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Abstrakt

Výroba šperkařských i bižuterńıch kamen̊u je významným pr̊umyslem. Tento pr̊umysl
se neobejde bez hodnoceńı kamen̊u během vývoje jejich tvaru, jejich výroby ale i
hotových výrobk̊u. Poč́ıtačové viděńı je přirozený nástroj pro řešeńı těchto úkol̊u.

Šperkové kameny jsou z podstaty své výroby konvexńımi mnohostěny. Vybroušené
kameny jsou většinou z pr̊uhledného materiálu, někdy zcela čirého, jindy zabarveného
a částečně pohlcuj́ıćıho procházej́ıćı světlo.

Práce vycháźı ze dvou př́ıstup̊u, které jsem vyvinul v minulých letech. Prvńı
př́ıstup bere za sv̊uj vstup geometrický model šperkového kamene doplněný o fyzikálńı
vlastnosti, předevš́ım index lomu materiálu. Poč́ıtačový model takového kamene je
osvětlen rovnoběžným svazkem světla a poč́ıtačovou simulaćı jsou vypočteny geomet-
rické a radiometrické parametry světelných svazk̊u vystupuj́ıćıch z kamene. Na těchto
svazćıch jsou pak poč́ıtány r̊uzné př́ıznaky (charakteristiky) hodnot́ıćı kámen nebo je
grafické zobrazeńı vystupuj́ıćıch paprsk̊u hodnoceno člověkem.

Druhý př́ıstup vycháźı z toho, že výsledky výše uvedené simulace lze porovnat s
reálně provedeným experimentem. Rozd́ıly mezi simulovanými a měřenými výsledky
ukazuj́ı na rozd́ıly mezi modelem kamene a jeho skutečným tvarem.

Tato dizertačńı práce přisṕıvá k oběma těmto př́ıstup̊um. Na simulačńı straně
úlohy je model doplněn o prostřed́ı pohlcuj́ıćı světlo. Modelované kameny tak mohou
být nejen z pr̊uhledného nepohlcuj́ıćıho, čirého materiálu, ale mohou být za dodržeńı
pr̊uhlednosti i z barevných, světlo pohlcuj́ıćıch materiál̊u. Barevné pr̊uhledné kameny
jsou ve šperkařstv́ı i bižuterii běžné a významně se tak rozšǐruje okruh modelovaných
kamen̊u.

Studium optických jev̊u na oblých hranách kamene zvyšuje věrnost matemat-
ického modelu kamene. Kromě toho pomáhá řešit základńı problém výše uvedeného
druhého př́ıstupu to jest problém korespondence simulovaných a fotografovaných
stop světelných svazk̊u. Výsledky jev̊u na oblých hranách jsou simulovatelné v pro-
gramech a pozorovatelné na fotografíıch, takže umožňuj́ı hledat korespondence reali-
sticky složitých kamen̊u.

Š́ı̌reńı svazku paralelńıch paprsk̊u kamenem ve tvaru mnohostěnu lze reprezentovat
grafem. Struktura grafu se zavedenými atributy dovoluje vyšš́ı stupeň porozuměńı a
zároveň inspiruje při vývoji programů pro simulaci š́ı̌reńı svazk̊u v kameni.

Zcela nová je metoda nasv́ıceńı poč́ıtačového modelu ze všech stran najednou.
Tato metoda odstraňuje nevýhody jak metod založených na metodě sledováńı paprsku
z poč́ıtačové grafiky tak na simulaćıch š́ı̌reńı svazk̊u. Zdroj světla ze všech směr̊u na-
jednou je zde popsán vhodným matematickým modelem. Navržená metoda umožňuje
modelovat jen jevy na prvńım povrchu, na který dopadá světlo ze zdroje. Pokračovat
s t́ımto př́ıstupem při daľśıch odrazech uvnitř kamene je principiálně možné, ale úloha
se stává matematicky velmi obt́ıžnou. Navržený př́ıstup je ale zcela nový a otev́ırá
prostor pro daľśı výzkum. Metoda nav́ıc prakticky zcela řeš́ı problémy simulováńı
kamen̊u, které maj́ı velmi vysoký koeficient absorpce světla nebo jsou pr̊usvitné.
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Abstract

Production of gemstones and fashion jewelry stones is a multi-billion dollar industry.
The evaluation of cut stones during their design, manufacturing, and sale is necessary.
Computer vision is a natural tool for this evaluation.

Cut gemstones are, due to their manufacturing process, convex polyhedra. They
are manufactured mostly from clear or absorptive transparent material.

This thesis advances two methods we have developed previously. The first ap-
proach starts with the geometrical model of the jewelry stone complemented with the
material refraction index. A computer model of the stone is illuminated by a beam of
parallel rays and computer simulation computes geometric and radiometric parame-
ters of the exiting beams. The features and statistics are calculated on the simulation
results. These features are used for stone evaluation or simulation results that can be
presented to experts.

The second approach compares the result of the above simulation with physical
experiments. The differences between simulated and laboratory experiments manifest
the differences between the stone model and its actual physical shape. The computer
model of the stone can be modified according to these differences.

This thesis contributes to both approaches. The simulation of the light beam
propagation is extended to enable modeling of light absorbing materials. Hence,
it is possible to model stones made from not only clear, but also light absorbing
transparent materials to color transparent stones, which are common fashion jewelry
stones. These contributions have significantly extended the range of the stones which
can be modeled.

Methods for reconstructing the actual shape of a stone by comparing simulations
with experimental results requires solving the correspondence problem. The thesis
contributes to the solution of this problem by defining features which can be extracted
during the simulation as well as in experimentally acquired images.

The collimated light beam propagation in polyhedral stones can be represented by
a graph. It gives further insight into the problem as well as a tool for implementing
the beam-tracing simulation software.

A completely new approach developed in this thesis is the method for simulating
omnidirectional illumination. The light source coming from all directions is described
here by a mathematical model. Although the proposed method enables the modeling
only of reflection and transmission during the first incidence, it is possible to extend
it to other reflections/transmissions in the stone. Unfortunately the task becomes
mathematically difficult and calls for further investigation. Nevertheless, our approach
opens the space for further interesting research since it removes the sampling issues
of the previous methods based on ray-tracing and beam-tracing. Furthermore, our
method completely solves the simulation of stones which are translucent or which
have the high absorption coefficient.
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Chapter 1

Introduction, Motivation

This Ph.D. thesis studies the principles, which can be utilized in machine inspection
of cut glass stones used in fashion jewellery (bijouterie) industry. It is motivated by
problems appearing in design, the analysis and inspection of manufactured gemstones.
The principles summarized and understood in the thesis can be also utilized while
designing new shapes of cut stones with desired optical properties.

The core question asked and answered in the thesis is how the light propagates and
acts while passing trough a single cut stone and what patterns it exhibits in observed
images. The topic is challenging from the image analysis point of view because it
deals with almost transparent objects. On the other hand, the application domain
in fashion jewellery industry brings constraints allowing to design and implement
algorithms which can be deployed in real applications.

The thesis deals with cut stones used in the fashion jewellery from the shape,
geometry, optics and radiometry points of view. The jewelry stones are designed and
manufactured to provide appearance and optical effects pleasant to humans. The
designer can choose only shape and material.

Diamonds have been cut to convex polyhedron shape of various time-proven forms.
Examples of historic diamond cuts are shown in Fig. 1.1. Various forms of cut are in
use now.

The glass stone is a finely ground piece of glass which is a convex polyhedron also
in one of the time-proven forms. There are two main distinctions with respect to
diamond cuts. First, the cut glass stones are produced industrially in large batches.
Second, unlike diamonds, where the weight loss of the raw mineral while cutting is of
big concern, the glass material itself is not so valuable.

The machine cuts used for glass stones are sometimes almost as sophisticated as for
gemstones but they are simpler in most cases yielding a mass produced components.
The example of the shape is named machine cut chaton (or simply the chaton or the
rhinestone). See Fig. 1.2.

The thesis studies the underlying physical/optical phenomena, which (a) influence
the jewellery shape and brilliance; (b) explain how one can asses the manufacturing
quality of a particular stone by capturing the image of the light pattern reflected
from the stone. The thesis provides the related theoretical optical, radiometric and
image analysis background. It also suggests the novel analysis procedure. The work
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Figure 1.1: Examples of historic diamond cuts dating before M. Tolkowsky’s guidelines
from 1919 [170]. Source [174].

TABLE
UPPER FACET LOWER FACET

Figure 1.2: Chaton shape cut commonly used for glass stones.

deals with various material-based and other properties of cut stones too. Their under-
standing leads to procedures enabling assessing the production quality using image
analysis and, consequently, enabling design/production of machines and the quality
control procedures/instruments.

Knowledge of optics is needed for understanding reflection, refraction, and dis-
persion of incoming visible light and related image formation. The knowledge from
geometric and wave optics is sufficient here. Knowledge from radiometry is needed
too. It enables explaining how the image is formed.

Computer vision deals predominantly with opaque objects. The brightness (image
intensity) of a particular infinitesimal surface patch depends on the direction to the
light source, type of the illumination, direction to the viewer, patch orientation and
its reflective properties (albedo). The properties of different materials are expressed
as the Bidirectional Reflectance Distribution Function (BRDF). BRDF describes the
brightness of an elementary surface patch for a specific material, a distant point light

2



source, and viewer directions as a ratio between a measured radiance reflected from
a surface caused by irradiance from a certain direction. The influence of the phase is
neglected for simplicity.

This thesis deals with special transparent objects designed intentionally to provide
pleasant percepts to humans from reflections and refractions. The underlying theory
has been much less studied. The thesis contributes to it.

1.1 Towards a model of cut stones

1.1.1 Terminological note

Let me start with a terminological note before I introduce several basic concepts.
Cut stones are from diverse materials, which can be of natural origin like various
precious or semi-precious gemstones or of artificial origin: glass, cubic zirconia (ZrO2),
moissanite (SiC), or diamond. The most important physical characteristics are the
index of refraction and dispersion from the point of view of this study.

I use the term glass when I want to emphasize the physical properties of the cut
stone material, mainly refraction index and dispersion. However, similar approach
can be applied to other materials. On a few occasions, when numerical results are
presented, the term glass means really glass material with refraction index around
1.5.

1.1.2 Stone and its mathematical model

The geometric model of the transparent object (a cut stone) is a polyhedron in most
cases. The concept of the cut stone is modeled as a polyhedron equipped with ad-
ditional physical properties like its material, refraction index, dispersion, absorption
coefficient, etc. I use the term facet for the sides of the polyhedron.

The mathematical model of the cut stone, which we will use, can be described
using the following concepts:

• Convex polyhedron. The raw natural or artificial stone is polished typically
on the planar grindstone. Consequently, the resulting facet is almost planar.
The polyhedron is convex as it is impossible to cut the concave shape by the
planar section of the grindstone.
Sometimes the grindstone has a cylindrical shape, where the diameter of the
cylinder is much larger than the size of the facet. The ratio of their dimensions
is in the order of hundreds. The planarity of the facet is an important quality
factor as we will see later.

• Index of refraction. The index of refraction around the stone is the index
of refraction of the air, which is 1.000277 under standard conditions. I set it
to 1 in the model. The index of refraction of the stone interior is constant
and known. The industrial manufacturer is familiar with the material used for
manufacturing and can measure the index of refraction quite accurately on the
sample designed for that purpose.

3



Figure 1.3: Fashion jewelry stones which are typical examples of interesting transpar-
ent objects. Photo courtesy of Preciosa a.s. [148].

• Dispersion. The dispersion of light which is caused by the dependence of the
stone index of refraction on the light wavelength is considered when needed.

• Optical quality surface. The stone facets are polished to the optical grade
where the roughness of the surface is much lower than the wavelength of the
visible light.

• Zero absorption. The stone interior is completely transparent without any
macro defects and light attenuation.

This idealized model of the cut stone will be relaxed in two directions later on:

• Non-zero absorption. The completely transparent medium of the stone inte-
rior is replaced by the absorbing medium with known absorption.

• Rounded edges. The straight line intersection of the facets is replaced by the
smooth transition of the surface from one facet to the other one.

Those relaxations of the model allow to model very wide range of real stones and
quantify their properties.

1.2 Gemstone properties valued by their users

1.2.1 Subjective human perception of cut stones

The evolution of mankind has made human eyes and brain particularly sensitive to
the time derivatives of the light falling onto the photoreceptor cells, to the spatial
derivatives of the light as well as to saturated light colors.

4



This fact is used in the jewelry industry. Even slowly moving jewelry stones
produce fast moving relatively intensive, narrow, beams of light. Jewelry stones reflect
and refract the light falling on their surface. The light, which is returned to human
viewer, occurs in many discrete beams that fall into observer’s eyes. The relative
motion of the light source, stone and observer’s eyes stimulate the observer’s eyes by
short pulses of light. These flashes are sometimes almost monochromatic. Jewelry
stones exhibit this desired flash effect for diverse light sources.

A typical jewelry cut stone has a front part and the back part. The back part is
inserted into the stone holder or often attached to the dress. It is assumed that the
light is entering from the front side.

The attention mechanism of the human observer is naturally attracted by flashes
to the direction of the incoming light. This turns the attention to the person wearing
a piece of jewelry with a cut stone, which is the desired effect. The beauty, the user
value and consequently the market price of the cut stones originates from this fact.
The more intense, more narrow, and more numerous beams occur, the higher is their
value.

Another enhancing feature of the above mentioned optical effects and its percep-
tion by a human is provided by beams of various colors. The color rays are produced
either by absorbing part of the light spectrum in color jewelry stones or by dispersion
of the light by refraction.

1.2.2 Objective assessment of the subjective perception of cut stones

The gemologists and jewelry cut stones manufacturers try to quantify the above de-
scribed subjective effects in such a way which can be measured, analyzed, compared,
and negotiated with customers. The ultimate aim of the objective assessment label-
ing the stone with the scalar score allowing gemologists to assess the market value
of each stone. In the manufacturing plants, the quality control personnel together
with production engineers attempt manufacturing cut stones products as perfect as
possible for the given cost.

The origin of the above mentioned beams is the following. The rooms where
the jewelry is worn are usually illuminated by a large number of highly localized
light sources, e.g. crystal chandeliers with many individual incandescent light bulbs
(or even candles in the past). Already this type of lamps produce many individual
almost point sources of light. Notice that the fashion jewelry shops are illuminated
by point sources, currently either halogen lamps or LED sources.

The light beam from the individual light source travels a relatively long distance
and falls onto a gemstone. As the distance between the light source and the stone is
in the range of meters and the size of the stone cut facet is in millimeters at most,
one can approximate the illumination by collimated beams.

The light beam is partly reflected back by the stone facet and partly refracted into
the stone interior. The refracted light beam in the stone interior is reflected inside
the stone several times. The number of reflections can be infinite in principle.

The stones are preferentially made of materials with high index of refraction. The
refraction from the air to the cut stone, e.g. glass, happens always. The refraction
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from material to air requires having the incident angle lower than the critical angle
for the given material. The critical angle for glass is 30 − 45◦, for cubic zirconia is
28◦, for diamond is 23◦, and for moissanite is only 22◦. The light falling onto the
facet from the stone interior under larger angle undergoes total reflection, where all
the energy remains in the material. The total reflection is frequent and in some cases
intentional, e.g. at the bottom part of the cut stone.

Each time the beam hits the facet under the angle lower than the critical angle,
part of the energy is reflected back to the stone and part of the energy is refracted
out of the stone. When the beam hits two or more facets at the same time, each facet
reflects part of the beam to different directions thus forming new beams.

The refraction at the entrance facet of the stone and refraction at the exit of the
beam from the cut stone also involves dispersion, which means that parallel rays of
different wavelengths become nonparallel after refraction. This effect depends on the
light beam wavelength and dispersion of the materials. The dispersion thus produces
colored beams. The color beams in this case are not distinct, non-overlapping separate
beams but rather each original ray of white light produces a continuous pencil of rays
with continuously varying wavelengths.

Summary of the effects multiplying the number of beams in this scenario:
1. The number of light sources in the scene (e.g. chandeliers, small light bulbs,. . . ).

2. The number of stone facets reflecting the light.

3. Bouncing of beams inside the stone, new refracted beams are produced at some
bounces.

4. Beam split when a beam falls onto two or more different facets.

The stone is not a light amplifier, so the only energy which is exiting the stone
can be the energy of incident beams. The refracted beams from the stone have only
fractions of the original incident beam energy.

Further the beam energy can be lost by several effects:
1. Absorption in the absorbing medium. The absorbing medium causes exponential

decrease [76] in the beam intensity depending on the length of the beam travel
in the absorbing medium and properties of the medium.

2. The non-polished surfaces of the stone cause spreading of the beam energy into
large solid angle, the beam is no more close to the collimated and all user effects
associated with the gemstone are lost.

3. The beam which is trapped between two or three facets having the internal
angles lower than 90◦ end up in the edge(s) between facets. The edge between
facets is not ideally sharp in the practical case. The incoming beam energy is
spread at the edge spread over a large solid angle. The energy of the beam is
lost for the stone wearer. Actually the edges with the internal angle between
neighboring facets lower than 90◦ are very rare or non-existent in the jewelry
industry.

6



1.3 Organization of the thesis

The contribution of the thesis is summarized in Chapter 2. The broader state of the
art related to the reconstruction of transparent objects is presented in Chapter 3. The
overview of our past activities and results is given in Chapter 4. The terminology and
used concepts of physics are introduced in Chapter 5. The thesis contribution is de-
scribed in four chapters. The representation of the collimated light beam propagation
in the stone by a graph is presented in Chapter 6. The extension of the simulation
model for absorbing transparent materials is described in Chapter 7. The optical
effects on the stone edges, which simplifies the correspondence problem in the stone
shape reconstruction task, are analyzed in Chapter 8. The novel approach for the
returned light evaluation considering an omnidirectional source of light is described
in Chapter 9.
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Chapter 2

Contribution

The contributions of this thesis are related to modeling how collimated light beams
propagate in transparent jewelry cut stones of a polyhedral shape.

The thesis extends the existing models [145, 83, 152] in several directions:

1. It offers a novel and systematic view on the beam-tracing approach of light
propagation simulation.

2. The material of the modeled stones can be light absorbing.

3. The polyhedral shape of stones is extended to polyhedra with rounded edges.

4. The radiometric evaluation of the stone properties is extended beyond discrete
ray-tracing [152] and beam-tracing [145] models to a novel integral model of
light propagation.

2.1 Light paths as a graph

The collimated beam propagation in a polyhedral cut stone is studied from a stand-
point dealing with new beam formation. New beams can appear as the result of the
first interaction, i.e. by beams splitting while interacting with multiple stone facets
at once. This first interaction is geometrical, generated by the shape of stone. The
second interaction generates new beams by reflecting and refracting the plane wave
of the beam on the planar facet. The second interaction has a physical origin. It is
modeled by the laws of optics. See Fig. 6.1.

The proposed method arranges newly generated beams into a graph. The graph
is a tree for a single illuminating beam and a forest for multiple beams. The graph
has a regular structure. The layer of beams originating in splitting interleaves with
the layers of beams originating in reflection and transmission. Attributes describing
geometry and radiometry are assigned both to nodes and to edges.

The graph model gives better insight into the physics of collimated beam propa-
gation in jewelry cut stones.
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2.2 Light propagation in an absorbing medium

The beam propagation model in transparent stones was extended by modeling of
light absorption in the stones. The contribution of thesis is in the derivation of
analytic expressions enabling the calculation of the radiant flux of attenuated beams
by the light absorption in stones. Also proposed is a methodology for simulating light
propagation in convex light absorbing media bounded by planar surfaces. The model
is taking fully into account the polarization caused by reflection and refraction on
planar facets.

We assume absorbing transparent medium, which propagates planar light waves
without deformation. The medium is attenuating, which means that planar waves
remain planar, but their amplitudes decrease exponentially [76] while traveling in the
medium. The medium does not scatter light.

The enhanced model enables the computation of radiometric properties of beams
propagating in color stones that constitute an important commodity in the jewelry
industry. The derived formulae calculate the radiant flux of the collimated beams
formed in the collimated beam illuminated stone. The calculated radiant flux can be
used for evaluating cut design quality characteristics, e.g. dispersed-color light return
(DCLR) [152] and light return [93].

2.3 Optical effects on the stone edges

The model of polyhedral stones proposed in [145] proved to be insufficient to describe
effects visible in the experiments with real stones illuminated by collimated beams
of light. The contribution of the thesis is in extending this model by incorporating
rounded edges of the stone.

The reflection and refraction of collimated beams on rounded edges produce rays
lying on a conical surface of revolution. This fact is proven under very general and
realistic assumptions about the shape of rounded edges.

Additionally analysis is given that demonstrates that each rounded edge produces
protrusions on the beam traces on the screen.

We introduce methods that enables incorporating the simulation of the edge rays
into the simulation model. The proposed technique was implemented and demon-
strated in simulations of practical stone shapes.

The extensions enable an improved simulation of collimated beam propagation
through stones with rounded edges. In particular, the extension enables matching
beam traces obtained experimentally with the simulated traces. This matching was
intractable for realistic stone shapes before, e.g. for chatons [83]. The edge ray traces
enables the design of features for solving the correspondence problem.
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2.4 Reflection and refractions on the first surface of a
stone

We introduce a novel approach to theoretical evaluation of stone cuts. Unlike previ-
ous ray-tracing and beam-tracing approaches, our method for calculating stone pa-
rameters is related to the radiometric efficiency of the stone. The light return [93],
DCLR [152], and similar parameters can be evaluated by the proposed method.

Our method avoids sampling the ray or the beam space while simulating the light
propagation and lets the user define his requirements. The evaluation of the resulting
elliptic integrals [71] is a well a studied problem [88].

The contribution of this thesis is mainly in problem formulation and solving ele-
mentary steps in this direction. The formulation and solution of more intricate tasks
is a topic for future research.
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Chapter 3

Work of Others

The transparent object reconstruction has become topical among computer vision re-
searchers lately. The main reason for the interest is that transparent objects involve
many challenges not tackled/solved by the previous research. This chapter summa-
rizes the state of the art related to the thesis topic from a broader perspective. The
more specific works of others are discussed and referred to in Chapters 7-8.

3.1 Transparent objects reconstruction

A good overview of the transparent object reconstruction methods can be found
in [102, 103]. Authors of [102, 103] classify the reconstruction problem into the sub-
classes according to optical properties of reconstructed objects. Their classification is
based on the properties of the objects material and object surface.

There are two main optical properties of the objects to which the measurement
method design should respond. These are optical property of the object material and
optical property of the object surface.

The object material taxonomy according to its optical behavior, from the point
of view of physics [85], is:

1. Metallic materials are opaque in visible light. They are typical examples of
reflective materials in the combination with a smooth (polished) surface. The
material can absorb some wavelengths to change color of reflected light (e.g. the
copper).

2. Dielectric–scattering materials are usually composed of transparent media
filled with particles, on which the light scatters. The quantity of particles deter-
mines the degree of the scatter. Only slightly scattering materials are considered
translucent.

3. Dielectric–transparent materials do not scatter light. Transparent materials
can involve absorption of light such as in tinted glass.

The object surface can be classified according to its smoothness, where unevenness
size is compared to the wavelength of the light used to illuminate the object:
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1. Matte is a surface with micro-structure rough enough to reflect the incident
light in all directions. The intensity of the reflection in the direction given by
the law of reflection is negligible.

2. Glossy surfaces reflect the light according to the law of reflection partially and
diffuse it into other directions also partially.

3. Optically smooth surfaces are such that Fresnel equations describe the prop-
agation of the light well.

The quantitative condition for a surface being smooth is Rayleigh criterion. The
mechanical surface roughness, needed for evaluating Rayleigh criterion, is difficult to
measure directly in the ranges, in which surfaces appear smooth. Optical methods
such as Bidirectional Reflectance Distribution Function (BRDF) measurements are
used for measuring of the optical smoothness. We will not define matte and glossy
surfaces more exactly here, as we are not interested in such surfaces in our work.

The object from the point of this thesis view can be represented as a Cartesian
product of the object material and the surface.

Computer vision is often interested not in a single object but in a scene, where
multiple objects can be falling into several different categories.

We are mainly concerned with objects with optically smooth surface made of
dielectric–transparent material. We allow absorption of light in material. We assume
that the index of refraction inside the material is constant, the material and the surface
are isotropic. Some parts of the surface can be made fully reflective by applying
metallic coating.

The classification of the scenes or objects presented in [102, 103] is not complete.
There is still further research needed to fully cover reconstructions of all types of
scenes.

A very important article in the field of reconstruction of transparent and specular
objects is [110, 109]. They contributed to the classification of light–path triangulation
problems as follows: Let us have N viewpoints, K points on the scene surfaces, where
reflection or refractions happen along a single ray, andM points defining the properties
of light source of ray. Fig. 3.1 shows the meaning of the variables. Kutulakos presented
classification of (N,K,M) triples, attributed the solvability to them, and assigned a
classical solution to them if it exists.

The proposed classification is not complete. For example, polarization is not in-
volved. Also a ray from illumination, described in Kutulakos work as passing through
M points, can have a different parametrization, e.g. lying on the straight line, such as
in [126]. Although not complete, the idea of classification of computer vision meth-
ods according to geometry of rays forming the image is the first key contribution.
The second Kutulakos et al. contribution is the demonstration of reconstruction of
specular and transparent object. The second contribution is explicated in the coming
Section 3.7.

Kutulakos et al. [110, 109] also proved solvability or insolvability of several (N,K,M)
problems. A more general classification covering all known computer vision methods
is still an open problem.
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Figure 3.1: Geometry of the image formation for study of tractability of several
reconstruction problems. [110]

The article by O’Toole and others [144] does not deal directly with the reconstruc-
tion of transparent objects. However, it is closely related to the study of individual
rays in a scene. The authors call their method Primal-Dual coding as they use one
panel with the controlled transparency for illumination and another one for masking
the pixels in camera for exposure. They designed the system, which illuminates and
observes the scene along the same set of rays. Further, the light passing from the
light source to the scene as well as the light passing from the scene to the camera can
be controlled (blocked) on the level of individual pixels. The basic setup uses a single
exposure image, which is actually composed of many “sub-exposures”, in which some
of the rays from the light source and/or some of the rays to the camera can be blocked.
The blocking is done via two LCD panels, where individual pixels are programmed to
be opaque. Any combination of “pixel” rays can be used for the illumination while
any combination of pixels can be exposed via the coding masks.

The authors show that by combining (that is by time multiplexing) various sets of
illumination rays and various sets of exposed pixels the different images of the scene
can be constructed. These images may show different components of the image, e.g.
the image without specular reflections. In this way, it is possible to get in just one
exposure the image of the light, which is reflected directly by the scene to the camera
or to get the image composed from inter-reflections entirely, etc. The method can be
used in various specialized applications like to illuminate only the pixels in certain
depth or to perform con-focal photography. The authors show only a small sample of
possible coding schemes for analyzing various scene situations. Although the method
requires a complicated hardware, one can see a lot of industrial applications where
such approach can be groundbreaking. The setup is shown in the Fig. 3.2.
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Figure 3.2: The setup of the Primal-Dual coding method. The primal code bitmap
is used in the first LCD projector which illuminates only selected parts of the scene.
The dual code is sent to the second LCD which allows light to pass from the scene
only to the certain pixels. The camera in this setup only integrates incoming light
over the sequence of applied codes [144]

.
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3.2 Elimination of transparent objects in front of the ob-
ject of interest

Early works [128, 129, 136, 130, 131, 72] tried to eliminate the influence of transparent
or translucent objects. One can consider the camera lens as transparent object. The
radial distortion elimination is one example. Another example is the impact of fog on
the image formation. Nayar [136, 130, 131] is particularly active in this field. They
studied various optical phenomena of weather influence on the captured image and
tried to use it for solving classical computer vision tasks like the depth estimation.

Murase [128, 129] studied the more advanced task. He tried to eliminate the
distortion of the image of the rigid object submerged in water resulting from the re-
fraction on the water rippling surface. He used the optical flow to estimate distortions
caused by the water in a statistical manner and reconstructed the image of submerged
object later.

A sequence of input images allows estimation of parameters of water surface mo-
tion. Information about the water surface enables eliminating its influence to the
image of the submerged object.

Agarwal et al. [72] studied similar setup but with different approach and different
results. They assumed a moving rigid scene behind a static rigid transparent object
and a static camera. The method, which builds on the optical flow, was able to
reconstruct the mapping between a planar scene and the image in the presence of
transparent object. The mapping describes which part of the scene plane is projected
to which part of the image when transparent object is placed between them. The
output of the method is this mapping; the method does not produce the explicit
reconstruction of the transparent object shape.

3.3 Reconstruction of transparent or specular objects by
avoiding their transparency or specularity

The following methods convert a difficult problem of reconstruction of transparent
objects into a well known reconstruction of opaque objects. They actually do not
contribute to the theory of transparent objects. On the other hand, the approach can
be very useful in practice when conditions for their application are satisfied.

3.3.1 Painting of transparent or specular objects

When the transparent objects are either painted or sprayed with dust particles, many
active and passive methods developed for opaque objects with diffuse surface can be
used. The overview can be found in [87, 78]. This approach is often not acceptable
in practice as it can be considered destructive.

3.3.2 Scanning from heating

A different way how to avoid transparency can be a shift of the used radiation
wavelength into the regions, in which the material is not in fact transparent. The
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method [91, 90] reconstructs glass or plastic objects using a thermal radiation in the
wavelength around 10 µm. The objects made from glass or acrylic, which are trans-
parent in visible light, are highly absorbing when illuminated by the light of this
wavelength.

While reconstructing, the laser beam heats up the point on the object surface. The
projection of the hot point is found in the image captured by a thermal-camera. The
visible surface of the object is reconstructed point by point while the laser beam is
scanning over the surface. The physical properties of the scanned material important
for the method behavior are carefully analyzed. See the results in Fig. 3.3. The
drawbacks of this method are the cost of the equipment and the slow data acquisition.

Figure 3.3: A transparent object (left) and its reconstructed model obtained by scan-
ning from heating. [91]

3.3.3 Scanning by UV light induced fluorescence

Meriaudeau et al. [120, 151] used a simple system with a point or line laser in UV band
with scanning over the transparent object. The fluorescing point is observed by the
camera in the visible light. The method requires special properties of the transparent
material, that is its fluorescence. Its precision is characterized by the mean deviation
error of about 0.1 mm, which allows generating accurate 3D models of transparent
objects made from specific materials. See Fig. 3.4.

3.4 Volumetric methods

3.4.1 Tomography

The tomography assumes that the observed object is made of absorbing material while
the index of refraction is the same for the object and surrounding media. Adaptation of
tomography for objects transparent in the visible light was demonstrated by Trifonov
in [171]. Immersing transparent objects into liquid with identical (or at least similar)
index of refraction eliminates refractions on the object surface. Such fluids exist for
glass and transparent plastics, although they are mostly toxic. The absorption of the
light (i.e. the absorption coefficient of the material) in the liquid or in the object or in
both of them should not be identical. The reconstruction uses standard tomographic
methods. The object example and its model are shown in Fig. 3.5.

Another application of tomography-like method in visible light is capturing the
shape of smoke or flames as presented in [98]. The light was emitted by the hot soot
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Figure 3.4: A transparent object (top left) and its reconstructed model obtained by
scanning UV laser where the fluorescent spot was observed by camera in visible light.
[151]

particles, thus the amount of light was proportional to the soot density. Refraction
of emitted light was neglected. They used only few images, for example two. The
ambiguity in the data is reduced by the assumption that the reconstructed object is
the most compact and connected. See Fig 3.6.

Flowing water can be captured in real time [101]. The method falls into the
tomography category. A fluorescent light emitted from water is used as a source of
information about the presence of material. See Fig. 3.7. The emission is explored
here instead of absorption. The difference to tomography method is that the light is
refracted in the scene, so standard tomography reconstruction cannot be used. The
task is formulated as a photo-consistency optimization of input images with the model.
The task is solved by the level set method.
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Figure 3.5: A transparent object (left) and its model obtained by the tomography.
[171]

Figure 3.6: The reconstruction of flames using the density sheet decomposition. (a)
Viewing geometry with two orthographic cameras observing density function. (b)
Two input images. Right: flame model from the novel view. [98]
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Figure 3.7: The reconstruction from the emitted light. Upper left: The water with
dissolved fluorescent agent illuminated by an ultraviolet light. Upper right: The
principle of capturing the emitted light. Bottom: Reconstructed surface used in a
virtual scene. [101]
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3.4.2 Translucent media reconstruction

Gu et al. [96] presented the method for reconstructing a volumetric model of translu-
cent media (see Fig. 3.8). The method models the following physical effects: The
light ray with the known position in space enters the reconstructed scene. It is at-
tenuated by absorption and scatter while it propagates straightly through the scene.
It is supposed to scatter in the currently modeled voxel. The scattered light ray is
falling into the camera, while being attenuated on its way through the media. The
amount of attenuation and scatter in the voxel is supposed to be proportional to the
density of the material in the voxel. The method estimates the material density in
each voxel in order to optimize the agreement between measurements (images) and
modeled measurement. The method supposes a low density media like smoke, where
double scattering is negligible.

The method uses theory of compressive sensing [89] to reconstruct volumetric data
from only few images.

The programmable light projector is used as the source of light. Several different
patterns of light (e.g. 24) are projected and corresponding images are captured.
Compressive sensing method allows reconstructing the volumetric model of the object.

3.5 Interferometric methods

A completely different approach is used by the laboratory equipment which uses op-
tical (mostly interferometric) measurement of surfaces. System [177] is an extension
of the scalar interferometric distance measurement to capture 2–D range data. The
method accuracy, which goes down to nanometers, is way ahead of traditional com-
puter vision methods in terms of the obtained scene model accuracy but lacks the
speed of most computer vision methods.

3.6 Surface orientation measurement exploring polariza-
tion

Saito et al. [156] describe a method for estimating surface orientation by analyzing
the degree and orientation of polarization. The surface reconstruction is obtained by
integration of surface normals. The refraction index of the material is known. The
method uses isotropic spherical non-polarized light source (see Fig. 3.9) to produce
specular reflections on most of the surface. As transparent objects have no diffuse
reflection, light coming to the camera is modeled by the specular reflection. The
method neglects light, which is refracted on the surface, which passes through the
object and then (perhaps after several internal reflections) is refracted out to the
camera. Experimental results do not show bias caused by this effect but it can be due
to the suitable shape of the object they used.

The work was extended by Miyazaki and Ikeuchi in [123, 121, 122]. They assume
a known shape of a back side of the object and the known index of refraction of the
object. They optimize the agreement between measured polarization and rendered
polarization using 3–D model of the reconstructed object. The experimental setup
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Figure 3.8: Compressive sensing reconstruction. Image formation geometry (top),
reconstructed model (bottom). [96]

(see Fig. 3.9) is demanding and several images are needed to estimate polarization.
See Fig. 3.10 for results.

Another method uses the polarization caused by the reflection on the transparent
object and it is presented by Meriaudeau [120]. The method uses active illumination
in a thermal IR region.

3.7 Triangulation of the surface points

The method [135, 134, 132, 133] is recovering the positions of surface points from
the reflection on the surface. The method works for transparent, translucent, and
opaque materials with smooth, glossy, or rough surfaces. The method (see Fig. 3.11)
is based on exhaustive scanning of the surface by a laser and simultaneous exhaus-
tive positioning of sensor, searching for diffuse or specular reflection on the surface.
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Figure 3.9: Reconstruction of a transparent object using information about the po-
larization state of the image. The image capturing setup aims to produce diffuse light
from all directions. [122]

Figure 3.10: Reconstruction of a transparent object using information about the
polarization state of the image. (a) photo of the object, (b) initial value of the shape
(solid), true surface (dashed), (c) result of reconstruction (solid). [122]
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The disadvantage of the method, though not mentioned by authors, is its very low
speed. The method is probably not able to handle complicated scenes with transpar-
ent objects, where multiple reflections or refractions happen. Authors demonstrate
the method on thick plane parallel plates, which are important industrial products,
of course.

Figure 3.11: Reconstruction of a transparent object using a range finder and an
exhaustive search. The image capturing setup. [132]

Tarini et al. show in [169] a slightly modified approach. The setup and the results
are demonstrated in Fig. 3.12. They aim at measuring specular surfaces without
a diffuse component, e.g. mirrors. In this sense, they are more restrictive than
Narita [135, 134, 132, 133]. On the other hand, the data acquisition process needs far
fewer images. This improvement is reached in two ways. The source of light based on
a coded pattern allowing to decrease the number of images. On the other hand, there
is a lack of knowledge about the direction of light emanating from the light source.
The light source is omnidirectional and thus the unknown light direction has to be
compensated by the optimization step seeking the surface depth. The method can be
classified under the shape from distortion.

The method uses a flat panel display as a source of light. The different patterns
projected on the display allow to identify for each pixel in the camera the point on
the display, which is reflected in the scene. There is one dimensional ambiguity in
depth in the pixel. This ambiguity is solved iteratively by assuming continuity of the
surface via minimization of the so called coherence.

The second contribution of the work [110, 109] is the demonstration of reconstruc-
tion of specular and transparent object classified in this paper as (1, 1, 2) and (3, 2, 2)
according to [110], see Fig. 3.13. Authors used LCD monitor as a source of light.
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Figure 3.12: Shape from distortion, the data acquisition setup and results. (A) shows
the setup where several patterns are displayed on a computer monitor and reflected
by the object. Corresponding images (B) are captured. From these images, the map
(C) between the computer monitor and image coordinates is obtained as the light
from monitor is reflected by the object to the camera. Normals and depth (D) are
obtained in the optimization step. The result is shown in E. [169]

They reconstructed two objects: the flat mirror as an example of specular object and
the cut stone of the transparent object, see Fig. 3.14.

Figure 3.13: Triangulation principle for the light path triangulation. Left image shows
a specular surface illuminated by a known ray and observed by one camera, (1, 1, 2)
setup. The right image shows three cameras observing one front surface point and
three illumination rays with three back surface points ((3, 2, 2) setup). [110]

Kutulakos et al. used a flat panel displaying different patterns. As they used it
in two different positions, illumination rays were defined. One camera for specular
surfaces and three cameras for transparent surfaces are sufficient for the successful
reconstruction.

Tarini’s work [169] was extended by Yamazaki et al. [175]. Besides considering
specular objects, they worked out the rays trajectory through transparent object
with just two refractions and known index of refraction. They used the structured
illumination using a flat panel display in two positions. The proper decoding of the
sequence of patterns allows obtaining the viewing ray as well as the illumination ray
for each pixel in the camera. In the optimization step, they were looking for such
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Figure 3.14: Reconstruction of the transparent object in (3, 2, 2) category. From left:
the object to be reconstructed, its normal slant map, depth map, oblique view on the
model. [110]

positions of the surface points along the viewing and illumination rays which are
compatible with the stereo images acquired. The front and back surface refractions
observed in stereo images should have identical depth and normal. This method would
be classified according to [110] as (2, 2, 2). See Fig. 3.15.

Figure 3.15: Reconstruction of a transparent object using the structured back illu-
mination. The principle of the method, two cameras observe transparent object with
structured light back illumination which allows identifying the illumination ray. The
optimization searches for compatibility of the depth and the normal of both front and
back surface. [175]

Although their work is theoretically sound, the accuracy of practical results is not
very encouraging due to the sensitivity to data. It seems that the regions, where
background texture is only slightly distorted in captured images, cannot be recovered
due to uncertainty of the position of intersection of almost parallel lines. Regions
where the background texture is highly distorted are not reconstructed accurately
due to under-sampling. See Fig. 3.16.

Ben-Ezra and Nayar in [77] reconstructed the shape of a rigid transparent object
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Figure 3.16: Reconstruction of a transparent object using the structured back illumi-
nation. (a) and (b) are input images, (c) and (d) are visualizations of the front and
the back of a reconstructed surface, (e) is a side view of the resulting model, (f) a
planar cut through the resulting model (the front is on the left side). [175]

in front of a rigid opaque scene captured by a moving camera. They assumed a rigid
scene far behind a rigid transparent object while the camera was moving close to the
transparent object. Assuming a large distance between the transparent object and
the background enables reconstructing the transparent object shape. Their method
can be classified according to [110] as (N,K, 2).

They formulated the task as the optimization problem with a parameterized model
of the object (superquadric in this case). The knew viewing rays (see Fig. 3.17) from
the set of calibrated images. The rays should pass through the object in such a way
that illuminating rays are parallel. A non-parallelism of rays is minimized in the
procedure. The results are shown in Fig. 3.18.

A similar approach was presented by Morris and Kutulakos in [125, 127] and called
the Dynamic refraction stereo. The method basically extends the stereo problems to
the situation where the opaque object is observed through the single refractive surface.
As the method uses only two images from two viewpoints, it can be easily used for
a dynamic scene allowing reconstruction of the moving object, in this case a water
surface.
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Figure 3.17: Reconstruction of a transparent object from the camera motion. As the
background is far from the object, different viewing rays observing the same part of
the background should be parallel. [77]

Figure 3.18: Reconstruction of a transparent object using moving camera. (From the
top left) the true shape of the transparent object, the reconstructed model, examples
of input images. [77]
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3.8 Scatter trace photography

A powerful method was presented by Morris and Kutulakos in [126]. The method tries
to reconstruct all surface points of specular and diffuse objects even in the presence of
transparent materials and complicated optical effects inside them, as well as on their
back side. The assumptions about the objects are quite general. The method relies
on the scatter trace data which is a set of images of the scene captured while the light
sources are moved in the space, or more precisely, they are positioned in two or three
dimensional lattice. Authors proved that certain rules held for the data captured in
this way and that the first point on the ray from camera pixel intersecting the object
can be reconstructed. Authors also presented methods to decrease the number of
images captured during data acquisition phase significantly using the line instead of
point light sources and Hadamard codes [161] for projecting many line sources at a
time. Experimental results for the simple object are shown in Fig. 3.19.

Figure 3.19: Photo of a transparent object (from left), depth map, normal map, and
visualization of captured model obtained by the scatter trace method. [126]

Somewhat similar approach was used by Ma et al. [113]. The method captured
intensity images behind the object at two different planes. Under strict assumptions
about the source of light (collimated light) and properties of the transparent object
(absorption, . . . ), they can reconstruct the 3–D shape of the transparent object. For
each relative position of the object and light/camera setup, the method computed a
two dimensional projection of the 3–D refractive index field. More positions can pro-
vide the data for tomographic reconstruction of the transparent object. The example
of the data is shown in Fig. 3.20.

Figure 3.20: 3–D reconstruction of a transparent object. Seven pairs of images were
captured to obtain the reconstruction. [113]
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3.9 Analysis of the cut stones appearance

Cut gemstones and artificial stones are of wide interest to both experts and the general
public. As their cost is a very important characteristic, there is a specialized industry
for evaluating their financial value. The aim is to evaluate the cut gemstone price
based on the objective criteria starting from physical qualities such as their weight,
up-to the more subtle quantities such as fire or brilliance.

The information about such systems is mostly found in patent literature and
specialized journals. The Gemological Institute of America is one of the institutions
hosting such efforts as can be documented by plenty of patents by Ilene Reinitz, T.
Hemhill, James Shigley, Jose Sasian, etc.

Their work consists mainly of translating many terms used in gemology such as fire
and brilliance into the exactly defined physical quantities, which can be measured on
physical samples or calculated from computer models. They use ray tracing methods
of computer graphics for evaluating these quantities on the computer models. They
also try finding the function of the variables which can be used for estimating the
value of a particular stone. In a simpler version, they just present the calculated
values of the quantities to the expert.

Typical patent publications from this field are patents [154, 155] by Reinitz et al.
They define, e.g. dispersed color light return (DCLR) as

D =
∑
λ

∑
ri

AiσiWi , (3.1)

where D is a DCLR, first sum is over all wavelengths (λ), second sum is over all rays
involved ri, Ai is an area of the ray, σi is 1 when the power density of the ray is
above threshold and 0 otherwise, Wi is the weighting factor depending on the angular
position of the ray.

The overall exactness of the approach is not high as it is influenced by several
factors:

• One can observe this approach only in more or less marketing materials in the
specialized but not scientific journals or in the patent literature, which has its
own and limited language.

• Generally, the knowledge is considered a ‘know how’ by the authors so they
avoid exact description of what they really do (see Fig. 3.21).

• Computer graphics-based methods are mostly used as the tool, which visualizes
the result into bitmaps, uses “sample-based” ray tracing methods, etc. These
approaches just approximate the calculations of exact variables.

More patents are mentioned in Chapter 4.
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U.S. Patent Feb. 26, 2008 Sheet 1 0f 20 US 7,336,347 B2 

Figure 3.21: Typical image from the patent literature, the ideas regarding physical
setup is easily extracted from the literature, the underlying mathematical ideas are
either hidden or presented in very complicated manner which effectively prevents their
presentation. [160]

3.10 Detection of transparent objects for manipulation
purposes

The transparent objects are frequently present in robotics scenes. For example in
household scenes, the presence of glasses, bottles, jars etc. should be either avoided,
i.e. considered as obstacles, or even manipulated. The required accuracy of deter-
mining the position is not high. It is typically limited by the sensors available for
detection. Some methods avoid exact reconstruction of transparent objects and just
try to detect regions of space where the simple Lambertian model is not satisfied and
where the measurements from several directions are not compatible.

Klank [106] used a time of flight camera, which is not capable to measure directly
the surface of the transparent, specular objects. As the rays are refracted by the
transparent material, they offer highly deformed shape of the opaque background.
Such reconstructions from several viewpoints are inconsistent and contours of the
transparent objects can be approximately reconstructed. The input data for the
method are shown in the Fig. 3.22.

The similar approach is used by Lysenkov et al. [112]. They used Kinect range
finder which again failed on transparent objects. The scene analysis started with the
range image where transparent objects are typically not measured. They recognized
the types of the objects in the scene from the color image (cups, glasses) using the
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Figure 3.22: Top: The image from the ordinary camera. The transparent cups are
standing in the middle. Middle and bottom: The left and right images from Time of
Flight camera do not measure the shape of the glasses but they also do not measure
correctly the shape of background. The surface behind the transparent cup seems to
be closer than its real position in the scene. The cups are labeled by red crosses. The
inconsistencies between these two images can be recovered to obtain the information
sufficient for grasping the plastic cup. [106]
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information from the beforehand prepared database. The pose of the recognized
objects was estimated using some prior knowledge like the cup is standing on the
desk, etc. The input images from the Kinect sensor and the determined positions of
the transparent objects are shown in the Fig. 3.23.

Figure 3.23: The scene with transparent objects. Top left is RGB image and top right
is the depth image from the Kinect sensor. In the bottom left, is the segmented image
of transparent objects. Bottom right shows the estimated pose of the transparent
image as projected to the color image of the scene. [112]

The Kinect data from several views of a static scene were used by Alt et al. [73].
The inconsistencies, that is the depth data which cannot be matched to the data from
another view by Euclidean transformation, were detected. Very rough estimate of the
transparent part of the scene was then built.

3.11 Conclusions

Although the papers presented here refer to themselves as dealing with transparency,
they mostly do not deal with it:

1. Painting of objects is a good engineering solution but it cannot be used in
many applications [87, 78].
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2. Change of the wavelength [91, 90] to make an object non-transparent is also
an engineering solution.

3. Observing hot particles [98] offers impressive results but with very limited
applicability in general situations.

4. Adding agents for photo-luminescence, phosphorescence or chemilu-
minescence [101] can be used only under special conditions.

5. Translucent objects [96] are a broad class of objects but they are not trans-
parent.

6. Interferometry [177] relies on the first surface reflections.

7. Mirroring objects [169] can be reconstructed by method which is a modifica-
tion of that for objects without diffuse component of reflected light.

The reconstruction of transparent objects can be solved in different ways:

1. Tomography based on Radon transform [171],

2. Analysis of polarization [156, 123, 121, 122] allows to reconstruct objects
assuming the known shape of the back side of object.

3. Laser range finding using exhaustive scanning [135, 134, 132, 133] is a
modification of the standard method for objects without a diffuse component of
the reflected light.

4. Direct triangulation [110, 109] is useful when we have full knowledge about
incident and exiting rays and the number of reflections or refractions is limited.

5. Triangulation and optimization [175, 77] relaxes the assumptions needed
for direct triangulation, the optimization step allows to solve unconstrained
problem.

6. Scatter trace photography [126] seems to be one of the most general methods
regarding the class of objects it can handle. Lot of data are captured to allow
reconstruction.
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Chapter 4

Our Previous Work

This chapter provides an overview of our practical, industrial efforts related to the
thesis. The R&D work was motivated by the industrial demand and spanned over
several years. The outcome was a series of machines designed, produced, and explored
in the industrial mass production of jewelry cut glass. These activities stimulated also
a more theoretical striving, which are presented in coming chapters of the thesis.

We were motivated in our design of measurement methods by the scenario sketched
in Fig. 4.1. The products are manufactured according to the object model in a human
controlled world. Such a model is usually a CAD drawing. The object is fabricated
by a manufacturing procedure. This object is checked by a measurement process and
the results are measurements. The measurement process can be modeled too, which
yields modeled measurements. The discrepancy between the measurements and the
modeled measurements provides a feedback which can be explored, e.g. for improving
the:

1. Measurement process adjustments. The agreement of the measurement pro-
cess with expectations or results of independent methods is optimized here. A
new or an improved measurement process is being developed. The measurement
model is often improved simultaneously.

2. Object model adjustments. The discrepancy is minimized by modifying object
model parameters. The result of this process is the object model, which matches
the given object best.

3. Realization parameters adjustment. One can minimize the discrepancy by
adjusting the manufacturing process so that object is manufactured according
to object model with the high fidelity.

Our previous work can be divided into two main directions. The first direction is
directly related to understanding the light propagation in transparent objects such as
cut stones in the jewelry industry. We studied light propagation aspects in the stone.
We also dealt with calculating the physical variables correlating with the market value
of stones. The work was inspired by [153]. We significantly extended the original
idea [145, 82]. We also studied, how to change the shape of stones to obtain better
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Figure 4.1: Scenario of measurement in a human controlled world, e.g. in the industry.

optical properties. We were able to increase the variable “fire” of the diamond shape
cut of cubic zirconia stones. We developed a tool enabling the manufacturer to design
the “star” cut [149, 107].

In the second direction, the optics of the vision system is designed intentionally
to avoid rays passing through objects, see Sec. 4.5.

4.1 Modeling of light passing through cut stones

We modeled the path of the collimated light beam through a convex polyhedron of
the known shape and the index of refraction [145], see Fig. 4.2. The size of screen
is assumed large compare to stone size. The developed system can model multiple
wavelengths at the same time.

The extended version of the work [82] enables a powerful visualization of the beam
propagation through the stone and its analysis as well, see Fig. 4.3. The work also
incorporates polarization effects.

Assuming the collimated light beam and the convex polyhedron allowed the effi-
cient implementation of the light propagation. The modeling output is a set of col-
limated light beams exiting the modeled object including its complete path through
the object. Each output beam is accompanied by the information about the sequence
of facets which refracted or reflected it, the last facet it passes through, the direction
of the beam, the beam intensity, and its polarization. See Fig. 4.4.

The model of the transparent polyhedron and light passing through the object is
based on the following assumptions:
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Figure 4.2: The scenario of the forward task simulation. The collimated beam, pro-
duced by a laser here, is incident to the stone. The light beam is many times reflected
on/in the stone and refracted to/from the stone. Many lower intensity beams are
produced. Those beams fall onto the hemisphere of the screen, which is observed by
the camera. The arrangements of the screen and the camera can be different, e.g.
planar screen, the screen above or bellow of the stone, . . . [145]

Figure 4.3: Visualization of the beam path through the object. The object is the
polyhedron. The beam is a pencil of collimated light rays. The image is three-
dimensional and can be manipulated in MatLab SW package. [83]
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1. The object is transparent with the known index of refraction. Several discrete
light wavelengths can be modeled at the same time. The system cannot model
light with continuous wavelengths. This is a principal assumption. It is related
to difficulties in modeling continuous processes digitally.

2. The studied object is represented by the polyhedron. This is a principal re-
striction of the approach. We would like to slightly relax this assumption in the
future work.

3. The object is convex. This is not a principal restriction but it allows to speed
up calculations. The extension of the approach to non-convex objects is possible.
The cut stone of our interest are convex anyway because of the grinding process
involved.

4. The environment has known a index of refraction for each used wavelength.
The air is the most common environment.

5. The entering and the exiting light is modeled by a collimated beam with
a polygonal cross-section and the uniform light intensity. The light beam is
represented by its cross-section (polygon in space), direction (vector in space),
intensity, wavelength (index of refraction of the object material), state of the
polarization (Stokes vector).

The system reflects the physics of the light propagation accurately within the field of
geometric optics, wave optics of planar waves, and radiometry. When real properties
of objects are considered, the system simplifies the reality mainly in the following
aspects:

1. Planarity
Planarity of surface polygons is generally restrictive. Our intention is to re-
lax this assumption slightly by assuming, e.g. a spherical surface with a low
curvature.

2. Sharp edges between faces
Experiments showed that it is difficult to manufacture very sharp edges when
the objects are very small.

3. Smoothness of the surface
Our model does not reflect scratches or the surface micro-structure. Current
observations do not indicate that assumption about smoothness of the surface
is a real restriction.

The modeling of the light trajectory in transparent objects, presented in this
section, is a forward task. The light source is known and light propagates on each
surface involved according to Fresnel equations, see Sec. 5.4. Polarization is solved by
the Mueller calculus, see Sec. 5.5.

40



4.2 Calculating appearance of transparent objects

We made an excursion into to the field of computer graphics in [107]. Using the stan-
dard tool POVRay [147] we modeled jewelry stones and the particular illumination
setup. We created an optimization algorithm which optimizes appearance of the stone
by changing its shape [149].

The system calculates the image of the stone under the special illumination using
POVRay. Its image is compared to the image required. The difference is minimized by
changing a set of parameters which define the shape of the stone. Standard non-linear
optimization is used.

The “star” visible in stones is a proof of the stone high quality. The “star” ap-
pearance is very sensitive to the shape of the stone and the curvature of its facets.

The similar approach was patented by Sasian et al. in [160, 157, 158, 159] in
the same year. Sasian uses the model of the stone and certain arrangement of lights
for ray tracing views on the stone. The visualizations are used later for evaluating
the gemstones by humans, similarly to our work. Sasian proposes the ray tracing
simulation only in the forward direction for the determining stone cut appearance
and quality. We used it in the feedback to design required appearance.

The automatic evaluation of the proposed shapes of the cut developed by Blodgett
et al. [79, 80, 81, 172] enables the feedback for designing optimized cuts for a particular
material. For the cut grade evaluation, the system compares the evaluation of the
particular set of cut stones provided both by human experts and by the computer
simulation. Blodgett uses features adopted from the human description of the stone.
The similar approach was used by Verboven [173] for evaluation of the stone clarity.

4.3 Evaluating the impact of the facet surface modifica-
tion

The modifications of the facet optical properties can have both positive and negative
effects on the stones appearance. The negative impact is studied in our work [164],
which analyzes the effects of laser marking of some facets. The study was written on
the request of the industrial customer and its content is confidential.

The positive influence of the surface modification is presented in patents by Mal-
tezos and Scherer in [115, 116]. They propose the fine grating or structuring of some
facets to improve fire and scintillation of the stones.

4.4 Reconstruction of polyhedral objects using strong
prior model

We deal with the forward task, which calculates the propagation of light in known
objects. The inverse task finds object shape having the information about light exiting
the object under the known illumination. The inverse task is ill-posed similarly to
many other computer vision tasks.
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We attempted to solve the inverse task using the strong prior model in [83]. The
task is the following. Assume a CAD model of a polyhedral object. The collimated
beam of light illuminates the object. The exiting beams are measured (see Fig. 4.4).
The experimental setup is shown in Fig. 4.5 and 4.6. The path of the light through
a cut stone is modeled. Exiting beams are calculated using the forward task. We
assume that the difference between the measurement and the modeled measurement
is caused by the difference between the object shape and the model. We attempt to
adjust model parameters using the optimization algorithm, which provides the best
match between the measurements and the modeled measurement.
This approach generates many questions:

1. What is the (best) criterion for evaluating the agreement of the physical and
the computer simulation?

2. How to optimize hundreds of parameters efficiently while having a relatively
slow algorithm evaluating the criterion?

3. How to match spots of light on the screen to the list of outputting beams
of the computer model? This is an instance of the correspondence problem.
The number of outputting beams is rather large. Due to the sensitivity of the
direction of the beam to the object parameters, the geometrical position of the
spots is not sufficient for solving this correspondence.
We have contributed to the correspondence problem at Chapter 8.

4.5 Measurement of transparent and translucent objects
via optical elimination of transparency

The understanding of light propagation in transparent objects significantly helped us
in developing machines, which handle transparent objects, measure their dimensions
and shape, inspect their quality, and classify them accordingly.

One approach to measuring dimensions of transparent objects is to eliminate the
transparency using a specially designed optics.

A transparent object is placed between the telecentric source of light and the
camera equipped with a telecentric lens. Only rays which are parallel to the optical
axis at the output of the object will pass to the camera. In such an optical setup,
the light passing around the object will result in a bright part of the image. Most of
the object will appear dark in the image. Certain parts of the transparent object will
still enable the light to pass. The example is the part of the object consisting of two
parallel planes. See Fig. 4.7.

4.5.1 MesCut

MesCut [139] is a system for measuring 2D dimensions of cut stones from a single view
(see Fig. 4.8). The system uses telecentric illumination described above. The input
image is bright in regions around the stone and dark inside the projection of the stone.
Some rays passing through the stone are parallel to the optical axis and thus reach the
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Figure 4.4: Top: The visualization of the modeling result, in which the light beam
propagates trough the polyhedral object (chaton). The chaton is a relatively simple
stone with just 17 facets. The figure shows output beams, their intensity (coded as
the inverse brightness of spots), their cross-section area (coded as the area of spots).
The results are drawn in polar coordinates, where the radius codes the elevation and
the angle codes the azimuth of the output beam. All exit beams with up to 10 internal
reflections are shown. Bottom: The experiment with the chaton. The image shows
the beams coming from the object illuminated by the laser. The image brightness is
inverted for the better impression of the human observer. The center of the image is
physically masked out disabling the direct laser light to hit the camera chip. Compare
to the Top. [83]
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Figure 4.5: Experimental setup for capturing the output beams coming from the
object illuminated by the laser beam. The overall setup during calibration. [83]
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Figure 4.6: Experimental setup for capturing the output beams coming from the
object illuminated by the laser beam. Top: The laser mounted on the adjustment
table in the bottom part; the planar screen in the middle, glass for placing the object
in upper part. Bottom: half spherical screen. [83]
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Figure 4.7: Telecentric optics. Using telecentric optics, most rays from the light source
are reflected or refracted out by the object or the screen out by the lens aperture.

camera chip. The processing of a profile projector image allows the highly accurate
dimensions measurement. The accuracy measurement of angles between facets and
edges is lower due to their short length.

The 2D measurement is sufficient in this application for assessing the overall shape
of the stone due to the special orientation of the object during measurement. The
orientation is ensured by a mechanical holder.

4.5.2 SortCut

SortCut system, also developed by Neovision, is similar in handling of transparency
using telecentric optics. The images of a measured stone (see Fig. 4.9) are captured
from several angles and important dimensions are recovered. The system can measure
and sort up to 15 stones per second. The mechanical positioning of the stones is again
essential for measuring meaningful 3D dimensions out of 2D projections.

4.5.3 Helios

Helios [138] system goes farther in the recovery of the 3D shape of polyhedral objects
from sequence of 2D images (see Fig. 4.10). The polyhedral transparent or opaque
object is placed into the telecentric optics as above. It is rotated around known axis
of rotation and some hundreds of images with known rotation angle are captured.
Basically the projections of polyhedron edges are measured in individual images. The
complete 3D shape of polyhedron is then recovered from captured data.

4.5.4 GlassDrop

GlassDrop [137] system uses different approach for measuring the glass shape (see
Fig. 4.11). The measured glass is hot and thus radiating in the visible spectrum. A
camera captures the image of the hot glass. The contour of the drop projection is
measured in the image. The glass shape is supposed to be radially symmetrical.
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Figure 4.8: Processed images from MesCut system. Courtesy of Neovision s.r.o. [139].
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Figure 4.9: SortCut machine. Processed image from SortCut system. Courtesy of
Neovision s.r.o. [140].
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Figure 4.10: Helios measuring machine. A processed image from Helios system. Cour-
tesy of Neovision s.r.o. [138].
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Figure 4.11: Machine for manufacturing drinking glasses. Processed image from Glass-
Drop system. Courtesy of Neovision s.r.o. [137].
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Chapter 5

Theoretical Background and
Notation

This chapter provides the terminology and concepts, which will be used in thesis. The
concepts listed and reviewed here were taken from the established literature [85, 76,
94].

5.1 Terminology

Ray - an oriented line in the direction of light propagation specified by:

• a direction vector of a unit length,
• a point on the ray,
• a Stokes vector [85] describing the intensity and polarization state of the

ray.

Beam - a compact convex set of collimated (parallel) rays with a polygonal cross-
section, called base, specified by:

• a direction vector of a unit length,
• coordinates of the base vertices,
• a Stokes vector describing the intensity and polarization state of the beam.

Facet - a planar convex polygon specified by:

• coordinates of the polygon vertices,
• a normal vector of a unit length,
• refraction indices on both sides of the facet.

Stone - a convex polyhedron bounded by facets. It is described by:

• facets,
• refraction index of the stone material.
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Screen - a surface, on which the beams emitted from a stone fall. The screen can
have various geometry, it can have planar, hemispherical, or other shape.

Trace - a light spot on the screen caused by beam or ray exiting from the stone.

Incident ray vector: ~vi =

 vix
viy
viz

, ‖~vi‖ = 1 .

Reflected ray vector: ~vr =

 vrx
vry
vrz

, ‖~vr‖ = 1 .

Transmitted (refracted) ray vector: ~vt =

 vtx
vty
vtz

, ‖~vt‖ = 1 .

Facet normal vector: ~n =

 nx
ny
nz

, ‖~n‖ = 1 .

5.2 Concepts from optics

We use the following concepts from physics. We consider a planar wave of light. The
light is not coherent. The reflection and refraction occurs on planar surfaces.

The properties related to energy of the light wave are represented by the amplitude
of its electric vector. The Stokes vector of electric amplitudes is used for polarized
light. When we consider the power of light incident on the facet or stone, we use
radiometric variables like the irradiance and the radiant flux. The radiant flux for the
polarized light is arranged into Stokes vector of corresponding radiant fluxes.

We assume the surrounding material (typically air) and the stone material being
dielectric materials.

We assume monochromatic light as the refraction index depends on the light
wavelength. The dependency of the refraction index on the light wavelength is called
dispersion and this relationship is not known explicitly in applications but it is mea-
sured experimentally. One can assume a constant refraction index when dealing with
white light or sum the results over different wavelengths in case of non-monochromatic
light.

5.3 Reflection and refraction on a facet

The formulae bellow can be found in [76].
The equation of light propagation at a boundary (reflection or refraction) is given

by Snell’s law [76]. The ~vi stands for the incident beam. The ~vo stands for the
transmitted or reflected ray. The surface normal vector is labelled ~n. We assume that
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all vectors have unit size

‖~n‖ = 1 , (5.1)
‖~vi‖ = 1 , (5.2)
‖~vo‖ = 1 . (5.3)

ηi is the refraction index of the material where incident rays propagate, ηo is the
refraction index of the material where exiting rays propagate. The following condition
holds [76]

ηi~n× ~vi = ηo~n× ~vo , (5.4)
σ(~n · ~vi)(~n · ~vo) > 0 , (5.5)

σ = 1 · · · refraction , (5.6)
σ = −1 · · · reflection . (5.7)

Equation 5.4 defines the relationship between the normal of the surface and the
incident and the reflected/transmitted ray. The relationship does not define orienta-
tion of ~vo uniquely. The orientation is determined by inequality 5.5. Note that for
the reflected ray one has to use ηi = ηo as the incident and reflected rays are in the
same material.

The both terms refracted and transmitted label the rays or beams which pass
through the interface between two materials. We use them as synonyms. The index
labeling refracted rays, beams, or waves is t.

5.4 Fresnel formulae

A planar light wave falling onto a planar interface between two dielectric media with
different refraction indices undergoes both reflection and refraction. We also suppose
that surfaces have optical quality, i.e., they are smooth within the fraction of the light
wavelength. The intensity of the reflected and refracted wave can be described by
Fresnel formulae [85]. The formulae describe separately what happens to the wave
with the polarization in the plane of incidence and in the plane perpendicular to the
plane of incidence.

The refraction indices η1, η2 belong to the first and second media separated by the
surface, respectively. The incident angle θi and transmitted ray angle θt (see Fig. 5.1)
are connected by Snell’s law of refraction

sin θi
sin θt

= η1
η2
. (5.8)

Let E‖ be the amplitude of the incident light component with the electric vector
parallel to the incidence plane. Let E⊥ be the amplitude of the component perpen-
dicular to the incidence plane. The notation for the reflected and transmitted light is
R‖, R⊥, T‖, T⊥. The amplitudes of the reflected and transmitted light for dielectric
media can be calculated by the Fresnel formulae as follows
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Figure 5.1: Reflection and refraction on a specular surface. The situation for the ray
incident from air is shown here. The similar scheme can be drawn for the ray incident
from the glass.

R‖ = η2 cos θi − η1 cos θt
η2 cos θi + η1 cos θt

E‖ , (5.9)

R⊥ = η1 cos θi − η2 cos θt
η1 cos θi + η2 cos θt

E⊥ , (5.10)

T‖ = 2η1 cos θi
η2 cos θi + η1 cos θt

E‖ , (5.11)

T⊥ = 2η1 cos θi
η1 cos θi + η2 cos θt

E⊥ . (5.12)

One can define reflection and refraction coefficients as

r‖ =
R‖
E‖

= η2 cos θi − η1 cos θt
η2 cos θi + η1 cos θt

, (5.13)

r⊥ = R⊥
E⊥

= η1 cos θi − η2 cos θt
η1 cos θi + η2 cos θt

, (5.14)

t‖ =
T‖
E‖

= 2η1 cos θi
η2 cos θi + η1 cos θt

, (5.15)

t⊥ = T⊥
E⊥

= 2η1 cos θi
η1 cos θi + η2 cos θt

. (5.16)

5.5 Mueller calculus

Light rays undergo multiple reflections in stones. Reflected beams are partially or
fully polarized even when the incident light is not polarized. The Fresnel formulae
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calculate separately the coefficient for light polarized in the plane of incidence and
in the plane perpendicular to the plane of incidence. Calculation of the irradiance
of the reflected beam has to respect that the planar facets of stones are oriented
arbitrarily with respect to the incident light polarization. An efficient representation
of the reflection and refraction effect on the irradiance and the polarization of the ray
is based on the Mueller calculus [165, 94].

Mueller calculus represents each optical object by a single matrix. It can be used
only for the incoherent light. The light polarization state is described by Stokes vector
[94, 150]

~s =


E⊥E

∗
⊥ + E‖E

∗
‖

E⊥E
∗
⊥ − E‖E∗‖

E⊥E
∗
‖ + E‖E

∗
⊥

i (E⊥E∗‖ − E‖E
∗
⊥)

 , (5.17)

where asterisks denote complex conjugation and i stands for the imaginary unit.
The Stokes vector describes the polarized light by four coordinates. The first

coordinate is the irradiance of the light. The second coordinate is the difference in
irradiances between vertically and horizontally polarized light. The third coordinate is
the difference between polarization in the planes rotated by 45◦ and−45◦, respectively,
from the incident plane. The last coordinate is the difference between the right and
the left circular polarization. The detailed definition including sign conventions can
be found in [76].

Mueller calculus allows to calculate the Stokes vector of the light manipulated by
the optical component, e.g. polarization filter, as a product of Stokes vector of the
light before the change and Mueller matrix characterizing the optical component:

~so = M~si . (5.18)

The reflection, refraction, or the impact of other types of filters on the planar wave
(=beam of collimated rays) can be represented by multiplying the Stokes vector by
Mueller matrix. One can describe the composition of several filters by

~so = MN . . .M2M1~si . (5.19)

5.5.1 Reflection

The Mueller matrices for basic optical components (mainly polarization filters) are
described in literature. The reflection on the planar surface can be represented by
Mueller matrix as well [94]
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MR = tan2 θ−
2 sin2 θ+

·


cos2 θ− + cos2 θ+ cos2 θ− − cos2 θ+ 0 0
cos2 θ− − cos2 θ+ cos2 θ− + cos2 θ+ 0 0

0 0 −2 cos θ+ cos θ− 0
0 0 0 −2 cos θ+ cos θ−

 ,

(5.20)

where θ+ = θi + θt and θ− = θi − θt.

5.5.2 Total reflection

The above Mueller matrix for the reflection holds both for the external reflection
(incident light is in the optically less dense medium, e.g. air) as well as for the
internal reflection (incident light is in the optically more dense medium, e.g. glass).
It does not hold for the total reflection situation. The total reflection happens in the
optically dense medium (internal reflection, η2 < η1) when incident angle θi is larger
than critical angle θc [85]

θi ≥ θc = arcsin η2
η1
. (5.21)

Mueller matrix for total reflection has the form [94]

MRt =


1 0 0 0
0 1 0 0
0 0 cos δ − sin δ
0 0 sin δ cos δ

 , (5.22)

where δ is the difference between the phase delay of the wave with the parallel polar-
ization and the phase delay of the wave with the perpendicular polarization. Using
Fresnel formulae and properly handling complex values of the reflection coefficients,
it is possible to derive (while introducing new variables η12, δ‖, δ⊥) the following re-
lationships

η12 = η2
η1
, (5.23)

δ‖ = argtan(2η2
12 cos θi

√
sin2 θi − η2

12, η
4
12 cos2 θi − sin2 θi + η2

12) , (5.24)

δ⊥ = argtan(2 cos θi
√

sin2 θi − η2
12, cos2 θi − sin2 θi + 1) , (5.25)

δ = δ‖ − δ⊥ . (5.26)
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The argtan function with two arguments is the four quadrant argtan equal to arg
function argtan(b, a) = arg(a+ ib) 1 .

5.5.3 Transmitted light

The transmitted light can be calculated using Mueller matrix for transmission

MT = sin 2θi sin 2θr
2 sin2 θ+ cos2 θ−


cos2 θ− + 1 cos2 θ− − 1 0 0
cos2 θ− − 1 cos2 θ− + 1 0 0

0 0 2 cos θ− 0
0 0 0 2 cos θ−

 .

(5.27)

The Mueller matrices in the standard form represent the standard position of
the filter. When the filter or optical component is rotated around the axis of light
propagation relative to the standard position, one can use the rotation matrices to
calculate Mueller matrix of the component rotated around the axis of the light prop-
agation [165]:

M(ω) = R(−ω)MR(ω) , (5.28)

R(ω) =


1 0 0 0
0 cos 2ω sin 2ω 0
0 − sin 2ω cos 2ω 0
0 0 0 1

 . (5.29)

The irradiance of the ray or beam described by Stokes vector propagating in the
transparent stone after several reflections can be easily calculated using the product
of the corresponding Mueller matrices and rotation matrices:

~s =
(
Π1
i=NR(−ωi)MiR(ωi)

)
~s0 , (5.30)

where R(ωi) and Mi are of the above form, corresponding to the i-th reflection. Note
that one has to respect the order of the multiplication since the matrix multiplication
does not commute in general.

1The order of arguments in this argtan is similar to the MatLab function atan2 and opposite to
the Wolfram Mathematica function ArcTan.
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Chapter 6

Light Path as a Graph

6.1 Motivation

A convex polyhedron stone illuminated by collimated beams constitutes a particularly
simple situation. As discussed in Chapters 1 and 5, this simplification is still very
close to the reality. Improvements in manufacturing technology in jewelry industry
bring us even closer to this ideal. In this chapter we show how to describe the light
propagation in convex polyhedron as a graph.

We assume that a convex polyhedral stone is illuminated by a single or several
beams of collimated light. One can observe a certain structure in the collimated beam
propagation. Let us show how to describe this structure by a graph.

Let us introduce beam segments. A beam segment is the subset of a beam prop-
agating in a stone between interactions with its optical interfaces or going from one
interface to infinity.

There are two effects involved in the beam formation in a stone. See Fig. 6.1. The
first effect is the splitting of the beam. This effect is purely geometrical. The split
occurs when a beam hits two or more facets. We can, without loss of generality, the
split in the situation when a beam hits only single facet.

The second effect is the interaction of a light beam with the surface, i.e. with
the facet. The reflection and refraction occurs on the facet producing reflected and
refracted beams. When an incident beam hits a facet from the stone interior with
the material optically denser than outside of the stone, the total reflection can occur.
The incident angle is larger than the critical angle in this situation, see Sec. 5.5.2.

Both effects give rise to new beams. The split effect can create one or more beams.
The reflection produces always one new beam. The refraction can produce one new
beam or no new beam in the case of the total reflection.

Both effects alternate periodically during the light propagation.

6.2 Graph definition

Let us represent the beam segments by nodes in the graph.
Split, reflection, and refraction can be represented by oriented edges in the graph.
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Figure 6.1: Top: Two interactions multiplying the number of collimated beams in a
stone. An incident beam (magenta) illuminates two facets. The incident beam splits
into two beams I1 and I2, illuminating facet 1 and facet 2, respectively. The beam I1
is reflected and refracted into R1 and T1, respectively. The beam I2 is reflected into
R2 and it is transmitted into T2. Bottom: The graph representing the interaction
shown above. The incident beam splits into two beams I1 and I2, illuminating facet
1 and facet 2, respectively. The beam I1 is reflected and refracted into R1 and T1,
respectively. The beam I2 is reflected into R2 and it is transmitted into T2. The
layers correspond to the node and edge height. The green edges represent splits,
the blue edges represent refractions and red edges represent reflection. The detailed
explanation of the graph is in Fig. 6.2.
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Edges lead from the nodes representing incident beam segments to the nodes repre-
senting the split, reflected, or refracted beam segments.

The graph is a tree for each collimated beam illuminating the stone. The root of
the tree is the illuminating beam. The tree is infinite in principle as the light can be
reflected in the stone infinitely many times. The graph is always finite in computer
simulations.

The beams exiting the stone are leaves of the tree. A beam can exit either because
it is reflected by the stone surface when hit by a beam from outside or because it is
refracted from the inside of a stone. The other nodes represent the beam segments
still propagating in the stone.

The tree can be organized into odd and even layers (see Fig. 6.1 and 6.2) where
edges of odd layers represent the beam splitting and edges of even layers represent
refraction or reflection.

The graph can be a forest in the case of multiple illuminating beams. Each
illuminating beam will produce a tree within the forest.

An elementary beam corresponds to a path from the root node, i.e. from the
illuminating beam, to leaf node, i.e. to a beam segment exiting the stone. Each leaf
corresponds to just one elementary beam.

To summarize, we have:

• A set of nodes N = {1, . . . , n}, n ∈ N .
Each node corresponds to a beam segment.

• A set of edges E ⊆ N2.
Each edge (ki, kj) corresponds to one of the interactions which produce the new
beam segment kj from the beam segment ki.

• A graph G = (N,E).
The graph G describes the propagation of collimated beams of light in the stone.

• A logical function input(k) which assigns true to input illuminating beam seg-
ment and false

• A logical function exit(k) which assigns true to beam segments leaving the stone
interior and false otherwise to all other beam segments.

• A set of edge attributes G = {S,R,T}, namely S for a split edge, R for a
reflection edge, and T for a transmission (refraction) edge.

• A function edgetype((ki, kj)) which assigns to edges their attributes from the
set G.

• A function history(k) which assigns to the beam segment k the sequence of
beam segments history(k) = (k1, . . . , kL):

∀k ∈ N ∃! history(k) = (k1, . . . , kL) :
input(k1) ∧ (∀l ∈ {1, . . . , L− 1} : (kl, kl+1) ∈ E) ∧ k = kL . (6.1)
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In other words, history of the beam segment k is the oriented path from the
input beam k1 to the beam segment k.

• A function elementary(k) which for each exiting beam k, exit(k) = T, assigns
the path from the input beam to the exiting beam:

elementary(k) = history(k) . (6.2)

The elementary beams are the beams we are interested in from the radiometric
point of view.

• A function nodedepth(k) which assigns to the node its depth [95], that is the
distance to the root. The root has a depth 1.

• A function edgedepth((ki, kj)) which assigns to the edge its the depth of the
node the starts in.

• Each beam segment - node can be labeled by parameters of the beam such as
the direction vector, the polygon of the cross-section, etc.

• Each edge can be further attributed by the label of the facet, where split, re-
fraction, or reflection occurs.

One can make the following observations (see Fig. 6.2):

• The graph G is a forest of rooted trees. The root of each tree corresponds to
the input, illuminating beam.

• Edges in odd layers have attribute split S:

∀(ki, kj) ∈ E :
edgedepth((ki, kj)) = 2j − 1 ∧ j ∈ N ⇒ edgetype((ki, kj)) = S . (6.3)

We defined our graph in such a way that the beam hitting the stone surface is
first analyzed geometrically (splits) and then physically (refractions, reflections).
This two steps repeat.

• Edges in even layers have attributes either reflect R or transmit T:

∀(ki, kj) ∈ E : (6.4)
edgedepth((ki, kj)) = 2j ∧ j ∈ N ⇒ edgetype((ki, kj)) ∈ {R,T} .

• Exiting beams in the third layer are reflected (they did not enter the stone):

∀k ∈ N : (6.5)
nodedepth(k) = 3 ∧ exit(k)⇒ ∃!(ki, k) ∈ E ∧ edgetype((ki, k)) = R .

The illuminating beam is incident from outside so the exiting beam is reflected.
Note that the first layer represents the split of the input beam.
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Figure 6.2: Propagation of a beam in a stone. Two main interactions are involved. A
split happens when the beam hits more facets. The reflection and transmission occur
on facets. The beam segments are represented by circles. The beams exiting the stone
are represented by filled yellow circles. The beam hitting the facet from inside can be
totally reflected, i.e. no refraction into air happens. The graph may never terminate.
The numbers in the nodes indicate the node numbers.

• Exiting beams in the following odd layers are transmitted:

∀k ∈ N : nodedepth(k) = 2j + 3 ∧ j ∈ N ∧ exit(k)⇒ (6.6)
∃!(ki, k) ∈ E ∧ edgetype((ki, k)) = T .

The only way to get out of the stone is refraction.

• The beams in even layers are never exiting:

∀k ∈ N : nodedepth(k) = 2j ∧ j ∈ N ⇒ ¬ exit(k) . (6.7)

Exiting beams are leaves of the graph G. As the stone is convex, the exiting
beam cannot hit the stone anymore.
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6.3 Radiometry of the beam propagation

As mentioned above in Sec. 5.5, the radiometric properties of the beam can be de-
scribed by Stokes vectors. The effects on the surfaces can be described by Mueller
matrices. Let us assume that the stone material is clear transparent.

We can label nodes and edges of our graph by additional attributes, with numerical
values this time.

Formally let us have:

• A function s(k) assigning to each node k a Stokes vector s(k).
The Stokes vectors for input beams are given by the user to reflect the experi-
ment.

• A function M((ki, kj)) assigning to each edge (ki, kj) the Mueller matrix
M((ki, kj)).
Mueller matrix can be calculated using the geometry (direction vector and ori-
entation of the coordinate system for polarization) of the beam segment and
geometrical position of the facet reflecting/transmitting the beam.

• The unit Mueller matrix assigned to the split edges:

∀(ki, kj) ∈ E : edgetype((ki, kj)) = S⇒ M((ki, kj)) = I . (6.8)

The matrix I is a 4× 4 unit matrix. The split is only a geometrical operation.
It does not influence the radiometric properties of the beam.

The Stokes vector s(k) of the beam segment k with history(k) = (k1, . . . , kL) is a
product

s(k) =

 1∏
l=L−1

M((kl, kl+1))

 s(k1) . (6.9)

The sum of the (scalar) radiant fluxes of the beams in the chosen layer plus the
sum of the radiant fluxes of the exiting beams in all layers above the chosen layer is
equal to the sum of the radiant fluxes of all input beams. This follows from the energy
conservation law as we have no light absorption in the model. This can be used, e.g.,
for calculating what is the radiant flux of the beam segments still in the simulation
by subtracting the flux of exiting beams from the input beams.
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Chapter 7

Light Propagation in Absorbing
Medium

7.1 Motivation

It is desirable to model propagation of the light in color cut stones. In this chapter, we
will describe a light propagation model in transparent stones, which partly absorb the
propagating light. The color stones can be modeled as standard colorless transparent
stones with an absorption model added. From the practical point of view the directly
observable influence of the absorption is that most of the light beams exiting color
stones disappear or are strongly attenuated. We are interested in calculating the
radiant flux of exiting light beams.

7.2 Assumptions

Assumptions of our model are similar to the assumptions for the transparent stone
modeling:

• Material is transparent. The light propagates according to the standard ray
optics. The individual rays are not scattered in the medium.

• Material is absorbing. The irradiance of a ray decreases as it propagates through
the medium according to Beer’s law [76].

• Beams have convex polygonal cross-sections. Collimated rays remain collimated
within the beam.

• Beams are reflected or refracted by planar surfaces separating optical media
with different refraction indices.

• The irradiance of individual rays in the beam across of the beam cross-section
is constant when entering the absorbing media. The light can be polarized.
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7.3 Derivation of the model

7.3.1 Ray

Let us first study an individual ray. The power characteristic of a ray studied here
is the irradiance (not to be confused with radiant intensity), which is defined as the
derivative of the radiant flux by the area

E = dΦ
dS (7.1)

in W/m2 units.
Alternatively, we can use the spectral irradiance, which expresses dependence of

the irradiance on the light wavelength λ

Eλ(λ) = dΦλ(λ)
dS = dΦ

dλdS , (7.2)

in W/m3 units.
The basic formula governing the light ray attenuation in the absorbing medium is

the Beer’s law [76]
E = E0 e−βd , (7.3)

where E0 is the irradiance of the light ray at the start of its path through the absorbing
medium and E is the ray irradiance after traveling distance d in the medium with the
absorption coefficient β.

Light polarizes due to the reflection and refraction, which can be modeled by the
Stokes vector. The absorbing medium attenuates all components of the polarized light
equally. All Stokes vector coordinates are proportional to the irradiance. So, for the
polarized light, we can write

~s = e−βd ~s0 . (7.4)

Let us remind that effects on the media boundary, reflection and refraction, also
influence the irradiance of the reflected beam in the form

~s = M ~s0 , (7.5)

where M is a Mueller matrix obtained from Fresnel formulae.
The Mueller matrix M is a function of the incident angle and the refraction indices

of the media. The refraction indices depend on the wavelength of the light. One can
write Mi(θi, η1(λ), η2(λ)). The material is the same for the whole path in our case.
Thus η1(λ), η2(λ) are constant. Let us neglect the dependence on the wavelength λ
in the formulae to simplify the notation.

We will not aim here at calculating the radiant flux over the whole spectrum. The
dependence of the refraction index on the wavelength is rarely known analytically, so
the possible integration over all used wavelengths has to be done numerically anyway

~s =
∫ λ2

λ1
~sλ dλ . (7.6)

66



Rays can be reflected several times in a stone while their irradiance is gradually
attenuated by the absorption. Assuming N reflections, each with the Mueller matrix
Mi, we have N + 1 absorbing traveling paths, before, between, and after reflections.
Each traveling path has length di. The Stokes vector after the propagation is

~s = e−βdNMN . . . e−βd1M1 e−βd0 ~s0 = (7.7)

=
( 1∏
i=N

e−βdiMi

)
e−βd0~s0 = (7.8)

=
(

N∏
i=0

e−βdi

)( 1∏
i=N

Mi

)
~s0 = (7.9)

= e−β
∑N

0 di

( 1∏
i=N

Mi

)
~s0 . (7.10)

The order of scalar multiplications can be rearranged to obtain the attenuation
of the ray along its path in the absorbing media and by a sequence of losses of the
energy by the refractions of light on optical interfaces.

7.3.2 Beam

Let us turn our attention to a beam of light propagating in absorbing media.
A convex beam entering a convex polyhedron divides into many beams as a result

of reflections and refractions on the individual facets. All resulting beams have convex
cross-sections as a result of intersections of convex beams with convex facets. The faces
of a convex polyhedron are convex facets. We call the elementary beam a maximal
subset of the incident light beam, which passes through a stone without a split into
smaller beams. See Chapter 6.

Technically, we propagate beams through a stone, while they are divided into sub-
beams by falling onto two or more facets. We track each new sub-beam and finally we
backtrack all resulting elementary beams back to the source of light. Each elementary
beam is then analyzed separately. See Fig.7.1.

Let us now discuss one elementary beam (see Fig. 7.2). We are interested in the
radiant flux of the beam after its propagation.

An elementary beam has a convex polygonal cross-section and can be several
times reflected from the media planar boundaries. Each reflection is accompanied
by a refraction, so each time the beam is reflected, the irradiance of individual rays
changes. The irradiance and the Stokes vector of the light entering the absorbing
media are assumed to be constant across the beam.

Mueller matrix Mi for reflections or refractions of beams of collimated rays on
planar surfaces is the same for all rays in the beam since they are incident under the
same angle.

The resulting beam will consist of collimated rays with different irradiances across
the beam. They have the same degree of polarization which is different from the
incident ray polarization in general.
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a) b)

c)

Figure 7.1: Tracking beams in the square cut stone. a) and b) The light falling onto
the stone table (square facet on the stone top) forms the incident beam. The beam
is two times reflected inside the stone. When a beam falls on two different facets, it
splits into sub-beams. Tracking the beam splitting through all reflections allows to
find elementary beams. c) A single elementary beam is shown in the second row. For
this beam, we can calculate the radiant flux at the exit of the beam from the stone.
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Figure 7.2: One elementary beam passing through a stone. Only one elementary
output beam is tracked back to the input beam.

The beam cross-section perpendicular to the beam direction has a constant area
and shape since each reflection just mirrors the cross-section shape back and forth.

A sequence of convex polyhedra can be rearranged into a single prism with the
same cross-section and the base perpendicular to the sides of the prism. See Fig. 7.3.

Then, the prism can be rectified into a new rectangular prism in such a way that
the perpendicular cross-section forms one new perpendicular base.

The lengths of edges perpendicular to the first base are identical to the lengths
of optical path of rays in the vertices of the base. The original rays and rays in new
prism have the same length of travel in absorbing media. To calculate the radiant
flux of the beam at the last boundary, we can evaluate the radiant flux at the end of
the new straight prism. This straight prism does not have parallel bases, though.

Let us define the following parameters (see Fig. 7.4):

x, y are the coordinates in the plane of the base of the rectified prism,

pix, piy are the coordinates of the i-th vertex of the base in the xy plane containing it,

d(x, y) is the height of the prism at the coordinates (x, y),

~s0 is the Stokes vector of the beam at the beginning of the light path,

β is the absorption coefficient.
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Figure 7.3: One beam (green) passing through a stone (blue). a) An oblique view of
the beam in the stone, b) an oblique view on the rectified beam – prism. c) The side
view of the beam in the stone, d) the side view of the rectified beam – prism. An
example of a ray is the line A1A2A3A4. The example of a beam cross-section, not
necessarily perpendicular to the beam directional vector, is the triangle A2B2C2.

70



S

x

y

(x ,y )

(x ,y )
(x ,y )

(x ,y )
6

2

1 1

2
33

(x ,y )4 4

(x ,y )5 5
6

d
d

d

d

1
2

3

4

d
6

d
5

isophotes

Figure 7.4: The beam after rectification. Each ray corresponds to a line parallel to
the z axis. The base of the prism is in the xy plane. The other base is not parallel to
the xy plane in general. The length of the ray traveled inside the stone is denoted as
di. The isophotes, i.e. the lines of constant irradiance, are parallel to the xy plane.

As the other base of the prism is planar but not necessarily parallel to the first
base, the height at the point (x, y) can be expressed as d(x, y) = ax + by + c, a, b, c
being parameters of this linear function of two coordinates (x, y).

The problem of computing the radiant flux can be formulated as calculating the
integral of the irradiance over the convex polygonal area. As the light is polarized,
we use Stokes vector of the radiant flux

~Φ =
∫∫

S
~s dS = (7.11)

=
∫∫

S
e−βd(x,y)

( 1∏
i=N

Mi

)
~s0 dS = (7.12)

=
( 1∏
i=N

Mi

)
~s0

∫∫
S

e−βd(x,y) dS = (7.13)

=
( 1∏
i=N

Mi

)
~s0

∫∫
S

e−β(ax+by+c) dS . (7.14)

The irradiance of the incident light ~s0 as well as Mueller matrices Mi are indepen-
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dent of the location of the ray within the beam and thus they can be moved in front
of the integral.

Using Green’s theorem, one can convert the integration of the irradiance over an
area into the integration over the area boundary. Let us have the vector field with
the components (f(x, y), g(x, y)), which have continuous partial derivatives. Then,
the following equation holds

∫∫
S

(
∂g(x, y)
∂x

− ∂f(x, y)
∂y

)
dx dy =

∮
C
(f(x, y) dx+ g(x, y) dy) . (7.15)

We substitute in our case

g(x, y) = 0 , (7.16)

f(x, y) =
∫
−e−βd(x,y) dy = (7.17)

=
∫
−e−β(ax+by+c) dy = (7.18)

= 1
βb

e−β(ax+by+c) + h , (7.19)

where h is an integration constant.
The special case for b = 0 has to be considered. This situation happens when y

axis is parallel to the lines of constant light irradiance in the rectified beam. One can
cope with that either by rotating the rectified prism coordinate system in which the
radiant flux is calculated around axis parallel to z axis, or by different substitution of
g(x, y) and f(x, y), e.g. f(x, y) = 0 and g(x, y) =

∫
e−βd(x,y) dx.

Another special case is for zero absorption, i.e. when β equals zero. In this case,
one has to calculate only the area of the polygon. It can be easily done by another
substitution into the Green’s theorem

PS =
∫∫

S
dS = (7.20)

= 1
2

n∑
j=1

(xjyj+1 − xj+1yj) , (7.21)

~Φ =
( 1∏
i=N

Mi

)
~s0S = (7.22)

=
( 1∏
i=N

Mi

)
~s0

1
2

n∑
j=1

(xjyj+1 − xj+1yj) , (7.23)

where n is the number of vertices of the prism base and xn+1 = x1, yn+1 = y1. PS
is the area of the integration domain S, i.e. the area of the beam perpendicular
cross-section.

The special case for d(x, y) = c is trivial and corresponds to the situation when
the rectified prism is right
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~Φ =
∫∫

S
~sdS = (7.24)

=
( 1∏
i=N

Mi

)
~s0

∫∫
S

e−βc dS = (7.25)

= e−βcPS

( 1∏
i=N

Mi

)
~s0 . (7.26)

The radiant flux in the regular case (b 6= 0,∧β 6= 0) becomes

~Φ =
( 1∏
i=N

Mi

)
~s0

∮
C

(∫
−e−β(ax+by+c) dy

)
dx = (7.27)

=
( 1∏
i=N

Mi

)
~s0

∮
C

1
βb

e−β(ax+by+c) dx . (7.28)

As the area is polygonal, its boundary consists of straight lines which can be param-
eterized by parameter t running from 0 to 1:

~Φ = 1
βb

( 1∏
i=N

Mi

)
~s0

n∑
j=1

∫ 1

0
e−β(a(xj+t(xj+1−xj))+b(yj+t(yj+1−yj))+c)(xj+1 − xj) dt ,

(7.29)

~Φ = e−βc

β2b

( 1∏
i=N

Mi

)
~s0

n∑
j=1

(xj+1 − xj)(e−β(axj+1+byj+1) − e−β(axj+byj))
(a(xj − xj+1) + b(yj − yj+1)) .

(7.30)

The special case occurs for a(xj − xj+1) + b(yj − yj+1) = 0. This corresponds to
the situation when one edge of the prism is parallel to the lines of constant irradiance.
The integral can be then simply solved with the result

a(xj − xj+1) + b(yj − yj+1) = 0 ⇒ (7.31)∫ 1

0
e−β(a(xj+t(xj+1−xj))+b(yj+t(yj+1−yj))+c)(xj+1 − xj) dt = (7.32)

= (xj+1 − xj)e−β(axj+byj+c) . (7.33)

The absorbed light is converted into heat.

7.4 An example

The above result can be demonstrated, e.g., on the beam from the Fig. 7.3. The
height of the rectified beam is 9.25 mm (rays A, B) and 9.5 mm (ray C). The area of
the beam is PS = 1 mm2, as it forms the right angled triangle with legs of length

√
2

mm.
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7.4.1 Transparent clear glass

The prism is made from glass with η2 = 1.5. The absorption coefficient is set to 0.
The Stokes vector is

~s0u =


E0
0
0
0

 , (7.34)

for unpolarized light and

~s0c =


E0
0
0
E0

 (7.35)

for circularly polarized light. The subscript u corresponds to unpolarized light, c for
circularly polarized light example.

The beam incident perpendicularly to the first surface undergoes no polarization
but it is slightly attenuated as the part of the light is reflected back. The amount
of transmitted light is determined by the Mueller matrix for the transmitting light
(Eq. 5.27)

MT1 =


0.960 0.000 0.000 0.000
0.000 0.960 0.000 0.000
0.000 0.000 0.960 0.000
0.000 0.000 0.000 0.960

 . (7.36)

Note that Mueller matrices are dimensionless. The second and the third reflections
are in the region of total reflection (θi = 45◦, critical angle θc = arcsin(1/1.5) = 41.8◦).
The Mueller matrices are as follows (Eq. 5.22)

MR2 = MR3 =


1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000
0.000 0.000 0.800 0.600
0.000 0.000 −0.600 0.800

 . (7.37)

The last transmission has the incidence angle θi = arctan(1/4) which gives (Eq. 5.27)

MT4 =


0.960 −0.008 0.000 0.000
−0.008 0.960 0.000 0.000

0.000 0.000 0.960 0.000
0.000 0.000 0.000 0.960

 . (7.38)

The product of all Mueller matrices is

M = MT4MR3MR2MT1 =


0.921 −0.007 0.000 0.000
−0.007 0.921 0.000 0.000

0.000 0.000 0.258 0.884
0.000 0.000 −0.884 0.258

 . (7.39)
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One can see that the unpolarized light will get slightly linearly polarized while the
circularly polarized light will have all Stokes vector components nonzero (the incident
light irradiance is set to 1 W/m2 here):

~suc = M~s0u = M


1
0
0
0

 =


0.921
−0.007

0.000
0.000

 W/m2 , (7.40)

~scc = M~s0c = M


1
0
0
1

 =


0.921
−0.007

0.884
0.258

 W/m2 . (7.41)

~Φuc = PSM ~s0u = 10−6


0.921
−0.007

0.000
0.000

 W , (7.42)

~Φcc = PSM ~s0c = 10−6


0.921
−0.007

0.884
0.258

 W . (7.43)

The second subscript c stands for “clear” glass example.

7.4.2 Transparent absorbing glass

Let us now consider the prism with the same shape as above but made from absorbing
glass with η2 = 1.5. The absorption coefficient is set to 200 m−1, which corresponds to
the attenuation e−1 at 5 mm. The Mueller matrices are the same as for the absorbing
prism.

As the area of the beam is 1 mm2, the Stokes vector of the radiant flux of the
exiting beam is according to Eq. 7.30

~Φua = 10−6


0.142
−0.001

0.000
0.000

 W , (7.44)

~Φca = 10−6


0.142
−0.001

0.137
0.040

 W . (7.45)
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7.5 Applications

The color stones make a significant fraction of the total volume of stones on the
market. Until recently, its modeling was not possible with the sufficient accuracy by
the beam modeling software LADOK we developed in the past [145].

The formulae derived in this chapter are easy to implement and their calculation
is not time consuming. The calculation of the radiant flux of collimated beams prop-
agating in stones made from absorbing transparent materials, which we developed
here, gives an accurate model of the light propagation in color stones.

It can be used to design more efficient inspection procedures and machines.
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Chapter 8

Optical Effects on the Stone
Edges

8.1 Motivation

One of our long term goals has been computing the CAD model parameters from
measured data measured on real stone. There is a CAD model of the planned product
and the actually manufactured stone. The desire is to adjust the parameters of the
CAD model to fit precisely the actual stone. The obtained parameters can be used,
e.g., for the production technology adjustment. This, in principle, can be achieved by
our method sketched in Section 4.4.

One of the imminent problems can be discovered when comparing the simulation
and the experiment in Fig. 4.4. The problem, well known in computer vision, is called
the correspondence problem. We have two sets of data. The simulation gives us the
azimuth, the elevation, the radiant flux, and the polarization for each beam. In the
experimental part, one measures the intensities of the traces on the screen. One has
to assign the right trace to each simulated beam.

This is not an easy task. In our previous work [83], we suggested to illuminate
the stone by very localized narrow beams and to produce only a subset of traces at
each time. This approach makes the measurement slower as many images need to be
captured. In addition, this complicates the measuring machine as the narrow beam
is needed and has to be manipulated in space during data acquisition.

The traditional “engineering” approach to ease the correspondence problem is to
add some labels or features to the corresponding items, which facilitate the match-
ing. We noticed that the observed traces are distinguishable neither by the shape of
polygons nor as nice isolated spots with Gaussian intensity. The shape of the traces
thus cannot be used as a feature supporting the matching.

We observed that the traces have often sharp protrusions. The protrusions, par-
ticularly their number and directions, can be used as additional features. See Fig. 8.1.
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beam traces

protrusions

Figure 8.1: A detail of an image of beam traces for the chaton illuminated by a
laser beam. The beam traces are central spots, saturated in original image. They
correspond to the beams reflected and refracted from facets. The protrusions are
often much weaker traces of rays reflected or refracted from edges. The direction
of protrusions can be used as additional information in the correspondence search
between the results of a simulation and the real experiment with a stone. The photo
is a detail from Fig. 4.4. The detail was chosen to show visible protrusions from the
beam traces.

8.2 Problem statement

We would like to understand how visible protrusions are formed and whether their
parameters can be computed from our model.

The protrusions are caused by imperfections of the manufacturing process, mainly
that the edges between facets are not perfectly sharp.

Shape of Stone Edges Let us assume the following model. We have two planar
facets, which intersect in a line. We have the light beam falling on the both facets
including their intersection. Let us suppose that the intersection is not sharp but
it curves smoothly from one plane to the other in the cylindrical shape. We are
interested in the spatial distribution of the refracted rays, which pass through small
patches of the curved surface.

Mathematically, we have two planes with normals ~n1 and ~n2. The intersection
has directional vector ~e. The normals are perpendicular to the vector ~e. The in-
tersection of the planes, when approximated by a cylindrical surface, can be further
approximated by a set of narrow planar surfaces with normals interpolated from ~n1
to ~n2. The rays falling on the facets and the intersection have a directional vector ~vi.
The refracted rays have a directional vectors ~vt. The reflected rays have a directional
vector ~vr. See Fig. 8.2.

We are going to show that the vectors ~vt and ~vr are lying on a conical surface of
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Figure 8.2: The sketch of the mathematical model of a round edge. The green planes
are the facets. The yellow plane is tangent to the rounded edge surface, the red vector
~n is its normal. It lies in the xy plane. The black vector ~vi is the incident ray, the blue
vector ~vt is one refracted (transmitted) ray and the orange vector ~vr is one reflected
ray corresponding to the shown position of the tangent plane. The directional vector
~e of the edge lies in the intersection of green facets.

revolution with the apex at the point of incidence of the incident ray. The axis of the
cone is the intersection line of the two facets.

8.3 Solution

8.3.1 Parametrization

We locally approximate the edge by a plane tangential to the cylindrical shape of the
edge.

We can always set the coordinate system in such a way that the point of incidence
is in the origin of the coordinate system and ~e is in the z axis:

~e =

 0
0
1

 , (8.1)
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Figure 8.3: The parametrization of the incident vector ~vi, the tangent plane normal
vector ~n, and edge direction vector ~e. The incident ray vector ~vi is in xz plane,
parameterized by angle β, the tangent plane normal vector ~n is in the xy plane,
parameterized by the angle α. The incident angle θi is not coinciding with xy nor xz
in the general case. Note the orientation of the incident vector ~vi agrees with Fig. 5.1.

as well as the incident ray is in the xz plane. See Fig. 8.3. The directional vector of
the incident ray can be written as

~vi(β) =

 − cosβ
0

sin β

 , (8.2)

where β is the angle between the incident ray and the directional vector of the inter-
section. The normal ~n(α) of the approximating plane is

~n(α) =

 cosα
sinα

0

 ∧ 〈α1, α2〉 , (8.3)

where α is from the interval 〈α1, α2〉. The angles α1, α2 correspond to the normals
~n1 = ~n(α1) and ~n2 = ~n(α2) of the facets f1, f2, respectively. See Fig. 8.2.

Let us define η12 = η1/η2. Using Eq. 5.4, we can calculate the directional vector
of the refracted ray as

~vt(α) =


−η12 sin2 α cosβ + cosα

√
1− η122 sin2 α cos2 β − η122 sin2 β

sinα
(
η12 cosα cosβ −

√
1− η122 sin2 α cos2 β − η122 sin2 β

)
η12 sin β

 .

(8.4)
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The z component of the refracted ray does not depend on the parameter α. Re-
mind that the direction vector of the edge ~e is (0, 0, 1)T , see Eq. 8.1. The cosine of the
angle γ between the edge directional vector ~e and the refracted vector ~vt calculated
using their dot product is

cos γ = ~e · ~vt(α) = η12 sin β . (8.5)

cos γ does not depend on the angle α which parameterizes the edge tangent plane.
The cosine of the angle γ and hence the angle γ between transmitted ray ~vt and
edge directional vector ~n is constant. All transmitted rays pass through the point
of incidence of the incident ray. Consequently, the refracted rays lie on the conical
surface with the cone axis in the edge. See Fig. 8.4.

As the edge has a finite length, the incident rays illuminate the subset of the edge
intersecting with the incident collimated beam. All the rays refracted by the edge are
thus parameterized by two parameters. The first one is α running through the interval
〈α1, α2〉. The second parameter is running along the edge through the intersection of
the edge and the incident beam.

We can calculate the directional vector of the reflected ray in the same way. This
time, we shall set η12 = 1 as incident and reflected rays are in the same material.

~vr(α) =

 − sin2 α cosβ + cosα
√

1− sin2 α cos2 β − sin2 β

sinα
(
cosα cosβ +

√
1− sin2 α cos2 β − sin2 β

)
sin β

 (8.6)

The refracted ray is on the conical surface with the cone axis in the edge axis. See
Fig. 8.5.

Traces of edge rays exiting the beam

Let us consider the problem of estimation real stone shape parameters. The examined
stone is inserted into the experimental setup shown in Fig. 4.2. The traces observed
on the screen caused by beams exiting the stone are visible in Fig. 4.4. A detail is
shown in Fig.8.1.

When a beam hits two neighboring facets it illuminates also the part of the edge
connecting them. The beam splits into four sub-beams, two refracted out, two re-
flected in. Let us discuss the pair of exiting beams. The exiting beam can be reflected
beam from the third layer, see Fig. 6.2. The exiting beam can be refracted beam from
next odd layers as well. See Chapter 6. The reasoning is similar in both cases so we
will discuss here the refracted beams.

The two refracted beams produce beam traces on the screen. The rays refracted by
the edge lie on the part of a conical surface with the axis in the edge. The intersection
of this cone with the screen is a trace of the edge rays.

The traces of the rays refracted by the edge connect the traces of the beams
refracted by facets neighboring the edge. The edge rays traces are rarely fully visible
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Figure 8.4: The figure shows the refracted rays on the smooth transition between
two facets. The incident ray ~vi is shown in black. f1 and f2 are two planes of the
facets represented by the green semitransparent rectangles. Their intersection is in
black and labeled ~e. The rays refracted by the facets/planes f1 and f2 are shown in
magenta and labeled ~vt1 and ~vt2. One particular plane tangent to the cylindrical part
approximating smooth transition from the planes f1 to f2 is shown in the light yellow
color. Its normal is labeled ~n and shown in red, with the thin extension to the outer
environment. The ray refracted by this particular plane is shown in blue and labeled
~vt. All refracted rays from the smooth transition are shown by the yellow cone part.
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Figure 8.5: The figure shows the reflected rays on the smooth transition between
two facets. The incident ray ~vi is shown in black. f1 and f2 are two planes of the
facets represented by the green semitransparent rectangles. Their intersection is in
black and labeled e. The rays reflected by the facets/planes f1 and f2 are shown in
magenta color and labeled ~vr1 and ~vr2. One particular plane tangent to the cylinder
part approximating smooth transition from the planes f1 to f2 is shown in the light
yellow color. Its normal is labeled ~n and shown in red, with the thin extension to the
outer environment. The ray reflected by this particular plane is shown in blue and
labeled ~vr. All reflected rays from the smooth transition are shown by yellow cone
part.
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in an image of the screen, as its central part has low intensity. We call the visible
parts of the edge rays trace protrusion.

Rays refracted from the edge lie on a cone with circle base. We assume further
the stone is small compare to the screen size and its distance to the stone. Edge rays
traces shape depends on the screen shape. For hemispherical screen with the center
in the stone, the shapes of the protrusion traces is a circular arc with the ends in the
facet beams traces. This circular arc shape is a result of intersection of the screen
sphere and the cone with the circular base and the cone apex in the sphere center.
For planar screen, the protrusion trace shape is a conic. The shape is given by the
intersection of the rays cone with the circular base and the screen plane. See Fig. 8.6.

Figure 8.6: The beam trace refracted by two neighboring facets and an edge between
them. The traces refracted from facets are bright spots in the lower left and upper
right corner, the light refracted by a round edge is the red arc connecting them. The
screen is planar in this case. The intersection of the cone and the planar screen results
in a part of an ellipse. Note that this image was obtained on a very large stone with
a very localized incident beam. However, this is the experimental confirmation that
the protrusions are not only local features of the traces but they connect even distant
traces.

One has to take into account the actual shape of the experimental setup, including
the position of the stone, the position and the shape of the screen, the position and
the optics of a camera. One can estimate the direction (tangent line) of the protrusion
in the image from the known geometry of the experiment. The estimated direction of
protrusions can be used for matching between simulated beams and detected traces
in the image.
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Traces of edge rays reflected or refracted into the stone

The description above deals with beam traces connected by edge rays traces when
the beam exits from the stone. A similar analysis holds for beams and rays reflected
back to the stone. However, the situation is more complicated here.

Let us pose the following question. Do all beam traces from a stone with round
edges have protrusions? The answer is yes.

The simulated beams reflected or refracted by an edge approximated by narrow
facets can be visualized in 3D, see Fig. 8.7. The reflected light from an edge into
the stone is analyzed in the figure. The light refracted by the edge out of the stone
is not restricted by the stone anymore. The light rays reflected and diverged by the
edge into the stone can pass through the different sequence of facets than the beam
reflected from the edge neighboring facets.

Let us study the solid angle, in which the light reflected from an edge propagates.
We have to broaden our model a little bit for this analysis. We assume that the
size of the stone is small compared to the size of the screen where we observe beam
traces. Under such assumptions, we can ignore the cross-section of the beam as the
beam trace is quite small compared to the size of the screen. In addition, the slight
divergence of the originally collimated beam caused by non-planarity of facets blurs
the shape of the beam trace on the screen.

However, rays reflected by edges diverge into a solid angle. The solid angle is large
enough to contain facets which the elementary beam illuminating the studied edge
is not reflected to. That means some rays reflected by edges are later on their path
totally reflected or they are refracted to new directions. The diverged rays traces
are reflected or refracted to new directions and the protrusion observed on the screen
stops suddenly.

Thus it is important to ask, whether the cone of the divergent beam reflected from
the edge intersects or is disjunctive to the 3D space occupied by collimated beam.

The former is the case because the reflection or refraction from the edge intersects
the reflected or refracted original beam as shown in Fig. 8.8. One can conclude: A
small part of the reflected edge rays will pass through the same sequence of the facets
at least. Their trace will be partly visible at least. One can expect to see at least small
protrusions for each trace and each edge. This agrees with the computer simulation
as shown in Fig. 8.7.

8.4 Experimental results

We have experimented with the simulation of edges in the LADOK program pack-
age [145]. The original LADOK does not support round edges. The round edges were
approximated by a sequence of narrow facets as shown in Fig. 8.9. The simulation of
the beams transmitted from the stone are shown in Fig. 8.10. The implementation is
described in [199].

The images of the edge rays observed on the real product are shown in Fig. 8.11
and 8.6.

We have further extended the LADOK program with the visualization of the rays
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Figure 8.7: 3D visualization of a beam reflected from a single round edge. The
elementary beam is shown in green. The input beam enters the upper facet. It is
reflected twice by lower facets and exits the stone through the table of the stone.
The round edge between two lower facets is modelled by a sequence of many narrow
facets. They produce many narrow beams which are reflected up. They are next cut
out partly by the table (see the right part of the exiting beams). The cross-section
of the original exiting beam is shown in black. The round edge restricts bottom left
side of the black polygon.
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Figure 8.8: The spatial distribution of the rays reflected (left) and refracted (right)
from a round edge. The beam incident and reflected/refracted from the left facet is
drawn in blue, the beam interacting with the right facet is drawn in red. The rays
reflected/refracted by the edge are drawn in green. The green reflected/refracted rays
intersect with the area occupied by blue/red beams.

Figure 8.9: The approximation of the round edge. The round edge was approximated
by several narrow planar edges on the stone (left). The detail of the edge with the
larger scale of angles is shown in the right.
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Figure 8.10: The simulation of the beams refracted by the round edges. The large cir-
cles are the beams from stone facets. Small dots correspond to the light rays refracted
from the edge approximating facets and they connect the main beams. LADOK vi-
sualizes its results in polar coordinates where the radius represents the elevation and
the angle represents the azimuth of the beam. The edge rays lie on the cone, which is
in polar coordinates transformed into a straight line (left) or an arc (right). The small
filled circles correspond to the beams refracted or reflected by approximating narrow
facets. The empty circles correspond to other edges not relevant here. LADOK SW
codes the area of the beam into the area of the circle and intensity of the beam into
color filling the circle.

refracted on the edges. The directions of the trace protrusions were calculated and
short straight lines were drawn in the simulation visualization. The lines originate
in the beam traces. Their lengths are proportional to the lengths of the edges for
visualization purposes. Lines in the simulation are expected to be tangent to the
observed protrusions. The simulated length of the line need not correspond to the
visible protrusion. The camera sensitivity and noise does not allow to detect the
protrusions with low intensity.

The visualizations of edge rays by beams refracted from approximation of the edge
by narrow facets and by short tangent lines are shown in Fig. 8.12. Both approxima-
tions are in a good agreement.

The scenario described in Sec. 4.4 is visualized in the Fig. 8.13. The traces of
the beams including protrusions from edge rays are shown in the image top. The
simulation of edge rays is shown in bottom. One can compare both images to find
correspondences. Further development is intended to automate finding correspon-
dences.
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Figure 8.11: The traces of the exiting beams visible on the planar screen. They have
visible protrusions, which are caused by refractions and reflections on the facet edges.
The image brightness is inverted for better visibility.

  10

  20

Figure 8.12: Two different visualizations of simulated protrusions. Small circles are
beams refracted and reflected by narrow planar facets such as in Fig. 8.9. Lines are
local tangent lines to the edge rays trace. The beams represented by small circles are
shown only for red tangent line.
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Figure 8.13: Top: An experiment with a chaton. The image shows beams coming
from the chaton illuminated by a laser. The image brightness is inverted for clarity.
The image is repeated from Fig. 4.4 to facilitate comparison [83]. Bottom: The
visualization of the LADOK simulation with the simulated protrusions from the beam
traces. The visualization corresponds to the experiment shown above. The additional
information about the protrusions makes the correspondence problem easier.
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We experimented with a third way how to simulate and visualize edge ray traces. A
local normal ~n of the edge is a function of the parameter α. Angle α is from the interval
〈α1, α2〉, see Fig. 8.3 and Eq. 8.3. The angle α was sampled in the interval 〈α1, α2〉
and corresponding refracted or reflected rays were ray-traced until they exited the
stone. This method enables modelling of edge rays traces with predefined resolution.

Edge rays traces start in the beam trace and can end up in the beam trace of
the neighboring facet. The second beam trace need not exist as the incident beam
can be totally reflected at neighboring facet. The sampling of the angle α stops
when the incident beam is totally reflected. The situation is shown in Fig. 8.14. The
beam exiting the stone produces a trace labeled by large black dot. The beam shown
has a pentagonal cross-section. The cross-section sides are defined by five edges which
constrain the beam during its path through the stone. Five edge rays traces are shown
in Fig. 8.14. One edge rays trace finishes in the neighboring beam trace labeled by
small black dot. Four other edge rays traces finish in red crosses. Red cross label the
ray where critical angle for total reflection is reached or the ray reflected from the
edge hits the facet different than the beam corresponding to the large black dot trace.
See Section 8.3.1.

Figure 8.14: This figure shows simulated edge ray traces of rays refracted or reflected
on a round edge. The large black dot corresponds to the trace of an elementary beam.
The beam has pentagonal cross-section as it is restricted by five edges. The edge rays
correspond to the black arcs. One arc ends up in the small black dot representing
beam refracted by neighboring facet. The other four arcs end in red crosses. The edge
rays corresponding to red crosses were either totally reflected so they cannot refract
out from the stone or were refracted or reflected by other facets.
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8.5 Applications

8.5.1 Comparison to the reality

An approximation of an edge between two facets by a smooth surface is realistic.
There are several reasons why edges of the manufactured stones are round .

1. Safety: Edges are manufactured slightly rounded to avoid cutting objects inter-
acting with stones.

2. Durability: Objects made from fragile materials are particularly vulnerable to
cracks originating in sharp edges. Even a small crack at the edge can propagate
through the material and may results in breaking the fragile object into pieces.
Hence when objects are machined from glass and similar materials, the edges are
chamfered to prevent cracking. Optical lenses, prisms, etc. are manufactured
this way.

3. Technology: Sharp edges are more vulnerable to material loss during grinding
and polishing. The manufacturing process thus inherently produces rounded
edges between facets.

A stone with visibly rounded edges is shown in Fig. 8.15.
The resulting cylindrical shape of an edge can be described roughly as having a

hyperbolic cross-section. The almost flat part of the facet starts to curve with the
maximal curvature in the middle and then the curvature decreases until it reaches the
second flat facet.

We are not interested in a specific edge profile in our analysis. The trace intensity
corresponds roughly to the inverse curvature of the edge. Indeed, one can observe
this effect in experimental data. The trace protrusions intensity is high at positions
close to the traces and almost undetectable in between. See Fig. 8.11 and 8.6.

Figure 8.15: A glass stone with the round edges.
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8.5.2 The fidelity of the edge mathematical model

Although one can hardly claim that the smooth transition between two edges is cylin-
drical with circular base, it is clear that it has a tangent plane at each point. The
normal vector of the tangent plane is perpendicular to the direction of the edge. Hence
we can approximate the smooth surface locally by a tangent plane whose normal vec-
tor can be written as ~n = (cosα, sinα, 0)>. When passing smoothly from the plane
of the facet f1 to the plane of the facet f2, the parameter α is not changing with the
constant velocity but its change starts slowly, then it speeds up, and finally it slows
down again. Our analysis relies on approximation of the edge by tangent planes but
not on the particular shape of edge in form of cylinder with the circular base.

8.5.3 Comparison to observed refracted ray traces

Fig. 8.11 shows the traces coming from the facets with protrusions with very quickly
decreasing intensity. The fast decrease of the intensity nicely corresponds to the
physical shape of an edge with a non-constant curvature in the plane perpendicular
to the edge. If the shape of the edge was cylindrical with the circular base, the
intensity of the trace corresponding to the edge would be roughly constant. Under
good conditions, the whole trace corresponding to the edge is visible as shown in
Fig. 8.6.
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Chapter 9

Reflection and Refraction on the
Stone First Surface

9.1 Introduction

The amount of light returned to the upper hemisphere of the stone is one of the crucial
parameters describing the stone quality. This criterion is not the only one but it falls
among the most studied ones. Popular shapes of cuts of diamonds were designed
using simplified calculation mainly based on this criterion [170].

9.1.1 Ray-tracing

Ray tracing [154] can be used to evaluate the amount of returned light. A user selects
a configuration of light sources and position of a camera. The light sources illuminate
the stone. The camera measures the amount of light returned from the stone. The
ray-tracing program is used to generate the image of the illuminated stone captured
by the camera. The amount of light returned to the camera from the stone is divided
by the amount of light incident on the stone to get ratio which is used for assessing
the quality of the stone.

The critical part of the ray tracing is the selection of right illuminating rays. The
ray propagation in the stone is sensitive to input conditions. Input rays with the
similar parameters can end up exiting into upper or lower hemisphere after propaga-
tion in the stone. The rays, which are used for probing the stone, are being selected
from the four-dimensional space corresponding to the azimuth and elevation of the
ray directional vector and spatial coordinates of some point on the ray. It is time
consuming to sufficiently sample a four dimensional space.

The camera has to be selected from a two dimensional space, corresponding to the
azimuth and the elevation of the optical axis. We are neglecting the camera resolution
and other parameters. One could use a panoramic camera looking towards the stone
center to avoid this second sampling. The open question remains whether selected
ray-tracing program allows such a camera.

To conclude, ray tracing is not accurate and it is time consuming [107].
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9.1.2 Beam modeling

Our previous method [145] illuminates stones by light beams defined by the azimuth,
elevation, polygon of the beam cross-section, and Stokes parameters.

The beams are tracked in a stone, while they reflect, divide into sub-beams on the
stone edges, and refract out of the stone. The result of modeling is a set of sub-beams
exiting the stone.

The radiant flux of the light exiting into useful directions (usually to the upper
hemisphere) can be computed and compared to the radiant flux of incident light.

The method is accurate for each illuminating beam (neglecting the rounding er-
rors). One can control the accuracy required by controlling either the number of
reflections allowed or the total amount of energy still in the game. Unfortunately, one
still has to sample a 2D space, i.e. azimuth and elevation, of incident beams.

9.1.3 Other approaches

More general approaches, which admits more general scenes, e.g. scattering media
and matte surfaces [124] or continuously varying refraction index of the media [74],
are described in the literature. The optical effects taken into account in these ap-
proaches do not admit using analytic methods. Consequently, various versions of
Monte Carlo [124, 86], photon mapping [74], radiosity [104] and other [168] methods
are used. These methods solve a much more general problem at the cost of long
computational time.

As we consider a special case with planar optically smooth surfaces and planar
waves, we can use a much simpler approach.

9.2 Problem statement

We would like to answer the following question. Is there any method allowing to
evaluate the whole set of possible illumination rays at once without sampling the
space of rays or the space of beams?

We have found the following partial answer:

• One can calculate the amount of reflected light from the external reflection.
That is the light ray coming from the air is directly reflected back. One can
calculate the amount of light reflected to the upper hemisphere and to the lower
hemisphere separately.

• One can calculate the amount of light, which is refracted into the stone from the
air. This light undergoes further reflections and refractions. It can be returned
to the upper hemisphere as well as to the lower one which results in the light
loss.

Let us specify the following task:

1. The stone has the upper side, where the stone table is facing, and the lower
side.
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2. The illumination comes uniformly from the hemisphere corresponding to the
stone upper side, see Fig. 9.1. One can model here nonuniform illumination e.g.
accenting directions close to z axis.

3. The light reflected to the upper hemisphere is considered as a positive contribu-
tion to the stone quality. One can model here nonuniform sensitivity depending
on the elevation.

4. The light reflected to the lower hemisphere is considered as lost and thus con-
tributes negatively to the stone quality.

5. The light refracted into the stone is considered as positive as it can be later
refracted to the upper hemisphere with possible dispersion to enhance the stone
fire as well as it can be refracted to the lower hemisphere or it can be even
diffused on edges or not polished parts of the stone surface.

upper hemisphere

stone

Figure 9.1: The standard assumptions about the stone illumination. The lower side
of the stone is inserted into a jewel holder or attached to a surface. The stone is
illuminated from above. Only light reflected or refracted to the upper hemisphere is
useful. We use the hemisphere with infinite radius in our model.

9.3 Model of the light source and light return

Note that we consider only the first contact of the light with the stone surface in this
model.

The light in this particular model will be modeled as coming from the hemisphere
with the infinite radius. The hemisphere is the uniform source light from all directions.
Each facet will be modeled independently. The facets facing down will be ignored as
they are hidden in the stone holder.

Under the above conditions, one can calculate the following quantities for each facet:

• The amount of light (radiant flux) falling onto the facet Φon.

• The amount of light reflected by the facet to the upper hemisphere Φup.
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• The amount of light reflected by the facet to the lower hemisphere (lost) Φdown.

• The amount of light refracted into the stone via the facet Φin.

9.3.1 Incident light

The formula for calculating the incident radiant flux is

Φ =
∫

Ω

∫
S
L cos θi dS dΩ , (9.1)

where θi is the incident angle of the ray. The double integral notation used here is∫
a

∫
b
cdbda =

∫
a

(∫
b
c db

)
da . (9.2)

Its cosine gives the area of the facet projection onto the plane perpendicular to
the ray.

The radiance L expresses the amount of light radiated by the hemisphere as seen
by the stone into certain solid angle and certain area. It is constant in our case. The
facet is planar with the known area S. The formula simplifies to

Φon = LS

∫
Ω

cos θi(Ω) dΩ . (9.3)

The upper side of the stone is facing up in the direction of the z axis. The
illuminating hemisphere is in the half-space with z > 0.

We can assume in our analysis without loss of generality that the normal of the
facet is in the xz plane, since the facet can be rotated around the z axis as the
illuminating hemisphere is symmetrical around the z axis. As the hemisphere has
an infinite radius, the origin of the coordinate system can be located in the plane of
the facet. The geometrical position of the facet is thus parameterized only by one
parameter β, which is the angle between z axis and facet normal ~n, i.e.

~n(β) =

 sin β
0

cosβ

 . (9.4)

The reversed directional unit vector of the ray ~e(α, ε) is parameterized by its
azimuth α and elevation ε:

~e(α, ε) =

 cos ε cosα
cos ε sinα

sin ε

 . (9.5)

The horizon has the elevation equal to 0, see Fig. 9.2.
The sine and cosine of the incidence angle can be calculated as
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x

y

z

α

Figure 9.2: Parametrization of the incident ray by the azimuth α and the elevation ε.
Azimuth is measured in xy plane from the x axis and the elevation is measured from
xy plane towards the ray.

sin θi = |~n× ~e| , (9.6)
cos θi = ~n · ~e , (9.7)

where ×, · mean cross respectively scalar product.
The radiant flux falling onto the facet Φon is proportional to the part of the

hemisphere, which is above the plane of the facet, see Fig. 9.3 and Fig. 9.4. The solid
angle Ω in Eq. 9.3 is defined by the hemisphere part bounded by horizontal xy plane
and the facet plane passing trough y axis which has the angle β between z axis and
its normal, see Fig. 9.3.

The integration is done here separately for x > 0 and x < 0 case. The integration
limit εmin is calculated by solving the equation

~e(α, εmin) · ~n = 0 . (9.8)

The εmin is thus a function of α, β. The integral can be rewritten as

Φon = LS

(∫ π/2

−π/2

∫ π/2

0
cos θi dεdα+

∫ 3π/2

π/2

∫ π/2

εmin

cos θi dεdα
)

(9.9)

εmin = argtan(− cosα sin β, cosβ) . (9.10)

The first integral can be integrated as 2 sin β + π cosβ. The second can be inte-
grated only partially with the partial result −2 sin β. The part

√
cos2 α sin2 β + cos2β

has to be integrated numerically. Even this integral can be integrated analytically
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Figure 9.3: The integration of light falling onto the facet from the hemisphere. The
drawing shows the xz plane cross-section of the situation with the facet tilt angle
β 5 π/4. The blue arc shows the part of the hemisphere from which light falls onto
the facet. Some of this light is refracted into the stone, the rest is reflected. The red
arc shows the part of the hemisphere from which light is reflected up. The green arc
shows the part from which light is reflected down. The light from the hemisphere not
illuminating the facet upper side is shown in magenta.

into a form containing elliptical functions but this is probably not better than the
original integral. The integral can be simplified into the form

Φon = LS(2 sin β + π cosβ − 2 sin β +
∫ 3π/2

π/2

√
cos2 α sin2 β + cos2β dα) =

= LS(π cosβ +
∫ 3π/2

π/2

√
cos2 α sin2 β + cos2β dα) . (9.11)

9.3.2 Reflected light

The part of the light incident onto the facet is reflected back. The amount of reflected
light using Fresnel formulae 5.13 is
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Figure 9.4: The integration of light falling onto the facet from the hemisphere. The
drawing shows the xz plane cross-section of the situation with the facet tilt angle
β > π/4. The blue arc shows the part of the hemisphere from which light falls onto
the facet. Some of this light is refracted into the stone, the rest is reflected. The red
arc shows the part of the hemisphere from which light is reflected up. The green arc
shows the part from which light is reflected down. The light from the hemisphere not
illuminating the facet upper side is shown in magenta.

Φ = S

∫
Ω

(|r‖|2L‖ + |r⊥|2L⊥) cos θi dΩ . (9.12)

The common assumption for evaluating stones will be that L‖ = L⊥ = L/2.

One has to stress that regarding polarization, we have two different situations:

• The incident light is indeed unpolarized in most applications of a stone. It comes
from light bulbs, fluorescent tubes, wax candles etc. Although LED diodes are
often used now, the chips are usually covered by luminophore, which effectively
unpolarizes the light.
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The stone is rarely illuminated by a laser, if so then mostly for research or
inspection purposes. In the latter case, the computation with the polarized
incident light is required.

• The light is polarized by reflection and refraction. Hence one has to compute
beams radiometric parameters using a polarized light model. In the context of
this chapter, we are not studying those reflected beams.

Light reflected up. One has to ignore the rays, which are reflected to the lower
hemisphere, that is the rays bellow the plane passing through the y axis and having
the angle between z axis and its normal 2β, see Fig. 9.3.

The integration is divided into two cases. When β 5 π/4, the integration will be
divided, similarly to the incident light case, into the two integration domains. The
first one is the first quadrant in xz plane. The second is the part of hemisphere
between yz plane and the plane tilted by 2β from the xy plane. For β = π/4, the
integration domain is between xy plane and the plane rotated by 2β around y axis
from the xy plane, see Fig. 9.4.

Φup = LS

2

∫ π/2

−π/2

∫ π/2

0
(|r‖|2 + |r⊥|2) cos θi dεdα+

+LS

2

∫ 3π/2

π/2

∫ π/2

εmin

(|r‖|2 + |r⊥|2) cos θi dεdα

forβ 5 π/4 and
εmin = argtan(− cosα sin 2β, cos 2β) , (9.13)

Φup = LS

2

∫ π/2

−π/2

∫ εmax

0
(|r‖|2 + |r⊥|2) cos θi dεdα

forπ/4 < β < π/2 and
εmax = argtan(cosα sin 2β,− cos 2β) . (9.14)

The integrals have to be calculated numerically.

Light reflected down. The computation of the amount of light reflected down has
to be divided again into two cases depending on β as shown in Figures 9.3 and 9.4
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Φdown = LS

2

∫ 3π/2

π/2

∫ εmax

εmin

(|r‖|2 + |r⊥|2) cos θi dεdα

forβ 5 π/4 and
εmin = argtan(− cosα sin β, cosβ) and
εmax = argtan(− cosα sin 2β, cos 2β) , (9.15)

Φdown = LS

2

∫ π/2

−π/2

∫ π/2

εmax

(|r‖|2 + |r⊥|2) cos θi dεdα+

+LS

2

∫ 3π/2

π/2

∫ π/2

εmin

(|r‖|2 + |r⊥|2) cos θi dεdα

forπ/4 < β < π/2 and
εmin = argtan(− cosα sin β, cosβ) ,
εmax = argtan(cosα sin 2β,− cos 2β) . (9.16)

The light reflected up, down, and transmitted depend on the area and tilt of the
facet, and refraction index of the material. One can prepare in advance a look-up
table for given material of the reflected light as a function of the angle beta. The
optimization of even complex cut shapes can avoid numerical calculation of integrals.

9.3.3 Transmitted light

Transparent clear material. The transmitted light can be calculated using trans-
mission Fresnel coefficients as

Φin = Φon − Φup − Φdown . (9.17)

Transparent absorbing material. The transmitted light for highly absorbing
transparent materials is almost completely absorbed. The light is reflected from the
stone surface independently of their interior. The amount of light reflected up com-
pletely describes the light returned from highly absorbing stones.

Translucent material. The objects made from translucent, scattering, material
with smooth specular surface are well studied in computer vision literature [167].

It is possible to extend our model for translucent objects. The reflections of light
in stone interior can be neglected. The light transmitted to the stone are partially
absorbed and partially scattered and refracted back. This can be well modelled by
our integral approach.

9.4 Examples

9.4.1 The light incident on single planar facet

The radiant flux of the light incident from the upper hemisphere on a planar facet
with orientation specified by angle β is divided into parts as discussed above. In the
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following diagrams, we assume the unit area of the facet S = 1m2, the uniform unit
radiance L = 1 W/sr/m2 as observed from the origin of the coordinate system. Under
such conditions, the radiant flux received by the facet in xy plane is 2π.

Glass. We assume the refractive index 1.5 for glass. The graphs for reflected and
refracted light are shown in Fig. 9.5 and 9.6.

20 40 60 80
β(°)

1

2

3
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6

Radiant flux

The light incident on glass from the upper hemisphere

total available energy

reflected up

reflected down

refracted into material

blocked - facing away

Figure 9.5: The light incident on the glass (η2 = 1.5) facet from air. The source of
light is uniformly shining hemisphere (z > 0) in the infinity, the facet has unit area
and its angle to the xy plane is β. The figure shows the amount of light (radiant
flux), which is incident on the facet, reflected up, reflected down, refracted into the
material, and the light which does not illuminate the facet.

Diamond. For the diamond, we assume the refractive index 2.419. The graphs for
reflected and refracted light are shown in Fig. 9.7 and 9.8.

9.4.2 The radiant flux on actual stone cuts

Let us have a stone cut called square and brilliant cut, see Fig. 9.9. The square used
has upper and lower facet angle 96◦, the side of the table is 0.46 of the stone side.
The example of the brilliant on the dimensions are shown on the Fig. 9.10

One cannot judge the stone just by the parameters in Tab. 9.1. There are other
important characteristics which are not reflected here, e.g. a stone fire, number of
exiting beams etc.
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Figure 9.6: The light incident on the glass (η2 = 1.5) facet from air. The source of
light is uniformly shining hemisphere (z > 0) in the infinity, the facet has the unit
area and its angle to the xy plane is β. The figure shows the radiant fluxes, which
are total incident light, reflected up and refracted into the material, and reflected up
only.
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Figure 9.7: The light incident on the diamond (η2 = 2.419) facet from air. The source
of light is an uniformly shining hemisphere (z > 0) in the infinity, the facet has unit
area and its angle to the xy plane is β. The figure shows the amount of light (radiant
flux), which is incident on the facet, reflected up, reflected down, refracted into the
material, and the light which does not illuminate the facet.

105



20 40 60 80
β(°)

1

2

3

4

5

6

Radiant flux

The light incident componentson diamond from the upper hemisphere

reflected up

refracted into material and reflected up

total available energy

Figure 9.8: The light incident on the diamond (η2 = 2.419) facet from air. The source
of light is an uniformly shining hemisphere (z > 0) in the infinity, the facet has unit
area and its angle to the xy plane is β. The figure shows the radiant fluxes of the all
incident light, reflected up and refracted into the material, and reflected up only.

Figure 9.9: The stone cut called a square and a brilliant cut. The square is made of
table, four upper facets and four lower facets. Girdle, connecting the upper and lower
part, need not be always present. The brilliant cut is shown on right.

Stone shape Flat square Flat circle Square Brilliant
Total available light Φon 3.14 4.93 2.78 4.98

Reflected up Φup 0.43 0.67 0.28 0.55
Reflected down Φdown 0 0 0.11 0.12

Refracted in Φin 2.71 4.26 2.40 4.32

Table 9.1: The radiant fluxes for square cut and brilliant cut made from glass. The
first two columns are just rectangle and circle in the xy plane. They are presented for
comparison. All shapes are normalized to have the same circumscribed sphere with
the diameter 1 to simulate the situation the stone is cut from raw material of about
same size. The square has lower area, so its radiant fluxes are generally lower.
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Figure 9.10: Dimensions of the brilliant cut stone. The dimensions slightly differ
depending on the manufacturer, material, or product type.

9.5 Applications

This part of the contribution overcomes the major problem of returned light energy
evaluation, which is sampling the incident light either as rays or as beams.

One can object that the ray/beam sampling problem has a similar nature to the
problem of numerical integration, which is used to evaluate some of the integrals.
On the other hand, the numerical integration is much more studied problem as it
has many applications in various fields of mathematics, physics, and engineering. So
one can expect that methods of numerical integration have a higher quality than
ray-tracing method in general.

The proposed method offers the possibility to weigh the incident light or emitted
light by a functions preferring some directions for example in the z direction and
suppressing other e.g. close to xy plane. One can formulate computation of criteria
like light return [93], DCLR [152] using this approach.

However, this method fills just the first step in the light modeling. To compute
the split and refraction of divergent beams is more difficult compared to our previous
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method [145]. Although the integrals involved in the first step are numerically solv-
able, the situation becomes more complicated when more reflections occur. There is
clearly a space for further research. The relevant mathematics can be found in [146].

The results achieved can still be used for indication of the light returned by the
stone although not calculating it completely. This information can be used for stone
assessment or stone cut design.
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Chapter 10

Conclusions

This thesis makes a scientific contribution to the modeling of light propagation in
jewelry cut stones and its use for image-based quality assurance in the industrial
context. Research summarized in the thesis was motivated by practical needs from
the bijouterie industry. The thesis also benefits from extensive experience in building
machines for quality assurance of jewelry cut stones.

There are several interesting tasks related to cut stones. Their shapes have to
be designed according to user requirements. Cut stones have to be evaluated in
the production to answer whether the product specifications are met. The already
manufactured stones have to be valued and their quality has to be assessed. The
image-based assessment of the cut stone also provides a feedback to improve the
production itself.

In our previous work, we proposed the beam-tracing model [145, 82], that enables
the simulation the propagation of collimated light beams in transparent polyhedral
stones.
The contribution of this thesis to the beam-tracing model is threefold:

First, we show that the propagation of collimated light beams in polyhedral stones
can be represented by a graph, see Chapter 6. The graph representation includes node
and edge attributes describing radiometric and geometric properties of the propagated
beams.

Second, the radiometric part of the model was extended to absorbing stone mate-
rials. The method is based on Beer’s law of exponential attenuation of the light [76].
The developed method enables evaluating the radiant flux of a collimated beam re-
flected or refracted multiple times within a polyhedral object. The input to the
procedure is the irradiance or Stokes vector of irradiances of the beam at the entrance
to the absorbing media, the refraction index and the attenuation coefficient of the
stone material, and geometry of the experiment. See Chapter 7. Color stones make
a significant fraction of the cut stones manufactured. Incorporating absorption into
the model allows to simulate the propagation in color stones.

Third, the thesis focuses on a more general geometrical model of stones. Real
stones always have, for various reasons, round edges. Although from the radiometric
point of view, the contribution of round edges is usually negligible and the reflec-
tions and refractions on the edges produce observable artifacts in images seen in real
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experiments. The stones illuminated by collimated beams of light not only produce
expected concentrated spots (traces) on the screen, but also protrusions from each
spot. We provide the explanation and mathematical description of these traces in
Chapter 8.

Also presented is a mathematical model of stone with rounded edges. The geome-
try of the rays emanating from the edge illuminated by a collimated beam is studied.
The rays emanating from realistic edges lie on a conic surface with the cone axis in
the edge. As the curvature of the edge is not constant, in most cases, the only visible
part of ray traces on the screen, surrounding the stone, is close to the light traces for
beams with sharp edges. Some light rays are reflected on the edges to the stone inte-
rior. Subsequently, light rays are reflected in the stone multiple times. The analysis
shows that part of such rays passes through the same facets as the beam illuminating
the edge. This subset of rays produces an observable protrusion trace on the screen.

The mathematical model explains the experimental data. We illuminate the stone
by the a collimated beam in the physical experiment. The beams emanating from the
stone fall onto the screen whose image is captured by a camera. Besides theoretical
understanding of the appearance of screen images from such experiments, the main
contribution of this observation is its use in the inverse problem [83]. The inverse
problem aims at reconstructing the stone proportions based on observing the colli-
mated beams emanating from the stone after its illumination by a collimated beam.
Until now the main obstacle in solving the inverse problem was the correspondence
problem. One has to correspond the physically observed trace matches to the simu-
lated beams in the computer model. The protrusions and their orientations are visible
in the screen photos and also can be simulated in the extension of the original LADOK
program package [145].

The novel approach presented in Chapter 9 avoids ray-tracing [152] and beam-
tracing [145] altogether. The stone design maximizes a mixture of characteristics,
many of them radiometric. Both ray-tracing and beam-tracing can, up to some degree,
calculate radiometric characteristics like light return [93], DCLR [152]. The tracing
methods are time consuming and can be inaccurate due to problems with sampling
the ray or beam space. Our approach suggests to use methods motivated by integral
calculus where radiant flux is calculated by integrals. The thesis presents a solution
for the first optical interface only, but the methodology can be used for multiple
interfaces as well.
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5. Dostálová, T., V. Smutný, and R. deKanter (1998). Obrazová informace ve stom-

atologii jako základ zdravotńı dokumentace. In Czech. Praktické zubńı lékařstv́ı
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19. Dostálová, T. and V. Smutný (1997). Dental Archives Based on Images. In: Medical
Imaging 97. Ed. by S. Horii and G. J. Blaine. Vol. 3035. Newport Beach, California:
SPIE, pp.301–308.
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24. Smutný, V., V. Hlaváč, and P. Palatka (1998). High Precision Measurements of
Small Backlit Objects in Mechanical Engineering. In: IECON’98 : Proceedings of
the 24th Annual Conference of the IEEE Industrial Electronics Society. (Aachen,
Germany). Ed. by P. Drews. Vol. 2. IEEE Industrial Electronics Society. Piscataway,
USA: Institute of Electrical and Electronics Engineers, pp.1226–1229. isbn: 0-7803-
4503-7.
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