Gaussian Logic for Predictive Classification

Ondiej Kuzelka, Andrea Szabéova, Matéj Holec, and Filip Zelezny

Faculty of Electrical Engineering, Czech Technical University in Prague
Technicka 2, 16627 Prague, Czech Republic

{kuzelon2, szaboand,holecmat, zelezny}@fel.cvut.cz,

Abstract. We describe a statistical relational learning framework called
Gaussian Logic capable to work efficiently with combinations of rela-
tional and numerical data. The framework assumes that, for a fixed re-
lational structure, the numerical data can be modelled by a multivariate
normal distribution. We demonstrate how the Gaussian Logic framework
can be applied to predictive classification problems. In experiments, we
first show an application of the framework for the prediction of DNA-
binding propensity of proteins. Next, we show how the Gaussian Logic
framework can be used to find motifs describing highly correlated gene
groups in gene-expression data which are then used in a set-level-based
classification method.

Keywords: Statistical Relational Learning, Proteomics, Gene Expres-
sion

1 Introduction

Modelling of relational domains which contain substantial part of information
in the form of real valued variables is an important problem with applications
in areas as different as bioinformatics or finance. So far there have not been
many relational learning systems introduced in the literature that would be able
to model multi-relational domains with numerical data efficiently. One of the
frameworks able to work in such domains are hybrid Markov logic networks [21].
However, there is currently no known approach to learning structure of hybrid
Markov logic networks which is mainly due to their excessive complexity. In this
paper we describe a relatively simple framework for learning in rich relational
domains containing numerical data. The framework relies on multivariate normal
distribution for which many problems have tractable or even analytical solutions.
Our novel system exploits regularities in covariance matrices (i.e. regularities
regarding correlations) for construction of models capable to deal with variable
number of numerical random variables. We mainly show how this novel system
can be applied in predictive classification. We show that it can be applied to
classification directly (Bayesian learning) or indirectly (feature construction for
gene-expression data).

2 Gaussian Logic
2 A Probabilistic Framework

In this section, we describe a probabilistic model which will constitute theoretical
foundations for our framework. Let n € N. If v € R" then v; (1 <14 < n) denotes
the i-th component of v. If I C [1;n] then v = (vi;,vi,, ... v;,) where i; € I
(1 <j < |I|). To describe training examples as well as learned models, we use a
conventional first-order logic language £ whose alphabet contains a distinguished
set of constants {ry,rq, ...r,} and variables {Ry, Ra,... Ry} (n,m € N). An r-
substitution ¥ is any substitution as long as it maps variables (other than) R;
only to terms (other than) r;. For the largest k such that {Ri/r;,, Ra/ts,, ...,
Ry /ri, } C ¥ we denote I(¥) = (i1, 12, ...9). A (Herbrand) interpretation is a set
of ground atoms of £. I(H) (I(p)) denotes the naturally ordered set of indexes
of all constants r; found in an interpretation H (L-formula ¢).

Our training examples have both structure and real parameters. An exam-
ple may e.g. describe a measurement of the expression of several genes; here
the structure would describe functional relations between the genes and the
parameters would describe their measured expressions. The structure will be de-
scribed by an interpretation, in which the constants r; represent uninstantiated
real parameters. The parameter values will be determined by a real vector. For-
mally, an example is a pair (H,0) where H is an interpretation, 8 € 2, and
2y € RIVUDI The pair (H,0) may also be viewed as a non-Herbrand interpre-
tation of £, which is the same as H except for including R in its domain and
assigning 6; to r;.

Examples are assumed to be sampled from the distribution

P(H,Qu)= | fu(61H)P(H)do
Qu

which we want to learn. Here, P(H) is a discrete probability distribution on the
countable set of finite Herbrand interpretations of £. If £ has functions other
than constants, we assume that P(H) is non-zero only for finite H. fy (0|H)
are the conditional densities of the parameter values. The advantage of this
definition is that it cleanly splits the possible-world probability into the discrete
part P(H) which can be modeled by state-of-the-art approaches such as Markov
Logic Networks (MLN’s) [6], and the continuous conditional densities fz (6|H)
which we elaborate here. In particular, we assume that f (0|H) = N (pm, XH),
i.e., @ is normally distributed with mean vector py and covariance matrix 3.
The indexes H emphasize the dependence of the two parameters on the particular
Herbrand interpretation that is parameterized by 6.

To learn P (H, {2y) from a sample E, we first discuss a strategy that sug-
gests itself readily. We could rely on existing methods (such as MLN’s) to learn
P(H) from the multi-set H of interpretations H occurring in E. Then, to obtain
f(6]|H) for each H € H, we would estimate p g, 3 g from the multi-set Qp of pa-
rameter value vectors 0 associated with H in the training sample . The problem
of this approach is that, given a fixed size of the training sample, when H is large,
the multi-sets QH, H € H will be small, and thus the estimates of py, Xy will

Gaussian Logic for Predictive Classification 3

be poor. For example, H may describe hundreds of metabolic pathway structures
and each 2y may contain a few vectors of expressions related to proteins acting
in H, and measured through costly experiments. For this kind of problem we
develop a solution here. We explore a method, in which parameters determining
P (H, 2y) can be estimated using the entire training set. The type of P (H, 2x)
is obviously not known; note that it is generally not a Gaussian mixture since
the 6 in the normal densities fy (6|H) have, in general, different dimensions for
different H. However, our strategy is to learn Gaussian features of the training
set. A Gaussian feature (feature, for short) is a L-formula ¢, which for each
example (H, @) extracts some components of @ into a vector u(y), such that
u(yp) is approximately normally distributed across the training sample. For each
feature ¢, pry(p) and Xy, (,) are then estimated from the entire training sample.
A set of such learned features ¢ can be thought of as a constraint-based model
determining an approximation to P (H, 2y). We define Gaussian features more
precisely in a moment after we introduce sample sets.

Given an example e = (H, 0) and a feature ¢, the sample set of ¢ and e is
the multi-set S(p,e) = {01(9)|H | ¢V} where ¥ are r-substitutions grounding
all free variables® in o, and H = ¢U denotes that ¢¥ is true under H.

Now we can formally define Gaussian features. Let ¢ be a L-formula, {e;}
be a set of examples drawn independently from a given distribution and let 6;
be vectors, each drawn randomly from S(¢,e;). We say that ¢ is a Gaussian
feature if 0; is multivariate-normally distributed?.

Given a non-empty sample set S(ip, e), we define the mean vector as

1
K(p,e) = m oeg,e)e (1)

and the X-matriz as

1

(9 = 5e]

> (0 pp.e)(0—plpe)’ (2)

0ES(p,e)

Finally, using the above, we define estimates over the entire training set {e;, ez,
co.m}

m

1
fip=— nlee) (3)
=1
R 1 m R
Yo =—) (Blpe)+ n(e e (e, e)’) — fi i, (4)

i=1

! Note that an interpretation H does not assign domain elements to variables in L.
The truth value of a closed formula (i.e., one where all variables are quantified) under
H does not depend on variable assignment. For a general formula though, it does
depend on the assignment to its free (unquantified) variables.

2 Note that whether a £-formula ¢ is a Gaussian feature depends also on the particular
distribution of the examples.

4 Gaussian Logic

Let us exemplify the concepts introduced so far using an example concerning
modelling of gene regulatory networks. Let the only Herbrand interpretations
H with non-zero P(H) be those composed of literals of the form ¢(G;, R;) and
expr(G;, G;) where g(G;, R;) is a predicate intended to capture ezpression level
R; of a gene G; and expr(G;,G;) is used to indicate that two genes are in re-
lation of expression (i.e. that the first gene G; is a transcription factor of gene
G;). For example, the next example e; = (Hj,01) corresponds to a measure-
ment on a sample set of genes containing three genes Hy = g(g1,71), 9(g2,72),
9(g3,73), expr(g1,93), expr(gz,g3), 01 = (0,1,0). Let us further suppose that
we have another example es = (Hs,03) which corresponds to another set of
genes: Hy = g(g1,71), 9(92,72), 9(93,73), 9(ga,74), expr(gi,g2), expr(gs,gs),
expr(gs,gs), 02 = (1,1,0,1).

Assume that the following two formulas have been identified as Gaussian
features Y1 = g(G1, Rl) A\ g(GQ, RQ) A\ 617p?"(G1, Gg), Y2 = g(Gl, Rl) AN g(GQ, R2)
A —expr(Gy,Ga) A G1 # Ga. Their sample sets for both examples are S(¢1,e1)
= {(0,0), (1,0)}, S(2,e1) = {(0,1), (1,0)}, S(p1,e2) = {(1,1), (1,0), (0,1)}
S(pa,e2) = {(1,0), (0,1), (1,1), (1,0), (1,1), (1,1), (0,1), (1,1), (1,1)}. The
first element of S(¢1,e1) is obtained with ¥ = {G1/g1, G2/gs, R1/r1, Rz2/r3}.
Clearly, e; = 19, and we have 879y = (0,1,0)7¢9) = (0,0) since 1(9) = (1,3).
For each sample set, we may then calculate the corresponding mean vector and
S-matrix according to Eq’s 1 and 2 (e.g., pu(¢1,e1) = (0.5,0)7, and p(p1,e2) =
(2/3,2/3)T). After that we can calculate the training-set-wide estimates for both
features by Eq’s 3 and 4. Then we can estimate multivariate normal distribution
e.g. of a set of genes described by Hz = g(g1,71), 9(92,72), 9(g3,73), expr(g1, g2),
expr(gs, g3), expr(gs, g1) on the basis of features p; and s which gives us the
covariance matrix

1 cece
g, =|c 1ece
Ce Co 1

where the parameter ¢, corresponds to the correlation coefficient estimated in
feature ;.

Importantly, using the training-set-wide estimates, we can derive estimates of
parameters pp, and Xy of the densities f, (6|H,,) for any relational structure
H, consisting of the two types of literals®, even if H,, does not occur in the
training set. Of course, validity of such estimates highly depends on the question
whether the constructed features are truly Gaussian. Otherwise, a problem might
occur that the estimated matrix would not be positive definite, however, first it
almost did not happen in our experiments and second, if such a situation really
occurs, one can replace the defective estimated covariance by a nearest positive
definite matrix [10].

3 Note that one can use any number of different predicate symbols in this framework,
not just two.

Gaussian Logic for Predictive Classification 5

3 Parameter Estimation

In this section, we will be concerned with estimation of parameters p, and 3.
Although the estimators are straightforward modifications of ordinary estimators
of means and covariances, their correctness does not follow immediately from the
correctness of these conventional estimators because the samples contained in
sample sets S(¢p, e;) may be dependent. Namely, we will show that, for a Gaussian

feature ¢,
m

1
fip=— > ulpe)

=1

is a consistent and unbiased estimator of the true mean g, and that

o= (B(e.ei) + mle emle, e)’) — fgfiy

i=1

is a consistent asymptotically unbiased estimator of the true covariance matrix
X,. In order to show this, we will need the next lemma.

Lemma 1. Let £ be a countable set of estimators converging in mean to the
true value such that for each E' € €, B9 € £ it holds EEz = EEJ (where E]
denotes the estimate of the estimator EY using m-samples). Let £ C & be finite
sets. Then

. * 1 i
E'Legm
where € > 0 and E* is the true value (i.e. the combination of the estimators is
consistent).

First, we will rewrite the formula for 1., as an average of a (large) number
of consistent estimators converging in mean and after that we will apply Lemma
1. Let us impose a random total ordering on the elements of the sample sets
S(p,e;) ={s1,...,8m, | so that we could index the elements of these sets. Next,
let us have

X={1,2,...,|S(Fye))|} x{1,2,...,[S(p,e2)|} X --- x {1,2,...,]|S(p,em)|}
Then the formula for g, can be rewritten as follows:
~ 1 1
Fo = T3] > o (s1i sz, o S,
(i17i27---;i7n)6X

where s; 1 is a k-th element of the sample set S(¢, ¢;). Now, each L (s1;,+ s2,i,+

-+ Sm,,,) is an unbiased consistent estimator converging in mean according
to the definition of Gaussian features (it is the ordinary estimator of mean).
Now, we may apply Lemma 1 and infer that ﬁ¢ also converges in probability

6 Gaussian Logic

to p,. The unbiasedness of the estimator then follows from basic properties of
expectation.

The argument demonstrating consistency and asymptotic unbiasedness of
the covariance estimator goes along similar lines as the argument for the mean
estimator. First, we rewrite the sum

e 1 m -
Ega - E Z (2(907 ei) + /1’(907 ei)ﬂ/(ﬁp, ei)T) — M@'U’Z —
i=1
:;f:ls(le)l S (-, 05-8,)"
=1 P 0;€S(p,ei)

as a sum of asymptotically unbiased consistent estimators as follows:

= 1 1 ~ T
,= — — (i — i — .
® |X| . § :)GX m (517 1 “) (817 1 l'l’) +

11,-000m

~ ~\T
o (nin = 1) (S — 1))
where s, 1 is a k-th element of the sample set S(¢, e;). Now, each sum

1

~ ~\T
o ((Sul —p) (51,0, — 1)

ot (i = B) (Smi, — 1))

is an asymptotically unbiased and consistent estimator converging in mean and
the average of these estimators is thus asymptotically unbiased and consistent
(again by basic properties of expectation and by Lemma 1).

In general, the problem of estimating p (g, ¢;) and 3(¢p, e;) are NP-hard prob-
lems (they subsume the well-known NP-complete problem of #-subsumption).
However, they are tractable for a class of features, conjunctive tree-like features
for which we have devised efficient algorithms (see Appendix for details).

4 Structure Search

In this section we briefly describe methods for constructing a set of features
that give rise to models capable to appropriately model a given set of examples.
The methods that we describe are specialized for working with tree-like features
because estimation of the parameters is tractable for them as we have men-
tioned in the previous section. The feature construction algorithm for tree-like
features is based on the feature-construction algorithm from [16]. It shares most
of the favourable properties of the original algorithm like detection of redundant
features. The output of the feature construction algorithm is a (possibly quite
large) set of features and their parameters so we need to select a subset of these
features which would provide us with good models.

First, let us describe how a mean vector and a covariance matrix for a re-
lational structure (i.e. a Herbrand interpretation) R is computed using a given

Gaussian Logic for Predictive Classification 7

set of features. We assume that we have a set of features p; € F which have
been identified as Gaussian, their respective parameters p,,, and X, and a rela-
tional structure H (Herbrand interpretation) for which we want to construct the
model. Furthermore, we assume that each distinguished constant r; contained
in H is covered by some feature ¢ € F, i.e. that for each r; there is a feature
¢ € F and a r-substitution ¥ such that r; is contained in). Then the covari-
ance matrix 3y can be constructed as follows. For each ¢ € F we compute the
set O, of all substitutions ¥ such that H |= ¢v. After that, for each feature ¢
(with parameters p, and X,,) and each r-substitution ¢ € @, we set the entries
(pu)i = (ne)1r (Zm)i,; = (By) 1,7 where {Ry/ri, Ry/r;} C 9. If the features are
perfectly Gaussian and if the parameters p,, and 3, are known accurately, there
is no problem. However, in practice, we may encounter situations where two fea-
tures will suggest different values for some entries (be it for the reason that the
features are not perfectly Gaussian or that the parameters were estimated from
small samples). In such situations we will use an average of the values suggested
by different features.

Having explained how py and ¥ are constructed using a set of Gaussian
features, we can explain a simple procedure for construction of the Gaussian
feature set. On the input, we get a set of examples e; = (H;, 8;). The procedure
starts by constructing a large set of non-redundant features exhaustively on a
subset of the training data. Then, in the second step, a subset of features is
selected. This is done by a greedy search algorithm optimizing a score function
of the models on a different subset of training data not used previously for feature
construction and parameter estimation.

5 A Straightforward Predictive Classification Method

A straightforward application of the Gaussian-logic framework is Bayesian clas-
sification. We use the algorithms described in the previous sections of this paper
to learn a Gaussian-logic model for positive examples and a Gaussian-logic model
for negative examples and then we use these models to classify examples by com-
paring likelihood ratios of the two models with a threshold. In this section we
describe a case study involving an important problem from biology - prediction
of DNA-binding propensity of proteins. Proteins which possess the ability to bind
to DNA play a vital role in the biological processing of genetic information like
DNA transcription, replication, maintenance and the regulation of gene expres-
sion. Several computational approaches have been proposed for the prediction of
DNA-binding function from protein structure. It has been shown that electro-
static properties of proteins such as total charge, dipole moment and quadrupole
moment or properties of charged patches located on proteins’ surfaces are good
features for predictive classification (e.g. [1], [3], [18], [20]). Szildgyi and Skol-
nick [19] created a logistic regression classifier based on 10 features including
electrostatic dipole moment, proportions of charged amino acids Arg, Lys and
Asp, spatial asymmetries of Arg and five more features not related to charged

8 Gaussian Logic

amino-acids: proportion of Ala and Gly and spatial asymmetry of Gly, Asn and
Ser.

Here, we use Gaussian logic to create a model for capturing distributions
of positively charged amino acids in protein sequences. Clearly, the distinguish-
ing electrostatic properties of DNA-binding proteins, which have been observed
in 3D structures of proteins in the previous works, should exhibit themselves
also in the amino-acid protein sequences (possibly, not in a straightforward
manner because the 3D structure is a result of complicated folding of a pro-
tein’s sequence). We split each protein into consecutive non-overlapping win-
dows, each containing l,, amino acids (possibly except for the last window which
may contain less amino acids). For each window of a protein P we compute the
value a;r /L, where a;r is the number of positively charged amino-acids in the
window 4. Then for each protein P we construct an example ep = (Hp,0p)
where 6p = (af /ly,a3 /lw,...,a},/ly) and Hp = w(1,71), next(1,2), ...,
next(np — 1,np), w(np,rp). We constructed only one feature F,,, = w(A4, Ry)
for non-DNA-binding proteins since we do not expect this class of proteins to be
very homogeneous. For DNA-binding proteins, we constructed a more complex
model by selecting a set of features using a greedy search algorithm. The greedy
search algorithm optimized classification error on training data. Classification
was performed by comparing, for a tested protein, the likelihood-ratio of the
two models (DNA-binding and non-DNA-binding) with a threshold selected on
the training data. We estimated the accuracy of this method using 10-fold cross-
validation (always learning parameters and structure of the models and selecting
the threshold and window length [,, using only the data from training folds) on a
dataset containing 138 DNA-binding proteins (PD138 [19]) and 110 non-DNA-
binding proteins (NB110 [1]). The estimated accuracies (Gaussian Logic) are
shown in Table 1. The method performs similarly well as the method of Szilagyi
et al. [19] (in fact, it outperforms it slightly but the difference is rather negligible)
but uses much less information. Next, we were interested in the question whether
the machinery of Gaussian logic actually helped improve the predictive accuracy
in our experiments or whether we could obtain the same or better results using
only the very simple feature F' = w(A4, Ry) also to model the DNA-binding pro-
teins, thus ignoring any correlation between charges of different parts of a protein
(Baseline Gaussian Logic in Table 1). Indeed, the machinery of Gaussian Logic
appears to be helpful from these results.

Method Accuracy [%]
Szilagyi et al. 81.4
Baseline Gaussian logic 78.7
Gaussian logic 81.9

Table 1. Accuracies estimated by 10-fold cross-validation on PD138/NB110.

Gaussian Logic for Predictive Classification 9

It is interesting how well the Gaussian-logic model performed considering the
fact that it used so little information (it completely ignored types of positively
charged amino acids and it also ignored negative amino acids). The model that
we presented here can be easily extended, e.g. by adding secondary-structure
information. The splitting into consecutive windows used here is rather artificial
and it would be more natural to split the sequence into windows correspond-
ing to secondary-structure units (helices, sheets, coils). The features could then
distinguish between consecutive windows corresponding to different secondary-
structure units.

6 Feature Construction for Predictive Classification

In this section we present another application of the Gaussian-logic framework
for predictive classification. We show how to use it to search for novel definitions
of gene sets with high discriminative ability. This is useful in set-level classifi-
cation methods for prediction from gene-expression data [11]. Set-level methods
are based on aggregating values of gene expressions contained in pre-defined gene
sets and then using these aggregated values as features for classification. Here,
we, first, describe the problem and available data and then we explain how we
can construct meaningful novel gene sets using Gaussian Logic.

The datasets contain class-labeled gene-samples corresponding to measure-
ments of activities of thousands of genes. Typically, the datasets contain only
tens of measured samples. In addition to this raw measured data, we also have re-
lational description of some biological pathways from publicly available database
KEGG [14]. Each KEGG pathway is a description of some biological process (a
metabolic reaction, a signalling process etc.). It contains a set of genes anno-
tated by relational description which contains relations among genes such as
compound, phosphorylation, activation, expression, repression etc. The relations
do not necessarily refer to the processes involving the genes per se but they may
refer to relations among the products of these genes. For example, the relation
phosphorylation between two genes A, B is used to indicate that a protein coded
by the gene A adds phosphate group(s) to a protein coded by the gene B.

We constructed examples (Hg,0g) from the gene-expression samples and
KEGG pathways as follows. For each gene g;, we introduced a logical atom
g(gi, ;) to capture its expression level. Then we added all relations extracted
from KEGG as logical atoms relation(g;, g;, relationType). We also added a
numerical indicator of class-label to each example as a logical atom label(£1)
where +1 indicates a positive example and —1 a negative example. Finally, for
each gene-expression sample S we constructed the vector of the gene-expression
levels @g. Using the feature construction algorithm outlined in Section 4 we con-
structed a large set of tree-like features* involving exactly one atom label(L), at
least one atom ¢(G;, R;) and relations expression, repression, activation, inhi-
bition, phosphorylation, dephosphorylation, state and binding/association. After

4 We have used a subset of 50 pathways from KEGG to keep the memory consumption
of the feature-construction algorithm under 1GB.

10 Gaussian Logic

that we had to select a subset of these features. Clearly, the aggregated values
of meaningful gene sets should correlate with the class-label. A very often used
aggregation method in set-level classification methods is the average. Therefore
what we need to do is to select features based on the correlation of the average
expression of the genes assumed by the feature and the class-label but this is
easy since we have the estimate of the features’ covariance matrices X, and com-
puting the average expression of the assumed genes is just an affine transform.
It suffices to extract correlation from the covariance matrix given as BX,BT
where B is a matrix representing the averaging. The absolute values of correla-
tions give us means to heuristically order the features. Based on this ordering
we found a collection of gene sets given by the features (ignoring gene sets which
contained only genes contained in a union of already constructed gene sets).

Dataset Gaussian logic FCF
Collitis [4] 80.0 89.4
Pleural Mesothieloma [9] 94.4 92.6
Parkinson 1 [17] 52.7 54.5
Parkinson 2 [17] 66.7 63.9
Parkinson 3 [17] 62.7 77.1
Pheochromocytoma [5] 64.0 56.0
Prostate cancer [2] 85.0 80.0
Squamus cell carcinoma [15] 95.5 88.6
Testicular seminoma (8] 58.3 61.1
Wins 5 4

Table 2. Accuracies of set-level-based classifiers with Gaussian-logic features and FCF-
based features, estimated by leave-one-out cross-validation.

We have constructed the features using a gene-expression dataset from [7]
which we did not use in the subsequent predictive classification experiments. A
feature defining gene sets which exhibited one of the strongest correlations with
the class-label was the following:

F =label(R1) A g(A, R2) A relation(A, B, phosphorylation)A
9(B, R3) A relation(A, C, phosphorylation) A g(C, Ry)

We have compared gene sets constructed by the outlined procedure with
gene sets based on so called fully-coupled fluzes (FCFs) which are biologically-
motivated gene sets used previously in the context of set-level classification [11].
We constructed the same number of gene sets for our features as was the number
of FCFs. The accuracies of an SVM classifier (estimated by leave-one-out cross-
validation) are shown in Table 2. We can notice that the gene sets constructed
using our novel method performed equally well as the gene sets based on fully-
coupled fluxes. Interestingly, our gene sets contained about half the number of

Gaussian Logic for Predictive Classification 11

genes as compared to FCFs and despite that they were able to perform equally
well.

7 Conclusions and Future Work

In this paper we have introduced a novel relational learning system capable to
work efficiently with combinations of relational and numerical data. The exper-
iments with real-world gene-expression and proteomics data gave us some very
promising results. Furthermore, there are other possible applications of Gaussian
logic in predictive classification settings which were not discussed in this paper.
For example, finding patterns that generally correspond to highly correlated sets
(not necessarily correlated with the class) of genes may have applications with
group-lasso based classification approaches [12].

Acknowledgement: We thank the anonymous reviewers for their very valuable com-
ments. This work was supported by the Czech Grant Agency through project 103/10/
1875 Learning from Theories and project 103/11/2170 Transferring ILP techniques to
SRL.

Appendix

In this appendix, we describe technical details concerning estimation of u-vectors
and X-matrices.

Proof of Lemma 1

Let us suppose, for contradiction, that the assumptions of the lemma are satis-
fied, 6 > 0 and that

5:nlgrréopr |E—mAZ E)| >e€ §nlLrI;oPr WAZ |[E* — E, | >¢€
E;c&, E;e&,
From this we have
. 1
lim E| — |E E|]l|>6-¢e>0
n— oo |En| R
E;e&,
but
lim B | — |E* — E| li ! E|E* — Ei|
im — — = lim | — =

En €€n

i€
= lim <51 En| - E|E* — E) (E|E* El|) =0

n—oo

12 Gaussian Logic

(where the last equality results from the convergence in mean of the individual
estimators) which is a contradiction. The only remaining possibility would be
that the limit does not exist but then we can select a subsequence of &; which
has a non-zero limit and again derive the contradiction as before. a

Parameter Estimation

In this section we describe an efficient algorithm for estimation of p-vectors and
Y-matrices (polynomial in the combined size of a feature and an example) for
the class of tree-like conjunctive features. Algorithms for computing quantities
related to p(yp, e;) for tree-like features have already been described in literature
on relational aggregation [13]. However, there has been no prior work concerned
with tractable computation of 3 (¢, e;) or any similar quantity.

Definition 1 (Tree-like conjunction). A first-order conjunction without quan-
tifications C' is tree-like if the iteration of the following rules on C' produces the

empty conjunction: (i) Remove an atom which contains fewer than 2 variables.

(1) Remove a variable which is contained in at most one atom.

Intuitively, a tree-like conjunction can be imagined as a tree with the exception
that whereas trees are graphs, conjunctions correspond in general to hyper-

graphs.
We start by some auxiliary definitions. Let ¢ be a tree-like feature. Let us
suppose that s1,s2, ..., sk is a sequence of steps of the reduction procedure from

Definition 1 which produces an empty feature from ¢. Let <1 be an order on the
atoms of ¢ such that if an atom a; disappeared before an atom as during the
reduction process then a; < as. Then we say that < is a topological ordering of
@’s atoms. Let A C ¢ be a maximal set of atoms having a variable v in common.
We say that a € A is a parent of atoms from A\ {a} if for each z € A\ {a} it
holds <t a (we also say that the atoms in A\ {a} are a’s children). An atom a
is called root if it has no parents w.r.t. <, it is called a leaf if it has no children
w.r.t. <.

We will use (C,v) € Children(p, <) for the set of all features ¢ with roots
equal to children of ¢ (w.r.t. <) together with the respective shared variables v.
Similarly, we will use C' € Children(p,v, <) for the set of all features o with
roots equal to children of ¢ (w.r.t. <1) sharing the variable v with ¢’s root. We will
also use arg;(a) to identify the term appearing in the i-th argument of a. Next,
to denote the set of all arguments of a = atom(aq, asg, . . ., ax) and their positions
in the atom we will use (a;,4) € args(a). Finally, we define the input variable of
a feature ¢ contained in some bigger feature ¢ (denoted by inp(p, ¥, <)) as the
variable which is shared by root(¢, <1) with its parent in). When a is a ground
atom such that root(p, <)@ = a then we define input operator inp(a, @, 1, <)
which will give us inp(p, 1, <1)8 (i.e. the term from the argument corresponding
to the input variable in). If ¢ = 1 then inp(a, @, 1, <) = inp(p, 1, <) = 0°.

5 Here, the empty set is used as a dummy input. It does not mean that the returned
value of the input functions would be a set in general.

Gaussian Logic for Predictive Classification 13

We say that v is a sub-feature (of ¢) if ¢ C ¢ and 9 and ¢\ are both connected
features. The parameter estimation algorithm will use two auxiliary algorithms
for computing so-called domains and term-domains of features which are defined
as follows.

Definition 2 (Domain, term-domain). Let e be an example. Let ¢ be a tree-
like feature, <1 be a topological ordering of p’s atoms. Then we say that a set of
atoms A C e is domain of ¢ w.r.t. e (denoted by A =D(p,e, <)) if A contains
all ground atoms a = root(p,<1)0 such that e = ©b. If ¢ is contained in a
bigger feature ¢ then we can also define its term-domain as Dr(p, ¥, e, <) =

{an(@a¢a <])0|€ ': 4,00}

Let e = a(a,b),a(a,c),b(b) be an example and let ¢ = a(X,Y),b(Y) and
¥ =a(X,Y),a(X, Z),b(Y) be features. Let b(Y) < a(X,Y). Then D(p,e,<) =
{a(a7 b)} and DT(@? 1/’7 €, <]) = {a}

Algorithms for computing domains and term-domains have been described
in [16] and they also correspond to well-known algorithms for answering acyclic
conjunctive queries [22]. These algorithms run in time polynomial in || and
le|]. We note that these algorithms for computing domains of tree-like features
compute not only domains corresponding to the roots of the given features but
also domains corresponding to all the sub-features during one pass over a given
feature. In the pseudocode of the parameter-estimation algorithms we will call
the procedure for computing domains using D(¢, e, <I,T") where ¢ is the fea-
ture and e is the example for which we want to compute the domain, < is a
topological ordering of ¢’s atoms and T is a table in which domains of all ¢’s
sub-features should be stored. Similarly, we will call the procedure for comput-
ing term-domains using Dr(p, 1, e, <,T) where again ¢ and e are the feature
and the example for which we want to compute the term-domain, v is a feature
containing ¢ (recall the definition of term-domain), < is a topological order-
ing of ¢’s atoms and T is a table in which the computed term-domains of ¢’s
sub-features should be stored.

Now, we can proceed further to computation of the parameters p(p,e) and
3(p,e). By sample parameters we will mean a 5-tuple (z, f, ﬁ, n,v). Here x can
be either an empty set, an atom or a term, p is a vector, ¥ is a matrix and
n is a natural number. The parameter v is an ordered list of the distinguished
variables R; € vars(y). Next, we define a concatenation operation for combining
sample parameters.

Definition 3 (Concatenation operator). Let A = (x,pua,X4,n4,74) and
B = (y,up,Xp5,n5,78) be sample parameters. Then we define A® B as

T
A9 B =z, (W uh]" Sapna-np7aUys)

where y4 Uyp denotes concatenation of the lists y4 and vy and X ap is a block-
diagonal matrix

[=a 0

14 Gaussian Logic

Algorithm 1 An algorithm for computing (e, e) and X(ip, e) for connected ¢

Procedure: po(p,e = (H,0), <)
1: T+
2: D(p,e, <, T) /* This fills values into the table T */
3: return @Y no' (v, ¢, e, <4, T)

Procedure: uo’(p, 9, e = (H,0),<,T)

1: SP «+ [] /* SP is an associative array of sample parameters */
2: D, < Tly] /* Dy is domain of ¢ */

3: for Va € D, do

4: SPla] < {a,0;(a), |I(a)|x|I(a)| zero matrix, 1, Rs} /* where R, is a list of the distinguished

variables contained in root(y) */

5: end for

6: for (pc,v) € Children(p, <) do

7: SP, DI uo'(pc, e, e, <)

8: for Va € D, do

9: SPla] < SP[a] @ SP,, [vI] where root(p,)9 = a
10: end for
11: end for
12: return SP

Definition 4 (Combination operator). Let ¢ C 1 be features and <1 a topo-
logical ordering of ¥’s atoms. Let v be a list of distinguished variables R; €
vars(p). Let A = (x,pa,Xa,n4,7) and B = (y,pup,Xp,np,7y) be sample pa-
rameters where x and y are logic atoms such that inp(x, @, v, <) = inp(y, p, ¥,).
Then we define A@f{wB as A@ﬁ’wB = (inp(z, 0,1, <), haB, XAB,NA+NE,7)
where pap = e (na-pa+ng-pup) and

Yap=—"— (nA (Ba+pa-p)+ng-(Ep+ s ‘Mg)) —paB - php

Let us note that @ﬁ,’w is a commutative and associative operation which is also
implicitly used in the following definition.

Definition 5 (Combination operator). Let ¢ C 1) be features and <1 a topo-
logical ordering of p’s atoms. Next, let v be a list of distinguished variables R; €
vars(p). Let X = {(x1, p1, X1,11,7), - - -, (Thy Pk, Xk, N, Y) - Next, let X [t] de-
note the set of all sample parameters (x,...) € X for which inp(x, ¢, ¥, <) = t.

Then @Z’w X is defined as follows:

P

@X = {(ylaﬂyu Eylﬂny177)7 te (ymal‘ymvzymv“ymﬁ)}
<

where (yi, By, By, sy,) = 1105 0205Y 05 2o for {1, w0} = X [yi].

The basic ideas underlying Algorithm 1 are summarized by the next two
observations.

Observation 1 Let o =y UCyU---UC, be a feature where each C; is a sub-
feature of ¢ and Y NC; =0 and C; N C; =0 for i # j. Let ¥ be a substitution
affecting only variables v € vars(y) and guaranteeing that ¥ will be ground and

Gaussian Logic for Predictive Classification 15

it will hold e |= @ where e = (H, 0) is an example. Then p(p?d,e) and Z(pd, e)
and the number of samples m = |S(pV,e)| are given by the sample parameters
A (up to reordering of random variables) computed as

A= (¢0,07(9),n x n zero matriz,1,Ry) ® ...
@uo(Ci9, e, <) @ po(Cat, e, <) @ -+ @ po (Crd, e, <)

(where n = |I(y)| and Ry is a list of the distinguished variables R; € vars(y))
provided that po(Ci9, e, <) are correct sample parameters.

Let us look more closely at what po(C;9,e, <td) is. First, we can notice that
C;¥ is a sub-feature of ¢ which differs from C; only by the fact that it has
its input variable (inp(C;, ¢, <1)) grounded by ¥. Therefore uo(C;9,e, <) can
be also obtained from the set @2"’# o' (Cyy,e,<1,T) (where the argument T
is a table containing pre-computed domains). The next observation, in turn,
shows that what @g““’ uo' (Ci, p,e, <1, T) contains are the sample parameters
corresponding to u(C;¥, e), 3(C;¥, e) and the number of samples |S(C;9, e)| for
all substitutions ¥ grounding only the input argument of C; such that e = C;9.

Observation 2 Let ¢ C ¢ be features and let e = (H,0) be an example. Let
9 :anp(p, v, <) = Dr(p,,e,<) be a substitution. Then p(pd,e), X(pd,e),
ney = |S(@v, e)| are contained in

P,

(inp(ip, 1, <)Y, p(0, €), (0, €),n,7) € @ po’ (0,9, ¢,<,T)
<

(where T is a table with pre-computed domains of sub-features of) provided
that po' (@, 1, e, <, T) are correct sample parameters.

References

1. Shandar Ahmad and Akinori Sarai. Moment-based prediction of dna-binding pro-
teins. Journal of Molecular Biology, 341(1):65 — 71, 2004.

2. Carolyn J M Best et al. Molecular alterations in primary prostate cancer after
androgen ablation therapy. Clin Cancer Res, 11(19 Pt 1):6823-34, 2005.

3. Nitin Bhardwaj, Robert E. Langlois, Guijun Zhao, and Hui Lu. Kernel-based
machine learning protocol for predicting DNA-binding proteins. Nucleic Acids
Research, 33(20):6486—6493.

4. Michael E Burczynski et al. Molecular classification of crohns disease and ulcerative
colitis patients using transcriptional profiles in peripheral blood mononuclear cells.
J Mol Diagn, 8(1):51-61, 2006.

5. Patricia L M Dahia et al. A hiflalpha regulatory loop links hypoxia and mitochon-
drial signals in pheochromocytomas. PLoS Genet, 1(1):72-80, 2005.

6. Pedro Domingos, Stanley Kok, Daniel Lowd, Hoifung Poon, Matthew Richardson,
and Parag Singla. Probabilistic inductive logic programming. chapter Markov
logic, pages 92—117. Springer-Verlag, 2008.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Gaussian Logic

. William A Freije et al. Gene expression profiling of gliomas strongly predicts

survival. Cancer Res, 64(18):6503-10, 2004.

. I Gashaw et al. Gene signatures of testicular seminoma with emphasis on expression

of ets variant gene 4. Cell Mol Life Sci, 62(19-20):2359-68, 2005.

. Gavin J Gordon. Transcriptional profiling of mesothelioma using microarrays.

Lung Cancer, 49 Suppl 1:599-S103, 2005.

Nicholas J. Higham. Computing the nearest correlation matrix - a problem from
finance. IMA Journal of Numerical Analysis, pages 329-343, 2002.

Mat&j Holec, Filip Zelezny, Jifi Kléma, and Jakub Tolar. Integrating multiple-
platform expression data through gene set features. In Proceedings of the 5th
International Symposium on Bioinformatics Research and Applications, ISBRA
’09, pages 5—17. Springer-Verlag, 2009.

Laurent Jacob, Guillaume Obozinski, and Jean-Philippe Vert. Group lasso with
overlap and graph lasso. In Proceedings of the 26th Annual International Confer-
ence on Machine Learning, ICML 09, pages 433—440. ACM, 2009.

Michael Jakl, Reinhard Pichler, Stefan Rmmele, and Stefan Woltran. Fast counting
with bounded treewidth. In Logic for Programming, Artificial Intelligence, and
Reasoning, volume 5330 of LNCS, pages 436—450. Springer Berlin / Heidelberg,
2008.

M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori. The kegg resource
for deciphering the genome. Nucleic Acids Research, 1, 2004.

M A Kuriakose et al. Selection and validation of differentially expressed genes in
head and neck cancer. Cell Mol Life Sci, 61(11):1372-83, 2004.

Ondrej Kuzelka and Filip Zelezny. Block-wise construction of tree-like relational
features with monotone reducibility and redundancy. Machine Learning, online
first, DOI: 10.1007 / s10994-010-5208-5, 2010.

Clemens R Scherzer et al. Molecular markers of early parkinsons disease based on
gene expression in blood. Proc Natl Acad Sci U S A, 104(3):955-60, 2007.

Eric W. Stawiski, Lydia M. Gregoret, and Yael Mandel-Gutfreund. Annotating
nucleic acid-binding function based on protein structure. Journal of Molecular
Biology, 326(4):1065 — 1079, 2003.

Andréas Szildgyi and Jeffrey Skolnick. Efficient prediction of nucleic acid binding
function from low-resolution protein structures. Journal of Molecular Biology,
358(3):922 — 933, 2006.

Yuko Tsuchiya, Kengo Kinoshita, and Haruki Nakamura. Structure-based predic-
tion of dna-binding sites on proteins using the empirical preference of electrostatic
potential and the shape of molecular surfaces. Proteins: Structure, Function, and
Bioinformatics, 55(4):885-894, 2004.

Jue Wang and Pedro Domingos. Hybrid markov logic networks. In Proceedings
of the 23rd national conference on Artificial intelligence - Volume 2. AAAT Press,
2008.

M. Yannakakis. Algorithms for acyclic database schemes. In International Con-
ference on Very Large Data Bases (VLDB ’81), pages 82-94, 1981.

