
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

TOWARDS AUTOMATED DESIGN

OF COMPLEX MODULAR SYSTEMS

INSPIRED BY NATURE

Doctoral Thesis

Jaroslav Vítků

Prague, September 2014

Ph.D. Programme: Electrical Engineering and Informatics

Branch of Study: Artificial Intelligence and Biocybernetics

Supervisor: Doc. Ing. Pavel Nahodil CSc.

Supervisor-Specialist: Doc. Ing. Zuzana Komínková Oplatková Ph.D.

1

2

Acknowledgement

I would like to thank to Doc. Ing. Pavel Nahodil CSc. for his leadership and help during

my Diploma and PhD studies. I do not think that there are many supervisors willing

to respond to student’s emails even during weekends or after midnight, if necessary. I

noticed that I’ve heard the sentence "Oh, so your supervisor is really good" from various

people multiple times during my PhD study. And I know that they were right. Also, I

would like to thank to my supervisor-specialist Doc. Ing. Zuzana Komínková Oplatková

Ph.D. for her valuable suggestions how to make this thesis better.

Last, but not least, I want to thank to my mom and my wife for their support and

patience during my study.

3

4

Abstrakt

Výzkum v těchto dnech se skládá z malých, izolovaných a často vysoce specializovaných

oblastech. Jeden z hlavních cílů této práce je vytvoření platformy, která usnadní kombi-

nování výsledků výzkumu ostatních laboratoří, jejichž výsledky mohou být prezentovány

ve formě software. Toto je docíleno umožněním kombinace různých částí software dohro-

mady do většího systému.

Autor navrhuje framework inspirovaný v modulárními neuronovými sítěmi. Tento frame-

work reprezentuje různé subsystémy (kusy kódu) v jednotným způsobem. Spolu s jednot-

ným komunikačním protokolem mezi těmito subsystémy (nazvanými Neurální Moduly),

je umožněno libovolné kombinace těchto Modulů do větších systémů. Vnitřní komplexita

každého Modulu se může pohybovat od jednoduchých matematických operací směrem ke

složitým algoritmům z oblasti umělé inteligence.

Autor také představuje simulátor schopný simulace univerzálních modulárních systémů.

Spolu se simulátorem tento výsledný framework umožňuje uživateli navrhovat a testovat

různé komplexní modulární systémy/architektury. Důraz je zde kladen na využití tohoto

frameworku pro navrhování architektur agentů v oblasti Alife.

Představený framework dále pak umožňuje použití optimalizačních algoritmů pro auto-

matické navrhování nových architektur. Evoluční Algoritmus je zde použit pro změny vah

mezi jednotlivými Neurálními Moduly tak, aby optimalizoval zadané kritérium v zadané

úloze. Optimalizační algoritmus tak de-facto navrhuje nové architektury autonomních

agentů speciálně pro zadaný úkol.

Přínosy tohoto navrhovaného přístupu jsou především následující. Poskytnutí platformy

pro jednoduché opětovné použití stávajících algoritmů v nových systémech. Výsledné

hybridní architektury kombinují tzv. přístup návrhu zdola nahoru (neuronové sítě) s

opačným přístupem: shora-dolu, který je reprezentován samotnými Moduly.

5

Abstract

Research in these days is composed of small, isolated and often highly specialized sub-

fields. One of main goals of the thesis is to contribute to simplification of reusing of

outcomes of research of others. This is done by enabling the combination of various

pieces of software together into a bigger system.

The thesis proposes a framework inspired in modular artificial neural networks. The

framework represents various sub-systems (pieces of code) in an unified way. Together

with unified communication protocol between these subsystems (called Neural Modules),

the framework enables arbitrary combinations of these Modules into bigger, modular sys-

tems. A complexity of each Module can range from the simplest mathematical operation

towards the complicated artificial intelligence algorithms.

Here, the simulator capable of general-purpose modular systems is proposed. Together

with the simulator, the resulting framework enables user to design and test (by means

of rapid prototyping) complex modular systems/architectures. Here, the focus is put on

use of this framework for designing agent architectures in the domain of ALife.

Furthermore, the unified representation of Neural Modules in the framework enables to

employ optimization algorithms for automatic designing of new architectures. Given a

task and set of Neural Modules, the Evolutionary Algorithm is used to optimize connec-

tion weights in the network to de-facto design new architecture. The resulting architecture

is then designed specially for the task.

The benefits of the proposed approach are mainly: Heading towards the simple reuse

of current algorithms. Combining current specialized research in more complex archi-

tectures. Resulting hybrid architectures combine bottom-up design of ANNs and more

classical top-down AI design. Neuro-evolutionary algorithm can be used to design entirely

new hybrid architectures which fit specially for a given task.

6

Contents

List of Abbreviations 13

List Of Symbols 17

List of Figures 19

List of Tables 23

List of Algorithms 25

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.2.1 Brief Description of the Approach 3

1.3 Thesis Outline . 4

1.4 Structure of the Text . 4

2 State of the Art 7

2.1 Artificial Neural Networks . 8

2.1.1 Classification of Artificial Neural Networks 8

2.1.1.1 Common Topologies of Artificial Neural Networks 9

2.1.1.2 Classification of Neuron Models 10

2.1.1.3 General Methods of Artificial Neural Network Design . . 12

2.2 The Role of Modularity . 13

2.2.1 Modular Neural Networks . 13

2.2.1.1 Communication in Modular Hybrid Systems 16

2.2.2 Hierarchical Problem Decomposition 17

2.3 Evolutionary Algorithms . 19

7

2.3.1 Memetic Evolution Algorithms 19

2.3.2 Neuro-Evolution . 22

2.3.3 Memetic Neuro-Evolution . 23

2.3.4 Modular Neuro-Evolution . 23

2.4 Selected Agent Architectures . 24

2.4.1 Selected Modular Architectures 26

2.4.2 Cognitive Architectures . 27

2.5 Selected Design Methods of Modular Systems 31

2.5.1 Selected Ensemble-Like and Related Approaches 35

2.5.1.1 Group of Adaptive Models Evolution 35

2.5.1.2 Cartesian Genetic Programming 36

2.5.2 Ensemble Methods for Agent Architecture Design 37

2.6 Selected Modules for Ensemble-Based Systems 38

2.6.1 Modules for Temporal Sequence Learning 39

2.6.1.1 Time Delay Neural Networks 40

2.6.1.2 Short-Term Memory . 40

2.6.1.3 Long-Term Memory . 41

2.6.1.4 Categorization and Learning Module 42

2.6.1.5 Long Short-Term memory 43

2.6.2 Signal Generators . 43

2.6.2.1 Echo State Network . 44

2.6.2.2 Central Pattern Generator 45

3 Problem Analysis and Proposed Solution 49

3.1 Problem Analysis . 50

3.1.1 Different Types of Communication 50

3.1.2 Theoretical Issues with Automatic Design of Modular Systems . . 51

3.1.3 Reusability of Sub-systems and Domain Dependency 52

3.1.4 Implementation and Practical Issues 52

3.2 Task Description . 53

3.3 Proposed Solution . 55

3.3.1 Unified Type of Communication Between Sub-systems 55

3.3.1.1 Reusability of Sub-systems and Domain Dependency . . 57

3.3.2 Design of Modular Architectures in the Framework 58

3.3.2.1 Weighting Between the Top-Down and Bottom-Up Design 58

8

3.3.2.2 Evaluating the Suitability of Sub-Systems in the Network 59

3.3.3 Automatic Design of Architectures Specific for the Task 60

3.3.3.1 Dimensionality Reduction? 61

3.3.3.2 Constraining the Set of Available Modules 62

3.3.3.3 Constraining the Space of Available Topologies 62

3.3.3.4 Predefined Classes of Neural Modules 64

3.3.3.5 On Constraining the Dimensionality of Inputs/Outputs . 65

3.3.3.6 Defining the Agent’s Goals 67

3.3.3.7 Overall Principle of Automatic Design of Architectures . 68

3.4 Simulator Design . 69

3.4.1 Simulation Engine . 71

3.4.2 Library - Implementing and Sharing Pieces of Code 71

3.4.2.1 Modular and Reusable Design - Robotic Operating System 72

3.4.3 Simulator Engine with the ROS Integration 74

3.4.3.1 Autonomous Design of new Architectures in NengoROS 75

3.4.3.2 Documentation and Other Resources 76

3.4.4 Example of Hybrid System Simulated in the NengoROS 76

4 Theoretical Foundation and Design of Modules 79

4.1 Neuron Models . 79

4.2 Logic Gates . 80

4.2.1 Theoretical Foundation . 80

4.2.2 Crisp Logic Gates . 82

4.2.3 Fuzzy Logic Gates . 83

4.3 Inner Sources of Agent’s Motivation . 84

4.3.1 Theoretical Foundation . 85

4.3.2 Physiological Neural Module . 86

4.3.2.1 Prosperity of the Physiological Neural Module 88

4.3.3 Suggested Use of Physiological Neural Modules 88

4.4 Reinforcement Learning . 90

4.4.1 Theoretical Foundation . 90

4.4.1.1 Learning . 91

4.4.1.2 Action Selection Methods 93

4.4.2 State of the Art - Reinforcement Learning-Related 95

4.4.3 Stochastic Return Predictor Module 97

9

4.4.4 Reinforcement Learning Module 101

4.4.5 Action Selection Mechanism Module 102

4.4.6 Suggested Use of RL Modules . 103

4.4.6.1 Stochastic Predictor Module 103

4.4.6.2 Reinforcement Learning Module with Separated ASM . . 104

4.5 Planning . 105

4.5.1 Theoretical Foundation . 105

4.5.1.1 Stanford Research Institute Problem Solver 105

4.5.2 Design of the Planning Neural Module 106

4.6 Sequence and Pattern Recognition . 108

4.6.1 Spatial Pattern Recognition . 108

4.6.1.1 Design of the Self-Organizing Map Neural Module 109

4.6.2 Temporal Pattern Recognition . 111

4.7 Neural Modules for Simulating Agent’s Environment 112

4.7.1 Discrete Grid-World Simulator . 112

4.7.2 Simulator with Realistic Physics - ViVAE 114

5 Experiments 117

5.1 Hand-Designed Architectures - Testing Neural Modules 117

5.1.1 Hand-Designed Agent Controllers - Navigation Task 118

5.1.1.1 Controller Design . 118

5.1.1.2 Neural Modules . 119

5.1.1.3 Resulting Architecture 120

5.1.1.4 Behavior of Resulting Architecture 121

5.1.2 Q-Learning Based Agent Architecture 122

5.1.2.1 Architecture Design . 122

5.1.2.2 Testing the Learning . 124

5.1.2.3 Influence of Physiology Decay on Agent’s Behavior . . . 125

5.2 Evolutionary-Based Design of Architectures 127

5.2.1 Evolutionary Algorithms Used . 128

5.2.2 EA-Designed Agent Controllers - Navigation Task 129

5.2.2.1 Architecture Design . 129

5.2.2.2 Resulting Automatically Designed Architectures 131

5.2.3 Artificial Neural Network of 3rd gen. vs. Hybrid Network 132

5.2.3.1 Task Description . 133

10

5.2.3.2 Optimization of ANN-Based Model 134

5.2.3.3 Optimization of Hybrid Model 137

5.2.4 EA-designed Agents with Motivation-Driven RL 139

5.2.4.1 Architecture Design . 139

5.2.4.2 Defining the Agent’s Goals 140

5.2.4.3 Composed-Objective Fitness 141

5.2.4.4 Single-Objective Fitness 143

6 Conclusion 149

6.1 Fulfillment of Thesis Goals . 150

6.2 Main Findings of the Thesis . 151

6.3 Known Limitations of the Research . 152

6.4 Future Directions and Practical Use . 152

Bibliography 153

Author’s Publications Related to the Thesis 169

Other Author’s Publications . 170

Citations of Author’s Publications . 170

A Additional Knowledge on Spiking Neural Networks I

A.1 Selected Models of Spiking Neuron . I

A.1.1 Leaky Integrate-and-fire Model of Neuron I

A.1.2 Izhikevich’s Simple Model of Neuron III

A.2 Neural Engineering Framework . IV

A.2.0.1 Neural Encoding Process V

A.2.0.2 Neural Decoding Process VIII

A.3 Comparison of current ANN simulators X

11

12

List of Abbreviations

FDR Fixed-sparsity Distributed Representations

HTM Hierarchical Temporal Memory

CLA Cortical Learning Algorithm

HTN Hierarchical Task Network

EA Evolutionary Algorithm

GA Genetic Algorithm

RGA Real-Valued Genetic Algorithm

GP Generic Programming

CGP Cartesian Generic Programming

NEAT Neuro-evolution of Augmented Topologies

HyperNEATHypercube Neuro-evolution of Augmented Topologies

GEP Gene Expression Programming

RL Reinforcement Learning

HRL Hierarchical Reinforcement Learning

SRp Stochastic Return Predictor

ANN Artificial Neural Network

DS Decision Space

HARM Hierarchy, Abstraction, Reinforcements, Motivations Agent Architecture

STRIPS Stanford Research Institute Problem Solver

MDP Markov Decision Process

SMDP Semi-Markov Decision Process

MAS Multi-Agent System

MA Memetic Algorithm

BDI Belief-Desire-Intention autonomous agent architecture

AI Artificial Intelligence

RL-TOPs Reinforcement-Learning Teleo-Operators

13

TR Teleo-Reactive planning system

TOP Teleo-Operator

TD Temporal Difference learning method

GPU Graphical Processing Unit

GPGPU General Purpose Graphical Processing Unit

CUDA Compute Unified Device Architecture

CPU Central Processing Unit

API Application Programming Interface

MPI Message Passing Interface

IDL Interface Definition Language

ROS Robotic Operating System

SLAM Simultaneous Localization and Mapping

CPPN Cartesian Pattern Producing Network

CNS Central Nervous System

LFP Local Field Potential

FPGA Field-Programmable Gate Array

GMDH Group Method of Data Handling

MIA Multi-layer Iterative Algorithm

FAKE Fully Automated Knowledge Extraction

GAME Group of Adaptive Models Evolution

KNN K-Nearest Neighbor Algorithm

HOAP Humanoid for Open Architecture Platform

MCS Multiple Classifier System

TDNN Time Delay Neural Network

LTM Long-Term Memory

STM Short-Term Memory

DBN Deep Belief Network

NEF Neural Engineering Framework

SPAUN Semantic Pointer Architecture Unified Network

SARSA State-Action-Reward-State-Action RL algorithm

PNM Physiological Neural Module

PDDL Planning Domain Definition Language

SOM Self-Organizing Map

PCA Principal Component Analysis

HMM Hidden Markov Models

14

HNN Hybrid Neural Network

CF Composed Fitness

SOGA Simple-Objective Genetic Algorithm

COGA Composed-Objective Genetic Algorithm

CORGA Composed-Objective Real-Valued Genetic Algorithm

MOEA Multi-Objective Evolutionary Algorithm

SORGA Simple-Objective Real-Valued Genetic Algorithm

HANNS Hybrid Artificial Neural Network Systems

GUI Graphical User Interface

S2F Spike-to-Float

F2S Float-to-Spike

BMU Best Matching Unit

15

16

List of Symbols

t Time

v Membrane potential of neuron

u Recovery variable for Izhikevich simple model of neuron

I Current

IR Current on resistor

IC Current on capacitor

C Capacity

R Resistance

τ Time constant

t(f) Spike - event characterized by a firing time of a neuron

∆abs Refactory time of Leaky Integrate-and-Fire model of neuron

φi Output weights of neurons in NEF

J(x) Transformation from input to soma currents in NEF

G(x) Transformation from soma currents to neural activity in NEF

αi(x) Input transformation in NEF

M(t) Amount of Motivation produced at the time step t

I(t) Amount of Importance produced at the time step t

P (t) Value of the Prosperity output at the time step t

V (t) Value of the Physiological Variable at the time step t

MSDt Value of the Mean State Distance to optimal conditions until the time

step t

Q Utility matrix

A Set of Actions

S Set of States

rt Reward received at time step t

γ Forgetting factor

17

λ Decay parameter

α Learning rate

δ Change in the Utility matrix per one step

ǫ Probability of randomization of the strategy

18

List of Figures

2.1 Jordan type of ANN for prediction of words in sentences. 14

2.2 Schematics of Unified Hybrid System . 14

2.3 Transformational Hybrid System . 16

2.4 Example of RL decision space decomposition 17

2.5 Example of Hierarchical Task Network Planning 18

2.6 Needle in the haystack and Baldwin effect 21

2.7 An example of simple encoding of ANN topology 22

2.8 Typology of software agents . 25

2.9 Typical processing of information in a robotic system 25

2.10 Layered Architecture . 26

2.11 Hybrid design for robotic navigation. 27

2.12 The scheme of connectionist cognitive architecture Leabra. 28

2.13 The scheme of ACTR cognitive architecture. 29

2.14 Schematics of the SPAUN architecture. 32

2.15 MIA-GMDH compared to GAME. 35

2.16 Meta-learning: network of supervised classification algorithms. 36

2.17 Example of CGP-designed logic circuit implementing one-bit adder. . . . 37

2.18 Description of the MALEVA framework. 38

2.19 Time Delay Neural Networks . 40

2.20 Dual neuron for Short-Term Memory . 41

2.21 Structure of model of Long-Term Memory 42

2.22 Categorizing and Learning Module . 43

2.23 Long Short-Term Memory . 44

2.24 The basic schema of an ESN. 45

2.25 Generator of sinusoidal signal. 46

2.26 Model of spinal cord for robotic salamander. 47

19

2.27 Central Pattern Generator-based control of walking. 48

3.1 Basic type of use of an agent architecture. 53

3.2 Principle of communication between Neural Modules. 56

3.3 Design of new architectures based on a particular task. 58

3.4 Comparison of top-down and bottom-up-designed hybrid systems. 59

3.5 Pre-selection of Neural Modules to be used in the architecture. 62

3.6 Example of feedforward hybrid architecture. 63

3.7 An overall principle of automatic design of architectures. 68

3.8 Number of ROS repositories. 72

3.9 Scheme of the current definition and implementation of Neural Module. . 73

3.10 An overall design of the NengoROS simulator. 75

3.11 Example of simple hybrid system in NengoROS simulator. 76

3.12 Course of simulation in NengoROS simulator. 77

4.1 General principle of connecting a logic gate into the HANNS network . . 81

4.2 An example of Neuro-Fuzzy system. 81

4.3 An example of crisp logic gate implementing the AND function. 83

4.4 An example of fuzzy logic gate implementing some Fuzzy OR function. . 84

4.5 Graphical representation of Physiological State Space. 87

4.6 Graphical Representation of Physiological Neural Module. 88

4.7 Example of course of value of Motivation produced by the PNM. 89

4.8 Example of simple grid environment which is difficult to explore. 94

4.9 Schematics of the Stochastic Return Predictor implementation. 98

4.10 Stochastic Return Predictor communication. 99

4.11 Stochastic RL Neural Module. 102

4.12 Basic Schematics of the ASM Module. 103

4.13 Graphical representation of the Planning Neural Module. 106

4.14 Graphical representation of SOM Neural Module. 109

4.15 Graphical representation of the Sequence Recognition Neural Module. . . 111

4.16 An example of GridWorld simulator. 112

4.17 Graphical representation of the GridWorld simulator. 113

4.18 An example of ViVAE simulator window. 115

4.19 Graphical representation of the ViVAE Simulator Server. 116

5.1 ViVAE environment with simple "maze". 118

20

5.2 Two simple Neural Modules for navigation task. 119

5.3 Simple hand-designed architecture composed of two Neural Modules. . . 120

5.4 Course of sensory and actuator data during the navigation task. 122

5.5 Setup of experiment testing SRP Module with one source of reward. . . . 123

5.6 Course of agent’s learning during 100000 time steps of simulation. 124

5.7 An example of learned strategy after 40000 simulation steps. 125

5.8 Influence of Decay parameter of the PNM on learning. 126

5.9 Influence of Decay parameter of the PNM on learning - higher decay. . . 127

5.10 Principle of encoding of a hybrid agent architecture into genome. 130

5.11 Example of behavior of RGA-designed architecture for navigation. 132

5.12 Principle of EA-based optimization of connection weights. 134

5.13 Optimized connections in the (hybrid) model. 135

5.14 Example of hybrid modular system - recurrent ANN of third generation. 136

5.15 Course of evolution of the ANN-based system. 137

5.16 An example of performance of the ANN-based system. 138

5.17 Results of agent controlled by hybrid ANN. 138

5.18 Principle of encoding of hybrid agent architecture as a feedforward HNN. 139

5.19 Evolutionary design of (hybrid) ANN agent architecture - CORGA. . . . 143

5.20 Behavior of agent produced by the CORGA and COGA algorithms . . . 144

5.21 Evolutionary design of (hybrid) ANN agent architecture - SORGA. . . . 145

5.22 Analyzing the typical architecture found by the SOGA. 146

5.23 Behavior and knowledge learned in SORGA-designed architecture. 147

5.24 Visualization of the greedy policy learned by the SORGA-designed agent. 148

A.1 Scheme of Leaky integrate-and-fire neuron II

A.2 Three stereotypical neuron response functions from human cortical cells. V

A.3 A typical neuron tuning curve that codes for horizontal eye position. . . . VI

A.4 Graph showing generated tuning curves for neural ensemble with 50 nodes. VII

A.5 Example of representational transformation by tuning curves. IX

A.6 Example of experiment in Emergent simulator. XII

A.7 XOR implemented by network of Izhikevich’s neurons. XIII

A.8 Example of simulation in Biological Neural Network Toolbox. XIV

A.9 Example of simulation in SpikeStream and NeMo. XV

21

22

List of Tables

5.1 Typical parameters of GA and RGA used. 128

5.2 Parameters of RGA used in the navigation task. 130

5.3 Parameters of RGA used for evolving the (Hybrid) SNN. 133

5.4 Parameters of GA and RGA used for RL-based architectures. 141

5.5 Comparison of typical EA-designed agent architectures. 142

A.1 Overview of Available ANN Simulators XI

23

24

List of Algorithms

1 Function of the Stochastic Return Predictor. 97

2 High-level operation of the required domain-independent planner. 107

3 Operation of the SOM Neural Module. 109

4 GridWorld simulator operation. 113

5 Generational model of Evolutionary Algorithm used in experiments. . . . 129

25

26

Chapter 1

Introduction

Times when one researcher was able to fully understand all available science fields are

gone for a long time. In these days, there is so much information available, so that one is

often not able to read everything even from his research field. This causes the situation

where each research domain is divided into smaller and smaller pieces. Researchers are

then able to read all information they should know, but this also often causes that people

are loosing wider overview of situation. Good example of this situation can be seen in

biology and medical research. Nowadays, there is huge amount of highly specialized and

isolated articles. Therefore probably no one will ever be able to take a general overview

of current knowledge. This means that it is very hard to steer the direction of research

in some potentially more useful way. One goal of this thesis is to make at least small

difference in the situation.

1.1 Overview

Aside of highly specialized research, there is also need for some systematic integration of

new knowledge. This approach should be able to reuse current knowledge and combine

results of research across selected research fields or sub-fields. For example, in neuro-

science this goal tries to reach project called Blue Brain (Markram 2006). This project

tries to use supercomputer to integrate knowledge across the neuroscience research into

one huge model of brain. Aside of model of working brain (as they claim), this project

1

2 CHAPTER 1. INTRODUCTION

should provide new knowledge simply by gaining the overview of what is known in the

field today. Projects of this type require collaboration of many people, my opinion is that

projects like this are missing in many other research fields.

It is interesting to try to combine outcomes from particular research fields together. So

rather than building one huge universal all-knowing model, the author would like to

provide a tool that enables user to freely combine various pieces of research in

some natural way. The proposed method of composing pieces of knowledge should be

also as universal as possible.

Establishing some unified framework, which defines how the current subsystems should

be interconnected will open even new opportunities for us. Next, probably even more

interesting step is to create a system that is capable of autonomous building new

things from these currently existing standardized subsystems.

1.2 Motivation

The biggest problem about combining various pieces of code together lies in their com-

patibility. Which communication protocol should we choose so that it will be suitable

for all kinds of possibly used sub-systems? Of course there is no ideal solution to this

question.

Since it is known that an arbitrary function can be approximated by feed-forward neural

network with only one hidden layer (Cybenko 1989; Hornik, Stinchcombe, and White

1989), it can be assumed that any behavior of arbitrary complexity can be build by

means of neural networks with more complex topologies and/or more complex models

of neurons. Therefore neural networks can be seen as theoretical way how to build an

arbitrary system. Topologies of biological neural networks have highly structured and

modular form. There are many attempts to exploit modularity for more efficient design

of artificial neural networks (Auda and Kamel 1999). There are also successful methods

of exploiting repetition and symmetry for evolution of these artificial networks (Stanley,

D’Ambrosio, and Gauci 2009). Recently, it has been shown how this modularity emerged

during the evolution (Clune, Mouret, and Lipson 2013) by taking into account cost of

connections between neurons.

1.2. MOTIVATION 3

1.2.1 Brief Description of the Approach

These are the reasons why the author decided to use modification of framework for Artifi-

cial Neural Networks (ANNs) for representing these modular systems with heterogeneous

nodes. Cornerstone of ANNs if neuron. Given part of ANN which can implement more

complex behavior and consists of one or more neurons can be called module (Auda and

Kamel 1999). Therefore an arbitrary subsystem is represented here as a "Neural Mod-

ule". In order to be able to connect sub-systems of various nature together in a seamless

way, the original framework called Hybrid Artificial Neural Network Systems

(HANNS) was created. The HANNS defines a common representation of subsys-

tems together common communication protocol. The thesis is not interested in designing

systems similar to those that we can observe in the nature, but in designing systems

that could be created by combining state-of-the-art knowledge from various sub-fields

of AI together. This means that a given representation of subsystems is not necessarily

biologically plausible.

This HANNS framework combines classical top-down approach (represented by subsys-

tems encapsulated in so-called "Neural Modules") with benefits of ANNs, while suppress-

ing their drawbacks. List of main advantages of these hybrid neural networks, which

combine classical AI with neural networks are following:

• ability to combine arbitrary current subsystems, fast prototyping of new systems

• greatly improves capabilities of ANNs by mixing these black-boxes with subsys-

tems of known inner structure, better overall understanding of resulting systems

(compared to ANNs)

• improvement of currently known systems with well-known benefits of ANNs (asso-

ciativity, noise-robustness etc..)

• provides unified method of connecting these systems together, therefore enable au-

tomatic creation of new modular architectures.

In this thesis, the HANNS framework - a system able to represent various pieces of

software together in a seamless way - is presented in more detail. The functionality of the

framework is presented on designing several types of agent architectures. Furthermore,

the original approaches of composing agent architectures of the framework are described.

Finally, it is shown how the framework can be used for automatic design of new

4 CHAPTER 1. INTRODUCTION

agent architectures for a given task. That is: given set of Neural Modules together

with their inputs and outputs, the Evolutionary Algorithm (EA) is used for optimizing

connection weights between these Modules in order to provide an architecture with a

desired behavior.

1.3 Thesis Outline

In the thesis, the focus will be put on selected parts of the project. From reasons men-

tioned above, this thesis is dedicated mainly to defining the suitable framework for unified

representation of various modules. Then, the requirements for automatic design of new

architectures will be defined. The thesis has following goals:

Goal 1 Creating a framework and tool that will enable fast integration of knowledge

(concretely pieces of code) in bigger systems. This tool will be able to simulate and

test the resulting systems.

Goal 2 Proving that the framework can be used (for design by hand) across the concrete

research domains to solve problems by means of hybrid approaches.

Goal 3 Exploring possibilities of how this tool can be used for autonomous design of

new modular systems composed of these pieces of knowledge.

1.4 Structure of the Text

The following Chapter 4, called State of the Art has several main parts. First, various

types of Artificial Neural Networks (ANNs) are described, together with the evolutionary

design of ANNs. Then, selected agent architectures are described. After that, selected

related methods of designing modular systems are mentioned. Finally a small overview

of existing "Modules" that are potentially suitable for use in the HANNS framework is

shown.

Based on this knowledge, the Chapter 3 - Problem Analysis and Proposed Solution -

describes the novel ideas proposed by the author. The Chapter describes the task to be

1.4. STRUCTURE OF THE TEXT 5

accomplished, then the HANNS framework is described in more detail. After that, the

requirements for automatic design of new architectures in this framework are described.

Finally, the simulator designed for simulating such a general-purpose modular systems is

described.

The Chapter 4 - Theoretical Foundation and Design of Modules - describes implementa-

tions of selected systems as Neural Modules. For each type of Neural Modules, a brief

own theory (and possibly state-of-the-art) sections are mentioned separately. Each Sec-

tion describes one selected type of Neural Modules, that are later used in the experiments.

The Chapter 5 - Experiments - shows two types of experiments. First, the practical use

of the HANNS framework together with the proposed NengoROS simulator are shown on

simpler hand-designed examples. In the second part, the evolutionary approach is used

for automatic design of new architectures for a given task.

The Chapter Conclusion then briefly concludes results of the entire thesis and outlines

directions of future research.

6 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

"In our opinion basing an approach to AI on a single kind of representation, symbolic

or sub-symbolic, is going to falter. Each representation has limits to what it can express.

Just as human intelligence is based on an interaction between declarative and procedural

knowledge, so also artificial intelligence is going to need to incorporate both symbolic and

sub-symbolic techniques if it is going to overcome these limitations." (Ross 2002).

Generally, this chapter describes selected knowledge related to automatic, or semi-

automatic design methods of modular systems. The chapter should also provide informa-

tion that this approach is not completely built from nothing. In some way similar, but

very specialized one-purpose systems are already here. This thesis proposes more gen-

eral approach, which can explore combinations of subsystems from completely different

research areas.

The chapter starts with basic introduction of Artificial Neural Networks, then describes

some interesting types of neural networks and circuits. Then the Evolutionary Algorithms

and their use in design of ANN topologies are described. The chapter then ends with

description of several architectures that are somehow related to this work.

7

8 CHAPTER 2. STATE OF THE ART

2.1 Artificial Neural Networks

Differences between artificial neural networks and classical computation executed by com-

puters are mentioned in various literature. Just to mention that Von Neumann type of

computer implements from its principle deterministic computation based on exact data.

The bottleneck of this architecture poses constraints to the maximum speed of computa-

tion. The fact that individual information have to be distinguished without errors causes

consumption of considerable amount of energy. Also the second characteristic makes the

architecture unfeasible for processing the real-world data.

Compared to this, brain is computational system designed by evolution with the following

requirements:

• highly power-efficient

• highly robust against errors in hardware/sensory data

• works well with real world noisy data.

These requirements probably determined that the brain implements highly parallel type

of computation, that the computation as well as memory is decentralized. We can see

that these features are often direct opposite to von-Neumann architecture, so as to many

computation models based on it.

There are several reasons why the ANNs are not used more widely, one of them is that

neural networks often work as a black-boxes and we do not have sufficient methods to

design networks of appropriate size.

My thesis tries to connect these two directly opposite approaches tightly together, so

that the benefits of both approaches will be combined, while suppressing their drawbacks.

First, this chapter will mention classification of ANNs according to various criteria. Then

the role of modularity in these networks is discussed.

2.1.1 Classification of Artificial Neural Networks

Artificial Neural Networks (ANNs) can be divided according to several main criteria.

These are particularly the following: Focus on neuron model vs network of neurons,

classification by the network topology, types of neuron model used in the network

2.1. ARTIFICIAL NEURAL NETWORKS 9

and finally, the design approach used for defining network topology and/or connection

weights between neurons.

The following subsections will briefly divide Artificial Neural Networks (ANNs) by these

criteria. Since the main focus is put on the network’s behavior/computation, the models

which focus on modeling single neuron will be omitted here. These models are usually

very biologically accurate and therefore complex. Creating an useful ANN composed

of these accurate models is often so computation expensive, that specialized HW or

supercomputers (as in case of SyNAPSE project) have to be used. Nowadays, these

networks are mainly used for more medical-oriented simulation.

2.1.1.1 Common Topologies of Artificial Neural Networks

Since the main types of topologies of ANNs are well known, let’s note that those main

are: feedforward, recurrent, bi-directional and Self Organising Maps (SOMs).

Most often, the ANNs are used for transformation of high-dimensional input space into

some resulting lower-dimensional space. Feedforward ANNs are capable of recognizing

patterns in input data1, while recurrent networks are able to represent also previous

inputs, therefore are able to process time series data in some way. There are either fully

recurrent (e.g. Hopfield network (Hopfield 1982)) or partially recurrent (e.g. Jordan

(Jordan 1986) and Elman (Elman 1990)) networks. Very brief description of common

network topologies can be found e.g. in (Krenker, Bešter, and Kos 2011; Wilamowsky

2003), or comprehensive introduction to ANNs in (Rojas 1996).

There are many types of combinations of these topologies, such as SOM with additional

recurrent connections RecSOM (Voegtlin 2002). Here should be also mentioned topology

called Deep Belief Network (DBN) (Bengio 2009). DBN models are generally described as

multi-layer feedforward (hierarchical) topologies, where layers (sub-networks) are trained

separately, one after another. Probably the most common type of DBNs uses Restricted

Boltzmann Machines, but other types of neurons are used as well. DBNs are inspired in

hierarchical data processing in biological brains (e.g. visual system) and are gaining big

success lately, e.g. in visual recognition (Tang and Eliasmith 2010). These examples of

more complex topologies (RecSOM and DBN) can be also classified as Modular Neural

Networks (MNNs) as mentioned in the Chapter 2.2.1.

1Feedforward topologies without some preprocessing of time series, e.g. sliding window.

10 CHAPTER 2. STATE OF THE ART

2.1.1.2 Classification of Neuron Models

According to the type particular computation units, Maas (Maass 1996) divides the

neural networks into three main types: The first generation is based on McCulloch-

Pitts neurons, also referred to as perceptrons. These networks gave rise to a variety of

neural networks models as multilayer perceptrons or Hopfield nets. The characteristic

feature of networks of this type can provide only digital output, but they are universal

for digital computation and every boolean function can be computed by some multilayer

perceptron with single hidden layer.

The second generation is based on the computational units that apply continuous

"activation function" to the weighted sum of continuous inputs. The most common

activation function is the sigmoid function: δ(y) = 1/(1 + e−y). Typical examples for

networks from this second generation are feedforward and recurrent sigmoidal neural

nets, as well as networks of radial basis function units. These networks are also able

to compute (with the help of thresholding at the network output) arbitrary boolean

functions. Furthermore, it has been shown that these neural nets can compute certain

boolean functions with fewer gates than neural nets from the first generation. In addition,

neural nets from the second generation are able to compute functions with analog input

and output and are universal for analog computations in the sense that any continuous

function with a compact domain and range can be approximated arbitrarily well by a

network of this type with a single hidden layer. Another characteristic feature of this

generation of neural network models is that they support learning algorithms that are

based on gradient descent such as back-propagation. For a biological interpretation of

neural nets from the second generation one views the output of a sigmoidal unit as a

representation of the current firing rate of a biological neuron (Maass 1996). Several

special types of neuron models, such as Radial Basis Function (RBF) (Broomhead and

Lowe 1988), can be also classified into the second generation of neurons.

In 1982 it was shown that the monkey can recognize face in less than 100ms (later even

in 20-30ms), while the firing rates of these neurons are usually bellow the 100Hz (Perrett,

Rolls, and Caan 1982). It means that biological organisms use not only firing rates

but also temporal combination of particular spikes. This gives rise to more biologically

accurate type of neural networks: the third generation , which uses model of spiking

neuron (Maass 1996). Recent progress in computer technology enables us to simulate

also this type of neural networks. The following Section (supplemented by the Appendix

2.1. ARTIFICIAL NEURAL NETWORKS 11

A) will briefly describe them.

Networks of Spiking Neurons: As it was mentioned, neurons of third generation of

neural networks communicate by means of discrete spikes. It is an interesting type of

communication, because it can implement both, analog and discrete communication. It is

known that in different parts of Central Nervous System (CNS), different types of neural

coding are used.

Rate-based codes are used in places where represented values change slowly in time.

Example of use of rate code can be seen in representation of muscle contractions. Practical

example of this coding for representation angle of arm of humanoid robot can be seen

in (Gamez, Fidjeland, and Lazdins 2012). Compared to this, temporal codes (where

individual spikes play role) are used when the represented value changes rapidly, for

example visual stimuli (Perrett, Rolls, and Caan 1982). It is believed that temporal codes

are synchronized de-centrally by the Local Field Potential (LFP) - average activity of

neurons in predefined area (Kraskov et al. 2007). The LFP periodically changes according

to neural oscillation (brain waves). This oscillation is generated spontaneously by groups

of neurons (Strogatz 1997) and can be observed on all levels of organization.

There is increasingly high number of applications of these spiking neural networks cur-

rently. This is due to fact that simulation of these networks is recently more and more

feasible. These models of neurons can be simulated on classical personal computers or

specialized hardware. The most cost-efficient way of simulating large-scale Spiking Neural

Networks (SNNs) is by accelerating the computation of General Purpose GPUs (GPG-

PUs) (Yudanov 2010; Nageswaran and Donald 2009; Poggio, Knoblich, and Mutch 2010;

Krichmar, Jayram M. Nageswaran, and Richert 2010; Fidjeland, Roesch, et al. 2009).

One entire research field deals with developing specialized hardware for these networks, as

for example SpiNNaker (Rast et al. 2010), Neurogrid (Boahen 2006), Spin Devices-based

project sponsored by Intel (Sharad et al. 2012), European-funded FACETS2 or DARPA-

funded project called Systems of Neuromorphic Adaptive Plastic Scalable Electronics

(SyNAPSE).

Spiking neurons are more expressive (powerful) than older models. It was shown that

this third generation of neural networks is superset of the second generation. Each func-

tion/behavior that can be produced by ANNs of 2nd generation can be produced also

with the 3rd generation with the same, or smaller amount of neurons.

2http://facets.kip.uni-heidelberg.de/

12 CHAPTER 2. STATE OF THE ART

There are many models of neurons of third generation which are able to produce spikes

in a similar way as their biological counterpart. An example application can be seen in

modeling of visual cortex for image recognition (Yu et al. 2013; Eliasmith 2013). Since

we often need to simulate many of these neurons and these models are computationally

relatively expensive, there is trade-off between model accuracy and computational re-

quirements. Two selected models of spiking neurons are mentioned in the Appendix A in

section A.1.

2.1.1.3 General Methods of Artificial Neural Network Design

As described in our currently submitted paper, the ANNs have many desired properties,

but the main problem still lays in insufficient methods of determining correct (optimal)

topology of network with desired behavior. The ANNs can be divided also by means of

design approaches. The main ones are the following three:

• Learning Algorithms: In this case, the network has predefined topology (e.g.

feedforward network) and a local learning rule, which modifies connection weights

between particular neurons. Here can be mentioned supervised learning in feedfor-

ward network by means of back-propagation algorithm, or unsupervised Hebbian

or competitive learning.

• Topology Optimization: Compared to the previous case, the topology of ANN

can be optimized by globally operating optimization algorithm. The topology is

often partially predefined (e.g. to the feed-forward networks (Leung et al. 2003))

and the Evolutionary Algorithm (EA) is used to find correct weights. Currently,

this approach is able to provide relatively complex systems, ranging from design of

controllers generating coordinated quadruped gaits (Clune, Beckmann, et al. 2009),

controlling bots in video-games (Stanley, Bryant, and Miikkulainen 2005). Here,

the crucial parts are in predefining suitable topology constraints and in choosing

suitable representation of ANN weights for the EA (Fekiac, Zelinka, and Burguillo

2011).

• Neural Engineering: This represents the Top-Down approach in designing neural

systems. Instead of starting from an individual neuron, it works over populations

of neurons. Each population has purpose of solving particular part of the problem.

Here, the qualitative tools are often used to compute particular connections between

2.2. THE ROLE OF MODULARITY 13

neurons and/or between populations of neurons. These methods are often used in

larger-scale neural models (Garis et al. 2010; Eliasmith 2013). As examples can

be mentioned Central Pattern Generators (CPGs) (Marder and Calabrese 1996;

Zainer and Nagashima 2002) or Neural Engineering Framework (NEF) (Eliasmith

and Anderson 2003). Naturally, this approach works with modular networks and

therefore is suitable for designing hybrid neural systems.

2.2 The Role of Modularity

In simpler problems, it is often sufficient to use one homogeneous solution (e.g. simple

ANN topology, as described in the Chapter 2.1.1.1) for solving the task with sufficient

accuracy. However, many real-world problems (such as vision, language processing etc.)

are too complex to be tackled with a single method. One of well known solutions to the

course of dimensionality is approach so called divide and conquer. The task is divided into

smaller sub-tasks and these are solved separately. This method brings some significant

benefits compared to solving each problem from the scratch. The most obvious benefit

is in often dramatic reduction of problem complexity. One of the main advantages is

also (once discovered structure of the problem) in opportunity of re-using the discovered

solutions to sub-problems. Various methods of decomposition of problems into smaller

pieces was widely investigated in many different applications. Several selected types of

exploiting the structure of problems are described in the following sections.

2.2.1 Modular Neural Networks

In the context of ANNs, each of sub-tasks can be solved by one ANN and the resulting so-

lution can be composed of these sub-solutions. It is convenient to represent this approach

as one big network, which is composed of interconnected sub-networks (or generally called

modules). This approach is called Modular Neural Networks (MNNs) (Boers and Kuiper

1992; Auda and Kamel 1999).

Similarly to a general case, MNNs have many advantages over big homogeneous net-

works. By decomposing one big network into smaller pieces, the human is able to better

14 CHAPTER 2. STATE OF THE ART

Figure 2.1: Jordan type of ANN for prediction of words in sentences (Sugita and Butz

2008). Input and output modules communicate with outer world, while

hidden module representing the state of the network depends also on the

context of current input values.

Figure 2.2: Schematics of Unified Hybrid System composed of sub-networks imple-

menting classical ANNs (Mcgarry, Wermter, and Macintyre 1999).

understand the behavior of the entire system. Thus turning one big black-box into a

set of smaller white, or gray boxes. The functionality of these modules is often inspired

in biological brains and therefore may have various degree of biological plausibility. For

example, a module with purpose of learning of sequences can be implemented either as a

network of neurons (see the Chapter 2.6.1 for examples), or by means of some designed

algorithm (for example Apriory algorithm, described e.g. in (Agrawal and Srikant 1994)).

Despite the fact that the publication (Mcgarry, Wermter, and Macintyre 1999) deals with

hybrid systems, this thesis will use its terminology to classify MNNs into two main types

(of three described there):

• Unified Hybrid Systems are composed of modules which are implemented by

2.2. THE ROLE OF MODULARITY 15

the same ANN model. Such a network can be then represented either as MNN,

or as a monolithic ANN, defined by set of nodes and weights between them3. As

an example of these networks can be mentioned Jordan network (depicted in the

Fig.2.1, where each module represents one sub-network), Elman Network, RecSOM,

or Deep Belief Network (DBN) (Bengio 2009) with the same type of sub-networks

in each layer used. The main advantage of this type of networks is in decreasing

overall number of connections between nodes. The form of particular modules can

be found by any of the methods described in the Chapter 2.1.1.3. When a purpose

of particular module is selected correctly, the learning process (or optimization

of ANN topology by means of EA) is significantly faster, or the top-down design

process can be significantly simpler. A graphical representation of such Unified

Hybrid System can be seen in the Fig.2.2.

• Modular Hybrid Systems. So called No Free Lunch Theorem tells us that there

is one algorithm (e.g. optimization technique), which is suitable for some set of tasks

(Wolpert and Macready 1997). But there is another algorithm, which is superior

in another set of problems. Theoretically, solving all problems by means of some

kind of ANN is possible. But practically there are often well-know better ways for

some problems. This gave rise of this type of MNNs, where different modules can

implement different algorithms (not necessarily ANN-like ones). There was many

systems of this kind developed in the past and many can be classified as Modular

Hybrid Systems.

Least but not last, the advantage of modular systems is in re-usability of particular mod-

ules. These discovered (e.g. by means of optimization) or engineered sub-systems (mod-

ules) can be used to compose another modular system (than that they were developed

for), which significantly reduces time required for designing new systems. As an example

of extensive use of modularity in top-down design of large-scale ANNs can be mentioned

Neural Engineering Framework (NEF) (Eliasmith and Anderson 2003), which is briefly

described in appendix in the section A.2. Various examples of these biologically-inspired

modules can be found in the Chapter 2.6.

3While considering a simplification of omitting prospective learning rules.

16 CHAPTER 2. STATE OF THE ART

2.2.1.1 Communication in Modular Hybrid Systems

Since one of aims of this dissertation are Hybrid Systems, this chapter will describe

Modular Hybrid Systems in more detail. In case that particular modules share the same

information representation, the communication can be identical in the entire system. But

in case that the information representation varies across modules, some kind of informa-

tion transformation needs to be used in order to acquire successful communication in the

system. For example, one module can be implemented by the ANN and another can

process data in symbolic representation. The publication (Mcgarry, Wermter, and Mac-

intyre 1999) describes a class called Transformational Hybrid Systems. A graphical

representation of such a transformational hybrid system can be seen in the Fig.2.3.

Figure 2.3: Scheme of a Transformational Hybrid Systems. The system on the left

transforms "neural" representation of information into the symbolic one.

The system on the right in the opposite direction (Mcgarry, Wermter, and

Macintyre 1999).

The disadvantage of transformational systems is in the need of defining the appropriate

transformation for a particular task. As one alternative can be mentioned the technique

called "rule extraction", where some algorithm can be used for extracting rules from the

ANN. Because of the need of the transformation process between particular modules,

these systems are most often task-dependent. In contrast, the Transformational Hybrid

Systems can be very powerful and therefore are widely used in various applications.

2.2. THE ROLE OF MODULARITY 17

2.2.2 Hierarchical Problem Decomposition

Often, the problem can be decomposed into hierarchically organized structures. These

hierarchies often contain uniform type of nodes. The nodes on the bottom of the hierarchy

represent more primitive (basic) parts of the problem, while nodes placed higher in the

hierarchy represent knowledge composed of lower sub-nodes. The most common problems

while exploiting the structure of the problems are in requirement of a priory knowledge:

how the problem can be decomposed into smaller pieces.

One example of hierarchical decomposition can be represented by Hierarchical Rein-

forcement Learning (HRL). Reinforcement Learning (RL) has often problems to rep-

resent and successfully learn in more-dimensional spaces. Where one RL module could

not learn all possible states of the system, hierarchy of smaller RL modules can solve the

task in a much more efficient way.

Figure 2.4: Example of decomposition of decision space in the Hierarchical Reinforce-

ment Learning (HRL) (Kadleček 2008). Each decision space contains ei-

ther primitive actions or abstract actions. Each abstract action represents

some strategy in the child decision space.

In a system called Hierarchy, Abstraction, Reinforcements, Motivations Agent Architec-

ture (HARM), author solved the problem of need for definition of the hierarchy a prioriby

autonomous on-line generating of action hierarchy based on the interaction of agent with

the environment (Kadleček 2008). Based on various types of reinforcements, the system

18 CHAPTER 2. STATE OF THE ART

is capable of autonomous creation of hierarchy of RL modules. The example of two level

hierarchy can be seen in the Fig.2.4. Here, two decision spaces contain primitive action

and one decision space contains abstract actions (strategies in child decision spaces).

Figure 2.5: Example of Hierarchical Task Network Planning on block-world problem.

The plan is composed of primitive and non-primitive tasks. Each non-

primitive task can be decomposed into less abstract tasks (Pellier n.d.).

This can be compared to to many similar approaches, such as hierarchical problem decom-

position in the domain of automated planning. Hierarchical Task Network (HTN) (Erol,

Nau, and Hendler 1994) can also decompose the high number of possible states by defining

the hierarchy of particular tasks. This hierarchy then contains primitive tasks (equivalent

to actions in the Stanford Institute Problem Solver (STRIPS) (Fikes and Nilsson 1971))

and compound tasks, which are composed of primitive tasks and other compound tasks.

There are also many available opportunities to try to exploited modularity in hierarchy.

Finally, these two examples (RL and planning) were general examples of unified hybrid

systems in the terminology of MNNs. An example of modular hybrid system can be

mentioned architecture presented in (Vítků 2011), where the HARM system is used to

interpret abstract actions of the STRIPS planning engine, therefore the system contains

RL modules together with planning module.

2.3. EVOLUTIONARY ALGORITHMS 19

2.3 Evolutionary Algorithms

Basics of Evolutionary Algorithms (EAs) can be found in many publications, such as

(Ashlock 2010). Very briefly: these are population-based metaheuristic optimization

algorithms, which use mechanisms inspired by biological evolution, such as reproduction,

mutation, recombination, and selection. One sub-part of EAs: "Genetic Algorithm (GA)

is a method for moving from one population of "chromosomes" (e.g., strings of ones and

zeros, or "bits") to a new population by using a kind of "natural selection" together with

the genetics-inspired operators of crossover, mutation, and inversion. Each chromosome

consists of "genes" (e.g., bits), each gene being an instance of a particular "allele" (e.g.,

0 or 1)" (Mitchell 1998). Many algorithms inspired by evolution are successful, such

as evolutionary-based design of antenna for NASA (Lohn et al. 2004). Evolution can

be successfully applied in the field of autonomous design of physical structures, e.g.

robots (Durr, Mattiussi, and Floreano 2010). Also the design of control systems often

require relatively complicated theory and complicated computation, so it is also suitable

field for use of some automated design approach, such are EAs. In (Durr, Mattiussi, and

Floreano 2010) there are some references for good examples in this field, the paper itself

suggests the evolutionary design of neural controllers, because the input-output mapping

made by neural networks can be seen as very similar to manually designed control system.

This Section will describe only some selected types of Evolutionary techniques that are

relevant to the Thesis.

2.3.1 Memetic Evolution Algorithms

There are three main types of evolution called Darwinian, Lamarckian and Baldwinian

evolution. In the field of AI, these types are distinguished mainly by classical and a

hybrid EAs, called Memetic Evolutionary Algorithms (MAs). "Memetic algorithms was

the name given by Moscato (Moscato 1989) to a class of stochastic global search tech-

niques that, broadly speaking, combine within the framework of evolutionary algorithms

the benefits of problem-specific local search heuristics and multi-agent systems. MAs

have been successfully applied to a wide range of domains that cover problems in com-

binatorial optimization, continuous optimization, dynamic optimization, multi-objective

optimization etc"(Krasnogor 2012). Practically, the local search is used for smoothing

the fitness landscape, which reduces the complexity of the EA’s solution space (Conradie,

20 CHAPTER 2. STATE OF THE ART

Miikkulainen, and Aldrich 2002).

For example, the use of local search in the MAs for enhancing newly generated individuals

corresponds to learning performed by the living organisms during their life. These three

types of evolution then define how is this enhancement used further. The three main

types of evolution are described here:

Darwinian Evolution is a type of evolution where the success of organism (phenotype)

is determined only by its genotype and thus the survival of organism depends only

on its genetic constitution. The Darwinian evolution is used in classical EAs,

where the genotype unambiguously describes the phenotype and its fitness.

Lamarckian Evolution The main difference against the Darwinian Evolution is in the

fact that the characteristics acquired during the organism’s lifetime (for example

experiences) can be transferred to the offspring. In Lamarckian MAs this corre-

sponds to the improvement of an individual by local search (or e.g. some type of

learning), this improvement is then transferred to its offspring. That is: the genome

now describes the individual with knowledge gained during his life.

Baldwinian Evolution is based on the theory originally published by James Mark

Baldwin in (Baldwin 1896), called Baldwin Effect. Baldwin proposed that the ge-

netic information encodes the ability to learn, organisms with better ability to learn

have higher chance of survival, which causes the propagation of their genetic mate-

rial. This approach is used n Baldwinian MAs where the individual is improved

by the local search and evaluated, in the population is preserved the old, not im-

proved, one, but its fitness is changed to the fitness of the improved individual

(that is: the genotype represents an individual with some ability to learn, not the

individual with learned knowledge).

Baldwin effect was studied for a long range of time in various research fields as is Evo-

lutionary Developmental Biology (Newman 2002), Philosophy (Dennett 2003), Artificial

Life (Levy 1992; Suzuki and Arita 2004) or Artificial Intelligence. But this effect (and

type of evolution) plays the important role in the research field which is concerned with

the evolution of Artificial Neural Networks called Neuro-Evolution. In the case of Neuro-

evolution, the MA can be composed of EA which optimizes the network topology (and/or

weights) and some (possibly conventional) learning algorithm which operates on-line, so

the main focus is put on the interactions between learning and evolution (Boers, Borst,

and Sprinkhuizen-Kuyper 1995; Valdivieso et al. 2006; Nolfi 1999), and (Yao, Ieee, and

2.3. EVOLUTIONARY ALGORITHMS 21

Liu 1996). Neuro-evolution is described in further details in the section 2.3.2.

Figure 2.6: An example of the smoothed fitness landscape after learning process. The

slope of the fitness landscape is (a) increased or (b) decreased after learning

process (or e.g. by the local search algorithm) (Suzuki and Arita 2007).

The main advantage of hybridization of evolution and learning (in Baldwinian MAs) is

in increasing the speed of evolution, this is caused mainly by the fact that the learning

smooths the rugged fitness landscape. Hinton and Nowlan’s pioneering work on the

Baldwin effect (Hinton and Nowlan 1987) assumed evolution of the population on a

"needle in the haystack" fitness landscape, by introducing the quantitative evolution

of phenotypic plasticity (the ability of organism to change phenotype in response to

changes in the environment) into a simple genetic algorithm, they showed that this effect

of learning can guide the evolution of the population toward the fitness spike by increasing

the slope of surface around it (Suzuki and Arita 2007), see Fig.2.6. One of the interesting

papers describes how learning can guide neuro-evolution in hierarchical modular tasks

(Wiles and Watson 2001).

From the practical point of view, the Baldwinian MAs store information that may be too

specific for a particular task (e.g. recognizing only one type of flowers) in the genome.

The individuals produced by this type of MA may store too specific information. In case

that some amount generalization (or re-learning) is needed, the results may be far from

the optimum. Compared to this, individuals produced by the Lamarckian MAs store the

ability to adapt to a particular task, not its solution. Still, this type of MA is able to

speed-up the evolution as depicted in the Fig.2.6.

22 CHAPTER 2. STATE OF THE ART

2.3.2 Neuro-Evolution

One sub-part of evolutionary computation is called neuro-evolution. This notation stands

for optimization of ANN structure (topology and/or weights) by means of EA. The crucial

part of neuro-evolutionary design is in choosing the right encoding mechanism. The

encoding should be able to represent the phenotype (ANN) uniquely in the genotype

(genome - e.g. real-valued vector representing weights between neurons). System of

conversion between genotype to phenotype should be expressive enough so that the EA

is able to design ANN correctly. But encoding should also compress the representation

of ANN structure, so that the searched space of ANN topologies is not too big. A simple

example of encoding of ANN with binary weights can be seen in the Fig.2.7.

Figure 2.7: An example of simple encoding of ANN topology into genome. A binary

vector (A) (genotype) is transformed into binary adjacency matrix (B)

of size N × N , where N is the number of neurons in the network. The

network topology is then defined as a directed graph with binary weights

(C) (phenotype) (Fekiac, Zelinka, and Burguillo 2011).

Encoding can be either direct or indirect. By means of compression, the latter one is

able to evolve bigger topologies. There is many ways how to encode ANN into genome.

For instance, the developmental encodings try to model development of brain during the

animals life. Good overview of known basic methods how to encode ANN topology so

that it will be feasible for EA is in (Fekiac, Zelinka, and Burguillo 2011).

One of the most promising, but also relatively complicated methods is called Hypercube-

based Neuro-Evolution of Augmented Topologies (HyperNEAT) developed by Kenneth

Stanley et al. (Stanley, D’Ambrosio, and Gauci 2009). This encoding can employ com-

pression of ANN topologies e.g. by efficient representation of symmetry.

2.3. EVOLUTIONARY ALGORITHMS 23

2.3.3 Memetic Neuro-Evolution

Memetic Neuro-evolution is a special kind of MEA which is specialized for designing

ANNs. As mentioned in the Chapter 2.3.2, the neuro-evolution has two main goals: to

optimize ANN topology and weights between particular neurons. Since the MEA is usu-

ally composed of two main optimization algorithms (most often there is one evolutionary-

based and one local search algorithm), there are several possibilities how these two may

be employed. The common types of mutation in these EAs are the following: mutation

of the ANN topology is performed as random add/remove of connection between neu-

rons. Compared to this, the mutation of connection weights is implemented as applying

gaussian distribution to the current weight wi,j ∈ 〈0, 1〉.

In the (Togelius, Gomez, and Schmidhuber 2008), two local algorithms ("hill-climbers")

were used to design the ANN. The design of topology and weights were made "on different

time scales" as follows: First, the new topology is proposed. Second, the connection

weights are optimized by another local search. If the resulting ANN performs better

than the previous "champion", the new solution is remembered and optimized further.

Only one individual is stored in the population at a time, so the result is called Memetic

climber.

The publication (Togelius, Schaul, et al. 2008) compares the Memetic climber to other

MEAs on two different Reinforcement Learning (RL) tasks. Compared to the Memetic

climber, MEAs presented in this publication use population of candidate solutions instead

of only one. It was shown that these population-based MEAs outperform the Memetic

climber and can solve problems that are unsolvable by non-memetic algorithms. An-

other example of MEA, called Symbiotic Memetic Neuro-Evolution (SMNE) can be seen

in the (Conradie, Miikkulainen, and Aldrich 2002). In the publication, proposed algo-

rithm is different from the previous ones: it combines Symbiotic EA and Particle Swarm

Optimization (PSO) search.

2.3.4 Modular Neuro-Evolution

In order to reduce dimensionality of search space that has to be explored by the evo-

lutionary algorithm (in order to create some network topology) many types of Modular

Neural Networks were developed. More information can be found in (Boers and Kuiper

24 CHAPTER 2. STATE OF THE ART

1992; Auda and Kamel 1999). An introduction to design and evolution of modular neural

network architectures is in (Happel and Murre 1994). Exploiting the modularity of neural

networks for evolving the ANN controllers is in (Durr, Mattiussi, and Floreano 2010).

Some further examples how the evolution of neural networks can be employed are in

(Durr, Mattiussi, and Floreano 2010; Ozawa, Tsutumi, and Baba 1999). Modular ANNs

also give us the opportunity to reuse the currently discovered subsystem. For example,

the designs of a modular systems which employ symmetry can be found in (Valsalam and

Miikkulainen 2011).

2.4 Selected Agent Architectures

One of main aims of this thesis is in designing new architectures which control artificial

agents in ALife domain. The typical use-case of these architectures is autonomous ful-

filling of some given task under some given (or partially unknown) circumstances. Such

an architecture may be controlling either virtual agent in a simulated environment or

potentially real-world robot. The nature of these architectures is ranging from reactive

to purely deliberative. Reactive agent reflexively reacts to stimuli from the environment.

Compared to this, the deliberative agent maintains symbolic model of the world and

decides based on symbolic reasoning (Wooldridge 1995). The symbolic model has to be

build and/or maintained during the agent’s life. This task requires symbol grounding)

(Harnad 1990), which increases the complexity of the architecture significantly.

An agent architecture is usually equipped with sensory system (used for gathering infor-

mation about its environment) and actuator system, which is used for interacting with

the environment. This principle can be seen in the Fit.2.9. A typical agent architecture

has to implement complex mapping from streams of sensory data to streams of actuator

commands. In real-world robotics (but in virtual environments too) it is a task compli-

cated enough, that some kind of system decomposition (e.g. by means of modularity) has

to be employed. Furthermore, a successful robotic system has to be able to represent the

task on various scales (scales of abstraction/precision, time scales etc). Modules in such

a complex system then need to be ran on various levels simultaneously. Two well-known

examples of reactive and deliberative agent architectures follow:

• Layered Architecture. Amongst those older reactive architectures there is well-

2.4. SELECTED AGENT ARCHITECTURES 25

Figure 2.8: Typology of software agents (Nwana 1996). Collaborative agents should

perform tasks in collaboration with other agents, interface agents collabo-

rate with their owners (human working on the same task). Mobile agents

are software processes capable of traveling through the wide-area networks

(WANs). Hybrid agents combine multiple different learning/decision mak-

ing mechanisms in one bigger system. Compared to this, heterogeneous

agent systems combine at least two different agents in one system.

known Rodney Brooks’s Layered Architecture. In the Fig.2.10 it can be seen that

architecture consists of multiple layers. The higher level, the more abstract the

activity is. The lower the layer is in the hierarchy, the more important the action

(produced by the layer) is.

• Belief Desire Intention Architecture: One of the most known architectures is

Belief-Desire Intention modem (BDI) (Sardina et al. 2006), which is typical rep-

resentative of deliberative architectures. The BDI agent stores information about

environment in form of beliefs, its objectives (goals) are stored as desires and its

particular activity is driven by intentions (desire with a commitment for execution).

This template of an architecture has many implementations specialized for various

domains (e.g. multi vs single-agent environments).

Figure 2.9: Typical processing of information in a robotic system. First, the sensory

data are pre-processed and some internal model of the environment is up-

dated, then the plan of future actions is created. Finally, the task is exe-

cuted by means of controlling the actuator system (Brooks 1986).

26 CHAPTER 2. STATE OF THE ART

Figure 2.10: Layered Architecture: each layer represents some level of abstraction of

information abstraction. The lower in the picture the layer is, the more

abstract activity it represents. Compared to this: the higher in the hier-

archy, the more important action is (e.g. "return home" vs "not hitting

the obstacle"). Behavior of a layer may substitute input data of the layer

below it. Also, a more primitive architecture (higher in the hierarchy)

can inhibit output data of more abstract layers (Briot, Meurisse, and

Peschanski 2006).

2.4.1 Selected Modular Architectures

Based on the reasons mentioned above, it is beneficial (and often necessary) to build archi-

tectures that are in some way modular4. Since this dissertation aims to build architectures

similar to modular ANNs, this Chapter will be focused on interesting architectures of this

type.

One good example of hybrid architecture, which employs spatio-temporal sequence learn-

ing for navigation of robotic system, was presented in (Nguyen, Starzyk, Tay, et al. 2010).

The paper describes feed-forward hierarchical feature extraction by means of combination

Long Term Memory modules (LTMs) and Short Term Memory modules (STMs)5 in one

hierarchy for navigation of robotic system. The architecture is inspired in the biological

visual system. The K-iteration Fast Learning Neural Network (KFLANN) (Tay et al.

2007) was employed to establish scene STM clusters by global gist description. This

implements the fast-learning behavior of scene tokens and maintains significant tolerance

for disturbances in the scene. These initial experiences are stored in the STM, and then

gradually consolidated and organized into LTM. Each sequence of navigating scenes is

4which includes also both Layered Architecture and BDI model
5These modules are described in the Chapter 2.6 in more detail.

2.4. SELECTED AGENT ARCHITECTURES 27

stored in a LTM cell and is learnt via one-shot mechanism. During storage phase, the

input sequences are stored in the corresponding LTM cells. During testing phase, the

LTM cell will respond according to its degree of matching with the input sequence. The

final decision’s location is made by the Winner-Take-All (WTA) rule over all LTM cells.

The architecture works with a streams of data, where no start nor end of sequence is

marked.

Figure 2.11: Hybrid design for robotic navigation employing LTM and STM modules

in one hierarchy. An example of hybrid system composed of heterogenous

nodes (Nguyen, Starzyk, Tay, et al. 2010). The KFLANN algorithm

implements STM subsystem. These short-term memories are then con-

solidated into LTM modules. The final recognition of scene sequences is

chosen by the WTA algorithm according to the degree of matching of data

in particular STM modules.

2.4.2 Cognitive Architectures

One sub-field of agent architectures originates from cognitive science, which is often in

aim of psychologist. These cognitive architectures are mainly biologically inspired and

28 CHAPTER 2. STATE OF THE ART

try to model how the human mind works. Therefore here scientist try to model more

complex structures than those mentioner earlier. These systems often vary in biological

plausibility and we can find models ranging from purely connectionist-based to highly

abstract. There are two well known architectures in this field, called Leabra and ACT-R,

here will be only brief description of the main differences between them.

Leabra An example of biologically realistic cognitive architecture is system called Leabra

(O’Reilly 1996). This relatively complex architecture employs several different

learning algorithms together and tries to find good proportion between associative

and error-driven types of learning. The structure of the architecture is depicted in

the Fig.2.12. This architecture uses single neurons as basic building blocks, there-

fore it can be called connectionist approach. As it can be seen in the Fig.2.12, it

is a modular ANN. More precisely, the architecture can be classified as a Unified

Hybrid System, as described in the Chapter 2.2.1.

Figure 2.12: The scheme of connectionist cognitive architecture Leabra. The system

includes three major parts: the posterior cortex (for perceptual and se-

mantic processing using slow, integrative learning); the hippocampus (for

rapid encoding of novel information using fast, arbitrary learning); and

the frontal cortex/basal ganglia complex (for active and flexible mainte-

nance of goals and other context information, which serves to control or

bias processing throughout the system) (O’Reilly 1996).

2.4. SELECTED AGENT ARCHITECTURES 29

ACT-R The opposite direction, holistic approach6, represents architecture called Adap-

tive Control of Thought – Rational (ACT-R) (Liadal 2006). The architecture uses

both symbolic and sub-symbolic systems. Compared to Leabra, the research is

not focused on modeling architecture composed of single neurons. Rather the un-

derstanding overall function of parts of the brain as subsystems is investigated.

Individual parts of the architecture are depicted in the Fig.2.13. It can be seen how

individual sub-systems correspond to particular brain areas.

Figure 2.13: The scheme of ACTR cognitive architecture (Liadal 2006). Compared to

the schematics of Laebra, this architecture contains more single-purpose

subsystems which serve to one particular purpose (e.g. the Goal Buffer).

This is a typical example of the fact that it is easier to build a system

with complex behavior by sacrifising some biological plausibility (such as

non-neural implementation of the architecture in this case).

SAL Each of architectures has its own pros and cons. The question whether the con-

nectionist or holistic approach is better is still not responded completely. Rather,

6Which is an equivalent of a top-down designed system.

30 CHAPTER 2. STATE OF THE ART

again, some kind of hybrid approach can be exploited. In the field of cognitive

science this is called pluralism. Research teams from Leabra and ACT-R realized

that, despite the different approach to designing the system, their architectures

have very similar structure and individual modules from both architectures could

be combined together. This gave a rise to explicitly pluralistic architecture called

SAL. It was shown that this synthesis of ACT-R and Leabra can e.g. autonomously

navigate agent in 3D environment, recognize and collect objects. As described in

the paper: "SAL is an attempt to integrate and synthesise the Leabra theory of

neural function, network behaviour and representation, and tripartite architecture

with the ACT-R theory of symbolic and subsymbolic decision-making, representa-

tional activation and organisation, and modular architectural organisation. It also

is worth pointing out that in the combined SAL architecture, most major machine

learning techniques are represented, and grounded in forms that are motivated and

informed by human psychology and biology" (Jilk et al. 2008).

SPAUN As mentioned in the abstract of the book (Jilk et al. 2008), "both ACT-R and

Leabra architectures are internally pluralistic, recognising that models at a single

level of abstraction cannot capture the required richness of behaviour". The archi-

tecture called Semantic Pointer Architecture Unified Network (SPAUN) uses differ-

ent approach. It is designed by the top-down (holistic) method, yet still is highly

biologically plausible (both topology and behavior) and is implemented in ANN of

3rd generation. Recently, it was presented as the world’s largest functional brain

model (Eliasmith, Stewart, et al. 2012). Compared to other networks of biologically

plausible neurons (such as (Izhikevich and Edelman 2008)), this network composed

of 2.5 million neurons actually produces some required complex behavior. The basic

schematics of the architecture is shown in the Fig.2.14, it receives commands on

visual input in form of written digits (DBN-based hand-written digit recognition

implemented in spiking neurons (Tang and Eliasmith 2010)) and draws the answers

by means of arm with simulated muscles (biologically plausible hierarchical motor

control). It employs multiple learning algorithms (Bekolay, Kolbeck, and Eliasmith

2013) and uses human-scale knowledge representation (Crawford, Gingerich, and

Eliasmith 2013). It is capable of switching between several complex tasks, such as

parsing sequentially presented commands (Stewart and Eliasmith 2013), instruction

following (Choo and Eliasmith 2013), question answering. For implementing top-

down-defined behavior, the architecture employs Neural Engineering Framework

2.5. SELECTED DESIGN METHODS OF MODULAR SYSTEMS 31

(NEF) (Eliasmith and Anderson 2003), which serves as a "neural compiler". For

abstraction of information in the ANNs, the SPAUN uses a principle called Seman-

tic Pointer, which compresses information from higher-dimensional space (lower-

level representation) to the lower-dimensional space (higher-level representation).

the Semantic Pointer also points the other way for the purpose of decompressing

the information from higher-level representation, thus it can serve e.g. for symbol

grounding. The compression of the knowledge and symbolic operations are based

on circular convolution and implemented by means of Vector Symbolic Architecture

(Stewart, Bekolay, and Eliasmith 2011).

It is an interesting approach for building large-scale neural-based and biologically-

plausible systems, which combines both worlds: ability to build complex architec-

tures by means of top-down design and highly noise-robust neural-based implemen-

tation. Detailed description of the architecture can be found in (Eliasmith 2013).

To conclude this chapter: there are many more cognitive architectures that could be

mentioned here. The architectures may be built either as Unified Hybrid Systems (such

as the Leabra and SPAUN) or Transformational Hybrid Systems (that is pluralistic, such

as the SAL). But the inherent common property of such architectures is their modularity.

This is caused by the fact that the complexity of behavior required from these systems is

so big to be handled by a non-modular architecture. In the end, the human brain is also

a modular system, so the modularity appears to be the correct approach here.

2.5 Selected Design Methods of Modular Systems

The thesis deals with some generally applicable approach for automatic (or semi-

automatic) design of hybrid modular systems. The task can be decomposed into two

main parts, these are: set of subsystems that can be used and a suitable way of

combining these subsystems into a bigger system. Selected state-of-the-art on

both of these topic will be covered in this Chapter. First, the focus will be put on

ensemble-like methods of designing more modular structures from some set of basic com-

ponents. The second main part of this chapter will mention several selected modules (or

more generally things that can be represented as a module), that are potentially useful

for designing agent architectures. The rest of the knowledge will be covered in one of the

32 CHAPTER 2. STATE OF THE ART

Figure 2.14: Scheme of the SPAUN architecture. The architecture processes

sequentially-presented commands in form of hand-written digits and an-

swers by drawing its answers by means of physically modeled arm. Both

the visual processing and motor control are implemented as hierarchical

systems using Semantic Pointers. "Thick black lines indicate communi-

cation between elements of the cortex; thin lines indicate communication

between the action-selection mechanism (basal ganglia) and the cortex.

Boxes with rounded edges indicate that the action- selection mechanism

can use activity changes to manipulate the flow of information into a

subsystem. The open-square end of the line connecting reward evaluation

and action selection denotes that this connection modulates connection

weights" (Eliasmith, Stewart, et al. 2012).

following Chapters if needed.

As mentioned before, it is often beneficial to build systems in a modular way. Such

systems can be more easily designed, controlled and debugged7. Moreover, it is also

useful to design hybrid systems. One algorithm (type of solution) usually performs well

on one set of problems, but on some problems it may tend to stuck in local optima, or may

not work at all. For example, heterogeneous systems that employ multiple algorithms in

parallel and combine their outputs together may perform generally better than any of

these algorithms alone. Another benefit is that multiple different algorithms can suggest

7These are called Unified Hybrid Systems in the text.

2.5. SELECTED DESIGN METHODS OF MODULAR SYSTEMS 33

multiple good solutions8 at a time, which increases robustness of a system and enables it

to compose further new solutions. But since there is more options how to combine them

(in parallel, serial, recurrent. . .), there arises a question: How to combine multiple

subsystems together? It turns out that there already exists relatively widely used

theory concerning with such a question, which is called Ensemble Methods.

Generally, an Ensemble Method is an approach of combining results of multiple algorithms

in order to obtain results superior to those that can be provided by any of the algorithms

alone. Currently, these methods are commonly used in the field of Machine Learning

for mostly supervised9 learning (Opitz and Maclin 1999). Generally these hybridized

machine learning systems are referred as Multiple Classifier Systems (MCSs), but similar

key-words could be: "committee of machines" or "mixture of experts". It was shown that

the bigger diversity in particular models (contained in the MCS), the better the overall

performance of the ensemble (Brown et al. 2005). Also, it was shown that it may be

beneficial to use relatively simple (or randomly-generated) ensembles in MCSs (Gashler,

Giraud-Carrier, and Martinez 2008).

First, some basic techniques used in Ensemble Learning will be used. Then, selected

Ensemble Methods (with application that is potentially useful in this thesis) will be

described.

Bucket of Models is an ensemble methods which also holds multiple learners "in par-

allel", where each problem (task) is solved by the model which showed the best per-

formance on the problem. For each problem, the training data are divided into

the training and testing subset, all models are compared on this dataset and the

one with the best performance is selected. From now on, the particular problem is

solved by the chosen model. It was shown that the Bucket of Models has better

performance while averaging on multiple problems (Džeroski and Ženko 2004).

Bootstrap Aggregating - Bagging this method uses multiple models in one layer

"used in parallel". The topology of Bagging could be liken to the feedforward

ANN with one hidden layer. Each model receives randomly selected subset of input

(training) data and suggests the solution. The overall decision is based on voting

of all models, while all have equal weight. Different methods of averaging of results

models can be found. This method is useful for preventing the ensemble to over-fit

8solution proposed by an algorithm can be called hypothesis in terms of Machine Learning
9but also semi-supervised or unsupervised methods can be found

34 CHAPTER 2. STATE OF THE ART

the training data. A typical example of Bagging are random forests, where each

tree in the forrest receives different input data.

Boosting could be named as more systematic Bagging. The method works with a set of

"weak learners" (multiple inaccurate rules-of-thumb (Freund and Schapire 1997))10

and tries to combine their hypotheses to create a "strong learner" by sequential

systematic adding of new learners. There are two challenges. First: how to di-

vide training data for particular weak learners? And second: how to combine weak

hypotheses into the resulting output? While adding new learner to the ensemble,

connection weights to this learner of (currently) misclassified data samples are in-

creased. This forces new learner "to focus learning" on those currently misclassified

data, and therefore to improve the overall performance of entire ensemble. Com-

pared to Bagging, the main difference is that models are not trained (added) in-

dependently here. Also, compared to Bagging (which primarily reduces variance11

error), the Boosting reduces bias12 error of the ensemble’s prediction. The most

known algorithm implementing boosting is called Adaboost (Freund and Schapire

1997), which implements the Adaptive Resampling and Combining.

Stacking , which is also called stacked-generalization and uses an learning algorithm

which combines learned predictions from other learning algorithms. This can be

likened to feedforward multi-layer ANN topology. Such a technique is very success-

fully used for example in Deep Belief Networks (DBNs). DBN typically features a

multilayer architecture, where layer is sequentially trained on data produced by the

previous (already trained) layer.

One of my goals is to compose various sub-systems that are useful for autonomous agents

for building more complex modular architectures. Examples of these systems are for

example: planning, decision-making, action selection mechanisms etc. The Ensemble

Theory can be potentially used for this particular task. The following sub-chapters will

mention some particular (potentially ensemble-like) methods used for the analogous prob-

lems.

10Weak learner produces a hypothesis which is only slightly better than random guessing.
11The variance is how much the predictions for a given point vary between different realizations of the

model.
12Bias measures how far off in general the models’ predictions are from the correct value.

2.5. SELECTED DESIGN METHODS OF MODULAR SYSTEMS 35

2.5.1 Selected Ensemble-Like and Related Approaches

This thesis should deal with autonomous building of complex modular systems with

unified Input-Output (I/O) interface. The design of connections between these MIMO

(Multiple-Input Multiple-Output) systems is computationally difficult problem. This

chapter shows some knowledge related to design of these networks. Also, some examples

of modular neural (hybrid) architectures are briefly described here.

2.5.1.1 Group of Adaptive Models Evolution

Figure 2.15: The comparison: original MIA GMDH network and the GAME network

(Kordík 2006). GAME supports interlayer connections and heterogenous

nodes with more than two inputs. Various types of neurons as well as

sub-networks implementing back-propagation learning are used.

An interesting alternative to evolutionary design of ANNs is described in Kordik’s disser-

tation thesis (Kordík 2006). This publication describes method for automated Ensemble

Learning, called Fully Automated Knowledge Extraction using Group of Adaptive Mod-

els Evolution (FAKE GAME). It is based on modified Multi-Layer Algorithm for Group

Method Data Handling (MIA-GMDH). This modification, called GAME automatically

designs feedforward networks of heterogenous nodes used for ensemble learning. GAME

builds feedforward networks of nodes and uses EA for consecutive adding of new layers

36 CHAPTER 2. STATE OF THE ART

into the network. Connections of nodes in new layers are not restricted to be connected

only to previous layer, but can be wired to the output of any node currently contained

in the network. Comparison between MIA-GMDH and GAME produced networks is

depicted in the 2.15.

Figure 2.16: Meta-learning: network of supervised classification algorithms (Kordík

and Černý 2012). Network consists of ANN, Decision Tree (DT) and

K-Nearest Neighbor (KNN) algorithm.

An example of modular system composed of several supervised learning algorithms used

for classification was presented in (Kordík and Černý 2012). The network of classifiers

depicted in the fig.2.16 solves classification task for benchmark problem.

My thesis has similar goals in several ways with FAKE GAME. My hybrid networks will

support MIMO subsystems, compared to these Multiple-Input Single-Output (MISO)

units. Compared to this, result of my thesis will be able to design more general architec-

tures. Also, aims of this thesis will be in generating systems that exhibit complex (also

internal) behaviour.

2.5.1.2 Cartesian Genetic Programming

One of very interesting modifications of Evolutionary Computation (EC) is called Carte-

sian Genetic Programming (CGP). In (Sekanina 2010; Fišer et al. 2010) authors used

CGP for autonomous design of logic circuits, which is able to meet given requirements

for these circuits better than a human designer. The Figure 2.17 shows an example of

one-bit adder implemented by CGP-designed network of logic gates.

2.5. SELECTED DESIGN METHODS OF MODULAR SYSTEMS 37

Figure 2.17: Example of CGP-designed logic circuit implementing one-bit adder

(Vašíček and Sekanina 2004). Adder is composed of four XOR gates

(marked with no.2) and one AND gate (marked as 3).

Khan et al. shown encoding shown how CGP can be modified to represent neural networks

(Khan, Julian, and Halliday 2009). The publication presents The Cartesian Genetic

Programming Computational Neuron (CGPCN) a method of automatic design of ANNs

based on CGP and its performance on playing checkers.

Potentially interesting combination of EA and LSTM can be seen in (Schmidhuber, Wier-

stra, and Gomez 2005), where EA is used to design LSTM for data series prediction.

2.5.2 Ensemble Methods for Agent Architecture Design

This section will contain mainly some applications of ensemble-based design in the context

of agent architectures. Here, a system will be called an agent architecture if it contains

some "sensory system" and some "actuator system", which enables it to take actions -

to somehow change the "state of the world". The paper (Briot, Meurisse, and Peschan-

ski 2006) presents a direction of research similar to the one used in this thesis. Agent

architectures are decomposed into its common components (e.g. obstacle avoidance, fol-

lowing gradient, escaping). These standardized components can be then composed into

bigger architectures in the framework called MALEVA. Composing more simpler com-

ponents together produces an architecture with more complex behavior. In the MALEVA

framework, the components, which represents simpler behavior are also encapsulated as

software components. A graphical description of two connected subsystems in the MAL-

38 CHAPTER 2. STATE OF THE ART

EVA framework can be seen in the Fig.2.18.

Figure 2.18: Description of the MALEVA framework. The framework features data

ports and control ports. Data ports are used to pass data, while the control

ports trigger a computation in a particular component. In the scheme on

the left, the A component executes the computation, sends data and then

sends the control signal. Compared to this, on the scheme on the right,

the data are processed concurrently (Briot, Meurisse, and Peschanski

2006).

There are many examples of ensemble-like architecture designs which employ the Rein-

forcement Learning (RL). The RL tends to suffer from course of dimensionality, which

is probably the reason for emerging many modular (e.g. hierarchical (Kadlecek and

Nahodil 2008; Vítků 2011)) architectures, or those which directly refer to this kind of

architectures as ensemble-methods (Wiering and Hasselt 2008). It was also shown that

it is possible to combine multiple learner and/or planning subsystems together into one

complex architecture (Zhang et al. 2012).

2.6 Selected Modules for Ensemble-Based Systems

This section will describe some selected neural network "ensembles". Here, by word

ensembles is meant some self-consistent component (often called "module" in the text),

that can be used for example for: learning, predicting, signal generating etc. Such a

module can be often used either stand-alone, or in a network of multiple modules. The

latter approach is called ensemble method, which is described in the previous section.

2.6. SELECTED MODULES FOR ENSEMBLE-BASED SYSTEMS 39

2.6.1 Modules for Temporal Sequence Learning

The description of typical network structures as is feedforward, recurrent / Hopfield

network will not be described here. Rather, the focus will be put on some less-known

network structures which could be reused in modular systems together with classical

feedforward networks with back-propagation-based learning. Good overview of most used

ANN architectures and corresponding learning rules is in (Wilamowsky 2003).

It is assumed that there are two crucial characteristic features of human brain which

make it so special in real-world "applications":

Pattern Recognition Probably the most important feature of neural networks is their

ability to learn and recognize patterns. Their ability of associative learning and

robust recognition of similar objects/situations still has not been fully replicated in

artificial systems.

Sequence Recognition The ability to understand one’s environment, essential for in-

telligence, is not static. The order in which events occur can be even more important

than the events themselves, and an intelligent system, whether it be a frog, a robot,

or a human, must be able to detect this ordering and to reproduce this ordering on

some cue (Wang and Arbib 1990).

In a simplified model of brain, each of these qualities could be implemented by one module,

or sub-network. Then we can combine these modules in e.g. hierarchical structure.

The resulting system should recognize sequences of patterns, patterns of sequences of

patterns and so on..

This thesis focuses on investigation of possibilities of interconnection of various modules

together and benefits of particular structures. This is the reason why rather small sub-

networks with capabilities that are potentially useful for designing artificial agents will

be described here.

The following sub-sections will describe some types of neural circuits that are able to rec-

ognize sequences. Temporal sequence is composed of components, which are alternatively

called spatial patterns or symbols.

40 CHAPTER 2. STATE OF THE ART

2.6.1.1 Time Delay Neural Networks

Time Delay Neural Networks (TDNNS) can recognize and reproduce time sequences and

can be used for temporal association, that is to produce particular output sequence in

response to a specific input sequence. The main idea is in use of floating window over

the input temporal sequences. This modification of feedforward network is the simplest

approach to learn sequences. One benefit is that the conventional back-propagation

algorithms can be used for learning. The main downside is in limited length of delay line,

where for larger delays more neurons are needed, see Fig.2.19.

Figure 2.19: Time Delay Neural Network with uniform delay. Triangle represents unit

delay of input signal. This sampled signal is fed into a typical feedforward

network structure. Network can learn e.g. to predict the following input.

There are several improvements of this approach, as is allowing of non-uniform sampling,

according to the equation 2.1. This improvement introduces ωi, which denotes waiting

time before input neuron i. Equation 2.1 describes how the input values are processed,

n is a number of input neurons. In this approach, the memory is not limited only by the

n previous samples.

x̃i(t) = x(t− ωi) (2.1)

2.6.1.2 Short-Term Memory

Short-Term Memory (STM) is based on use of so called dual-neurons (Wang and Arbib

1990). In each dual neuron there is one input, one output and a recurrent connection

between neurons which temporally stores information received on the input, strength of

2.6. SELECTED MODULES FOR ENSEMBLE-BASED SYSTEMS 41

this information decays with time, see Fig.2.20. This system is able not only to remember

stored information, but also is able to determine how old the information is.

Figure 2.20: Dual neuron and it’s response which maintains a signal for a certain

memory span.

2.6.1.3 Long-Term Memory

Long Term Memory (LTM) is similar type of learning as a STM, but compared to STM

the LTM is able to learn longer sequences and to store them for a longer period of time.

LTM is designed for spatio-temporal learning and recognition and is inspired by the

longterm memory model of the human cortex. The LTM presented in (Nguyen, Starzyk,

Wooi-Boon, et al. 2012) is able to process real-valued and multidimensional sequences.

The presented network works similarly to classical algorithms for sequence recognition.

Input sequence is passed to the inputs of structure and one output indicates whether the

sequence matches the stored one - the memory.

The LTM network uses sparsely-connected nodes organized in four layers, see Fig.2.21.

Layers are named as: input layer, the primary layer, the intermediate layer, and the

secondary layer. The primary layer consists of primary neurons, depicted as R. The

content of a training sequence is stored as the synaptic weights between input and primary

layers. The role of the primary layer is to compute the degree of similarity between an

input vector and components of the stored sequence (Nguyen, Starzyk, Wooi-Boon, et al.

2012). The two upper layers then are used to indicate how well the input vector matches

the stored sequence. The matching is given by the sum of all correct values on inputs.

42 CHAPTER 2. STATE OF THE ART

Figure 2.21: Structure of model of Long-Term Memory for recognition of temporal

sequences. One LTM module has L inputs and one output describing how

well the input sequence matches to the stored one. Sequence is stored in

connection weights between input and primary layer of neurons.

2.6.1.4 Categorization and Learning Module

Other potentially useful approach for composing modular neural systems is called Cate-

gorizing and Learning Module (CALM) developed by J. Murre and published in (Murre,

Phaf, and Wolters 1989). It is a stand-alone module capable of sequential learning, which

can be embedded into more complicated system, e.g. into a hierarchy. Its structure is

inspired in cortical mini-column and is composed of neurons with real-valued continuous

activation function. Its structure is depicted in the Fig.2.22.

Connections inside of CALM are static, only inter-module weights are modified by a

learning algorithm. V-nodes and R-nodes form matched pairs - each R-node excites

only one V-node. Each V-node produce much stronger inhibitory signal back to non-

corresponding R-nodes. Therefore, if the V-node wins the competition, all other R-nodes

are inhibited and only one pair of nodes remains active. A-node (arousal node) integrates

excitation and inhibition from other nodes in the module. If only one R-V pair is active,

A node does not produce signal. In other situations A-node injects noise back into the

network and stimulates competition between particular node pairs.

2.6. SELECTED MODULES FOR ENSEMBLE-BASED SYSTEMS 43

Figure 2.22: Categorizing and Learning Module. Solid circles indicate inhibitory, ar-

rows excitatory connections (Murre, Phaf, and Wolters 1989). R denotes

Representation nodes, V denotes Veto (inhibitory) nodes.

Later, the modification of CALM so that it can learn sequences, was shown and named

CALM2 (Koutník and Šnorek 2004). Further, the CALM capable learning sequences was

improved by A. G. Tijsseling, who added ability to adapt the particular module size to

the complexity of given problem (Tijsseling 2005).

2.6.1.5 Long Short-Term memory

Long Short-Term Memory combines abilities of both LTM and STM, is composed of

more complicated and less biologically accurate modules with some possibilities of their

control. LSTM is a good example of system that is on a boundary between artificial

neural networks and top-down designed module, which has inputs,outputs and rigid inner

structure.

2.6.2 Signal Generators

In contrast to temporal sequence recognition, ANNs are also successfully used for gen-

erating the signal. Recurrent ANNs (RNNs) can be used for generating various types

of signals, from chaotic to periodic ones. Signal generators often belong to group called

reservoir computation, where an input signal is fed into a (randomly generated) dy-

namical system (reservoir). The dynamics of the reservoir map the input to a higher

44 CHAPTER 2. STATE OF THE ART

Figure 2.23: Long Short-Term Memory Diagram. The cell has an internal state S

together with a forget gate (GF) that determines how much the state is

attenuated at each time step. The input gate (GI) controls access to the

cell by the external inputs that are summed into the
∑

unit, and the

output gate (GO) controls when and how much the cell fires. Small dark

nodes represent the multiplication function (Schmidhuber, Wierstra, and

Gomez 2005).

dimension.After that, a simple readout mechanism is trained to read the state of the

reservoir and transforms it to the desired output signal. This section will briefly describe

two interesting types of neural-based signal generators.

2.6.2.1 Echo State Network

The first type of signal generators is called Echo State Networks (ESN) - a good example

of reservoir computation (Jaeger and Haas 2004). These networks can be used as signal

generators tunable by input signal. ESNs are composed of neural ensembles containing

randomly and recurrently interconnected neurons. There is predefined set of inputs neu-

rons, but no particular outputs are defined a priori. Due to recurrent connections between

neurons, ESN exhibits chaotic behavior as a response to input signals. The desired output

signal (as a response to input values) is obtained by tuning weights of connections from

hidden neurons to output ones. Figure 2.24 depicts the principle of function of ESN.

2.6. SELECTED MODULES FOR ENSEMBLE-BASED SYSTEMS 45

Figure 2.24: The basic schema of an ESN. Weights between hidden and output neurons

are optimized so that the desired output signal is found (Jaeger and Haas

2004).

2.6.2.2 Central Pattern Generator

Central Pattern Generator (CPG) has the similar structure as ESN networks do. CPGs

also contain recurrently connected neurons, but instead of randomly connected ensembles

of neurons, CPG ensembles are (in case of artificial system) manually designed to produce

desired periodical signal.

This approach is inspired in wiring of neurons in animal’s spinal cord. In most animals,

many muscles are not controlled directly by the brain. Brain sends higher-level commands

to spinal cord, which is able to produce predefined patterns of behavior and send these

patterns to particular muscles. This predetermines use of CPGs mainly for controlling

the gait in legged robots. As mentioned in (Pei et al. 2012): There are three common

motion control methods: model-based method, behavior-based method and biocybernetics

method. Model-based method is difficult to establish dynamic model and has poor real-

time capability and environmental adaptability; behavior-based method is mainly used for

insect intelligence bionic; biocybernetics method realizes the robot’s motion using rhythmic

movement of animal. The CPGs can be conveniently used to implement the third method

mentioned.

Oscillatory behavior between neurons can be generated in two ways: through the inter-

action between neurons (network based) or by means of interactions among currents in

individual neurons. The basic structure that can produce rhythmic behavior is called

Half-Center Oscillator (HCO), which consists of two wired neurons. The scheme of HCO

which generates sinusoid signal is in the fig 2.25.

46 CHAPTER 2. STATE OF THE ART

Figure 2.25: Generator of sinusoidal signal (Zainer and Nagashima 2002). Each neu-

ron has recurrent loop of weight 1. One connection C is positive, the

other negative. As the signal goes through positive connection, time de-

lay of neuron and negative connection, the sinusoid signal is produced on

outputs of both neurons.

Another example of simple CPG which generates sinusoidal signal is in the Fig.2.25, this

principle is similar to dual neurons. Other various sub-networks which are able to produce

rhythmic activity are mentioned in (Matsuoka 1985), example of quadratic polynomial

generator polynomial composed of two neurons is in (Zainer and Nagashima 2002).

Interesting application of CPG is for example in (Ijspeert et al. 2007). Here, the re-

searchers modeled wiring of neurons in a spinal cord of salamander. This animal is

not capable of arbitrary movement, neurons in his spinal cord are wired in the manner

which automatically produces predefined behavior patterns. The scheme of spinal cord

of salamander is depicted in the Fig.2.26.

Another interesting application of CPGs ability to produce periodical signals is in (Zainer

and Nagashima 2002). They developed language for designing ANN topologies which ex-

ploit CPGs. This special language was then used for composition of ANN which controls

the walking of humanoid robot called Humanoid for Open Architecture Platform (HOAP).

Central pattern generators were used here for generating periodical signals for robot joints

which produce smooth walking. The scheme depicting a part of ANN used for generating

the motor commands is depicted in the Fig.2.27. Neural network is composed of neurons,

dead neurons (neurons without time delay - marked with small circle), thresholds (tri-

angle) and switches (triangle with switch input). Compared to model-based approaches,

this controller was assembled with only several lines of code.

2.6. SELECTED MODULES FOR ENSEMBLE-BASED SYSTEMS 47

Figure 2.26: Model of spinal cord for robotic salamander. Salamander is not capable

of arbitrary movement, neurons in his spinal cord are wired in the man-

ner which automatically produces predefined behavior patterns. Model is

composed of series of CPGs which produce given signal to control the

salamander movement (Ijspeert et al. 2007).

48 CHAPTER 2. STATE OF THE ART

Figure 2.27: Part of the Central Pattern Generator-based network which controls walk-

ing of humanoid robot HOAP (Zainer and Nagashima 2002). Nodes

marked Ji represent actuators on joints of robot. We can see that on

the top of the network, there are four generators of sinusoid signal, each

with different properties.

Chapter 3

Problem Analysis and Proposed

Solution

The main disadvantage of ANNs is obvious. Despite their robustness, these often black-

box-based solutions are hard to repair or modify. There are ways how to engineer big

modular ANNs, but these large-scale networks have often too big computational require-

ments (e.g. as (Eliasmith, Stewart, et al. 2012)).

Compared to this, more classical AI (that is: top-down approach or explicitly engineered

approach general) is able to provide solutions to very complex problems, including de-

liberative behavior originated from symbolic operations (e.g. playing chess, design of

controller etc..). The problem here is of course that these solutions are often able to solve

very constrained part of the problem, but are not robust enough to work when something

goes wrong. Also, in most cases: the more advanced and complicated top-down-designed

system, the more domain specific is.

Main goals of this thesis are to bridge over these common design problems by proposing

the framework that aims to fulfill the following main goals:

• to provide unified approach for designing the architectures

• to build reusable (and as domain independent as possible) parts of the architectures

• to simplify design and prototyping of new architectures

• to enable novel uses of current algorithms (e.g. new combinations with other

algorithms/sub-systems)

49

50 CHAPTER 3. PROBLEM ANALYSIS AND PROPOSED SOLUTION

• to combine benefits of both design approaches: top-down and bottom-up

• to provide the possibility of automatic design of architectures for given task.

The following Section will describe main challenges during designing of such a framework.

The second Section will describe the type of problems that will be the proposed approach

tested on. The last Section will describe the proposed solution to the problems stated

earlier.

3.1 Problem Analysis

In the ideal case, such a framework should be able to combine various sub-systems to-

gether into one bigger hybrid architecture (for example path-planning, vision systems,

voice recognition, neural networks, robotic HW etc.). There are many levels of challenges

on the path to the solution, these are mainly: theoretical, issues with compatibility, im-

plementation specific, practical etc. Those main will be described in this Section. The

Section 3.3 will address all of these challenges.

3.1.1 Different Types of Communication

The requirement of connecting various systems has one main obvious problem. The

first question is: how to obtain method of connect sub-systems together, that is general

enough? First, in the ideal case, it would be very suitable to have an unified representation

of information in the entire system. It turns out that this requirement is very strong

and hard to fulfill. There are two main problems here: some sub-systems may employ

continuous time representation, some other may require discrete time steps.

The second problem is in the form of representation of the information, that needs to

be passed between sub-systems. There are three main types of information that were

considered, passing: explicit symbolic representation, real-valued numbers and spiking

communication. For instance, it is essential that almost all planning systems use the

symbolic representation. Compared to this, the output of a typical ANN is in form of

vectors real-valued numbers. Moreover, SNNs may produce series of spikes, rather than

3.1. PROBLEM ANALYSIS 51

anything else.

The encoding of information in the human brain is not known so far. There are several

types of encoding of information in SNNs that are used currently (Ponulak and Kasinski

2011). In the simplest case (not fast-changing information) the rate-code can be used,

where the average firing rate corresponds to the real-valued number represented by the

neuron (or the population of neurons).

More common problem is in converting the real-valued data into symbolic representation.

This is known as a symbol grounding problem, where the mapping between continuous

values and the symbolic representation needs to be defined. Currently, tare several dif-

ferent ways how to tackle this problem. As the most intuitive one: the mapping between

symbolic and sub-symbolic1 can be defined manually, by use of domain knowledge. This

mapping can be also learned (mined) from data, ideally online during the operation of

the system. Several examples of coupling the ANN with system employing symbolic rep-

resentation can be found in (Mcgarry, Wermter, and Macintyre 1999). Probably more

promising solution is to represent symbols together with the symbolic operations directly

the real-valued data, as shown in (Eliasmith and Anderson 2003). Systems employing

this approach then do not need an explicit conversion from sub-symbolic to symbolic

representations, but this approach is not widely used so far.

3.1.2 Theoretical Issues with Automatic Design of Modular

Systems

Completely another challenge then lies in the number of possibilities of combinations of

the sub-systems together, into one bigger system. Typically, a representation of complex

system composed of multiple sub-systems would not be a problem, but searching in space

of possible systems is a big issue.

For example on the ANNs, the neurons have one output and one input (because all

weighted input values are accumulated together). Searching for correct weighted connec-

tions in classical ANNs of general (that is fully connected topology) is a big challenge,

since the number of connection weights grows exponentially with number of neurons in

the network. This problem is tackled by two main approaches. First is in constraining

1Sub-symbolic representation is here referred to as real-valued one.

52 CHAPTER 3. PROBLEM ANALYSIS AND PROPOSED SOLUTION

the connections in the network, for example to only layered feed-forward topologies. The

second is in modularization of ANN into smaller sub-networks (Auda and Kamel 1999).

But the goal is to represent the following: sub-systems of different types and sub-systems

with multiple different inputs and possibly also sub-systems with multiple different outputs.

This means that one resulting system should contain multiple types of Multiple-Input

Multiple-Output (MIMO) systems combined together. As mentioned in (Kordík 2006),

the searched space of such a problem grows mind-blowingly fast. Also, note that the

Kordík’s approach works only with Multiple-Input Single-Output (MISO) sub-systems.

3.1.3 Reusability of Sub-systems and Domain Dependency

Another challenge is in requirement of seamless representation of different sub-systems.

For example, it is not suitable to represent one neuron model in the same way as the plan-

ning system. Typically, many of more complicated sub-systems will require either domain

configuration or "definition of the goals" - what to do (that is: what to learn, or search

for) in a bigger system. In some research-fields (e.g. vision) it was shown that domain

independent (or/and biologically inspired) solutions exhibit comparable performance to

those domain-specific. Despite this fact, the many of domain-independent algorithms

have to be at least tuned for given task. That is, setting at least a few parameters may

be necessary for each sub-system.

3.1.4 Implementation and Practical Issues

Lats, but not least, there are practical issues of such a framework. It should be capable

of integrating of multiple sub-systems together. During designing and implementation of

some complicated system, is often suitable to use some existing solution/implementation.

This means that various sub-systems may be implemented in different programming lan-

guages. Moreover, some system may require to be run on a specific machine with a specific

HW (such as for example GPU-accelerated SNNs (Fidjeland, Roesch, et al. 2009)). Of-

ten, a single computer may not be powerful enough to run entire simulation, so some

kind of de-centralized solution may be required.

Recapitulation This Section described main challenges on a way of defining a frame-

3.2. TASK DESCRIPTION 53

work, that is capable of representing an combining as general sub-systems as possible

together into bigger modular systems. There is many problems, starting from the

representation of communication, problems with domain dependency and configu-

ration of particular sub-systems. Also, the practical issues need to be taken into

account during designing the framework.

3.2 Task Description

The proposed framework should be held as general as possible, and therefore should be

applicable also on tasks outside this scope, but still there are some inherited and common

properties of tasks the author intend to use the framework. This Section will describe

main properties of domain, where the approach will be tested.

The thesis focuses on the agent/cognitive architectures in general. Common property

of such systems is their operation in the closed loop with the world, or some simulated

environment. Typically, it is expected that such a system learns either from experience

by interaction with the environment and/or by means of unsupervised learning. So there

is no requirement for supervised learning from input-output examples. Rather, these

systems will work from incoming continuous streams of data and produce some actions

on outputs.

Figure 3.1: Basic type of use of an agent architecture. The system has inputs and

outputs connected in a closed-loop with the agent’s body which is situated

in an environment (either simulated or real).

Typical setup of an architecture can be seen in the Fig.3.1. The overall system is therefore

designed for the known inputs and outputs, which can be used for constraining the space

54 CHAPTER 3. PROBLEM ANALYSIS AND PROPOSED SOLUTION

of searched architectures. The agent architecture should be able to successfully perform

some meaningful task in the environment. The particular task is defined during the

experiment setup, but in general, an agent architecture should be able to:

Sense the external world. Which includes mainly sensory data pre-processing, such

as for example data fusion, dimensionality reduction etc. . .

Represent the knowledge about world, which includes mainly modeling of the

world. For example learned symbols, relations between symbols etc.

Represent/obtain goals and be able to meet them. Examples of some potential sub-

systems with the following functionality:

• generating internal/external goals,

• reasoning/planning in the model of the world,

• policy (plan, strategy) creation.

Policy execution module, which implements some action selection (what will be

placed to actuators) and possibly some policy persistence (as mentioned in the

Section 4.3.1), representing agent’s intentions.

Here will be a bit better description of typical sources of agent’s goals in the domain

of ALife. Each agent should have some goals, goals can be either binary (fulfilled/not

fulfilled) or can define some optimal conditions. Then, the current conditions of agent

are continuously optimized in order to get close to those optimal conditions. Both types

of goals can be defined from the outside (as some explicitly defined mission passed to the

agent’s sensors) or from the inside, defined as some agent’s need.

Recapitulation This chapter described a typical use of agent architecture in the ALife

domain. This characterizes the target use of the architectures that the author

intends to generalize. The proposed framework will be shown on examples with

similar properties as described in this Section, but the proposed framework should

not be constrained only to this specification.

3.3. PROPOSED SOLUTION 55

3.3 Proposed Solution

This Section will describe the original solution proposed by the author. First, the moti-

vation for this framework will be written, then the framework itself will be described in

more detail.

The main and original idea of this thesis is to attempt to unify representation of

current (computer science-oriented) knowledge in a compatible way. Currently,

the knowledge about new algorithms is currently passed through the description of the

algorithm in a scientific paper. Usually, the reader needs to understand the information

in the paper correctly, re-implement the algorithm, debug it and test it on the data. This

is highly inefficient way. A better solution is to share directly also implementations of

new algorithms. Even better solution is to provide common platform for sharing new

algorithms. In case that algorithms have unified communication interface, these can be

directly used for another research, for example composing new modular systems.

Therefore one of the main contributions of this thesis lies in the definition of the framework

that enables combination of sub-systems of different nature together in bigger modular

architectures. These architectures can be hand-designed from existing sub-systems. Fur-

thermore, the framework enables automatic design of new modular architectures specif-

ically for a given task, which could potentially lead to automatic discovering of entirely

new modular systems.

As can be seen in the following Sections, the framework is inspired in Modular Neural

Networks (MNNs), therefore each sub-system is called Neural Module here. Particu-

larly, the Neural Module represents an enclosed sub-system in the framework that is able

to operate as a stand-alone unit, it receives data, implements a given computation and

sends new data further on outputs. Since the framework is mentioned to employ het-

erogeneous sub-systems, it was called Hybrid Artificial Neural Network Systems

(HANNS). The following text will describe the proposed framework while addressing

problems stated in the Problem Analysis (Section 3.1).

3.3.1 Unified Type of Communication Between Sub-systems

First, the proposed framework deals with different representations of information for

different Neural Modules. Typical hybrid systems need to explicitly deal with conversion

56 CHAPTER 3. PROBLEM ANALYSIS AND PROPOSED SOLUTION

of information, usually between symbolic and sub-symbolic domain. In order to create

a general approach enough, the HANNS does not allow explicit transformation between

information representation. Instead, one communication protocol was selected to be used

across the entire system. This allows arbitrary combination of different Neural Modules

together.

The framework is inspired in the ANNs, so that the communication is realized through

(vectors of) real-valued numbers passed between particular Neural Modules. Since there

is no (currently discovered) optimal common type of communication, this common rep-

resentation was chosen because the both other types of communication described in the

Section 3.1.1 can be relatively easily converted to this one.

Figure 3.2: Principle of communication between Neural Modules and translation of in-

formation. Each Neural Module (algorithm) is allowed to use an arbitrary

type of inner information representation. The only requirement is that the

data passed to the Module and sent by the Module have predefined format

- vectors of real-valued numbers. The example shows a sub-system using

symbolic representation.

Note that the HANNS framework does not define how the information is translated from

one type of communication to another. Instead, it is a responsibility of Neural Module to

implement own transformation of input and output information. The disadvantage is that

this poses some constraints on use of such a module, there are the following possibilities

in general:

The transformations are predefined. Some of these definitions may be domain spe-

cific (for example some symbolic representations), but there are cases that this does

not hold. As example of domain independent transformation can be mentioned the

rate-code in SNNs.

The transformations are learned from data. For example, the planning sub-

3.3. PROPOSED SOLUTION 57

system can learn symbolic representation from received data online, during the

simulation. In this case, the inner representation of information in the sub-system

changes during the simulation, so that the sub-system may not operate optimally,

or with human-readable data. For example, a Neural Module using symbolic rep-

resentation and implementing planning engine was tested as a part of one Bachelor

Thesis (Skála 2013).

In some cases, such a requirement of one communication interface can be too strict, but

it enables the framework to combine the sub-systems in almost arbitrary ways. Further-

more, a more practical side of the framework is described in the Section 3.4.2.

Note that the communication in the HANNS is event-driven: if the Neural Module re-

ceives data, it processes them and the result of computation sends on own outputs.

3.3.1.1 Reusability of Sub-systems and Domain Dependency

The framework suggests that as domain independent as possible Neural Modules are used.

But even this cannot be done some cases. Aside of data input/outputs, a Neural Module

has also configuration inputs. These inputs have the same form as the data inputs, but

their usage is optional. The configuration inputs define values of configuration parameters

of the sub-system (algorithm) encapsulated in the Neural Module (such as learning rate,

forgetting rate etc). If the configuration input is not connected, the default value of

parameter is used.

Since the configuration inputs are represented seamlessly as the data inputs, the configu-

ration of Neural Module can be changed also during the simulation. This can be done by

connecting it to some source of signal (real-valued data). More on reusability of Neural

Modules will be described in the Section 3.4.2.

Also, many algorithms can operate with data of different dimensionality (e.g. k-means

algorithm etc) and are able to provide data of various dimensionality. It is not possible to

change the number of inputs/outputs during the simulation of the system. Therefore these

properties need to be configured before the architecture is simulated. The framework can

also employ simple linear the constraints on the input/output dimensionality of Neural

Modules. These can be written in form of a simple equations. For example, for the neuron

model, it would be: noin = 1; noout = 1. Or for example for the Principal-Component

Analysis algorithm (PCA) it would be: outdims ≤ indims. This enables

58 CHAPTER 3. PROBLEM ANALYSIS AND PROPOSED SOLUTION

3.3.2 Design of Modular Architectures in the Framework

This section will describe main possibilities of designing new architectures in the HANNS

framework, these are mainly: creating hand-designed architectures and automatic design

of new architectures specifically for a given task.

Figure 3.3: Principle of design of new architectures based on a particular task. The De-

signer is either the user (human designing the architecture) or some kind

of optimization algorithm. Based on a given task, set of Neural Modules is

picked from the library and placed in the architecture. Then, the connec-

tion weights between Neural Modules and architecture inputs/outputs are

optimized in order to gain the desired behavior of the architecture.

3.3.2.1 Weighting Between the Top-Down and Bottom-Up Design

One of the main benefits of the framework is in the ability to weight between these two

quite opposite design approaches. The network-like part - connections between particu-

lar Neural Modules are represented as in case of classical ANNs. This means that the

HANNS uses weighted connections to pass the information between Neural Modules

in the network.

This means that it is possible to exploit both kinds of design at once. Here, the reusable

Neural Modules represent top-down engineered approach (e.g. implementation of RL,

k-means algorithm etc). While the intelligent behavior emerging from interaction of

provided components represent bottom-up approach.

The main benefit of this approach is in the fact that the amount of explicit engineering in

resulting generated architectures can be arbitrarily chosen. Because top-down approach

is represented by particular subsystems, used can define how big part of solution wants

to design by hand. Again, there can occur two extreme cases of designed system:

• Subsystem designed by hand solves the entire problem, the used only connects

inputs and outputs. An example of such almost entirely top-down-designed system

3.3. PROPOSED SOLUTION 59

is depicted in the Fig.3.4(a).

• In the opposite extreme, the resulting architecture is composed from the smallest

elementary subsystems (probably neurons) and the used is supposed to connect

everything by hand, that is: to design entire system "from the scratch". Example

of such a completely bottom-up designed architecture is in the Fig.3.4(b).

(a) Scheme of a completely engineered system, the

user provided complete solution by the subsystem.

Architect just connected inputs and outputs.

(b) Scheme of a system generated from the ele-

mentary parts, no explicit design of structure was

involved.

Figure 3.4: Comparison of top-down and bottom-up-designed hybrid systems.

It is important to note that systems in the figures 3.4(a) and 3.4(b) can be identical (that

is, the engineered system has the same inner structure as the automatically-designed one).

The only difference is that the engineered system is encapsulated in a Neural Module and

therefore has a predefined un-changeable functionality. But in the second case, the same

part of the system can be changed/optimized for a particular task.

3.3.2.2 Evaluating the Suitability of Sub-Systems in the Network

The modularization of the Hybrid Neural Network has also the benefit that the user can

have better insight into the architecture’s inner processes. Also, the behavior of entire

architecture can be better altered/optimized. But it is difficult to measure how well

the agent performs in the environment. The proposed solution should also provide little

better insight into the information: how the particular Neural Modules are used in the

system.

One of the main aims of this framework is to study new, alternative use-cases of known

algorithms/subsystems. During the automatic design of these Hybrid Artificial Neural

Network Systems, the following use cases of Neural Module can occur:

60 CHAPTER 3. PROBLEM ANALYSIS AND PROPOSED SOLUTION

• Neural Module is connected in a completely wrong way : corresponding algorithm

is used inefficiently or it does not work at all.

• Neural Module is connected in an unexpected, new way : corresponding algorithm

is employed, but in a way not anticipated by the user, potentially new use of the

algorithm.

• Neural Module is connected in an expected way : the algorithm is employed as

expected during the Neural Module design.

The second mentioned case does not necessarily mean that the algorithm is not advan-

tageous in the architecture. However, the behavior of an algorithm (and potentially its

purpose in the architecture) can be often hard to analyze by hand.

In order to identify incorrectly used parts of resulting architecture, it would be conve-

nient to distinguish between these three use-cases automatically. Furthermore it would

be useful to be able to evaluate the algorithms performance in a given situation. How-

ever, this is possible only by means of heuristics. The author introduces the function

called Prosperity . This newly introduced Prosperity output of the Neural Module de-

fines subjective heuristics defining "how well the algorithm performs" in a given

architecture during the simulation. This enables user (and potentially EA) to distinguish

between good and bad parts of a particular architecture. It is up to designer of particular

Neural Module how to define its Prosperity function. The function should produce values

in the interval 〈0, 1〉. For example, the subjective Prosperity of k-means algorithm could

be computed as average distance of data sample to the nearest center of the cluster, that

is: how well is the data represented by the algorithm during the simulation.

These values of Prosperity can be then employed for inspecting the suitability of use of

particular Modules in the system. Furthermore, these can be used for evaluating the

quality of entire system during automatic design of architectures (see the text below).

3.3.3 Automatic Design of Architectures Specific for the Task

Often, there are several research fields that try to provide the solutions to the same

problems. This means: many of research fields overlap at least partially, and therefore

provide own solutions to the same problems. Also, none of research fields is (and will not

be) able to provide solution to all of the problems. Rather, probably the best current

3.3. PROPOSED SOLUTION 61

method to designing new solutions to problems is the following. Based on particular

task, we estimate how the solution could look like, pick knowledge from several fields of

science and combine them together. One of the main aims of the HANNS framework is

to provide methods for at least partial automatization of such a process.

This Chapter will describe the possibilities of automatic design of architectures that are

suitable just for a given task. As described so far, the HANNS framework represents all

sub-systems (small solutions from different fields of research) as different Neural Modules

- standalone blocks with MIMO connections of common type.

The Fig.3.3 depicts the principle of designing of new architectures. Based on a particular

task, a set of Neural Modules is picked from the library and the connection weights be-

tween these modules (and input/output connections of the architecture (see the Fig.3.1))

are optimized in order to gain the desired behavior. The following Sections will describe

how the proposed solution tackles the problems stated in the previous Sections.

3.3.3.1 Dimensionality Reduction?

There are two sides of automatized design in the proposed HANNS framework. First, by

encapsulating a particular sub-systems (which could be implemented for example by small

ANN) greatly decreases the complexity of the overall topology that required to obtain

desired behavior. This provides the possibility to employ the same topology optimization

algorithm to create systems with superior overall complexity, than it would be possible

by means of only ANN-based solution.

On the other hand, as described in the Section 3.1.2, the size of searched space of all

possible architectures still grows exponentially with:

• number of Neural Modules available,

• number of input connections for a Module

• number of output connections for a Module

• number of input/output connections of the architecture.

The author proposes the following constraints on possible architectures, in order to obtain

the system that is able to design new architectures in reasonable time.

62 CHAPTER 3. PROBLEM ANALYSIS AND PROPOSED SOLUTION

3.3.3.2 Constraining the Set of Available Modules

First, the automatic design does not include selection of Neural Modules. The set of

Neural Modules used as a starting point for the topology optimization is defined at the

beginning. On one side, this is a bit simplification of the approach. But typically, some of

the problems can be solved by some set of Neural Modules. This, at least partial domain

knowledge can be used to very efficient pruning of space of all possible topologies. The

user therefore does not need to know everything about the task, but often some knowledge

about underlining principles of the problem is known. For example it can be known that

some dimensionality reduction of input data can be required. Therefore the user picks

for example Neural Modules implementing some clustering algorithms. The principle is

shown in the Fig.3.5.

Figure 3.5: Pre-selection of Neural Modules to be used in the architecture. Currently,

the pre-selection is defined by the user using approximate domain knowl-

edge.

By this way, the user can significantly reduce the size of space of architectures searched

by the optimization algorithm, while also "suggesting" the approximate type of the ar-

chitecture. There are two main possibilities here. First, to filter Neural Modules by their

purpose, the purpose can be represented e.g. by Modules’ keywords (such as for example

"clustering", "learning", "policy generation", "action selection", "random behavior". . .).

Here, the second bigger constrain is used. The user defines the set of Neural Module’s

instances, that will be used in the architecture. That is: how many and what Modules

will be used during the optimization.

3.3.3.3 Constraining the Space of Available Topologies

Now we have predefined set of Neural Modules in the architecture. Still, the number of

all possible connection weights between these Modules is too big.

3.3. PROPOSED SOLUTION 63

It is possible that there are some useful architectures that need to be designed as fully

connected networks (for example some hybrid version of Echo State Networks). But it is

more likely that useful architectures will have rather feedforward nature. Therefore the

constraint is also put on the architecture topology.

Figure 3.6: Example of an architecture that is represented as a feedforward network of

Neural Modules. On the left there are sensory data, on the right there are

outputs to actuators (see the Fig.3.1). The thin lines represent wighted

connections between Modules (interlayer connections are shown only for

one output). In this example, the dimensionality of sensory data is reduced

from 3D to 2D, then the information can passed to two Policy generators.

The final action to be executed by the agent is chosen by the Action se-

lection Module. The Module sends information about the decision to the

previous layer.

Currently, the HANNS framework represents architectures as hybrid networks with

feedforward topology. This principle can be seen in the Fig.3.6. Similarly to classical

ANNs, the HANNS places Neural Modules in layers. The Neural Modules between partic-

ular neighboring layers are fully connected. This means that the optimization algorithm

searches either only in the space of all possible weighted connections between layers.

Unfortunately (as in the human brain) in many systems, the feedback connections are

also important. For instance, the policy generating and learning Neural Module needs

feedback information about whether the action it proposed has been actually taken by

the agent. Therefore the Neural Modules are allowed to register feedback connections

64 CHAPTER 3. PROBLEM ANALYSIS AND PROPOSED SOLUTION

into the previous layer. On the example in the Fig.3.6, it can be seen that the Action

selection Module sends the feedback information about the action that was selected.

This information is fed to the hidden layer containing two (possibly independent) Policy

generators.

3.3.3.4 Predefined Classes of Neural Modules

In addition to the (mostly) feedforward topology, the agent architectures usually use

some types of sub-systems on some places. This is the reason why the author of the

thesis defines several classes of Neural Modules. Currently, the proposed framework

uses three-layer feedforward architectures, as can be seen in the Fig.3.6. The classes

belong to one of these layers in the topology. The classes defined are the following:

Data pre-processing, which implement mainly reduction of dimensionality of input

data. Typically, the decision/learning systems "want to" learn something lower-

dimensional than raw input data (for example vision). Simple examples of data

pre-processing Neural Modules can be Principle Component Analysis (PCA), K-

Means algorithm or the Self-Organizing Map (SOM). As more complicated can be

mentioned for example Deep-belief Network (DBN). These Modules belong to the

first layer in the network.

Sources of Motivation, are Neural Modules that have purpose of generating motiva-

tion signal. The motivation signal is fed into other Modules. Each Module decides

at each time step "what to do", based on information telling: how is my contri-

bution necessary just now? Neural Modules may have the Importance input,

which tells exactly this information. If the value of Importance is high, the module

tends to provide correct information with a high amplitude. In the Fig.3.6, the

Policy generators send action utilities to the network. Each of generators scales

values of the produced utilities based on the current value of its Importance. The

Importance input can be connected to the source of Motivation. The source of Mo-

tivation can be either inner (e.g. some physiological Module) or outer (Motivation

can be controlled from the outside - by means of architecture inputs). Generally, in

the HANNS framework, the Motivation is a way how (and how much of) the signal

is spread in the network.

Policy generation, this class belongs to the center layer. It may include Policy genera-

3.3. PROPOSED SOLUTION 65

tion Modules (as depicted in the Fig.3.6), or some learning algorithms. An example

of policy generator can be mentioned Reinforcement Learning (RL), or Planning

Module. As an example of learning algorithm can be mentioned again some clus-

tering algorithm. In this second case, the recognized pattern corresponds to some

action that could be taken by the agent.

Action selection. In case that multiple Neural Modules from the class "policy genera-

tion" suggest some actions to be taken by the agent, there has to be some node that

makes the final decision: which action to take. Therefore the Action Selection class

of Neural Modules select (typically) one action, based on action utilities collected

from the previous layer. As the simplest example of Action selection Module, the

Greedy strategy can be mentioned: an action with the maximum utility is selected

to be executed. The Action selection then typically produces output encoded with

1ofN code, where only one action is chosen.

The framework is not limited to these classes of Neural Modules. For example, an ad-

ditional layer could be added (after the "Data pre-processing" one) with the ability of

further data processing (for example learning sequences of patterns as shown useful e.g. in

(Hawkins, Ahmad, and Dubinsky 2011)). But the three-layer architectures are sufficient

in most cases.

The framework is not limited to these classes of Neural Modules. For example, an ad-

ditional layer could be added (after the "Data pre-processing" one) with the ability of

further data processing (for example learning sequences of patterns as shown useful e.g. in

(Hawkins, Ahmad, and Dubinsky 2011)). But the three-layer architectures are sufficient

in most cases.

3.3.3.5 On Constraining the Dimensionality of Inputs/Outputs

Finally, there is only one detail to be defined. The domain configuration of Neural Mod-

ules often includes defining dimensionality of input/output data. This dimensionality

influences how many input and output connections a particular Neural Module will have.

This means that this must be decided before the simulation/optimization. Intu-

itively, the choice of input/output dimensionality of one Module should be made so that

its connections are "compatible" with Modules placed in the "neighboring" layers. That

is: the output dimension of one Module should be similar to input dimensions of the

66 CHAPTER 3. PROBLEM ANALYSIS AND PROPOSED SOLUTION

Module in the following layer, etc. Here, the author suggests two approaches how to

choose this property of Neural Modules, where only first one is shown in experiments.

First possibility is to define the input/output dimensionality by hand, based on Neural

Modules that are placed in the neighboring layers. Second possibility is then to determine

the dimensionality automatically. Here will be a brief description of a proposed solution

for such an automatic configuration of Modules.

Usually, ensemble methods combine nodes of MISO type connected into unknown number

of layers (the layers are added until some accuracy on data is obtained) (Kordík 2006).

This framework is different, because it uses MIMO Modules organized in the three layer

feedforward topology. In this topology, the dimensionality of inputs and outputs (of the

architecture) is given by the task. That is by properties of sensory and actuator data.

By this, one can determine the input dimensions of Modules in the first layer and the

output dimensions of the Modules in the last layer. It would be convenient to spread this

information through the entire architecture.

Each Neural Module can be equipped by own set of constraints on dimensions of in-

put/output connections. This can be represented by set of linear inequalities. An ex-

ample of such constraint of Neural Module that requires to have input dimension twice

smaller than the output dimension, and the minimum dimension of input is 3, can be

written as follows:

dimin = 2× dimout,

dimin ≥ 3. (3.1)

Suppose that each Neural Modules have own set of such constraints. It is then possible

automatically determine some reasonable compatibility of input/output dimensions of all

Neural Modules in the architecture. All these constraints of neighboring Modules can be

composed together for one architecture. Based on these constraints, and the dimensions

of inputs/outputs of the architecture, the Integer-Linear Programming (ILP) can be then

used to minimize differences between input/output dimensions of neighboring Modules.

3.3. PROPOSED SOLUTION 67

3.3.3.6 Defining the Agent’s Goals

During the autonomous design of an agent architecture, there has to be some criterium

evaluating how well the agent performs. Since the HANNS framework aims to be

general as possible, it would be suitable to define some general metric, which can evaluate

this. Clearly, it is very difficult to generalize what the architecture should do. That

is: to find the domain independent evaluation of agent’s desired abilities.

Particularly, the user should be able to clearly state what objectives the architecture

should follow. Then, these objectives will be taken into account during the automatic

optimization of the architecture. The author proposes the (first two) following original

main possibilities of evaluating the agent’s performance, which for evaluating the agent’s

behavior employ the Prosperity values defined in the Section 3.3.2.2. These are the

following:

All of the Neural Modules should be used as efficiently as possible. For the

purpose of evaluating the effectiveness of the Module usage, each of the Modules

publishes own value of the Prosperity function. The overall performance of the

agent is then computed as a composition o Prosperity values of particular Modules.

Architecture fulfills predefined inner needs. In this case, only Prosperities of Mod-

ules from the class Sources of Motivation. In this class of modules, the Prosperity

value is often defined as inverse of average Motivation produced by the Module.

This means that the Prosperity of Motivation Source defines how well the

agent performs during the corresponding task - how well is able to fulfill

the particular need. In this case, the user defines Source of Motivation and hard-

wires it in the architecture so that it produces desired need. Then, the quality of

architecture is given by composition of Prosperities of these Sources of Motivation.

Architecture fulfills predefined task, this last approach s mentioned for complete-

ness. It is used widely for instance in neuro-evolution, where the performance of

the system is measured externally by using some domain knowledge (e.g. explicit

measuring average agent’s speed in the map).

Note that such a definition of the desired quality measure then leads the optimization

algorithm during design of architecture. The architecture is then evolved in order to fulfill

given objectives in a given environment.

68 CHAPTER 3. PROBLEM ANALYSIS AND PROPOSED SOLUTION

3.3.3.7 Overall Principle of Automatic Design of Architectures

In the previous Chapters, particular parts of the approach were described. Here, the

overall principle of automatic design of new agent architectures will be described.

Figure 3.7: An overall principle of automatic design of new architectures specifically

for a given task. This example uses generational model of Evolutionary

Algorithm (EA). First, the constraints described above are applied, this

produces an Architecture template. Based on this template, the initial

population of agents is defined. The EA is used to optimize connection

weights between Neural Modules in the architecture. The fitness obtained

from the simulation is used to guide the evolution.

After taking account all details mentioned above, the design process of agent architectures

is similar to neuro-evolution. The Fig.3.7 depicts this principle. First, the template of

architecture is created by using the constraints described above. The template contains

a set of Neural Modules together with their placement in the feedforward topology. The

Nodes’ inputs/outputs are fully connected between layers. An initial population contain-

ing architectures with random weights is defined. Then, the generational model of EA is

used to optimize these connection weights.

While taking the architecture template into account, the architecture can be repre-

sented as a vector of numbers. These numbers then represent connection weights

between Neural Modules (as shown in the section Experiments better). The weights can

be either binary, or of continuous value from a selected interval (typically genei ∈ 〈−1, 1〉).

The use of binary or real-valued weights then determine the EA used. In case of binary

3.4. SIMULATOR DESIGN 69

weights simple Genetic Algorithm (GA) can be employed. In case of real-valued

weights, the GA needs to be modified (in the simplest case), this is called the Real-valued

GA (RGA). Both of algorithms that were used are described in the Section 5.2.1.

The evaluation of individual is done as follows (see the Fig.3.7). Based on the template

and genome, the architecture is built in the simulator. Then, the architecture is simu-

lated for a given number of time-steps. The architecture (representing the agent’s mind)

typically controls agent’s body in some (simulated) environment. The required agent’s

behavior is defined by one of methods proposed in the previous Section, the quality of

agent’s behavior is then set as the fitness value for the optimization algorithm. The

design of the simulator is described in the following Section in more detail.

Recapitulation This Section described the proposed framework of Hybrid Artificial

Neural Network Systems, which serves mainly (but not only) for autonomous de-

signing of new agent architecture specifically for a given task. This is accomplished

by unified representation of different sub-systems and by defining unified type of

communication between them. The Section then described some following issues

and their solutions. The framework deals with the course of dimensionality by

constraining the architecture topologies to only those, which are potentially most

useful for agent architectures. Furthermore, the framework defines several classes

of Neural Modules, together with their suggested place in the architecture. Several

ways how to define agent’s required behavior and how to evaluate it’s performance

were proposed. Finally, the principle of autonomous design of new architectures

was described as optimization of connection weights in pre-defined architecture

template.

3.4 Simulator Design

Usually, researchers write entire code (together with simple simulators) for testing algo-

rithms by themselves. One advantage is that such a piece of software is well optimized for

their purposes, there are several disadvantages though. There are some time limitations

constraining how long the development can be done, so single person is unable to create

sophisticated tool enough. The other disadvantage is that such a piece of code most likely

will not be reused by any other person, because it is too domain specific. This results in

70 CHAPTER 3. PROBLEM ANALYSIS AND PROPOSED SOLUTION

the situation where everyone is writing the same SW again and again.

The author decided to build the simulator for purposes of prototyping and testing Hybrid

Artificial Neural Network Systems (HANNS). The proposed simulator is able to simulate

modular systems in general. As described in the Section 3.4.2, there are many problems

with designing useful software (SW). Therefore, rather than being a one-purpose tool,

the proposed simulator is composed of two main parts:

Simulation engine, which handles one part of communication between Neural Modules

and uses as an interface (graphical, command-line and scripting interface) with the

user.

Library of Neural Modules. The simulator is designed in such a way, that it is able

to use more general-purpose pieces of SW. By adding a small scripted interface

(which defines properties of the resulting Neural Module), these pieces of SW can be

transformed into Neural Modules, that can be directly used by the simulator. Such

a solution has two main benefits. Firstly, the current existing SW (and the HW

too) can be re-used in the simulator easily. Secondly, newly implemented

SW can be used also without this simulator, for an arbitrary other tasks in

other systems/simulators.

This Section will very briefly describe the simulator, which was designed with the following

requirements. Since the HANNS is based on ANNs, the approach was chosen to use

current simulator of ANNs and extend its functionality for purposes of this thesis.

• Simulation on level of networks (not single neurons)

• Support for 2nd and 3rd generation of ANNs

• Open-source (need for high degree of customization of simulator)

• Platform independent (ideally Java implementation)

• Support for modular networks

• Simulation acceleration on Graphical Processing Units (GPUs) or by means of Mes-

sage Passing Interface (MPI)

Other things that were taken into account were: availability of GUI, speed of network

design and supported learning algorithms. The Appendix A.3 compares state-of-the-art

ANN simulators in more detail.

3.4. SIMULATOR DESIGN 71

3.4.1 Simulation Engine

Finally, the simulator Nengo was chosen to be used as a simulation engine of ANN part

and as a front-end for the user. The Nengo is a simulator of large-scale spiking ANNs,

which is being developed on university of Waterloo. The main purpose of Nengo is to

run biologically plausible networks of spiking neurons, which are designed by means of

Neural Engineering Framework (NEF) (Eliasmith and Anderson 2003). It is written

almost exclusively in Java and is open-souce2.

The Nengo is used to provide the simulation engine and user front end. It supports

GUI and a Jython scripting interface for defining the models. It supports nice real-time

plotting of data too. The Nengo simulator modified to provide suitable platform for

simulating the hybrid systems composed of re-usable parts. The main contribution of

the author is in adding the ability to directly employ Robotic Operating System in the

simulation, which is described below. First, the re-usability of particular Neural Modules

will be addressed in the following Section. Then, the overall structure of the simulator

will be briefly described.

3.4.2 Library - Implementing and Sharing Pieces of Code

Since the requirement for communication by means of real-valued numbers may be too

strict for sharing the code, the optional approach was used. Each Neural Module sepa-

rates the sub-system from information transformations. That is: each sub-system (e.g.

algorithm that was shared) can be used also as a stand-alone node without need of con-

verting data into these vectors of numbers.

Another main requirement for reuse of sub-systems is in the programming language and

operating system neutrality. A particular sub-systems can be therefore implemented in

variety of programming languages and can be freely reused in applications other than the

HANNS framework. This was accomplished by use of Robotic Operating System (ROS).

2The original unmodified simulator can be downloaded from: http://nengo.ca/.

http://nengo.ca/

72 CHAPTER 3. PROBLEM ANALYSIS AND PROPOSED SOLUTION

3.4.2.1 Modular and Reusable Design - Robotic Operating System

The ROS is almost completely decentralized node-based system with purpose to simplify

and standardize research in the domain of robotics (Quigley et al. 2009). A system built

using ROS consists of a number of processes - ROS nodes, running potentially on a

number of different hosts, connected at runtime in a peer-to-peer topology. Nodes com-

municate by passing predefined ROS messages through the TCP/IP protocol - network.

Figure 3.8: Number of ROS repositories in first three years. Almost exponential

growth.

First, this node-based structure of ROS systems is clearly very suitable for use in hybrid

neural systems. Second, the ROS became the standard in robotic research very quickly.

The ROS provides a library of reusable ROS nodes (e.g. path-planning, vision, support

for various types of HW. . .) which can be used and modified freely. As can be seen in

the Fig.3.8, the number of packages3 grown almost exponentially. The system is multi-

lingual and currently supports the following programming languages: C++, Python,

Octave, LISP and several experimental versions, including Java.

The HANNS framework therefore uses ROS nodes as sub-systems. Each ROS node (or

group of nodes) can be encapsulated into the Neural Module. This is done by the modem.

Modem is used as a bridge between ROS infrastructure and the ANN simulator, it is a

ROS node which includes API supported by the simulator. The modem holds Encoder

and Decoder. These are used for conversion of ROS messages into vector of real-valued

data (which is compatible with the unified communication used by HANNS (see the

Section 3.3.1)) and back. The schematics of complete Neural Module, which consists

of one ROS node, is depicted in the Fig.3.9. Data on inputs of the Neural Module are

3Package may hold multiple ROS nodes.

3.4. SIMULATOR DESIGN 73

Figure 3.9: Scheme of the current definition and implementation of Neural Mod-

ule. A standard ROS node interacts with own modem. Modem con-

tains decoder/coder for each incoming/outgoing type of message. Each

coder/decoder knows data topic name and data type of own message and

directly sends/listens for new ROS messages. ROS backend is then used

to directly convert data between ROS message and real-values received

from/sent to the simulator.

translated into ROS messages, while incoming ROS messages are converted into arrays

of real-valued numbers and passed to the rest of the hybrid system. By defining own

Encoder/Decoder, the user can define custom communication transformation (e.g. own

transformation between symbolic and sub-symbolic representation).

This approach (in using ROS nodes) has two following benefits:

The code can be freely shared and reused. Since the newly implemented SW is

not constrained to use only in the HANNS framework, it still serves the purpose

of free sharing the code. That is, such an implementation of new algorithm in the

field of AI can be freely shared with other researchers, which can use the algo-

rithm directly in their future work (using either the HANNS framework or only the

standardized ROS infrastructure).

The Neural Modules can benefit from current ROS nodes. A useful ROS nodes

(that are already available in the huge library) can be directly employed in the

HANNS framework simply by adding own modem and defining the suitable backend.

So in order to implement own subsystem (Neural Module), user just has to implement

74 CHAPTER 3. PROBLEM ANALYSIS AND PROPOSED SOLUTION

own ROS node4 which communicates by means of ROS messages. Then, a simple En-

coder/Decoder is defined. From now on, the simulator handles translation between ROS

messages and a "language of ANNs" (see fig.3.9). This approach provide availability to

reuse potentially any currently implemented ROS node without modification. All the user

has to do is to enumerate which message streams should be available in the NengoROS

simulator and the way how to convert them. Even this process could be automatized in

the future, so NengoROS should be able to directly use current library of available ROS

nodes in the simulation.

3.4.3 Simulator Engine with the ROS Integration

By extending the Nengo simulator engine with capabilities of using the Robotic Operat-

ing System (ROS), the simulator called NengoROS was created. It uses front-end and

simulation engine of Nengo, but it adds the ability to work with the ROS directly. The

NengoROS is able to start/stop and communicate with arbitrary ROS nodes. This is

done by representing (a group of) these nodes as Neural Modules. If such a Neural Mod-

ule is added into the simulation, the NengoROS initializes the ROS-related components

and launches both ROS notes: the modem and the corresponding ROS node. Everything

happens on background, so the Neural Modules are represented in an exactly same way

as other components in the Nengo simulator.

Commonly, the ROS is downloaded as a compiled package onto the machine running

the Ubuntu Operating System. But in case of the NengoROS simulator, the author

of thesis used an experimental5 implementation of ROS in Java - called rosjava6. This

enables to maintain the platform independency of the entire simulator. The graphical

representation of the overall design of NengoROS simulator can be seen in the Fig.3.10.

Connecting of Neural Module is done in the simulator engine, while all Neural Modules

are running externally. The communication is accomplished by sending messages with

data, potentially over the network. This way, almost arbitrary SW, or potentially HW

can be employed in the simulation.

The structure of the HANNS network is defined in the Jython script. If the NengoROS

4In a favorite programming language, e.g. by following some of many ROS tutorials
5Experimental at least in time of developing the SW.
6More information about rosjava can be found online at http://wiki.ros.org/rosjava.

http://wiki.ros.org/rosjava

3.4. SIMULATOR DESIGN 75

Figure 3.10: An overall design of the NengoROS simulator. The black windows the

simulator engine, while the peripherals are represented as white Neural

Modules. This is the way how the simulator integrates various pieces of

SW together. Note that each part of the simulation can be implemented

in different programming language and can be ran on different machine.

detects use of Neural Module during instantiation of the module, the ROS infrastructure

is initialized (which includes for example automatic launching of the java "roscore"7).

After launching the core, ROS nodes that required in all Neural Modules used in the

architecture are started.

At each simulation step, the NengoROS passes information between Origins (outputs of

ensembles) and Terminations (inputs of another ensembles). After receiving new values

on its Termination (see the Fig.3.9), the modem encodes the information, sends it as a

ROS message for computation and waits for the response. After receiving the message,

the response is decoded by the Decoder and its value is placed on the Module’s Origin.

3.4.3.1 Autonomous Design of new Architectures in NengoROS

During the autonomous design of agent architecture, the NengoROS simulator is used

as follows. The architecture template is loaded from the Jython script. An externally

running EA provides genomes to be evaluated. For each genome, the connection weights

in the current model are altered and the simulation is restarted. After running the

simulation for given number of steps, the fitness value is obtained and next evaluation of

7More information about the roscore can be found online at: http://wiki.ros.org/roscore.

http://wiki.ros.org/roscore

76 CHAPTER 3. PROBLEM ANALYSIS AND PROPOSED SOLUTION

next genome can be started.

3.4.3.2 Documentation and Other Resources

Despite the fact that the SW is undergoing constant modifications and improvements, it

can be downloaded from github8. More information about the simulator design, together

with tutorials can be found online too9. Further java documentation for the simulator

and several selected Neural Modules was also published online10.

3.4.4 Example of Hybrid System Simulated in the NengoROS

The Fig.3.11 shows an example of simple hybrid system composed of one generator of

random signal, one population of neurons and one Neural Module. Neural ensemble here

implements identity - tries to represent input signal.

Figure 3.11: Example of simple hybrid system in NengoROS simulator. Neural Module

(in the center) has inputs and outputs which correspond to the messages

subscribed/published by the ROS node. The ROS node searches for the

minimum and maximum value in the input vector of size 4. Neural Mod-

ule is treated as an ordinary neuron (with more inputs/outputs) by the

simulator. Note that multi-dimensional connections are shown as one

line here.

The ROS node used here receives message with vector of 4 float values, rounds the min-

imum and maximum value to the nearest integer and sends back the message containing

these two values. In this case, the user described only how input/output messages look

like and how to convert them into vectors of floats. Nengoros then created neural module

8NengoROS available online at https://github.com/jvitku/nengoros
9Information about the simulator design and tutorials available at http://nengoros.wordpress.com

10Javadoc documentation for selected parts of the project available online at http://jvitku.github.

io/nengoros/.

https://github.com/jvitku/nengoros
http://nengoros.wordpress.com
http://jvitku.github.io/nengoros/
http://jvitku.github.io/nengoros/

3.4. SIMULATOR DESIGN 77

Figure 3.12: Course of simulation in NengoROS simulator (scheme of the system is

in the fig.3.11). Signal generator sends a vector of four values into the

neural module. Module publishes rounded values of minimum and maxi-

mum values. These two values are then represented by neural ensemble

on the right. On the top we can see actual membrane potential and spike

raster for each neuron.

called MinMaxFinder, which is handled as an ordinary neuron with more independent

inputs and outputs. The screenshot from the NengoROS GUI can be seen in the Fig.3.11.

The white big dot represents the Neural Module, which runs externally as a ROS node.

An example of real-time plots provided by the original Nengo GUI. It can be seen ho also

the output values of the Neural Modules is visible here.

Recapitulation This chapter shown basic description of the resulting NengoROS sim-

ulator. It combines the large-scale simulator of SNNs with a modular and multi-

purpose ROS nodes. Entire core of the system is implemented in Java and therefore

can be ran on variety of platforms. Despite the Java implementation, the simulation

can contain ROS nodes that are implemented also in many other programming lan-

guages. The basic principle of use of this simulator for designing new architectures

was mentioned. Much more information about the simulator can be found online.

The simulator uses externally running ROS nodes, that can be freely reused in other

systems and also obtained from other systems without requirement of their modi-

fications. Also, not only parts of the agent architectures are used in the simulation

in this way. The virtual environments for agents are used in the simulation in the

same way as ordinary Neural Modules. So it is sufficient to employ the simulated

world with the ROS interface and use it in the NengoROS.

78 CHAPTER 3. PROBLEM ANALYSIS AND PROPOSED SOLUTION

Chapter 4

Theoretical Foundation and Design of

Modules

The purpose of this Chapter is to describe Neural Modules (subsystems for agent archi-

tectures) that were designed for the HANNS framework. The Modules were implemented,

tested and then used for automatic design of agent architectures. First, a basic theoretical

foundation is described for each type of modules. Then, specific implementation modifi-

cations of the algorithms used are mentioned. These include mainly dealing with require-

ments posed by the HANNS framework, that is mainly representation of input/output

data. Also, not all algorithms used here are strictly domain independent. Therefore sec-

ond part of each section describes possibilities of tuning the algorithm parameters and

its domain configurability. There are some basic test-experiments presented for most of

the Neural Modules.

4.1 Neuron Models

Set of components of the HANNS framework contains modules of different complexity.

From the simple ones (as for instance neurons, logical gates) towards the more complex

ones (such as network of neurons implementing selected function or a planning system).

Description and comparison of different neuron models is placed in the Chapter 2.1.1.2.

Therefore the basics of neuron models will not be mentioned here again. The original

79

80 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

Nengo simulator provides implementation of various spiking neuron models, such as for

example Leaky Integrate and Fire (LIF), Izhikevich (Izhikevich 2003) simple model of

neuron etc. For mode information about these models, see the Appendix A.1.

The Neural Engineering Framework (NEF) originally uses networks of these spiking neu-

rons for implementing arbitrary predefined functions. This is done by so-called encoders

(equivalent of input weights to the network) and decoders (equivalent of output weights).

For completeness, the basic principle is described in the Appendix A.2. In some of the

experiments presented, the encoders and decoders provided by the NEF are used for

implementing simple spiking neural networks under the HANNS framework. In order

to maintain the defined currently supported non-spiking communication in the HANNS

framework, each spiking sub-network (Neural Ensemble in the NEF terminology), each

output of the spiking neuron (spike raster) is integrated and thus interpreted as a real-

valued output (rate code (Abbott and Sejnowski 1999; Ponulak and Kasinski 2011)) (see

e.q. the Fig.A.2). Note that all neuron models used are implemented directly in the

simulator, therefore none of them is implemented as a stand-alone ROS node.

4.2 Logic Gates

Many tasks can be solved by using simple logical operations. The solution of the task

then can be represented in form rules which look like IF (x) → THEN(y);ELSE(z).

By combining multiple similar rules, relatively complex decision making systems, such as

expert systems. For more information and examples, see e.g. (Russell and Norvig 2003).

4.2.1 Theoretical Foundation

In such a network-based framework as the HANNS is, it is intuitive to represent (imple-

ment) these logical operations as networks of logic gates. By finding the right connec-

tion weights in given set of logical gates, various types of problems can be solved. One

example of similar approach is called Cartesian Genetic Programming (CGP) (see the

Chapter 2.5.1.2). In order to incorporate such logical gates into the HANNS framework

(where inputs/output values should be in the interval 〈0, 1〉), some kind of pre-processing

4.2. LOGIC GATES 81

and (potentially) post-processing is needed. This is depicted in the Fig.4.1. Particular

requirements will be described in the following subsections for different kind of gates

separately.

Figure 4.1: General principle of connecting a logic gate into the HANNS network.

Each logic gate expects inputs with a given constraints (pre-processing).

Also, the result of computation can be interpreted in several ways (post-

processing). In case of fuzzy logic, the pre-processing is called fuzzyfica-

tion (converting the input data to fuzzy membership functions). The block

called "Logic gate(s)" stands for both knowledge base and fuzzy inference

(engine). Finally, the post-processing part is referred to as de-fuzzyfication

of data.

Two main types of logic gates were implemented and tested. The crisp logic gates are

used for implementing crisp logic. Furthermore, to enable the framework to be used for

building hybrid neuro-fuzzy systems, fuzzy logic gates (Zadeh 1994) were implemented.

Figure 4.2: An example of Neuro-Fuzzy system. Neural network is used for pre-

processing the data to the fuzzy inference engine. Here, the ANN is used

for supervised extraction of fuzzy-rules from data (pre-processing module

in the Fig.4.1). In case of unsupervised extraction, the data are clustered

according to some similarity measure and therefore the feedback loop is not

necessary (Fuller 2001).

There are various types of neuro-fuzzy systems. These systems combine benefits of ANNs

82 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

and Fuzzy-logic together. "For example, while neural networks are good at recognizing

patterns, they are not good at explaining how they reach their decisions. Fuzzy logic

systems, which can reason with imprecise information, are good at explaining their deci-

sions but they cannot automatically acquire the rules they use to make those decisions.

These limitations have been a central driving force behind the creation of intelligent hy-

brid systems where two or more techniques are combined in a manner that overcomes the

limitations of individual techniques (Fuller 2001)." In these hybrid systems, the ANNs

are often used for data pre-processing for the fuzzy inference system. In case that the

pre-processing involves adaptation to data, the fuzzy membership functions do not have

to be defined manually, which is a big advantage compared to classical Fuzzy logic. The

adaptation can be either supervised (e.g. back-propagation) or unsupervised (clustering

techniques). The basic principle of supervised data pre-processing can be seen in the

Fig.4.2, where the ANN is used for defining the fuzzy membership functions, which are

used by the fuzzy inference system. Note that there are many various Neuro-fuzzy sys-

tems (good overview can be seen in (Vieira, Morgado Dias, and Mota 2004)), but the

following text will focus on own definition of hybrid logic systems.

As seen in the Fig.4.1, logic gates need some kind of pre-processing and potentially

post-processing. In the HANNS framework, both of the operations are considered to be

separated from particular gates. This enables the designer to define own kind of modules

with this purpose (as for example SOM network, direct sensory data etc. . .). Again,

the post-processing can be done by any module. Since the output values produced by

logic gates are already in the recommended interval of 〈0, 1〉, arbitrary modules can be

connected to its outputs (e.g. de-fuzzyfication, input of the planner, direct actuator data

etc. . .). This means that the only task of HANNS logic gates is to make sure that input

data are of required format. Currently, this is done very intuitively as described in the

following sub-sections. A general logic gate in the HANNS framework takes input data,

implements logical operation and produces output value.

4.2.2 Crisp Logic Gates

A crisp logic gate takes binary input(s) and produces one binary-valued output. This

means that all values should be from {0, 1}. Basic schematics of the crisp logic gate can

be seen in the Fig.4.3. It can be seen that unknown input values (from other gates, sensors

4.2. LOGIC GATES 83

etc. . .) are thresholded by the threshold θ = 0.5. All values that are not higher than θ

are considered to be logic 0, everything other is evaluated as logic 1. After thresholding

all input values, the gate implements its computation and passes the result z ∈ {0, 1}

to its output. Currently, the following logic gates were implemented and used: AND,

NAND, NOT, OR and XOR.

Figure 4.3: An example of crisp logic gate implementing the AND function. Real-

valued input data are thresholded by the value of 0.5. If the input is bigger

than threshold, the input is evaluated as logic 1, the logic 0 is considered

otherwise.

4.2.3 Fuzzy Logic Gates

A rough thresholding of input values required by crisp logic gates is not suitable for many

real-world tasks. It is probably that many sub-systems will provide real-valued data. For

example, such an output can represent membership of data to some class (e.g. output of

a sub-system that implements a clustering algorithm). Here, the concept of Fuzzy Logic

(Zadeh 1994) can be used conveniently here. More information about Fuzzy Logic can

be found in many resources, for example in (Fullér 1995). A Fuzzy-Logic rule accepts

value of membership function (x ∈ 〈0, 1〉) and outputs real valued result of the operation.

Note that the de-fuzzyfication (as is marked as post-processing block in the Fig.4.1) is

not defined nor implemented explicitly here. Rather, the de-fuzzyfication can be done

implicitly in other modules in the network. For example, a sub-network of fuzzy-logic

gates can output multiple information telling "how hot", "how cold", "how rainy" it is,

and these information are processed by some decision-making subsystem.

A fuzzy logic gate takes values of membership functions (values from the interval 〈0, 1〉)

and produced output of the operation. The following Łukasiewicz operations were imple-

mented for testing:

• Negation: F¬(x) = 1− x

84 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

• Weak Conjunction: F (x, y) = min{x, y}

• Weak Disjunction: F (x, y) = max{x, y}

An example of Fuzzy-Logic module implementing fuzzy-OR operation can be seen in the

Fig.4.4. Since it is not necessary condition, that the values passed between modules have

to be from the interval 〈0, 1〉, the pre-processing of input membership function values is

used for each fuzzy-gate as follows: all values outside the interval are placed to the nearer

boundary of the interval.

Figure 4.4: An example of fuzzy logic gate implementing some Fuzzy OR function.

Real-valued input data are cropped to be in the interval of 〈0, 1〉, the re-

sulting value is sent to the fuzzy logic gate.

This chapter shown some examples of logic-gates. All gates that were considered so far

have either one, or two inputs and one common output. Some of logic-gates can be

extended to have arbitrary number of inputs. This would enable one gate to compute

e.g. logical AND across multiple variables (thus reducing the number of modules required

in the network), but would also increase the number of possible modules. And the bigger

number of modules, the bigger space needs to be searched by the design algorithm.

4.3 Inner Sources of Agent’s Motivation

In case that there is only one objective to be followed by the agent, a simple goal-directed

behavior can be used to solve the task. But often, there are more than one goal to be

fulfilled. In this case, an architecture of a rational agent architecture has to be able to:

• Intelligently choose which goal to follow in a given situation.

• Provide some persistence of goal selection. If one goal is chosen, the agent should

stick to following this chosen goal for some time. In case that the architecture

switches between antagonistic strategies to often, no goal will be reached.

4.3. INNER SOURCES OF AGENT’S MOTIVATION 85

The following chapter briefly mentions some methods how these requirements can be

fulfilled.

4.3.1 Theoretical Foundation

This chapter will briefly describe selected two different methods how to switch between

various policies of an agent. Despite the fact that both of the mechanisms fulfill require-

ments specified above, both use fundamentally different approach.

A good example how to switch between different behaviors is the Belief-Desire-Intention

(BDI) (Sardina et al. 2006) architecture. Even the highest level description of the BDI

architecture deals with this kind of "focusing" on selected tasks. The main structure of

the BDI agent is s follows in this reminder:

Belief - set of information that agent considers to be true.

Desire - represents what the agent could try to accomplish. A Goal is then a Desire

which has been adopted for active pursuit by the agent. A set of active goals should

be consistent.

Intention - represent what the agent has chosen to do at the moment. It is a Desire

which has agent started to perform in some way. Typical way how to fulfill some

intention is to execute a corresponding plan - sequence of actions.

Such a BDI architecture is committed to own choices of plans. Yet, the architecture is

still responsive - is able to adapt to changes of the situation and to continue to achieve

the same goal (re-planning). If the goal is reached (or set of Intention is changed), the

agent commits to new Intention, creates new plan and starts to follow this new policy.

Another good example how to create an agent that is committed to changes can be found

in (Kadleček 2008). Here the Hierarchical Reinforcement Learning (HRL) is used to

learn new knowledge and to produce behavior. Simple said, multiple RL nodes compete

for control over the agent. The architecture needs to be able to pass the control to the

right node in the right moment. There are two following ideas behind convenient system

for switching policies (passes control to different RL nodes). For each primitive action

(available to the agent) is computed its value (how beneficial it is to execute this action

at this moment) and each of RL nodes "votes" how good a given action is from its point

86 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

of view. Each RL node takes into account two criteria:

• How far the policy (represented by the RL node) is from the goal state.

• How important is the goal (represented by the RL node) in a given situation

for the agent.

These two objectives are combined into (so called) "utility values" for all actions avail-

able. For each primitive action, the se values are summed together. Then the agent can

simply take the action with the highest utility value without considering which policy

(policies) the action belongs to. How far the policy is from the goal is described later

in the Chapter 4.4. I will now describe how the current importance of the goal

is represented. Kadleček defines so-called "physiological state-space" (Kadleček 2008),

which holds all inner physiological variables of the agent in one state-space. The state-

space has purgatory and limbo area. Each variable has own predefined dynamics (each

variable typically goes toward the Purgatory area). If the reward is received (e.g. food

is obtained), the corresponding physiological variable (e.g. hunger) is moved towards

the Limbo area. This temporarily satisfies the physiology and causes the motivation to

execute the policy to decrease. This system enables the architecture to switch between

various behaviors (policies) dynamically during the agent’s life.

4.3.2 Physiological Neural Module

This chapter describes motivation source inspired by the Physiological State Space. In

order to provide the source of motivation, but maintain the modularity of HANNS,

I propose the Physiological Neural Module. Compared to the Physiological State Space,

the Physiological Neural Module (PNM) contains only one state variable. In the current

implementation, the state variable V has linearly decaying dynamics, as follows:

Vt+1 = Vt − decay, (4.1)

the speed of decay can be set during initialization of PNM, or online during the simulation.

Then, the amount of Motivation produced by the PNM is determined by applying the

4.3. INNER SOURCES OF AGENT’S MOTIVATION 87

Figure 4.5: Graphical representation of Physiological State Space. The sate space con-

tains two state variables X1, X2 (representing e.g. hunger and thirst). The

graph on the right shows mapping of state variable to amount of stimu-

lation produced. This stimulation defines how important a given policy

(e.g. "obtain water") is. From the mapping it can be seen that the Limbo

area does not produce any stimulation. While Purgatory area produces

exponentially increasing stimulation (Kadleček 2008).

sigmoid to the inverse value of V . The resulting amount of Motivation M at time t is:

Mt =
1

1 + emin+(max−min)×(1−V t)
, (4.2)

where min and max parameters are chosen so that value of the variable Vt = 0 approxi-

mately corresponds to the motivation of Mt = 1. In case that the reward is received, the

value of Vt+1 is set to 1 and therefore the motivation decreases towards 0. This event then

makes room for another behaviors and/or exploration of new knowledge. Note that here,

the state variable V has limbo area near the value of 1, this means that the value rep-

resents rather the physiological state (such as "amount of food in agent’s body"), rather

than need (e.g. "hunger"). This process can be seen in the Fig.4.7. For purposes of use

in feedforward agent architectures, the Neural Module features also the Reinforcement

pass-through output, which mirrors value of reward received on input. This enables to

pass the information about reward received further to next layers.

88 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

Figure 4.6: Graphical Representation of Physiological Neural Module. The amount

of Motivation produced by the module increased nonlinearly. In case of

receiving the reward, the motivation falls towards the zero. The Module

contains also pass-through Reward output which just mirrors the value of

Reward received on the Reward input.

4.3.2.1 Prosperity of the Physiological Neural Module

If the agent behaves efficiently enough, the mean Motivation produced by this module is

low, because the agent’s physiological variable is near the optimal conditions. The Mean

State Distance to optimal conditions (MSD) defines how far is the agent’s physiology

from the optimal values as follows:

MSDt =

∑

i di
i
∀i ∈ 0..t, (4.3)

where di is distance of state variable Vi from the optimal conditions of V = 1. The

MSDt is computed online for each simulation step. Since the Prosperity is indirectly

proportional to this, its value is computed as:

Pt = 1−MSDt. (4.4)

Simply said, the Prosperity of PMS tells how well is the architecture able to maintain

the average Motivation low.

4.3.3 Suggested Use of Physiological Neural Modules

In case of using only one decision-making system in the architecture, such a PNM can

be used for example for dynamical weighting between exploration and exploitation, as

4.3. INNER SOURCES OF AGENT’S MOTIVATION 89

Figure 4.7: Example of course of value of Motivation produced by the Physiological

Neural Module. On the X-axis, there is a time while Y-axes represent

binary event of receiving the Reward (bottom) and amount of Motivation

produced by the Module (top). It can be seen that the amount of Motiva-

tion increases until the reward is received, then the process repeats. After

receiving the reward, the Motivation to follow the corresponding policy is

small enough to switch to some other behavior.

described in one of experiments in the Chapter 5. Aside of biologically plausible approach

for agent control, the benefit of such an approach is in fact that it prevents the system

for getting stuck in some local optima (after reaching the goal/reward, the exploration

can be preferred again). Note that this Motivation output is meant be connected into

the Importance input of several Neural Modules (see for example Chapter 4.4.3). The

Importance input tells the Module how important is its service at the moment and the

Module can adapt its strategy (e.g. to prefer exploitation of knowledge) according to this

input.

In more complex case, multiple decision/learning systems can be employed in one archi-

tecture. Here, multiple of these PNMs can be used to implement multiple independent

sources of motivation. These Motivation channels can then be connected to other Neu-

ral Modules to dynamically weight between different behaviors. These behaviors can be

implemented by different Neural Modules (e.g. Planning, Reinforcement Learning, Ran-

dom Walk, etc..) and can serve different purposes (e.g. find food, escape from danger,

explore..). Each of Physiological Neural Modules can use different inner dynamics for

increasing the Motivation produced. Moreover to this, dynamics of each PNM can be

changed during the simulation, e.g. by output of some other Neural Module. This enables

to get even more complex patterns of behavior switching.

90 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

4.4 Reinforcement Learning

This section describes selected Neural Modules, which implement Reinforcement Learning

(RL) algorithms. First the main parts of used RL theory are described. Second, the spe-

cific Neural Modules are presented together with changes against theory and possibilities

of their configuration.

Generally, there are three types of learning/adaptation: supervised, unsupervised and

reinforcement learning. In case of Reinforcement Learning, the agent learns solely by

interaction with the environment. This is one of fundamental principles of research in the

ALife domain. The agent takes actions (interacts with the environment) and observes

consequences of these interactions (new states, rewards, punishments..). By means of

learning the "cause and effect", the algorithm is able to gradually gain new knowledge

through the agent’s "lifetime". The RL is originally inspired in behavioral psychology,

but since it is very general approach, it is used across more research fields, such as for

example: ALife domain, control theory, game theory and Genetic Algorithms (GAs). The

following text will describe in the context of ALife and agent architectures.

4.4.1 Theoretical Foundation

There are several basic types of RL algorithms. The following text will focus on the

algorithm that is used in my Neural Modules and the rest will be only mentioned for the

completeness.

The RL task usually consists of the following parts: set of state variables S together

with their values, set of actions A that is agent allowed to execute, transition rules

between states and set of rewards R that the environment produces. The task is to

learn appropriate strategy π which maximizes cumulative reward that is received from

the environment. Many RL algorithms require that the environment is of type called

Markov Decision Process (MDP). That is: probability of each (stochastic) state transition

Pa(st, s
′
t+1) depends only on the current state st and action at at current time step t. The

strategy π that is learned then stores "for all states s information about: which action a

should to be executed in order to maximize the reward".

There are several approaches how to obtain such a strategy. For instance, the Brute

Force tests and evaluates all possible policies and samples their outcomes (rewards). The

4.4. REINFORCEMENT LEARNING 91

Monte-Carlo methods use two steps: policy evaluation and improvement. The policy

is represented by the function Qπ(s, a), which maps selected action for each state. The

policy evaluation operates across multiple randomly initialized episodes of experiments.

The final values of the function are averaged across multiple episodes. In the policy

improvement step, the best policy (the value maxaQ(s, a)) is selected in each step. Both,

the brute force and Monte-Carlo based methods work well only in simpler tasks. The

following text will describe algorithms that are used in my RL Neural Modules, that is:

those that are called Temporal Difference (TD) methods. The TD methods are based

on the recursive Bellman Equation (thus are inspired in dynamic programming). I use

the incremental version of TD methods, which work as follows: action at is selected in the

state st, the reward rt+1 and new state st+1 are observed and the Q(st, at) value is update

according by comparing of expected and real outcome of the action. More information

can be found e.g. in (Sutton and Barto 1998).

4.4.1.1 Learning

The Q-Learning algorithm is named according to its Q matrix, which maps state-action

pairs to utility value. At each environment state, the Q(s, a) matrix stores utility values

for all agent’s actions A in all admissible environment states S as follows:

Q : A× S → R, (4.5)

The utility value represents discounted future reward/punishment that will be received

by the agent in case it will follow given action a in a given state s. Online learning is

governed by obtaining new Q(s, a) values into the matrix. During the initialization, all

values are set to either zero or small random values. Change of the value in the matrix

is represented by the value of δ, which is computed according to the following equation:

δ = rt+1 + γQ(st+1, a
′
t+1)−Q(st, at). (4.6)

At a current state st, the action at is selected (according to some Action Selection Method)

and executed. The algorithm remembers the (st, at) pair. The execution of action at

causes transition into the new state st+1 and may cause receiving non-zero reward rt+1.

92 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

Based on these information and new action a′t+1 in the new state, the value Q(st, at) is

updated as follows:

Q(st, at)← Q(st, at) + αδ. (4.7)

The following parameters used: γ ∈ 〈0; 1) is a forgetting factor and α ∈ (0; 1〉 is a learning

rate. I used two following versions of TD RL algorithms, where the difference is in the

choice of the a′t+1 action in the eq.(4.6), these are the following:

Q-Learning - this algorithm is more optimistic one and selects a′t+1 as the best possible

action in new state st+1 based on current knowledge. This means the following

equation:

a′t+1 = a∗t+1 = max
a

Q(st+1, at+1), (4.8)

where the a∗t+1 is the best possible action in the state and therefore follows optimal

policy π∗. In other words: the Q-Learning assumes that the optimal policy π∗ is

being followed, which may not be true, or even beneficial.

SARSA - is the abbreviation of State-Action-Reward-State-Action and determines the

a′t+1 in the following way: it observes which action in the st+1 is actually executed.

That is:

a′t+1 = asm(Q(st+1)), (4.9)

where the utilities of all actions in the current state are passed to the Action Selec-

tion Mechanism (ASM), which selects and executes the action a′t+1. The drawback

of the SARSA algorithm is that the information about action/state pairs has to be

stored a bit longer. But the benefit is that it is able to gain more information from

the exploration1.

According to the equation (4.7), the TD algorithms update only one value at a time,

which can be time-consuming. The learning speed can be enhanced by modification

called Eligibility Trace, which enables the algorithm to update values of multiple past

state-action pairs at one step. Such modification of these algorithms is called Q-Lambda

(or Q(λ)) and SARSA-Lambda (or SARSA − λ) algorithm. By introducing the error

function e(s, a), which is the fundamental for the eligibility traces-based approaches, we

1As can be seen in a good tutorial available online at: http://goo.gl/ORQrFY

http://goo.gl/ORQrFY

4.4. REINFORCEMENT LEARNING 93

can rewrite the equation as follows:

Q(st, at)← Q(st, at) + αδe(s, a), (4.10)

where the parameter error is defined for each state-action pair as follows:

et(s, a) =

{

γλet−1(s, a) if (s, a) 6= (st, at)

γλet−1(s, a) + 1 if (s, a) = (st, at)
(4.11)

The equation says that for all state-action pairs, there is a value of error function, which

decays in time. If the state-action pair is used (visited), the error function is increased

by 1. Such a modified equation (4.10) means that all state-action pairs are updated each

step.

The decay parameter λ ∈ 〈0, 1〉 defines magnitude of update of previous states. In case

that λ = 0, pure one-step Temporal Difference (TD) learning is used. In case of λ = 1,

the Monte-Carlo learning is obtained. Correct estimation of the λ can improve the speed

of learning, but also can cause oscillations in learning.

4.4.1.2 Action Selection Methods

The previous Chapter described only passive observing what is happening and learning

what has been observer. The other problem is how to choose actions (at) to be executed,

this is typically task for the Action Selection Method (ASM). The selection is based on

the action utility: the higher the utility, the higher the expected future outcome. Therefore

a straightforward solution is to use the Greedy ASM, which takes the action with the

highest utility:

at = a∗t = max
a

Q(st, at). (4.12)

This algorithm exploits the knowledge well (always follows the π∗), but does not allow

any exploration - gaining new knowledge. This drawback can be tackled by use of the

Epsilon-Greedy (ǫ−Greedy) AMS. The method introduces parameter ǫ, which affects

94 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

the amount of randomization. Random action is selected with the probability of ǫ, while

the Greedy strategy is followed with the probability of:

P (at = a∗t) = 1− ǫ. (4.13)

This means that the parameter ǫ directly weights between exploitation of knowledge and

exploration of state space.

1

2

3

4

5

6

7

1
2

3
4

5
6

7

0

10

20

30

40

50

Position Y

Position X

M
a
x
im

u
m

 U
ti
lit

y
 D

is
tr

ib
u
ti
o
n

0

5

10

15

20

25

30

35

40

45

Figure 4.8: Example of simple grid environment which is difficult to explore in non-

episodic expriments (Vítků 2011). The world consists of 2D grid with

obstacles (marked as dots in the left picture) and one source of reward

(marked as D). The agent is able to move in 4 directions. The value of

utility for the best action (in a given state) is depicted in the graph as a

function of agent’s position. The table on the left depicts the best action

learned for the sate. The mark "0" indicates that all actions have utility

of 0. It can be seen that the agent explores only near neighborhood of the

reward and is unable to go far way in the maze. This problem is often

tackled with episodic-experiments with randomization of initial conditions

(agent’s position).

Typical use of TD algorithms is in episodic experiments, where the initial state of envi-

ronment is selected randomly. This helps to uniform exploration of (and learning in) the

entire state-space. In non-episodic experiment, the value of ǫ has to be carefully tuned,

it it is too high, the knowledge is not exploited enough. On the other hand, if the ǫ is

too low, the agent will tend to stay only around the nearest the attractor. An example

of this problem can be seen in the Fig.4.8.

In order to add domain-independence, the designed module has to be able to operate in

non-episodic experiments. In non-episodic experiments (particularly those simpler with

4.4. REINFORCEMENT LEARNING 95

one attractor), there is necessary to find a better way how to balance between knowledge

exploitation and exploration/learning. In the real-world, there are better and worse

situations for learning often. For example, young animals learn by play primarily in

near-optimal conditions. It is convenient to simulate agents’ needs for something. If

a need for some resource is high, the motivation causes agent to focus on a particular

behavior which leads to satisfying this need. The concept of motivation is then used

for dynamic adjusting the exploration vs. exploitation tradeoff. The approach is called

Motivation-Driven ASM.

This is the reason why I introduce an input to Neural Module called "Importance"

which generally defines the current need for "services" provided by the module .

In case of the Q(λ) module, the importance input represents motivation for behavior

represented by this node. The amount of randomization in the ASM should be indi-

rectly proportional to the importance input. We use the ǫ − Greedy ASM where the

randomization is defined as:

ǫt =

{

1− Importancet if 1− Importancet > ǫmin

ǫmin if 1− Importancet ≤ ǫmin

(4.14)

By increasing the importance of the Q(λ) module (increasing the motivation for executing

a behavior represented by this node), the probability of taking the greedy action a∗

increases. This means that the importance enables the agent to learn by exploration in

free time and to exploit the information if needed.

4.4.2 State of the Art - Reinforcement Learning-Related

This sub-chapter will describe relevant publications to this topic, that is: modularization

of one system into multiple RL "modules". Since a RL algorithm often needs to store the

quality of given policy in some memory, there are constraints on tasks that can be solved

by the RL. In case of Q-Learning and SARSA algorithms, the Q(s, a) matrix grows with

number of actions, state variables and their number very fast. This limits the use of RL

algorithms (which use the memory in form of the look-up table) considerably. Currently,

there are two approaches how to deal with the course of dimensionality. First, the values

in the memory can be fitted for example by some mathematical function, ANN, or Fuzzy

logic (Busoniu et al. 2010). The second approach is in decomposing the decision space

96 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

into smaller sub-spaces, which is called modular, or hierarchical RL or can be also referred

to as an ensemble RL.

This second approach is interesting in the context of this thesis, so it will be covered in

more detail. In case of modular RL, the algorithm is encapsulated as standalone sub-

system, which is similar to the Neural Module. This particular example (use of RL in

HANNS) can be likened to Ensemble Algorithms in Reinforcement Learning (Wiering and

Hasselt 2008), or to the Aggregated Multiple Reinforcement Learning System (AMRLS)

(Jiang 2007). Compared to these, a single ensemble is represented as a Multiple-Input

Multiple-Output sub-system, which communicates compatibly with 2nd gen.

The goal of the implementation of these RL Modules in the HANNS framework is their

domain independence. Therefore the user can instantiate and use multiple RL ensembles

(Neural Modules) and connect them in various ways. Another benefit of modularization

of RL to multiple sub-tasks is in the ability of the resulting system to learn/execute

multiple policies in parallel. In fact, there are the following possibilities of use multiple

RL modules in one architecture:

• Each of RL modules can learn the same policy, but receive different input data.

• If the reward signal of different RL Neural Modules is connected to different sources,

these can either: compete to learn/exploit antagonistic strategies (Kadlecek and

Nahodil 2008) (e.g. drink vs. eat),

• or to fuse cooperation/competition in case of partially shared goals (Jiang and

Kamel 2006; Araabi, Mastoureshgh, and Ahmadabadi 2007) (e.g. food is near the

water source),

• or to learn/exploit compatible sub-goals of one (hierarchically) composed strategy

(Dietterich 2000; Bakker and Schmidhuber 2004) (e.g. open the door and go for

a drink). Such a combination of Modules can then result in a system similar to

Modular Hierarchical Reinforcement Learning Algorithm (MHRL) (Liu, Zeng, and

Liu 2012).

By choosing different combinations and different purposes of these RL Neural Modules,

either an efficient state-space decomposition or learning robustness can be acquired. In

the system called Hierarchy, Abstraction, Reinforcements, Motivations Agent Architec-

ture (HARM), such a decomposition of the decision space into hierarchical RL can be

made automatically, based on different rewards received from the environment (Kadleček

4.4. REINFORCEMENT LEARNING 97

2008). Each RL module then corresponds to some strategy in the environment, these

strategies can be represented as abstract actions for the planning system (Vítků 2011).

Compared to this, in the HANNS framework the purpose of particular RL modules can

be determined either by the human designer (by connecting module to particular sources

of data), or by the EA algorithm by connecting its data (and reward) inputs.

4.4.3 Stochastic Return Predictor Module

In (Kadleček 2008), the Stochastic Return Predictor (SRP) is described as a stand-alone

subsystem which is composed of the RL algorithm and the ASM. The RL part learns

(that is: updates information in the Q(s, a) matrix) from sequences of actions, state

transitions and rewards. Based on the current utility values in the Q(s, a) matrix, the

ASM selects actions to be executed in the next step.

Data: Values of State Variables, Reward Value

Result: Continuous Learning by Interaction

1 Initialize ; // configure to given number of inputs/outputs

2 while True do

3 at =ASM.Select action(Q, st)

4 Publish Selected Action at

5 while MessageFilter.NewStateNotDetected() do

6 Publish "NO-OPeration"; // Wait for action to take effect

7 end

8 t = t+ 1

9 Observe New State st+1

10 Observe Reward Received rt+1

11 Update values in Q(st, a
′

t
); // see the Eqs.4.8 and 4.9

12 Apply the Eligibility Trace to multiple state-action pairs; // see the Eq.4.10

13 Update Importance input and configuration inputs

14 Update and publish Prosperity

15 end

Algorithm 1: Function of the Stochastic Return Predictor.

This Chapter will describe how the SRP is implemented in the HANNS framework. The

modifications of Q(λ) and SARSA-Lambda algorithms were implemented, but the fol-

lowing text will describe the main principles only on the Q(λ) algorithm. The schematics

of implementation of the Module is depicted in the Fig.4.9.

98 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

Figure 4.9: Schematics of the SRP implementation, which is composed of the Q-

Lambda algorithm and the ASM. The (sub-)system is implemented as a

stand-alone ROS node, which can be used as a Neural Module. Small

(grey and white) circles represent interfaces with other modules. The world

state is represented by M state variables sampled each into given number

of values. Action selection is encoded by the 1ofN code. Node selects

one action at each time-step and expects information about new state and

real-valued reward. The node has the following configuration inputs: α,

γ, λ, Importance, which affect learning and Action Selection Methods.

The Prosperity heuristics represents average between MCR and overall

coverage of state space (number of visited states).

The Fig.4.10 depicts implementation of the module as a ROS node and its interfacing

with modem. The modem enables neural-like communication and is compatible with

NengoROS API. The subsystem is implemented as generally as possible. Still, before

the instantiating of the module, the number of data outputs and data inputs need to

be connected. Each of data outputs represent one action (action selection is encoded

by 1ofN code). Each of data inputs represent one state variable. The state variables

expect values from the interval 〈0, 1〉. Number of values of variable is determined by the

sampling interval. This means that continuous input values are discretized by sampling

into predefined number of values. This adds to the generality of the module, because this

discrete version of Q-Learning can be used in both: discrete and continuous domains.

The Algorithm 1 describes a high-level functionality of the SRP module. Compared to

4.4. REINFORCEMENT LEARNING 99

Figure 4.10: Stochastic Return Predictor communication. The standalone ROS node

communicates over the ROS network by means of own modem. Dashed

arrows represent optional connections. Optional inputs, which are not

connected maintain their default (predefined) values. Number of input

and output data connections is chosen before instantiation of the module.

common implementations, there are the following improvements.

The Eligibility trace is constrained to finite length of N previous steps, which saves

computational resources and prevents bigger destabilization of learning convergence

by incorrect value of λ parameter.

Importance-Based Action Selection Method enables the module to operate in

non-episodical experiments. In light of disadvantages of classical ASMs, this mod-

ule uses the modified ǫ−Greedy ASM, where value of ǫ is determined online, based

on the Importance input. The higher importance of the behavior learned by this

module, the less randomization is introduced in the action selection. On the other

hand, if the choice of action is not important at the moment, the ASM prefers ex-

ploration - gaining new knowledge, rather than blind following the learned policy.

The value of ǫ is computed according to the Eq.4.20.

Computation and Publishing of the Prosperity values is done inside the Neural

Module. The Prosperity Function is a subjective heuristics telling how success-

ful/useful the module is in the current network in the current simulation. The SRP

has two main goals. First, to visit as much world states as possible (to cover the

entire state-space regularly in the ideal case). Second, the Module should be able to

receive the reward regularly, if it is necessary (which is determined by the current

100 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

value of Importance in this case). Multiple definitions of the Prosperity function

were tested, but one of the simplest ones proved to be the most convenient. It is

composed of two parts:

Pt =
Covert +MCRt

2
, (4.15)

where the Mean Cumulative Reward (MCRt) defines how often the Module receives

the reward:

MCRt =

∑

i Ri

i
∀i ∈ 0..t, (4.16)

and the Covert represents how big part of the state-space has been explored during

the current simulation:

Covert =

∑

i=visited si
N

, (4.17)

where N is total number of states in the state-space. The size of state space is

determined from number of state variables and number of their values. These

information are defined during the instantiation of the module.

Input Data Synchronization ensures that all data arrive synchronously. The Nen-

goROS uses event-driven computation, where each event is triggered by receiving

new data. Most of the data are passed by means of asynchronous ROS "Pub-

lisher/Subscriber"2 method. This means that the state description and reward

value may not be received in the correct order (at the same time in this case). In

order to solve this problem, both, the reward and state descriptions are sent in one

ROS message.

Action-Feedback Synchronization is a system that ensures that the action-reaction

cycle will be processed correctly by this Neural Module. If the there is only one

SRP connected in the loop with the world, everything works correctly. This means

that for every action produced, the response from the environment (new state and

reward) is obtained immediately. But in case that the closed-loop obtains more

than two Modules in series, the architecture starts to operate as a FIFO (First-In

First-Out) system. The architecture composed of N−1 Modules connected in series

creates N -step long queue producing N -step delay in the action-perception loop.

2More information about ROS messages can be found here: http://wiki.ros.org/Messages.

http://wiki.ros.org/Messages

4.4. REINFORCEMENT LEARNING 101

Therefore the Module has to be able to assign correct actions to correct responses.

This is solved by the MessageF ilter in this case. This can be seen in the Algorithm

1 at the line no.5. The filter decides whether the new state belongs to the last action

selected by the Module. The SRP publishes new action and the filter waits until

the state changes. If the state remains unchanged more than K time steps, the

situation is evaluated as a case where the action had no effect on the environment,

and the main cycle continues.

4.4.4 Reinforcement Learning Module

There are drawbacks and benefits of incorporating more complex Neural Modules in the

hybrid networks. The main benefit is that complex Module can implement complex

algorithm, which can reduce a complexity of topology required for solving the problem.

The drawback is that the more complex system, the more specialized it usually is. The

same is true for the SRP described in the previous chapter. The SRP chooses an action

and expects that this action (or some transformation of this action) will be executed by

the architecture. This restricts the resulting systems to contain only one decision-making

system in most cases.

Solution to this problem is in separating the ASM from the RL part of the SRP Module.

The Fig.4.11 depicts the schematics of the RL Neural Module without the ASM. Instead

of choosing an action, this Module publishes the prosperity values of all actions in a

given state. This means that it tells to the rest of the system "how good which action is".

This approach enables the RL Module to "vote" in a group of multiple decision-making

Modules (not necessarily RL-based ones). As expected, this modification increases the

complexity of the topology. This is caused by two main reasons: an additional Module

(ASM) needs to be added. Furthermore, an additional feedback connection from the

selected action to all RL Modules used is necessary, since the RL algorithm needs to

know which action was selected.

In addition to features described for the SRP Module, I introduce more new concepts:

Importance-Based Action Selection Method It is expected that the ASM Module

will not know which action is the most important at the moment. Rather, simple

results of voting of (RL) Modules will be available. The Utility Values from all RL

Modules would be summed and the action with the highest priority will have the

102 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

Figure 4.11: Stochastic RL Neural Module. Compared to the SRP depicted in the

Fig.4.9, this module does not contain ASM block. Instead of choosing

one action and setting this action to value of 1, this module publishes

modified Utility values of all actions in the current state. The higher

the value of Importance, the more the output values will be scaled up.

Then, some external ASM receives these published values and is used for

selecting one action. Finally, the required information about the selected

action is received from the outside as a data input.

highest chance to be selected. Note that each of RL Modules knows how important

is its behavior (defined by the Importance input). In order to enable Importance-

Based ASM, the published Utility values are scaled according to the Importance

value: the higher the Importance input is, the higher will be published. This ensure

that the RL which implements most important strategy (in a current situation) will

get the highest voting right.

4.4.5 Action Selection Mechanism Module

Similarly to the previous case, the Action Selection Mechanism is just a separation of the

current ASM from the SRP. Again, the ASM Module implements the Importance-based

ASM, according to the Eg.4.20. Note that the value on this Importance input affects

randomization in the overall policy, which may be composed of multiple sub-policies

produced by multiple RL Modules (or generally other Neural Modules). This Module

4.4. REINFORCEMENT LEARNING 103

receives vector of real-valued Utility values and produces information about the selected

action, which is encoded by 1ofN code.

Figure 4.12: Basic Schematics of the ASM Module. Each action selection is done

according to the values of action utilities received from the outside. The

vector of values is received, then, the computation begins and finally, the

resulting action is encoded by means of 1ofN code. Similarly to the

SRP, the Importance input controls the amount of randomization during

the action selecting.

4.4.6 Suggested Use of RL Modules

This sub-Chapter describes how these modules could be used in agent architectures, how

should interact with each other and with the rest of the architecture.

4.4.6.1 Stochastic Predictor Module

In the context of layered (feedforward) architectures, the SRP Module should be con-

nected in the last layer, where the outputs are connected onto agent’s actuators. The

anticipated use of SRP module is in the architecture composed of:

Pre-processing layer, which may convert sensory data streams into some lower-

dimensional more stable patterns.

Learning and decision-making layer, which is implemented by single SRP.

Optional post-processing layer, which may transform data from the SRP into the

format more suitable for actuators.

104 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

In case of usage of multiple SRPs in the architecture, there are the following theoretical

constraints. At least one of them should be fulfilled in order to system operate correctly:

• Consequences of actions produced by individual SRPs are independent of each other.

• All SRPs choose to execute the same action most of the time.

These requirements are caused by the fact, that there is no feedback about the fact that

the selected action was executed by the agent. Each SRP "does not know" whether the

architecture took the vote of the SRP and executed the action, or whether something

different has been chosen.

4.4.6.2 Reinforcement Learning Module with Separated ASM

This disadvantage mentioned above can be solved by separating the ASM from the RL

algorithm. In this case, the multiple RL Modules operate in parallel, either cooperatively

or concurrently. The potential architecture may look as follows:

Pre-processing layer, which may convert sensory data streams into some lower-

dimensional more stable patterns.

Learning layer, which is implemented by multiple RL Modules. Each Module can

learn own strategy, which is determined by connecting of its Reward input onto a

particular source of signal. Modules can either cooperate on some strategy, or can

learn the same strategy with multiple parameters.

Action-selection layer, typically includes some type of ASM Module, which chooses

the action to be executed. The ASM select and executes the action and sends this

information back to RL modules. Thus each of RL modules can learn from the

experience correctly.

There are also other possibilities how to incorporate these RL-based Modules into hybrid

networks, several of them will be presented later in the text.

4.5. PLANNING 105

4.5 Planning

In order to enable HANNS-based agents to perform even more deliberative choices of

actions than the RL provides, the planning engine can be added. Most of the more

complex agent architectures make explicit use of planning engines for planning their

future actions. In order to reach the similar level of behavior complexity the HANNS

framework should contain the planning Neural Module too.

4.5.1 Theoretical Foundation

Generally, the planner is a system which is able to propose a sequence of actions that lead

from the current state to the specified goal state. Typically, planners work with set of

world states, set of actions together with their effects. Executing of each action changes

state of the environment in some way - causes transition from one state to another. The

planner searches for the correct sequence of such transitions (actions) which consecutively

transforms the current state into the specified goal state.

Therefore the planner engine requires the following main things in order to operate:

definition of a planning problem, current state and goal state. The definition of a plan-

ning problem describes set of possible states and set of admissible actions together with

their preconditions and effects. Probably the most known standard in planning problem

definition is Planning Domain Definition Language (PDDL), which separates planning

domain description and planning problem description (current state and goal).

4.5.1.1 Stanford Research Institute Problem Solver

Another well known planning language (and planning engine) is called Stanford Research

Institute Problem Solver (STRIPS), which is older and simpler than the PDDL (Fikes

and Nilsson 1971). The language is formally represented as a quadruple 〈P,O, I,G〉.

The P is the set of conditions expressed by propositional variables describing the world

state, I is the description of initial state and G is description of properties which are

fulfilled in a goal state(s). O is the set of operators - actions, each operator consists of

the quadruple 〈αs, βs, γs, δs〉. The elements αs and βs describe the constraints when the

action can be applied, that is: describe which conditions must be true and which false in

106 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

the given situation. The elements γs and δs describe action effects after its application,

that is: which propositional variables will become true and which false. Particularly, the

current state of the world is described by a binary vector, where operators change values

of bits on a specified position in a specified manner. The plan is a sequence of applicable

operators that consecutively transform the description of initial state towards the state

which fulfills the goal conditions (Nahodil and Vítků 2012b).

4.5.2 Design of the Planning Neural Module

The of problem description poses a challenge to the implementation of planner as a

Neural Module, because such a Neural Module should maintain as domain independent

as possible. There are two possible approaches how to solve the problem: to load the

domain description before the simulation or to let the planner learn the appropriate rules

of the domain itself. Since inputs of the planner can be connected to other modules that

can produce unknown (read: human un-readable) data, the first approach cannot be used.

This means that the planner has to implement some type of the algorithm described in the

Alg.2. Such a planner constantly observes sequences of transitions statet → actiont →

statet+1, stores frequent rules and uses these rules for creating new plans. Assuming that

the resulting rule database is consistent with true rules of the domain, the planner will

produce correct plans.

Figure 4.13: Graphical representation of the Planning Neural Module. The M (lower)

inputs represent description of the current state, while the M upper inputs

represent a a description of the goal state. The planner chooses one

action to be executed in the next step by publishing 1 on the appropriate

output (coding 1ofN). For testing purposes, the goal state can be specified

externally too.

4.5. PLANNING 107

Data: Number of inputs, number of outputs

Result: Continuous learning and providing planning for request

1 Initialize ; // configure planner to given number of inputs/outputs

2 while True do

3 Decoder.decode new state ; // Read new data on inputs and decode them

4 Decoder.decode new goal ; // Read description of new goal

5 Observer.observe new rules ; // action - states - action

6 RuleMiner.update rule database ; // filter and store frequent rules

7 if Importance > θ then

8 Planner.replan ; // Using new state and current database..

9 action = Plan.get first action

10 end

11 else

12 action = random

13 end

14 Encoder.encode action

15 Encoder.publish action

16 end

Algorithm 2: High-level operation of the required domain-independent planner.

The designed Neural Module uses the STRIPS planner, which operates over binary vec-

tors. The planner has two input vectors: current state and the goal state (see the

Fig.4.13). The input values are thresholded by θ = 0.5 in order to get binary data. There

are two modes of operation. The planner is in exploration mode. It produces one

action (see the Algorithm 2) and updates own library of rules. In case when the value

of Importance is above the 0.5, the planner switches to the exploitation mode and

tries to reach the goal state. During the planning, the planner uses the A∗ algorithm for

searching the graph of possible states. The heuristics is defined as a hamming distance

of currently expanded state from the goal state.

In the current implementation, the planner observes all rules (in form of statet →

actiont → statet+1) and remembers M most frequent ones in average. The size of rule

database is defined by hand so that the planning is not too slow. In the future, the

significant improvement could be made in employing some form of rule generalization.

Finally, note that my work on this Neural Module lies mainly in this higher-level design.

The particular implementation and testing was part of the Bachelor Thesis of Lukáš Skála

(Skála 2013), therefore experiments with this Module will be mentioned here only very

briefly.

108 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

4.6 Sequence and Pattern Recognition

There are some decision-making systems may be capable of handling streams of large and

noisy data (such as vision). An example of system which should be theoretically capable of

processing of this type of data is called Hierarchical Temporal Memory (HTM) described

in (Hawkins and Blakeslee 2004). Bit the fact is, that most of nowadays higher-level

decision (and learning) systems are not well suited for processing such type of information.

It is much more convenient to have low-dimensional and stable representations (that is:

changing slowly in time). For example, the Planing Neural Module described in the

Chapter 4.5.2 is able to operate only with limited number of states. Also, the planner

expects that description of a state is not changing too often (so that the planner does

not need to re-plan each time step).

Exactly this purpose can have sequence and pattern recognition sub-systems in agent

architectures. Such a subsystem learns patterns from data, classifies them and publishes

only information about given class. These pre-processed data can be then passed to some

higher-level decision system, which is able to process them well. Based on a particular

task, a successful agent architecture should be able to recognize either spatial patterns

or temporal patterns (and possibly both types). This chapter will briefly describes

implemented examples of such systems.

4.6.1 Spatial Pattern Recognition

The requirements is to create a Neural Module which converts high-dimensional to lower

dimensional data. The sub-system should be domain independent and should operate

in the "forward mode". This means that no labeled data are provided and some output

(classification) should be provided from the beginning of the simulation. This results

in requirement of unsupervised classification algorithm. As examples of suitable

algorithms can be mentioned Principal Component Analysis (PCA), K-means algorithm,

or the Self-Organizing Map (SOM).

4.6. SEQUENCE AND PATTERN RECOGNITION 109

4.6.1.1 Design of the Self-Organizing Map Neural Module

The SOM converts high-dimensional input vector to its lower dimensional representation.

A typical SOM algorithm works in two phases: learning (adaptation of weights) and

mapping (classification of input data).

Data: SOM topology, learning rate, randomized weights

Result: Continuous learning and providing classification

1 Initialize

2 while True do

3 Input.receive data sample; // Vector of real values

4 if Learning is on then

5 for Each node in the map do

6 Compute euclidean distance between sample and weights

7 track BMU ; // Node with the smallest distance

8 end

9 move the BMU and its neighbors closer to data sample

10 end

11 Publish coordinates of the BMU ; // ..in the lower dimensional space

12 end

Algorithm 3: Operation of the SOM Neural Module.

Figure 4.14: Graphical representation of SOM Neural Module. The Module converts

higher-dimensional data to their lower-dimensional representations. The

optional configuration input defines whether the learning is enabled (en-

abled by default).

The learning works as follows. For each data sample, the distance (of its weights) from

110 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

the sample is computed for all neurons in the network according to the equation:

di =
M
∑

j=1

(Ij −Wi,j)
2, (4.18)

where di is a distance of neuron i to the data sample I and M is the dimensionality of

input space. The weights of the BMU (the neuron with the minimum di) are modified

according to the equation:

W(t+ 1) = W(t) + η × (I(t)−W(t)). (4.19)

The parameter η is s learning rate. Then, neighbors of the BMU are moved, also according

to the Eq.4.19. But the learning rate η is decayed according to some rule (e.g. the

Gaussian distribution) for these neighbors. The neighborhood is defined by the topology

of the SOM, typical topologies are 1D chain or 2D grid. More on SOM topologies can be

found e.g. in (Jiang, Berry, and Schoenauer 2009).

The designed SOM Neural Module uses the Algorithm 3 during the simulation. During

the initialization, the input and output space dimensions and the learning rate are defined.

And the SOM with randomized initial weight is instantiated. In the so-called "forward

and online mode" the node computes and publishes the transformation at each simulation

step from the beginning of the simulation. The learning is enabled by default, therefore

the SOM adapts to data online, while also making the classification. Note that the SOM

Neural Module has also been implemented and tested as a part of Bachelor Thesis of

Lukáš Skála (Skála 2013).

Note that Neural Module with more complex algorithm for unsupervised clustering

(based on a hierarchical clustering) was implemented and tested as a part of Bachelor

Thesis of Pavol Sekereš (Sekereš 2013). The Module uses algorithm called "Unweighted

Pair Group Method Algorithm" (UPGMA). The UPGMA is a modification of hierarchical

clustering algorithm, which is able to process data presented in a sequential manner.

New data update the hierarchy in a very computationally efficient manner, which is

very convenient feature in the HANNS framework. The schematics of the Module looks

similar to the SOM node (Fig.4.14), but the main advantage is that the optimal number

of clusters does not have to be specified a priori.

4.6. SEQUENCE AND PATTERN RECOGNITION 111

4.6.2 Temporal Pattern Recognition

Another useful feature of data pre-processing subsystems is to be able to recognize (clas-

sify) the input sequences of data. Thanks to the classification of input sequences, the

more stable (less often changing in time) patterns are created. This "gives a time" to

decision making systems to plan next actions in a given situation. As an example of

sequence classification can be mentioned notes of song and the name of the song (which

changes considerably less often in time). The problem can be also called Unsupervised

sequence labeling. The same requirement as for spatial patterns holds also for temporal

patterns: the node should be able to operate in the "forward and online mode". Gen-

erally, the algorithm should be able to do: mine frequent sequences, classify (recognize)

new sequences received on inputs.

Figure 4.15: Graphical representation of the Sequence Recognition Neural Module.

The sequentially presented input is processed by the algorithm and the

resulting (recognized) pattern is published. The learning is turned on by

default, but can be controlled during the simulation too.

As an example of such an algorithm capable of "unsupervised sequence labeling" can

be mentioned Hidden Markov Models (HMM). As a part of his Diploma Thesis, my

colleague Pavol Sekereš implemented and tested Neural Module which uses algorithm

designed (by the original author) especially for this purpose. Based on given require-

ments (streaming of data, domain independent operation) the algorithm called Top-K

Sequential patterns in Data Stream was selected (Fournier-Viger and Tseng 2011).

Since a description of this algorithm is beyond the scope of this text, I will just refer

to the Bachelor Thesis (Sekereš 2013). The graphical representation of such a sequence

recognizing Neural Module can be seen in the Fig.4.15.

112 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

4.7 Neural Modules for Simulating Agent’s

Environment

Generally, there are three expected types of possible experiment setups, these are the

following:

• Testing the architectures directly on some dataset. The dataset was usually loaded

from the file by the specialized Neural Module and provided data in the NengoROS

simulator.

• Simulation with discrete state simulator.

• Simulation with continuous state simulator.

This Chapter describes two simulators (for simulating agents’ environment), which were

for experiments. Both of them were used also as Neural Modules and were seamlessly

connected in the HANNS framework as any other Neural Modules. The first simulator is

an example of complete implementation of very simple simulation engine. Compared to

this, the second also serves as an example of adding (Nengo)ROS interface to the existing

simulator and using it as a Neural Module.

4.7.1 Discrete Grid-World Simulator

Figure 4.16: An example of GridWorld simulator initialized with size 20x20 tales.

There are two obstacles (big rectangles) and one source of reward (small

one). The arrows visualize some learned strategy by the agent (see the

Chapter 5).

4.7. NEURAL MODULES FOR SIMULATING AGENT’S ENVIRONMENT 113

Figure 4.17: Graphical representation of the GridWorld simulator. After receiving an

action (encoded typically by 1ofN code) the simulator does the following:

Makes transition into new state by applying world rules. Publishes new

coordinates of the agent and new reward values.

Data: World size, placement of obstacles and rewards

Result: Continuous interaction

1 Initialize ; // configure the simulation environment

2 while True do

3 Read data received on inputs

4 Decoder.Decode actions

5 Update world state by applying rules; // Move the agent, compute rewards

6 Encoder.Encode data to be sent

7 Respond with new encoded position and rewards

8 end

Algorithm 4: GridWorld simulator operation.

Simple Grid-World simulator was used for purposes of testing architectures that use

discrete algorithms for decision making and do not include any sensory data preprocessing.

The simulator consists of single world map consisted of tales arranged in a 2D grid of

selected size. Each tale can be either free, occupied by obstacle or by some source of

reward/punishment (of different types). An agent is allowed to move in four directions

(up, down, left, right). If the agent tries to step onto obstacle, nothing happens. If the

agent steps on a tale with source of reward/punishment, the corresponding response from

the environment is received. Various sources of reward/punishment can be added to the

environment during the instantiation. Each such a source has own output in the HANNS

network.

The simulator itself is implemented as a ROS node and communicates in the same way

as other Neural Modules. The graphical representation of the simulator can be seen in

the Fig.4.17. During the initialization, the grid size, positions of obstacles and rewards

114 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

are defined. For each type of reward, there is one output added.

Encoding of input/output data is made in the following manner. Ideally, the input data

should be from {0, 1}, where action to be taken is encoded by means of code 1ofN (1of4

in this case). In order to be compatible with possibly less compatible sources of signal,

the decoder (see the Algorithm 4) takes the action with the highest value and considers

it to be the one selected by the agent:

aselected = max(ai) ∀i ∈ 1...4. (4.20)

On the other hand, the Encoder of data (agent’s X,Y positions and rewards) publishes

values from the interval 〈0, 1〉 (see the Fig.4.17). In case of the agent’s position, the

interval of the output value is sampled into N values, where the N is a size of particular

dimension (X or Y). This ensures that the data will be from the recommended interval.

Also, a Neural Module which receives these data has either compatible decoder, or receives

at least approximate information about the situation (that is: lower number means lower

coordinate).

4.7.2 Simulator with Realistic Physics - ViVAE

Discrete simulations do not reflect enough properties of real world, such as for example:

dynamics, continuous changing of input data etc. In order to test agent architectures

under such conditions, appropriate simulator had to be used. While one of the key

concepts of the NengoROS simulator is ability to reuse SW, I decided to adopt some of

existing simulators. I chose the Visual Vector Agent Environment (ViVAE) (Drchal et al.

2011), which is implemented in Java and was developed on CTU in Prague3.

It is a simulator of 2D environment with simulated physics. Robots (visualized as squares

with sensors, see the Fig.4.18) are able to move on different surfaces. Each surface has

different friction and the agent can control speed of both wheels. For each robot, it is

possible to configure number of sensors and their properties (maximum distance). A

typical task of agent is to navigate through the environment with the highest speed

possible.

3More information about the original version of the simulator can be found at: http://cig.felk.

cvut.cz/projects/robo/.

http://cig.felk.cvut.cz/projects/robo/
http://cig.felk.cvut.cz/projects/robo/

4.7. NEURAL MODULES FOR SIMULATING AGENT’S ENVIRONMENT 115

Figure 4.18: An example of ViVAE simulator window. The simulator contains con-

tains three robots. Each robot has friction (small grey squares), obstacle

sensors (red lines) and a speed sensor. Each surface has a different fric-

tion (black road with low friction and green grass with bigger friction).

Therefore the robot is able to gain maximum speed on the surface with

low friction. Also, there are three violet obstacles. Each robot has two

actuators, which independently control the speed of robot’s wheels.

I modified this simulator by adding the ROS interface. The modification results in a Vi-

VAE Simulator Server, which enables the NengoROS to directly control entire simulator

across the ROS network. The description of the interface is beyond the scope of this text,

but here is a list of some important functions:

• Start/stop the simulation

• Turn the visualization on/off

• Spawn/Kill the agent (which adds/removes an agent from the simulation) with

given number of sensors. This is similar to Spawn service in the Turtlesim demo4

• Control existing agents

• Read sensory data from existing agents

For each of newly spawned agents, the ViVAE Simulator Server adds new ROS publisher

and subscriber to the node. This increases the number of input/output connections of the

4Turtlesim service demo available at: http://wiki.ros.org/ROS/Tutorials/

UnderstandingServicesParams

http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams
http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams

116 CHAPTER 4. THEORETICAL FOUNDATION AND DESIGN OF MODULES

Figure 4.19: Graphical representation of the ViVAE Simulator Server as a Neural

Module. In the picture, the simulator contains one spawned agent with N

friction and distance sensors. The Neural Module has two inputs (speed

for both wheels) and 2N + 1 outputs, each for one sensor. The Simula-

tor Server also provides ROS services, which are directly accessible from

the NengoROS scripting interface. The services provide control of the

simulation setup and state.

corresponding Neural Module in the NengoROS simulator. The course of simulation is

similar to the previous case: after receiving actuator commands (motor speeds from the

interval 〈−1, 1〉), the simulator state is updated (computing dynamics, resolving collisions

etc..) and the resulting sensory data are encoded and sent back to outputs of the Neural

Module. Note that no further pre-processing nor post-processing of data is used here.

The robots will accept only positive values on actuators and their motors saturate on

the value of 1. All outputs from sensory data are also real-valued from the recommended

interval.

Chapter 5

Experiments

In order to present concepts outlined in the Chapter 3 and test implementations of various

Neural Modules (and simulators) presented in the Chapter 4, it was necessary to conclude

variety experiments. This chapter will described several of them, starting from those

simpler ones and aiming towards those more complex ones. There are three types of

methods of evaluation of agent architectures; testing: against an artificial dataset, in

discrete simulator and in continuous simulator with simulated physics. There are the

following types of experiments: simpler experiments focused on presenting basic concepts

of the HANNS architectures, more complicated hand-designed hybrid architectures and

finally: evolutionary-designed hybrid architectures that were optimized for a particular

task.

5.1 Hand-Designed Architectures - Testing Neural

Modules

The Chapter will start with selected simpler experiments that were concluded mainly

in order to verify correct functionality of both: Neural Modules for architectures and

external simulators. Also, the basic concepts of HANNS-based simulations will be shown

here.

117

118 CHAPTER 5. EXPERIMENTS

5.1.1 Hand-Designed Agent Controllers - Navigation Task

First experiment shows simple architecture with purpose of navigating agent in a virtual

environment. The environment setup is depicted in the Fig.5.1, where the agent should

navigate on the black road. The objective of the experiment is to maintain as high average

speed as possible.

Figure 5.1: ViVAE environment with simple "maze". The agent should be able to

navigate on the black road as fast as possible. The two obstacle sensors

publish values from 〈0, 1〉 representing distance to the nearest obstacle.

Various surfaces have various frictions (see the Section 4.7.2). The robot

has two wheels with controllable speed.

5.1.1.1 Controller Design

In order to build the architecture which implements the required task, a hybrid network

of Neural Modules was created. The task can be decomposed into two primitive behaviors

in this case: the robot needs to navigate straight ahead and to handle turns in one

direction. Therefore the network consists of two Neural Modules and has feedforward

topology. One Neural Module detects and handles turns and the second one handles

navigation straight ahead and composition of both behaviors together. The design of the

architecture uses simple approach: go straight ahead, if the left sensor detects too small

value: turn left.

5.1. HAND-DESIGNED ARCHITECTURES - TESTING NEURAL MODULES 119

(a) Module for generat-

ing turns, if the condi-

tion is fulfilled (threshold),

signals from U1, U2 are

passed to outputs Y 1, Y 2.

(b) Navigation straight

ahead, it sums symmet-

rical signal (go straight

- Us) with an additional

input (turns) U1, U2.

Figure 5.2: Two simple Neural Modules for navigation task. One generates turns and

the other one navigates straight ahead. Two output values control speeds

of two wheels of a robot. On the left, there is picture of robot using only

two distance sensors and two wheels.

5.1.1.2 Neural Modules

Two Neural Modules were designed, their graphical representation is in the Fig.5.2. First

Module detects the turn and produces turning behavior, if the sensor value is under a

given threshold, initiate the turning behavior for a given duration time. This this is

implemented by the Eq.5.1:

if Ut(t) < T (t) :

{

Y1a(r) = U1a(r)

Y2a(r) = U2a(r), r ∈ t, . . . , t+ d

else if Ut(t) ≥ T (t) :

{

Y1a(t) = 0

Y2a(t) = 0,
(5.1)

where t is a current simulation step and d is a duration of turning behavior (triggered by

crossing the threshold) in time steps. The behavior go straight ahead and composition

of both behaviors is implemented in the second Neural Module, marked "Go Straight",

which computes the following equations:

Y1b(t) = U1b(t) + Us(t)

Y2b(t) = U2b(t) + Us(t) (5.2)

120 CHAPTER 5. EXPERIMENTS

5.1.1.3 Resulting Architecture

The resulting architecture is represented as a two-layer feedforward hybrid network. The

architecture is connected in the closed loop with the Neural Module implementing the

ViVAE simulator server. The agent reads the sensory data (see the Fig.5.1) and sends

commands controlling speed of two wheels of the robot. The complete experiment setup

can be seen in the Fig.5.3.

Figure 5.3: Simple hand-designed architecture composed of two Neural Modules and

two sources of bias. It is connected in the closed-loop with the simulator.

First Neural Module detects turns and produces turning behavior, the sec-

ond one produces "go straight ahead" behavior and combines both together.

Thin lines between Neural Modules represent weighted connections.

Thin lines between Neural Modules represent weighted connections between them. The

network from the Fig.5.3 gives the following resulting equations, for the first Neural

Module:

if Dl(t)W1 < B1W2 :

{

Y1a(r) = B1W3

Y2a(r) = B1W4, r ∈ t, . . . , t+ d

else if Dl(t)W1 ≥ B1W2 :

{

Y1a(t) = 0

Y2a(t) = 0.
(5.3)

For the second Neural Module, it is:

Y1b(t) = B2W5 + Y1a(t)W6

Y2b(t) = B2W5 + Y2a(t)W7. (5.4)

5.1. HAND-DESIGNED ARCHITECTURES - TESTING NEURAL MODULES 121

So, the resulting system is controlled as follows:

if Dl(t)W1 < B1W2 :

{

Y1b(r) = B2W5 + B1W3W6

Y2b(r) = B2W5 + B1W4W7, r ∈ t, . . . , t+ d

else if Dl(t)W1 ≥ B1W2 :

{

Y1b(t) = B2W5

Y2b(t) = B2W5.
(5.5)

5.1.1.4 Behavior of Resulting Architecture

Here, both values of bias (B1, B2) were set to 1, the connection weights Wi∈{1,7} ∈ 〈−1, 1〉

and duration d were experimentally chosen in order to obtain desired behavior. The

agent runs straight ahead with predefined speed. If the left turn is detected, it changes

the speeds of motors so that it navigates through the turn in an efficient way.

The values of weights were following: Wi∈{1,7} = [1, 0,−0.44,−0.11, 0.44, 1, 1] and the

duration d = 30 steps. From the Fig.5.4 can be seen that the turning behavior is triggered

by zero value on the left sensor. The "Turn" Neural Module produces negative values

(breaking). The graph shows the agent, which navigated through two turns (while one

turn was used on the straight row). It can also be seen how the speed is decreased during

turns.

The behavior of resulting agent controller, together with interactive plots provided by

the NengoROS simulator can be seen from the video1. Since the architecture is designed

experimentally, the resulting behavior is not optimal. Rather, the purpose of this exper-

iment is to show how a simple agent architecture can be represented and designed with

help of the HANNS framework and tested in the NengoROS simulator.

Recapitulation Here a simple experiment was described - a navigation task. The basic

principles of designing and simulating HANNS the architectures were explained

on a particular example. All the presented Neural Modules can be reused in other

systems. The resulting behavior of the agent is given only by the connection weights

between Modules, which is similar to designing classical ANNs. The experiment

in the Section 5.2.2 will compare this hand-designed architecture with similar one,

that was designed by the Evolutionary Algorithm.

1Video available online at: http://goo.gl/RGb6F5.

http://goo.gl/RGb6F5

122 CHAPTER 5. EXPERIMENTS

Figure 5.4: Course of sensory and actuator data during the navigation task. Graphs

(a) and (c) show output values of Neural Modules "Turn" and "Go

Straight". The (b) and (d) graphs show output values from the ViVAE

simulator. In (b), the lower average value is the left sensor value. In (d),

the instantaneous speed is of agent shown, big negative spikes correspond

to turns, small ones to small corrections in the path. It can be seen that if

the turn is detected (graph (b), events when the sensor value touches the

value 0), the "Turn" module produces braking (negative speed signal). The

"Go Straight" Module (in (c)) produces constant signal, which adds to the

values received from the "Turn" module, shown in (a).

5.1.2 Q-Learning Based Agent Architecture

The following agent architecture was used for testing the Physiological Neural Module

(PNM) (see the Chapter 4.3.2), Stochastic Return Predictor Module (SRP) (described

in the Chapter 4.4.3) and the GridWorld simulator (Chapter 4.7.1). The main task is to

efficiently learn how to obtain reward in the discrete environment. The simulation was

setup as non-episodic, which means that the agent was let in the environment for given

number of steps. Then, the overall efficiency of agent’s behavior was then evaluated.

5.1.2.1 Architecture Design

The architecture was tested in the GridWorld of size 20 x 20 with two obstacles and

one attractor, the environment can be seen in the Fig.5.7, left. The agent can move in

5.1. HAND-DESIGNED ARCHITECTURES - TESTING NEURAL MODULES 123

four directions and receives the reinforcement after reaching the position containing the

reward. The architecture uses SRP configured to have 4 outputs and 2 data inputs. Each

of data inputs represents one axis in the GridWorld and therefore each of input variables

is sampled into 20 discrete values. One Physiological Neural Module was connected into

its input, both reward and Importance. The resulting experiment setup can be seen in

the Fig.5.5.

Figure 5.5: Setup of experiment testing SRP Module with one source of reward and

one Physiological Module. The physiology feeds the SRP with information

about received reward and the current importance of efficient behavior. The

SRP module receives information about the agent’s position in the map and

is allowed to move with the agent in four directions.

The GridWorld publishes data about X and Y agent’s position in the map. The map has

size of 20x20, so there is 20 discrete values for each variable. The SRP Neural Module

was configured to have two state variables, which are sampled into 20 values each. Since

there are 4 actions allowed by the agent, the SRP was configured to have 4 outputs. This

means that the SRP operates with 3-dimensional Q-matrix of size 20x20x4, which stores

Utility values for all actions in all states (see the Chapter 4.4). This configuration of

input/output connections is sufficient to use the Module. The rest of all parameters is

left with default values. Particularly, the default parameters for the SRP were: α = 0.5,

γ = 0.3, λ = 0.04, length of Eligibility trace traceLen = 20 and minimum randomization

ǫmin = 0.1. Finally, the PNM was configured to have value of Decay D = 0.01 in this

experiment.

124 CHAPTER 5. EXPERIMENTS

5.1.2.2 Testing the Learning

In the non-episodic experiment, the agent was placed in the map on a random initial

position and let to interact with the environment. At the beginning, the SRP generates

random actions. When the source of reward is found, the system starts to learn a strategy

how to obtain the reward from various positions. This is done by using the Importance-

based Action Selection Mechanism (ASM) (see the Eq.4.20). During the low Importance

of behavior, the strategy can be completely randomized. Compared to this, when the

Importance is high, the SRP will use Greedy ASM (with predefined ǫmin = 10%).

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation Steps

V
a
lu

e
s

Agents Performance

Prosperity of Physilogy module (1−MSD)

Prosperity of RL module

No. of visited states

Reward per step

Figure 5.6: Course of agent’s learning during 100000 time steps of continuous simula-

tion. After 40000 steps, almost all environment states were explored, but

the agent continues to improve the learned strategy.

The course of learning, together with the example of use of the NengoROS simulator can

be seen in the video online2. The learning is depicted also in the Fig.5.6. The graph shows

the course of Prosperity for both Neural Modules. For the SRP, also the reward per step

and no. of visited states is depicted. It can be seen that after about 40000 simulation

steps, the agent explored almost entire state space (excluding obstacles). From the course

of Prosperity of the PNM it can be seen that the agent kept improving the learned strategy

continuously. An example of learned strategy can be seen in the Fig.5.7, where the arrows

represent agent’s Greedy strategy. The environment contains one source of reward and

two obstacles. It can be seen that after the simulation, the agent was able to navigate

from almost any state towards the reward, while successfully avoiding obstacles.

2NengoROS simulator; course of learning, video online: http://goo.gl/bY6Y2q.

http://goo.gl/bY6Y2q

5.1. HAND-DESIGNED ARCHITECTURES - TESTING NEURAL MODULES 125

5.1.2.3 Influence of Physiology Decay on Agent’s Behavior

The purpose of the PNM is to balance between exploration and exploitation. The balance

is controlled by increasing the Importance of the behavior with a given dynamics. If the

Importance rises slowly, the agent has enough time to explore. Currently, the exploration

is implemented as random walk. This means that optimal dynamics of PNM should

depend on a particular task. Bigger (or more complicated) environments will typically

require slower dynamics than smaller environments. This experiment tests the expected

influence of the Decay parameter of the PNM on agent’s behavior.

(a) Visualization of agent’s strategy that was

learned during 40000 time steps of continuous

simulation. There are two obstacles and one

source of reward.

5
10

15
20

5

10

15

20

0

10

20

30

40

S2 = Y

S1 = X

Utility values of best actions in a given state − Q(s,a) matrix values

U
ti
lit

y
 o

f
th

e
 b

e
s
t

a
c
it
o

n
 b

a
s
e

d
 o

n
 a

g
e

n
ts

 p
o

s
it
io

n

(b) Corresponding Utility values in a given state.

The Z-axis shows the Utility value of the best ac-

tion on the X,Y coordinates in the environment.

Figure 5.7: An example of learned strategy after 40000 simulation steps. On the left,

there is a graphical representation of the Greedy strategy. Small arrows

represent the action with the highest Utility value in a given state. So

following arrows from any state represents the Greedy strategy. Positions

without arrows represent places, where no action was learned. Graph on

the right shows Utility value of the best action learned. It can be seen that

the nearer the source of reward, the expected (discounted) reward is higher.

Here are two examples of Decay set to D1 = 0.002 and D2 = 0.01 showing how the agent’s

behavior is influenced. The Fig.5.8 on the left shows how the amount of motivation

corresponds with receiving rewards. The graph on the right shows the agent’s positions

in the map in time. If the speed of Decay is increased to D2 = 0.01 per simulation step

(see the Eq.4.1), the agent’s motivation to reach the reward rises faster. This means that

126 CHAPTER 5. EXPERIMENTS

(a) Course showing slowly increasing motiva-

tion and binary events of receiving reward.

With the increasing motivation, the agent in-

creasingly tends to exploit the knowledge until

the reward is reached.

(b) An example of agent’s wandering around

the environment in time. The X axis repre-

sents simulation steps, lines show current X

and Y coordinates in the map.

Figure 5.8: Influence of Decay parameter of the Physiological Neural Module on explo-

ration/exploitation ratio. Decay D1 = 0.002. As the motivation for reward

increases slowly, the reward is obtained with the corresponding frequency.

The agent has time to explore. The graph on the right shows how agent

moves through the environment.

the agent tries to reach the reward more often and there is less time for exploration. This

can be seen in the Fig.5.9 on the right. The average agent’s position is nearer to the

discovered source of reward at the coordinates [X, Y] = [2, 3].

It can be concluded that the Decay parameter has the expected influence on agent’s

behavior. Also, the optimal value of this parameter depends on a properties of the

environment (size, complexity etc.). In order to obtain good balance between exploration

and exploitation of knowledge, this parameter has to be set correctly.

Recapitulation This Section shown an architecture composed of more complex Neural

Modules. One of the Modules has inner dynamics, while the other one implements

learning/adaptation mechanism. The SRP Module serves as an example of typical

Neural Module. It continuously receives data on inputs, learns from them and pro-

duces some useful information/behavior on own outputs. The functionality of SRP

and PNM was tested and shown in a discrete environment. The domain-configured

SRP was able to successfully learn from interaction with the environment. With

the help of PNM, the agent was able to successfully balance between knowledge

exploration and exploitation. This hand-designed architecture will be compared to

5.2. EVOLUTIONARY-BASED DESIGN OF ARCHITECTURES 127

(a) Course showing slowly increasing motiva-

tion and binary events of receiving reward. It

can be seen that receiving the reward correlates

with amount of motivation.

(b) The corresponding positions in the map in

time. The agent tends to stay near the reward

source on 2,3.

Figure 5.9: Influence of Decay parameter of the Physiological Neural Module on explo-

ration/exploitation behavior. Decay D1 = 0.01. Compared to the Fig.5.8,

the agent tends to stay nearer the source of reward - less exploration.

the architecture designed by various configurations of Evolutionary Algorithms in

the next Chapters.

5.2 Evolutionary-Based Design of Architectures

One of the main goals of this Thesis was to design a framework, which can unify the

communication between subsystems of very different nature. The common communica-

tion interface then allows us to automatize design of new architectures by (e.g.) some

type of Evolutionary Algorithm. Here, an architecture and its functionality is defined by

set of Neural Modules and connections between their inputs/outputs. Since the space

of all possible connections between all Neural Modules implemented would be too big

to be searched, the following experiments assume the following constraints. The set of

Modules is predefined and space of all possible connections between Modules is con-

strained to feedforward topologies. Also, if a Neural Module has configurable properties

of inputs/outputs, these set to chosen values before the evolution.

The following Section will describe the common setup of Evolutionary Algorithms that are

128 CHAPTER 5. EXPERIMENTS

used in the experiments. In each experiment, only table with parameters of a particular

algorithm will be mentioned.

5.2.1 Evolutionary Algorithms Used

This section will hold a brief description of Evolutionary Algorithms (EAs)3 that were

used in the following experiments. There were two types of algorithms used here:

Genetic Algorithm (GA) - is a standard type of EA, which operates over binary vec-

tors (as genomes) of predefined length.

Real-Valued Genetic Algorithm (RGA) - is a modification of standard GA. The

only difference is that RGA operates with vectors of real-valued numbers (genomes).

This requires special operators: crossover and mutation, which will be described

below. Note that there may be more suitable algorithms for operating with real-

valued vectors (such as Evolutionary Strategies (ES) (Hansen and Kern 2004)), but

in order to keep both algorithms used simple and similar, the RGA was used here.

Table 5.1: Typical parameters of GA and RGA used.

PopSize MaxGens Pmut Pcross Elites

50 80 0.05 0.8 1

The Algorithm 5 shows that a standard generational model of EA was used in both

cases here. The evolution of population PopSize is constrained to maximum number of

generations MaxGens with Elitism set to Elites = 1 (which explicitly preserves only the

best individual found so far).

The standard Roulette-wheel selection was used here. In both cases, one-point crossover

of genomes was applied with the probability of Pcross for each pair of selected individuals.

The mutation is applied with the probability Pmut for each gene. In case of GA, simple bit-

flip is used. In case of RGA, the mutation was implemented as sampling the Gaussian

Function with the standard deviation of σ = 1 with mean value of µ = genei. After

applying mutation, the value is corrected to be in the predefined interval of genei ∈

3Note that the EA is used to denote Evolutionary Algorithm in general term, that is: superclass of

GA and RGA. While GA and RGA denote particular algorithms described in this section.

5.2. EVOLUTIONARY-BASED DESIGN OF ARCHITECTURES 129

Data: Randomly initialized population Pop0

Result: Genome representing the best architecture

1 for i ∈ 0,...,MaxGens do

2 for ind ∈ 0, ..., PopSize do

3 indi.fitness = indi.genome.evaluate(); // evaluate all (simulate for N steps)

4 end

5 Popi+1(0, .., Elites− 1) = getNbestIndsFrom(Popi, Elites); // apply elitism

6 while Popi+1 not full do

7 select two individuals based on their fitness

8 crossover them with Pcross ; // apply evolutionary operators

9 mutate each of their genes with Pmut

10 place them into Popi+1 ; // fill the target population

11 end

12 end

Algorithm 5: Generational model of Evolutionary Algorithm used for neuro-

evolutionary design of agent architectures. The algorithm is common for both GA

and RGA, which operate over vectors of boolean/real-valued variables. Single-valued

fitness is obtained as agent’s performance during the simulation of predefined dura-

tion of N steps.

〈minGene,maxGene〉. The Table 5.1 shows typical values of GA and RGA used in the

following experiments.

5.2.2 EA-Designed Agent Controllers - Navigation Task

Here, an experiment showing EA-based design of simple agent architecture is described.

The main principles of the approach will be described here. This architecture is similar,

and can be directly compared to the one described in the Section 5.1.1. Here, the objective

is to automatically design an architecture which navigates in the environment (see the

Fig.5.1) as fast as possible.

5.2.2.1 Architecture Design

The architecture is composed of predefined set of Neural Modules connected in a given

topology. In this case, it is composed of the same two Neural Modules as described in the

Fig.5.2. Similarly to the hand-designed architecture, the Modules are ordered in a feed-

130 CHAPTER 5. EXPERIMENTS

forward fashion. All inputs/outputs are fully connected between layers. The approach is

similar to classical neuro-evolution of feedforward ANNs, therefore the RGA is used for

finding connection weights between these Modules.

Figure 5.10: Principle of encoding of a hybrid agent architecture into genome. The

topology is represented as a feedforward hybrid network, where in-

puts/outputs between layers are fully connected. The RGA is supposed

to optimize the connection weights in order to obtain the highest average

speed in the simulation.

The architecture is composed of identical Neural Modules as the one described in the

Section 5.1.1. The principle of encoding of the architecture into a genome is depicted in

the Fig.5.10. The genome is a vector of 25 real-valued numbers from the interval 〈−1, 1〉.

In the Fig.5.10, the genome is divided into three matrixes Wa,Wb,Wc of different sizes,

where each matrix defines connection weights between layers. These matrixes are placed

into a single vector. The length of a genome is then given by sizes of these matrixes as

follows:

l = mn+ op+ qr, Wa ∈ R
m×n,Wb ∈ R

o×p,Wc ∈ R
q×r

l = 3× 4 + 3× 3 + 2× 2 = 25. (5.6)

Table 5.2: Parameters of RGA used in the navigation task.

PopSize MaxGens Pmut Pcross Elites

50 80 0.05 0.8 1

For each genome (genotype), the architecture (phenotype) is built and placed in the

simulation. The agent is then allowed to move in the environment for given number of

5.2. EVOLUTIONARY-BASED DESIGN OF ARCHITECTURES 131

simulation steps. The quality of the individual (fitness) is computed as an average speed

during entire simulation, that is:

f =

∑

t vt
T

, t ∈ 0, . . . , T, (5.7)

where T is the number of simulation time steps and vt is a current speed of the agent,

which is obtained from one output of the ViVAE server Module (see the Fig.5.10). The

parameters of RGA were empirically set to the values shown in the Table 5.2.

5.2.2.2 Resulting Automatically Designed Architectures

The performance of the resulting architecture can be seen in the video4. From the real-

time graphs, it can be seen that the strategy used by the agent is completely different,

despite the fact that it uses the same Neural Modules. Even the best architectures found

by the RGA had slightly lower fitness than the hand-designed one. This is caused by

the fact, that the best RGA-designed agents use the strategy: go straight ahead, turn

in the grass and navigate in the opposite direction. The lower fitness was caused by

changing the direction of travel at the beginning of the simulation. Despite the lower

fitness value, the graphs show that the performance of RGA-designed architectures is

better and more robust (the agent is able to recover from crashing into the obstacle) than

the hand-designed one (without ability of the crash recovery).

Another interesting strategy designed by the RGA can be seen in another video5 on the

bottom. From the Summator (equivalent of the Go Straight module in the Fig.5.4)

real-time graphs, it can be seen that one output of the GoStraignt module is connected

to wheel with negative weight. The agent applies high signal to wheels and decelerates

towards the next turn .

Recapitulation This experiment presented and tested a method of encoding simple

hybrid feedforward agent architecture into genome used by the RGA. It was shown

how the RGA is able to automatically design architecture suitable for a given task.

Important is the fact, that the RGA was able to use given set of Neural Modules

in a different way than anticipated. Moreover, the best resulting architectures

perform slightly better than the human-designed one. This shows that the HANNS

4Behavior of typical best RGA-designed architecture, video online at: http://goo.gl/85dpo0.
5Two examples of RGA-designed architectures - navigation task, online at: http://goo.gl/cSbNAR.

http://goo.gl/85dpo0
http://goo.gl/cSbNAR

132 CHAPTER 5. EXPERIMENTS

Figure 5.11: Example of behavior of RGA-designed architecture for navigation in

the maze. Screenshot from the NengoROS simulator during navigation

through the left turn. Big "peak" in (d) - corresponds to the entering the

turn. After the peak, the "Turn" Module produces signal with low values

(which is transformed by weighted connections to robot’s wheels). After

going out of the turn, the agent follows data on the left sensor. Data

of the left sensors can be seen in the (b), where the signal with starting

lower value is the left sensor. Graph on the (c) shows current speed.

Graph (a) shows output values of the "Turn" Module. The behavior is

different from the behavior of the hand-designed architecture, shown in

the Fig.5.4.

framework is able to use known sub-systems (represented as Neural Modules), for

example algorithms in new and potentially unknown ways.

5.2.3 Artificial Neural Network of 3rd gen. vs. Hybrid Network

This experiment briefly shows the ability of the NengoROS to employ two different sys-

tems into one architecture. The first is Neural Module and the second part is Spiking

Artificial Neural Network (SNN), which is supported by the original Nengo simulator.

More information about on the SNN support can be found online6 or in the Appendix

A.2.

6More information about the original Nengo simulator can be found online at: http://nengo.ca.

http://nengo.ca

5.2. EVOLUTIONARY-BASED DESIGN OF ARCHITECTURES 133

This experiment is also a simple demonstration of one of the main principles of the

HANNS. The user does not need to know exact description of the task. Often, the

user knows some information about the domain, which can be set as starting point (by

defining which Neural Modules should be used) for automatic design of the HANNS. It

is shown how this starting point can greatly improve systems’s performance and speed of

searching for the solution.

5.2.3.1 Task Description

The evolutionary design has the following task here: to approximate behavior of the

fuzzy-logic gate implementing Łukasiewicz weak disjunction: y = max{x, y}, where x

and y are values of membership function. The two approaches are tested and the results

compared, the first experiment tries to approximate the function by finding weights in

the fully recurrent Spiking Artificial Neural Network (SNN). In the second experiment,

the same network is used, but the Fuzzy − OR Module is also added to the network as

a domain knowledge.

Since the main focus in the ALife domain is to evaluate systems on streams of data

produced by the environment, a similar approach is used here. Evaluation of performance

of EA-designed systems is not done on a predefined test dataset. Instead, the signal

generator is used. It produces pseudo-random 2D signal7, which is fed into both: the

designed system and the Plant (Fuzzy-OR gate) to be approximated. The principle is

shown in the Fig.5.12. The Mean Squared Error (MSE) is computed during N simulation

steps and its inverse is set to be the fitness value of the individual.

Here is shown how a problem can be solved by RGA-designed SNN. The performance of

a SNN-based system is then compared with the hybrid system. The hybrid system has

the same setup, but it features also one added Fuzzy −OR gate.

Table 5.3: Parameters of RGA used for evolving the (Hybrid) SNN.

PopSize MaxGens Pmut Pcross Elites

30 100 0.05 0.8 1

Here will be described common setup for both experiments. Evaluation of one individual

took N = 3000 simulation steps. Particularly, the simulation was simulated for t = 3

7Information how the pseudo-random signals are generated in Nengo: http://goo.gl/VWqKh1.

http://goo.gl/VWqKh1

134 CHAPTER 5. EXPERIMENTS

Figure 5.12: Principle of EA-based optimization of connection weights. The generator

generates 2D signal, which is fed to both, the Plant and the optimized

model. Average error across the N simulation steps is computed and its

inverse is set as the fitness value (Vítků and Nahodil 2013).

seconds with resolution dt = 0.001 (since the SNNs require explicit representation of

time). The generator was set to generate preudo-random continuous signal from the

interval 〈−2, 2〉.

The setup of RGA is described in the Table 5.3. Allowed values of genes are from the

interval genei ∈ 〈0, 1〉. Based on the fact that no negative weights were allowed, we can

see that no inhibitory neurons are simulated here and no negative signal will be produced

by the network.

5.2.3.2 Optimization of ANN-Based Model

Here, the first experiment will be described. The evolution has task to optimize weights

in the fully recurrent SNN. The network contains 4 neurons of 3rd generation. These

neurons communicate by means of spikes between each other. Particularly, the Leaky-

Integrate and Fire (LIF) neuron model is used. Based on steady input current to the

soma, the LIF neuron may produce spikes on its output - axon. The "tuning curve"

defines dependency of firing rate on input current to the soma (see Figs.A.2 and A.4 in

the Appendix A.1). Aside of spiking neurons, there are also two input neurons and one

output neuron. The schematics can be seen in the Fig.5.13 (all without dashed lines).

The two input neurons (marked as F2S) convert continuous input values to series of

spikes. Oppositely, the output node (marked as S2F) converts the series of spikes into

real-valued output. The F2Ss are in fact LIF neurons, where the real-valued input is the

current to the soma. The S2F node serves as a post-synaptic current integration: the

5.2. EVOLUTIONARY-BASED DESIGN OF ARCHITECTURES 135

Figure 5.13: Optimized connections in the (hybrid) model. The solid thin lines corre-

spond to optimized weights of the fully recurrent SNN (dashed connections

are set to weight=0). In the hybrid network, also the dashed lines are op-

timized, which enables the evolution to use also the Fuzzy-OR node in the

system.

.

higher the firing rate (leaky integration), the higher output value (see e.g. Chapter 4.1.3

in (Gerstner and Kistler 2002)). Note that intercept8 values for all neurons used are set

to value int = 0 and max. firing rate is set to mr = 25. This means that no negative

values are represented/processed by the SNN.

Four hidden LIF neurons are fully connected. The topology with entire SNN is depicted

in the Fig.5.13. Weights of all thin solid black lines are optimized by the evolution. The

length of entire genome is then computed as:

l = Dinput ×Nhidden +N2
hidden +Dout ×Nhidden = 8 + 42 + 4 = 28, (5.8)

where Dinput and Doutput are dimensions of input or output respectively and Nhidden is

number of hidden neurons. The evaluation of the fitness is then computed as follows:

f =
1

MSE
=

1
∑

t(outm(t)− outp(t))2
, t ∈ 0, ..., N, (5.9)

8Intercept and max. firing rate are explained e.g. online at: http://nengo.ca/docs/html/

configuring.html.

http://nengo.ca/docs/html/configuring.html
http://nengo.ca/docs/html/configuring.html

136 CHAPTER 5. EXPERIMENTS

Figure 5.14: Example of hybrid modular system in the NengoROS GUI. Generator

f(t) generates 2D signal which is def into the ANN-based model and

Plant. The error between two signals is obtained and the MSE of entire

simulation is computed. Screenshot from the NengoROS simulator. The

Model is represented as a sub-network in the Nengo GUI.

where the outm(t) is the output of the SNN and outp(t) is the output of the system to be

approximated - the Fuzzy −OR module heres.

The Fig.5.14 shows an example of connecting the fully recurrent SNN with the rest of the

experiment. The f(t) generates 2D signal, which is fed into the plant and ANN-based

model. Finally, the MSE is computed from the instantaneous error online during the

simulation. The Fig.5.15 shows the course of the evolution - fitness of the best individual

in the population. It can be seen that in the generation 50, the fitness converged to

the value around f = 40. This means that the MSE of the best individual is around

MSE = 1
40

= 0.025.

From the Fig.5.16 and video9 we can see that the typical best evolved SNN can approx-

imate the plant relatively well. The output of the SNN implements rather the equation

out = a+ b, than the Fuzzy−OR operation. But, due to nature of the input signal, this

causes relatively small MSE.

9Example of typical best SNN approximating Fuzzy-OR available online at: http://goo.gl/HIcBY4.

http://goo.gl/HIcBY4

5.2. EVOLUTIONARY-BASED DESIGN OF ARCHITECTURES 137

10

20

30

40

50

60

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Generation

X: 98
Y: 41.93

Fitness of the best individual during the evolution

F
it
n

e
s
s

Figure 5.15: Course of evolution of the ANN-based system. The fitness of the best

individual is shown. After around 50 generations, the fitness converged

to the value of f=40. The shown course is averaged across the 10 runs

of RGA.

5.2.3.3 Optimization of Hybrid Model

The results of evolved SNN are compared to the identical system. Only in this case, the

a-priori knowledge about the task was added in form of the Fuzzy−OR Neural Module.

The resulting hybrid network is depicted in the Fig.5.13. In this case, both solid and

dashed thin lines are optimized. This means that the length of genome is increased from

28 to l = 35, which increases the space to be searched by the evolution.

Note that this simple example of hybrid system combines both: the spiking and real-

valued types of communication between Modules. The graph in the Fig.5.17 shows the

course of evolution of such a hybrid network. It can be seen that the evolution was able to

produce significantly better approximation of the plant than classical ANN-based model.

Fitness value of the best typical individual converged on the value about f = 70, which

corresponds to the MSE = 0.014 Moreover in some cases, the evolution was able to find

much better individuals with the value of MSE = 1
f

= 1
570

= 0.0018. This means that

the evolution of the hybrid model was able to approximate the plant with almost twice

better average precision than the solution based on the SNN. In some cases, the solution

found was almost perfect (almost only the Fuzzy − OR Module was connected to the

inputs/outputs of the system).

138 CHAPTER 5. EXPERIMENTS

Figure 5.16: An example of performance of the ANN-based system. From the left:

graph ("generator") shows the 2D input signal, the "Fuzzy OR" shows

the signal computed by the plant, the "model" shows output signal of the

SNN and finally instantaneous error between two signals. It can be seen

that the SNN approximates rather the sum of input signals.

0

100

200

300

400

500

600

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Generation

X: 97
Y: 73.87

Fitness of the best individual during the evolution

F
it
n

e
s
s

Figure 5.17: Results of agent controlled by hybrid ANN.

Recapitulation This experiment shown how the NengoROS simulator can be used for

simulating hybrid systems, which even employ different types of communication. It

also shown how the simulator can be used for evolutionary-based optimization of

connection weights in these systems, in order to approximate the desired behavior.

It was also shown that the hybrid system with added a-priory knowledge (in form of

correctly selected set of Neural Modules) can greatly enhance the speed of evolution

and the accuracy of the solution obtained. Here, the evolution was able (in some

cases) to correctly identify that for the best approximation, mainly the Fuzzy−OR

node should be connected to both inputs and one output.

5.2. EVOLUTIONARY-BASED DESIGN OF ARCHITECTURES 139

5.2.4 EA-designed Agents with Motivation-Driven RL

This experiment shows EA-based design of an architecture which implements motivation-

driven Reinforcement Learning. The agent is situated in the same environment as in the

experiment in the Section 5.1.2, only here the map is slightly smaller: 15× 15, but with

the same relative placement of objects. Again, the goal of the agent is to be able to learn

how to obtain the reward in the environment. The experiment shows the ability of the

evolution to design architecture that are suitable for the task. Experiments comparing

the RGA and GA were made. Also, various definitions of the fitness function are tested

and discussed.

5.2.4.1 Architecture Design

Here, the architecture design and its representation for the EAs will be explained. This

architecture has the same goal and uses the same Neural Modules as the one shown in the

Fig.5.5. It contains one Physiological Neural Module (PNM) and one Stochastic Return

Predictor (SRP) connected in a closed-loop with the GridWorld simulator.

Figure 5.18: Principle of encoding of hybrid agent architecture as a feedforward Hybrid

Neural Network (HNN). The connection weights between Modules are

optimized by the evolution, with the goal of providing the desired behavior.

The Fig.5.18 shows how the architecture design is encoded in the genome, which can

be used by the RGA. There are some simplifications, such as that the PNM is placed

in the layer 0. Also, the connections between the SRP and the GridWorld (actions) are

hardwired in a desired way. Again, the genome is divided into several sub-matrixes, where

each one represents connections between nearby Neural Modules. Both Modules, the SRP

140 CHAPTER 5. EXPERIMENTS

and the PNM are configured identically to the experiment in the Section 5.1.2. This allows

us to compare the from the the RGA and GA with the hand designed architecture.

For better explanation of the Fig.5.18, the equations for each transformation will be

shown. For the state inputs:

S1(t) = AX(t) + BY (t) + FMPNM(t) + IRPNM(t)

S2(t) = CX(t) +DY (t) +GM(t) + JR(t), (5.10)

where MPNM(t) is the value of Motivation and RPNM(t) the value of reward produced

by the PNM at time step t. Equation for the Importance input is similarly:

I(t) = KMPNM(t) + LRPNM(t) +MX(t) +NY (t), (5.11)

and finally the Reward input of the SRP Module:

RSRP (t) = EMPNM(t) +HRPNM(t). (5.12)

5.2.4.2 Defining the Agent’s Goals

As discussed earlier in the text, it is difficult to generalize what the architecture

should do. That is: to find the domain independent evaluation of agent’s desired abil-

ities. This Section will test methods of evaluation of agent’s performance that were

proposed in the Section 3.3.3.6. The two proposed approaches of evaluating the agent’s

performance will be tested, mainly:

All of the Modules should be used as efficiently as possible. For the purpose of

evaluating the effectiveness of the Module usage, each of the Modules should publish

own value of the Prosperity function.

Architecture fulfills predefined inner needs. This can be represented for example

by hard-wired PNM, which then produces need for reward. In this case, the Pros-

perity of the PNM also evaluates the agent’s ability to fulfill the need.

5.2. EVOLUTIONARY-BASED DESIGN OF ARCHITECTURES 141

Table 5.4: Parameters of GA and RGA used for RL-based architectures.

PopSize MaxGens Pmut Pcross Elites

50 80 0.05 0.8 1

This experiment compares the first two methods with each other. For each method, own

definition of the fitness function is defined and used. For each method, the courses of

evolution of the GA and RGA are compared.

Here, the common setup of all experiments in this section will be described. The

parameters of RGAs and GAs were empirically set to values shown in the Table 5.4. From

the Fig.5.6 it was estimated that a well-designed architecture should be able to learn useful

strategy in 20000 simulation steps (even on a bigger map). Therefore evaluation of the

fitness value for each agent is determined from the non-episodic simulation of 20000 steps.

5.2.4.3 Composed-Objective Fitness

In the first experiments, the "Composed-Objective Fitness" was defined according to the

first possibility described above. This means that every Neural Module evaluates own

Prosperity - "how well is used in the simulation" and the quality of the architecture

is composed of these Prosperities. Here, the "Composed Fitness" (CF) is defined as a

normalized sum of Modules’ Prosperities. The overall prosperity of the architecture is:

Parch = CFarch =

∑

i Pi

N
, i ∈ 1, 2, . . . , N, (5.13)

where N is number of all Neural Modules in the architecture. Note that this problem

is of multi-objective nature and therefore the Multi-Objective EA (MOEA) (Deb 2011)

could be required to find the global optimum efficiently. In order to keep the evolutionary

part simple, this (single-objective) definition of Composed Fitness CF was tested.

The Fig.5.19 compares the course of the best fitness in the population during the run of

EAs with Composed-Objective fitness (CORGA) and the GA (COGA). It can be seen

that similarly good solution has been found much faster by the COGA. This shows that

finding binary weights is less complex task in this case. The Table 5.5 on the left shows

typical genome of the best solutions (for both, GA and RGA). The resulting genome and

fitness is compared with the hand-designed architecture.

142 CHAPTER 5. EXPERIMENTS

Table 5.5: Comparison of typical agent architectures’ resulting genomes and their fit-

ness values. Left: hand-designed, CORGA-designed and COGA-designed.

Right: examples of SOGA and SORGA-designed agents (which are de-

scribed in the Section 5.2.4.4).

See Fig.5.18

A B C D

E F G H I J

K L M N

Hand-designed

CF = 0.555

SF = 0.625

1 0 0 1

0 0 0 1 0 0

1 0 0 0

COGA - best Ind

CF = 0.494

0 1 1 0

1 0 0 1 1 0

0 1 0 0

CORGA - best

Ind

CF = 0.491

0.06 1 1 0

1 0 0 0 0 0

0 1 0.23 0

SOGA - Ind1

SF = 0.699

1 0 0 1

0 0 0 1 0 0

1 1 1 1

SOGA - Ind2

SF = 0.697

1 1 0 1

0 0 0 1 0 1

1 1 1 1

SORGA - Ind1

SF = 0.745

0 1 1 0.71

0 0 0 1 1 0

0.89 0 1 1

SORGA - Ind2

SF = 0.723

0 0.51 1 0

0 0 0 1 0 0

0.76 0 0.3 0.44

The Fig.5.20 describes the course life of typical best agent found by the COGA (CORGA

behavior is similar). The network is designed in such a way, that Prosperity of the

SRP Module is maximized, while the prosperity of Physiology is ignored. This produces

relatively high fitness around CF=0.5. Number of visited states suggests that the ASM

here implements random strategy. From the Table 5.5 we can see that the state variables

are represented well (only exchanged X and Y), but the Motivation output of the PNM

is not connected to the reward input of the SRP. Also, both typical best agents have

the common value of weight E = 1, causes the SRP to receive reward every time step,

proportional to the value of the Motivation:

RSRP (t) = E ×MotivationPNM(t) +H ×RewardPNM(t). (5.14)

It can be seen that when the Physiology receives reward, the Reward per step value of

the SRP Module temporarily decreases. The Fig.5.20 on the right shows Utility values

for the best actions in the map. It can be seen that almost all visited states have the

same utility values, only during receiving the (real) reward the utility decreases. We can

see that the architecture does not learn any useful strategy.

This experiment shown that the definition of CF as in the Eq.5.13 is not suitable for this

task. The evolutionary search can stuck in local optimum (maximizing the prosperity

of only some Modules), which may not create architecture capable of required behavior.

The SRP has two main goals: to receive reward (on its input) as often as possible while

5.2. EVOLUTIONARY-BASED DESIGN OF ARCHITECTURES 143

0 10 20 30 40 50 60 70 80

0.35

0.4

0.45

0.5

0.55

Generations

V
a

lu
e

 o
f

th
e

 B
e

s
t

F
it
n

e
s
s
 i
n

 t
h

e
 P

o
p

u
la

ti
o

n

Comparing COrGA and COGA on Designing new Architectures

Best fitness during COrGA (fitted by polynom)

Best fitness during COGA (fitted by polynom)

Mean value of best fitness

Mean value of best fitness

95% Prediction Intervals

Figure 5.19: Evolutionary design of (hybrid) ANN agent architecture - comparing per-

formance of the Composed Objective EA and GA. The values are averaged

from 10 runs of EA (GA) and fitted by the polynomial.

maintain exploration as high as possible. These requirements were obtained by completely

random strategy with the source of reward connected to the Motivation output of the

PNM. This caused that the agent learned rather how to avoid the reward, rather than to

obtain it.

5.2.4.4 Single-Objective Fitness

Since the Composed-Objective fitness as defined in the Eq.5.13 was not suitable for this

task, the Single-Objective fitness function (SF) was defined. This SF is an example of

second type of evaluation as described in the Section 5.2.4.2 - it evaluates how well is the

agent able to fulfill some predefined needs. The SF is defined as the prosperity of the

PNM (see the Eq.4.3) of the agent:

SFarch = PPNM = 1−MSD. (5.15)

This means that the Single-Objective RGA/GA (SORGA/SOGA) has the goal to build

the architecture which minimizes agent’s need for a given resource (represented

by the reward). It is "up to the EA’s decision" whether: the task requires use of other

Modules (e.g. learning in this case), how to use those Modules (e.g. how to represent

informations in the SRP in this case) etc.

The experiment setup (parameters of RGA, GA, length of simulation etc) is the same as

144 CHAPTER 5. EXPERIMENTS

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation Steps

V
a
lu

e
s

Agents Performance

Prosperity of Physilogy module (1−MSD)

Prosperity of RL module

No. of visited states

Reward per step

(a) Course of life of typical best agent found

by the COGA (CORGA is similar). The pros-

perity of PNM is completely ignored. No. of

visited states suggests that the ASM here im-

plements random strategy. Reward per step is

high due to connecting reward input of SRP

Module to motivation output of the Physiol-

ogy.

2 4 6 8 10 12 14

5

10

15

0

10

20

30

40

S2 ~ yPos?

S1 ~ xPos?

Utility values of best actions in a given state − Q(s,a) matrix values

U
ti
lit

y
 o

f
th

e
 b

e
s
t

a
c
it
o

n
 b

a
s
e

d
 o

n
 a

g
e

n
ts

 p
o

s
it
io

n
(b) Content of memory of the agent designed

by the CORGA. Despite the fact that X,Y co-

ordinates are represented correctly (axes only

swopped), the Q-Lambda algorithm clearly

does not learn any useful strategy. The module

receives reward almost each step (if the moti-

vation is high).

Figure 5.20: Description of behavior and knowledge of typical best agent produced by

the CORGA and COGA algorithms. It can be seen that the behavior

is not expected: the PNM does not receive practically any reward. The

reward connection of the SRP is connected to other sources than the

actual reward, therefore it does not learn any useful strategy (receives

reward almost each simulation step, regardless the action produced).

in the previous case. The Fig.5.21 shows the course of evolution for both, SORGA and

SOGA. Compared to the previous experiment with CF , both algorithms converge faster.

Again, the GA finds similarly fit solution considerably faster than the RGA.

The Table 5.5 shows two typical solutions found by the SORGA and SOGA, the following

part will describe the results from the SORGA and SOGA separately.

SOGA-designed architectures. Both individuals in the Table 5.5 have the following

properties:

• Reward input of the SRP Module is wired correctly, so that the RL part works

as expected.

• Both environment state variables and motivation output of the PNM

5.2. EVOLUTIONARY-BASED DESIGN OF ARCHITECTURES 145

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generations

V
a

lu
e

 o
f

th
e

 b
e

s
t

F
it
n

e
s
s
 i
n

 t
h

e
 p

o
p

u
la

ti
o

n

Comparing SOrGA and SOGA on Designing new Architectures

Best fitness during SOrGA (fitted by pol. of ord.5)

Best fitness during SOGA (fitted by pol. of ord.8)

Mean value of best fitness

Mean value of best fitness

95% Prediction Intervals

Figure 5.21: Evolutionary design of (hybrid) ANN agent architecture - comparing per-

formance of the Single-Objective EA and GA. Again, the GA finds the

similar fitted individual considerably faster.

are connected to the Importance input of the SRP Module. This means

that an uncommon type of motivation-driven RL is used here. The Importance

is directly proportional to the motivation produced by PNM and to the agent’s

position/distance from the reward source.

• Binary reward output of the PNM is connected to the motivation source too,

but this has no significant influence on agent’s behavior.

Also note that the Ind1 has correctly wired state variables to agent’s position,

while the Ind2 has one dimension "diagonalized" (both, X and Y coordinates are

connected to the S1 variable). This means that only one half of the Q(s, a) matrix

was used here, but still the architecture performed relatively well. The Fig.5.22

shows behavior of a typical best architecture found by the SOGA. The architecture

performs similarly to the hand-designed one (see Fig.5.6). Compared to the hand-

designed, this one has bigger motivation to stay near the reward source ,

so that the overall prosperity of the PNM is higher, while the amount of explored

states is lower.

SORGA-designed architectures. Compared to the SOGA, finding new architectures

by means of the SORGA required more generations. But the SORGA has wider

possibilities how to weight signals between particular Modules in the network. For

instance, from the Table 5.5 it can be seen that the Ind2 used only half of the

Q(s, a) memory. The Ind1 uses swopped coordinates with one dimension slightly

146 CHAPTER 5. EXPERIMENTS

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation Steps

V
a
lu

e
s

Agents Performance

 Prosperity of Physilogy module (1−MSD)

Prosperity of RL module

No. of visited states

Reward per step

(a) Course of life of typical best agent found by

the SOGA - Ind1. The behavior is similar to

the hand-designed architecture (see Fig.5.6).

5

10

15
2

4
6

8
10

12
14

0

10

20

30

40

S2 ~ yPos?

Utility values of best actions in a given state − Q(s,a) matrix values

S1 ~ xPos?

U
ti
lit

y
 o

f
th

e
 b

e
s
t

a
c
it
o

n
 b

a
s
e

d
 o

n
 a

g
e

n
ts

 p
o

s
it
io

n
(b) Knowledge of selected agent found by the

SOGA - Ind1. Representation is identical to

the hand-designed architecture. Not all envi-

ronment states are explored here.

Figure 5.22: Analyzing the typical architecture found by the SOGA (marked as Ind1).

It can be seen that the higher motivation (combined from two sources)

causes the agent to stay nearer the reward source (once found) than in

the hand-designed architecture. Compared to this, the CORGA approach

is able to weight the amount of importance produced by particular sources.

diagonalized. In both architectures, the motivation-driven RL is used. Again, the

amount of motivation originates from the PNM and the agent’s position in the map

(therefore the agent is afraid of going further away from the food). The

Fig.5.23 shows the course of learning of the Ind1 and its contents of the memory.

The knowledge is diagonalized (see the Fig.5.23(b) and the Fig.5.24(b)), but the

learned data correspond to the reward source, the position of obstacle is visible too.

The separated peak in is caused by the fact that the reward output of the PNM

is connected to the S1 input. This means that during receiving the reward, the

perceived X position "jumps" to the maximum value.

Recapitulation These experiments shown how the HANNS framework can be used for

automatic design of agent architectures for a given task. The evolution uses pre-

defined set of Neural Modules ordered in a predefined topology. The connection

weights can be optimized by both, GA and RGA in order to provide desired behav-

ior. Two of proposed ways of measuring the quality of behavior were described and

tested. It was shown that the definition of Composed Fitness caused the evolution

5.2. EVOLUTIONARY-BASED DESIGN OF ARCHITECTURES 147

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation Steps

V
a
lu

e
s

Agents Performance

Prosperity of Physilogy module (1−MSD)

Prosperity of RL module

No. of visited states

Reward per step

(a) Course of life of typical best agent found by

the SORGA - Ind1. Compared to the SOGA-

designed architecture (Fig.5.22), this agent

learns slower (slower convergence of Pros-

perity of the Physiological Module). This is

caused by sub-optimal representation of knowl-

edge in the Q-Lambda Module.

2

4

6

8

10

12

14

5

10

15

0

10

20

30

S1 ~ xPos?

Utility values of best actions in a given state − Q(s,a) matrix values

S2 ~ yPos?

U
ti
lit

y
 o

f
th

e
 b

e
s
t

a
c
it
o

n
 b

a
s
e

d
 o

n
 a

g
e

n
ts

 p
o

s
it
io

n

(b) Knowledge of selected agent found by the

SORGA - Ind1. The Q-Lambda Module has

swopped axes and value of the S2 variable is

computed as follows: S2 = X + 0.71Y . This

causes slower convergence of learning. The

"peak" in the graph is caused by connecting

reward output to the S1 input.

Figure 5.23: Behavior and knowledge learned in SORGA-designed architecture. De-

spite the fact the convergence of learning is slower, the overall results of

behavior are similar to the SOGA-designed architecture (Fig.5.22).

to find the local optimum, which produces undesired behavior. This means that the

CF is not suitable here. Compared to this the Simple Fitness (measuring how is the

agent able to meet own needs) worked as expected. In both cases, the GA found

solution faster than the RGA, but the RGA was able to provide more interesting

solutions. For example, the SORGA-designed Ind1 employed previously unknown

attribute of the environment - position of the reward source near the coordinates

[X, Y] = [0, 0]. Therefore the designed agent has tendency to stay near the low

coordinates. Solutions provided by the evolution typically use less efficient repre-

sentation of the knowledge in the SRP’s memory, but are able to use the Module

in an unexpected manner. Generally, the point is here, that such a simple set of

connection weights can represent relatively complex system (that is: we could write

complete equations of the system as shown in the Section 5.1.1.3).

148 CHAPTER 5. EXPERIMENTS

(a) Greedy policy of the SORGA-designed

agent "Ind2". The addressing in the memory

is rotated and compressed (see the Table 5.5)

according to the equation S1 = 0.51Y

(b) Greedy policy of the SORGA-designed

agent "Ind1". Actions correspond to the Util-

ity values in the Fig.5.23. Addressing in

the memory is diagonalized due to multiple

weighted inputs of the state variables (see the

Table 5.5).

Figure 5.24: Visualization of the greedy policy learned by typical SORGA-designed

agents. Arrows show actions with the highest utility in the state. There

are marked (deformed) obstacles and and approximate position of the re-

ward source. Because the agent "jumps" between states in the memory,

the learned policy is not human-readable well. But, (as seen e.g. from the

behavior in the Fig.5.23) the learned policy works relatively well (together

with the motivation-driven randomization).

Chapter 6

Conclusion

This thesis had one main goal: to bridge the abyss between various types of research

by providing a platform for simpler integration of results of different research fields in

computer science. One of main goals was to propose a simple approach how to combine

various pieces of code together in various ways.

The thesis proposes a novel framework called Hybrid Artificial Neural Network Systems

(HANNS), which inspired in Modular Neural Networks. It is able to represent each pice

of code as a stand-alone sub-system, called Neural Module. The Neural Module has input

and output connections defined in unified way, so that it is able to communicate with the

rest of the network. If the algorithm uses some incompatible type of communication, the

appropriate transformation are implemented inside Neural Module (e.g. symbol ground-

ing). This way, various types of Neural Modules can be employed in one hybrid network,

from classical neuron modules, or Fuzzy Logic nodes towards more complex ones, such

as clustering algorithms, planning or Reinforcement Learning for example. By such a

unification of representation of Neural Modules and communication between them, it is

possible to combine the subsystems in almost arbitrary new ways. The user is able to

"wire the modules" together in order to build new (agent) architecture which produces

some desired, or interesting behavior.

Therefore the proposed framework can be seen as some kind of super-class of Artificial

Neural Networks, Neuro-Fuzzy systems, logic circuits and more. Compared to these

systems, which are composed of small nodes, the proposed framework is able to reduce

the complexity of the system’s topology by encapsulating more complex algorithms/sub-

systems into one Neural Module. This has similar benefits to Modular/Hybrid Neural

149

150 CHAPTER 6. CONCLUSION

Networks.

By defining such a unified representation of subsystems, it is possible to employ some

search algorithm for designing new networks of Neural Modules - new architectures.

Such a search algorithm can be then used for discovering new, useful ways of combining

known algorithms/parts together. Since the size of space of all possible combinations

of (even small set of) Neural Modules is huge, several constraints were put to allowable

configurations of Neural Modules. The principle of automatic design is shown on examples

of agent architectures, where Neural Modules are placed in a feedforward three-layered

topology.

6.1 Fulfillment of Thesis Goals

Here will be described how the main goals of the thesis were fulfilled. The goals were the

following.

Goal 1 - Providing a tool that will enable fast integration of current knowledge.

During deciding which platform to define/use for integration of different systems,

the author found the Robotic Operating System (ROS). The ROS tries to define

and distribute pieces of code that are re-usable in more domains. Therefore the

author employed the ROS during defining the framework. The ROS node can

be transformed into Neural Module (with unified connections) without need of

modification of the node. This is done by adding simple Encoder and Decoder.

From now on, the ROS node is represented as a Neural Module with given number

of input and output connections. This allows integration of the Module with other

Neural Modules - other subsystems. This goals is therefore considered as fulfilled.

Goal 2 - Provide a framework that will be able to build hybrid systems by hand.

In order to be able to physically connect existing pieces of code implemented in

ROS in similar way as ANNs, the simulator NengoROS was created by fusing

existing simulator of large-scale SNNs with the ROS. While the Nengo part is

used as a front-end and simulation engine, the ROS part runs on a background

and waits to be used. After defining encoder and decoder for each ROS node (and

therefore representing it as a Neural Module), the user is able to wire the Neural

6.2. MAIN FINDINGS OF THE THESIS 151

Modules together. This is possible either in the Jython scripting interface, Java,

or in the GUI of the original Nengo simulator. The behavior of newly created

architectures can be observed directly by using real-time graphs.

Goal 3 - Explore possibilities of automatic design of new hybrid systems.

The author focused on constraining the space of all possible mutual configurations

of Neural Modules. The proposed framework defines agent architectures as

three-layer feed-forward hybrid networks containing predefined set of Neural

Modules. It was shown that such a constrained configuration space can be then

efficiently searched by the Evolutionary Algorithm. Experiments shown, that by

using even a simple set of predefined Modules, the evolution was able to produce

some unexpected results. The resulting automatically-designed architectures use

either unexpected (and successful) combinations of Neural Modules, and/or by

exploit a non-anticipated property of the task. And this is exactly fulfillment of

the third goal - automatic exploration of new ways how the current pieces of code

can be connected together.

The conclusion can be made that all goals stated at the beginning of the thesis were

fulfilled.

6.2 Main Findings of the Thesis

The framework for defining agent architectures was tested on various experiments, cov-

ering simulations in both discrete and continuous-time domain. Tested architectures

included simple Neural Modules, more complex top-down designed Neural Modules fea-

turing learning, spiking neurons etc.

The main finding in the thesis is that the concept of (semi-)automatic design of HANNS

works as expected. The Evolutionary Algorithm is able to pick the form of representations

of information in the Module’s memory. Even on very simple tasks and using very simple

Neural Modules, the EA was able to successfully employ these modules in a completely

different way than was expected. This feature could be increasingly interresting with

more complex Neural Modules used in the architectures, because the EA could be able

to discover some completely new ways of employing the current algorithms.

152 CHAPTER 6. CONCLUSION

Another finding is the following. Correct definition of the objective that will be solved by

the agent is crucial for automatic design of a suitable architecture. It was experimentally

shown how the objective of the agent can be evaluated either from outside (computing

average distance from the required behavior) or from the inside - by measuring values of

selected Prosperity outputs.

It was also shown that defining agent’s goals is not an easy task in general. While using

the fitness value, which was composed of Prosperities of multiple modules, the evolution

was unable find an desired solution. This issue could be solved by employing some multi-

objective optimization technique (e.g. MOEA), or by some better way of combining the

Prosperity values together.

6.3 Known Limitations of the Research

Aside many benefits of the presented framework and simulator, there are some drawbacks

too. Probably the main problem during the automatic design of architectures is in the

speed of the NengoROS simulator. By instantiation of too many connection weights,

the requirements of the simulator grow fast than would be suitable. This drawback cold

be easily solved by further modification of the Nengo engine or by bypassing the engine

during the simulation completely.

On the theoretical side, the automatic search for new architecture is constrained to hand-

defined set of Neural Modules (architecture template). This could be improved in the

future by adding some heuristic selection of Neural Modules from the library.

6.4 Future Directions and Practical Use

Based on the past research, the author proposes the following possible directions of future

research:

• Experimental testing of automatic ILP-based configuration of input/output dimen-

sions before starting of optimization of the architecture.

6.4. FUTURE DIRECTIONS AND PRACTICAL USE 153

• Further integration and testing new Neural Modules

• Exploring the possibilities of using the Multi-Objective EA for the fitness functions

composed of multiple Prosperity outputs of multiple Neural Modules.

• To propose an efficient method of configuring various subsystems in a similar way.

That is to answer the questions like: how to setup filtering of input values, how to

setup inner coefficients of algorithm etc.

• Automatic adding of Neural Modules in the architecture template. The choice can

be based for example on Neural Modules’ keywords and particular Classes of Neural

Modules.

On the practical side, this approach of automatic designing of new architectures could

be used in domains, where the used does not know the entire problem. This means that

the user is not able to define the desired architecture exactly. Here, the evolutionary

design of architectures can be used efficiently: The user defines set of Neural Modules

that should be in the network and the EA tries to the architecture for a given task.

Another note towards practical use. By direct employing the ROS, it is possible to use

the entire proposed framework not only in simulated environments, but in a real-world

applications. Currently, the ROS supports many robotic systems directly (Quigley et al.

2009; Collective of Authors 2014).

One of the main benefits of this approach is the fact that the HANNS framework is

capable of very compact representations of complex systems. If a big amount of top-

down design is used (that is: "big"" Neural Modules are defined), there can be only

small amount of connection weights that affect and define the resulting behavior of the

system.

154 CHAPTER 6. CONCLUSION

Bibliography

Abbott, Laurence and Terrence J. Sejnowski, eds. (1999). Neural Codes and Distributed

Representations: Foundations of Neural Computation. Cambridge, MA, USA: MIT

Press. isbn: 0-262-51100-2.

Agrawal, Rakesh and Ramakrishnan Srikant (1994). “Fast Algorithms for Mining As-

sociation Rules in Large Databases”. In: Proceedings of the 20th International Con-

ference on Very Large Data Bases. VLDB ’94. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., pp. 487–499. isbn: 1-55860-153-8. url: http://dl.acm.

org/citation.cfm?id=645920.672836.

Araabi, B.N., S. Mastoureshgh, and M.N. Ahmadabadi (2007). “A Study on Expertise of

Agents and Its Effects on Cooperative Q-Learning”. In: Systems, Man, and Cybernet-

ics, Part B: Cybernetics, IEEE Transactions on 37.2, pp. 398–409. issn: 1083-4419.

doi: 10.1109/TSMCB.2006.883264.

Ashlock, Daniel (2010). Evolutionary Computation for Modeling and Optimization. 1st.

Springer Publishing Company, Incorporated. isbn: 1441919694, 9781441919694.

Auda, G. and M. Kamel (1999). “Modular neural networks: a survey.” eng. In: Int J

Neural Syst 9.2, pp. 129–151.

Bakker, Bram and Jürgen Schmidhuber (2004). “Hierarchical reinforcement learning with

subpolicies specializing for learned subgoals.” In: Neural Networks and Computational

Intelligence. IASTED/ACTA Press, pp. 125–130. url: http://dblp.uni-trier.de/

db/conf/nci/nci2004.html%5C#BakkerS04.

Baldwin, J. Mark (1896). “A New Factor in Evolution (Continued)”. English. In: The

American Naturalist 30.355, pages. issn: 00030147. url: http://www.jstor.org/

stable/2453231.

Bekolay, Trevor, Carter Kolbeck, and Chris Eliasmith (2013). “Simultaneous unsupervised

and supervised learning of cognitive functions in biologically plausible spiking neural

155

http://dl.acm.org/citation.cfm?id=645920.672836
http://dl.acm.org/citation.cfm?id=645920.672836
http://dx.doi.org/10.1109/TSMCB.2006.883264
http://dblp.uni-trier.de/db/conf/nci/nci2004.html%5C#BakkerS04
http://dblp.uni-trier.de/db/conf/nci/nci2004.html%5C#BakkerS04
http://www.jstor.org/stable/2453231
http://www.jstor.org/stable/2453231

156 BIBLIOGRAPHY

networks”. In: 35th Annual Conference of the Cognitive Science Society. Cognitive

Science Society, pp. 169–174.

Bengio, Yoshua (2009). “Learning Deep Architectures for AI”. In: Found. Trends Mach.

Learn. 2.1, pp. 1–127. issn: 1935-8237. doi: 10.1561/2200000006.

Boahen, Kwabena (2006). “Neurogrid: emulating a million neurons in the cortex.” In:

Annual International Conference of the IEEE Engineering in Medicine and Biology

Society. IEEE Engineering in Medicine and Biology Society.

Boers, E. J. W., M.V. Borst, and I.G. Sprinkhuizen-Kuyper (1995). Evolving Artificial

Neural Networks using the "Baldwin Effect".

Boers, Egbert J. W. and Herman Kuiper (1992). “Biological metaphors and the design

of modular artificial neural networks”. PhD thesis.

Briot, Jean-pierre, Thomas Meurisse, and Frédéric Peschanski (2006). “Architectural De-

sign of Component-based Agents: a Behavior-based Approach”. In: AAMAS’06 4th

Int. Workshop on Programming Multi-Agent Systems (ProMAS’06. Springer, pp. 35–

49.

Brooks, R.A. (1986). “A robust layered control system for a mobile robot”. In:

Robotics and Automation, IEEE Journal of 2.1, pp. 14–23. issn: 0882-4967. doi:

10.1109/JRA.1986.1087032.

Broomhead, D.S. and D. Lowe (1988). “Multivariable Functional Interpolation and Adap-

tive Networks”. In: Complex Systems 2, pp. 321–355.

Brown, Gavin et al. (2005). “Diversity creation methods: A survey and categorisation”.

In: Journal of Information Fusion 6, pp. 5–20.

Busoniu, Lucian et al. (2010). Reinforcement Learning and Dynamic Programming Us-

ing Function Approximators. 1st. Boca Raton, FL, USA: CRC Press, Inc. isbn:

1439821089, 9781439821084.

Clune, J., B.E. Beckmann, et al. (2009). “Evolving coordinated quadruped gaits with the

HyperNEAT generative encoding”. In: Evolutionary Computation, 2009. CEC ’09.

IEEE Congress on, pp. 2764–2771. doi: 10.1109/CEC.2009.4983289.

Clune, Jeff, Jean-Baptiste Mouret, and Hod Lipson (2013). “The evolutionary origins of

modularity”. In: Proceedings of the Royal Society Biological Sciences 280, pp. 1–8.

doi: 10.1098/rspb.2012.2863.

Collective of Authors (2014). “Robotický operační systém ROS míří z akademické sféry

do průmyslu”. In: AUTOMA - časopis pro automatizační techniku 20.3, p. 39. issn:

1210-9592.

http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1109/JRA.1986.1087032
http://dx.doi.org/10.1109/CEC.2009.4983289
http://dx.doi.org/10.1098/rspb.2012.2863

BIBLIOGRAPHY 157

Conradie, Alex, Risto Miikkulainen, and Christiaan Aldrich (2002). “Intelligent Pro-

cess Control Utilizing Symbiotic Memetic Neuro-Evolution”. In: Proceedings of the

2002 Congress on Evolutionary Computation, p. 6. url: http://www.cs.utexas.

edu/users/ai-lab/?conradie:cec02.

Crawford, Eric, Matthew Gingerich, and Chris Eliasmith (2013). “Biologically Plausible,

Human-scale Knowledge Representation”. In: 35th Annual Conference of the Cognitive

Science Society, pp. 412–417.

Cybenko, George (1989). “Approximation by superpositions of a sigmoidal function”. In:

Mathematics of Control, Signals, and Systems (MCSS) 2, pp. 303–314.

Deb, Kalyanmoy (2011). “Multi-objective Optimisation Using Evolutionary Algo-

rithms: An Introduction”. English. In: Multi-objective Evolutionary Optimisation

for Product Design and Manufacturing. Ed. by Lihui Wang, Amos H. C. Ng,

and Kalyanmoy Deb. Springer London, pp. 3–34. isbn: 978-0-85729-617-7. doi:

10.1007/978-0-85729-652-8_1.

Dennett, Daniel C. (2003). “The Baldwin Effect: A Crane, Not a Skyhook”. In: And

Learning: The Baldwin Effect Reconsidered. Mit Press.

Dietterich, Thomas G. (2000). “Hierarchical Reinforcement Learning with the MAXQ

Value Function Decomposition”. In: J. Artif. Int. Res. 13.1, pp. 227–303. issn: 1076-

9757. url: http://dl.acm.org/citation.cfm?id=1622262.1622268.

Drchal, J. et al. (2011). Fyzikální simulátor mobilních robotů - ViVAE: Visual Vector

Agent Environment - ViVAE. url: https://github.com/HKou/vivae.

Durr, P., C. Mattiussi, and D. Floreano (2010). “Genetic Representation and Evolvability

of Modular Neural Controllers”. In: Computational Intelligence Magazine, IEEE 5.3,

pp. 10–19. doi: 10.1109/MCI.2010.937319.

Džeroski, Saso and Bernard Ženko (2004). “Is Combining Classifiers with Stacking Better

Than Selecting the Best One?” In: Mach. Learn. 54.3, pp. 255–273. issn: 0885-6125.

doi: 10.1023/B:MACH.0000015881.36452.6e.

Eliasmith, C. (2013). How to Build a Brain: A Neural Architecture for Biological

Cognition. Oxford Series on Cognitive Models and Architectures. Oxford Uni-

versity Press, USA. isbn: 9780199794690. url: http://books.google.cz/books?

id=eh1pAgAAQBAJ.

Eliasmith, Ch. and Ch. H. Anderson (2003). Neural Engineering: Computation, Represen-

tation, and Dynamics in Neurobiological Systems. The MIT press, Cambridge, ISBN:

0-262-05071-4.

http://www.cs.utexas.edu/users/ai-lab/?conradie:cec02
http://www.cs.utexas.edu/users/ai-lab/?conradie:cec02
http://dx.doi.org/10.1007/978-0-85729-652-8_1
http://dl.acm.org/citation.cfm?id=1622262.1622268
https://github.com/HKou/vivae
http://dx.doi.org/10.1109/MCI.2010.937319
http://dx.doi.org/10.1023/B:MACH.0000015881.36452.6e
http://books.google.cz/books?id=eh1pAgAAQBAJ
http://books.google.cz/books?id=eh1pAgAAQBAJ

158 BIBLIOGRAPHY

Eliasmith, Chris, Terrence C. Stewart, et al. (2012). “A Large-Scale Model of the Func-

tioning Brain”. In: Science 338.6111, pp. 1202–1205. doi: 10.1126/science.1225266.

eprint: http://www.sciencemag.org/content/338/6111/1202.full.pdf.

Elman, Jeffrey L. (1990). “Finding structure in time”. In: Cognitive Science 14.2, pp. 179–

211. doi: 10.1016/0364-0213(90)90002-E.

Erol, K., D. Nau, and J. Hendler (1994). “HTN Planning: Complexity and Expressivity.”

In: In AAAI-94, Seattle.

Fekiac, Jozef, Ivan Zelinka, and Juan C. Burguillo (2011). “A Review of Methods for

Encoding Neural Network Topologies in Evolutionary Computation”. In: Proceedings

25th European Conference on Modelling and Simulation ECMS. ISBN: 978-0-9564944-

2-9, pp. 410–416.

Fidjeland, A. K., E. B. Roesch, et al. (2009). “NeMo: A platform for neural modelling

of spiking neurons using GPUs.” In: In Proc. 20th IEEE International Conference on

Application-specific Systems, Architectures and Processors.

Fidjeland, A. K. and M. P. Shanahan (2010). “Accelerated simulation of spiking neural

networks using gpus”. In: In Proc. IEEE International Joint Conference on Neural

Networks.

Fikes, R. and N. Nilsson (1971). “STRIPS: a new approach to the application of theorem

proving to problem solving”. In: Artificial Intelligence 2, pp. 189–208.

Fišer, P. et al. (2010). “On logic synthesis of conventionally hard to synthesize circuits

using genetic programming”. In: IEEE 13th International Symposium on Design and

Diagnostics of Electronic Circuits and Systems (DDECS), pp. 346–351.

Fournier-Viger, Philippe and VincentS. Tseng (2011). “Mining Top-K Sequential Rules”.

English. In: Advanced Data Mining and Applications. Ed. by Jie Tang et al. Vol. 7121.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 180–194. isbn:

978-3-642-25855-8. doi: 10.1007/978-3-642-25856-5_14.

Freund, Yoav and Robert E. Schapire (1997). “A Decision-theoretic Generalization of

On-line Learning and an Application to Boosting”. In: J. Comput. Syst. Sci. 55.1,

pp. 119–139. issn: 0022-0000. doi: 10.1006/jcss.1997.1504.

Fuller, Robert (2001). Neuro-Fuzzy Methods. Vacation School, Neuro-Fuzzy Methods for

Modelling and Fault Diagnosis.

Fullér, Robert (1995). Neural Fuzzy Systems. Abo Akademi University. isbn: 951-650-

624-0.

Gamez, D, A K Fidjeland, and E Lazdins (2012). “iSpike: a spiking neural interface for

the iCub robot”. In: Bioinspiration and Biomimetics 7.

http://dx.doi.org/10.1126/science.1225266
http://www.sciencemag.org/content/338/6111/1202.full.pdf
http://dx.doi.org/10.1016/0364-0213(90)90002-E
http://dx.doi.org/10.1007/978-3-642-25856-5_14
http://dx.doi.org/10.1006/jcss.1997.1504

BIBLIOGRAPHY 159

Garis, Hugo de et al. (2010). “A World Survey of Artificial Brain Projects, Part I: Large-

scale Brain Simulations”. In: Neurocomput. 74.1-3, pp. 3–29. issn: 0925-2312. doi:

10.1016/j.neucom.2010.08.004.

Gashler, M., C. Giraud-Carrier, and T. Martinez (2008). “Decision Tree Ensemble: Small

Heterogeneous Is Better Than Large Homogeneous”. In: Machine Learning and Ap-

plications, 2008. ICMLA ’08. Seventh International Conference on, pp. 900–905. doi:

10.1109/ICMLA.2008.154.

Gerstner, Wulfram and Werner Kistler (2002). Spiking Neuron Models. Single Neurons,

Populations, Plasticity. Cambridge University Press.

Guckelsberger, Christian and Daniel Polani (2014). “Effects of Anticipation in Individ-

ually Motivated Behaviour on Survival and Control in a Multi-Agent Scenario with

Resource Constraints”. In: Entropy 16.6. Current IF=1.53, pp. 3357–3378. issn: 1099-

4300. doi: 10.3390/e16063357.

Hansen, Nikolaus and Stefan Kern (2004). “Evaluating the CMA Evolution Strategy

on Multimodal Test Functions”. English. In: Parallel Problem Solving from Na-

ture - PPSN VIII. Ed. by Xin Yao et al. Vol. 3242. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, pp. 282–291. isbn: 978-3-540-23092-2. doi:

10.1007/978-3-540-30217-9_29.

Happel, Bart L.M. and Jacob M. J. Murre (1994). “The Design and Evolution of Modular

Neural Network Architectures”. In: Neural Networks 7, pp. 985–1004.

Harnad, Stevan (1990). The Symbol Grounding Problem. url: http://cogprints.org/

3106/.

Hawkins, J., S. Ahmad, and D. Dubinsky (2011). Hierarchical Temporal Memory includ-

ing Cortical Learning Algorithms. Tech. rep. Numenta. url: http://numenta.org/

resources/HTM_CorticalLearningAlgorithms.pdf.

Hawkins, Jeff and Sandra Blakeslee (2004). On Intelligence. Times Books, p. 174. isbn:

0805074562.

Hinton, G. E. and S. J. Nowlan (1987). “How learning can guide evolution”. In: Complex

Systems 1, pp. 495–502.

Hopfield, John J (1982). “Neural networks and physical systems with emergent collective

computational abilities”. In: Proc Natl Acad Sci U S A 79.8, pp. 2554–2558. url:

http://www.ncbi.nlm.nih.gov/pubmed/6953413.

Hornik, Kurt, M. Stinchcombe, and H. White (1989). “Approximation capabilities of

multilayer feedforward networks”. In: Journal Neural Networks 2, pp. 359–366.

http://dx.doi.org/10.1016/j.neucom.2010.08.004
http://dx.doi.org/10.1109/ICMLA.2008.154
http://dx.doi.org/10.3390/e16063357
http://dx.doi.org/10.1007/978-3-540-30217-9_29
http://cogprints.org/3106/
http://cogprints.org/3106/
http://numenta.org/resources/HTM_CorticalLearningAlgorithms.pdf
http://numenta.org/resources/HTM_CorticalLearningAlgorithms.pdf
http://www.ncbi.nlm.nih.gov/pubmed/6953413

160 BIBLIOGRAPHY

Choo, Xuan and Chris Eliasmith (2013). “General Instruction Following in a Large-Scale

Biologically Plausible Brain Model”. In: 35th Annual Conference of the Cognitive Sci-

ence Society. Cognitive Science Society, pp. 322–327.

Ijspeert, Auke Jan et al. (2007). “From Swimming to Walking with a Salamander Robot

Driven by a Spinal Cord Model”. In: Science 315. doi: 10.1126/science.1138353.

Izhikevich, Eugene M. (2003). “Simple Model of Spiking Neurons”. In: IEEE Transactions

of Neural Networks 14, pp. 1569–1572.

Izhikevich, Eugene M. and Gerald M. Edelman (2008). “Large-Scale Model of Mammalian

Thalamocortical Systems”. In: PNAS. Vol. 105. The Neurosciences Institute, 10640

John Jay Hopkins Drive, San Diego, CA, 92121., pp. 3593–3598.

Jaeger, Herbert and Harald Haas (2004). “Harnessing Nonlinearity: Predicting Chaotic

Systems and Saving Energy in Wireless Communication”. In: Science 304, pp. 78–80.

doi: doi:10.1126/science.1091277.

Jiang, Fei, Hugues Berry, and Marc Schoenauer (2009). “The Impact of Network Topology

on Self-organizing Maps”. In: Proceedings of the First ACM/SIGEVO Summit on

Genetic and Evolutionary Computation. GEC ’09. Shanghai, China: ACM, pp. 247–

254. isbn: 978-1-60558-326-6. doi: 10.1145/1543834.1543869.

Jiang, Ju (2007). “A Framework for Aggregation of Multiple Reinforcement Learning

Algorithms”. AAINR34511. PhD thesis. Waterloo, Ont., Canada, Canada. isbn: 978-

0-494-34511-5.

Jiang, Ju and M.S. Kamel (2006). “Aggregation of Reinforcement Learning Algorithms”.

In: Neural Networks, 2006. IJCNN ’06. International Joint Conference on, pp. 68–72.

doi: 10.1109/IJCNN.2006.246661.

Jilk, David J. et al. (2008). “SAL: an explicitly pluralistic cognitive architecture”. In: Jour-

nal of Experimental & Theoretical Artificial Intelligence - Pluralism and the Future of

Cognitive Science. Vol. 20, pp. 197–218.

Jordan, M.I. (1986). “Serial order: a parallel distributed processing approach. Technical

report, June 1985-March 1986”. In: url: http://www.osti.gov/scitech/servlets/

purl/6910294.

Kadlecek, D. and P. Nahodil (2008). “Adopting animal concepts in hierarchical reinforce-

ment learning and control of intelligent agents”. In: Proc. 2nd IEEE RAS & EMBS

Int. Conf. Biomedical Robotics and Biomechatronics BioRob 2008, pp. 924–929. doi:

10.1109/BIOROB.2008.4762882.

http://dx.doi.org/10.1126/science.1138353
http://dx.doi.org/doi:10.1126/science.1091277
http://dx.doi.org/10.1145/1543834.1543869
http://dx.doi.org/10.1109/IJCNN.2006.246661
http://www.osti.gov/scitech/servlets/purl/6910294
http://www.osti.gov/scitech/servlets/purl/6910294
http://dx.doi.org/10.1109/BIOROB.2008.4762882

BIBLIOGRAPHY 161

Kadleček, David (2008). “Motivation driven reinforcement learning and automatic cre-

ation of behavior hierarchies”. PhD thesis. Czech Technical University in Prague,

Faculty of Electrical Engineering.

Khan, Gul Muhammad, F. Miller Julian, and David Halliday (2009). “In Search Of Intelli-

gent Genes: The Cartesian Genetic Programming Computational Neuron (CGPCN)”.

In: Evolutionary Computation, 2009. CEC ’09. IEEE Congress on Computing & Pro-

cessing (Hardware/Software), pp. 574–581.

Kordík, Pavel (2006). “Fully automated knowledge extraction using group of adaptive

models evolution”. PhD thesis. Czech Technical University in Prague, FEE, Dep. of

Comp. Sci. and Computers.

Kordík, Pavel and Jan Černý (2012). “On performance of meta-learning templates on

different datasets”. In: International Joint Conference on Neural Networks (IJCNN),

The 2012, pp. 1–7.

Koutník, Jan and Miroslav Šnorek (2004). “Single categorizing and learning module for

temporal sequences”. In: IEEE International Joint Conference on Neural Networks.

Vol. 4, pp. 2977–2982.

Kraskov, Alexander et al. (2007). “Local field potentials and spikes in the human medial

temporal lobe are selective to image category.” In: Journal of Cognitive Neuroscience

19, pp. 479–492.

Krasnogor, Natalio (2012). “Memetic Algorithms”. English. In: Handbook of Nat-

ural Computing. Ed. by Grzegorz Rozenberg, Thomas Bäck, and JoostN.

Kok. Springer Berlin Heidelberg, pp. 905–935. isbn: 978-3-540-92909-3. doi:

10.1007/978-3-540-92910-9_29.

Krenker, Andrej, Janez Bešter, and Andrej Kos (2011). “Artificial Neural Networks -

Methodological Advances and Biomedical Applications”. In: ed. by Kenji Suzuki.

ISBN: 978-953-307-243-2. InTech, Chapters published April 11. Chap. Introduction

to the Artificial Neural Networks, pp. 3–18. doi: 10.5772/644.

Krichmar, Jeffrey L., Nikil Dutt ans Jayram M. Nageswaran, and Micah Richert (2010).

“Neuromorphic modeling abstractions and simulation of large-scale cortical networks”.

In: ICCAD ’11 Proceedings of the International Conference on Computer-Aided De-

sign, pp. 334–338.

Leung, F. H F et al. (2003). “Tuning of the structure and parameters of a neural network

using an improved genetic algorithm”. In: Neural Networks, IEEE Transactions on

14.1, pp. 79–88. issn: 1045-9227. doi: 10.1109/TNN.2002.804317.

http://dx.doi.org/10.1007/978-3-540-92910-9_29
http://dx.doi.org/10.5772/644
http://dx.doi.org/10.1109/TNN.2002.804317

162 BIBLIOGRAPHY

Levy, Steven (1992). Artificial life: the quest for a new creation. New York, NY, USA:

Random House Inc. isbn: 0-679-40774-X.

Liadal, Terese (2006). ACT-R: A cognitive architecture. Tech. rep. Universität des Saar-

landes, Wintersemester.

Liu, Zhibin, Xiaoqin Zeng, and Huiyi Liu (2012). “A Modular Hierarchical Rein-

forcement Learning Algorithm”. In: Intelligent Computing Theories and Applica-

tions. Ed. by De-Shuang Huang et al. Vol. 7390. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, pp. 375–382. isbn: 978-3-642-31575-6. doi:

10.1007/978-3-642-31576-3_48.

Lohn, Jason D. et al. (2004). “Evolutionary Design of an X-Band Antenna for NASA’s

Space Technology 5 Mission”. In: in Proceedings of the 2004 IEEE Antenna and Prop-

agation Society International Symposium and USNC/URSI National Radio Science

Meeting, pp. 2313–2316.

Maass, W. (1996). “Networks of Spiking Neurons: The Third Generation of Neural Net-

work Models”. In: In Journal Neural Networks 10, pp. 1659–1671.

Marder, E. and R. L. Calabrese (1996). “Principles of rhythmic motor pattern generation.”

In: Physionlogical Reviews 76, pp. 687–717.

Markram, Henry (2006). “The Blue Brain Project”. In: Nature Reviews Neuroscience 7,

pp. 153–160.

Matsuoka, Kiyotoshi (1985). “Sustained oscillations generated by mutually inhibiting neu-

rons with adaptation”. In: Biological Cybernetics. Vol. 52. ISSN: 1432-0770. Springer,

pp. 367–376. doi: 10.1007/BF00449593.

Mcgarry, Kenneth, Stefan Wermter, and John Macintyre (1999). “Hybrid neural systems:

from simple coupling to fully integrated neural networks”. In: Neural Computing Sur-

veys 2, pp. 62–93.

Mingus, Brian (2011). Comparison of Neural Network Simulators. cited 2012. Univer-

sity of Colorado Boulder. url: http://grey.colorado.edu/emergent/index.php/

Comparison%5C_of%5C_Neural%5C_Network%20%5C_Simulators.

Mitchell, Melanie (1998). An Introduction to Genetic Algorithms. Cambridge, MA, USA:

MIT Press. isbn: 0262631857.

Moscato, Pablo (1989). On Evolution, Search, Optimization, Genetic Algorithms and

Martial Arts - Towards Memetic Algorithms. Technical report.

Murre, J. M. J., R. H. Phaf, and G. Wolters (1989). “CALM networks: a modular approach

to supervised and unsupervised learning”. In: Proc. Int Neural Networks IJCNN. Joint

Conf, pp. 649–656. doi: 10.1109/IJCNN.1989.118647.

http://dx.doi.org/10.1007/978-3-642-31576-3_48
http://dx.doi.org/10.1007/BF00449593
http://grey.colorado.edu/emergent/index.php/Comparison%5C_of%5C_Neural%5C_Network%20%5C_Simulators
http://grey.colorado.edu/emergent/index.php/Comparison%5C_of%5C_Neural%5C_Network%20%5C_Simulators
http://dx.doi.org/10.1109/IJCNN.1989.118647

BIBLIOGRAPHY 163

Nageswaran, J.M. and Bren Sch. Donald (2009). “Efficient simulation of large-scale Spik-

ing Neural Networks using CUDA graphics processors”. In: International Joint Con-

ference on Neural Networks, 2009. IJCNN 2009, pp. 2145–2152.

Newman, Stuart A. (2002). “Developmental mechanisms: putting genes in their place.”

eng. In: J Biosci 27.2, pp. 97–104.

Nguyen, V. A., J.A. Starzyk, G. Wooi-Boon, et al. (2012). “Neural Network Structure for

Spatio-Temporal Long-Term Memory”. In: IEEE Transactions on Neural Networks

and Learning Systems. Vol. 23, pp. 971–983. doi: 10.1109/TNNLS.2012.2191419.

Nguyen, Vu Anh, J. A. Starzyk, A. L. P. Tay, et al. (2010). “Spatio-temporal sequence

learning of visual place cells for robotic navigation”. In: Proc. Int Neural Networks

(IJCNN) Joint Conf, pp. 1–8. doi: 10.1109/IJCNN.2010.5596952.

Nolfi, Stefano (1999). How Learning and Evolution Interact: The Case of a Learning Task

which Differs from the Evolutionary Task.

Nwana, Hyacinth S. (1996). “Software agents: An overview”. In: Knowledge Engineering

Review 11, pp. 205–244.

Opitz, David and Richard Maclin (1999). “Popular Ensemble Methods: An Empirical

Study”. In: Journal of Artificial Intelligence Research 11, pp. 169–198.

O’Reilly, Randall C. (1996). “The Leabra Model of Neural Interactions and Learning in

the Neocortex”. PhD thesis. Pittsburgh, PA 15213: Carnegie Mellon University.

Ozawa, S., K. Tsutumi, and N. Baba (1999). “Evolution of a dynamical modular

neural network and its application to associative memories”. In: Proc. Third Int

Knowledge-Based Intelligent Information Engineering Systems Conf, pp. 145–148.

doi: 10.1109/KES.1999.820140.

Pei, Zhongcai et al. (2012). “Adaptive control of a quadruped robot based on Central Pat-

tern Generators”. In: 10th IEEE International Conference on Industrial Informatics

(INDIN), pp. 554–558.

Pellier, Damien. Presentation on Hierarchical Task Network Planning. Cited

2014. url: http://www.math-info.univ-paris5.fr/~moraitis/webpapers/10.

HTN-4pp.pdf.

Perrett, D. I., E. T. Rolls, and W. Caan (1982). “Visual neurones responsive to faces in

the monkey temporal cortex.” eng. In: Exp Brain Res 47.3, pp. 329–342.

Poggio, Tomaso, Ulf Knoblich, and Jim. Mutch (2010). CNS: a GPU-based

framework for simulating cortically-organized networks. Massachusetts Institute

of Technology. url: http://dspace.mit.edu/bitstream/handle/1721.1/51839/

MIT-CSAIL-TR-2010-013.pdf.

http://dx.doi.org/10.1109/TNNLS.2012.2191419
http://dx.doi.org/10.1109/IJCNN.2010.5596952
http://dx.doi.org/10.1109/KES.1999.820140
http://www.math-info.univ-paris5.fr/~moraitis/webpapers/10.HTN-4pp.pdf
http://www.math-info.univ-paris5.fr/~moraitis/webpapers/10.HTN-4pp.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/51839/MIT-CSAIL-TR-2010-013.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/51839/MIT-CSAIL-TR-2010-013.pdf

164 BIBLIOGRAPHY

Ponulak, Filip and Andrzej Kasinski (2011). “Introduction to spiking neural networks:

Information processing, learning and applications.” In: Acta neurobiologiae experi-

mentalis 71.4, pp. 409–433. issn: 1689-0035. url: http://view.ncbi.nlm.nih.gov/

pubmed/22237491.

Quigley, Morgan et al. (2009). “ROS: an open-source Robot Operating System”. In:

ICRA Workshop on Open Source Software. url: http://pub1.willowgarage.com/

~konolige/cs225B/docs/quigley-icra2009-ros.pdf.

Rast, Alexander D. et al. (2010). “Scalable event-driven native parallel pro-

cessing: the SpiNNaker neuromimetic system”. In: CF ’10 Proceedings of the

7th ACM international conference on Computing frontiers, pp. 21–30. doi:

10.1145/1787275.1787279.

Rojas, Raúl (1996). Neural Networks: A Systematic Introduction. New York, NY, USA:

Springer-Verlag New York, Inc. isbn: 3-540-60505-3.

Ross, M. (2002). “Hierarchical Reinforcement Learning: A Hybrid Approach”. PhD thesis.

The University of New South Wales, School of Computer Science and Engineering.

Russell, Stuart J. and Peter Norvig (2003). Artificial Intelligence: A Modern Approach.

2nd ed. Pearson Education. isbn: 0137903952.

Sardina, S. et al. (2006). “Hierarchical Planning in BDI Agent Programming Language:

a Formal Approach”. In: AAMAS 06 Proceedings of the fifth international joint con-

ference on Autonomous agents and multiagent systems, pp. 1001–1008.

Sekanina, Lukáš (2010). Evoluční hardware - Od automatického generování patentovatel-

ných invencí k sebemodifikujícím se strojům. Ed. by Jiří Lažanský and Ivan Zelinka.

Gerstner. ISBN: 978-80-200-1729-1. Academia, p. 328.

Sekereš, P. (2013). “Learning of Temporal Sequences of Behaviour for Artificial Creature”.

Supervisor: Doc. Ing. Nahodil Pavel CSc. (in English). Bachelor Thesis. Czech Tech-

nical University in Prague, Faculty of Electrical Engineering, dept. of Cybernetics.

url: http://cyber.felk.cvut.cz/research/theses/detail.phtml?id=421.

Sharad, Mrigank et al. (2012). Proposal For Neuromorphic Hardware Using Spin De-

vices. url: http://dblp.uni-trier.de/db/journals/corr/corr1206.html%5C#

abs-1206-3227.

Schmidhuber, Juurgen, Daan Wierstra, and Faustino Gomez (2005). “Evolino: Hybrid

Neuroevolution/Optimal Linear Search for Sequence Learning”. In: International Joint

Conference on Artificial Intelligence - IJCAI, pp. 853–858.

Skála, L. (2013). “Hybrid Decision-making System of Artificial Creature Combining

Planner and Neural Network”. Supervisor: Doc. Ing. Nahodil Pavel CSc. (in En-

http://view.ncbi.nlm.nih.gov/pubmed/22237491
http://view.ncbi.nlm.nih.gov/pubmed/22237491
http://pub1.willowgarage.com/~konolige/cs225B/docs/quigley-icra2009-ros.pdf
http://pub1.willowgarage.com/~konolige/cs225B/docs/quigley-icra2009-ros.pdf
http://dx.doi.org/10.1145/1787275.1787279
http://cyber.felk.cvut.cz/research/theses/detail.phtml?id=421
http://dblp.uni-trier.de/db/journals/corr/corr1206.html%5C#abs-1206-3227
http://dblp.uni-trier.de/db/journals/corr/corr1206.html%5C#abs-1206-3227

BIBLIOGRAPHY 165

glish). Bachelor Thesis. Czech Technical University in Prague, Faculty of Electri-

cal Engineering, dept. of Cybernetics. url: http://cyber.felk.cvut.cz/research/

theses/detail.phtml?id=396.

Stanley, Kenneth O., Bobby D. Bryant, and Risto Miikkulainen (2005). “Real-time Neu-

roevolution in the NERO Video Game”. In: IEEE Transactions on Evolutionary Com-

putation, pp. 653–668. url: http://nn.cs.utexas.edu/?stanley:ieeetec05.

Stanley, Kenneth O., David B. D’Ambrosio, and Jason Gauci (2009). “A hypercube-based

encoding for evolving large-scale neural networks.” eng. In: Artif Life 15.2, pp. 185–

212. doi: 10.1162/artl.2009.15.2.15202.

Stewart, Terrence C., Trevor Bekolay, and Chris Eliasmith (2011). “Neural Rep-

resentations of Compositional Structures: Representing and Manipulating Vector

Spaces with Spiking Neurons”. In: Connection Science 22, pp. 145–153. doi:

10.1080/09540091.2011.571761.

Stewart, Terrence C. and Chris Eliasmith (2013). “Parsing Sequentially Presented Com-

mands in a Large-Scale Biologically Realistic Brain Model”. In: 35th Annual Confer-

ence of the Cognitive Science Society. Cognitive Science Society, pp. 3460–3467.

Strogatz, Steven H (1997). “Spontaneous synchronization in nature”. In: Frequency Con-

trol Symposium. IEEE.

Sugita, Yuuya and Martin V. Butz (2008). “Towards Emergent Strong Systematicity in a

Simple Dynamical Connectionist Network”. In: Computer Technologies and Informa-

tion Sciences; Biology and Medicine. Department of Cognitive Psychology, Universität

Würzburg.

Sutton, Richard S. and Andrew G. Barto (1998). Reinforcement Learning: An Introduc-

tion. 1st. Cambridge, MA, USA: MIT Press. isbn: 0262193981.

Suzuki, R. and T. Arita (2007). “Repeated Occurrences of the Baldwin Effect Can Guide

Evolution on Rugged Fitness Landscapes”. In: Proc. IEEE Symp. Artificial Life AL-

IFE ’07, pp. 8–14. doi: 10.1109/ALIFE.2007.367652.

Suzuki, Reiji and Takaya Arita (2004). “Interactions between learning and evolution: the

outstanding strategy generated by the Baldwin effect.” eng. In: Biosystems 77.1-3,

pp. 57–71. doi: 10.1016/j.biosystems.2004.04.002.

Tang, Yichuan and Chris Eliasmith (2010). “Deep networks for robust visual recognition”.

In: Proceedings of the 27th International Conference on Machine Learning, June 21-

24, 2010, Haifa, Israel.

Tay, A.L.P. et al. (2007). “The Hierarchical Fast Learning Artificial Neural Network

(HieFLANN);An Autonomous Platform for Hierarchical Neural Network Construc-

http://cyber.felk.cvut.cz/research/theses/detail.phtml?id=396
http://cyber.felk.cvut.cz/research/theses/detail.phtml?id=396
http://nn.cs.utexas.edu/?stanley:ieeetec05
http://dx.doi.org/10.1162/artl.2009.15.2.15202
http://dx.doi.org/10.1080/09540091.2011.571761
http://dx.doi.org/10.1109/ALIFE.2007.367652
http://dx.doi.org/10.1016/j.biosystems.2004.04.002

166 BIBLIOGRAPHY

tion”. In: Neural Networks, IEEE Transactions on 18.6, pp. 1645–1657. issn: 1045-

9227. doi: 10.1109/TNN.2007.900231.

Thomas, David B. and Wayne Luk (2009). “FPGA accelerated simulation of biologically

plausible spiking neural networks”. In: In Proc. IEEE Symp. Field-Programmable Cus-

tom Computing Machines (FCCM).

Tijsseling, A. G. (2005). “Sequential information processing using time-delay connections

in ontogenic CALM networks”. In: IEEE Trans. Neural Netw. 16.1, pp. 145–159. doi:

10.1109/TNN.2004.839355.

Togelius, Julian, Faustino Gomez, and Tom Schmidhuber (2008). “Learning what to ig-

nore: Memetic climbing in topology and weight space”. In: Evolutionary Computa-

tion, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE

Congress on, pp. 3274–3281. doi: 10.1109/CEC.2008.4631241.

Togelius, Julian, Tom Schaul, et al. (2008). “Countering Poisonous Inputs with

Memetic Neuroevolution”. English. In: Parallel Problem Solving from Nature –

PPSN X. Ed. by Günter Rudolph et al. Vol. 5199. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, pp. 610–619. isbn: 978-3-540-87699-1. doi:

10.1007/978-3-540-87700-4_61.

Valdivieso, Pedro A. Castillo et al. (2006). “Lamarckian Evolution and the Baldwin Effect

in Evolutionary Neural Networks”. In: CoRR abs/cs/0603004.

Valsalam, V. K. and R. Miikkulainen (2011). “Evolving Symmetry for Modular System

Design”. In: Evolutionary Computation, IEEE Transactions on 15.3, pp. 368–386. doi:

10.1109/TEVC.2011.2112663.

Vašíček, Zdeněk and Lukáš Sekanina (2004). Evoluční návrh kombinačních obvodů. Czech.

cited 2012. Fakulta informačních technologií, Vysoké učení technické Brno. url:

http://www.elektrorevue.cz/clanky/04043/index.html.

Vieira, José, Fernando Morgado Dias, and Alexandre Mota (2004). “Neuro-Fuzzy Sys-

tems: A Survey”. In: 5th WSEAS NNA International Conference on Neural Networks

and Applications. Udine, Italy.

Voegtlin, Thomas (2002). “Recursive Self-organizing Maps”. In: Neural Netw. 15.8-9,

pp. 979–991. issn: 0893-6080. doi: 10.1016/S0893-6080(02)00072-2.

Wang, D. and M. A. Arbib (1990). “Complex temporal sequence learning based on short-

term memory”. In: 78.9, pp. 1536–1543. doi: 10.1109/5.58329.

Wiering, M.A. and H. van Hasselt (2008). “Ensemble Algorithms in Reinforcement Learn-

ing”. In: Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on

38.4, pp. 930–936. issn: 1083-4419. doi: 10.1109/TSMCB.2008.920231.

http://dx.doi.org/10.1109/TNN.2007.900231
http://dx.doi.org/10.1109/TNN.2004.839355
http://dx.doi.org/10.1109/CEC.2008.4631241
http://dx.doi.org/10.1007/978-3-540-87700-4_61
http://dx.doi.org/10.1109/TEVC.2011.2112663
http://www.elektrorevue.cz/clanky/04043/index.html
http://dx.doi.org/10.1016/S0893-6080(02)00072-2
http://dx.doi.org/10.1109/5.58329
http://dx.doi.org/10.1109/TSMCB.2008.920231

BIBLIOGRAPHY 167

Wilamowsky, Bogdan M. (2003). “Neural Network Architectures and Learning”. In:

ICIT’03 - IEEE International Conference on Industrial Technology. Vol. 1. ISBN:

0-7803-7852-0. Maribor, Slovenia, pp. 1–12. doi: 10.1109/ICIT.2003.1290197.

Wildie, M. et al. (2009). “Reconfigurable acceleration of neural models with gap junc-

tions”. In: In Proc. International Conference on Field-Programmable Technology.

Wiles, Janet and James R. Watson (2001). “How Learning Can Guide Evolution in Hierar-

chical Modular Tasks”. In: Proceedings of the 23rd Annual Conference of the Cognitive

Science Society, pp. 1130–1135.

Wolpert, D. H. and W. G. Macready (1997). “No Free Lunch Theorems for Optimization”.

In: Trans. Evol. Comp 1.1, pp. 67–82. issn: 1089-778X. doi: 10.1109/4235.585893.

Wooldridge, M. (1995). “Conceptualising and Developing Agents”. In: In Proceedings of

the UNICOM Seminar on Agent Software. London, pp. 40–54.

Yao, Xin, S. M. Ieee, and Yong Liu (1996). “A New Evolutionary System for Evolving

Artificial Neural Networks”. In: IEEE Transactions on Neural Networks 8, pp. 694–

713.

Yu, Qiang et al. (2013). “Rapid Feedforward Computation by Temporal Encod-

ing and Learning With Spiking Neurons”. In: Neural Networks and Learning

Systems, IEEE Transactions on 24.10, pp. 1539–1552. issn: 2162-237X. doi:

10.1109/TNNLS.2013.2245677.

Yudanov, Dimitri (2010). “GPU-based simulation of spiking neural networks with real-

time performance and high accuracy”. In: The 2010 International Joint Conference

on Neural Networks (IJCNN).

Zadeh, Lotfi A. (1994). “Fuzzy Logic, Neural Networks, and Soft Computing”. In: Com-

mun. ACM 37.3, pp. 77–84. issn: 0001-0782. doi: 10.1145/175247.175255.

Zainer, Riadh and Fumio Nagashima (2002). Recurrent Neural Network Language for

Robot Learning. Tech. rep. Fujitsu Laboratories LTD.

Zhang, Xiaoqin Shelley et al. (2012). “An Ensemble Architecture for Learning Complex

Problem-Solving Techniques from Demonstration”. In: ACM Trans. Intell. Syst. Tech-

nol. 3.4, 75:1–75:38. issn: 2157-6904. doi: 10.1145/2337542.2337560.

http://dx.doi.org/10.1109/ICIT.2003.1290197
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/TNNLS.2013.2245677
http://dx.doi.org/10.1145/175247.175255
http://dx.doi.org/10.1145/2337542.2337560

168 BIBLIOGRAPHY

Author’s Publications Related to the Thesis

Peer-Reviewed Journals

Vítků, J. and P. Nahodil (2014a). “Automaticky navrhované evoluční architektury chování

agentů”. In: Automa. Accepted for publication, Author’s participation = 70%. issn:

1210-9592.

Vítků, J. and P. Nahodil (2014d). “Towards Evolutionary Design of Complex Systems In-

spired by Nature”. In: Acta Polytechnica - Journal of Advanced Engineering. Accepted

for publication, Author’s participation = 70%. issn: 1805-2363.

Indexed by Web of Science

Nahodil, P. and J. Vítků (2012a). “How to Design an Autonomous Creature Based

on Original Artificial Life Approaches”. In: Beyond Artificial Intelligence. Author’s

participation = 40%. Plzeň: Springer, pp. 161–180. isbn: 978-3-642-34421-3. doi:

10.1007/978-3-642-34422-0_11.

Nahodil, P. and J. Vítků (2012b). “Learning of Autonomous Agent in Vir-

tual Environment”. In: 26th European Conference on Modelling and Simulation

(ECMS). Author’s participation = 40%, pp. 373–379. isbn: 978-0-9564944-4-3. doi:

10.7148/2012-0373-0379.

Vítků, J. and P. Nahodil (2013). “Autonomous Design of Modular Intelligent Systems”. In:

27th European Conference on Modelling and Simulation ECMS 2013. Ed. by Webjørn

Rekdalsbakken, Robin T. Bye, and Houxiang Zhang. Author’s participation = 60%.

Alesund: European Council for Modelling and Simulation, pp. 379–389. isbn: 978-0-

9564944-6-7. doi: 10.7148/2013-0379.

Vítků, J. and P. Nahodil (2014b). “Q-Learning Algorithm Module in Hybrid Artificial

Neural Network Systems”. In: Modern Trends and Techniques in Computer Science.

Ed. by Radek Silhavy et al. Vol. 285. Springer, Advances in Intelligent Systems and

Computing. Author’s participation = 60%, Note: will be added in the WoS and Sco-

pus as other proceedings in this Springer series (http://www.springer.com/series/

11156). Springer International Publishing, pp. 117–127. isbn: 978-3-319-06739-1. doi:

10.1007/978-3-319-06740-7_11.

Vítků, J. and P. Nahodil (2014c). “Reusable Reinforcement Learning for Modular Self

Motivated Agents”. In: Proceedings of 28th European Conference on Modeling and

Simulation. Ed. by Flaminio Squazzoni et al. Author’s participation = 60%, Note: will

http://dx.doi.org/10.1007/978-3-642-34422-0_11
http://dx.doi.org/10.7148/2012-0373-0379
http://dx.doi.org/10.7148/2013-0379
http://www.springer.com/series/11156
http://www.springer.com/series/11156
http://dx.doi.org/10.1007/978-3-319-06740-7_11

OTHER AUTHOR’S PUBLICATIONS 169

be indexed in WoS as previous issues. Brescia, Italy: European Council for Modelling

and Simulation, pp. 352–358. isbn: 978-0-9564944-8-1. doi: 10.7148/2014-0352.

Not Indexed by Web of Science

Nahodil, P. and J. Vítků (2011). “New Way How to Build an Autonomous Creatures”. In:

International Conference: Beyond Artificial Intelligence, Interdisciplinary Aspects of

Artificial Intelligence. Author’s participation = 40%. Pilsen, pp. 34–41. url: http://

www.kky.zcu.cz/en/publications/1/JanRomportl_2011_BeyondAI.pdf.

Nahodil, P. and J. Vítků (2013). “Hybridní neuronové systémy pro návrh architektur au-

tonomních agentů v oblasti umělého života”. In: Kognícia a Umelý Život XIII. Author’s

participation = 40%. Opava, Stará Lesná, pp. 197–204. isbn: 978-80-7248-863-6.

Nahodil, P. and J. Vítků (2014). “Evoluční architektura chování umělých bytosti - agentů

v daném prostředí”. In: Kognitivní věda a umělý život XIV (KUZ XIV). Author’s

participation = 40%. Zaječí u Břeclavi: Slezská univerzita v Opavě, pp. 155–164.

isbn: 978-80-7248-951-0.

Vítků, J. (2012). “Ethology-Inspired Advanced Problem Solving Mechanism”. In:

POSTER 2012 -16th International Student Conference on Electrical Engineering.

ISBN 978-80-01-05043-9. Czech Technical University in Prague, pp. 1–6.

Vítků, J. and P. Nahodil (2012). “Nové hybridní rozhodovací mechanismy v oblasti

umělého života”. In: Kognice a umělý život (KUZ XII). Author’s participation = 60%.

Průhonice: Agentura Action M, pp. 254–263. isbn: 978-80-86742-34-2.

Other Author’s Publications

Indexed by Web of Science

Nahodil, P. and J. Vítků (2012c). “Novel Theory and Simulations of Anticipatory Be-

haviour in Artificial Life Domain”. In: Advances in Intelligent Modelling and Simula-

tion. Author’s participation = 35%. Springer, pp. 131–164. isbn: 978-3-642-28887-6.

doi: 10.1007/978-3-642-28888-3_6.

http://dx.doi.org/10.7148/2014-0352
http://www.kky.zcu.cz/en/publications/1/JanRomportl_2011_BeyondAI.pdf
http://www.kky.zcu.cz/en/publications/1/JanRomportl_2011_BeyondAI.pdf
http://dx.doi.org/10.1007/978-3-642-28888-3_6

170 BIBLIOGRAPHY

Not Indexed by Web of Science

Vítků, J. (2011). “An Artificial Creature Capable of Learning from Experience in Order

to Fulfill More Complex Tasks”. Supervisor: Doc. Ing. Nahodil Pavel CSc. (in En-

glish). Diploma Thesis. Czech Technical University in Prague, Faculty of Electrical

Engineering, Dept. of Cybernetics. url: http://cyber.felk.cvut.cz/research/

theses/detail.phtml?id=176.

Citations of Author’s Publications

Guckelsberger, Christian and Daniel Polani (2014). “Effects of Anticipation in Individ-

ually Motivated Behaviour on Survival and Control in a Multi-Agent Scenario with

Resource Constraints”. In: Entropy 16.6. Current IF=1.53, pp. 3357–3378. issn: 1099-

4300. doi: 10.3390/e16063357.

http://cyber.felk.cvut.cz/research/theses/detail.phtml?id=176
http://cyber.felk.cvut.cz/research/theses/detail.phtml?id=176
http://dx.doi.org/10.3390/e16063357

Appendix A

Additional Knowledge on Spiking

Neural Networks

Since the basic principles of Spiking Neural Networks (SNNs) are not widely known, this

Appendix will briefly mention some of them. Selected models of spiking neurons are

shown. Then, basics of Neural Engineering Framework (NEF) are described. Finally, the

table describing features of SNN simulators is shown.

A.1 Selected Models of Spiking Neuron

This section briefly describes two selected models of spiking neurons, this is appendix to

section 2.1.1.2, which describes models of artificial neurons. Note that these two models of

neuron are supported by Nengo simulator and therefore can be already used for simulation

of hybrid networks. The drawbacks and benefits of each model are mentioned here too.

A.1.1 Leaky Integrate-and-fire Model of Neuron

One of the most common type of 3rd gen. neuron is Leaky integrate-and-fire (LIF) model,

well described e.g. in (Gerstner and Kistler 2002). This model is composed of differential

equations which represent behavior of model based on actual values on input and state

I

IIAPPENDIX A. ADDITIONAL KNOWLEDGE ON SPIKING NEURAL NETWORKS

of the neuron.

Figure A.1: The basic circuit is the module inside the dashed circle on the right-hand

side. A current I(t) charges the RC circuit. The voltage u(t) across the

capacitance (points) is compared to a threshold. If u(t) = θ at time t
(f)
i

an output pulse (t − t
(f)
i) is generated. Left part: A presynaptic spike

(t− t
(f)
j) is low-pass filtered at the synapse and generates an input current

pulse α(t− t
(f)
j). (Gerstner and Kistler 2002).

Scheme of LIF neuron can be seen in the fig.A.1. The driving current is split into two

parts:

I(t) = IR + IC , (A.1)

where the current on resistor can be computed as IR = u/R and the current on capacitor C

can be from the definition of capacity: C = q/u (q is charge) computed as IC = C du/dt.

This results in the following equation:

I(t) =
u(t)

R
+ C

du

dt
. (A.2)

We multiply this equation by R and introduce the time constant τm = RC of the "leaky

integrator", this results in the standard form of LIF equation:

τm
du

dt
= −u(t) +RI(t). (A.3)

A.1. SELECTED MODELS OF SPIKING NEURON III

The variable u denotes membrane potential of neuron and τm is membrane time constant.

Spikes are generated as formal events characterized by a "firing time" t(f), which is defined

by a threshold function:

t(f) : u(t(f)) = θ. (A.4)

After producing the spike at time t(f), the potential is reset to a new, smaller value:

limt→t(f),t>t(f)u(t) = ur, (A.5)

where ur is called resting membrane potential of neuron. This model also supports

absolute refactory period. This denotes the procedure when the dynamics of model is

interrupted for refactory time ∆abs and restart the integration at time t(f) + ∆abs with

initial condition ur.

A.1.2 Izhikevich’s Simple Model of Neuron

The benefit of the LIF model of neuron is that it represents behavior of neuron straight-

forwardly. The downside is that it is computationally expensive. Model of neuron with

the best trade-off between computational requirements and biological plausibility is called

Izhikevich’s simple model of neuron. It reduces Hodgkin-Huxley model of neuron into

two-dimensional system of ordinary differential equations (Izhikevich 2003). The equa-

tions describing this model are as follows:

v′ = 0.04v2 + 5v + 140− u+ I (A.6)

u′ = a(bv − u). (A.7)

Also this model uses explicit after-spike reseting:

if v ≥ 30mV, then







v ← c

u← u+ d
(A.8)

IVAPPENDIX A. ADDITIONAL KNOWLEDGE ON SPIKING NEURAL NETWORKS

In these equations, variable v represents the membrane potential of neuron, u represents

a membrane recovery variable which provides negative feedback to v. The parameters

a, b, c, d enable of changing the behavior of neuron model. By tuning these parameters,

we are able to reproduce behavior of many types of cortical neurons.

A.2 Neural Engineering Framework

The Neural Engineering Framework (NEF) is extensively used in the selected simulator

Nengo for top-down engineering of large-scale artificial neural networks. This section

briefly introduces to main principles of neural engineering.

Neural Engineering Framework focuses to applying the theory of signals and systems to

nervous systems, thus to explicit engineering neural ensembles to represent some value.

More concretely, Nengo uses pseudo-randomly generated groups of neurons. Each group

represents some information, while connections between these groups define what each

group computes. Neural Engineering Framework is used to compute connection weights

between these ensembles of neurons in order to provide desired computation.

The main common attribute for all of these types of networks is the fact that they try

to somehow represent the main function implemented by the biological neuron, that is:

encoding input values into neural firing rates, or (in case of sensory-input neurons) encod-

ing physical magnitudes into neural firing rates1, rather than individual spikes (Eliasmith

and Anderson 2003). Curves in the graph A.2 represent response functions, they tell

us how neural activity relates to soma currents.

But we need to know other thing than response functions, we would like to know how

the neuron responses to the external stimuli representing real-world physical magnitudes.

This relation is called tuning curve of neuron. "The tuning curve of a neuron is typically

found by presenting the system that the neuron is in with a series of systematically varied

stimuli, and recording the neuron’s response". The figureA.3 shows the tuning curve

representing the relationship between actual horizontal eye position (physical magnitude)

and rate output of neuron. The figure A.4 shows tuning curves of two neural ensembles

generated by Nengo neural simulator according to some preferred properties.

1Note that this is one of the simplest cases of types of neural coding.

A.2. NEURAL ENGINEERING FRAMEWORK V

Figure A.2: Three stereotypical neuron response functions from human cortical regular

spiking cells.: current in nA injected directly to neuron soma, output is

firing rate.

The NEF uses neural ensemble to encode given value x, the information are then decoded

from the ensemble. Neural Engineering Framework is based on two main aspects: neural

representation and neural transformation, I will describe them now.

The sequence of applying computation is as follows:

• We present the neural ensemble some real valued input

• The ensemble applies tuning curves, which is nonlinear transformation

• Because we know what we want as output and we know input transformation, we

can compute the output weights φi of neurons by minimizing the output error.

The following two sub-sections will describe how real-world values are encoded into neural

ensemble and how are then decoded (or transformed in desired way).

A.2.0.1 Neural Encoding Process

First, the (real-valued) input is connected to the termination of Neural ensemble. This

ensemble encodes the value into an activity of population of neurons. This transformation

(from x axis to multidimensional result on y axis) is depicted in the A.4. Note that this

process is non-linear. This input transformation can be written as ai(x), where ai is

transformation implemented by the neuron i and x is the encoded value.

VIAPPENDIX A. ADDITIONAL KNOWLEDGE ON SPIKING NEURAL NETWORKS

Figure A.3: A typical neuron tuning curve that codes for horizontal eye position. The

grey line indicates a leaky integrate- and-fire (LIF) neuron approximation

to the actual tuning curve (black line). This is a tuning curve (as opposed

to a response function) because it is a function of some variable x,7,A

typical neuron tuning curve in the nuclei prepositus hypoglossi that codes

for horizontal eye position. The grey line indicates a leaky integrate-and-

fire (LIF) neuron approximation to the actual tuning curve (black line).

This is a tuning curve (as opposed to a response function) because it is a

function of some variable x, not just current entering the soma.

As mentioned earlier, the encoding process in biological neuron is composed of two parts:

• highly complex transformation of physical magnitudes (inputs) to soma current.

This includes collecting all spikes on synapses, dendritic transformation etc. This

process generates current on soma.

• second part converts soma current to neuron activity (simplified: firing rate). This

is called response function and depicted in A.2.

The result of these two processes is called tuning curve and is depicted in A.3 and A.4.

Neural Engineering Framework describes these two processes separately, transformation

from "inputs" to soma current is written as J(x) and transformation of soma current to

neuron activity as G(y). Thus, a general expression for neural encoding process for each

neuron is:

ai(x) = Gi[Ji(x)]. (A.9)

A.2. NEURAL ENGINEERING FRAMEWORK VII

Figure A.4: Graph showing generated tuning curves for one neural ensemble with 50

nodes in the Nengo simulator. Note that ensemble has radius set to 1.7.

The soma current, J(x) results from combination of two different currents, called "bias"

current J bias and "driving" current Jd(x).

Ji(x) = J bias
i + Jd

i (x) (A.10)

Where bias current represents some constant input to the neuron, while driving current

depends directly on input x, so we can write Jd(x) as:

Jd
i (x) = αix, (A.11)

where αi represents weight of input to of neuron i. Note the similarity with equation

for more conventionally used ANNs of second generation. These equations are shown

on case when neural ensemble has only one input (thus only one weighted input α), but

this can be simply extended for more-dimensional inputs. At this place, the equation of

input transformation ai(x) is rewritten for case of Leaky Integrate and Fire (LIF) model

of neuron, but the equations above describe all types of neurons (we can use e.g. second

generation of neurons with sigmoid transfer function, Izhikevich model etc..). I will just

VIIIAPPENDIX A. ADDITIONAL KNOWLEDGE ON SPIKING NEURAL NETWORKS

rewrite the equation of encoding for one neuron once more:

ai(x) = Gi[αix+ J bias
i]. (A.12)

The properties of this encoding are well visible in the figure A.4, where the representation

is highly redundant - "overcomplete" and each neuron represents some part of input space.

This is similar to one of encoding possibilities of information in the biological systems.

Compared to this, engineering techniques are "complete", this means non-redundant.

Note that completeness of this representation can be fluently tuned by number of neurons

in the population, with respect to represented domain.

A.2.0.2 Neural Decoding Process

While each ensemble is meant to represent some value, the NEF provides mathematical

aparat to directly compute the decoding weights φi for each neuron, so that the whole

population of neurons represents the value. This means that we are searching for φi in

the following equation:

x̃ =
∑

i

ai(x)φi. (A.13)

Despite the highly non-linear encoding process, this linear decoding can be used to suc-

cessfully estimate a magnitude that was originally encoded. There are two main kinds of

decoders:

Representational decoder is used to retrieve the same information we encoded (into

ensemble).

Transformational decoder attempts to extract information other than what the pop-

ulation is taken to represent.

This means that neural ensemble with representational decoder should implement identity

transformation in the ideal case, but ensemble with the transformational decoder can

implement some desired transformation of input value f(x). In this situation, we know

input values to the ensemble, we know input transformations and we know what the

output should be: x, or some arbitrary function of input f(x). Because of the fact that

A.2. NEURAL ENGINEERING FRAMEWORK IX

these output transformations are linear, values form particular output weights φi can be

computed directly for each neuron simply by minimizing the output error.

In order to do this, here is the expression for the error that can be minimized to determine

the values of our decoders:

E =
1

2

∫ 1

−1

[

x−

N
∑

i=1

ai(x)φi

]2

dx. (A.14)

This equation represent mean square error, it computes integral (i.e. average) over the x

on interval 〈−1, 1〉, which is the radius of neural ensemble (i.e. constrains to input space).

The expression in brackets represent the difference of desired value and the decoded one

(which is weighted output from all neurons).

Figure A.5: Example of imperfect representational transformation by tuning curves.

The upper graph shows tuning curves of 3 neurons in the population,

lower graph shows imperfect transformation. Note that we can clearly see

how the transformation was computed.

Each time we drag and drop Neural ensemble into Nengo network, Nengo generates

neural ensemble (encodings) and solves this equation, that is: finds the vector of decoders

XAPPENDIX A. ADDITIONAL KNOWLEDGE ON SPIKING NEURAL NETWORKS

in order to represent the input value2 as accurately as possible. Example of result of

minimization of the value of E can be seen in the figure A.5. In the pictures there is

clearly visible how the output transformation was computed, and where is used which

neuron.

A.3 Comparison of current ANN simulators

This appendix describes the comparison and selection of ANN simulators designed for

simulating large-scale networks of neurons. The fundamental requirements for the sim-

ulator can be seen in the Chapter 3.4. The table A.1 shows only selected simulators,

which are not proprietary and are focused on simulating networks of neurons, not single

neurons.

2By default Nengo solves this equation for origin "x"-identity. We can add our custom origin which

implements custom transformational decoding.

A.3. COMPARISON OF CURRENT ANN SIMULATORS XI
T
a
b
le

A
.1

:
L
is

t
of

A
N

N
si

m
ul

at
or

s,
in

sp
ir
ed

in
(M

in
gu

s
20

11
)

C
o
m

p
a
r
is

o
n

o
f
o
n
ly

t
h
e

m
o
s
t

im
p
o
r
t
a
n
t

fe
a
t
u
r
e
s

o
f
o
p
e
n
-s

o
u
r
c
e

A
N

N
s
im

u
la

t
o
r
s

N
a
m

e
L
a
n
g
u
a
g
e

A
c
c
e
le

r
a
t
io

n
N

e
tw

o
r
k

D
e
s
ig

n
L
e
a
r
n
in

g
a
lg

o
r
it
h
m

s
2
n
d

g
e
n
.

3
r
d

g
e
n
.

E
m

er
g
en

t
C

+
+

M
P

I,
G

P
U

G
U

I,
sc

ri
p
ts

,
C

+
+

M
a
n
y

ty
p
es

T
T

T
o
rc

h
5

C
-

L
u
a

sc
ri

p
ts

-
T

-

T
o
p
o
g
ra

p
h
ic

a
N

eu
ra

l
M

a
p

S
im

u
la

to
r

C
+

+
/
P

y
th

o
n

-
G

U
I,

P
y
th

o
n
,
C

+
+

H
eb

b
ia

n
,
S
O

M
,
..

T
T

S
tu

tt
g
a
rt

N
eu

ra
l
N

et
w

o
rk

S
im

u
la

to
r

(S
N

N
S
)

C
+

+
-

G
U

I
B

a
ck

p
ro

p
,H

eb
b
ia

n
,
..

T
-

S
im

b
ra

in
J
a
v
a

-
G

U
I

H
eb

b
ia

n
,
S
O

M
T

T

N
eu

ro
n

C
,C

+
+

,F
o
rt

ra
n

M
P

I
V

is
u
a
l
sc

ri
p
ts

P
o
ss

ib
le

T
T

N
eu

ro
p
h

J
a
v
a

-
J
a
v
a

B
a
ck

p
ro

p
,H

eb
b
ia

n
,
..

T
-

N
en

g
o

J
a
v
a

G
P

U
G

U
I,

J
y
th

o
n

M
o
d
u
la

te
d

H
eb

b
-l
ik

e
T

T

T
h
e

li
g
h
t,

effi
ci

en
t

n
eu

ra
l
n
et

w
o
rk

si
m

u
la

to
r

(L
E

N
S
)

C
-

G
U

I
Q

u
ic

k
p
ro

p
,
K

o
h
o
n
en

,
..

T
-

F
a
st

A
rt

ifi
ci

a
l
N

eu
ra

l
N

et
w

o
rk

(F
A

N
N

)
C

-
G

U
I,

m
a
n
y

la
n
g
u
a
g
es

Q
u
ic

k
p
ro

p
,
K

o
h
o
n
en

,
..

T
-

E
n
co

g
J
a
v
a
,
.N

E
T

G
P

U
J
a
v
a
,
C

#
,
.N

E
T

K
o
h
o
n
en

,
H

o
p
fi
el

d
,
..

T
-

C
o
rt

ic
a
l
N

eu
ra

l
S
im

u
la

to
r

(C
N

S
)

C
G

P
U

M
a
tl
a
b
,
C

-
-

T

B
ri

a
n

P
y
th

o
n

G
P

U
P

y
th

o
n

S
T

D
P

-
T

B
io

lo
g
ic

a
l
N

eu
ra

l
N

et
w

o
rk

(B
N

N
)

T
o
o
lb

o
x

M
a
tl
a
b

-
M

a
tl
a
b

P
o
ss

ib
le

-
T

N
eM

o
+

S
p
ik

eS
tr

ea
m

C
G

P
U

C
,
M

a
tl
a
b
,
C

+
+

,
P

y
N

N
S
T

D
P

-
T

XIIAPPENDIX A. ADDITIONAL KNOWLEDGE ON SPIKING NEURAL NETWORKS

The most sophisticated and also widely used simulator Emergent was tried in the first

place. It features extensive Graphical User Interface (GUI) and comes with many sophis-

ticated biologically inspired learning algorithms. Simulator also includes build-in virtual

environment for direct testing of learned behavior A.6. The downside of Emergent is in

the fact that it is one big monolithic application. In order to be able to extend it, I simply

was not able to compile it from source on any computer, this can be problem while trying

to move the simulator across the computers, or even platforms.

Figure A.6: Example of experiment in Emergent simulator featuring inbuilt virtual

environment.

The Biological Neural Network Toolbox (BNN) for Matlab was used in initial stages

for simpler simulations. This simulator does not support any learning mechanism and

development of this tool is stopped now. While this simulator does not support any

simulation acceleration, it is a good starting point for testing the behavior of neural net-

works of 3rd generation. Figure A.7 shows asmall hand-wired network of spiking neurons

which implements XOR operation. Graphs in the fig.A.8 then show data measured from

simulation, blue lines show membrane potential of neurons. Logical value is represented

as current on input and as firing rate on network output.

Another tested simulator, Simbrain is designed primarily for teaching purposes, supports

basic learning algorithms, is very synoptical, lightweight and is implemented in Java.

However, this tool also does not support acceleration for larger-scale simulations and the

A.3. COMPARISON OF CURRENT ANN SIMULATORS XIII

Figure A.7: XOR implemented by network of Izhikevich’s neurons. Network is com-

posed of five Izhikevich’s neurons. Neurons 4 and 5 are in input layer,

2 and 3 are hidden and neuron 1 represents output. Blue lines denote

excitation connection (positive weights) and red, dashed lines denote in-

hibition (negative) connections.

scripting interface is missing too.

Potentially very interesting simulator proved to be NeMo (Fidjeland, Roesch, et al.

2009; Thomas and Luk 2009; Wildie et al. 2009). It is simulator of networks of Izhike-

vich’s neurons, which supports Spike-timing-dependent plasticity (STDP) learning and

acceleration of simulation on GPU. The simulator is relatively lightweight and is imple-

mented in C language. User can access to the simulation via C, C++ or Python API.

If available Compute Unified Device Architecture (CUDA) capable device is found, the

simulator uses acceleration, otherwise computing on CPU is used. It was shown that

Nvidia CUDA GPU can deliver up to 550 million of spikes per second during the sim-

ulation (Fidjeland and Shanahan 2010), this is very suitable for running simulations in

real-time. The SpikeStream, C++ graphical front-end for NeMo simulator can be also

used for managing the network topologies, measured simulation data and visualization of

network behavior. NeMo in combination with SpikeStream was designed to control the

humanoid robot iCub (Gamez, Fidjeland, and Lazdins 2012). Their work also shows how

to implement biologically plausible encoding of sensory and actuator data for robots. Ex-

ample of pseudo-randomly generated network of spiking neurons is in the fig.A.9. NeMo

simulator was not used because it does not support also 2nd generation of ANNs and also

because of the fact that it does not support Java API.

Finally, I chose the open-source Java-based simulator with direct support of both 2nd and

3rd generations of ANNs called Nengo, this simulator is described in more detail in the

Chapter 3.4.1.

XIVAPPENDIX A. ADDITIONAL KNOWLEDGE ON SPIKING NEURAL NETWORKS

! "!! #!! $!! %!! &!!! &"!! &#!! &$!! &%!! "!!!

ï'!

!

'!

(
)
*&

+,-./01.2)34+,)(50!*'0-2

! "!! #!! $!! %!! &!!! &"!! &#!! &$!! &%!! "!!!

ï'!

!

'!

(
)
*"

! "!! #!! $!! %!! &!!! &"!! &#!! &$!! &%!! "!!!

ï'!

!

'!

(
)
*6

! "!! #!! $!! %!! &!!! &"!! &#!! &$!! &%!! "!!!

ï'!

!

'!

(
)
*#

! "!! #!! $!! %!! &!!! &"!! &#!! &$!! &%!! "!!!

ï'!

!

'!

(
)
*'

Figure A.8: Example of simulation of XOR network in Biological Neural Network

Toolbox. Red line represents input value (current), blue line is membrane

potential (variable v in equations; note spikes) and green line is membrane

recovery variable (denoted as u in equations). Logical value is represented

as current on input and as firing rate on network output.

A.3. COMPARISON OF CURRENT ANN SIMULATORS XV

Figure A.9: Example of real-time simulation of pseudo-randomly generated network

of spiking neurons simulated by NeMo and visualized in SpikeStream.

SpikeStream allows user to connect neurons in predefined patterns, store

and load network topologies and store measured data in the database. Net-

work activity can be visualized in realtime. When injecting noise signal

into these neurons, network exhibited emerging synchronization of neu-

ronal firing, as expected (Strogatz 1997).

