T ×X,EX) be another undirected graph with the edge set EX = { {(t, x), (t′, x′)} |
{t, t′} ∈ E, x, x′ ∈ X }. To avoid confusion between G and GX , the nodes and edges of G will be
called respectively objects and pairs, whereas the terms nodes and edges will refer to GX . The
number of nodes and edges of GX is denoted by |GX | = |T ||X|+ |E||X|2. The set of edges leading
from a node (t, x) to all nodes of a neighboring object t′ ∈ Nt is called a pencil and denoted
by (t, t′, x). Figure 1 shows how G and GX , their parts, and how labelings x on them will be
illustrated.

Let an element of a set S be assigned to each node and edge. The element assigned to node (t, x)
is denoted by gt(x). The element assigned to edge {(t, x), (t′, x′)} is denoted by gtt′(x, x

′), where
we adopt that gtt′(x, x

′) = gt′t(x
′, x). The vector obtained by concatenating all these elements (in

some arbitrary but fixed order) is denoted by g ∈ S|GX |.

Let the set S endowed with two binary operations ⊕ and ⊗ form a commutative semiring
(S,⊕,⊗). The semiring formulation of the labeling problem [SF00,AM00] is defined as computing
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the expression ⊕
x∈X|T |

[⊗
t

gt(xt) ⊗
⊗
{t,t′}

gtt′(xt, x
′
t)
]
. (1)

More exactly, this is a labeling problem of the second order (pairwise), according to the highest
arity of the functions in the brackets. We will not consider problems of higher order; any higher
order problem can be translated to a second order one by introducing auxilliary variables. Note
that the first term in the brackets can be omitted without loss of generality since any univariate
function can be also seen as bivariate, thus the terms gt(•) can be absorbed in gtt′(•, •). However,
mostly it is convenient to keep both terms explicitly.

Interesting and useful labeling problems are provided (modulo isomorphisms) by the following
choices of the semiring [AM00,SF00,Gau97]:

(S,⊕,⊗) task

({0, 1},∨,∧) CSP
(R ∪ {−∞},min,max) min-max problem
(R ∪ {−∞},max,+) max-sum problem

(R0+,+, ∗) sum-prod problem

All these problems are NP-hard. The max-sum and sum-prod problems can be stated also as
finding the mode and the log-partition function of a Gibbs distribution, respectively. The topic of
our report is primarily the max-sum problem, however, we will need also CSP.

3 Constraint Satisfaction Problem

The constraint satisfaction problem (CSP) is defined as finding a labeling that satisfies given
unary and binary logical constraints, i.e., that passes through some or all of given nodes and edges.
A CSP instance is denoted by (G,X, ḡ), where the binary indicators ḡt(x) (ḡtt′(x, x

′)) say whether
the corresponding node (edge) is present or absent. The task is to test whether the set

L̄G,X(ḡ) =
{

x ∈ X |T |
∣∣∣ ∧

t

ḡt(xt) ∧
∧
{t,t′}

ḡtt′(xt, xt′) = 1
}

(2)

is non-empty, and possibly to find one, several, or all of its elements. An instance is satisfiable if
L̄G,X(ḡ) 6= ∅. CSP (G,X, ḡ′) is a subproblem of (G,X, ḡ) if ḡ′ ≤ ḡ. The union of CSPs (G,X, ḡ)
and (G,X, ḡ′) is (G,X, ḡ ∨ ḡ′). Here, the operations ≤ and ∨ are meant componentwise.

3.1 Arc Consistency and Kernel

CSP (G,X, ḡ) is arc consistent if∨
x′

ḡtt′(x, x
′) = ḡt(x), {t, t′} ∈ E, x ∈ X. (3)

The union of arc consistent problems is arc consistent. To see this, write the disjunction of (3) for arc
consistent ḡ and ḡ′ as [

∨
x′ ḡtt′(x, x

′)]∨ [
∨
x′ ḡ
′
tt′(x, x

′)] =
∨
x′ [ ḡtt′(x, x

′)∨ ḡ′tt′(x, x′) ] = ḡt(x)∨ ḡ′t(x),
which shows that ḡ∨ ḡ′ satisfies (3). Following [Sch89], by the kernel of a CSP we call the union of
all its arc consistent subproblems. Arc consistent subproblems of a problem form a join semilattice
w.r.t. the partial ordering by inclusion ≤, whose greatest element is the kernel.

The kernel can be found by an arc consistency algorithm [Wal72, Sch76b, HDT92]. We
will use its following version. Starting with the original values of ḡ, variables ḡt(x) and ḡtt′(x, x

′)
violating (3) are repeatedly set to zero by applying the rules (see figure 2)

ḡt(x) := ḡt(x) ∧
∨
x′

ḡtt′(x, x
′), (4a)

ḡtt′(x, x
′) := ḡtt′(x, x

′) ∧ ḡt(x) ∧ ḡt′(x′). (4b)
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(a) (b)

Figure 2: The arc consistency algorithm deletes (a) nodes not linked with some neighbor by any
edge, and (b) edges lacking an end node.

(a) (b) (c)

Figure 3: Examples of CSPs: (a) satisfiable problem (hence with a non-empty kernel); (b) problem
with an empty kernel (hence insatisfiable); (c) arc consistent but insatisfiable problem. The present
nodes are in black, the absent nodes in white, the absent edges are not shown.

The algorithm halts when no further change is possible. It is well-known that the result does not
depend on the order of the operations.

Let (G,X, ḡ∗) be the kernel of a CSP (G,X, ḡ). The crucial property of the kernel is that
L̄G,X(ḡ) = L̄G,X(ḡ∗). This is proved later as a special case of theorem 4 but it is easily seen true by
the following argument. If a pencil (t, t′, x) contains no edge, the node (t, x) clearly cannot belong
to any labeling. Therefore, the node (t, x) can be deleted without changing L̄G,X(ḡ). Similarly, if
a node (t, x) is absent then no labeling can pass through the pencils { (t, t′, x) | t′ ∈ Nt }.

Thus, the local condition of arc consistency allows to give simple sufficient (but not necessary)
conditions for unsatisfiability and satisfiability of a CSP (figure 3 shows examples):

• If the kernel is empty (i.e., ḡ∗ = 0) then the problem (G,X, ḡ) is not satisfiable.

• If there is a unique label in each object of the kernel (i.e.,
∑

x ḡ
∗
t (x) = 1 for all t ∈ T ) then

the problem (G,X, ḡ) is satisfiable.

4 Max-sum Problem

An instance of the max-sum problem is denoted by the triplet (G,X,g), where the elements
gt(x) and gtt′(x, x

′) of g are called qualities. The quality of a labeling x is the number

F (x |g) =
∑
t

gt(xt) +
∑
{t,t′}

gtt′(xt, xt′). (5)

Solving the problem means finding (one, several or all elements of) the set of optimal labelings

LG,X(g) = argmax
x∈X|T |

F (x |g). (6)
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t t
′

x

−ϕtt′(x)

ϕtt′(x)

Figure 4: The elementary equivalent transformation: the quality of the node (t, x) increases by a
number ϕtt′(x), the qualities of all edges in the pencil (t, t′, x) decrease by the same number ϕtt′(x).

all max−sum problems

eq. problems

eq. problems with equal height

eq. problems with min. height

Figure 5: Classes of max-sum problems.

4.1 Equivalent Max-sum Problems

The parameterization of the max-sum problem by vectors g is not minimal. Problems (G,X,g) and
(G,X,g′) are equivalent (denoted by g ∼ g′) if the functions F (• |g) and F (• |g′) are identical. A
change of g taking a max-sum problem to its equivalent is called an equivalent transformation
[Sch76b,WJW03a,Kol05a]. An example ER is shown in figure 4: choose a pencil (t, t′, x), add any
number ϕtt′(x) to gt(x) and subtract the same number from the edges { gtt′(x, x′) | x′ ∈ X }.

A particular equivalence class is formed by zero problems for which F (• |g) is a zero function.
By (5), the zero class {g | g ∼ 0 } is a linear subspace of R|GX | and any problems g and g′ are
equivalent if and only if g − g′ is a zero problem.

We will parameterize equivalence classes by a vector ϕ ∈ R2|E||X| with components ϕtt′(x),
assigned to all pencils (t, t′, x). Variables ϕtt′(x) are called potentials in [Sch76b,KS76,Sch89] and
they correspond to messages in belief propagation literature. The equivalent of a problem g given
by ϕ is denoted by gϕ = g + 0ϕ. It is obtained by composing the ‘elementary’ transformations
shown in figure 4, which yields

gϕt (x) = gt(x) +
∑
t′∈Nt

ϕtt′(x), (7a)

gϕtt′(x, x
′) = gtt′(x, x

′)− ϕtt′(x)− ϕt′t(x′). (7b)

It is easy to verify by plugging (7) to (5) that F (x |gϕ) identically equals F (x |g). It is more tricky
to show (proved in appendix C, see [Sch76b, Kol05a]) that if G is a connected graph, any class is
completely covered by the parameterization (7).

Remark. ERs are called equivalent transformations in [Sch76b, KS76, Sch89, SF00]. We use ER
to comply with terminology used by Wainwright et al . [WJ03b]. More generally, ‘equivalent trans-
formations’ can be understood as transformations of any labeling problem, possibly leading to a
‘trivial’ problem that is easy to solve [SF00,Sch05b]. The variables ϕtt′(x) are analogous to messages
from the belief propagation literature. In [Sch76b,KS76], these variables were called potentials, in
analogy with electrical circuits.
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4.2 Upper Bound and Its Minimization

Let the height of object t and the height of pair {t, t′} be respectively

ut = max
x

gt(x), utt′ = max
x,x′

gtt′(x, x
′). (8)

The height of a max-sum problem (G,X,g) is

U(g) =
∑
t

ut +
∑
{t,t′}

utt′ . (9)

By comparing corresponding terms in (5) and (9), the problem height is an upper bound of quality,
i.e., any problem (G,X,g) and any labeling x satisfy F (x |g) ≤ U(g).

Unlike the quality function, the problem height is not invariant to ETs. This naturally leads to
minimizing this upper bound by ETs. It leads to the convex non-smooth minimization task

U∗(g) = min
g′∼g

U(g′) (10a)

= min
ϕ

[∑
t

max
x

gϕt (x) +
∑
{t,t′}

max
x,x′

gϕtt′(x, x
′)
]
. (10b)

Some ETs preserve the problem height, e.g., adding a number to all nodes of an object and
subtracting the same number from all nodes of another object. Thus, there are in general many
problems with the same height within every equivalence class (see figure 5). This gives an option
to impose up to |T | + |E| − 1 constraints on the numbers ut and utt′ in the minimization and
reformulate (10) in a number of alternative ways. This freedom of formulation is convenient for
designing algorithms. Thus,

U∗(g) = min
ϕ | gϕ

tt′ (x,x
′)≤0

∑
t

max
x

gϕt (x) (11a)

= min
ϕ | gϕt (x)=0

∑
{t,t′}

max
x,x′

gϕtt′(x, x
′) (11b)

= min
ϕ

[
|T |max

t
max
x

gϕt (x) + |E|max
{t,t′}

max
x,x′

gϕtt′(x, x
′)
]

(11c)

= |T | min
ϕ | gϕ

tt′ (x,x
′)≤0

max
t

max
x

gϕt (x) (11d)

= |E| min
ϕ | gϕt (x)=0

max
{t,t′}

max
x,x′

gϕtt′(x, x
′) (11e)

= (|T |+ |E|) min
ϕ

max
{

max
t

max
x

gϕt (x), max
{t,t′}

max
x,x′

gϕtt′(x, x
′)
}
. (11f)

E.g., form (11a) corresponds to imposing utt′ ≤ 0 and (11d) to utt′ ≤ 0 and ut = ut′ = u. Other
natural constraints are ut = 0, or ut = ut′ = utt′ = u, or fixing all but one of ut and utt′ .

4.3 Trivial Problems

Node (t, x) is a maximal node if gt(x) = ut. Edge {(t, x), (t′, x′)} is a maximal edge if
gtt′(x, x

′) = utt′ . Let
ḡt(x)=δgt(x)=ut , ḡtt′(x, x

′)=δgtt′ (x,x′)=utt′ . (12)

A max-sum problem is trivial if the CSP (G,X, ḡ) is satisfiable. It is easy to see that the upper
bound is tight, F (x |g) = U(g), for and only for trivial problems, i.e., for x composed of (some or
all) maximal nodes and edges, x ∈ L̄G,X(ḡ). The following theorem is central to the approach.

Theorem 1 Let P be a class of all max-sum problems equivalent with a given problem. Let P
contain at least one trivial problem. Then a problem in P is trivial if and only if its height is
minimal in P .
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Proof. Let (G,X,g) be a trivial problem in P . Let a labeling x be composed of the maximal
nodes and edges of (G,X,g). Any g′ ∼ g satisfies U(g′) ≥ F (x |g′) = F (x |g) = U(g). Thus
(G,X,g) has minimal height.

Let (G,X,g) be a non-trivial problem with minimal height in P . Any g′ ∼ g and any optimal
x satisfy U(g′) ≥ U(g) > F (x |g) = F (x |g′). Thus P contains no trivial problem.

In other words, theorem 1 says that (i) if a problem in P is trivial then it has minimal height in
P ; (ii) if P contains a trivial problem then any problem with minimal height in P is trivial; and
(iii) if any problem has minimal height in P and is not trivial then P contains no trivial problem.
This allows to divide a max-sum problem into two steps:

1. minimize the problem height by ETs,

2. test the resulting problem for triviality.

If (G,X, ḡ) is satisfiable then LG,X(g) = L̄G,X(ḡ). If not, the max-sum problem has no trivial
equivalent and remains unsolved. Note, however, that even if the max-sum problem has a trivial
equivalent, we might fail to recognize it in polynomial time because testing whether a given upper
bound on a max-sum problem is tight is NP-complete. Indeed, this task can be easily translated
to (NP-complete) CSP and vice versa.

Note that if there are two equivalent problems g and g′ with minimal height then LG,X(g) =
LG,X(g′). In other words, if a node (edge) is maximal in g and non-maximal in g′, no labeling can
pass through this node (edge).

Dividing a max-sum problem into the two steps is convenient also because it allows to encode
all optimal labelings in the maximal nodes and edges of any equivalent with minimal height.

Figure 3a shows a trivial problem (thus having minimal height), 3b a problem with a non-
minimal height (hence non-trivial), 3c a non-trivial problem with minimal height. The maximal
nodes are black, the non-maximal nodes white, the non-maximal edges are not shown.

5 Linear Programming Formulation

This section shows that theorem 1 can be viewed to follow from a linear programming relaxation
of the max-sum problem and LP duality. Appendix A surveys what we will need from LP duality.

5.1 Relaxed Labeling

So far, labelings have been represented by tuples x ∈ X |T |. Each object t had exactly one label,
represented by variable xt ∈ X. In this section, an alternative representation is introduced which
allows each object to be ‘undecided’, i.e., to be assigned multiple labels with different weights.

A relaxed labeling is a vector α with the components αt(x) and αtt′(x, x
′) (ordered the same

way as components gt(x) and gtt′(x, x
′) in g) satisfying the constraints∑

x′

αtt′(x, x
′) = αt(x), {t, t′} ∈ E, x ∈ X (13a)∑

x

αt(x) = 1, t ∈ T (13b)

αtt′(x, x
′) ≥ 0, {t, t′} ∈ E, x, x′ ∈ X (13c)

where αtt′(x, x
′) = αt′t(x

′, x). Number αt(x) is assigned to node (t, x), number αtt′(x, x
′) to edge

{(t, x), (t′, x′)}. The set of all α satisfying (13) is a polytope, denoted by ΛG,X .
A binary α represents a ‘decided’ labeling, it is just an alternative representation to x ∈ X |T |.

There is a bijection between the sets X |T | and ΛG,X ∩ {0, 1}|GX |, given by αt(x) = δxt=x and
αtt′(x, x

′) = δxt=xδxt′=x′ . A non-integer α represents an ‘undecided’ labeling.
The constraint set (13) can be modified in several ways without affecting ΛG,X . Clearly, one

can add constraints αt(x) ≥ 0 and
∑

x,x′ αtt′(x, x
′) = 1. Further, all but one constraint (13b) can

11



be omitted. To see this, denote αt =
∑

x αx(t) and αtt′ =
∑

x,x′ αtt′(x, x
′) and sum (13a) over x,

which gives αt = αtt′ . Since G is connected, (13a) alone implies that all αt and αtt′ are equal.
Alternatively, (13b) can or replaced with, e.g.,

∑
t αt = |T | or

∑
{t,t′} αtt′ = |E|.

Equalities (13a) and (13c) can be viewed as a continuous generalization of the logical arc
consistency (3) in the following sense: for anyα satisfying them, the CSP ḡ given by ḡt(x) = δαt(x)>0

and ḡtt′(x, x
′) = δαtt′ (x,x

′)>0 satisfies (3). Similarly, (13b) is a continuous counterpart of non-
emptiness of the kernel.

5.2 LP Relaxation of Max-sum Problem

For the max-sum problem, the concepts of quality and equivalence extend from labelings to relaxed
labelings. The quality of a relaxed labeling α is the scalar product

〈g,α〉 =
∑
t

∑
x

αt(x) gt(x) +
∑
{t,t′}

∑
x,x′

αtt′(x, x
′) gtt′(x, x

′). (14)

Like F (• |g), the function 〈g, •〉 is invariant to equivalent transformations. Substituting (7)
and (13a) verifies that 〈0ϕ,α〉 identically vanishes.

The relaxed max-sum problem is the linear program

ΛG,X(g) = argmax
α∈ΛG,X

〈g,α〉. (15)

The set ΛG,X(g) is a polytope, being the convex hull of the optimal vertices of ΛG,X . If ΛG,X(g)
has integer elements, they coincide with solutions LG,X(g) of the non-relaxed max-sum problem.
If not, the problem has no trivial equivalent.

By making ut and utt′ free variables, the minimization problem (10) can be posed as a linear
programming. This program turns out to be dual to (15). To show this, we will write this pair of
dual programs together in the same form as the LP pair (25), putting a constraint and its Lagrange
multiplier always on the same line.

〈g,α〉 → max
α

∑
t

ut +
∑
{t,t′}

utt′ → min
ϕ,u

(16a)

∑
x′

αtt′(x, x
′) = αt(x) ϕtt′(x) ∈ R, {t, t′} ∈ E, x ∈ X (16b)∑

x

αt(x) = 1 ut ∈ R, t ∈ T (16c)∑
x,x′

αtt′(x, x
′) = 1 utt′ ∈ R, {t, t′} ∈ E (16d)

αt(x) ≥ 0 ut −
∑
t′∈Nt

ϕtt′(x) ≥ gt(x), t ∈ T, x ∈ X (16e)

αtt′(x, x
′) ≥ 0 utt′ + ϕtt′(x) + ϕt′t(x

′) ≥ gtt′(x, x
′), {t, t′} ∈ E, x, x′ ∈ X (16f)

This LP pair (16) can be formulated in a number of different ways, corresponding to modifications
of the primal constraints (13), discusses in section 5.1, and imposing constraints on dual variables
u, discussed in section 4.2.

Independently on Schlesinger, the LP relaxation (15) was used by Koster [KvHK98], Chekuri
et al . [CKNZ01], and Wainwright et al . [WJW02]. The pair (16) was given in [Sch76b, theorem 2].
In appendix D, we describe its physical model [SK78].

5.3 Optimal Relaxed Labelings as Subgradients

Assume we have an algorithm able to compute the optimum value of linear program (16), i.e., to
evaluate the function

U∗(g) = max
α∈ΛG,X

〈g,α〉 = min
g′∼g

U(g′),
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but cannot obtain any optimal argument. Theorem 11 says that optimal α coincide with subgra-
dients of f at g. The whole solution set ΛG,X(g) is the subdifferential (see also [WJ03b, section
10.1]),

ΛG,X(g) = ∂U∗(g). (17)

This characterization allows to obtain some properties of the polytope ΛG,X(g).
As described in appendix A, the components of every α ∈ ΛG,X(g) are delimited to intervals,

α−t (x) ≤ αt(x) ≤ α+
t (x),

α−tt′(x, x
′) ≤ αtt′(x, x′) ≤ α+

tt′(x, x
′),

where α±t (x) and α±tt′(x, x
′) are the left and right partial derivatives of U∗(g). These derivatives

can be computed by finite differences,

α±t (x) =
U∗(g + ∆g)− U∗(g)

∆gt(x)

where components of ∆g are all zero except ∆gt(x), which is a small positive or negative number
(which can be ±1 if the non-maximal nodes and edges are set to −∞ without loss of generality).

If there is an interval which contains neither 0 nor 1, then ΛG,X(g) contains no integer elements
and the max-sum problem has no trivial equivalent.

Even if mostly integer labelings are of interest, we will show how to compute a single element
α of ΛG,X(g). Set V := ∅. Pick a node (t, x) /∈ V . Compute α±t (x) with the constraint that
{αt(x) | (t, x) ∈ V } are fixed. Set αt(x) to some number from interval [α−t (x), α+

t (x)]. Add (t, x)
to V . Repeat until V = T ×X. Do the same for all edges. Unfortunately, a practical algorithm
to solve the relaxed max-sum problem constrained by fixing some components of α seems to be
unknown.

Finally, we will give a sufficient condition for ΛG,X(g) to contain a single element, i.e., the left
derivative to equal the right derivative for every node and edge. By (15), ΛG,X(g) is the convex
hull of the vertices α of ΛG,X that maximize 〈g,α〉. If g is a real vector in a ‘general position’ with
respect to the vertices of ΛG,X then there is a single optimal vertex.

5.4 Remark on the Max-sum Polytope

The original non-relaxed problem (6) can be formulated as the linear program

max
α∈Λ∗G,X

〈g,α〉 (18)

where Λ∗G,X is the integral hull of ΛG,X , i.e., the convex hull of ΛG,X ∩ {0, 1}|GX |. In [WJ03b],
polytopes ΛG,X and Λ∗G,X are derived by statistical considerations and called LOCAL(G) and
MARG(G), respectively. Koster et al . [KvHK98,Kos99] call Λ∗G,X the Partial-CSP polytope.

The vertices of ΛG,X are those of Λ∗G,X plus additional fractional vertices. If G is a tree then
ΛG,X = Λ∗G,X [WJ03b]. While the number of facets of ΛG,X is polynomial in |T |, |E|, and |X|, the
number of facets of Λ∗G,X is not, in general. So is not the number of vertices of both polytopes.

Linear constraints defining all facets of Λ∗G,X are of course unknown. Koster et al . [KvHK98,
Kos99] give some properties of Λ∗G,X . In particular, they give two classes of its facets that are not
facets of ΛG,X , i.e., which cut off some fractional vertices of ΛG,X . An example of such a facet is
given by the constraint ∑

{(t,x),(t′,x′)}∈Γ

αtt′(x, x
′) ≤ 2 (19)

where Γ ⊂ EX is the set of edges depicted in figure 3c. It can be verified that the single element α
of ΛG,X(g), which is 1

2 on all nodes and edges depicted in figure 3c and 0 on the non-depicted edges,
violates (19). It is reported that adding these constraints for triangles to the linear program (15)
significantly reduced the integrality gap. However, automatic generation of violated constraints is
left largely unsolved.
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6 Characterizing LP Optimality

This sections discusses properties of a max-sum problem that are necessary for or equivalent to
optimality of the LP (16), i.e., to minimality of the problem height.

6.1 Complementary Slackness and Relaxed Satisfiability

By weak duality, any max-sum problem (G,X,g) and any α ∈ ΛG,X satisfy 〈g,α〉 ≤ U(g). Strong
duality and complementary slackness characterize optimality of the LP pair (16) as follows.

Theorem 2 For a max-sum problem (G,X,g) and an α ∈ ΛG,X , the following statements are
equivalent:

(a) (G,X,g) has the minimal height of all its equivalents and α has the highest quality.

(b) 〈g,α〉 = U(g).

(c) α is zero on non-maximal nodes and edges.

Let us define the relaxed CSP (G,X, ḡ) as finding relaxed labelings on given nodes and edges,
i.e., finding the set

Λ̄G,X(ḡ) = {α ∈ ΛG,X | 〈1− ḡ,α〉 = 0 }. (20)

We define that a CSP (G,X, ḡ) is relaxed-satisfiable if Λ̄G,X(ḡ) 6= ∅.
Further in section 6, we will consider two coupled problems, the CSP (G,K, ḡ) formed by the

maximal nodes and edges of a max-sum problem (G,K,g). This coupling can be imagined by
considering ḡ to be a function of g given by (12), rather than a free binary vector. Using these
coupled problems, complementary slackness manifests itself as follows.

Theorem 3 The height of (G,X,g) is minimal of all its equivalents if and only if (G,X, ḡ) is
relaxed-satisfiable. If it is so then ΛG,X(g) = Λ̄G,X(ḡ).

6.2 Arc Consistency Is Necessary for LP Optimality

In section 3, arc consistency and kernel were shown useful for characterizing satisfiability of a CSP.
We will show they are useful also for characterizing optimality of the LP pair (16). First, we
generalize the crucial property of the kernel to the relaxed CSP.

Theorem 4 Let (G,X, ḡ∗) be the kernel of a CSP (G,X, ḡ). Then Λ̄G,X(ḡ) = Λ̄G,X(ḡ∗).

Proof. We will need the following two implications. By (20), if ḡ′ ≤ ḡ then Λ̄G,X(ḡ′) ⊆ Λ̄G,X(ḡ).
By the definition of the kernel, if a problem ḡ′ is arc consistent and ḡ′ ≤ ḡ then ḡ′ ≤ ḡ∗.

Since ḡ∗ ≤ ḡ, it is Λ̄G,X(ḡ∗) ⊆ Λ̄G,X(ḡ). Let α ∈ Λ̄G,X(ḡ). Let ḡ′t(x) = δαt(x)>0 and ḡ′tt′(x, x
′) =

δαtt′ (x,x
′)>0. Since (13a) and (13c) imply (3), ḡ′ is arc consistent. Since ḡ′ is arc consistent and

ḡ′ ≤ ḡ, it is ḡ′ ≤ ḡ∗. Therefore α ∈ Λ̄G,X(ḡ∗).

A corollary is that a non-empty kernel of (G,X, ḡ) is necessary for its relaxed satisfiability.
Dually, this can be proved as follows. Further on, we will denote the height of pencil (t, t′, x) by
utt′(x) = maxx′ gtt′(x, x

′) and call (t, t′, x) a maximal pencil if it contains a maximal edge. Let
us modify the arc consistency algorithm such that rather than by explicitly zeroing variables ḡ like
in (4), nodes and edges of (G,X, ḡ) are deleted by repeating the following ETs on (G,X,g):

• Find a triplet (t, t′, x) such that pencil (t, t′, x) is non-maximal and node (t, x) is maximal, i.e.
utt′(x) < utt′ and gt(x) = ut. Decrease node (t, x) by ϕtt′(x) = 1

2 [utt′ − utt′(x)] and increase
all edges in pencil (t, t′, x) by the same amount.

• Find a triplet (t, t′, x) such that pencil (t, t′, x) is maximal and node (t, x) is non-maximal,
i.e. utt′(x) = utt′ and gt(x) < ut. Increase node (t, x) by ϕtt′(x) = 1

2 [ut − gt(x)] and decrease
all edges in pencil (t, t′, x) by the same amount.
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Figure 6: Examples of kernels not invariant to equivalent transformations. The transformations
are depicted by numbers ϕtt′(x) written next to the line segments crossing the edge pencils (t, t′, x);
it is assumed without loss of generality that the non-maximal edges are smaller than −1. Problem
(a) has minimal height, problems (b, c) do not.

When no such triplets exist, the algorithm halts.
If the kernel of (G,X, ḡ) is initially non-empty, the algorithm halts after the maximal nodes and

edges not in the kernel are made non-maximal. If the kernel is initially empty, the algorithm (4)
would sooner or later delete the last node (edge) in some object (pair). This cannot happen here,
because each object (pair) always contains at least one maximal node (edge). Instead, the algorithm
here decreases the height of some node or edge, hence the problem height.

6.3 Arc Consistency Is Insufficient for LP Optimality

One could hope that non-emptiness of the kernel is not only necessary but also sufficient for LP
optimality. We will show it is not. This was observed by Schlesinger [Sch76a] during the work on
the papers [Sch76b,KS76].

By theorem 4, if α ∈ Λ̄G,X(ḡ) and a node (edge) does not belong to the kernel of (G,X, ḡ)
then α is zero on this node (edge). Less obviously, there can be a node (edge) in the kernel such
that every α ∈ Λ̄G,X(ḡ) is zero on it. Figure 6a shows an example: it can be verified that any
α that is zero on the absent nodes and edges and satisfies (13a) has αab(1, 2) = 0. In figures 6b
and 6c, the only element α of Λ̄G,X(ḡ) is zero even on all nodes and edges1, therefore (G,X, ḡ) is
relaxed-insatisfiable.

This can be interpreted dually, by showing that the kernel of (G,X, ḡ) is not invariant to
equivalent transformations of (G,X,g). The transformation depicted in figure 6a makes edge

1For figure 6c, one can reason as follows. If the edges in pair {c, d} are not considered, it is inevitably αt(x) = 1
3

for
t ∈ {a, b, c} and x ∈ X, and αt(x) = 1

2
for t ∈ {d, e, f} and x ∈ X. But by (13a), it should be αcd(1, 1) = αcd(2, 1) = 1

3

and αcd(1, 1) + αcd(2, 1) = 1
2
, which is impossible.
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Figure 7: The CSP for which Λ̄G,X(ḡ) has a single element α that is not an integer multiple of
|X|−1.

{(a, 1), (b, 2)} non-maximal and thus deletes it from the kernel. The transformations in figures 6b
and 6c make respectively edges {(a, 2), (c, 3)} and {(c, 1), (d, 1)} non-maximal, which makes the
kernel empty. Thus, a non-empty kernel does not suffice for minimality of the height of (G,X,g).

6.4 Summary: Three Kinds of Consistency

To summarize, we have met three kinds of ‘consistency’ of the two coupled problems, related by
implications as follows

(G,X, ḡ) satisfiable
(G,X,g) trivial

=⇒ (G,X, ḡ) relaxed-satisfiable
height of (G,X,g) minimal

=⇒ kernel of (G,X, ḡ) non-empty

Testing for the first condition is NP-complete. Testing for the last condition is polynomial and easy,
based on the local property of arc consistency. Testing for the middle condition is polynomial but
an efficient algorithm that would detect an arc consistent but relaxed-unsatisfiable state and would
escape from it by a height-decreasing ET is, to our knowledge, unknown. Exceptions are problems
with two labels, for which non-empty kernel equals relaxed satisfiability, and supermodular max-
sum problems (lattice CSPs) and problems on trees for which non-empty kernel equals satisfiability.

As far as we know, all efficient algorithms for decreasing height of large max-sum problems
use arc consistency as the termination criterion. The algorithm from section 6.2 is not practical
for its slow convergence. Better examples are reviewed in sections 7 and 8. Another example is
TRW-S [Kol04]. Existence of arc consistent but relaxed-unsatisfiable configurations is unpleasant
here because these algorithms need not find the minimal upper bound. This corresponds to the
spurious minima of TRW-S observed in [Kol04,Kol05a].

6.5 Problems with Two Labels

For problems with |X| = 2 labels, a non-empty kernel turns out to be both necessary and sufficient
for LP optimality. This is given by the following result due to Schlesinger [Sch05b] (also given
by [Kol05c]), which additionally shows that at least one relaxed labeling is an (integer) multiple of
1
2 . For |X| > 2, a relaxed labeling that is a multiple of |X|−1 may not exist even if Λ̄G,X(ḡ) 6= ∅,
as shown in figure 7. Note, the theorem implies that for |X| = 2, the co-ordinates of all vertices of
ΛG,X are multiples of 1

2 , since any vertex can be made optimal to (G,X,g) by some choice of g.

Theorem 5 Let a CSP (G,X, ḡ) with |X| = 2 labels have a non-empty kernel. Then Λ̄G,X(ḡ) ∩
{0, 1

2 , 1}|GX | 6= ∅.

Proof. We will prove the theorem by constructing an α ∈ Λ̄G,X(ḡ) ∩ {0, 1
2 , 1}|GX |.
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Delete all nodes and edges not in the kernel. Denote the number of nodes in object t and the
number of edges in pair {t, t′} respectively by

nt =
∑
x

ḡt(x), ntt′ =
∑
x,x′

ḡtt′(x, x
′).

All object pairs can be partitioned into five classes (up to swapping labels), indexed by triplets
(nt, nt′ , ntt′):

(nt, nt′ , ntt′) (1, 1, 1) (1, 2, 2) (2, 2, 2) (2, 2, 3) (2, 2, 4)

Remove one edge in each pair of class (2, 2, 3) and two edges in each pair of class (2, 2, 4) such
that they become (2, 2, 2). Now there are only pairs of classes (1, 1, 1), (1, 2, 2) and (2, 2, 2). Let

αt(x) =
ḡt(x)

nt
, αtt′(x, x

′) =
ḡtt′(x, x

′)

ntt′
.

Clearly, this α belongs to Λ̄G,X(ḡ).

7 Max-sum Diffusion

This section describes the max-sum diffusion algorithm for decreasing the height of a max-sum
problem [KK75,Fla98,Sch05b], which can be viewed as a modification of the algorithm in section 6.2.

7.1 The Algorithm

The node-pencil averaging on pencil (t, t′, x) is the equivalent transformation which makes gt(x)
and utt′(x) equal, i.e., which adds number ϕtt′(x) = 1

2 [utt′(x) − gt(x)] to gt(x) and subtracts the
same number from qualities { gtt′(x, x′) | x′ ∈ X } of all edges in (t, t′, x). In its simplest form, the
max-sum diffusion algorithm is as follows: repeat node-pencil averaging until convergence, on all
pencils in any order such that each pencil is visited ‘sufficiently often’.

This algorithm can be slightly reformulated. If a node (t, x) is chosen and node-pencil averaging
is iterated on the pencils { (t, t′, x) | t′ ∈ Nt } till convergence, the heights of all these pencils and
gt(x) become equal. This can be done faster by a single equivalent transformation on the node
(t, x), called the node averaging.

The following code repeats node averaging for all nodes in a pre-defined order until convergence.
Recall that gϕ is given by (7).

repeat
for (t, x) ∈ T ×X do

for t′ ∈ Nt do
utt′(x) := maxx′ g

ϕ
tt′(x, x

′);
end for

∆u :=
gϕt (x) +

∑
t′∈Nt

utt′(x)

|Nt|+ 1
;

for t′ ∈ Nt do
ϕtt′(x) := utt′(x)−∆u;

end for
end for

until convergence
g := gϕ;

Let us remark that for |X| = 1, the algorithm just iteratively averages neighboring nodes and
edges, converging to the state when they all become equal to their mean value 〈1,g〉/|GX |.
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7.2 Monotonicity

When node-pencil averaging is done on a single pencil, the problem height can decrease, remain
unchanged, or increase. For an example when the height increases, consider a max-sum problem
with X = {1, 2} such that gt(1) = gt(2) = 1 and utt′(1) = utt′(2) = −1 for some pair {t, t′}. After
making node-pencil averaging on (t, t′, 1), the height increases by 1.

However, monotonic height decrease can be ensured by choosing a proper order of pencils as
follows (a similar theorem is true for node averagings).

Theorem 6 After the equivalent transformation consisting of |X| node-pencil averagings on the
pencils { (t, t′, x) | x ∈ X }, the height does not increase.

Proof. Before the transformation, the contribution of object t and pair {t, t′} to the total height
is maxx gt(x) + maxx utt′(x). After the transformation, this contribution is maxx[gt(x) + utt′(x)].
The first expression is not smaller than the second one because any two functions f1(x) and f2(x)
satisfy maxx f1(x) + maxx f2(x) ≥ maxx[f1(x) + f2(x)].

7.3 Properties of the Fixed Point

The fixed point of the max-sum diffusion algorithm is characterized by the following conjecture,
which was formulated based on numerous experiments.

Conjecture 1 The algorithm converges to a solution of the system

max
x′

gtt′(x, x
′) = gt(x), {t, t′} ∈ E, x ∈ X. (21)

The property (21) implies arc consistency of the maximal nodes and edges. However, the
converse is false: not every max-sum problem with arc consistent maximal nodes and edges sat-
isfies (21). This is because arc consistency constrains only maximal nodes and edges, while (21)
constrains also non-maximal nodes and some non-maximal edges.

Theorem 7 If a max-sum problem satisfies (21) then its maximal nodes and edges are arc consis-
tent.

Proof. Assume that (21) holds. Following (3), we are to prove that a pencil (t, t′, x) is maximal if
and only if node (t, x) is maximal.

Assume that (t, x) is maximal. Then gt(x) ≥ gt(x
′) for each x′ ∈ X. By (21), it is utt′(x) ≥

utt′(x
′) for each x′ ∈ X. Hence (t, t′, x) is maximal.

Assume that (t, x) is not maximal. Then gt(x) < gt(x
′) for some x′ ∈ X. By (21), it is

utt′(x) < utt′(x
′) for some x′ ∈ X. Hence (t, t′, x) is not maximal.

Any solution to (21) has the following layered structure (see figure 8). A layer is a maximal
connected subgraph of GX such that its each edge {(t, x), (t′, x′)} satisfies gt(x) = gtt′(x, x

′) =
gt′(x

′). It follows from (21) that all nodes and edges of a layer have the same quality, the height
of the layer. The highest layer is formed by the maximal nodes and edges.

Remark. We observed that the layers form a poset, however, we see no use of this so far. Let a
relation ≤ on the system Ω = {ωi} of layers be defined as follows: ω1 ≤ ω2 if and only if there is
a node (t, x) of ω1 and a node (t′, x′) of ω2 such that gt(x) = gtt′(x, x

′) ≤ gt′(x
′). The transitive

closure ≤∗ of ≤ is a partial order. The greatest element of the poset (Ω,≤∗) is the highest layer.
However, (Ω,≤∗) is neither a lattice nor a semilattice.

Further observation is that the differences between the heights of neighboring layers provide
some explicit knowledge about stability of the layers to perturbations of g.
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Figure 8: Two examples of max-sum problems satisfying (21). A line segment starting from node
(t, x) and aiming to but not reaching (t′, x′) denotes an edge satisfying gt(x) = gtt′(x, x

′) < gt′(x
′).

If gt(x) = gtt′(x, x
′) = gt′(x

′), the line segment joins the nodes (t, x) and (t′, x′). The colors help
distinguish different layers; the highest layer is drawn in black.

8 Augmenting DAG Algorithm

This section describes the algorithm for decreasing the problem height given in [KS76,Sch89]. Its
main idea is to run the arc consistency algorithm (4) on the maximal nodes and edges, storing the
pointers to the causes of deletions. When all nodes in a single object are deleted, it is clear that
the kernel is empty. Backtracking the pointers provides a directed acyclic graph (DAG), called the
augmenting DAG, along which a height-decreasing ER is done.

The iteration of the algorithm proceeds in three phases, described in subsequent sections. We
use formulation (11a), i.e., we look for ϕ that minimizes U(gϕ) =

∑
t maxx g

ϕ
t (x) subject to

constraint that all edges are non-positive (i.e., all pairs have zero height). Initially, all edges are
assumed non-positive.

8.1 Phase 1: Arc Consistency Algorithm

In the first phase, the arc consistency algorithm is run on the maximal nodes and edges. It is not
done exactly as described by rules (4) but in a slightly modified way as follows.

1. An auxiliary variable pt(x) ∈ {ALIVE, NONMAX} ∪ T is assigned to each node (t, x). Initially,
we set pt(x) := ALIVE if (t, x) is maximal and pt(x) := NONMAX if (t, x) is non-maximal.

2. If a pencil (t, t′, x) is found satisfying pt(x) = ALIVE and violating condition

(∃x′)[ {(t, x), (t′, x′)} maximal, pt′(x
′) = ALIVE ], (22)

node (t, x) is deleted by setting pt(x) := t′. The object t′ is called the deletion cause of
node (t, x). This is repeated until either no such pencil exists, or an object t∗ is found with
pt∗(x) 6= ALIVE for all x ∈ X. In the former case, the augmenting DAG algorithm halts. In
the latter case, we proceed to the next phase.

After every iteration of this algorithm, the maximal edges and the variables pt(x) define a
directed acyclic subgraph D of GX , as follows: the nodes of D are the end nodes of its edges; edge
((t, x), (t′, x′)) belongs to D if and only if it is maximal and pt(x) = t′. Once t∗ has been found, the
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Figure 9: (a) The augmenting DAG algorithm after the arc consistency algorithm (Phase 1) and
(b) after finding the search direction (Phase 2).

augmenting DAG D(t∗) is a subgraph of D reachable by a directed path in D from the maximal
nodes of t∗.

Example. The example max-sum problem in figure 9 has T = {a, . . . , f} and the labels in each
object are 1, 2, 3, numbered from bottom to top. Figure 9a shows the maximal edges and the values
of pt(x) after the first phase, when 10 nodes have been deleted by applying rule (22) succesively
on pencils (c, a, 2), (c, a, 3), (e, c, 1), (e, c, 3), (f, e, 3), (d, c, 2), (b, d, 2), (a, b, 2), (d, b, 1), (f, d, 1).
The non-maximal edges are not shown. The nodes with pt(x) = ALIVE are drawn in black, with
pt(x) = NONMAX in white, and with pt(x) ∈ T in red. For the deleted nodes, the causes pt(x) are
denoted by short blue segments accross pencils (t, pt(x), x). The object t∗ = f has a black outline.

Figure 9a shows D after t∗ has been found and figure 9b shows D(t∗). The edges of D and
D(t∗) are depicted in red and the nodes, except (a, 3), too.

8.2 Phase 2: Finding the Search Direction

In the second phase, the direction of height decrease is found in the space R2|E||X|, i.e., a vector
∆ϕ is found such that U(gϕ+λ∆ϕ) < U(gϕ) for a small positive λ.

Using the abbreviation ∆ϕt(x) =
∑

t′∈Nt
∆ϕtt′(x), the vector ∆ϕ has to satisfy

∆ϕt∗(x) = −1, x ∈ X, pt∗(x) 6= NONMAX, (23a)

∆ϕt(x) ≤ 0, t ∈ T, x ∈ X, pt(x) 6= NONMAX, (23b)

∆ϕtt′(x) + ∆ϕt′t(x
′) ≥ 0, {t, t′} ∈ E, x, x′ ∈ X, {(t, x), (t′, x′)} maximal. (23c)

We find the smallest vector ∆ϕ satisfying (23). This is done by traversing D(t∗) from roots to
leaves, successively enforcing constraints (23). The traversal is done in a linear order on D(t∗), i.e.,
a node is not visited before the tails of all edges entering it have been visited. In figure 9b, the
non-zero numbers ∆ϕtt′(x) are written near their corresponding pencils.

8.3 Phase 3: Finding the Search Step

In the third phase, the length λ of the search step is found such that the height of no pair is
increased (i.e., all edges are kept non-positive), the height of no object is increased, and the height
of t∗ is minimized. These read respectively

gϕ+λ∆ϕ
tt′ (x, x′) ≤ 0, {t, t′} ∈ E, x, x′ ∈ X,
gϕ+λ∆ϕ
t (x) ≤ max

x
gϕt (x), t ∈ T, x ∈ X,

gϕ+λ∆ϕ
t∗ (x) ≤ max

x
gϕt∗(x)− λ, x ∈ X.
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To derive the last inequality, see that each node of t∗ with pt∗(x) ∈ T decreases by λ and each node
with pt∗(x) = NONMAX increases by λ∆ϕt∗(x). The latter is because D(t∗) can have a leaf in t∗. To
minimize the height of t∗, the nodes with pt∗(x) = NONMAX must not become higher than the nodes
with pt∗(x) ∈ T .

Solving the above three conditions for λ yields the inequality system

λ ≤ gϕtt′(x, x
′)

∆ϕtt′(x) + ∆ϕt′t(x′)
, {t, t′} ∈ E, x, x′ ∈ X, ∆ϕtt′(x) + ∆ϕt′t(x

′) < 0, (24a)

λ ≤ ut − gϕt (x)

δt=t∗ + ∆ϕt(x)
, t ∈ T, x ∈ X, δt=t∗ + ∆ϕt(x) > 0. (24b)

We find the greatest λ satisfying (24).

The iteration of the augmenting DAG algorithm is completed by the equivalent transformation
ϕ += λ∆ϕ.

8.4 Introducing Thresholds

The number of iterations depends on the lengths λ of search steps and on the difference between
the initial and final height. Each iteration takes polynomial time, but this time depends on the
size of the augmenting DAG. The size of the augmenting DAG and λ depend in a complicated
way on the precise strategy how D is constructed during Phase 1 (note that this strategy was left
unspecified in section 8.1).

Figure 10a illustrates how a ‘bad’ strategy of constructing D in Phase 1 can lead to an unnec-
essarily small λ. This is analogical to the well-known drawback of the Ford-Fulkerson max-flow
algorithm. The figure shows D(t∗), depicted similarly as in figure 9b. On the top figure, ut∗ = 1000,
ut = 0, edge A is maximal with quality 0, and edge B has quality −1. The search step is λ = 1, the
bottleneck being edge B. The equivalent transformation makes A non-maximal and B maximal.
The bottom figure shows D(t∗) for the subsequent iteration, in which A and B swapped their rôles.
The edge qualities and step lengths in the i-th iteration are as follows:

i 1 2 3 . . .

gϕ(A) 0 −1 0 . . .
gϕ(B) −1 0 −1 . . .
λ 1 1 1 . . .

An even worse situation is shown in figure 10b. The step λ decreases exponentially:

i 1 2 3 4 5 6 . . .

gϕ(A) 0 −1
2 0 −1

4 0 −1
8 . . .

gϕ(B) −1 0 −1
2 0 −1

4 0 . . .
λ 1

2
1
2

1
4

1
4

1
8

1
8 . . .

This inefficient behavior can be reduced by re-defining maximality of nodes and edges using a
threshold ε > 0 [KS76]. A node (t, x) or an edge {(t, x), (t′, x′)} is maximal if and only if respectively

max
x

gϕt (x)− gϕt (x) ≤ ε,
−gϕtt′(x, x′) ≤ ε.

We maintain that the edge is non-positive if and only if gϕtt′(x, x
′) ≤ 0. If ε is reasonably large,

‘nearly maximal’ nodes and edges, like A and B in the example, are considered maximal with
the hope that a larger λ will result. A possible scheme is to run the augmenting DAG algorithm
several times, exponentially decreasing ε. With ε > 0, the algorithm terminates in a finite number
of iterations [KS76]. However, polynomial complexity has not been even conjectured.

21



odd iteration
B

A

tt∗
B

A

tt∗

even iteration
A

B

tt∗
B

A

tt∗

(a) (b)

Figure 10: Examples of inefficient behavior of the augmenting DAG algorithm.

If ε = 0, the algorithm sometimes spends a lot of iterations to minimize the height in a subgraph
of G accurately [Sch05b]. This is indeed wasteful because this accuracy is destroyed once the
subproblem is left.

Remark. The partial derivatives α±t (x) and α±tt′(x, x
′) from section 5.3 can be conveniently com-

puted by the tools of the augmenting DAG algorithm, provided that an arc consistent configuration
with non-minimal height is not met. These derivatives are closely related to the search direction
∆ϕ. For example, increase gt(x) by 1, do Phase 1 until a dead object t∗ is found, and compute
∆ϕ. Then α+

t (x) = [
∑

t′∈Nt
∆ϕtt′(x) ]−1.

Implementing the algorithm requires solving implementation details, described only partially
or not at all in the original paper [KS76]. For example, starting every iteration with empty D is
inefficient, D has to be re-used rather than thrown away. Or, treating rounding errors consistently
is not easy. We provide the detailed description including the code in appendix E.

9 Supermodularity

In this section, we assume that the label set X is endowed with a known total order ≤, i.e., the
poset (X,≤) is a chain. This total order induces the componentwise partial order on a product
(Xn,≤) of these chains, where we have denoted the new order by the same symbol ≤. The poset
(Xn,≤) is a distributive lattice, with join (meet) denoted2 by ∨ (∧). We will show that any max-
sum problem for which the functions gtt′(•, •) are supermodular on (X2,≤) has a trivial equivalent
and that finding an optimal labeling is tractable.

9.1 Lattice CSP

We call (G,X, ḡ) a lattice CSP if the poset (L̄tt′ ,≤) is a lattice for every {t, t′} ∈ E, where we
denoted L̄tt′ = { (x, x′) | ḡtt′(x, x′) = 1 }. It follows easily that for a lattice CSP, L̄G,X(ḡ) is also
a lattice. The following theorem shows that lattice CSP are tractable (figure 11a illustrates the
argument).

2Elsewhere in the report, we use the symbol ≤ also for natural order on R and the symbols ∧ and ∨ also for
logical conjunction and disjunction. This overloading will not cause confusion because the meaning will be always
determined by operands.

22



t′ t

y
′

x

x
′

y

(a) (b)

Figure 11: (a) An arc consistent lattice CSP is always satisfiable. A labeling on it can be found
by taking the lowest label in each object separately (in red). (b) Supermodular max-sum problems
satisfy gtt′(x, x

′) + gtt′(y, y
′) ≥ gtt′(x, y′) + gtt′(y, x

′) for every x ≤ y and x′ ≤ y′. It follows that the
poset L̄tt′ = { (x, x′) | gtt′(x, x′) = utt′ } is a lattice.

Theorem 8 Any arc consistent lattice CSP (G,X, ḡ) is satisfiable. The ‘lowest’ labeling x =∧
L̄G,X(ḡ) is given by xt = min{x ∈ X | ḡt(x) = 1 }.

Proof. We will show that ḡtt′(xt, xt′) = 1 for all {t, t′} ∈ E. Pick a {t, t′} ∈ E. By (3), pencil
(t, t′, xt) contains at least one edge, while pencils { (t, t′, x) | x < xt } are empty. Similarly for
pencils (t′, t, xt′) and { (t′, t, x′) | x′ < xt′ }. Since (L̄tt′ ,≤) is a lattice, the meet of the edges in the
pair {t, t′} is {(t, xt), (t′, xt′)}.

9.2 Supermodular Max-sum Problems

We call (G,X,g) a supermodular max-sum problem if all the functions gtt′(•, •) are super-
modular. The following theorem shows that this is equivalent to supermodularity of the quality
function F (• |g). We state the theorem in a slightly more general form; for that, recall that a
multivariate function is separable if it is a sum of univariate functions.

Theorem 9 In a max-sum problem, the function F (• |g) is supermodular resp. separable if and
only if all the bivariate functions gtt′(•, •) are supermodular resp. separable.

Proof. The if implication is true because supermodularity is closed under addition.

The only if part. Pick a pair {t, t′} ∈ E. Let two labelings x,y ∈ X |T | be equal in all objects
except t and t′ where they satisfy xt ≤ xt′ and yt ≥ yt′ . If F (• |g) is supermodular, by (31) it is
F (x∧y |g)+F (x∨y |g) ≥ F (x |g)+F (y |g). After substitution from (5) and some manipulations,
we are left with gtt′(xt, yt′) + gtt′(yt, xt′) ≥ gtt′(xt, xt′) + gtt′(yt, yt′).

It is easy to verify that for any order ≤, F (x∧y |g) +F (x∨y |g) = F (x |g) +F (y |g) implies
gtt′(xt, yt′) + gtt′(yt, xt′) = gtt′(xt, xt′) + gtt′(yt, yt′). This proves separability.

Since the function F (• |g) is invariant to equivalent transformations, theorem 9 implies that
supermodularity of the functions gtt′(•, •) is so too. This is alternatively seen from the fact that an
equivalent transformation means adding a zero problem, which is modular, and supermodularity is
invariant to adding a modular function.

Theorem 10 [Top78, theorem 4.1] The set A∗ of maximizers of a supermodular function f on a
lattice A is a sublattice of A.
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Proof. Let a, b ∈ A∗. Denote p = f(a) = f(b), q = f(a ∧ b), and r = f(a ∨ b). Maximality of p
implies p ≥ q and p ≥ r. The supermodularity condition q + r ≥ 2p yields p = q = r.

If f is strictly supermodular then A∗ is even a chain [Top78, theorem 4.2].
The maximal nodes and edges of a max-sum problem with minimal height form a CSP with

a non-empty kernel. By theorem 10, for a supermodular max-sum problem this kernel is a lattice
problem. By theorem 8, the kernel is satisfiable. Thus, the max-sum problem has a trivial equivalent
and an optimal labeling can be obtained by taking the lowest label separately in each object of the
kernel.

Remark. The result of this section could be proved in a more elementary way without lattice
theory; in fact, everything necessary is in figure 11. However, the abstract lattice-theoretical
language we have used is useful to understand the relation with supermodular optimization [Top78,
Top98,GLS81,GLS88,Sch00,IFF01] and with work by Kovtun [Kov03,Kov04]. Appendix B might
help readers not familiar with lattice theory.

Rather than by LP relaxation (e.g., by max-sum diffusion or TRW-S), supermodular problems
can be more efficiently solved by translation to max-flow. This is given by D. Schlesinger [Sch05a]
for any number |X| of labels and by Kolmogorov and Zabih [KZ02] for |X| = 2.

10 Experiments with Structural Image Analysis

Here, we present examples with structural image analysis, motivated by those in [Sch76b, Sch89].
They are different from non-supermodular problems of Pott’s type and arising from stereo re-
construction, experimentally examined by Kolmogorov and Wainwright [KW05b, Kol05a, Kol05b,
KW05a], in the fact that a lot of edge qualities are −∞; in that, they are closer to CSP. In the
sense of [Sch76b, Sch89], these tasks can be interpreted as finding a ‘nearest’ image belonging to
a language generated by a 2D grammar (in full generality, 2D grammars include also hidden vari-
ables). If qualities are viewed as log-likelihoods, the task corresponds to finding a mode of a Gibbs
distribution with non-negative potentials.

Let the following be given. Let G be a grid graph, representing the topology of the 4-connected
image grid. Each pixel t ∈ T has a label from X = {E, I, T, L, R}. Numbers gtt′(x, x

′) are given by
figure 12c, which shows three pixels forming one horizontal and one vertical pair, as follows: the
black edges have quality 0, the red edges −1

2 , and the edges not shown −∞. The functions gtt′(•, •)
for all vertical pairs are equal, as well as for all horizontal pairs.

Numbers f(E) = f(I) = 1 and f(T) = f(L) = f(R) = 0 assign an intensity to each label. Thus,
f(x) = ( f(xt) | t ∈ T ) is the black-and-white image corresponding to the labeling x.

First, assume that gt(x) = 0 for all t and x. The set I = { f(x) | F (x |g) > −∞} contains
images feasible to the 2D grammar (G,X,g), here images of multiple non-overlapping black ‘free-
form’ characters ‘Π’ on white background. An example of such an image with labels denoted is in
figure 12d. The number of characters in the image is −F (x |g).

Let an input image ( ft | t ∈ T ) be given. Numbers gt(x) = −c [ft − f(x)]2 quantify similarity
between the input image and the intensities of the labels; we set c = 1

6 . Now, an optimal labeling
describes an image nearest to I, in the defined sense. Setting the red edges in figure 12c to a
non-zero value discourages images with a large number of small characters, which is useful when
highly corrupted input images are analyzed; this could be viewed as a regularization.

For the input in figure 12d, we minimized the height of the max-sum problem (G,X,g) by the
augmenting DAG algorithm and then computed the kernel of the maximal nodes and edges. To get
a partial and suboptimal solution to the CSP, we used the unique label condition from section 3.
The result is in figure 12e. A pixel t with a unique maximal node (t, x) has the gray level f(x),
while pixels with multiple maximal nodes are red. Unfortunately, there are rather many ambiguous
pixels.

It turns out that if X and g are slightly re-defined by adding two more labels as shown in
figure 12f and 12g, a unique label in each pixel is obtained. We observed this repeatedly: of several
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Figure 12: The ‘Letters Π’ example. The input image in (b) is the image in (a) plus independent
normal noise. (c) The vertical and horizontal pixel pair defining the problem, (d) a labeled image
feasible to this definition, and (e) the output image. (f) The alternative ‘better’ definition of the
same problem, (g) a labeled feasible image, and (h) the output.
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Figure 13: ‘Rectangles’. (a) Description, (b) input, (c) output. Image size 100×100 pixels. Images
with many small rectangles were discouraged by penalizing rectangle corners by quality 30. Again,
a simpler definition with only 4 labels is possible, yielding ambiguous labels more often.
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Figure 14: ‘Aligned Rectangles’. (a) Description, (b) input, (c) output. Image size 50× 80.
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Figure 15: ‘4-connected Curve’. (a) Description, (b) input, (c) output. Image size 100× 100.
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Figure 16: ‘Spikes’. (a) Description. The input in (c) is the image in (b) plus independent normal
noise. (c) Output. Image size 80× 60.
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Figure 17: ‘Black Blobs on the Left, White Blobs on the Right’. (a) Description, (b) input, (c)
output. Image size 150× 150. Transitions black-gray and white-gray penalized by 0.5.

alternative formulations defining the same feasible set I, some (usually not the simplest ones)
provide less ambiguous relaxed labelings more often.

The size of the input image is 50× 50 pixels. For the problem in figure 12c, the runtime of the
augmenting DAG algorithm was about 1.6 s on a 1.2 GHz laptop PC, and the max-sum diffusion
achieved the state with arc consistent maximal nodes and edges in almost 6 minutes. For the
problem in figure 12f, the augmenting DAG algorithm took 0.3 s and the diffusion 17 s.

Figures 13 through 17 present more examples of structural image analysis tasks. The models
are fully defined by the figures and their captions. For each example, the pairs of neighboring labels
shown in subfigure (a) have quality 0 unless stated otherwise in the caption, and the remaining
pairs have quality −∞. It is gt(x) = −[ft − f(x)]2, where f(x) are given by the label colors.

The used input images were not chosen very carefuly to achieve a unique labeling, rather, pixels
with ambiguous labels were absent or rare for many inputs similar to the shown ones. An exception
is the ‘Curve’ example, in which the shown output is typical. All images are synthetic, using hand
drawn pictures and independent normal noise.

10.1 ‘Easy’ and ‘Difficult’ Problems

We observed quite consistently that quantitative characteristics, like the numbers of pixels and
labels or thhe initial value of U(g), did not predict well the runtime and number of uniquely
labeled pixels. Sometimes, these were low for tasks that a human would describe as ‘easy’ and high
for ‘difficult’ ones. In particular, this was true for inputs ‘similar’ and ‘dissimilar’ to the feasible
set I. Subfigures (a) and (c) show the input images, both far from a feasible one. For the former,
the unique labeling was found but in a long runtime 4.4 s. For the latter, almost all pixels have
ambiguous labels, found in runtime 8.3 s.

In fact, one can even observe phase transition, known to appear in many NP-hard problems
including CSP [CKT91, Smi96]. Consider functions gtt′(x, x

′) defined by figure 19a, for which
the feasible observed images f(x) are composed of horizontal and vertical lines. Let the input
be a feasible image, shown in the top left subfigure (c), with independent normal noise N(0, σ)
superimposed. For σ = 0 there is nothing to solve; the output is the bottom left subfigure (c).
As σ increases3, finding the feasible image nearest to the input becomes more and more ‘difficult’,
which is reflected by significantly greater running times t of the augmenting DAG algorithm (the
max-sum diffusion behaves similarly but takes longer). A solutions with unique labels in all pixels
is found till σ = 2.4250. Then a tiny further increase of σ results in an abrupt change, when
almost all pixels are ambiguous, as shown in the last subfigure (c). Beyond this point, the runtimes
start decreasing (not shown in the figure). See [LG04], which mentions this phase transition in LP
relaxation integrality for satisfactions problems.

3To obtain noise realizations superimposed to the input images in figure 19, we used a single realization of N(0, 1)
multiplied with different σ.
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(a) (b) (c) (d)

Figure 18: ‘Horizontal and Vertical Lines’, examples of input far from the model. Image sizes
50 × 50. The input far from the model in (a) still resulted in an integer relaxed labeling in the
output (b); runtime of the augmenting DAG algorithm was 4.4 s. Pure independent normal noise
in (c) resulted in most pixels with non-integer relaxed labeling in (d); runtime 8.3 s.
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Figure 19: ‘Horizontal and Vertical Lines’. (a) Description. (b) Runtime of the augmenting DAG
algorithm as a function of noise magnitude added to the top-left subfigure. (c) Several examples of
input and output. In the top row of (c), the intensities were scaled to the white-black range.
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11 Summary

We have reviewed the approach to max-sum problem developed by Schlesinger et al . in a unified
framework. The approach can be summarized as follows. The original problem is formulated as a
0-1 linear programming, in which the integrality constraint is relaxed by introducing the polytope
ΛG,X of relaxed labelings α. This leads to a LP task, which maximizes 〈g,α〉 over ΛG,X . This is
common in optimization; however, from this alone it is not clear how to test for optimality, i.e.,
(dis)prove existence of an integer LP-optimal α, and how to design efficient algorithms.

Problem height U(g) is an upper bound on quality F (x |g). This upper bound is tight for
trivial max-sum problems, for which the CSP formed by the nodes maximal in objects and the
edges maximal in pairs is satisfiable. Since CSP is NP-complete, testing whether the upper bound
is tight is so too (we can easily translate any test for triviality to a CSP and vice versa). The upper
bound is minimized by finding an equivalent problem with minimal height U(g). After choosing
a parameterization of equivalence classes by ϕtt′(x), this can be formulated as a linear program,
which turns out to be dual to maximizing of 〈g,α〉 over ΛG,X .

Thus, the max-sum problem and CSP are intimately related. For the original non-relaxed
problem, this relationship is given by theorem 1. Note that this theorem is so simple that it can be
proved by elementary means without referring to LP duality theorems. For the relaxed problem,
the relationship is given by complementary slackness, which naturally leads to LP-relaxation of
CSP. Here, the solution set of this relaxed CSP equals the subdifferential of the minimal problem
height as a function of g.

A CSP is relaxed-satisfiable is there is any (integer or non-integer) α on given nodes and edges.
Deleting nodes and edges violating arc consistency, i.e. taking the kernel, leaves the solutions set
of a (relaxed) CSP unchanged. Thus, non-empty kernel is necessary for relaxed satisfiability, which
is in turn necessary for satisfiability. Unfortunately, neither of these conditions is sufficient, the
counter-examples being figures 3c and 6b,c. Exceptions are problems with two labels, for which
non-empty kernel equals relaxed satisfiability, and supermodular max-sum problems (lattice CSPs),
for which non-empty kernel equals satisfiability. For general problems, a unique label in each object
in the kernel is sufficient (but not necessary) for satisfiability.

The fact that non-empty kernel is necessary for relaxed satisfiability, hence for minimal upper
bound, can be used to design algorithms for decreasing the upper bound. We reviewed two examples
of such algorithms. The first one, the max-sum diffusion, can be viewed as a simple convergent
form of belief propagation. The second one, the augmenting DAG algorithm, is distantly similar
to the well-known augmenting path algorithm for max-flow. We have not focused primarily on
efficiency of these algorithms, in particular we have not made comparison with the max-marginal
averaging by Kolmogorov [Kol05a].

In fact, one could imagine even more height minimizing algorithms based on arc consistency.
Unfortunately, all such algorithms are not guaranteed to find the minimum of the upper bound
because they can terminate in a relaxed-unsatisfiable state with a non-empty kernel. An efficient
algorithm to escape from such spurious minima is not known. We believe that these spurious
minima are equivalent to those observed by Kolmogorov [Kol04, Kol05a], but we have not been
able to prove it.

We applied the presented LP-relaxation approach to the max-sum problem to several tasks of
structural image analysis. To our knowledge, this kind of complex image analysis tasks has not
been addressed by others.

The class of max-sum problems that can be solved to optimality by the presented approach
is given by two conditions: the max-sum problem must have a trivial equivalent and testing for
triviality must be tractable. Two known subclasses satisfying this are problems on trees and
supermodular problems. Since this article is mainly theoretical, our experiments are qualitative
rather than quantitative. However, they suggest that the class we can solve is considerably larger,
containing many complex problems far from tree and supermodular ones.

It is natural to use the LP-relaxation approach to find suboptimal solutions to problems out of
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the above class. For this, it would be useful to have an idea of how far we are from the optimum.
We are not aware of any such results. Several quantities measuring distance from the optimum
can be considered. The first is the integrality gap, 〈g,α∗〉 − F (x∗ |g) where α∗ is an LP-optimal
relaxed labeling and x∗ is a true optimal solution to the non-relaxed problem. The second is
F (x∗ |g)−F (x |g) where x is a suboptimal labeling obtained from α∗ by a suitable approximation
scheme. The latter is useless if some edge qualities gtt′(x, x

′) are −∞ because finding x such that
F (x |g) > −∞ is equivalent to (NP-complete) CSP. To alleviate this, one could consider other
ways of assessing suboptimality, as counting objects with wrong labels.

A Linear Programming Duality

This section summarizes what we need from linear programming duality.
Let A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Consider the pair of dual linear programs

〈c,x〉 → max 〈y,b〉 → min (25a)

Ax = b y ∈ Rm (25b)

x ≥ 0 y>A ≥ c> (25c)

We will call the left program primal and the right program dual.
We use the following well-known LP duality theorems. Weak duality says that any feasible

vectors x and y satisfy 〈c,x〉 ≤ 〈y,b〉. Strong duality says that feasible x and y are optimal if
and only if they satisfy 〈c,x〉 = 〈y,b〉. Complementary slackness says that feasible x and y are
optimal if and only if 〈y>A− c>,x〉 = 0. If one program is feasible then it is bounded if and only
if the other is feasible.

The set of primal optimal vectors is a convex polyhedron, denoted by X ⊆ Rn. It is known
[BT97] that X can be characterized as follows.

Theorem 11 Let A ∈ Rm×n, b ∈ Rm. The function f : Rn → R given by

f(c) = max{ 〈c,x〉 | x ∈ Rn, Ax = b, x ≥ 0 } (26)

is convex, and 〈c,x〉 = f(c) if and only if x is a subgradient of f at c.

Recall that x ∈ Rn is a subgradient of a convex function f : Rn → R at point c if

f(d) ≥ f(c) + 〈d− c,x〉 (27)

for every d ∈ Rn. Subgradient is a generalization of gradient for convex non-differentiable functions;
if f is differentiable at c subgradient reduces to gradient, x = ∇f(c). The set of all subgradients
at c is the subdifferential ∂f(c). The theorem says that X = ∂f(c), where f is the optimal value
of the linear program (25) as a function of c.

Choosing d = c + εei, where 0 6= ε ∈ R and ei is the i-th vector of the standard basis of Rn,
yields for any x ∈ X

xi = 〈ei,x〉 ≤
f(c + εei)− f(c)

ε
. (28)

Choosing ε first positive and then negative restricts xi to lie in an interval,

x−i ≤ xi ≤ x+
i . (29)

The smallest interval is obtained by taking the limits for ε → 0+ and ε → 0−. Then x−i (x+
i ) is

the partial derivative of f(c) along ci from the left (right). In this case, the interval [x−i , x
+
i ] can

be shown to be the projection of X onto ei,

x−i = min
x∈X

xi, x+
i = max

x∈X
xi, (30)
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the smallest bounding box of X thus being [x−1 , x
+
1 ]× · · · × [x−n , x

+
n ].

In fact, this is a generalization of the shadow price interpretation of variables x in the LP dual
pair (25), well-known in LP duality. This interpretation is usually stated for cases when the primal
solution set X has a single element, i.e., x−i = x+

i for all i. In our case, X can have more elements,
which yields an interval [x−i , x

+
i ] rather than a unique value.

B Posets, Lattices and Supermodularity

This section overviews what we need from partially ordered sets and lattice theory. For more,
see [Top78,Top98] and some textbook, e.g. [DP90].

A binary relation ≤ on a set A 6= ∅ is a partial order if it is reflexive, antisymmetric and
transitive. The pair (A,≤) is a partially ordered set (poset). For a, b ∈ A, it can be either
a ≤ b, or a ≥ b, or a and b can be incomparable. If every two elements are comparable, (A,≤) is
totally (or linearly) ordered and also called a chain.

The (Cartesian, direct) product of posets (A,≤A) × (B,≤B) is the poset (A × B,≤) where
the new order ≤ is given componentwise, (a, b) ≤ (a′, b′) if and only if a ≤A a′ and b ≤B b′. The
power of a poset is (A,≤)n =

∏n
i=1(A,≤) = (An,≤), where (a1, . . . , an) ≤ (b1, . . . , bn) if and only

if ai ≤ bi for all i, the new order being denoted by the same symbol ≤.
The meet

∧
B (join

∨
B) of a set B ⊆ A is the greatest lower (least upper) bound of B with

respect to ≤. For a two-element B we use the infix notation,
∧{a, b} = a ∧ b.

A poset (A,≤) is a lattice if the (unique) meets and joins of all pairs of elements from A exist.
If only the meets (joins) exist, it is a meet (join) semilattice. A lattice (A,≤) is complete if the
meets and joins of all subsets of A exist. Every finite lattice is complete. The least (greatest)
element of a complete lattice (A,≤) is

∧
A (
∨
A). A lattice (A,≤) is distributive if a, b, c ∈ A

satisfy a∧ (b∨ c) = (a∧ b)∨ (a∧ c), which can be shown equivalent to a∨ (b∧ c) = (a∨ b)∧ (a∨ c).
A lattice (B,≤) is a sublattice of a lattice (A,≤) if B ⊆ A and the ordering of B is the restriction
of that of A.

A function f : A→ R on a lattice (A,≤) is submodular if all a, b ∈ A satisfy

f(a ∧ b) + f(a ∨ b) ≤ f(a) + f(b). (31)

It is strictly submodular if the inequality is strict for a 6= b. It is supermodular if −f is
submodular. It is modular if it is both sub- and supermodular. It is easy to see that a sum of
(sub-, super-) modular functions is also (sub-, super-) modular.

Example. The poset (2U ,⊆) with a non-empty set U is a complete lattice, with meet and join
being the set-theoretic intersection and union. If U is finite then the function f(X) = |X| defined
for any X ⊆ U is modular. This is the well-known formula |X ∪ Y | = |X| + |Y | − |X ∩ Y |. For a
convex g, the function f(X) = g(|X|) is supermodular.

A special case of a distributive lattice is a product of chains. Here, meet (join) is just compo-
nentwise minimum (maximum). A function f(x1, . . . , xn) of n variables xi ∈ A can be seen as a
function on the product (An,≤) of chains.

A multivariate function is separable if it is a sum of univariate functions. A function on a
product of chains is modular if and only if it is separable [Top78, theorem 3.3]. Since separability
does not refer to any order, it follows that a function modular for some order is modular for any
order.

Every univariate function is modular. A bivariate function f is submodular if and only if every
x ≤ y and x′ ≤ y′ satisfy

f(x, x′) + f(y, y′) ≤ f(x, y′) + f(y, x′). (32)

For finite A, submodularity of f(x1, . . . , xn) can be stated in terms of the mixed second differences,
∆xi∆xjf ≤ 0 for every i 6= j. (Super-) submodular functions on a product of two finite chains are
also called (inverse) Monge matrices (see e.g. [BKR96]).
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C The Parameterization of Zero Max-sum Problems

Theorem 12 (G,X,g) is a zero max-sum problem if and only if there are numbers ϕtt′(x) and ϕt
such that

gt(x) = ϕt +
∑
t′∈Nt

ϕtt′(x), t ∈ T, x ∈ X, (33a)

gtt′(x, x
′) = −ϕtt′(x)− ϕt′t(x′), {t, t′} ∈ E, x, x′ ∈ X, (33b)∑

t

ϕt = 0. (33c)

Proof. The if implication is straightforward, by substituting (33) to (5) and verifying that (5)
identically vanishes. We will prove the only if implication.

Since (G,X,g) is a zero problem, its quality function F (• |g) is separable. Since by theorem 9
also functions gtt′(•, •) are separable, (33b) follows. We can choose the univariate functions e.g. as
ϕtt′(x) = gtt′(x, y

∗) and ϕt′t(y) = gtt′(x
∗, y)− gtt′(x∗, y∗), where x∗, y∗ ∈ X are arbitrary constants.

Let x and y be two labelings that differ only in an object t where they satisfy xt = x and yt = y.
After substituting (5) and (33b) to the equality F (x |g) = F (y |g), all terms cancel out except

gt(x)−
∑
t′∈Nt

ϕtt′(x) = gt(y)−
∑
t′∈Nt

ϕtt′(y).

Since this holds for any x, y ∈ X, neither side depends on x. Denoting the right-hand side by ϕt
we obtain (33a). Substituting (33a) and (33b) to the equality F (• |g) = 0 yields (33c).

Theorem 13 Let G be connected. (G,X,g) is a zero max-sum problem if and only if there are
numbers ϕtt′(x) such that

gt(x) =
∑
t′∈Nt

ϕtt′(x), t ∈ T, x ∈ X, (34a)

gtt′(x, x
′) = −ϕtt′(x)− ϕt′t(x′), {t, t′} ∈ E, x, x′ ∈ X. (34b)

Proof. As before, the if part is easy by substitution. We will prove the only if part.
By theorem 12, there are ϕtt′(x) and ϕt such that (33) holds. We will give an algorithm that

does an equivalent transformation after which ϕt = 0 for all t.
Let G′ be a spanning tree of G. It exists because G is connected. Find a pair {t, t′} in G′ such

that t is a leaf. Do the following equivalent transformation of the problem (G,X,g):

ϕtt′(x) += ϕt, x ∈ X,
ϕt′t(x

′) −= ϕt, x′ ∈ X,
ϕt′ += ϕt,

ϕt := 0.

Remove the object t and the pair {t, t′} from G′. Repeat until G′ is empty.

The latter theorem says that if G is connected, the parameterization can be simplified from (33)
to (34). As a counter-example for a disconnected G, assume the family of problems (G,X,g) given
by T = {1, 2}, E = ∅, X = {1}, and g being arbitrary satisfying g1(1) = −g2(1). All these are zero
problems but cannot be parameterized by (34).

D Hydraulic Models

Schlesinger and Kovalevsky [SK78] suggested electrical and mechanical models of the LP pair (16),
using a suitable form of (10). This section presents an example. Some readers may welcome such
models as useful heuristics. We do not use them in any formal argument.
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Figure 20: A hydraulic model of the linear program (25) for m = 3, n = 4 and b ≥ 0.

D.1 Linear Programming in General Form

Before presenting a model of the relaxed max-sum problem, to introduce the used components we
will show a model of the general linear program (25) in which, without loss of generality, b ≥ 0.
This model is a hydraulic modification of the electrical model in [SH02, chapter 2].

The analog computer in figure 20 consists of n = 4 tanks filled with incompressible liquid, each
closed with m = 3 horizontal and one vertical pistons. The area of the vertical piston in column i
and row j is |aij |; the pistons with aij > 0 aim upward and with aij < 0 downward. The horizontal
pistons have unit area. The vertical pistons in the column i are rigidly linked by a solid rod, on
the top of which a weight resides imposing force bi downward. The distance of the lower tips of
the i-th rod from a horizontal reference level is yi. The distance of the tip of the j-th horizontal
piston’s rod from the vertical wall on the right is wj where w = A>y − c. Constraints w ≥ 0 are
kinematic constraints, saying that the horizontal rods cannot penetrate the wall. The pressure in
tank j, which equals the contact force acting between the j-th horizontal rod and the wall, is xj .

The solution of (25) corresponds to the minimal potential energy of the device.

D.2 Transportation Problem

Consider the following problem defined on a single pair {t, t′} ∈ E: given numbers αt(x) and αt′(x)
satisfying

∑
x αt(x) =

∑
x αt′(x) = 1, find numbers αtt′(x, x

′) maximizing the quality of the pair.
This task is known as the transportation problem4. The transportation problem for the pair {t, t′}
means to compute primal variables αtt′(x, x

′) and dual variables ϕtt′(x) and ϕt′t(x) in the LP dual
pair∑
x,x′

gtt′(x, x
′)αtt′(x, x

′)→ max
∑
x

[
ϕtt′(x)αt(x) + αt′(x)ϕt′t(x)

]
→ min (35a)

∑
x′

αtt′(x, x
′) = αt(x) ϕtt′(x) ∈ R, x ∈ X (35b)

αtt′(x, x
′) ≥ 0 ϕtt′(x) + ϕt′t(x

′) ≥ gtt′(x, x
′), x, x′ ∈ X (35c)

4The relation of max-sum problem and transportation problem was noted by Boris Flach.
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For X = {1, 2, 3}, a model of this program is the mechanical device in figure 21a. It consists of
six forks, three on the left and three on the right. The left (right) springs are pushed to the center
by constant external forces αt(x) (αt′(x)).

The forks can move horizontally, their distances from a reference vertical line being ϕtt′(x) and
ϕt′t(x). The gap between the tip of the x-th left fork and the tip of the x′-th right fork at the
same vertical level is gtt′(x, x

′)−ϕtt′(x)−ϕt′t(x′). The two tips push each other with contact force
αtt′(x, x

′). Under the forces imposed by the springs, the forks move toward each other until some
left tips meet some right tips, resulting in a global force equilibrium.

Primal constraints (35b) describe force equilibrium for each fork. The primal constraints (35c)
say that the fork tips can only push to each other, never pull. The corresponding dual con-
straints (35c) say that the tips at the same level cannot penetrate each other.

Note, there is an ambiguity in determining ϕtt′(x) and ϕt′t(x), since all forks can simultaneously
move horizontally without affecting the optimum. This can be fixed e.g. by setting ϕtt′(1) = 0.

D.3 Relaxed Max-sum Problem

The hydraulic model of the relaxed max-sum problem is obtained by coupling transportation prob-
lems as follows. We keep all utt′ = 0, i.e., we use (11a).

The dual constraint (16e) for the node (t, x) is modeled using a tank (its top view is in figure 21b)
filled with liquid, closed with |Nt| horizontal and one vertical pistons of unit area. The position
of the horizontal piston leading to object t′ ∈ Nt is ϕtt′(x). The height of the vertical piston is∑

t′∈Nt
ϕtt′(x) + gt(x), where gt(x) is the length of the vertical rod attached to the piston. The

pressure in tank (t, x) is αt(x).

A horizontal bar at height ut is placed over the |X| vertical pistons belonging to object t,
preventing any piston go higher than ut (side view in figure 21c). Each of the |T | bars have weight
1, i.e., imposes force 1 aiming downward.

Each horizontal piston is connected to a fork from figure 21a; a single piston and fork correspond
to an edge pencil (t, t′, x). The whole device for the 3× 3 grid graph G and |X| = 3 labels is shown
in figure 21d. Its potential energy is U(gϕ) and the optimum corresponds to its minimum.

It is not difficult to design similar models for other forms of the height minimization (10). E.g.
for (11d), rather than the individual weights on each object we place a single horizontal surface of
the weight |T | over the whole device.

Remark. It is interesting to see what non-minimality of problem height in figure 6c means in
terms of the hydraulic model. Since all the tanks are interconnected via pencils containing only a
single maximal edge, which are all pencils except (d, c, 1), they can be replaced by a single tank
and the model can be simplified to the device shown in figure 22. The tank of this device is closed
by four pistons: one vertical, on which the weight resides, and three horizontal, corresponding to
nodes (c, 2), (c, 1), and (d, 1). The horizontal pistons are rigidly linked by fork (d, c, 1). When the
vertical piston is pressed down by the weight, the fork moves freely to the right.

E Implementation of the Augmenting DAG Algorithm

Here we give a detailed implementation of the augmenting DAG algorithm concisely described
in section 8, done by the author of this text. The C++ implementation of the following code is
available from http://cmp.felk.cvut.cz/cmp/software/maxsum.

Unike above, we allow objects to have different numbers of labels; the label set of object t is Xt.
Further, the edges with quality −∞ are not treated like the other edges, instead, they are never
visited at all. We denote by

Xtt′(x) = {x′ | gtt′(x, x′) > −∞}

the set of finite edges in the pencil (t, t′, x).
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(a) (b) (c)

(c)

Figure 21: (a) The mechanical model of the transportation problem for |X| = 3 sources and
destinations. (b) Top view of the tank (t, x). (c) Side view of the object t. (d) Top view of the
hydraulic model of the relaxed max-sum problem, for 3× 4 grid graph G and |X| = 3.

node (c, 2)

node (c, 1)

node (d, 1)

Figure 22: The ‘reduced’ hydraulic model of the max-sum problem in figure 6c.
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Rather than floats, we use large integers to represent real-valued variables. This allows for
treating rounding errors in a consistent manner.

To test for maximality of nodes and edges, thresholds εt, εtt′ ≥ 0 are assigned to them. The
node (t, x) or the edge {(t, x), (t′, x′)} is maximal if and only if respectively

max
x

gϕt (x)− gϕt (x) ≤ εt,
−gϕtt′(x, x′) ≤ εtt′ .

The edge is feasible if and only if gϕtt′(x, x
′) ≤ 0. Initially, all εt and εtt′ have a common value.

Here is the pseudocode of the Augmenting DAG algorithm:

init;
while Q 6= ∅ do

relax;
while nt∗ = 0 do

direction;
step;
if λ > 0 then

repair;
else

threshold;
end if
update;
resurrect;

end while
end while

The called procedures will be specified in the following sections. In the code, all variables are
global. The following notation will stand for ‘loop for elements a ∈ A satisfying property ψ(a)’:

for a ∈ A | ψ(a) do . . . end for

On entering the algorithm, T , Nt, Xt, Xtt′(x), gt(x), gtt′(x, x
′), ε0, ϕtt′(x) are given, and all

edges are feasible. After the algorithm halts, the live nodes and edges form an arc consistent set.

E.1 Initialization

First, auxiliary variables are initialized. We leave their meaning to be explained later.

procedure init
εt := ε0; εtt′ := ε0; ∆ϕtt′(x) := 0; dt(x) := 0; nt := 0; Q := ∅;
for t ∈ T do
ut := maxx∈Xt g

ϕ
t (x);

for x ∈ Xt do
if ut − gϕt (x) ≤ εt then
pt(x) := ALIVE; nt++;
enqueue(Q, (t, x));

else
pt(x) := NONMAX;

end if
end for

end for
end procedure

E.2 Arc Consistency Algorithm

This procedure repeats the arc consistency iterations until either an object t∗ is found with no node
alive, or no more nodes can be deleted.
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A set Q ⊆ T ×X stores nodes to be tested for their possible deletion. More precisely, between
the 2nd and the 3rd line of the procedure the nodes in Q satisfy

(t, x) ∈ Q ⇒ pt(x) = ALIVE,

(t, x) 6∈ Q, pt(x) = ALIVE ⇒ (∀t′ ∈ Nt)[ (22) is satisfied ].

The access strategy to Q significantly affects the behavior of the algorithm. We chose to
represent it by the queue. The operations ‘enqueue’ and ‘dequeue’ respectively add or take out an
element. We will also need to test whether (t, x) ∈ Q, which is implemented using an auxiliary
logical variable assigned to each node.

The variables nt = |{x | pt(x) = ALIVE }| keep the number of live nodes in each object.

procedure relax
while Q 6= ∅ do

(t, x) := dequeue(Q);
for t′ ∈ Nt do

if ¬[∃x′ ∈ Xtt′(x)][ (−gϕtt′(x, x′) ≤ εtt′) ∧ (pt′(x
′) = ALIVE) ] then

pt(x) := t′;
nt−−;
for t′ ∈ Nt do

for x′ ∈ Xtt′(x) | (−gϕtt′(x, x′) ≤ εtt′) ∧ (pt′(x
′) = ALIVE) ∧ ((t′, x′) 6∈ Q) do

enqueue(Q, (t′, x′));
end for

end for
if nt = 0 then
t∗ := t; return

end if
break

end if
end for

end while
end procedure

E.3 Finding Search Direction

Having an object t∗ with no node alive, the procedure computes the search direction ∆ϕ by
traversing the augmenting DAG D(t∗) in a linear order.

To traverse a DAG in a linear order, we use the obvious algorithm which repeats the following
two steps: (i) visit a node to which no edge leads; (ii) remove this node and all edges leaving it.
This is done until the empty graph is obtained.

The first part of the procedure stores the indegree of each node (t, x) of D(t∗) to dt(x). We
need an auxiliary node stack, S, accessed by the operations ‘push’ and ‘pop’.

procedure direction
S := { (t∗, x) | x ∈ Xt∗ };
while S 6= ∅ do

(t, x) := pop(S);
if pt(x) 6= NONMAX then
t′ := pt(x);
for x′ ∈ Xtt′(x) | −gϕtt′(x, x′) ≤ εtt′ do

if dt′(x
′) = 0 then push(S, (t′, x′)); end if

dt′(x
′)++;

end for
end if

end while
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The second part of the procedure traverses D(t∗) in a linear order. During that, ∆ϕtt′(x) are
computed by propagating conditions (23), the variables dt(x) are reset to zero, and the node stack
S0 is filled with the nodes of D(t∗) in the linear order. Stack S stores the nodes with dt(x) = 0.

S := { (t∗, x) | x ∈ Xt∗ , dt∗(x) = 0 }; S0 := ∅;
for x ∈ Xt∗ | pt∗(x) 6= NONMAX do ∆ϕt∗pt∗ (x)(x) := −1; end for
while S 6= ∅ do

(t, x) := pop(S);
push(S0, (t, x));
if pt(x) 6= NONMAX then
t′ := pt(x);
∆ϕtt′(x) −=

∑
t′′∈Nt\{t′}∆ϕtt′′(x);

for x′ ∈ Xtt′(x) | −gϕtt′(x, x′) ≤ εtt′ do
dt′(x

′)−−;
if dt′(x

′) = 0 then push(S, (t′, x′)); end if
∆ϕt′t(x

′) := max{∆ϕt′t(x
′), −∆ϕtt′(x) };

end for
end if

end while
end procedure

E.4 Finding Search Step

The search step λ is computed, by traversing D(t∗) and updating λ to satisfy (24).

To fit λ to the used integer arithmetic, it is set to the nearest smaller integer bλc when com-
puting (24). However, we have to recover from a possible underflow or overflow. In particular, it
can happen that ut∗ cannot be decreased for one of the following reasons:

• λ = 0 because some of expressions (24) is smaller than 1.

• The numbers ∆ϕtt′(x), while computed in the procedure ‘direction’, overflow5. This might
make condition (23c) violated and draw ∆ϕ unusable.

In both cases, we give up on decreasing the height. Instead, we make at least one node of t∗ alive
by increasing a single εt or εtt′ in D(t∗) by the smallest possible amount.

The following procedure computes λ and the minimal threshold ε. Returning λ = 0 indicates
that ut∗ cannot be decreased due to one of the above two reasons. Then a node (tε, xε) is returned
determining the object or the object pair on which the threshold is to be increased as follows: if
(tε, xε) is maximal then εtεptε (xε) is to be increased to ε; if (tε, xε) is non-maximal then εtε is to be
increased to ε. If λ > 0 is returned, ε and (tε, xε) are not used.

procedure step
λ := +∞; ε := +∞;
for (t, x) ∈ S0 do

if pt(x) 6= NONMAX then
t′ := pt(x);
for x′ ∈ Xt | ∆ϕtt′(x) + ∆ϕt′t(x

′) < 0 do
λ := min{λ, bgϕtt′(x, x′)/(∆ϕtt′(x) + ∆ϕt′t(x

′))c };
if −gϕtt′(x, x′) > εtt′ then

if −gϕtt′(x, x′) < ε then
ε := −gϕtt′(x, x′); tε := t; xε := x;

end if
else
λ := 0;

5Occasionally, some numbers ∆ϕtt′(x) can be very large, in theory even exponential in the depth of D(t∗).
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end if
end for

else
q := δt=t∗ +

∑
t′∈Nt

∆ϕtt′(x);
if q > 0 then
λ := min{λ, b(ut − gϕt (x))/qc };
if ut − gϕt (x) < ε then
ε := ut − gϕt (x); tε := t; xε := x;

end if
end if

end if
end for
end procedure

E.5 Updating the DAG

After the equivalent transformation ϕ += λ∆ϕ, some non-maximal nodes and edges will become
maximal and some maximal edges non-maximal. For each of these cases, variables pt(x), Q and nt
have to be updated as follows:

• If a maximal edge {(t, x), (t′, x′)} becomes non-maximal: Without loss of generality we assume
that (t′, x′) is a node of D(t∗) (note that pt′(x

′) 6∈ {ALIVE, t}). If the node (t, x) is alive, add
it to Q.

• If a non-maximal edge {(t, x), (t′, x′)} becomes maximal: Without loss of generality we assume
that (t, x) is a node of D(t∗), and pt(x) = t′. If ut′ − gϕt′ (x′) ≤ εt′ , resurrect the nodes from
which there is a directed path to (t, x) and add them to Q.

• If a non-maximal node (t, x) becomes maximal: Resurrect the nodes in D from which there
is a directed path to (t, x) and add them to Q.

The end nodes of the paths to be resurrected are pushed to the node stack S.

procedure repair
S := ∅;
for (t, x) ∈ S0 do

if pt(x) = NONMAX then
t′ := pt(x);
for x′ ∈ Xtt′(x) do

if −gϕtt′(x, x′) ≤ εtt′ then
for x′′ ∈ Xt′t(x

′) do

if [−gϕtt′(x′′, x′) > εtt′ ≤ gϕ+λ∆ϕ
tt′ (x′′, x′)] ∧ [pt(x

′′) = ALIVE] ∧ [(t, x′′) 6∈ Q] then
enqueue(Q, (t, x′′));

end if
end for

else if [−gϕ+λ∆ϕ
tt′ (x, x′) ≤ εtt′ ] ∧ [ut′ − gϕ+λ∆ϕ

t′ (x′)− λδt′=t∗ ≤ εt′ ] then
push(S, (t, x));

end if
end for

else if ut − gϕ+λ∆ϕ
t (x)− λδt=t∗ ≤ εt then

push(S, (t, x));
end if

end for
end procedure

If the height of t∗ cannot be decreased due to an underflow or overflow, the status of some
nodes and edges changes due to increasing thresholds εt or εtt′ . The following procedure increases
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the appropriate threshold and makes the update after non-maximal nodes in object tε or edges in
object pair (tε, ptε(xε)) possibly become maximal.

procedure threshold
t := tε; x := xε;
S := ∅;
if pt(x) 6= NONMAX then
t′ := pt(x);
for x ∈ Xt do

for x′ ∈ Xtt′(x) | εtt′ < −gϕtt′(x, x′) ≤ ε do
if [pt(x) = t′] ∧ [pt′(x

′) 6= NONMAX] then push(S, (t, x)); end if
if [pt′(x

′) = t] ∧ [pt(x) 6= NONMAX] then push(S, (t′, x′)); end if
end for

end for
εtt′ := ε;

else
for x ∈ Xt | [pt(x) = NONMAX] ∧ [εt < ut − gϕt (x) ≤ ε] do

push(S, (t, x));
end for
εt := ε;

end if
end procedure

Finally, the nodes in S and their predecessors inD are resurrected.

procedure resurrect
while S 6= ∅ do

(t, x) := pop(S);
if pt(x) 6= ALIVE then
pt(x) := ALIVE; nt++;
if (t, x) 6∈ Q then enqueue(Q, (t, x)); end if
for t′ ∈ Nt do

for x′ ∈ Xtt′(x) | [−gϕtt′(x, x′) ≤ εtt′ ] ∧ [pt′(x
′) = t] do

push(S, (t′, x′));
end for

end for
end if

end while
end procedure

E.6 Equivalent Transformation

The following procedure sets ϕ += λ∆ϕ and ∆ϕ := 0, and updates ut∗ .

procedure update
for (t, x) ∈ S0 | pt(x) 6= NONMAX do
t′ := pt(x);
ϕtt′(x) += λ∆ϕtt′(x);
∆ϕtt′(x) := 0;
for x′ ∈ Xtt′(x) | −gϕtt′(x, x′) ≤ εtt′ do
ϕt′t(x

′) += λ∆ϕt′t(x
′);

∆ϕt′t(x
′) := 0;

end for
end for
ut∗ := maxx∈Xt∗ g

ϕ
t∗(x);

end procedure
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[GLS81] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and
its consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.
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