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Abstract

This thesis is concerned with stochastically optimal adaptive control strategies and their
so-called active adaptive modifications, which represent computationally feasible approxi-
mations of dual control. A control strategy is called stochastically optimal, if it optimally
solves a given control problem defined for a stochastic system, i.e. a system, the behavior of
which is described by the means of probability theory. The thesis is particularly concerned
with analysis of the cautious control strategy. The term active adaptive then means, that
the control strategy adapts to new information about the system and at the same time
actively examines the system and aims to induce such response from the system that brings
as much information as possible, while not violating the control performance more than
allowable.

The first part of this thesis contains derivation and analysis of the cautious controller
of a general ARMAX model with known MA part. A complete analysis of convergence of the
associated cautious Riccati-like equation is presented, which is important when extending
the control horizon to infinity to find a steady state controller. It is also shown that a finite
steady state control law exists even in the case of divergence of the cautious Riccati-like
equation. Because the results are formulated for an ARMAX model, they are applicable to
a wide range of linear dynamical systems.

The second part of the thesis proposes novel active adaptive control algorithms. It
starts with a single-step algorithm for an ARX system based on cautious control. Extension
of this algorithm to multiple step is possible, but has not been studied because of the
inconvenient properties of cautious control derived in the first part of the thesis. Multiple
step adaptive active algorithms based on information matrix properties are presented next,
including the so-called ellipsoid algorithm that is studied in more detail. These algorithms
are based on a two-phase bicriterial approach, which means that an initial control is first
found using a classical control design method (MPC is usually used throughout the thesis)
and this control is afterwards altered to achieve active excitation. The thesis also presents
a conservative convexification of the ellipsoid algorithm that makes it solvable for higher
dimensional systems, where the original nonconvex algorithm becomes infeasible.






Abstrakt

Tato dizertacni prace se zabyva stochasticky optimalnimi adaptivnimi strategiemi fizeni
a jejich takzvanymi aktivnimi adaptivnimi modifikacemi, jez predstavuji spocitatelné apro-
ximace dudlniho Fizeni. Strategie fizeni se nazyva stochasticky optimalni, pokud optimalné
fesi dany problém fizeni stochastického systému, tj. systému, jehoz chovani je popsano po-
moci nastroju teorie pravdépodobnosti. Prace se zejména zabyva analyzou opatrné strategie
fizeni. Pojem aktivni adaptivni potom znamend, Ze se dand strategie Fizeni piizpusobuje
nové ziskanym informacim o systému a zaroven systém aktivné zkoumd s cilem vyvolat
v systému takovou odezvu, kterd poskytne co nejvice informaci, aniz by bylo poruseno
splnéni pozadavku na Fizeni vice, nez je pripustné.

Prvni ¢ast prace obsahuje odvozeni a analyzu opatrného reguldtoru pro obecny
ARMAX model se zndmou MA ¢ésti. Uvedena je kompletni analyza konvergence piidruzené
opatrné Riccatiho rovnice, coz je dulezité pro prodlouzeni horizontu fizeni do nekoneéna
a nalezeni ustdleného regulatoru. Dale je ukazano, ze konetny ustdleny zakon fizeni existuje
i v pfipadé divergence opatrné Riccatiho rovnice. Jelikoz jsou vysledky formulovany pro
ARMAX model, jsou aplikovatelné pro Sirokou tiidu linearnich dynamickych systému.

Ve druhé ¢asti prace jsou navrzeny nové aktivni adaptivni algoritmy fizeni. Nej-
prve je uveden jednokrokovy algoritmus pro ARX systém zalozeny na opatrném Fizeni.
Mozné rozsiteni tohoto algoritmu na vicekrokovy je popsano, ale nebylo studovano kvuli
nevhodnym vlastnostem opatrného fizeni odvozenym v prvni ¢asti prace. Dale jsou odvo-
zeny vicekrokové aktivni adaptivni algoritmy zalozené na vlastnostech informaéni matice,
veetné takzvaného elipsoidového algoritmu, ktery je studovan detailnéji. Tyto algoritmy jsou
zalozené na dvoufazovém postupu, coz znamena, ze je nejprve klasickou metodou nalezeno
prvotni fizeni (v celé préci se pouziva pro tento tucel MPC), a toto fizeni je ndsledné upra-
veno tak, aby bylo dosazeno aktivniho vybuzeni. Prace také navrhuje konzervativni konvexni
modifikaci elipsoidového algoritmu, ktera umoznuje jeho fesSeni i v piipadé systému vySsi
dimenze, kde ptuvodni algoritmus selhava kvuli vypocetni naro¢nosti.
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Chapter 1

Introduction

Various techniques and methods exist for designing control algorithms, from rather simple
methods based on basic characteristics of the controlled system such as oscillation frequency
or bandwidth, to methods exploiting advanced optimization techniques that use sophisti-
cated system models. If the controller design relies on a model of the controlled system, the
model quality and accuracy is an important factor influencing the performance of the re-
sulting controller. The model can rarely describe the behavior of the system exactly. Many
classical design methods such as pole placing or the classical linear quadratic (LQ) controller
assume at the time of design that the model is exact and rely on inherent robustness of the
design methods, i.e. on the ability of the controller to cope to a certain extent with different
behavior of the controlled system.

Robustness of a controller can be analyzed by determining the nature and amount
of uncertainty in the model (e.g. the gain and phase margin) that still does not significantly
jeopardize the control objectives such as stability or overshoot. Methods also exist to include
the assumed uncertainty of the model into the design process, thus developing a controller
that is apriori robust to the modelled uncertainty. These methods include frequency domain
based design using additive, multiplicative or even structured uncertainty models and finding
the optimal controller via 1 or similar optimization techniques [54] [63].

The uncertainty in the model is not always caused only by inaccurate approxima-
tion of the system. Even if the model is quite accurate at the time of design, the system
behavior may change over time, which may lead to deteriorated performance. Methods of
adaptive control aim to solving these problems by observing the system behavior, detecting
its changes, improving the knowledge about the system and adapting the control algorithm
accordingly. The use of adaptive methods is obviously not limited to control of time-variant
systems, they may be as well convenient for designing self-tuning regulators that improve
their performance with the use of the knowledge gained from observation.

Adaptive methods may be divided into two groups — methods that use identifica-
tion to improve the model and then adapt the control algorithm based on the new model
(indirect methods), and methods that directly adapt the algorithm without identification



(direct methods). The former adaptive methods must therefore also include identification
algorithms that make the adaptation possible.

This thesis is concerned with stochastically optimal control strategies and their so-
called active adaptive modifications. A control strategy is called stochastically optimal, if
it optimally solves a given control problem defined for a stochastic system, i.e. a system
the behavior of which is described by the means of probability theory. These strategies
naturally use discrete-time-domain models described by some parameters that are considered
uncertain (or unknown) and the goal of the adaptation process is to identify these parameters
with a sufficient accuracy. The term active then means, that the control strategy actively
examines the system and aims to induce such response from the system that brings as much
information about parameters as possible, while not violating the control performance more
than allowable.

The goal of the thesis is to examine existing stochastically optimal control strategies
and to propose new active adaptive strategies in time domain as computationally feasible
approximations of dual control. These strategies should be designed for linear discrete-time
system models with uncertain parameters, preferably the ARMAX model. The next goal
of the thesis is to analyze properties of cautious control. Although cautious control plays
an important role among stochastic control strategies, the goal is to show, that it uses
an unrealistic uncertainty model and that the interpretation of its results is problematic,
especially when trying to extend the problem to an infinite control horizon. Attention is
therefore particularly given to analyzing the limit behavior of the cautious linear quadratic
controller, including its convergence to a limit solution and the closed loop stability of this
solution, and consequently also the use of cautious control as a basis for developing the
active adaptive strategies.

Some of the problems addressed in the thesis, such as cautious or dual control, were
defined in the 60’ and 70’ of the 20th century. The concept of dual control and cautiousness
comes from [I7, 18] and was further developed in [7,[8,[42] and [43]. The term active adaptive
control appeared in [56] and [57]. The problems of controlling an uncertain system, modeling
the uncertainty and improving the knowledge about the system are, however, still intensively
studied, as for example in the books [10, 19] or more recent publications [26] [33] or [15] and
[16].

The next sections of this chapter are concerned with definitions of terminology used
in this thesis. We will not use formal mathematical definitions in this section, as the goal
is not to define these commonly used objects properly, but rather to put them in the right
context and explain their usage. We will particularly focus on time-domain uncertainty
modelling and on stochastically optimal control strategies based on these uncertainty models.

1.1 Time-domain system models
The use of probabilistic methods in uncertainty description in time-domain models is usual,

however, there may be various sources of uncertainty in the system description and the
use of probabilistic methods should be considered carefully. Therefore we will first present
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Figure 1.1: Asynchronous sampling of a continuous system with sampling interval Ts. The control
law computation indicated by the arrows takes place within the time interval T.. First, the state
estimate is calculated using the output measurement. The control input is then generated according
to the control law uy = ux(zk).

a general analysis of uncertainty modelling. It is important to emphasize, that we are
considering discrete-time systems according to the Figure [[LT] throughout the thesis. The
figure shows, how a deterministic system is created by asynchronous sampling of a continuous
system, i.e. the input and output of such system are sampled at different time instants. One
consequence is, that we always assume a direct influence of input uj on output yx. Second
consequence of this assumption is that when estimating x1 from information including yx,
the yy, is sampled short before xx 1 and therefore contains more information than if it were
sampled at the same instant as uy. This information is expressed by correlation between the
output noise and the process noise in the stochastic system description later in the chapter.

1.1.1 Deterministic system

A deterministic discrete-time system is described by the equations

Thr1 =[Ok T, uk), (1.1)

ye = 9Ok, Tk, up),
where, as usual, ug, yr and xp denote the system input, output and state, respectively.
The variable 6 represents dependence of the function f on some parameters, which may be

generally time varying. An example of such system is a deterministic discrete-time linear
system

Tk+1 = Arxi + Brug, (1.2)
yr = Crar + Dyug,



where Ay, By, C, and Dy, are (generally time-varying) matrices of appropriate dimensions,
which are parametrized by 0.

1.1.2 Stochastic system

A stochastic discrete-time system is a system, where the state transition cannot be described
by a deterministic function, but rather by a probability distribution. We will use a condi-
tional probability density function (c.p.d.f.) to describe the joint distribution of zj4; and
yr and their dependence on g, ur and 60y, i.e.

P(Yks Tht110k, The, uk). (1.3)

The reason why we use the joint c.p.d.f. is that due to the sampling scheme depicted
in Figure [[J] the output ¥ and state xpy1 are not conditionally independent. In some
situation, it is useful to work with the marginals of the joint distribution (L3, i.e.

(ks 1|0k, 21, ur)

for the state and similarly for the system output

P(Yk|Ok, Th, Uk )-

However note, that for the evaluation of the control law uj  ; = uj ; (%x41), the full infor-
mation about the state x11 is represented by the c¢.p.d.f p(zk+1|0k, Tk, uk, yr), as indicated
by Figure [LT1

Stochastic systems usually model random influences on systems that are not directly
explained by the system. These influences may include unmeasurable input noises of various
sources like temperature, air pressure or surface unevenness as well as sensor measurement
noise and other influences. The use of probability distributions to describe these effects
is justified by their usually random and unpredicable nature. An example of a stochastic
system is a linear stochastic system

Tpt1 = Az + Brug + Vk, (14)
yr = Crap + Dyug + e,
where vy, is the process noise which models disturbances affecting the state dynamics, and ey,

is the measurement noise that models the disturbances affecting the measurement process.
These random variables are usually considered to be white gaussian sequences, i.e.

]~ (s 7))

The matrix S is generally nonzero due to the assumed correlation between the process and
measurement noise.

We will now introduce some properties of stochastic systems that we assume further.
Let us first define the data set D* as

Dk:{uoa"'aukvyOa"~7yk}~ (15)



The state of a stochastic system was defined in [45] as such quantity, that satisfies the state
property

Pk, Tri110, 2x, ur, D) = plyk, 2a11 10, 2h, ui),
i.e. the data set D*~! cannot improve the information about y; and 41 if the state xyp,

is known. The state thus contains all information about y; and 41 that is present in the
data set D*~1. The natural condition of control introduced by [45] states that

p(x0,ur, D*7Y) = p(ay]0, DY),

which says that the information about the state zj, cannot be improved by adding the control
uy, to the information in D*~'. This holds if the control uj depends only on D*~1.

1.1.3 Perfect and imperfect state information

The c.p.d.f. (I3)) depends on zj and 0. If both z; and 0 are known at time k, then the
c.p.d.f. (L3) can be directly used for modelling the system behavior. In such situation we
say that we have a perfect state information and the system has no uncertain parameters.
Let us now assume that the state zj is unknown at time k£ and we only have the information
about inputs and outputs, i.e. at time k we know the data set D* and the input uy. Let us
also assume that the parameters are known and constant, i.e. 8, = 6. With this knowledge,
we can use the c.p.d.f. (L3) to express

P(Yk, Tt |0, wp, DF 1) = /P(ykaxkﬂw,xk,Uk)P(ka,Dk*l) dxy, (1.6)

where we used the state property and the natural conditions of control introduced above.
The expressions on the right-hand side of (L)) are the model (3] and the c.p.d.f.
p(zx|0, DF~1) that is called the state estimate. For a linear system (L4), such c.p.d.f. is
calculated by a Kalman filter and it is a p.d.f. of the normal distribution N (&g, Py k).
We can use (L) for two purposes. One is to predict yx and x11 in an open loop,
based on the data D*~! and input ug, which can be done either jointly, using directly (L8],
or marginally, for example as

p(@p1]0, up, D) = /p(yk7$k+1|97uk,73k71) dyg,

which is used when x4 must be predicted prior to measuring y;. The second purpose is
to express the update of the Kalman filter, i.e. the transition

p(zk]0, DY) — p(axia]6, DF),
which can be done formally as

(ks Try10, up, D)

T 0, D
( k+1| fp yk?xk+1|9 uk;Dk 1) d$k+1

(1.7)

The Kalman filter prediction is a closed loop prediction, as it also uses the output yy.



Note 1.1. The assumption 6, = 0 was made for simplicity of notation. However,
we could easily work with time-varying parameters 0; similarly as with the data,
by defining a parameter history set

0" = {0o,...,0:}

and conditioning by this set instead of by 6. The derivation would then be analo-
gous to the presented one, adding the assumption

p(zk|©F, D* ) = p(zx|©* ", D),

which says that the current parameter cannot influence the estimation of the cur-
rent state.

Note 1.2. If the parameters are known, they are usually omitted from the con-
dition of c.p.d.f.’s and their influence is assumed to be implicitly given by the
function p, e.g.

P(Th+1]0k, Tr, Uk) = Po,, (Trt1|Th, uk) = P (Tht1|Th, uk).

However, we keep the parameters in the condition, because it allows us to naturally
proceed to the uncertain parameter case.

1.1.4 Uncertain parameters

If the parameters of the model are unknown, we speak about a model with uncertain pa-
rameters. The concept of uncertain parameters is used to describe those systems, models
of which have a given structure, parametrized by a parameter vector 6. For example, the
structure of the given system can be a stable linear first order system with gain 1 with an
unknown time constant 7 as a parameter. The parameters can be constant or time-varying,
in which case we also need some model of parameter development. Similarly to the noise (or
disturbance) in stochastic systems, uncertain parameters are a way to include a specific kind
of uncertainty in the model. Unlike the inherently stochastic nature of noise (disturbance),
the uncertain parameters do not model unpredicable events or random dynamics, but they
express subjective knowledge about the system at the time of controller design. This lack
of knowledge is often described by bayesian probabilistic methods, because the probability
theory is a useful tool for uncertainty description. However, we should keep in mind that
the parameters are not really random, but only the knowledge about them is modelled in
such way. Therefore we should also be careful when interpreting the results of some control
strategies, where the stochastic modelling of parameters plays a central role, like for example
the cautious control.

Depending on the situation we need to model, we can have both deterministic and
stochastic systems with uncertain parameters, both with perfect and imperfect state infor-
mation. However, it is mostly assumed, that systems with uncertain parameters are also
stochastic in the sense of Definition (IL3]) and that we do not have perfect state information.
We will also assume that the parameters are constant, i.e. 0, = 6, or slowly time-varying.



Note 1.3. Similarly to Note[[.I] we could also introduce time-varying parameters
0k. This time, however, we would have to define the joint c.p.d.f.

P(Yk, Tt 1, Ot 1|0k, Ty ur)

and then proceed analogously, treating the parameter vector similarly as the state.
Involving time-varying parameter model leads to increasing the parameter uncer-
tainty by a certain level. For example, assuming a random walk model of param-
eter development, 0,411 = 0 + vk, leads to a constant matrix Vi = varv, being
added to the parameter variance matrix in each step of the estimation algorithm,
i.e. Pyy1 = Pr + Vi. However, the time-varying parameter model is usually not
available and thus cannot be used directly in estimation algorithms. The lack of
this knowledge is then solved by introducing some heuristic methods for increas-
ing uncertainty, called forgetting, that keep the uncertainty above a certain level.
Forgetting is important, if the estimation algorithm should react on parameter
changes — one consequence of the constant parameter assumption is that the un-
certainty is only decreasing and after some time the uncertainty is already low
enough and new data has little or no impact on the parameter estimate. Forget-
ting forces the uncertainty to increase and thus also the algorithm to take the new
data into account. We will however use constant parameters for simplicity and
assume that modification by forgetting may be added later.

For uncertain parameters we have to generalize the equation (L) in the following way

(ks Thp1|u, D) = /p(yk7$k+1|9;$kauk)p(9a$k|uk7IDk71) d(o, xy), (1.8)

where the state property was used. Note that the natural conditions of control cannot
be easily used here, as the quality of parameter estimation may depend on the input wuy.
Equation (L) is important, because it describes the way in which the imperfect state
information and parameter uncertainty influence the state prediction. Various stochastically
optimal control strategies differ in the way they model this influence, i.e. what assumptions
about the c.p.d.f. p(6, z|ux, D¥~1) are made.

Note 1.4. It might seem that there is formally no difference between the state
and parameters, as both of them play a similar role of some internal, hidden
variables in the equation (L8). Indeed, there are situations, where the role of
states and parameters can be switched over to obtain interesting results, as will
be for example showed in Section [2.I} where the simultaneous state estimator and
parameter tracker for ARMAX model is derived. However, an important difference
is the state property, i.e.

P(Yis Tt [Th, ke, D) = p(yk, Ths |oe, un).

The parameters do not have this property. This is crucial for control design, be-
cause the control must use all available information. If the state did not contain
this information, any control depending only on the state would be suboptimal.
Therefore, the state must contain all important information from the past data
D*~1. On the other hand, moving all uncertainty to the state vector is also not



possible. Doing so could lead to needlessly complicated models (e.g. an originally
linear model might become nonlinear) or to losing important properties like con-
trollability or observability. Parameters are also often easier to estimate, because
they are mostly considered constant.

1.2 Stochastically optimal control strategies

A control problem in time domain is usually specified as finding such manipulated input

sequence ug, . .., uy_1 that minimizes the cost function or control criterion in the form of
N—-1

gn(zn) + Z gi(ui, i), (1.9)
i=0

where g; assigns a cost to each combination of u; and x;, and N is referred to as control
horizon. To find the optimal control u}, one should use all information available at time i,
therefore the optimal control u; is usually expressed as a function u} of the state z;, i.e.

u; = p (). (1.10)

We can then define the optimal value of the cost-to-go function, i.e. the criterion (L9
calculated from time k to N as
N—1
Ti = gn(en) + Y gi(u; (i), ). (1.11)
i=k
It can be shown that if the criterion is additive, e.g. in the form (L), the dynamic pro-
gramming approach can be used, making use of the Bellman equation, that says

Ti(wx) = min [gr (@, w) + T ()] (1.12)

where the cost-to-go function at time £ is a function of the state xg.

The formulation (II2) is only valid for deterministic systems, where the future
state xg4+1 can be predicted using equation (LI)). For stochastic systems with perfect state
information, the criterion is a random variable and therefore it must be reformulated using
the expected value E[-] as

J,:(xk) = II;}CHE [gk(xk,uk) + J]:Jrl("EkJrl) | :ck,uk,G] . (113)

If there are no uncertain parameters, this expression can be evaluated using the state pre-
diction model

p(@k+10, 2, uk).
In the case of imperfect state information and uncertain parameters, the optimal criterion

value J is a function of the data D¥~! rather than directly of the state z) and the following
conditional mean must be used on the right-hand side of (LI3))

Jo(DHY) = minE [ge(ep ) + Jiyy (DY) | ug, DF1) (1.14)



To evaluate the conditional expected value in this expression, it is necessary to use the
following distributions:

e state prediction p(xy41|ug, DF1),
e joint state and parameter estimate p(6, xx|ug, D¥1).

Expression (LI4) does not explicitly depend on parameters 8, however, the joint state and
parameter estimate is necessary for the state prediction, as shown in (L8]).

We will now describe various control strategies based on Bellman equations (I12)
and (ILI3)), and approaches to modelling the two c.p.d.f.’s above and thus to optimizing the
expression ([LI4]) in case of imperfect state information.

1.2.1 Control of a system with known parameters
Control of a deterministic system

Before moving to more complicated control strategies, let us first show, how the deterministic
case fits in the presented framework. Because a perfect state information is available and
there are no uncertain parameters, the equation ([LI2)) can be used. The state develops
according to the equation (LI). In the presented framework, the state prediction c.p.d.f.
will then be

P(Trt110, Tk, uk) = 8(xpr1 — (0, 2k, ur)),

where §(+) is a Dirac distribution.
An example of such control strategy is the linear quadratic (LQ) control of a deter-
ministic linear system (L2)) based on minimization of a quadratic cost

9i(zi,ui) = o] Qixi +ul Riuy,  gn(an) = 2nQnTN, (1.15)

with symmetrical matrices @ > 0 and R > 0.

Control of a stochastic system

This case is more complicated than the previous one. We assume a stochastic system (3)
and imperfect state information. We have to use both prediction and estimation c.p.d.f.’s,
however, without estimating the parameters 6:

L4 p(xk+1|97 Uk, Dkil)a
o p(xi]0,DFL).

An example is the linear quadratic gaussian (LQG) control of a linear stochastic system
(4], which immediately gives us the prediction c.p.d.f. The cost function is the same as in
the previous case, given by ([LI5]). This case is interesting for the following three reasons.



1. The optimal control is given by the same state feedback as for the LQ control of a
deterministic system with equal matrices A and B, with the only difference, that the
state xy is substituted with its conditional mean 2 = E[x)|D¥~1]. This is an example
of the so-called certainty equivalence principle which says, that random variables in
the problem may be substituted by their conditional means.

2. The state estimation c.p.d.f. is given by a Kalman filter, which gives p(zy|0, D¥~1) ~
N (&g, Py)- This filter can be implemented independently of the controller — thus the
estimation and control parts of the strategy are separated. This is called the separation
principle. It is important that the variances Py i, are independent of control (the state
estimate quality cannot be influenced by the control input) and therefore the natural
conditions of control really hold. This is a great simplification in the derivation of the
LQG controller [10].

3. The value of the LQG cost-to-go function is higher than for the LQ control and the
difference is given by extra terms caused by disturbances and by the uncertainty of
the state estimation.

1.2.2 Control of a system with uncertain parameters
Certainty equivalent control

We have seen in the previous case that the certainty equivalence principle holds for the
state of a linear system when designing the LQG controller. Many other stochastic control
strategies use certainty equivalence to simplify calculations or to make these calculations
possible at all. In these cases, however, we talk about certainty equivalence (CE) hypothesis,
as the substitution of random variables by their conditional means is not justified theoret-
ically (and thus leads to suboptimal results), but rather serves as an effective method for
simplification. This approach is widely used in adaptive control, see e.g. [24], and is also
used as a basis for multiple-step algorithms in this thesis. In this framework, we will have
the joint parameter and state estimate in the form

p(0, i, D) = play]0, DF1)5(0 — EIO|DH 1),

where we assume E[§|D*"1] = E[f|uy, D*~!], i.e. the conditional mean of @ at time k is
independent of the input uy.
Integration with respect to 6 then yields the marginal distribution

Pz DFY) = p(ak |0, DFY),

and similarly for the prediction c.p.d.f.
P(xppfug, DF) = /p($k+1|ék;$k7uk)p(xk|ékapk_l) d g,
where we have used the notation 6, = E[§|DF1].

10



An example of such strategy can be an LQG controller for a linear system with
uncertain parameters. Using certainty equivalence, both the controller and the (extended)
Kalman filter are designed as if the parameters were equal to their current estimates (con-
ditional means).

Note 1.5. We have so far only considered one-step predictions that must be used
in the Bellman equations (LI2) and (LI4]). This could lead to an impression,
that similarly to the certainty equivalence of the state, the estimate O can be
used in the step k. However, this is not so. Although the control criterion of the
LQG controller at time k = 0 does not depend on the value of Zx, k > 0, but
only on %o and the variances P, i, k =0, ..., N that can be precomputed, it does
depend on the parameter values which cannot be precomputed. In other words,
the separation principle does not hold here, even if the certainty equivalence is
assumed. Because the Bellman equations are solved backwards over the whole
control horizon N up to the time k = 0 and naturally, the estimate 6y for k > 0 is
unknown at time k = 0, the estimate §p must be used in all steps of the solution.

Note 1.6. Of course, the estimate 0 becomes available at time k. An adaptive
version of the CE controller is possible by redesigning the controller according to
the new information at time k. For slowly time-varying parameters, the controller
is usually not calculated completely with the new parameters, but it is updated
by only one step of the Bellman equation, which is called IST (Iterations Spread
in Time) [34].

Cautious control

Cautious control was originally formulated in [I7, 18] and further developed in [43][7] 42] and
[8] or later in [53]. It is often used as a basis for adaptive approximate dual algorithms, such
as in [19] or [20]. Unlike the CE strategy, the cautious control strategy takes into account
the whole c.p.d.f. of the parameters. The problem is that although all the future parameter
conditional means and variances are necessary for the controller design, similarly to Note
they are unknown at time k = 0, because both the future conditional mean and future
conditional variance of parameters depend on future inputs and outputs. On the other hand,
although the same is true for the state estimate, the state conditional mean at time k is
not used before the time k, therefore the controller can ‘wait’ for the estimate. Cautious
control deals with the mentioned problems by introducing the following assumptions about
the future parameter conditional mean and variance.

1. The future means and variances are substituted by the current ones, i.e.

E[fD*'] = E[9D, (1.16)
var[9|D*1] = var[g|D7!],
cov[zy, 0D = covlzg, 0D,

for all £ > 0.
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2. The conditional distributions of parameters at time 7 and j are independent for i # j.
Formally, we need the following

cov <[Z’“] E ({x’gl} ‘ Dk> ‘ D’“) —0, (1.17)

because this expression appears in sequential application of the Bellman equation.

With these two assumptions, the model is equivalent to a model, where the parameters are
independent, identically distributed random variables with the first two moments given by
([LI6). The expressions ([[LI6) and (ILI7) also contain covariance between the state and
parameter, because these cannot be calculated in advance either. However, it depends on
the way states and parameters are estimated. If we assume that state and parameters are
estimated independently, then we can predict the future variances of the states separately
(for example by Kalman filter) and apply the assumptions of cautious control only to the
parameter mean and variance. An example of this approach is the cautious controller for
an ARX model with uncertain parameters. It is possible to find a state-space model with
perfect state information where no state estimation is necessary. The parameter estimate is
then given by recursive least squares and it holds that

p(0|u0aD_1) = N(éo, USP(;);

where o2 is the input noise variance and P is the normalized estimate variance matrix at
time k& = 0. More information also in Chapter [ or in [27].

Note 1.7. If the noise variance o2 is unknown, it can be substituted by an esti-
mate s> with a x? distribution, and the compound c.p.d.f. will have the Student
distribution. The Student distribution however converges quickly to the normal
distribution and therefore this model is usually not considered.

Another example of cautious control is the cautious LQ controller of ARMAX model derived
in Chapter[2l Here the parameter and state estimation are not separated and the form (L16)
is used. Therefore also the future state estimate variances cannot be precomputed.

The assumptions of cautious control make it possible to use stochastic dynamic
programming, as the calculation of individual steps of control can be separated, because the
assumptions remove the dependence of parameter conditional variance on the inputs. The
name ‘cautious’ indicates that the optimal control in the presence of uncertainty tends to
be more careful and thus avoids for example large overshoots if the parameter uncertainty
is high. Analysis of properties of cautious LQ controller for an ARMAX model with known
MA part (the ‘c-parameters’) is a substantial part of this thesis and is presented in Chapters
and [Bl We also discuss some problems of the cautious approach at the end of this chapter
in Section [[.4] where some unfavorable properties are shown on a simple example.

Adaptive modification of the cautious algorithm is straightforward — an updated
controller can be designed after receiving new data and determining the current conditional
c.p.d.f.

12



Dual adaptive control

If the cautious assumptions are not made, the c.p.d.f. p(6, zx|ug, D¥~1) is a function of the
data D¥~1. We usually work with quadratic cost functions like (LI5), and therefore the first
two moments of the distributions are sufficient for evaluating the criterion. Dual control
strategy takes the dependence of future conditional variances on inputs into account. Each
control input has then influence on the future variances and thus also on the criterion value.
In other words, the dual approach allows to minimize the criterion not only via controlling
the future state, but also by decreasing the future conditional variance of parameters. The
optimal dual control thus not only aims to fulfill the control objective while taking the
parameter uncertainty into account, but also excites the system in such way, that some
useful information about the system is gained, and as a result, the uncertainty in the system
is lowered in the future, allowing more reliable control.

The concept of dual control was first introduced by Feldbaum in [I7]. It is known to
be analytically solvable for only very special systems as in [55] or in [4] as it requires solving
a complicated Bellman equation [I0]. The system described in [4] is a simple integrator
with an unknown gain on the input. Numerical solution faces the curse of dimensionality
problem, because solving the Bellman equation by stochastic dynamic programming requires
iterative computations of the conditional mean and its minimization. In a general case, the
complexity of such problem grows exponentially with the dimension.

There exist approximations of the optimal solution based on suboptimal solutions
of the original problem, usually using approximate stochastic dynamic programming as in
[37, 13], or on problem reformulation as in [21], I9] or [20]. The dual control problem is
analysed from the probabilistic point of view in [40] and [39]. An overview of the state-of-
the-art methods is given in [62] and [61] and a profound survey in [23] and [19], where an
algorithm with dual properties is defined as one that cautiously, but also actively gathers
information during the control process, while satisfying the given control performance.

Active adaptive control

In this thesis we propose an approximation of dual adaptive algorithms based on the idea
of persistent system excitation [27]. We call such algorithms active adaptive algorithms,
because they actively collect information about the system via input control and measure
the amount of information by the information matrix. The persistent excitation condition
requires that the information about the system parameters in the sense of its parameter
information matrix is increasing linearly, i.e.

Py =Pt 21 (1.18)

for all ¢ and some given M, where P ! denotes the information matrix (the inverse of
the variance matrix Py) after k steps of estimation, v is a given positive real constant
and I denotes the identity matrix of a corresponding dimension. The inequality symbol
> (>) is used in the positive (semi)definiteness meaning, i.e. for two matrices A and B,
A > B(A > B) means that A — B is a positive (semi)definite matrix. Satisfying the
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persistent excitation condition is a necessary precondition for adaptive control algorithms
to converge [27].

Similar methods based on so-called input design have been intensively studied re-
cently. An input design methods based on frequency domain description is presented in
[26, 33] and [31]. Other input design techniques can be found in [16] and [15] and further
in [28] and [29].

The proposed algorithms are based on a constrained MPC control design, that is
adjusted such that the persistent excitation condition is satisfied for some . The idea of
persistent excitation has been used before in algorithms for simultaneous identification and
control, such as in [Il, 25 41] or [60]. The presented approach solves the task as a two-
phase optimization problem. First, the standard MPC problem is solved and its solution
is used to construct a set of admissible perturbations. Second, the perturbation that most
increases the information matrix in the sense of (LIJ)) is searched in the admissible area.
This is a modification and generalization of the so called bicriterial approach, introduced in
[19], where the control design is also done in two phases. Examples of application of this
approach can be found in [20] and [22].

The proposed methods differ from the approach in [I9] in two main aspects. First,
the cautious controller is not used for the initial control computation, because there might
be serious problems regarding the stability and convergence as shown in Chapter 2] and in
[5L 6]. This is also a difference from the general definition of dual properties by [19], that
requires the dual controller to be cautious. This can be easily eliminated as we show in
Section 3] and that cautious control of ARMAX model can be achieved by CE control
by using properly adjusted cost functions. Second, the proposed algorithm predicts the
information matrix over more than one step of control. It is shown in Section 5.1l how the
multiple-step prediction can significantly improve the parameter tracking performance.

The information matrix prediction is one of the two major problems of the presented
methods, as the prediction based on certainty equivalence assumption is used. However, it
is confirmed by simulations that such prediction is sufficient. The second problem of this
approach is the inherent nonconvexity of the problem formulation that has to be dealt with.
The multiple-step algorithm brings more effective parameter estimation compared to the
single-step methods, but the price has to be paid in terms of higher computational effort.

One of the proposed methods is based on iterative local approximation of the lowest
eigenvalue function by quadratic forms. The term ‘lowest eigenvalue function’ is used to
denote a function that assigns the lowest eigenvalue to a matrix, the elements of which
are functions of given variables. In this case, this is the parameter information matrix,
which is a function of system inputs. This simplification makes it possible to solve the
problem effectively for low-dimensional systems. A conservative partial convexification of
this problem is also presented in Section [6.5], thus making the method usable also for higher
dimensional systems.

The methods are derived for single-input single-output (SISO) autoregressive mod-
els with external input (ARX), but modification for a general ARMAX model with known
moving average (MA) parts is possible. Because they are based on perturbation of the con-
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trol trajectory generated by an MPC controller and on a simultaneous control and recursive
identification, they are based on a very general principle and as such, the modification is
available for any controller that is adaptive and any identification algorithm, the accuracy
of which can be measured by the information matrix.

1.3 Thesis structure

The first part of this thesis contains derivation and analysis of the cautious controller of a
general ARMAX model with known MA part. Chapter[2 contains derivation of the controller
and of the simultaneous parameter and state estimator for this model. These results have
already been derived in [30, [45] and [59], but the results presented in Chapter 2lare shown in
a more compact and understandable form. Chapter [3] then contains a complete analysis of
convergence of the so-called cautious Riccati equation that arises from the cautious control
problem for ARMAX model. Convergence issues are important when extending the control
horizon to infinity to find a steady state controller. These issues have been studied in
[6L 6] for scalar systems and systems with a specific structure of uncertainty. The presented
analysis is new and covers more general systems. It is also shown that a finite steady state
control law exists even in the case of divergence of the cautious Riccati-like equation.

The second part of the thesis proposes novel active adaptive control algorithms.
Chapter M starts with a single-step algorithm for ARX system based on cautious control.
Extensions of this algorithm to multiple step is possible, but has not been studied for incon-
venient properties of cautious control. Multiple step active algorithms based on information
matrix maximization are presented in Chapter Bl Chapter [l contains the so-called ellipsoid
algorithm that is studied in more detail. It also presents a conservative convexification of
the algorithm that makes it solvable for higher dimensional systems. Simulations are usually
shown at the end of each chapter.

1.4 Problems of cautious control

The bicriterial approach in [19] suggests using cautious control as the initial control ug, with
the aim to control more carefully in case the parameter uncertainty is high. The goal of
this section is to show problems that arise when using cautious controllers as the primary
solutions and thus to justify the use of certainty equivalent controllers. The problems
are illustrated on a simple first order system controlled by a cautious modification of the
minimum variance controller, but they remain valid for more sophisticated controllers such
as the cautious LQ controller presented in Chapter
Let us consider an autoregressive system with external input

Yk = ayg—1 + buyg + ex (1.19)

with ug, yr and ej denoting the system input, output and noise, respectively. The noise ey
is assumed to be gaussian white noise with variance ¢2. The minimum variance controller
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is a controller based on minimization of the criterion
uf = argmin E(yx — r)?, (1.20)
U

which for this system has the form

a,r

up = 3 (= = Yk-1), (1.21)

where r denotes the reference value, see [I9] [I0]. Let us now consider the case when the
system parameters are uncertain. By uncertain it is meant that they are not known exactly,
but they remain constant or change slowly in time. However, a cautious modification of
the controller (L20) is gained when the uncertainty of the system parameters is described
by the parameter conditional expected values and variances, with & and b denoting the
conditional expected values and o2, a? and o4, denoting the conditional variance of a,
b and the covariance of a and b, respectively. Cautious control thus in fact interprets
the uncertainty in a probabilistic way, assuming the parameters to be random variables,
identically distributed, independent in time and independent with the system noise. This
interpretation is already inconsistent with the uncertainty assumption made above in Section
[LT which is a conceptual problem of cautious control. Minimization (L20]) then yields the
following cautious modification of the minimum variance controller

b Btow, (1.22)
b2+o0f  b2+o0}

see [I9] [I0]. Such a controller is not robust (only the overall unit gain of the control loop
is assured, but tracking is achieved only for a precise nominal model) and is used only for
illustrative purposes. In contrast to the cautious controller, the certainty equivalent (CE)
controller has the same form as (I.ZI]), where the actual parameters are substituted with
their expected values. Certainty equivalence thus simply assumes the expected values to be
correct estimates and the controller is thus designed for the nominal system.

We can see immediately that the control design does not take the uncertainty of the
dynamics into account, as it only depends on a? and ogp, so it is not very helpful in case
the dynamics is uncertain. Let us next assume that parameter a is known precisely, so the
only uncertain parameter is b. The cautious controller has now the following form

b T (1.23)

*_
Uk = 75 2
b +o; a

Let us assume a zero reference signal, then the closed loop system is

ye =a(l — = )Yk—1 (1.24)
b

and the closed loop eigenvalue is a(1 —bb/ (b2 +02)). For a nominal system, where b = b, this
value lies in the interval [0, a), depending on the uncertainty ag and if a > 1, the closed loop

16



0.35

B cautious
C

0.3

0.25

0.2

0.15

0.1

0.05

Figure 1.2: Areas of stability for a cautious and CE controller applied to a first order ARX system
with @ = 4 and an uncertain input gain b. The Figure shows the probability density function of the
parameter b and the intervals of the actual values of b for which the cautious and CE controller are
stable, respectively. The colored areas correspond to probabilities of a closed loop being stable.

may become unstable for the nominal system if af is sufficiently large. Figure shows the
regions of parameter b for which the closed loop is stable. The depicted situation describes
a first order ARX system (1) with parameters a = 4 and b uncertain with mean b = 1
and o2 = 2. While the nominal system lies in the center of the stability interval of the
CE controller, it is clearly not stabilized by the cautious controller. The presented example
shows this effect only for unstable systems (|a| > 1), but this is not true for more complex
systems, where also a stable nominal system can be destabilized by cautious controller.

The stability of the nominal system might not be a crucial requirement for stochastic
control, if for example the probability of the system being stable is increased. However, this
is also generally not the case. The probability is equal to the area under the probability
density function in Figure Increasing the variance 05 moves the stability interval of
cautious control further to the right, so eventually, the area gets smaller than the area of
the CE controller, as shown in Figure [[.3] where the situation is shown for a = 1.5 and
(Tg = 100.

Problems also arise when trying to extend the problem formulation to infinite hori-
zon. It can happen that the criterion value goes to infinity, as pointed out in [5] and [6],
where the situation is analyzed for a first order system and a general system with specifically
structured uncertainty, respectively. The limit feedback gain, however, converges to a finite
value even if the criterion is infinite, so a time invariant control law might be still evaluated.
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Figure 1.3: Areas of stability for a cautious and CE controller applied to a first order ARX system
with a = 1.5 and an uncertain input gain b. Similarly to Figure the intervals of stability are
depicted. It is clearly seen that the probability of cautious control being stable is lower than the
probability of the CE stability interval.

The problem is, however, the same as in the previous case and that is the unstable nominal
closed loop system and a low probability of closed loop stability.

It was already mentioned in the previous section, that if the system parameters are
unknown, they are described as uncertain. Using bayesian approach, parameter uncertainty
can be described, using probability densities to express the available knowledge about the
parameter values. This is the case in bayesian identification algorithms [I2] or in standard
recursive least square methods [27]. However, it is important to realize that uncertainty does
not necessarily mean randomness. In reality, it is much more likely that the parameters will
stay constant or change slowly. The probabilistic description of uncertainty thus does not
express the parameters themselves but rather our knowledge about them.

Cautious control is strongly incoherent with this interpretation as it assumes that
parameters at different time instants are identically distributed independent random vari-
ables. When designing a cautious controller over a horizon of N > 1 steps, it is assumed
that the parameters have a different value at each step, according to their joint probability
density. In such case, the system behavior would depend strongly on the parameter expected
values that express the system ‘average’ behavior. On the other hand, the real system will
behave according to the real parameter values, which may differ from the ‘average’ case.

Another approach to computing the criterion value over steps 2, ..., N would be to
assume that the parameters remain constant over the control horizon, and so their (marginal)
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distributions are the same for all k =2,..., N and are given by the estimate at time k = 2.
Under this assumption the parameters are no longer independent. The criterion value would
then be computed as a mean of the criterion on the whole horizon with respect to the (initial)
parameter distribution. Extension of this approach to infinite horizon brings even bigger
problems, because as soon as there is a set of parameters with nonzero probability for which
the controlled system is unstable, the criterion is infinite. This is indeed the case of the
gaussian assumption of parameter distribution.

For illustration, recall the criterion convergence problem mentioned above. If the
criterion evaluation is based on the cautious assumption, it may or may not happen that
the limit criterion value is finite. If it is finite, it means that the controller works well for
the ‘average’ system, even if there is a nonzero probability of the closed loop system being
unstable. In reality, however, the criterion value must always diverge if there is a nonzero
probability of an unstable closed loop.

These remarks show the importance of choosing a proper model for parameter un-
certainty and that extension to infinite horizon may not be as straightforward as for deter-
ministic systems or systems with only input uncertainties.
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Chapter 2

Cautious LQ control of
ARMAX model

The first section of this chapter shows the derivation of a simultaneous parameter and state
estimator (tracker) for a general ARMAX model under the assumption of perfectly known
MA part (c-parameters). The tracker has already been derived in [30} [45], but we propose a
simpler method based on a classical Kalman filter design. The second section of the chapter
presents derivation of a cautious modification of the linear quadratic (LQ) controller for
the ARMAX model, again under the assumption of known c-parameters. Such controller
has already been derived in [59] using similar techniques as in this chapter, the presented
method is however new due to a more convenient choice of the state-space representation
of the ARMAX model, thus leading to simpler and more compact results. The parameter
and state estimator forms a counterpart to the cautious LQ controller in the sense that
the results of the estimator (estimate of the current state and parameter vector) form a
necessary input to the controller, as will be shown in Section

The general ARMAX model is described by the equation

n n n
Uk =) aiyk—i+ Y big_i+ Y cier i, (2.1)
i=1 =0 =0

where yi, ur and ex are the system output, input and input noise at time k, respectively.
As mentioned before, the parameters ¢; are assumed to be known as well as the observed
(directly measurable) inputs and outputs, uj and yi, while the parameters a; and b; and
the input noise ej are unknown. According to the terminology introduced in Section [LT]
the unknown parameters a; and b; are considered uncertain, because they are unknown but
probably constant or changing slowly, while the noise ej, is a source of random disturbance
in the system and it is assumed to be a gaussian white noise process, i.e. e ~ N(0,02) and
cov(e;,ej) =0 for ¢ # j.

As described in Section [[L2] a cautious controller is derived under the assumptions
that uncertainty is modeled by stochastic methods, particularly that the conditional distri-
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butions of the uncertain parameters are assumed to be identical (equal to the conditional
distribution at the initial time) and independent with respect to time. The assumption of
known parameters ¢; ensures that there are no products of random variables in the equation
2J) and that we will not need higher than second order moments of the distributions. The
parameter ¢y is chosen to be equal to 1 to remove the degree of freedom in the representation.

Note that we use two different state space representations of the model (2II), one
for derivation of the tracker/estimator and one for derivation of the controller. The state-
space representation is always chosen to best fit the current purpose. When combining
the cautious controller with the estimator to construct an adaptive controller, it must be
understood that the estimated state is different from the state defining control input — this
state must be transformed extra from the available data.

2.1 Simultaneous state estimation and parameter track-
ing of ARMAX model

This section presents derivation of a parameter tracker and state observer of a general
ARMAX model in case the MA part (c-parameters) are known. The presented method uses a
standard Kalman filtering theory applied to the following specific state-space representation
on the ARMAX model.

Tpy1 = Axp +Tey,
ye = Cpop +ep,
with the state vector
_ T
T = [bO;ala'"7an7b17"'7bn;ek71;"'7ek7n] )

noise matrix

T
= (012041 1 O1no1]
time-varying output matrix
Ck:[uk Y1 --- Yk-n Uk—1 --- Uk—p CI ... cn]

and the system matrix

A _ |: I2n+1 O2n+1,n:| ’
On,2n+1 Ae

where 0;; is a zero matrix with ¢ rows and j columns, I,, is an identity matrix of order n,

0p = 0y, and
O01,n—1 0
A, = ’
¢ |: Infl 0n1,1:|
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is an n X n matrix. Because the noise e; appears both in the state and the output equation,
the noise variance matrices have the form

O2n41 O2n+1,1 O2n+1,n—1 O2n41,1
_ 9nnT _ 2 _ 2 _ 2 2
Q—O’eFF = 01,2n+1 O, Ol,n—l 5 R—O’e, S—O’er— O,
On—1,2n+1 On-1,1 0n—1 On—1,1

2.1.1 The estimator equations

It is now possible to construct a simultaneous state and parameter estimator using the
standard Riccati equation for developing the estimate variance matrix and the Kalman
gain. Considering an initial state estimate &y and initial estimate variance matrix Fp, the
filter equations are given by

(APkCE + S)(CkPkAT + ST)

P = AP AT + Q — - 2.2
b 4§ CkPka +R ( )
AP.CT + S
k
T = Ady + ———k = — Cr 2.3
k+1 k CkPkaT R(yk KTk ), (2.3)

where the denominator Cx P,C{ + R is a scalar. Dividing the equation 22) by o2 yields

the more common form for a normalized variance matrix

(AP/CT + S)(Cp Pl AT + S'T)
CkP,ngT +1

Pl =APAT +Q - (2.4)

and
APCL + 5

— Cit 2.5

Tp1 = ATy,

where the noise variance matrices are also divided by o2, i.e.

O2r41 O2n41,1 O2p41,m—1 O2n41,1
/ T /
Q = FF = 01’2n+1 ]_ 01’n71 N S = F = ]_
On—12n+1 Op-11 On—1 Op-1,1

Note 2.1. The equations above assume that o2 is known. If this is not the case,
it must be estimated from the output errors, for example as

2 —_k a1 (= GCidn)’
T R+ T R+ 1 CWRCT 1

The estimate s has a x? distribution and the state estimator then produces esti-
mates with Student distribution, see [45] for details. However, the convergence to
normal distribution is fast and normality is assumed in practical cases.

Note 2.2. As the matrix C} is time-varying, there will be no limit solution of the
equation and thus no steady-state filter can be used. There is, however, an interest-
ing connection to the persistent excitation, which we will informally describe. The
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part of the system describing the parameter development is uncontrollable from
the input noise. The theory of Riccati equations shows, that the corresponding
part of the variance matrix Pk should go to zero, provided this part is observable.
The observability depends on the time-varying matrix C} that is formed by past
inputs and outputs. Intuitively, this part of the system will be observable, if the
matrices C}, are linearly independent, or at least, if for each k there is nj such that
the lines C, ..., Ck
excitation condition.

are linearly independent. This is equivalent to the persistent

n

On the other hand, the part of the system describing the past noises is
controllable and due to time varying C} will the corresponding part of the variance
matrix P not converge.

2.1.2 Notation

If we denote

T
a=lar,...,an)", b=[b1,....0,]", c=[c,...,cn)t, O=1[aT BT T, (2.6)
it is possible to denote the blocks of the variance matrix P (or P’) as
0 Pooa Pos Poge
P, P, P, P
Pk _ a,bo a a,b a,e ’ (27)
Pove, Poa Py Pye
Pe,bo Pe,a Pe,b Pe
where the symbol e represents the past noises ex_;,7 = 1,...,n in the state vector x;. To

be precise, we should also use time indexation in the notation of the individual blocks, but
we will omit this indexation to keep the notation simple.

2.1.3 ARX model

For an ARX model, the equations reduce to the recursive least squares algorithm, see [27].
The state-space representation of an ARX model for this purpose has the following state
and output matrices

T
A=Ipt1, Cp=2z, = [Uk Ye—1 - Yk—mn Uk—1 ... kan} )

where C}, is usually called the regressor and denoted as z] . The state vector is formed only
by parameters and is usually denoted as

ekz [bo,al,...,an,bl...,bn]T,

and the noise variance matrices Q and S are zero matrices and R = o2. Substituting the
matrices into equations ([24]) and (Z.3]) yields the standard formulas

P/ZkZTP/
P = p _ KRk k 2.8
k+1 k Z}Z‘Pézk + 1 ( )
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and

Ok+1 = O + (yk — 21 Ok)- (2.9)
Note 2.3. Although it is usual to denote the parameter vector as 6 as in the
description of ARX model above, in this chapter we will prefer to keep the symbol

0 according to the Definition (26]), i.e. without by. The reason will be made

clear in the next section, where the parameter by plays an important role in the
derivation of the cautious controller.

2.2 Cautious control of ARMAX model

For the purpose of derivation of the cautious LQ controller, the following state-space repre-
sentation of the ARMAX model will be used

Tk+1 = Az + Bug + Teg, (2.10)
yr = Crrp + Dug + e,
with the state vector
Tk = [Yh—1s o Yo Uk 15+ Uk €k 15+ - €] (2.11)
and system matrices
ay...an blbn C1...Cp b() 1
A = Infl,n Onfl,n Onfl,n ’ B = Onfl,l ’ = 02n71,1 ’
On Ae On 1 1
On On Ae 02n71,1 Onfl,l
C :[al...an bi...b, cl...cn}, D = by, (2.12)
where 0; ; is a zero matrix with ¢ rows and j columns, I,,_1, = [In—1 Op—11], I, is an

identity matrix of order n, 0, = 0y, and

0 0
A, = .
[Inl 0}

The criterion that is to be minimized is the usual quadratic functional for the LQ problem

N—1
E [m%QxN + Z ri Qry 4+ up Ruy| , (2.13)

k=0

where the expected value is taken with respect to all uncertainties. The input uy is a scalar
and therefore there is no need to distinguish between uj and ul, but we will keep the
transposed notation to avoid confusion. The symmetrical weighting matrices @ > 0 and
R > 0 may also be time varying, in which case the notation Qy, Ry is necessary.
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2.2.1 Results for classical LQ and LQG control

Let us now briefly present the important properties of linear quadratic control. The result
of the classical LQ control of a deterministic system (.2]) is that the optimal criterion value
at time k (or the cost-to-go function) is a quadratic function of the state at time &, i.e.

N—1
Ji(xg) = 28 Qun + Z (zF Qi + uiT Ru}) = al Gy, (2.14)
i=k
where Gy, is a positive semidefinite symmetrical matrix and generally G,k =0,..., N—11is

given by a discrete-time Riccati equation that is solved backwards from an end condition G .
A limit solution for such equation for N — oo exists under the assumptions of stabilizability
of the pair (A, B) and observability of the pair (4,Tg), where ToT'} = Q (see e.g. [63,[10])
The optimal control is then realized by a linear state feedback, i.e.

uz = —Kkl'k.

The LQ problem for a stochastic system with perfect state information leads to the same
control law as for the deterministic system above. The criterion, however, contains an
additional absolute term gy, linearly increasing with time, i.e.

N-1

Ji(wx) = E [xﬁQxN + > (] Qui + u" Ruy)
i=k

= zj Grxk, + gk

The term gj represents the criterion increase due to the noise. In the case of a stochastic
system with imperfect state information is the criterion equal to a more general quadratic
function

N-1
Ji(D) = E lfC%QxN + ) (&f Qui + u;"Ruy) | Dk1] —
i=k

= E(z|D" TG E(xk| DY) + gb + 43,

where the absolute scalar terms g,ﬁ and g,% have the meaning of increase of the criterion
due to uncertainty in prediction caused by the noise and due to the uncertainty in state
estimation, respectively. The matrix Gy is however given by the same Riccati equation as
in the deterministic case and therefore also the convergence conditions for Gy remain the
same. Note that the cost-to-go function J}! is no longer a function of the state z, but rather
a function of the available data, i.e. the data D*~!. The state feedback gain is also the
same with the only difference that the (unknown) state zj, is substituted with its conditional
mean, i.e.
ujp = — Ky E(z|DF 1),

where the conditional mean E(zj|D*~!) is the Kalman filter estimate of the current state.
The scalar sequences gy, g,ﬁ and g,% depend on Gj, and if G converges, then g has asymp-
totically a linear growth. This is the reason why a modified criterion should be used for
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stochastic systems, e.g.

N-1
1
N E |25 Qxn + Z (zf Quy + uf Ruy)
k=0

The division by N solves the problem of linearly increasing absolute terms, but has no
impact on the convergence of Gy, therefore we can work with the criterion (ZI3]). For the
three described cases, a sufficient condition for the matrix G, to converge is stabilizability of
the controlled system and observability of the pair (4,T'q), where I‘gI‘Q = Q. We will now
derive a cautious LQ controller for a linear stochastic system with uncertain parameters.
This derivation is the topic of the rest of this chapter. The convergence of Gy is more
complicated for such controller, and is in detail discussed in the next chapter.

2.2.2 Bellman equation

Similarly to these LQ problems for a deterministic system, we will show that the criterion
ZI3) for the cautious LQ control problem for ARMAX model with uncertain parameters
has the form

JH(DF 1Y) = E(2f Grar| DY) + 29F E(zi|DP ) + g (2.15)

for some matrix G, column vector - and a scalar g;. We will show this by induction using
the general scheme of stochastic dynamic programming.

Note 2.4. The first part of the quadratic function in (ZI5) is slightly different
from the previous cases, where the form E(xx|D¥ 1) Gy, E(xx|D¥ ') was used. Tt
is easily seen that

E(xi Grai|DF ') = E(xx|D" )" GrE(zi| D) +
L E [(azf - E(kak—l)T) G (xk - E(xk|Dk_1)) |D’H] ,
where the second term on the right-hand side of the equality is equal to the estimate
error weighted by the matrix G and is thus independent of x. It is then easy to
transform the expression (ZI0) to a quadratic function in estimates E(zx|D"™1)

by adding the additional term to the absolute term. The form (ZI5) is used for
convenience in the following derivation.

The statement (ZI5) is obviously true for k = N, as from the cost definition ([ZI3])
T3 (DN 1) = E(@h Qun DY), (2.16)
which gives us immediately the terminal conditions Gy = @, Yy = 0, gy = 0, where 0

has the meaning of zero vector, scalar (or possibly matrix in the future text) of appropriate
dimensions.
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For a general time k it holds by the Bellman equation for problems with imperfect
state information (see [10])

ﬁ@H):%WH@MﬁﬁMHﬁMWH%WﬂF
— muin [E (21 Qi + uf Ruy + E(zf 1 Grirzi41|DF) +
+ 2941 E(@ea D) + gy | wa, DY) | (2.17)
where we used the induction hypothesis (ZI5). Let us now substitute for xxy; from the
system equations (210
ﬁ@“%::%Mqﬁ@+ﬂawmm+£ﬂwﬂmw+ (2.18)
+ 2y Az +ul (R + BTG B)uy +

+ 2y Bug, + 22 AT Gry1 Buk + grs1 | Uk,Dk_l} }

2.2.3 Notation

To be able to perform the minimization in (2I8) and to close the recursion, we have to
evaluate several terms. To simplify the expressions, we will use the following notation for
the Kalman filter estimates at time k

E(xi|DF 1) = &, E(A|D* ') = A, E(B|DF ') =B;. (2.19)

Recall that estimates A, and By, are given by the Kalman filter 23) from Section 2Tl The
state estimate Iy, is also given by the filter (2:3)), as it is only necessary to estimate the past
noises ex—;,t = 1,...,n.

Note 2.5. The Kalman filter estimates Ak, Bk and Zr do not depend on the
current input ug. Therefore it holds

E(xk|ur, DF 1) = E(zx|D* ) = 24,

and similarly for Ay, and By. This will allow us to use the estimates in evaluation
of the expression (ZI8).

Note 2.6. It is important to realize that the state xx in this section is defined
differently from the state in the previous section, where the parameter and state
estimator was derived. This should not lead to any confusion, because zj in this
section always means the state according to the Definition (ZII]). Constructing
the estimate Zp as well as the estimates Ak and Bk from the estimate (23) is
straightforward.

To further simplify some expressions that appear in the derivation, we will also introduce
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the following notation

Pbme = COV(b0,9T|IDk71):[PbO7a Pbo,b 017"}:P97:bo’ (220)
Pa Pa,b On
Py = var(0D" )= |P. P 0.,
(1% 0, Op
Py = cov(by,xf D) =[01n O1n Pre) =Pl
On,2n Pa,e
ng = COV(@,J?zl,Dk_l): On,2n Pb,e :szjea
On,2n On
_ 0 0
P, = var(z|DF 1):{02: P"]

where we have used the notation from Definitions (271) and (2.6).

Note 2.7. Similarly to the Kalman filter estimates, also the estimate covariances
220) were defined as independent of uy. This is true for the covariance P,
in the case of a system without uncertain parameters and it is a key step in
derivation of LQG control. The formula for the estimate covariance ([22)) clearly
shows dependence on the data accumulated in the output matrix Cj (here we
mean the output matrix of the system representation used for estimation) and
therefore, for the covariances in ([2.20]), the independence of uy, is assumed in order
to make the evaluation of (ZI8]) possible. This is the first time where we use
the assumptions of cautious control. Taking the influence of ux on the quality
of estimate into account would result in a dual controller — this approach would
however lead to analytically unsolvable equations.

Note 2.8. It will also be assumed that Git1, vx+1 and gr+1 are constant, i.e.
E(Grs1lun, D*7') = Grg

(and similarly for yx+1 and gg+1) and covariances of these terms with any random
variables are zero. This is also not generally true, as we will see later, and this
assumption is another use of cautious assumptions to simplify the derivation.

We will also denote G*7 the element in the i-th row and j-th column of matrix G and G/
and G% the j-th column and the i-th row of G, respectively. Finally, let us denote

ip=ap— @y, Ar=A—Ay, By=B-By, 0x=0-0,
to simplify the derivation of the expected values.
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2.2.4 Optimal control
Using this notation and assumptions we can now write
E [J?%ATGk_HAJ)k | ’U,k,’Dk_l} =E [szTGk_HAJ)k | 'Dk_l] = (2.21)
= E | (@0 + 31)T (A + A0)T Groga (A + Ay) (o +3) | D] =
=E [{E%A%G}Frlfikxk | Dk_1:| + iﬁzG}ﬁ’_’l_ng{ﬁk +
+2E [igAgGkJrlAk | 'Dk71:| T =
—E [x{(A{GkHAk +GLL Py | D’f—l] —E [z{a}cilpgfk | Dk—l} +
+2G,1€L;11‘A1kpx,a§?k,
where the following equalities have been used
Az =0,
E[@/D" 1] =0, E[&D"] =0,
E [Asz-i-lAk | 'Dk_l} = Gllcilpa7
E [ifAkaHflk | D’H} G = tr {E {Ak:):«k:z%zam | D’HH =
—E [éT@k:zfAngil | D’H} =3TE [éif D’H} ATGyY | = GY AP, oy,

with tr(-) denoting the matrix ¢race operator. Using similar ideas, we can evaluate the rest
of the terms from (ZI8)) to obtain the following expressions

E[eiT7 Gry1Tey | up, DF '] =TT Gy To?, (2.22)

E [27]) 1 Axk | up, DF7Y] = 29, Axitn, (2.23)

E [uZ(R—I— BTGk+1B)uk | uk,Dkfl} = (2.24)
=u} (R+ EgGkHEk + G,lcilago)uk,

E [27£+1Buk | uk,Dkfl] = 27£+1Ekuk, (2.25)

E [22{ AT Gry1Bug | up, D1 = (2.26)

= Qﬁg(AgGkJABk + Gllcil‘PG,bo)uk =+ 2G11g’-i;-1AkPx,bouk'
It is now possible to rewrite (ZI8) using expressions above
JH (DY) = E [a:{ (AL GrirAw + Gl Py + Q) | DMH| — (2.27)
— E[# Gl Podn | DY 4 26 AvPaoie +
+ 27?+1Akﬁk +TTGrTo2 + gry1 +
+ min {ug(R + BgGkJABk + Gllcilago)uk + 2’)/g+13kuk +
Uk

+ Qi‘g(figG;H_lBk =+ GllciIP97b0)uk =+ 2G11Q’J'F1Akpx,bouk:| .
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The first terms have been excluded from minimization according to assumptions of inde-
pendence on uy made earlier. Differentiating the terms in the minimization with respect to
uy, and setting the derivative equal to zero yields

0 = (R+ Bl Gru1By+Gliop )uk + (BEGrpr Ay + Gl  Poyg)in + (2.28)
+ Bl?'WHl + Pbo,xAEG}c’Jlrl'

Assuming R > 0 guarantees the existence of (R + BkTGk_HBk + G,lcilago)_l and we can
write an explicit formula for the optimal control uj

uz = —(R + BgGk.HBk + Giilago)_l(BgGk+1Ak + Gllcilpboﬂ)j"k - (2.29)
- (R+ BI?GIHIBk + Giilazfo)_l(éhﬂ + Pbo,foG}éL)-

The first term on the right hand side of the expression (Z29) represents a state feedback
from the current state estimate. The second term is independent from the current state and
can be seen as a correction of the state feedback according to the covariance Py, , between
the state and the uncertain input gain bg. To simplify the expression (Z29) as well as some
further considerations, let us define

Ky, =(R+ BgGk_HBk + G,lcilago)_l(BgGk_;_l/ik + Gllgilpboﬁ) (2.30)
Ly = (R+ Bf G B + Gy1103,) " (Bl i1 + Poo o ALGYL).
The optimal control can be now expressed as

’U,Z = —Kk.f?k - Lk.

2.2.5 Optimal cost and recursive equations
Substituting uy, in (Z217) with the optimal control uj, from (Z29) yields
JEDFY) = E [xZ(A{GkHAk +GHL P+ Q) | D’H} - (2.31)
— E [i‘{GiiIPg{fk | D1 -
— E[af (AL Gri By + Gyl Poso) (R + BY Gria B+ Gilyof,) ™!
(BEGry1Ar, + GEL Py o), | Dk‘l] n
+ E [@{(A{Gkﬂf}k + Gty Poo)(R+ BY Gy B + Gyfyop )"
(BEGr Ay, + G;tilpbo,a)ik | Dk_l} +
+ 2 {Gi;’rlflkPxﬁ + 'VkTJrlAk - (’YkTHBk + G}lﬁ’_;_lAsz,bo)
(R+ B Gry1Br + GplLiod ) M (BE Gy Ak + Gyl Pogo) | &1 +
+ ge1 + 7GR To? —
— (W Bi+ G AkPupy ) (R + BE Gy Bi + Gyl o) )7
(BEypeq1 + Pbo,xAgG}éJlrl)~
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The terms of the form E [Z](...)Z; | D*7!] do not depend on x, because we can rewrite
them as
E[ZL (.03 | DM =t {(...)E[@pd] | D" ']} =tr {(...)P:},

where we have assumed the variance matrix P, to be independent of uj as well. After
reordering the terms, we finally get the main result of this section which is the formula for
recursive computation of Gy, v and g

Gr = AlGuAr+GL P+ Q— (AL Gry1Bi+ Gyl Poy,) (2.32)
(R+ Bl Gr1Br + Gyl o2 ) M (B Grr1 A + Gyl Pg o),

W = G AkPog+ v A — (VB + Gy AcPas) (2.33)
(R+ Bl Gr1Br + Gyl o2 ) M (Bl Gry1 A + Gyl Pg o),

gk = gk +T7Grlo? - (2.34)

— (b B+ G AxPag,) (R + Bl G B + Gyl o7, )
(BE kst + Poy o AL GLy) +

+ tr{ [(AEGIHIBIC + Gty Poso)(R+ Bl Gria B + Gyl o)™
(BEGre1 A + Gyl Pogo) — Giipa} Px} :

Note 2.9. The recursive formulas (232)), (233)) and ([Z34) calculate backwards
the terms Gy, % and g, starting from end conditions G, v~ and gn. Here it is
necessary to assume the independence and identical distribution of the estimates
A; and Bi, i =k,...,N. If we did not assume identical distribution, we would
know neither the future estimates A; and Bi, i=k+1,...,N at time k nor the
estimate variances. Moreover, without assuming independence, we would not be
able to treat the terms Gii1, Yk+1 and gr+1 as constants in the derivation, as
there would be nonzero variances between Ak and AS, k < s < N and so on for
other estimates. The assumption of independence and identical distribution allows
us to use the current estimates of parameters and their variances and use them to
calculate the recursion.

Note 2.10. Unlike the case without uncertain parameters, we cannot even cal-
culate the future state estimate variance P,. This is normally done by a Kalman
filter, which does not depend on future inputs and outputs. The specific structure
of the Kalman filter used in the case of ARMAX model with uncertain parameters
does not allow this computation, because it depends on the future data. This is
however not a significant drawback, because the variance P, has influence only on
the absolute term gi, which has no impact on the control law.

2.2.6 Cautious Riccati-like equation

The equation (Z32)) resembles the standard Riccati equation for a problem without uncertain
parameters. The formula for Gy, does not depend on 'ykTH or gr+1, on the contrary, both
7§ and gj, depend on Gj1. The limit behavior of equation (Z32) is thus important for the
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behavior of the resulting controller and will be studied extensively in Chapter At this
point we will define the following terminology.

Definition 2.11. The discrete-time equation of the form

G = AfGui1Ay+ Gyl Po+Q— (AL Gri1Br + Gyl Pow,) (2.35)
(R + Bf Grs1Br + Gy 1108, ) M (BE Grg1 Ak + Gyl Pog o)

is called a discrete-time cautious Riccati-like equation.

Note 2.12. The hat notation A and B has been omitted in Definition E_I1] to
simplify notation — the limit behaviour of the equation will be studied in further
text and the matrices Ay and Bj can be considered to be constants without loss
of generality. On the other hand, the time indexation has been preserved in the
general definition, as we will also study the case when the system matrices vary
over time. However, for studying the limit behavior, we have to assume that
Ar = A, Br = B for some A, B and all k € N. Therefore we will mostly work with
constant system matrices. Working with constant matrices indeed makes good
sense for the cautious controller, because we assume Ak = Ao, Bk = Bo for all
keN.

2.2.7 ARX model

Cautious control of an ARX model can be viewed as a special case of the previously derived
algorithm. However, it brings such significant simplifications that it is useful to point them
out.

e The are no parameters ¢; in the model, therefore a state-space representation with the
following system matrices can be used

b
ai...a, by...b, 0
o o Onfl,l o 1
A = In—l,n On—l,n ) B = ) I'= ’
1 O2n—1,1
0n, A,
Onfl,l
C = [al...an blbn] s D :bo, (236)
which is a nonminimal state-space representation.
e The state vector in this representation is
T = [yk_l,...,yk_n,uk_l,...,uk_n]T. (237)

The state vector contains only past inputs and outputs which means a perfect state
information, i.e. &) = xx. In other words, the state vector need not be estimated and
the control uy is calculated from a direct state feedback.

e The covariances Py, Py, and Py, are all zero, because the state xj is directly mea-
surable.
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e The vector 'ykT = 0 for all £ € N. This is a consequence of zero covariances P, , and
Py .

e The absolute term is simplified as

1,1 2
9k = Gk+1 + Gk+1aea

due to zero covariances and { = 0

e Parameter estimate is calculated by simpler formulas (2.8)) and (23]

It is indeed interesting that the equation for Gy (the discrete-time cautious Riccati-like
equation) remains unchanged.
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Chapter 3

Convergence of the cautious
Riccati-like equation

This chapter presents a criterion for convergence of a discrete-time Riccati-like equation that
is associated with the cautious LQ control problem for a general ARMAX model presented
in Chapter @l According to Definition .11} the cautious discrete-time Riccati-like equation
has the following form

G, = A'Gri1A+Q+Gy Py (3.1)
— (ATGr1B + Gy Powy) (BT Grpa B+ R+ Gyplod) ) M (BT Gryr A+ Gyl Py o),

where G1'! denotes the upper-left element of the matrix G (row and column index equal
to 1). Because this chapter studies limit behavior of the equation, we assume A = A and
Byr = B for all Kk € N. Note that although the equation was derived as a solution to a
specific problem (cautious LQ control problem for a SISO ARMAX model) and a special
form of system matrices A and B has been made use of, the presented convergence criterion
and its proof are valid for a general discrete-time equation in the form (BJ]) with arbitrary
system matrices.

To complete the analysis of the limit behavior of the recursive equations defining
the cautious LQ controller from Chapter 2] we also show in Section B.3] the limit behavior
of the vector 7 given by ([233) and the scalar gj given by (2.34).

Let us remind that the standard Riccati equation describing the deterministic LQ
control has the form

G = ATGk+1A +Q - (ATGkJrlB)(BTGkJrlB + R)il(BTGkJrlA), (32)

that can be seen as a special case of ([B.I]) for zero covariances of parameter estimates. We
will often use the similarity of equations [B.]) and ([B2)) in proofs later.
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3.1 Scalar equation

Before we formulate and prove the criterion for the matrix equation ([BI), let us first infor-
mally examine the problem for a one-dimensional system with two parameters a and b, i.e.
for a system

Tp+1 = axg + buy + ek, (3.3)
with a and b satisfying the assumptions of cautious control. For such system, the equation
becomes much simpler, i.e.

Giﬂ(&?)"' Tab)?
R+ Gk+1(i)2 + 0%) ’

Gr=Q+ Gry1(@® +02) —

where the meaning of symbols is as follows:

a = E{a}, (3.5)
b E{b},

02 = varfa} = E{(a— )},

ot = var{b} = E{(b— b},

o = cov{(a,b)} =E{(a—a)b—Db)}.

Let us start with the case when parameters a and b are not uncertain. This is equivalent
to all variances being equal to zero and the problem is described by the standard Riccati
equation

G2 +1a2b2
R+ Giy1b? ’

which is always convergent (if b # 0). The convergence can be derived by the following

Gr,=Q+ Gk+1a2 - (3.6)

analysis of [3.6). The equation expresses one step of a solution of a discrete-time equation.
It is convenient to rewrite the discrete-time equation (B.0) to a general form

Gr = f(Grt1), (3.7)

where f(Gp+1) represents the right-hand side of ([B6]). If such equation converges to some
G > 0, then the function f(Gg41) has a fixed point in G. The conditions for uniqueness
and existence of the fixed point G, as well as convergence of the discrete-time equation to
this point is given by the Banach fixed-point theorem. Because the function f(Gj41) is
increasing, the convergence to the unique fixed point G is ensured if and only if the function
f(Gr41) asymptotically follows a line (for Gr41 — o0) that intersects with a function

Gk = Gk-‘,—l .

This happens if the tangent of the asymptotical line is smaller than one. The tangent of the
asymptotical line is calculated as

BN { (/%)

=0
G;H,l—)OO Gk_l,_l ’
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D

Figure 3.1: Dependence of G on Gj41 for standard discrete time Riccati equation. The dashed
lines represent the asymptotes.

and the offset of the asymptote is
. a?
B=_lim [f(Grs1) = aGri1] =Q+ R3

Gk_*_l*}OO b2

The tangent o = 0 implies that the asymptote is a horizontal line and thus the fixed point G
always exists. The situation is depicted in Figure [31] for a system with parameters a = 0.9
and b = 1. The function f has two asymptotes that are represented by the dashed lines. The
horizontal asymptote calculated above is a function y = 3, the vertical asymptote intersects
the horizontal axis at Gy1 = —R/b?. The figure also shows graphically, how the iterations
of the equation converge to the fixed point G from the zero initial condition, however, the
iteration would be analogous for any nonnegative initial condition. The fixed point G is
then the intersection of function f (the right-hand side of (3.0) as a function of Gk4+1) and
the identity function Gy, = Gi41.

Let us now return to the case with uncertain parameters a and b and the corre-
sponding scalar cautious Riccati-like equation ([4). In [5] an analysis of solution of this
Riccati-like equation is given and a condition for convergence of a cautious discrete-time
Riccati-like equation is formulated for the scalar case. Later, in [6], another condition for
a more general higher order system with a special structure of uncertainty is given. Such
systems are, however, not a subject of this text. The condition based on [5] is

020} + b*02 + 4?0} — 2abog, — 02,

b2 + o

<1 (3.8)
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(a) Convergent case: 02 = 0.1. (b) Divergent case: o2 = 1.5.

Figure 3.2: Dependence of Gy on Gy41 for a discrete time cautious Riccati-like equation (3.4]).
The dashed lines represent the asymptotes.

and can be derived by calculating the asymptote tangent for the right-hand side of (B4,
i.e. .
(&b + Uab)2

a= lim M h
b? + o}

A2 2
=(a" +o,)—
e e ( a)
which is equal to the left-hand side in condition ([B.8]). If the tangent is smaller than one,
then there will exist a fixed point GG. The offset of the asymptote is

. . . (fli) + Uab)Q
p=glim [f(Gr41) —aGra| =Q + R 21 07):

and the situation is depicted in Figure for a system with the following parameters:

2

¢ varies and the concrete values are

a=0.9, b= 1, 0ap = 0 and o7 = 1072. The variance o
stated in the figure descriptions. The function f has two asymptotes that are represented
by the dashed lines. One asymptote is a function y = « - Gx41 + 3, the vertical asymptote
intersects the horizontal axis at Gyy1 = —R/ (b2 + o2). The Figure shows that if the
condition ([B.8)) is not satisfied, then it holds for all G > 0 that f(G) > G, i.e. the sequence
Gy is increasing and Gy — oo as N — oo (the equation is solved backwards from N).

The feedback gain K} is given by the formula

Ky = -GGt ow) (3.9)
R+ Gri1(b® + 0%)
Taking the limit for N — oo in the equation ([3) yields either
ab :
K= lim K = _M’ (3.10)
N—oo R+ G(b? +o})

38



if the limit G = limy_,oc G exists, or
K:A}nn Ky=———, (3.11)

if G — oo and thus the feedback gain is convergent even if the criterion itself is not. The
case of divergence be studied in more detail in Section B2 where also stability issues are
addressed.

Let us now make the following consideration that will help us derive the criterion
for convergence of the matrix equation (3.]). If G is the fixed point of the function f(Gy),
then it satisfies the (algebraic) equation

2027 2
G=QtG@ato2)— S0 F o) (3.12)
R+ G(b? +0})
Dividing the equation by G, we get
~7 2
19 a2y ol - b+ oar)” (3.13)
G g + b2+ 0}

The right-hand side is given by the control problem up to the unknown variable G, so
the existence of the fixed point can be interpreted as existence of such finite G, that the
equation (3I3)) holds. If we see the right-hand side of the equation as a function of G, then
it is continuous, decreasing as G — oo and goes to infinity as G — 0. The fixed point will
exist, if and only if the right-hand side falls below 1 as G — oo, i.e. if and only if
a%ﬁ-Ma. (3.14)
b? + o}
Condition [BI4)) is equivalent to the condition (B:8]), but the idea used to derive its form
is more general and will be used in the further text. Figures [3.3(a)| and [3.3(b)| show the
right-hand side of ([BI3)) as a function f(G) for a convergent and divergent case, respectively.
Figures [3.4] and [3.5 show the corresponding sequences G, and K}, for the two different cases.

3.2 Matrix equation

In this section, we will focus on limit behavior of the sequence Gy given by the equation
(I). Compared to the scalar case, it will be more difficult to prove the convergence, but
the principle showed in derivation of the condition (3I4) for the scalar equation will be
used with only mild modification. Unlike in the study of the scalar case in the previous
subsection, we will use a formal approach to prove the convergence criterion.

Let us start with some changes in notation that will be more convenient for descrip-
tion of limit behavior. The nature of the control problem results in a backward recursion
in the equation ([B.1]), i.e. Gy is computed from Gj11 with an initial condition Gx. Such
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(a) Convergent case. (b) Divergent case.

Figure 3.3: The right-hand side of equation (BI3]) as a function f(G). In the convergent case is the
condition (BI4]) satisfied, f(G) < 1 for G > 0.9 approximately. In the divergent case the function
f(Q) stays approximately above the value 1.5.
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(a) Convergent case. (b) Divergent case.

Figure 3.4: The sequence Gy, given by the cautious discrete-time Riccati-like equation (3.4) for the
case of convergence and divergence.
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Figure 3.5: The sequence K}, given by the equation ([3.9) for the case of convergence and divergence.

K, converges even if the corresponding sequence Gy, is divergent.

notation is not convenient, as studying the limit behavior means studying the term Gy as
N — oco. That is why we prefer to reverse the indexation in the equations, obtaining the

following recursion.

Definition 3.1. A forward discrete-time cautious Riccati-like equation is an equation in the

following form

Gri1 = ATGRA+Q+ Gi’lpe -
— (ATGyB+ Gy ' Pyy) (BTGB + R+ Gy lo} ) H(BTGrA+ G Py ),

with an initial condition Gg.

(3.15)

In this notation, it holds that the feedback gain matrix is expressed as

Kiy1 = (BTGB + R+ G ol ) H(BTGrA + G ' Poy ). (3.16)

Note 3.2. Sometimes we will need to use the equation (3I3) in a form with

time-varying system matrices A, B and weighting matrices @, R. In such case the

equation has the following form

Gri1 = Ap1GrAgsr + Qupr + Gy Py —
— (AL 1GrBry1 + Gy Powy ) (Bri1GrBig + Rii1 + G;lc’laf()f1

(B£+1Gk14k+1 + Gllc’lpbo,é))

We show this form because it might not be straightforward, that the matrices
appear in the equation with time index k + 1.
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Note 3.3. The cautious discrete-time Riccati-like equation resembles the standard
Riccati equation for a deterministic LQ problem. Assume a standard Riccati
equation with the same system matrices and constant weighting matrices Q' =
Q+ &Py, S = £Ppp, and R’ = R+ fop, where £ = Gyl with Gl taken
from the cautious Riccati-like equation at a fixed time N — 1. Then the matrix
Gn from the cautious Riccati-like equation will be equal to the matrix Hy from
the standard Riccati equation. We will use this equality in some proofs later.
The standard Riccati equation has a nice interpretation of a criterion value, as it
holds (in the new forward notation) that the optimal criterion value for an N-step
deterministic LQ control problem is

JJ (l‘o) = xOTHNxo = (317)

1,1 1,1
|:mT uT] Q+Hy P Hy~ 1 P,
0 0 1,1 1,1 2
Hy~1Pyg0 R+HN710'b0

To

T
-|— xTq HN_1.T1.

uo

This equality is implied by the Bellman equation for the cost-to-go function (12
and the result for deterministic LQ control (214)). The analogous result for cau-
tious controller is more complicated and inconvenient to use in proofs. However,
due to the similarity of cautious and standard Riccati equation in one step, the
equality above holds also for the solution of the cautious Riccati-like equation G.

3.2.1 Criterion for convergence

Definition 3.4 (Algebraic cautious Riccati-like equation). The algebraic cautious Riccati-
like equation is a matriz equation in the following form

G = ATGA+Q+GY'P— (3.18)
(ATGB + G"' Py, )(R+ B"GB + G"'o} )" (BTGA + G"' Py, 0),

where the usual notation is used. The solution of an algebraic cautious Riccati-like equation
is a matriz G that satisfies the equation (B.1J).

We will next prove the criterion for existence and uniqueness of a solution to an algebraic
cautious Riccati-like equation ([BI8) and then prove convergence of a sequence G}, given
by the discrete-time equation ([B.I3) to this unique solution. Later we will also examine
the divergent behavior of Gj and the behavior of the feedback gain matrix. It will be
shown that even for divergent sequence Gy, the feedback gain matrix K} converges to a
limit solution that corresponds to a limit solution for modified system matrices A and B.
Thus we will show that the class of all cautious LQ controllers for a general SISO ARMAX
model extends the class of all certainty equivalent LQ controllers for the same model. The
extension, however, contains also controllers that are not stabilizing the nominal system,
i.e. for the system defined by expected values of system parameters.

Lemma 3.5. Let G19, G20 be two symmetrical positive semidefinite matrices such that
G1,0 > Ga,. Let Gy, be the sequence given by the cautious Riccati-like equation (BI0) with
weighting matrices Q1 , R1 and initial condition G1, i.e. the weighting matrices need
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not be constant, but may vary with each step k. Similarly, let Ga . be the sequence given
by the cautious Riccati-like equation BID) with weighting matrices Qa,, Rar and initial
condition Ga . Assume Q11 > Q21 and Ry > Ra Then for each k € N G, > Ga .

Proof. We will use induction to prove the lemma. For k = 0 the lemma is true by assump-
tion. Now let us assume that the lemma is true for & € N. The following holds by the
analogy with the standard Riccati equation described in Note B3]

7] [Ql,k+1 + Gillgpe Gi;lﬁpe,bo ] [ﬂco

T _ [T T
X Gl,k+1$o = [LEO uLO Gl’lp R Gl’l 2 ] + £1’1G1,k£1,1
14 bo,0 Lk+1 + G0y
.k k™~ bo

U1,0

and

)

7] [QQ,I@+1 + Géj}gpe Géjipe,bo ] [960

T I T
Xy GQ,k+1l‘0 = [% Uus o Gl’lP R G1,1 2 } + 132,1G2,k$2,1,
2,k47b0,0 2,k+1 1 2,k%b,

U2,0

where u; ;, and z;  are the optimal control and state sequences for the problem with initial
matrix G; o and weighting matrices Q; x, R; . By assumption G > Ga i, therefore also
Gl,l > Gl,l

1k = Goll, and consequently

1,1 1,1 1,1 1,1
Qi1+ G Py Gk Po.bo S @21 +Go P G5 Po.bo
1,1 1,1 9o - 1,1 1,1 92
Gk Poo o Ry +GLoyy Gy FPoo 0 R k1 + Gy 04,

These inequalities imply that

1,1 1,1
T _ r o1 |@uerr + G P G Po.b, To T &
Lo bG1e+120 = [150 U1,o] allp R Gl 2 + 21 1G1,ET1,1
Lkt 0,0 Le+1 + GR0g | Lua,
1,1 1,1
T T Q2,41 + G2,kP9 G2,kP97b0 Lo T
2 [150 U1,o] 1,1 1,1 o +$171G2,k$1,1,
Gy Poo .0 Ra k1 + G0, | LU0

where we used the optimal sequences u; j and x; ; for both equations. This sequence is
indeed suboptimal for the second equation and therefore

1,1 1,1

T T } Q2,k+1 + GQ,kPO G27kP9,b0 |: Zo

0 1,1 L1 o
Gz,kaoﬂ Ry g1 + GQ,kUbo

T
Ui } +x11G2kT1,1 >

U1,0

1,1 1,1
v | Qe+ Gyl P G5 Pobo Zo
2> [xo UQ,O} ’

T
1,1 1,1 o } + x5 1G2 k2,1
G27kao,9 R2,k+1 + G27k0b0

U20
The two inequalities imply

1t G pr10 > 2d Ga 170, Vrg € R,
which completes the proof. O

Corollary 3.6. Let Gy, k € N be a matriz sequence given by the discrete-time cautious
Riccati-like equation BIH). If for some k' € N, Gy < Gry1 (G > Giry1) then Gy <
Gr+1 (G > Gi1) for every k > K.
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Proof. To prove the corollary, use the previous lemma for G1,9 = G411 and Go g = Gy O

Note 3.7. The statements of Lemma and Corollary are also true for a
cautious Riccati-like equation with constant weighting matrices and also for a
standard Riccati equation, that can be seen as a special case of equation (B.I5)
with a zero variance matrix P. The proof of Lemma and Corollary will
then remain unmodified, as there were no conditions on the variance matrix in
Lemma [3.5]

Lemma 3.8. Let A and B be system matrices, (A, B) stabilizable. Let Q, > 0 and Ry > 0
be weighting matrices and G, be the solution of the corresponding algebraic Riccati equation.
Let Qg > 0 and Rg > 0 be weighting matrices such that

Qﬁ > Qa; Rﬂ > Raa (319)

and Gg be the solution of the corresponding algebraic Riccati equation. Finally assume that
the pairs (A, Tq.), I‘SQFQQ =Qa and (A, Tq,), I‘gﬂI‘Qﬁ = Qg are observable. Then

G > Gq.
Let @, >0, R, > 0 be sequences of weighting matrices such that
Qn = Q, R, R, (3.20)

where @ > 0, R > 0 are weighting matrices, (A,T'q), FSFQ = @ observable. Then for the
solutions of the corresponding problems, G, G

G, === G.
Proof. According to the Note B the Lemma is true for a standard Riccati equation
with constant matrices QQo, Ro and (g, Rg, respectively. It is known from the theory of
Riccati equations [I0], that the stabilizability and observability assumptions above ensure
the existence of unique solutions G, and G of the corresponding algebraic Riccati equations.
It is also true that the sequence given by the discrete-time equation converges to the unique
solution for each positive semidefinite initial condition Gy, i.e.

Ga = lim G(y,k
k—o0

and
Gg = lim Ggy.
k—o0
Let us assume an arbitrary initial condition Gg > 0. Then by Lemma [3.5 it holds that
Ga,x 2> Gg,y, for each k£ € N and therefore also G, > Gg.

To prove the second part, first note that G > 0 due to the assumption of observ-
ability. The assumptions [B20) imply that for each 0 < e there is n. such that Vn > n. we
have Q —eQ < @Q, < Q+¢el and R—eR < R, < R+ ¢l, where [ is an identity matrix.
The choice of asymmetrical bounds will be explained later in Note 3.9l Let us denote G,
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and G_. the solution of the algebraic equation for matrices @ — eQ, R — eR and Q + €1,
R + eI, respectively. By the first part of this lemma, the following holds:

G_. <G, < G—i—s Yn > ne.

Note that the control problem with matrices @Q + eI, R+ eI is well defined as both matrices
are positive definite. For the lower bound, let us assume ¢ < 1 so that @ — @ > 0 and
R — eR > 0 and the control problem is well defined. By the first part of this lemma, as
¢ — 0, the solution G_; is increasing and G, decreasing. The solutions are also bounded
form above (below) by G, which is also implied by the first part of this lemma. There must
therefore exist limits

G.. 2% ¢q.

and

e—0
G.. %G,

Taking a limit for ¢ — 0 of both sides of the algebraic equation with matrices @ — @ and
R — R shows that the matrix G_ must satisfy the algebraic equation for matrices ¢ and
R. By the uniqueness of the solution, G_ = G and using the same technique, also G4 = G.
This clearly implies that

G, — G,

which completes the proof. O

Note 3.9. Note that it was necessary to construct the two bounds differently.
We could not use a sequence @ + £Q for the upper bound, as @ is not necessarily
positive definite and therefore the sequence would not be a general upper bound.
On the other hand, a sequence @@ — €I might be indefinite for each ¢ > 0 if @ is
not positive definite.

Lemma 3.10. Let Q,, R, be weighting matrices of the classical LQ control problem for
each n € N such that

Qn =0,0Q, Rp=0o,R (3.21)

n—oo

for some @ >0, R >0, (A,Tq), FgFQ = (@ observable, and a sequence a., € R, o, ———
0o. Then the following is true for solutions of the corresponding algebraic Riccati equation:

Gn = anG, )\mzn(Gn) 7H_°°> oo, (3.22)
where Amin(Gr) denotes the minimum eigenvalue of matriz G.,.

Proof. We will use the fact that for the problem with matrices @), R, the solution G > 0
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due to assumed observability. The criterion value for each n is

o0
T *T * *T *
x5 Gry = E xy Qury, +uy Roup, =
k=0

oo
= g 3T, Qi + uil ay, Ruj =
k=0

o)
= Z i Qxy + upt Ruf = anzl Gao. (3.23)
k=0

As G > 0, it must hold that Ay, (G) > 0 and therefore A\p,in(Gr) = andmin(G) 1z,
0. O

Theorem 3.11 (Existence of a solution to the algebraic cautious Riccati-like equation).
Assume an algebraic cautious Riccati-like equation ([B.I8), where

Q>0, R>0, o >0,

the pair (A, B) is stabilizable and the pairs (A,Tq) and (A,T'p,) are observable, FSFQ =
Q, I‘ITDQFPQ = Py. A positive semidefinite solution G, to an algebraic cautious Riccati-
like equation [BIR)) exists if and only if the unique positive semidefinite solution G. of an
(ordinary) algebraic Riccati equation

G=AT"GA+ Py — (ATGB + Py,)(B"GB + 0},) "(BTGA+ Py, 9) (3.24)

satisfies the condition
G < 1. (3.25)

Moreover, if the positive semidefinite solution G, ezists, then G, > 0 and it is unique in
the set of all positive semidefinite matrices.

Note 3.12. It is important that the inequality in ([3.25]) is strict. Also note that
similarly to the equation ([BI3]), the equation (3.24) can be derived by dividing
both sides of the algebraic equation ([B.I8) by G1,1 and then neglecting the terms
containing matrices @ and R.

Proof of Theorem [Z11l The equation (3.24]) has a form of a standard Riccati equation with
weighting matrices Q = Py, R = O'go and S = Py p,. The assumption of the theorem gives
us observability of the pair (A,T'p,). Together with the assumed stabilizability of (A, B),
we get the existence, uniqueness and positive definiteness of the solution G, as shown in
[10], and therefore also G > 0.

If the solution G, in the theorem satisfies Gi' < 1, then there exists € such that

the solution G, ¢ of the equation

G=ATGA+¢cQ+ Py — (ATGB + Py, ) (BTGB + cR+ 02 ) (B'GA + Py ) (3.26)
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satisfies G}kj; = 1. This is a corollary of Lemma and Lemma as we assume the pair
(A,Tq) to be observable. Dividing the equation [326) by ¢ will give the original equation
BI8) and its solution G, = G, /e. This also explains why the inequality ([B25]) must be
strict - we need to have € > 0 to be able to find the solution.

Conversely, assume there exists a solution G, of the equation ([BI8]). Observability
of (A,Tq) and positive definiteness of the variance matrix P yields G1' > 0. Then dividing
the equation by G gives an algebraic equation in a form ([3.26) where ¢ = 1/GL'! and the
upper-left element of its solution equals 1. Using Lemma B.8 and Lemma B.10, the solution
G, of B24) will satisfy the condition ([B.25). O

Lemma 3.13. Let M, Ay, k € N be symmetrical matrices, A; < A; wheneveri < j, M > Ay
for all k € N. Then there exists a symmetrical matric A = limy_ o0 Ag.

Proof. The Lemma is true for sequences of real numbers. Using vector 1 = [1 0 --- 0]T,
we get o7 Apwy = A,lc’1 and similarly = Ayx; = Azi, where z; is a vector with 1 in the i-th
position and zeros elsewhere. The sequences A?f are monotonous by the assumption of the
lemma and thus the limit exists for all diagonal elements. Existence of the remaining limits
can be proved by using vectors with 1 in the corresponding places and the fact that diagonal
elements converge, e.g. vector [1 1 0 --- 0] for the element A,lf = Ai’l and so on. O

Lemma 3.14. Let o > 1 is a real number, G is a solution to an algebraic cautious Riccati-
like equation with matrices A, B, Q, R and P. Then
aG > ATaGA+Q+ aGHPy — (3.27)
— (ATaGB + aG" ' Pyy,)(BTaGB + R+ aG oy ) (BT aGA + aG ' Py, ).
Proof. Multiplying the algebraic cautious Riccati-like equation by « yields the following
equality
aG = ATaGA+aQ+aGH' Py — (3.28)
(ATaGB + aG"' Py 4, )(BTaGB + aR + aG oy, ) (BTaGA + G Py ).

Because a > 1, then also a@ > @ and aR > R and thus the right-hand side of 28] is
greater than the right-hand side of (327). O

Theorem 3.15 (Convergence of the discrete-time cautious Riccati-like equation). Let Gy,
be a matriz sequence given by the discrete-time cautious Riccati-like equation for some initial
condition Gy > 0, stabilizable pair of system matrices (A, B), and weighting matrices @ > 0
and R > 0, such that the pair (A,Tq) is observable, I‘gI‘Q = Q. Let the positive semidefinite
solution G of the algebraic cautious Riccati-like equation exist. Then

G 2

Proof. Let us divide the proof into three parts. We will denote Gy (Gg) the k-th element
of the sequence given by the discrete-time cautious Riccati-like equation with an initial
condition Go. The system (A, B) is stabilizable and the pair (A,I'g) observable, and thus
the algebraic solution G is positive definite.
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1. Let Gy = 0. Then G; = Q and Q > Gy. It follows from Corollary 3.6l that the sequence
G1(0) is monotonous. The sequence G (G) is a constant sequence Gy = G for every
kE>0. As G > 0, Gx(0) < G for every k > 0 by Lemma 35l G(0) is therefore
an increasing, bounded from above sequence, and as such has a limit according to
lemma This limit must satisfy the algebraic equation and be positive definite.
As the positive definite solution od the algebraic equation is unique, the sequence
G1(0) converges to the algebraic solution G.

2. Let a > 1 be an arbitrary real number. Using aG as initial condition yields G (aG) <
aG according to lemma B4l The sequence Gi(aG) is a decreasing sequence by
Lemma B3]l Similarly to step 1, oG > G implies G(aG) > G for every k > 0. The
sequence is thus bounded from below and therefor convergent. Due to uniqueness of
the positive definite algebraic solution G, the limit must be G.

3. Let Gy > 0 be an arbitrary initial condition. Then there exists a > 1 such that
oG > Gy. Lemma yields that G(0) < Gr(Go) < Gi(aG) for every k > 0.

k—o0 k—oo

As we have shown that both G(0) —— G and Gj(aG) —— G, it holds that
k—o00
Gr(Gy) —/ G.

O

3.2.2 Divergent equation

Lemma 3.16. Let A, B be system matrices and Q, R weighting matrices. Let oy > 0
and B, > 0 k € N be two real sequences, oy > B. Let G0, Ggo be two symmetrical
positive semidefinite matrices such that Go 0 > Ggo. Let G 1 be the sequence given by the
cautious Riccati-like equation [BI3) with weighting matrices Q, R, system matrices oA,
ar B and initial condition G o, i.e. the system matrices need not be constant, but may vary
with factor oy, with each step k. Similarly, let Gy, be the sequence given by the cautious
Riccati-like equation [BIB) with weighting matrices Q, R, system matrices B A, BB and
initial condition Ggo. Then for each k € N Go 1, > Gg .

Proof. The proof is similar to the proof of Lemma 3.5l We will again use induction to prove
the lemma. For k = 0 the lemma is true by assumption. Now let us assume that the lemma
is true for k € N. The following holds by the analogy described in Note [3.3]

1,1 1,1 ] 8
Q —’1— lc;a,kpe Ga,k]lgelvbo To
s s 2
Ga,kpboﬁ R+Ga,k0bo_

T

T _ T T
Ty Gaok+1T0 = [xo ua,o] + J?a,lGa,kJ?a,l,

Ua,0 |

and

1, 1 7
Q i lGﬁjcP@ Gé,kfﬁybo o
GgrPoo  R+Ggop | luso]

T

25 G k1o = [xoT U’ﬁ,o} + 251G s,

where uq 0 and 4,1 are the optimal control and state for the problem with initial matrix G40
and system matrices agy1A, agt1 B (and the same for 8;). By assumption Gor > Gai,
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therefore also G1 > G ', and consequently

Q+G11P G(lllkpgbo
Ga,kam R"’G kabo

Q+Gy P Gy, Pe b

3.29
Géﬁchoﬂ R + G kabo ( )

Due to the modified indexation introduced at the beginning of this subsection, the optimal
control uq o is given by a state feedback control law with index k+1, i.e. uq,0 = —Kq, k+1%0,
where K, k41 is a matrix given by the the equation (BI0). Similarly, the state zo1 =
op+1Azo + apy1Bua,p. Using the control law K, jy1 for the system Bi114, Brp1 B will
result in the control uq,o and the state g Z“ Zq,1- The inequality (329) and the fact that
Br+1 < a1 imply that

1,1 1,1
Q+Ga,kP9 Ga,kpaabo
G-l P R+ GLo?

a,k bo,0 a,k™ bo

[wo}+5k+1 T o Brt1

X X
o, 1Y B,k a,l
Ua,0 A1 A1

nga,kaCo = [xOT ugﬁo}

i) T
|: :| +xa71Ga,kxa,1 2
Ua,0

Q+Gyz.P Gy Pa b
1,1
Girbroo R + Gﬂ KTy

> [JTOT Ug,o]

where we used the same control law for both equations, as described above. Such control
law is indeed suboptimal for the second equation and therefore

[ Zo ] n Br+1 7T G Br+1

a, 1Y Bk il =
Ua,0 0771 077N

Q+G Py Gﬁkp9bo

T
[150 U } G Pbo, R+ Gﬂ kabo

Q+G Pg Gﬁkp9bo

> [of uhl Y Pbo, R+GYlo?

i) T
+25,G5,1T3,1-
Lm] PATORTS

The two inequalities imply
T T n
Ty G17k+1l‘0 > X G27k+1l‘0, Vrg € R s
which completes the proof. O

Note 3.17. The statements of Lemmal[3.I6] are also true for a cautious Riccati-like
equation with constant o and 8 and also for a standard Riccati equation, that can
be seen as a special case of equation (B.15) with a zero variance matrix P. The
proof of Lemma [3.J6] will then remain unmodified, as there were no conditions on
the variance matrix in Lemma [3.161

Lemma 3.18. Let (A, B) be a stabilizable pair of system matrices and Q > 0, R > 0
weighting matrices, such that the pair (A,T'q) is observable, I‘gI‘Q =Q. Let o« > g > 0.
Let G and Gg be the solution of an algebraic Riccati equation with weighting matrices Q
and R and system matrices oA, aB and SA, BB, respectively. Then G, > Gg. Let o, > 0,
n € N be a real sequence, o, E2000 . Let Gy, be a solution of an algebraic Riccati equation
with weighting matrices Q, R and system matrices ap, A, o, B. Then G, LiiaN G, where
G is a solution of an algebraic Riccati equation for weighting matrices @, R and system
matrices A, B.
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Proof. According to the Note BI7 the Lemma [BT0lis true for a standard Riccati equation.
It is known from the theory of Riccati equations [10], that the stabilizability and observability
assumptions above ensure the existence of unique solutions G, and G of the corresponding
algebraic Riccati equations. It is also true that the sequence given by the discrete-time
equation converges to the unique solution for each positive semidefinite initial condition Gy,
i.e.

Ga = lim Ga,k

k— o0

and

Gﬁ = klgglo Gﬁ,k.
Let us assume an arbitrary initial condition Gg > 0. Then by Lemma B.16] it holds that
Ga,x 2> Gg,y, for each k € N and therefore also G, > Gpg.

To prove the second part, first note that G > 0 due to the assumption of observ-

ability. We can easily construct two sequences f3,, > 0 and 7, > 0 such that Vn € N we

have B, < an < Yn, Bn b0 1, vn hooo 1, B, nondecreasing, -, nonincreasing. (Such
sequences can be for example 5, = 11>1f a; and 7y, = sup«;). Let us denote Gg, and G,
i>n

>n
the solution of the algebraic equation for matrices 8,A, 8,B and v, A, v, B, respectively.
By the first part of the Lemma, the following holds:

Gpm < Gn<Gyp YneN.

By the first part of this lemma, as n — oo, the solution Gp,, is increasing and G,
decreasing. The solutions are also bounded form above (below) by G, which is also implied
by the first part of this lemma. There must therefore exist limits

n—oo

Gﬁ}n —_— Gﬁ

and
n—oo
Gyn — G,

Taking a limit for n — oo of both sides of the algebraic equation with matrices 8, A, 8,B
and v, A, v, B shows that the matrix Gg must satisfy the algebraic equation for matrices
A and B. By the uniqueness of the solution, Gg = G and using the same technique, also
G, = G. This clearly implies that

G, — G,
which completes the proof. O
Lemma 3.19. Let (A, B) be a stabilizable pair of system matrices, Qr > 0, R, > 0 weighting
matrices, (A,T'g,) observable, nger = Qg for every k € N. Let Qy LN Q >0,

k—o0 k—o0

Ry, —— R > 0, (A,T'g) observable, I‘gI‘Q =@Q. Let 0 < a € R, ap, —— 1. Let us
denote A = arA, By = axB. Let Gy be a sequence of matrices given by the discrete-time
Riccati equation

Grs1 = A1 Grdis1 + Qi1 — (AL 11 G B ) (B G Brs1 + Riy1) ' (Bl 1 GrArs).
(3.30)
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Then
leMl.nsNye]

where G is a solution of the algebraic Riccati equation for system matrices A, B and weight-
ing matrices Q, R.

Proof. Similarly to the proofs of Lemma and Lemma BI8 let us define sequences
0 < Bk < ap < 1Vk € N, such that 5 F2%0, 1 and Yk LN 1, Bk nondecreasing, g
nonincreasing. Let us also define 0 < @, < @ < QZ and 0 < R, < Ry < Rz, such that

— K k _ K k _ _ .
Q 27, Q'k" 270, R, 27, R, R,i' 222, R, where @, and R, nondecreasing,

QZ and R: nonincreasing. Let us denote G, the sequence given by a discrete-time Riccati
equation with system matrices 3 A, BxB and weighting matrices @, , R, . Let us denote
Gg the sequence given by a discrete-time Riccati equation with system matrices v A, v B
and weighting matrices @}, R;. By Lemma nad Lemma [BI8 the sequence G, is
nondecreasing bounded by G from above and G'k" nonincreasing, bounded by G from below.
This implies the existence of limits

G~ = lim G,
k— o0
and
Gt = lim G;.
k—o0

The limits must satisfy the equation taken to limits on both sides and by the uniqueness of
solution of the algebraic Riccati equation, it must hold that G~ = Gt = G. As G, < G}, <
G; for every k € N, it also holds that

lim Gk = G,

k—o0

which completes the proof. O

We will now study the behavior of the discrete-time cautious Riccati-like equation
in the case that no positive semidefinite solution of the algebraic equation exists. We will
first show, that the solution is unbounded and we will then study the divergent behavior in
more detail. In particular, it will be shown, that the divergence is ‘uniform’ in the sense
that although all elements of the matrix G go to infinity, there is a matrix G such that
Gr/ G,lc’1 Eoo0 G Asa consequence, the feedback gain converges to a limit matrix and as
such gives a time-invariant control law.

Theorem 3.20. Let Gy, be a matriz sequence given by the discrete-time cautious Riccati-like
equation for some initial condition Go > 0, stabilizable pair of system matrices A, B and
weighting matrices @ > 0 and R > 0. Assume that no algebraic solution of the algebraic
cautious Riccati-like equation exists. Then

1.1 k—oo
Ght oo, o
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Proof. Assume the sequence G (0). This sequence is increasing by Lemma [3.5] and the fact
that G1(0) = @ > 0. We will first show that the sequence is not bounded from above.
Assume that G (0) is bounded from above, then it is a bounded monotonous sequence and
as such has a limit that must satisfy the algebraic equation. This is a contradiction, as such
matrix does not exist by assumption.

We have shown that G (0) si unbounded, in particular, there exist 1 < i,57 < n

such that sz (0) 2y . This, however, does not ensure Gl’l( 0) 5200 0. We will
k—o00

prove this again by contradiction. Let us assume, that G;'(0) —— L € R (G'(0) is
monotonous, and thus either convergent or divergent to infinity). If we substitute L for
Gi’l in the cautious equation (3.1, we get a standard Riccati equation with constant
weighting matrices. This equation has an algebraic solution G* and also defines a sequence
Gé(()) LniNye23 According to Lemma [3.5] and Note B.7 the sequence is monotonous and
bounded from above by G*.

Let us now assume the sequence G (0) given by the original equation. As G,lc’l(O) <
L for each k > 0, then also G;(0) < GE£(0) by Lemma [BF and therefore G (0) is bounded
from above. This is a contradiction with assumptions. O

Let us now consider the case, when the sequence Gy, given by the cautious discrete-
time Riccati-like equation does not converge. According to Theorem B0l this happens if
and only if the corresponding algebraic equation has no positive semidefinite solution, which
is equivalent to the condition ([28) in Theorem BIIl Let us now assume, that G2 = 1.
We can define a modified equation, where we divide both sides of the equation (BIH) by the
number G,lc’l, ie.

Gitr _ yr &Ajt ?1+P9 (3.31)

Gllc, b Gk Gy

G G R G
— (AT B+ Py ) (BT 5B+ —1 +0) MBI A+ Py o).
Gk Gk Gy Gk
We can do this without loss of generality, as we have proven that G,lc’1 > 0 for k > kg for
some finite kg. If kg > 0, we can formally put Gy = G, and start the solution from this
point. If we denote Gy1 = Cé’“lﬁl and define Gii = 1, then the equation B3] will have
k

the following form

__ G
Gr+1 = ATG_flAJF 5 9 ; + Py (3.32)
—1,1
k H i
=0
- (AT_G—le-I—Pa,bO)(BT_GilB—F - K +a§0)—1(BT Gk “A+ Pyy).
G, G HE Gk
=0

Note that we can always return to the original solution by a simple mapping Gri1 =

— — k11 k 11
GkHGi’I = Gr41 [ Gi'7, as in this notation it holds that G,i’1 = [[ Gi". The equa-
i=0 i=0
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tion (3.32) thus describes the behavior of a normalized solution G. We have shown that
G,i’1 £220 . If we show that G_kl’l LN 1, we will get the equation in a form (330)

and we will be able to use Lemma [3.19

Theorem 3.21. Let A, B be system matrices and QQ, R weighting matrices. Let there be no
solution, to the algebraic equation FIR) and let Gi' =1, where G is defined in Theorem
[Z11. Let Gy be a sequence given by the cautious discrete-time Riccati-like equation with

matrices A, B, Q and R. Then

G %
—k 2 q,, (3.33)
Gy

where G is given in Theorem [Z1]]

Proof. We will first prove the theorem for a nondecreasing sequence Gy, given by the discrete-
time equation (BID). Let us define G}, as a solution to an algebraic equation

G = ATGA+Q+G.'Py (3.34)
— (ATGB+ Gy ' Py ) (BTGB + R+ Gyl o} ) H(BTGA+ Gy Py ).

G} .
Then orT solves the equation
k

G = ATGA+ % + Py (3.35)
G B
k
R
(A"GB + Py4,) (BTGB + ort +03) {(BTGA+ Py ),
k
and therefore, by Lemma B8 G, < 521 As Gy, is assumed to be nondecreasing, it also

holds that Giy1 > Gy and G}, > Gk“]f The second inequality follows from the following.
If we take Gy, as an initial condition for the equation ([B.IH)), then the right-hand side of the
equation will be the same as in ([3.34). After one iteration, we get the matrix Gg41, which
by assumption is greater that G. If we continue solving the equation with the right-hand
side given by [B34), i.e. if we do not update the factor G,lc’1 to G,lcil,
with a nondecreasing sequence (Corollary B.6]) to the limit solution G, which implies the

inequality G, > Gj41. Dividing both inequalities by G,i’1 > 0 yields

we will continue

Gy Gr+1 Gy
11 = A11 = A1
Gy, Gy, Gy,

The leftmost expression converges from above to G, by Lemma [B.8 and by assumption,
Gt =1. The (1,1)-element (upper-left element) of the rightmost expression is equal to 1
for each k € N. Finally, the expression in the middle is by definition equal to G1. Taking

1.1 k—oo

the inequality to the limit as k& — oo yields G}/, —— 1. By Lemma is the proof
complete for a nondecreasing sequence Gy.

For a general sequence Gy, let us consider two nondecreasing sequences G and G;
such that G, < Gy < G;. Let us choose G, = 0 and Gl = G,, > Go. Such m exists
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for every Gy > 0 as it is implied by Theorem B.20] and Lemmas 3.8 and [B.I0 that for zero
initial condition, the minimum eigenvalue of G, goes to infinity as k — oo. The number m
is fixed for each Gy and therefore it holds

k+m 11
+,1,1 __ =11
ot = [ &et
i=k+1

where the finite product goes to 1 as k — 0o. Let us examine the inequality

- +
G Gl G
1S o11 S it
Gkv s Gkv s Gk: )
and the inequality
— +
G < G Grn
G;,l,l = G;,l,l = GZ—,l,l
The (1, 1)-elements of leftmost and rightmost expressions in both inequalities converge to
1, therefore it also holds for the middle. Finally, note that

Grt1 < Gr+1  Gra
—I1 2 A1 2 ArII
Gy, Gy, Gy,

—1,1 . . "
and therefore Gy, 5720 1 for an arbitrary initial condition Gjy. O

In the case Gi'* > 1, the Theorem 21l does not hold, but it can be used to derive
a form of 'normalized convergence’ similar to (3:33]). Let us consider the following algebraic
equation

G=¢e"[ATGA+ Py — (A"GB + Pp,)(B"GB + 0,)) "(B"GA+ Py, 0)] , (3.36)

which corresponds to the equation ([3.24)) for a system €A, eB and variances 2Py, £2 Py,
and 62020. The factor e is chosen such that the solution G. of the algebraic equation (3.30])
satisfies GI'' = 1. By Lemmas B.8 and B.I0, there always exists such a factor 0 < & < 1.
Let us denote Gy, the sequence given by the cautious discrete-time Riccati-like equation

Gip1 = & |ATGrA+Q+G)'Py— (3.37)
(ATGiB + G Py, ) (BTGB + R+ GLlo2 ) (BTG A + G};leO,Q)} ,

derived from the equation ([FI5) by using scaled matrices €A, eB, €2Q, e2R, 2Py, 2Py,
and 62050. Due to the scaling, the sequence Gy, given by the original equation ([B.I5]) will be
given by the mapping

G = e 2G5,
According to Theorem [3.2T] above, the normalized sequence G_i given by a modified discrete-
time equation (332) with scaled matrices €A, B, €%Q, %R, 2Py, 2Py, and 62050 will
converge to G.. As it holds that

k

£ _ € e, 1,1 € e, 1,1

E+1 — Gk+1Gk = Gk+1 HGi )
i=0
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the mapping from the normalized sequence Gy, ; to the original sequence Gy1 is given by
Gk—',-l — 2(k+1)G5 GE 72(k+1)G6 H GE

Let us now use these equalities to write

Grp e VGGt e2NGEGrtt G

1 11 2(k+1 5,1,1 N
Gy Gy e )Gk-',-l G

We can now express the limit

G Gy,
lim = lim =L = G, (3.38)
k— o0 Gk’+1 k— o0 Gz,_i_,l

where the last equality follows from the previous text. We have now proven the last theorem
of this section.

Theorem 3.22. Let A, B be system matrices and QQ, R weighting matrices. Let there be no
solution to the algebraic equation [BIY)) and let Gt > 1, where Gt s defined in Theorem
[Z71 Let Gy be a sequence given by the cautious discrete-time Riccati-like equation with
matrices A, B, Q and R. Then

% 2 a, (3.39)
Gy

where G a solution of the equation ([B.38), where the factor ¢ is chosen such that G = 1

Proof. The proof follows from equation (3.38) and the considerations in the preceding text.
O
3.3 The limit cautious controller

The feedback gain matrix is given by the equation (3I6]). Using the theorems from the
previous section, we can examine the limit behavior of the feedback gain also in the divergent

case
lim K1 = lim (BTGyB+R+Gy'ol) {(BTGLA+ G} Pyg) = (3.40)
k— oo k— o0
. G R Gk
— kglgo(BTG—BJr G +o03,) N (BT =5 A+ Py ).

k k

The expression on the right-hand side of the equation ([40) converges to a constant finite
matrix independent of convergence of the corresponding sequence Gy, which follows from
Theorems 3211 and In the case described by Theorem B2I] (G+' = 1), the limit
controller is equivalent to the LQ controller designed for the nominal system and weighting
matrices Py, Py, and 0%0. In this case the equation [B.40) yields

K = (B"G.B+0}) "(B"G.A+ Py ).
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In the case described by Theorem (G,l"1 > 1), the limit controller is equivalent to the
LQ controller for a scaled system €A, eB with scaled weighting matrices given by 2P,
%Py, and %07 (the scaling factor will not change the result in (B40)). In this case the
equation ([B40) takes the form

K = (B"G:B +0p,) " (BTG A+ Py p).

The resulting feedback gain K ensures stability of the closed-loop matrix e(A — BK). De-
pending on the factor 0 < € < 1, the limit controller may cause an unstable closed loop for
the nominal system, i.e. the matrix (A — BK) may have eigenvalues outside the unit circle.

The cautious Riccati-like equation analyzed in the previous sections describes the
development of the matrix G, which is just one of the three terms defining the cautious LQ
controller of an ARMAX model, the other two being 7{ and gi. Recursive expressions for
calculating Gy, 7} and gi are given by equations ([232), 233) and 234) in Chapter 2
respectively. The limit behavior of 'ykT and gi will now be studied. Similarly to the cautious
Riccati-like equation, this only makes sense if A, = A and B, = B for some A, B and
all k € N. We will first rewrite the equations (233) and ([234) using the notation (230),

assuming constant system matrices and reversing the time indexation similarly to Definition

B
Yeyr = G A(Pug — PopoKii1) + i (A — BKjy1), (3.41)
g1 = ge +T7GTo? — LT, (R+ BYGyB + G} ' 02, ) Lips1 + (3.42)
ot { [K,{H(R + BTGB + GLlo? ) Ky — G};lpg} pm} ,
where

Kpi1 = (R+BTGvB + Gy o)) L (BTGLA+ Gy Py ), (3.43)
Lip1 = (R+ BTGB + Gyl od) ) M (BT ik + Py o ATGYY).
We showed in Section that under some very general conditions is the equation (2.35)

from Definition 2IT] either convergent (Theorem BI0) or uniformly divergent (Theorems
B2T and B:22). Thus we have either

G 222 q, (3.44)

where G is a finite, symmetrical, positive semidefinite matrix, or
G
Gl,l
k
We will assume in the further text that one of the conditions (344) and ([3.45]) holds. Both
conditions directly imply the convergence of the feedback gain Ky, i.e.

B2 G., G A o, (3.45)

k—o0

Ky, — K.

This is straightforward in the convergent case and in the divergent case it is shown in
equation (340). The main goal of this section is to show the limit behavior of [ .
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Note 3.23. The matrix G is defined in Theorem together with 0 < & < 1.
We will extend the definition also for € = 1, in which case G = G« from Theorem
3211 Considering 0 < e < 1 will thus also include the case described in Theorem
B21

Theorem 3.24. Assume that the sequence Gy, is given by the cautious discrete-time Riccati-
like equation BID) and that the pair (A, B) is stabilizable. Then

(i) If the condition (3.44) is satisfied, then

Vi £ 4T < o, (3.46)
where 4T is a solution of a linear equation

YI(I — A+ BK) = GY A(Py g — Py p K). (3.47)

(i1) If the condition (340 is satisfied, then

')’g k—o0
Gl T —— E < oo, (3.48)

where vL is a solution of a linear equation
' (I - e*(A- BK)) = G2"e? A(Pyp — Pup, K) (3.49)

in variable €T

Proof. (i) The development of v/ is described by the equation (B:41]), which is an equation

of a discrete-time linear time-variant system with system matrix A — BKj1 and input
G1 A(Py,0— Py b, Ki+1). Because K, — K, there is such kg > 0 that the system matrix
is stable for all k£ > ko. The vector 'y,? thus converges to the system equilibrium given
by the equation ([347). Such solution is unique, because the matrix I — A + BK is
regular, if A — BK is stable.

Let us divide both sides of the equation (34I) by G,lc’1 and multiply them by 2 to
obtain

1, T
Yo Cirn o _ Gy Vi o

€ e“A(Py o — Prp, K + ——¢*“(A - BK, .
Gk+1 G1 1 G]1€J ( ,0 bo k+1) G]:t"l ( k+1)

The factor ¢ is defined in Theorem [3.22 and is uniquely given by the cautious Riccati-
like equation producing the sequence G,. We can see this modified equation as a linear

system in variable Z£+. Such system is stable, because matrix e(A— BK) is guaranteed

Gl 1-
to be stable and 0 < & < 1 (the case ¢ = 1 is described in Note B.23]). Therefore the
system will converge to the stable equilibrium. According to the considerations in

Theorem [3.22] it holds that

Gk+1 2 k—oo 1
1,1 :
Gk
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Taking the limit £ — oo on both sides of the equation and defining

T
¢ = lim 2k
k—o0 Gk,

yields the equation (349). The solution is unique for the same reason as in the proof
of the first part.
O

The previous theorem says that the vector 'ykT converges if and only if Gy is convergent.
The possible divergence is ‘uniform’ in the sense of Theorem The theorem also makes
it possible to derive the convergence of Lj by considerations similar to those in (3.40).

The convergence of Gy, thus implies convergence of v/ and also the linear growth of
term gi, as can be seen from equation (8:42). This justifies the use of theoretically correct
division by N in the cost function. On the other hand, divergence of Gy, implies divergence
of v and gi and all these divergences are exponential. The optimal control law, however,
remains finite, because it is given by the state feedback K} and the absolute term Ly that
have both been shown to converge although Gy, diverges.
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Chapter 4

Single-step active adaptive
control

In this chapter, we will derive a single-step ahead active adaptive controller based on modi-
fication of cautious control. Cautious control was introduced as a concept in Chapter [l and
a cautious controller for ARMAX model was presented in Chapter The single-step ac-
tive adaptive controller assumes, that the control input may influence the knowledge about
system parameters in the future, thus reducing the uncertainty and improving the over-
all control performance. Such controller is an example of an approximate dual controller,
because it minimizes the control criterion, taking into account the impact on uncertainty.

First a general idea of modification of the cautious LQ controller to a single-step
active adaptive controller will be shown. Then we will present application of this scheme
to an ARX system with some simulations and remarks. The purpose of this chapter is to
introduce the idea of active control on an example and at the same time point out some
difficulties that arise when cautious control is used. An extension of the idea of the presented
single-step controller to multiple-step is also proposed. This extension is however not studied
in this thesis, because of problems with cautious control convergence.

4.1 Controller based on cautious strategy

The drawback of the cautious control strategy is the fact that the parameter uncertainty
is assumed to remain constant during the control process. Such model of parameter un-
certainty is easy to deal with but it is also unrealistic. In fact, the parameter vector is an
unknown but constant vector that can be estimated using statistical methods. As usual,
we will denote (-) . the (parameter) conditional mean at time & and P,y ; the (parameter)
conditional variance matrix at time k. The variance matrix is indexed by time k, because
it is assumed that it may change over time. The (-) notation is used here, where the dot
represents the concrete parameters being estimated, such as 6 or bg.
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It is possible to use the parameter estimate for computing the cautious control
strategy in each step, but such approach expects the uncertainty to remain the same during
the whole process. In reality, we can expect some improvement of the knowledge about the
system, expressed by the change of the variance matrix P,y . This approach leads to a
strategy that actively improves the knowledge about the system.

In the case of cautious control of ARMAX model, the optimal criterion value at
time k is a function of the state x;, given by ([ZIH). The matrices G, 77 and gy of the
quadratic form are given by (232), (233) and (2Z34]), respectively. The resulting matrices
G, 'y,? and g, depend on the variances of uncertain parameters and so does the optimal
criterion value Jj(zy). In the case of cautious controller, we assumed the variances to be
constant for all kK = 1,..., N. However, it is possible to take into account the influence of
the input uy, on variance matrices Py ;41 at time k+1, i.e. Py py1 = Py g1 (ur). Thus we
have to consider the matrices Gyy1, 'y,? and gy to be functions of ug, i.e. Ggt1 = Gry1(ug)
etc. Consequently the criterion Jy,; depends on uy not only via the state prediction, but
also via matrices Gy11(ux) etc. Therefore we will write J7, | (D*™!, u, yx) to emphasize the
dependence. If we assume this influence only one step ahead and the rest of the criterion
(from time k+ 1 to N) is estimated by the cautious control criterion, the Bellman equation
@I7) still holds, but it will now take the form

Ji (DM 1) = minE [ Quy + uf Ruk + Jipy (DF 1 wpe, yi) Jug, DF1 (4.1)
uy,

So in the single-step active control strategy, we assume that the variance matrix of the
parameter estimate is changed only after the current step of control and that cautious
strategy based on the last estimate will be applied on the rest of the horizon. Under this
assumption, it is possible to evaluate the criterion value J; +1(Dk_1,uk,yk), provided we
know, how the input uy changes the covariance Py in the next step, i.e. the transition
from Py to Py k41 is expressed as a function of uy. This influence is known for the
ARMAX model of a stochastic system, where the parameters can be estimated using the
Kalman filter (2:2). The minimization does not lead to a closed form functions of the state
Tk, as in the case of cautious controller and must be performed numerically. The minimized
expression is a continuous function of uy, so standard optimization methods can be used
for minimizing the criterion. The function need not be convex and therefore only a local
optimum is expected to be found. Because the optimal input for cautious control strategy
is known, the optimization can be started at this point. This guarantees that the locally
optimal solution of (£I)) is not worse than the cautious control.

It is important to remind that this approach is based on finite horizon optimization
and therefore its disadvantage is that the criterion matrix G} must be computed iteratively
and so must be the optimization for finding wj, in each step. It would seem reasonable to
extend the problem to infinite horizon and find a limit solution as a solution of an algebraic
cautious Riccati-like equation. However, this approach may lead to problems because the
limit solution of the equation is not guaranteed to exist. This issue was thoroughly studied
in Chapter Bl

Generalization of this method to multiple-step can be done by using the matrix
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G+ to estimate the criterion at time k+ M, where M is the number of steps in which the
decrease of variance is considered. The task is then to find the minimizers ug, ..., ugypr—1
for the nonconvex multidimensional optimization problem

k+M-—1
Ji(DFY) = min  E| > (2] Qui+ul Ru) + (4.2)
Uk yeo oy U+ M —1 i—k
+ JE+M(Dk+M71;uk, .. ,uk+M_1)|Dk71,uk, ey Uk M1 |-

This is a partially predictive formulation, because the expression on the right-hand side
is conditioned by measurements until k — 1, therefore all states zp41 to zr4a must be
predicted. The minimum must be found numerically, taking the cautious optimal control
as a starting point. Note that also the cautious optimal control is predicted, as it is based
on predictions E[zyi|D¥ 1 ug,. .., upri1] for i =0,..., M.

4.2 Simulations

In this section we present simulation experiments performed for the discrete integrator with
unknown gain on the input
Yk = Yr—1 + buy, + ex. (4.3)

The following values are assumed

b=10, o2=1, o2€[l1,10%. (4.4)
The further settings are used: the number of steps for computing the criterion (the control
horizon) N = 10, the weighting factor R = 1 and the initial condition y(0) = 10.

Figure 7] shows the optimal criterion values computed for the system (£3) on the
horizon of N = 10 steps. It compares the values of criterion for cautious and active control
strategy. It can be seen that the highest difference is around the variance of = 4 - 10 and
that for high uncertainty, the benefit of using active strategy disappears.

This can be explained by analyzing the shape of the curve describing the cautious
strategy. The value of criterion for the active strategy is composed of the cost of the first step
and the cost of the cautious strategy over steps 2, ..., N. In step 2, uncertainty is decreased
to a value given by the Kalman filter ([2.8]). The benefit of using the active strategy is thus
given mainly by the difference of the cautious strategy criterion value at points given by
uncertainty in step 1 and 2. This difference is greatest in the area where the curve is rising.
On the other hand, for high uncertainties, the curve remains almost constant and the benefit
is negligible.

For the next experiment, both control strategies (cautious and active) are applied on
the system (43)) in the following way. In each step of control k, the optimal input sequence
over the whole horizon N = 10 is computed. Then only the first input u; is applied and
after the real output y; is measured, the knowledge about parameter b is updated in terms
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of expressions (Z9) and (Z8)). In the next step k + 1 the new control sequence is computed
based on this improved knowledge and again, only the first input uj_ , is applied. This makes
it possible to see that the active strategy takes the identification process into account. The
control process is simulated for K = 10 steps of control.

Figures and show an example of the control process with b = 25. The graph
shows that the active strategy starts with a greater (absolute) value of control signal than
the cautious one. This leads to faster parameter identification as well as faster decrease of
the uncertainty expressed by ag, as can be seen in Figure 1.3 and Figure This shows
how the controller looks for an optimal tradeoff between identification and control in the
first step.

Figure 4] shows the dependence of the real (measured) criterion value on the real
gain b. The values of parameter b are chosen in the interval [—80, 100]. Other settings are
chosen as in ([£4), with ag = 103. To reduce the influence of the noise e on the result, the
control process is simulated 10 times for each parameter value from interval [—80, 100] and
the average of the criterion is taken.

It can be seen that the active strategy brings better results if the initial estimate
is not far from the real parameter value. This can be explained by the fact that the first
control is more aggressive in order to excite the system and enable faster identification. If
such input is applied to a system that is far from the estimate assumed by the controller,
the unexpectedly high output in the first step followed by a necessarily high input in the
second step may cause a rise of the criterion. This is shown in Figure 47 and Figure Eg|
where the control process is simulated for a real parameter value b = —25.
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Figure 4.1: The dependence of the optimal criterion value J* on the parameter variance o7 for
cautious and active control strategy.
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Figure 4.2: Input to a controlled process with b = 25, while b =10 and o = 10? is assumed.
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Figure 4.3: The estimate of the system gain for b = 25, while b =10 and of = 10% is assumed.
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Figure 4.4: Measured criterion values according to the real value of gain b, while b = 10 and
of = 10% is assumed.
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Figure 4.5: Output of a controlled process with b = 25, while b =10 and of = 10% is assumed.
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Figure 4.6: The variance o7 of the estimate of the gain b with b = 25, while b = 10 and o7 = 10°
is assumed.
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Figure 4.7: Input of a controlled process with b = —25, while b =10 and of = 10% is assumed.
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Figure 4.8: Output of a controlled process with b = —25, while b = 10 and o7 = 10% is assumed.
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Chapter 5

Multiple-step active adaptive
control

This chapter presents the multiple-step active adaptive strategy based on maximizing the
lowest eigenvalue of the predicted information matrix, by which the persistent excitation of
the system is reached. Persistent excitation is a sufficient condition for the least squares
identification algorithm to converge. The chapter starts with analyzing the benefit of the
multiple-step approach and shows it on a simple example. The formal definition of the
approach is given next as a nonconvex optimization problem, continuing with three concrete
approximate solutions of the original task. Simulations are provided at the end of the
chapter.

5.1 Benefit of the multiple step approach

Most methods used to approximate the dual control strategy use just a single step ahead
looking approach. In this section we will show that it is important to look more steps
ahead when designing an excitation signal. The problem with single-step ahead design
is illustrated on a simple first order example controlled by a cautious modification of the
minimum variance controller.

Let us assume the simple ARX system in (I.I9) and the cautious minimum variance
controller (L22)). The single-step bicriterial active approach in [19] suggests that the control
input is augmented by a predefined value Au so that the absolute value of the input is
increased, i.e.

ujp = uj, + sign(uy,)Au, (5.1)

where uf, is the optimal control from (L22)). The signum function is used to indicate the sign
of the optimal control uf and thus decide, whether Au should be added or subtracted, in
order to increase the absolute value of the sum u$. The reason is that, while the optimality
of the solution is violated in a similar way no matter what the sign of the perturbation
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Figure 5.1: An example of the single-step and two-step control of an uncertain first order ARX
system. A step in the reference signal occurs at time k& = 460.

is, the absolute value of the input is on the other hand crucial for efficient identification.
For more detail see [I9]. The two-step approach, on the other hand, calculates the biggest
information gain, measured by the lowest eigenvalue of the information matrix, after two
steps of control, when both steps may be altered by at most +Awu. This leads to a different
excitation strategy as shown later.

Simulation of both different strategies were done for a simple system

Y = 0.9yx—1 + 0.5uy + e, (5.2)

with noise variance 02 = 10~%. Initial parameter estimates were chosen & = 0.1, b=08
with covariances of elements 07 = 02 = 1 and g4, = 0. Figures [5.1(a)| and [5.1(b)] show the

response to a reference signal with a step from 0 to 10 occurring at time k& = 460. Figure
shows the simulation when the single-step ahead active control is used, while Figure
5.1(b)[ shows the same situation for the two-step ahead active control. Figures and
show the eigenvalues of the parameter estimate variance matrix when the single-step
and two-step ahead active control is used, respectively. Finally, Figures [5.3(a)| and [5.3(b)|

show the parameter estimates when the single-step and two-step ahead active control is
used, respectively.

The parameter eigenvalues in Figures[5.2(a) and [5.2(b)[show that in the case of the
single-step controller, the parameter space is not excited uniformly and there is a direction
(vector) in which the uncertainty is only little improved. In this case parameter estimates
in Figure do not converge to the true values, which is caused by the shape of the
input, that is not persistently exciting, as shown in the detailed Figure (.4l The responses
in Figures [5.1(a)| and [5.1(b)| show that after the step change of the reference has occurred,
the single-step ahead controller has a worse performance in terms of the overshoot.
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Figure 5.2: Eigenvalues of the parameter estimate variance matrix when the single-step and two-
step control is applied. For the single-step control, one eigenvalue is decreased rapidly, while the
other remains almost unchanged, indicating that there is a direction in the parameter space, in
which only little information is gathered. For the two-step control, both eigenvalues are decreased
uniformly. The change is slower than the fastest change in the single-step case, but information is
gathered in all directions.
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Figure 5.3: Results of the parameter identification process for the single-step and two-step con-
troller. For the single-step control, the parameters do not converge to the actual values, as the
persistent excitation condition is not satisfied. For the two-step control, the persistent excitation
condition is satisfied, so the parameters converge to their actual values.
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Figure 5.4: A detail of Figure [5.1(a)| between the times k1 = 250 and k2 = 280.

A detailed look at the excitation signal from Figures[5.1(a)land [5.1(b)|is in Figures
B4 and (.61 where we can see a significant difference. The single-step controller is
getting as much information as possible about the gain by changing signs rapidly. The two-
step controller, on the other hand, makes a fast change to improve the knowledge about the
gain and then keeps unchanged for several steps, to identify also the dynamics. Figure
shows the excitation between the time k; = 50 and ko = 100, where the parameter estimate
is still quite far from the truth. That is why the system output stays in negative values
most of the time. The situation between k; = 250 and ks = 300 is shown in Figure [.0]
where the system output is already equally distributed around the zero value.

The single-step effect when information is not gathered about all parameters uni-

formly is even more significant in case of higher order systems. It is possible to tell in
advance, which parameters need to be identified well and which do not have much influence
on the quality of control. Such approach based on the criterion sensitivity to parameters is
used for example in [32]. However, the algorithms proposed in this thesis aim to excite the
system uniformly and thus to minimize the risk of any parameter being poorly identified.
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5.2 Problem formulation and definitions

The presented algorithms are derived using the state-space descriptions of a SISO linear
stochastic discrete-time system [3], in an innovation form

Az, + Buy, + Tey, (53)

Czxy + Duy, + eg,

Tk+1 =
Y =

where A, B, C, D and T' are system matrices of proper dimensions, ug, yx and xj are the
system input, output and state, respectively, and ey, is a gaussian white noise sequence with
a zero mean and constant finite variance. Let us next consider that the system matrices
depend on some vector of parameters # that is uncertain. Uncertain is used here to express
that it is unknown, possibly described by a probability distribution, but constant or slowly
changing in time. Because the persistent excitation condition ([LI8) is easily defined for
ARX systems, we will consider that the system of interest is in an ARX form
n n
Yk = — Z aiYk—i + Z biuk—i + ex = 2} 0 + ey, (5.4)
i=1 i=0

where zj is the system regressor at time k defined for a SISO ARX system as z =
[Uky —Yk—1,Uk—1, -+ s —Yk—n, Uk_n] ., where n is the system order. The uncertain parame-
ters 6 are now simply the parameters of the model, i.e. a; and b; from (B.4). Note that
unlike in Chapter 2] 6 includes the parameter by for convenience of notation.

Note 5.1. The persistent excitation condition for ARX model can be also used for
ARMAX model with known c-parameters, that was used in Chapter[2 A variance
matrix update for the estimator is given in equation (2.2)). This matrix cannot be
easily inverted to obtain the information matrix update as it is in the case of ARX
model. However, the only interesting part of the variance (or in fact information)
matrix is the part corresponding to parameters a; and b;, because the accuracy of
the estimate of the past noises e;—; is limited. Maximizing the information matrix
of an ARX system is thus a reasonable approach also for ARMAX models.

We will work with a nonminimal state-space representation of this model

-al bl bnfl (079 bn_ _bO_
0 0 0 0 0 1
1 0 0 0 0 0
A = 0 1 0 0 0 B=1y
L0 0 1 0 0 | L0
C = [al by b1 an bn]; D:[bO}v
r = [100 0]". (5.5)

In a minimal representation, each state is formed by a linear combination of the input and
output at time k. The representation (5.5) resembles the controllable canonical form built
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of 2x2 matrix blocks, but is in fact uncontrollable. This corresponds to the fact, that the
form (55) is nonminimal and each block can thus be replaced by one state of the minimal
representation. However, the system is stabilizable with n uncontrollable eigenvalues that
are equal to zero, which enables its use for control design. The state vector in representation
(5.5) is formed by previous inputs and outputs, T = [~Yk—1,Uk—1,- - -, —Yk—n, Uk—n]’ and
is directly measurable.

The uncertainty is described in a probabilistic way, i.e. the parameter vector is
described by the conditional mean and variance matrix at time k

0 =E[0D"'], Py =var[9|DF'], (5.6)

where the symbol D*~! is used to denote available data up to time k — 1 as defined in (H)
and the parameters are considered to be stochastically independent on the noise e;. As the
controller design is formulated for a fixed time k, we will consider k£ = 0 for simplicity of
notation, and thus omit the time indexation in (5.6), defining 0 =0y and Py = Py .

It was said in the introductory section that the algorithm is based on a bicriterial
approach, i.e. in the first step an initial control sequence U} = [u§,us, ..., u%]T is found
as a result of any existing control algorithm and in the second step, a control sequence
U* = [uf,ul,... ,uj\,]T maximizing the lowest eigenvalue of the information matrix is found
in a feasible set around the initial sequence U}. Here, N is the control horizon. The
feasibility set is defined as some neighborhood of U} in which the altered control does not
change the overall performance significantly.

The presented algorithm uses MPC control for the initial solution U}. In such case,
it is usual to define the performance criterion as an expected value of the quadratic cost

N N
JmPe = E Z (pui—l—yi) | DO ui,...,un| = Z (pui—i— E [y,% | Do,ul,...,uk]), (5.7)
k=1 k=1
where p is a positive real weighting constant and the expectation is taken with respect
both to the parameter uncertainty and the noise ey. The MPC algorithm searches the N
dimensional space of input sequences to find the optimal one, so in this formulation all
inputs u, are deterministic variables, which justifies the second equality in (&.7).

The expectations of outputs in (B7) are difficult to calculate as the formula for
open loop output prediction contains multiplications of parameters 6 and thus also higher-
order moments of parameter distribution. Therefore, as explained in Section [L4] we will
not consider parameter uncertainty in the controller design, but rather use the certainty
equivalence (CE) approach, i.e. parameter mean values will be used as if they were the
actual ones. The predictive c.p.d.f. is

p(ye | D°,ug,. .., up) /p(yk | DO ug,. .. up, O)p( | D uy,. .., ux) A6
= p(yk |D0,u1,...,uk,é),
where the following CE assumption was used

p(ﬂ | Dovulv" '7uk) = 5(9 - 0)
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The CE criterion will be defined as

N

Jcezz:(pu%—l—E[yz ‘ Do,ul,...,uk,éD, (5.8)
k=1

which makes the open loop predictions simple. The notation & will be used for the con-
ditional expectation E[z|0 = 0], i.e. for objects that generally depend on 6, in which 6 is
substituted by 6, e.g. the matrix A = A(é)

It can be shown that the problem (5.8)) is equivalent to the MPC problem for a
deterministic system (ex = 0), with the only difference in the criterion value, which for a
stochastic system has a linearly increasing additive term J*® that does not depend on control,

i.e.
N

JC=>"(pui + 7)) + J°. (5.9)
k=1
The optimal control U} minimizing the cost (L8] is thus equivalent to the optimal control

minimizing the cost
N

J = (pup+ %) - (5.10)
k=1
The problem can now be formulated as the following minimization problem for a SISO
system

N

v = argrll}}an = argrll}}vnkz_:l (pui + 97) » (5.11)
s. t. Tht1 = Az + Buk,
gr = Ciy + Duy,
luk| < Umaz,
& =,
where U;,q; is a hard constraint on inputs, £ is an initial condition for the problem and
UYN = [ui,...,un]? is an input sequence. The initial control U is thus a result of a

quadratic optimization problem.
For the case of a variety of recursive identification algorithms (e.g. for ARX identi-
fication by recursive least squares) the information matrix yields the formula [2]

M

Pyt =Pyt = (el (5.12)
k=1

As the future regressors are unknown at time ¢t = 0, the future value of the information
matrix cannot be computed exactly and for a given control sequence U with N > M it
will be estimated as

M
Pyt =P+ (22]), (5.13)
k=1
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where Zj, is the system regressor, where unknown future outputs yj, for k > t are substituted
by their predictions gi. An exception to this is the finite impulse response (FIR) model, for
which a; = 0 and the regressor consists of inputs only. Note that the prediction horizon N
in (BI7)) is different from (greater than) M which expresses the number of steps after which
the matrix 15]&1 is evaluated and which will be called the excitation horizon. That is why in
the second step, only M first inputs are involved in optimization and the following N — M
steps remain unchanged.

Let us now introduce some useful notation. It holds that Zi\/lzl (ékég) = ZAJEZM,

where Zy; = [21,...,2um]T. The transposed predicted regressors 2z, k = 1,..., M form the
rows of the matrix Z); and can be expressed as a linear function of the initial state z; and
an input vector UM = [uy,...,up]7T as
2k:Fk{ x&} k=1,..., M. (5.14)
Ui

The predicted information matrix ]5]&1 is thus a function of the system matrices A, B,C
and D, the vector x1 and the input vector UM . As the only variable here is the input vector
UM, we will denote Py,' : RM — RZn+Dx(2n+1) the matrix-valued function

P (UM —Po_l—i—]ﬁ;{Fk { ;54 } [ 2T (UM)T ]Fg}, (5.15)

the value of which is a symmetric, positive semidefinite matrix, that can only be posi-
tive definite, if M > 2n + 1, i.e. greater than the length of the regressor. Similarly, the

columns of Zj; are formed by shifted inputs and outputs, particularly [uq,...,upm] to
Uity sun—n)T and [yo,...,90-1)7 t0 [Y—ni1,.--,Uar—n]’. Let us denote the k-th
column of Zy; as wg,k=1,...,2n+ 1. Then wy can be expressed by
1
wk—Kk{UM], k=1,....2n+1, (5.16)
1

where K} is a matrix of appropriate dimensions. The vector of output predictions YlN =
[§1,.-.,9n]" can be expressed as

T
Y:G[””}V]ZG vM |, (5.17)
Uil

where G is a matrix of corresponding dimensions, x; is the initial state of the system
and UL 41 is the part of the input sequence that is not changed in the second step, i.e.
U1 = [unr+1, ..., un]. Using this notation (5.17), the MPC criterion in (5.I1)) is expressed

as
T1

J=[af oM Uy JH| UM, (5.18)
Ui
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where
0 O
H=G"G .
i [ 0 pl ]

As mentioned above, the excitation horizon M is generally shorter than the control horizon
N so the final control U* differs from the MPC control only in the first M steps. In fact, N
should be significantly greater than M so that the control criterion can take into account
the future impact of identification procedure on the control quality. Let us decompose the
input sequences by the following notation

0= a(fU))%Ai | -] (r(fU))%Ai | (5.19)

It is now possible to formulate the problem as

(U*)JJ\V/IH = (UC*)J\N4+1a (5.20)
(UHM = argmax~,
s.t. UM cu,
luk| < Umaa,
P UM — Pyt > 41 (5.21)

To describe the set U, let us denote the optimal MPC criterion value J* = J(U}). In this
case, it is natural to define the feasibility set as such neighborhood, in which the MPC
quadratic criterion does not change more than specified, i.e.

M
L{—{UlMeRM:Jq [le ]><J*+AJ} (5.22)
(Uc )M—i—l

for a given maximum criterion change AJ. Note that such feasible set (not taking into
account the hard constraint) is an M-dimensional ellipsoid in R™. This is clear from the
criterion formulation in (5.I8). The choice of AJ is a part of the controller design. One
possibility is to design a time-varying AJ depending on the information matrix, so that AJ
is large if P(;1 is small and vice versa. Such choice leads to faster parameter identification
when the uncertainty is high and as soon as the information is gained, the perturbation is
decreased. However, AJ should be bounded from above, to guarantee that the perturbations
are also bounded.

Note 5.2. The condition (521) is expressed for the information matrix Py,'(UM).
This means that the influence of inputs U3 is measured at time M. However, the
influence could also be evaluated later, e.g. on the control horizon N as PJQI(UIM)
or generally at any time M < k < N as P,:l(UlM). The time k may be then
viewed as additional tuning parameter of the controller design.

Because the information matrix (B.I3]) consists of quadratic and bilinear terms, the problem
is nonconvex in control inputs, as demonstrated in Figure (.7, which shows the lowest
eigenvalue of the information matrix of a second order ARX system after two steps of
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control as a function of the two inputs u; and us. This is a difference from simple single-
step approaches where the solution always lies on the constraints ([19]) and is a reason for
using numerical methods.

5.3 Multiple-step algorithms

In the previous section, the problem was formulated as a nonconvex problem. The non-
convexity introduced by (521 can be handled in several ways. This section presents three
different methods to solve the problem (G20).

5.3.1 Rank 1 algorithm

The Rank 1 algorithm is based on a convex relaxation of the problem and concentrating all
nonconvexity into a rank constraint. Using the Definition (B.15]), (521)) is rewritten as

M
x
S [ g | (o7 @i 18 > 523
k=1
or in a simplified form
M
> RUxF > A1, (5.24)
k=1
using the notation
T M\T
T T M\T 121 z1(UT") U
Lop Ut =[Gty Gt | - 5:2)

The matrix Uy consists of constant terms 127, terms z1(UM)T and UM 2T linear in UM,
and the term UM (UM)T quadratic in UM. The quadratic term makes the problem (5.24)
unsolvable as an LMI directly, and therefore the following reformulation is used

T M\T
riz; 1 (U")
= .2
v = gy M0 (520)
s. t. rank (Uxz) = 1, (5.27)

where Uy, is a general positive semidefinite matrix, replacing the quadratic term UM (UM)T.
All nonconvexity is now concentrated in the rank constraint (5.27) and dropping this con-
straint the task can be solved as a normal LMI problem ([I1]) in more variables, known also
as Schor’s relaxation ([58| 36]). Expressing the criterion as a Schur complement ([9]) this
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relaxation makes it possible to solve the original problem as a rank constrained LMI

U1 = (Ui (5.28)
(Chab

argmax-y,
UM

N N AN S Ty
T1
s. t. G[ UIN :| 1 0 >0,
N 1
Ul 0 17

|uk| < Umaz;

M

ZFkUXQFkT >l

k=1

rank Uxo = 1.

5.3.2 Gershgorin circle algorithm

This algorithm is based on eigenvalue approximation in terms of Gershgorin circles ([9]).
For a real matrix A with entries a;; define R; =}, |a;;/, i.e. the sum of absolute values
of elements of the i-th row without the diagonal element. Then each eigenvalue lies in at
least one of the Gershgorin circles defined as intervals [a;; — R;; ai; + R;] for every . This
idea can be used to create constraints on the elements of the matrix ]51\_41 - Po_l. If the
diagonal elements a;; are greater than some v; and the nondiagonal sum less than 2, then
the lowest eigenvalue must be greater than v, — vs.

Let us now formulate the above idea as an optimization problem. The first part is
formed similarly to (520)

U1 = (U1 (5.29)
(U*){VI = argmaxqyi — 72,
s. t. UM cu,
|uk| < Umaz,

with the set U given by (522). The additional constraint (B.2I)) is replaced by conditions
imposed on the elements a;; of the information matrix increase Py;' — Py ! = Zp Z3;. Using
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the fact that a;; = w;wT

; and notation (B.IG), it is necessary to ensure that

bi; > [« (OMT ]KTK[ ]Vzgl 2n 41,4 < g, (5.30)

Uit

by > —[af (UMT ]KTK{ }Vz]—l 2n+ 1,4 < g,

UM
bij = bji
Yoo > Y b Vi=1,...,2n+1,
g

o< [ OUMT ]KTK[U }v@1 ,2n + 1.
1

where b;; are artificial variables that have the meaning of absolute values of a;;. Because
the matrix PM is symmetrical, the first two constraints in are only required for i < j.

5.3.3 Orthogonal regressors algorithm

This algorithm is based on the idea, that the regressors shape the information ellipsoid, that
is the ellipsoid z” (]5]\7[1 — PyY)~'z = 1. The eigenvalues of P]\}l — Py ! correspond to the
ellipsoid radii. Therefore similarly to the previous algorithm, it is necessary to ensure that
the regressors’ norms |z;| > 1 and that the regressors are ‘as much orthogonal as possible’,
meaning that for all i # j, 2l zj < 2. The problem starts the same as (.29)), with the
following constraints

bij > [ = (UMT }FTF{ Vi,j=1,....,M, i<}, (5.31)

o |

bij > —[ T (OMT }FTF[ Vi,j=1,....,M, i<},

)l
bij<’y27 Viaj:]-a"'va Z<]a

<[zl (UMT }FTF{UI} Vi=1,..., M.

The structure of the problem is similar to the previous one, the difference is in the problem
dimension. While the number of constraints is (Q”JFQM and the dimension of the vectors is
M in the Gershgorin algorithm, in this case it is the reverse, i.e. the dimension of regressors
%. This implies that in this case, M should

be equal to 2n + 1, as the number of regressors should not be higher than their dimension.

is 2n+1 and the number of constraints is

5.4 Simulations

Simulations of the previously proposed algorithms are shown in this section. The following
ARX system was used

yr = 1.64yp_1 — 0.6Typ_s + 0.2up + 0.22up_1 — 0.12up_o + e, (5.32)
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which is obtained by discretization of a system 1/(s + 1)? with a sampling period T = 0.2s
and modified in order to have by # 0. The system is controlled to zero from the initial state
xo = [10,0,0,0]. Note that the nonminimal representation (5.5)) is used, so the system order
is 4. The control was designed for N = 30, M =5, r =1 and AJ = 0.1J*. Figures
and show the inputs and outputs of a control process for optimal MPC controller and
all three designed controllers, respectively. For comparison, Figures[5.8(b)|and [5.9(b)| show
the results for the ellipsoid algorithm presented in the next section. Figure [B.I0] shows the
development of the variance matrix in the sense of its greatest eigenvalue. The best results
in terms of minimizing the maximum eigenvalue of the variance matrix were achieved by
the Rank 1 algorithm, which obviously outperformed all the other methods, including the

ellipsoid algorithm from the next section. However, this is rather a coincidence than a
general rule, because all the algorithms solve nonconvex problems and the performance of
individual algorithms depends on the controlled system, initial conditions for optimization,
etc. On the other hand, the ellipsoid algorithm is more sophisticated and therefore it would
probably beat the other algorithms on average.

The Rank 1 algorithm was solved by YALMIP ([38]) in MATLAB, with help of
the LMIRANK solver ([44]). As the solver only searches for feasible points, the algorithm
was run sequentially with - varying according to the interval bisection method to find the
maximum information. Both the Gershgorin and the regressor algorithm were solved by the
MATLAB standard function FMINCON.
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Figure 5.7: The lowest eigenvalue of the predicted information matrix after M = 5 steps of control
as a function of the two first inputs u1 and w2 around the optimal MPC solution for the ARX

system (5.32).
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Figure 5.8: The control input designed by classical MPC and modifications by all proposed algo-
rithms for excitation horizon M = 5.
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Figure 5.10: The maximum eigenvalue of the estimate variance matrix for control designed by
classical MPC and modifications by all three proposed algorithms for excitation horizon M = 5.
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Chapter 6
The ellipsoid algorithm

In the previous chapter, the problem of MPC control with information matrix maximiza-
tion was formulated as a nonconvex problem, where the nonconvexity is introduced by the
constraint (5.21I). This chapter presents a more advanced method to solve the problem
(E20) than the simple algorithms introduced in the previous section. The algorithm uses
a uniform approximation of the minimum eigenvalue function by an upper bound, formed
by the minimum of specific quadratic forms. In this chapter, U denotes an M-dimensional
vector, the usual notation UM will be omitted.

6.1 Derivation of the algorithm

Recall that the nonconvex constraint in (2.20) is in the form
Pyt (U) = Pyt =1, (6.1)

which is equivalent to requiring that the minimum eigenvalue of 15]\7[1(U) — P(;1 be greater
than «. If we denote m(U) the function that maps an input sequence U to the minimum
eigenvalue of the information matrix increase PA_Il(U ) — Po_l7 we can write the problem

E20) as

U* = argmaxm(U), (6.2)
s. t. Uel,
|uk| é Umaz,

where U denotes the feasible set given by the criterion relaxation (522)). The ellipsoid
algorithm is based on approximation of the function m(U) by an upper bound constructed
as a minimum of a set of quadratic forms. The construction of the algorithm will be shown
intuitively, see Section for a more formal approach.
Using basic eigenvalue properties, the function m(U) can be expressed as
m(U) = min o7 (Py,' — Py, (6.3)

vl=1
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i.e. the minimum value of the quadratic form on the set of unit vectors v (unit ball). Using
the trace operator and substituting (G.15) for PJ\TIl(U ) we get an equivalent expression

M
. x
m(U) = min [ 2T U7 | (Bl ov" Fy,) [ ! } , (6.4)
|v|=1 o1 U
see Theorem for details.
The expression ([6.4) shows the minimum eigenvalue function as a minimum of
quadratic forms in U. For each v, (64 defines a matrix

M
W(v) = Z {FFv"Fy} .

k=1

The set v : |v| =1 is uncountable, but it is compact and the function m(U) has a limited
growth (it is Lipschitz, see proof of Lemma[6.4]), which makes it possible to approximate the
function m(U) with a given precision by taking the minimum over a finite subset of unit vec-
tors, i.e. the minimum of a finite set of quadratic forms given by matrices W (v1), ..., W (vk).
Maximizing the approximation is still a nonconvex task, but it is computationally more con-
venient than the original task, as it requires evaluation of the minimum of a finite number
of quadratic forms compared to evaluation of the minimum eigenvalue.

The approach proposed in this algorithm is based on covering the feasible set U
by a sufficiently dense net of points U’. In each step k, the minimum of the given (k — 1)
quadratic forms at each of these points is evaluated (let us denote the minimum m/(U) as an
approximation of m(U) at step k) and the maximum of these values is found at a point U}..
Next, a new quadratic form is added to the set, that best approximates the function around
the maximizer U}. Such form is found in the following way: The minimum eigenvalue Ay
and the corresponding eigenvector vy of ]51\—41([]]: ) — Py ! are computed. The form defined
by the matrix W (vy) is added to the current set of quadratic forms. It holds (see Lemma
[63) that the value of the form given by W(vy) at the point U} is equal to Ay = m(U}),
so the approximation at U is exact. The algorithm will finish in a finite number of steps,
when no other improvement of the precision can be done. This is identified by U; = U;_,,
meaning that no new form would be added to the set.

Note, that we are constructing an upper bound for the original function, therefore
the approximation can only be lowered by adding new quadratic forms. Therefore, if at
some point U, the approximation m/(U) is lower than already achieved value m(U}") = Ay,
such point U can be removed from the set, because it will never be the optimal point.

The algorithm also has a straightforward geometric interpretation of searching for
such feasible control U € U that lies outside of a union of ellipsoids. The situation is
illustrated in Figure for a two-dimensional problem. The dark contour restricts a region
of admissible control U, so the searched point must lie inside the dark contour. On the
other hand, the lighter contours correspond to quadratic forms W (v) for some v and the
requirement is that the quadratic form given by W(v) be greater than ~ for the variable
U, so the point U must lie outside the union of all such ellipsoids. Figure shows a two-
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Figure 6.1: Geometric interpretation of the algorithm. The black contour marks the boundary
of U, originally an ellipse with a center marked by the red +. The green contours represent two
different quadratic forms corresponding to two different directions in parameter space, which are
to be excited. The optimal solution lies inside the black contour and outside all grey contours and
is marked by a red circle.

dimensional region & and how the points are removed from the set during the algorithm,
based on the above note.

It is shown in detail in Section that it is possible to approximate the function
m(U) with an arbitrary precision. The algorithm starts with an empty set of quadratic
forms and the initial point U}, which is the initial optimal (MPC) control.

6.1.1 Algorithm

The inputs to the algorithm are the system matrices /1, B , C and ﬁ, the MPC parameter
p, the admissible criterion perturbance AJ, the initial condition x;, the control horizon
N, the excitation horizon M (greater or equal to the number of system parameters), the
hard constraint on inputs u,,.; and the required precision €. The outputs are the control
sequence U* and the information gain . The variables that are changed iteratively are
marked with an accent, such as m/, U’ etc.

1. Solve the original MPC task (5.1T]).

2. Estimate the Lipschitz constant L as described in the proof of Lemma [6.4] and find a
corresponding k such that rgleaglc(mk(U) —m(0)) < e.
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Figure 6.2: Restriction of the set I of admissible input perturbations during the algorithm. The
original shape is an ellipsoid with a center marked by the red +, from which areas are removed in
each step of the algorithm.
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. Construct the set U’ = U from Lemma and choose an initial point U’ as the
solution of the MPC task in step [l

. Initialize m/(U) = oo for all U € U'.

. Compute vy and for all U € U’ do:
if

[ 2T UT W (o) [ "EUl ] <m'(U),
then set

m'(U)=[ 2T UT | W(uw) [ ””Ul ]

. Remove all U € Y’ for which m’(U) < m/(U’) = m(U").
CIf
! !
arg max m'(U) # U,
set U’ = argmaxyeyr m’(U) and go to step

. Set U* = U’ and finish.

Note 6.1. The proposed algorithm was derived using the constraint (G21)), i.e.
Pyt (UMY — Py > ~1. In some cases, if the eigenvalues of the initial informa-
tion matrix PO_1 are different, it may be useful to define this constraint for the
information matrix itself instead of its increase, i.e.

Py (UM) 2 A1 (6.5)

The algorithm is then slightly modified, because the minimum eigenvalue function

b

and consequently the quadratic function in the step [l of the algorithm above is

has to be redefined as

T1

m(U) = min {UTPolv + [ «=zF U7t ] i (ngvTFk) U

[v]=1
k=1

changed to

x1

ob By g + [ I Ut ]W(’UU/) -

The term v{;, Py 'vy is constant for a fixed vys and therefore only changes the
size of the ellipsoids in the geometric interpretation in Figure [6.Il without affecting
their shape.
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6.2 Simulations

The algorithm was tested on the following second order ARX system with oscillatory be-
havior

yr = 0.91yr_1 — 0.67yx—2 + 0.35ug_1 + 0.4ur_o + ex,

with 02 = 107 First, an MPC controller was designed with the weighting parameter
p = 0.5. The perturbation was then searched in a region J(U) < J* + AJ with AJ = 0.01.
The control horizon for the MPC controller was 20 steps and as the system has 5 parameters
(bo = 0), the excitation horizon M = 5. The control was applied as a receding horizon, i.e.
in each step the whole control sequence was computed, but only the current input was used
and a new sequence was computed after the measurement and data update.

The initial guess of the parameters was

bp = 05

az = —-0.1

by = 0.1

ay = 0.1

by = 1 (6.6)

and the initial parameter uncertainty was given by a variance matrix P(;1 = I (identity
matrix). After each measurement the initial guess was updated by the recursive least square
algorithm and the control in the next step was already based on the updated parameter
values. This algorithm was compared to a single-step approach, which is also based on
MPC as the initial control, but uses only information about the parameter variance matrix
after one step in the future. This algorithm perturbates the initial control by the following
rule

U* = U + sign(UE) AU, (6.7)

where AU is a predescribed value. Both algorithms were supposed to keep the system
output at a zero level and at the same time slightly perturb the control input to identify
the system parameters, starting with values (6.0)).

For the first simulation, the perturbation AU in the single-step algorithm was chosen
AU = 4, so that the output variance is comparable to the multiple-step case. Figures[6.3(a)|
[6.3(c)| and [6.3(b)} [6.3(d)| show the input and output, respectively, during simulation with
the proposed dual controller compared to the MPC single-step solution. Figures and
show how the eigenvalues of the parameter estimate variance matrix change during the

control process for the dual and the single-step MPC-based controller, respectively. Finally,
Figures|6.5(b)[ and [6.5(d)| show the development of the parameter estimates for both cases.

The parameters were estimated by the classical recursive least square method.

The experiment shows that the single-step algorithm is much more aggressive with an
immediate effect on parameter estimation. The multiple-step algorithm, on the other hand,
needs a longer time interval to achieve the same precision, but keeps improving identification

88



5 I 2 . ;
——ellipsoid algorithm —— ellipsoid algorithm
- - = 1-step algorithm ' - - - 1-step algorithm

15 &
h
h
18 1
L
L
0.5r " . R
i oy
5 oy
oL \
!
_0 5 |l " 4
W
-1 LA . . .
0 10 20 . 30 40 50

(b) Output of the system until the time k = 50.

. — 0.15
——ellipsoid algorithm

- - - 1-step algorithm 0.1}

~0.15¢ ——cellipsoid algorithm ||

- = = 1-step algorithm

-0,2 y y ; §
1500 1510 1520 ; 1530 1540 1550

(c) Control input between the times k1 = 1500 and ~ (d) Output of the system between the times k1 =
ko = 1550. 1500 and k2 = 1550.

Figure 6.3: Comparison of the control input and system output for the single-step and multiple-step
controller, where the single-step controller changes the excitation AU in each step. The controllers
were tuned to achieve a comparable output perturbation.

for the whole simulation period. Also the overall criterion value differs significantly, J = 17.8
for the multiple-step algorithm and J = 2.5 - 10* for the single-step algorithm.

For the second experiment, we adjusted the single-step algorithm so that the input
perturbation can be changed only every 5th step. This change would excite the system
at lower frequencies, with a possibly better effect on identification. The perturbation was
chosen AU = 0.08, again so that the output variance is comparable to the multiple-step
algorithm.

Similarly to the previous case, Figures|6.4(a)} [6.4(c)|and [6.4(b)] [6.4(d)| show the in-
put and output, respectively, during simulation with the proposed dual controller compared
to the MPC single-step solution. Figures|[6.5(a)|and [6.5(e)| show how the eigenvalues of the
parameter estimate variance matrix change during the control process for the dual and the
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Figure 6.4: Comparison of the control input and system output for the single-step and multiple-
step controller, where the single-step controller changes the excitation AU once in 5 steps. The
controllers were tuned to achieve a comparable output perturbation.

single-step MPC-based controller, respectively. Finally, Figures [6.5(b)| and [6.5(F)| show the
development of the parameter estimates for both cases.

The second experiment shows that the lower frequency perturbation excites the
system output more than the high frequency signal. The criterion is comparable, J = 17.6
for the multiple-step case and J = 14.6 in the modified single-step case. However, as seen
from the eigenvalue responses, the single-step algorithm is significantly less effective in terms

of improving parameter precision.
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6.3 Properties of the algorithm

This section contains remarks on complexity and stability of the ellipsoid algorithm.

6.3.1 Complexity

The covering net of points is a subset of RM. To ensure that the error is no larger than a
specified ¢, the distance between adjacent points must be lower than a fixed §.. Thus the
number of points grows exponentially with the system order. However, this is caused by
the nonconvexity of the problem and the number of points may be lowered in case locally
optimal solutions are sufficient. The major advantage of the algorithm is that evaluation of
a quadratic form at a given point is computationally much faster than computing the lowest
eigenvalue function. The quadratic forms are also useful for error estimation, because they
are second order approximations of the lowest eigenvalue function at a given point.

6.3.2 Stability

The stability of a system controlled by the proposed controller in the usual (Lyapunov)
sense can be guaranteed for the nominal system, i.e. the system for which d@; = a; and
bi = b; for all i = 1...n. This follows from the stability of the MPC controller [51} 52],
which gives us stability of the nominal system controlled by the MPC control input U}, if
there is no limitation on the input signal. In case of constrained input, stability is achieved
only for a certain set & of initial states, which is a known limitation. Let us assume the
unconstrained case first. Let us also assume that the necessary conditions for MPC stability,

such as control horizon length or sufficient weight on terminal state, are satisfied.

The control U* can be viewed as a sum of the MPC control U} and a perturbation
AU*. The fact that the criterion relaxation AJ is bounded implies that AU* is bounded.
It is important that AJ be bounded uniformly with respect to time, so that AU* is also
uniformly bounded.

The MPC control U} has a stabilizing effect on the nominal system. In a linear
system, the effect of U* on the nominal system can be viewed as an effect of the input
perturbation AU* on a nominal system already stabilized by U}. As a result, the effect of
the optimal control U* is an effect of a bounded input sequence on a stable system. A stable
system is also BIBO (Bounded input, bounded output) stable, therefore the closed loop is
stable for the nominal system.

Note that if U* satisfies the input constraints imposed by the MPC problem (G.11)),
the idea given above also holds for a constrained problem. However, as in the standard
MPC problem, it must be assured that the system state does not leave the set X'. This can
be achieved by a suitable choice of AU™.
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6.4 Formal derivation of the algorithm

This section contains a formal proof of convergence of the ellipsoid algorithm. The proof
is based on constructing a sequence of approximations and showing that this sequence
converges to the original function. As usual in this chapter, U denotes an M-dimensional
vector and the usual notation UM will be omitted.

6.4.1 Expressing the minimum eigenvalue by quadratic forms

The information matrix maximization in (5.20) is equivalently expressed as maximization
of its lowest eigenvalue. Let us define a function m : R"*™ — R, that assigns a matrix its
lowest eigenvalue, i.e. m : A — A, where A\, = min{A € R : 30 # v € R", Av = \v}.
Such function is correctly defined, as a real symmetric matrix of order n has exactly n real
eigenvalues. The problem is then to find

* ~ —1 o —1 d:et
U fargr[}lgglcm(PM (U)—-PF; ") argmgxm(U), (6.8)

where U denotes the (without loss of generality compact) admissible region of U defined by
the constraints in (G20]).

Theorem 6.2. The function m defined in ([G8) above is continuous in U and the following
holds:

M
m(U) = min [« UT ] (Ko F) [ e ] : (6.9)
k=1

where S"1 = {v € R" : ||v|]| = 1} denotes the unit sphere in R™ (the Hausdorff dimension
of which ism —1).

Proof. The right hand side of (69) is well defined, as it is a continuous function in v and
the minimum exists on the compact set S"~. By definition, m(U) is the lowest eigenvalue
of the matrix

P;l(U)—PO—l—kZIVIl{Fk{”Z} ][xlT UT ]F,?},

so, using the properties of eigenvectors,

M
m(U) = min o7 Bl [ 2 UT |Fl v,
vesn ! 2 U

where the minimum is achieved for the eigenvector belonging to the lowest eigenvalue. Then,
using the matrix trace properties

vTZiV;{Fk[‘Z}][xlT UT]FkT}v _
— [ UT}zgil(FngFk)[”g],
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Finally, the function m(U) is continuous, because it is a minimum of (quadratic) continuous
functions of U. O

Theorem [6.2] says that the minimum eigenvalue of the information matrix (18] can
be expressed as a minimum of quadratic forms in U parametrized by v. Let us denote

W(v) = (Ffvo" Fy), (6.10)
for simplification of further expressions.

6.4.2 Approximation by finite sets of functions

The idea is now to approximate the function m(U) with a sufficient precision by minimizing
3) over a finite subset V of the unit sphere S"~!. Let us first notice, that due to the
continuity of m and separability of the (compact) unit sphere S™~! there exists a dense
countable subset S’ C S"~! such that

min [ 27 U7 [ W(v) { - }

vesSn—1 U
. xz
= vléléf/[ I Ut JW(v) { U} } . (6.11)

Our goal now is to construct a monotone sequence of finite subsets { Vi }xen, Vi C S"71, Vi C
Vi41 in such way that

lim min [ 27 U7 | W(v) [

k—oco vEVE

u } =m(U),U €U, (6.12)

where the limit is uniform (i.e. in supremum metrics) on the compact set « C RY. Let us
first summarize some important properties of the function m(U).

Lemma 6.3. For every fized x1 and every U € U there is a vy € S*~ ! such that
T T T1 | _
[ 2] UT W (w) =m(U).

Proof. The searched vy € S™~! is the eigenvector corresponding to the lowest eigenvalue
of the information matrix increase Py,'(U) — Py '. This is a direct corollary of the trace
properties used in the proof of Theorem O

Lemma 6.4. Let

— : T T 1
my(U) = Lo [ 2] UT [W(v) { U } ,

where the minimum is taken over any closed nonempty subset V of the unit sphere S™1.
Then the function my (U) is Lipschitz with a constant L independent of the set V, i.e.
[my (Ur) —my (U2)] < L||Uy — Us||.
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Proof. The function my (U) is well defined, since any closed subset of a compact set is a
compact set, hence the minimum exists. It holds that

my (Uy) —my (Usz) =

= [ o Jwen| g |-
- Lo uf Wi | ] <
< [of v jwe | f -
- et v we | |

where v1,v9 € V are the minimizers at points Uy, Us. The last expression is a difference
between two values of the same quadratic form in two different points. Symmetrically, we get
the inequality for absolute values. Therefore we have from the multidimensional mean value
theorem that L is at most the maximal norm of the all the gradients, where the maximum
is taken over the feasible set for each quadratic form and then over all unit vectors v, i.e.

L < max max2|[Wia(v)x; + WQQUHQ. (6.13)

vesSn—1tUel
The maximum is well defined, as both &/ and S™~! are compact sets and z; is fixed. The
formal proof is left out for brevity. O

Lemma 6.5. Let {Uy}ren be a sequence of finite subsets of U, Uy, C Uk+1, such that for
every U € U there exists U' € Uy, such that |U — U'|| < . Let Vi, = {vy : U € Up} be a
set of all eigenvectors corresponding to the minimum eigenvalues of matrices PA}I(U) - P(;1
for allU € Uy,. Then the sequence

mi(U) = my, (U) = min [ & UT | W(v) { v }

converges pointwise to m(U).

Proof. The set Uy, exists for every k € N from compactness of U. It holds that m(U) =
m(U) for every U € Uy. Let U € U be an arbitrary point. Then there exists a sequence
Ul, UQ, R U, Uk S le. Let € > 0. Then |mk(U)—m(U)| S |mk(U)—mk(Uk)|—|—|mk(Uk)—
m(Ug)|+[m(Ur) =m(U)| = [mg(U) =my(Uy) [+ |m(Ur) —m(U)]| because [my (Uy) —m(Uy)| =
0. From the Lipschitz property from Lemma 6.4, |my(U) — mp(Ux)| < L||U — Uy||, where
it is important that L is independent of k. Now k can be chosen so that L||U — Ug|| < €/2
and |m(Ux) — m(U)| < £/2 as m is a continuous function. O

Lemma 6.6. The sequence of functions {my}ren from Lemma G2 converges uniformly to
m.
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Proof. The sequence {my}ren is a decreasing sequence of continuous functions converging
pointwise to a continuous function m on a compact set &. Uniform convergence is a direct
corollary of Dini’s theorem. O

Theorem 6.7. Let € > 0. Then the ellipsoid algorithm converges to a point U' € U in a
finite number of steps and m(Ux) — m(U’) < e.

Proof. The algorithm operates on a finite set of points and must finish, if the point U’ does
not change at the end of the iteration. Thus the algorithm must finish in a finite number of
steps. The points that were removed from the set U’ in step [6] can not be candidates for the
maximum U’, as for such U it holds that m(U) < m/(U) < m/(U’) = m(U’) The solution
U’ is a maximum of the approximate function m’ and at the same time m/(U’) = m(U").
Therefore m(U*) < m/(U’) + ¢ from the construction of the initial U’ O

6.5 Approximation by outer ellipsoid

The ellipsoid algorithm presented in this chapter has one major disadvantage — the amount
of points needed to guarantee a given precision grows exponentially with the dimension.
Considering a second order ARX system, we already have 5 parameters to be estimated
and thus also at least a 5-dimensional problem. Generally, the minimum dimension for an
n-th order system is 2n + 1 and the algorithm is thus practically usable only for lower order
systems.

In this section, we present a method for transforming the optimization problem
into a one-dimensional conservative approximation of the problem. The idea is based on the
geometric ellipsoid interpretation of the algorithm. The interpretation was shown in Section
[6.1] where the Figure shows the geometry for a 2-dimensional example. Each quadratic
function given by a matrix W (v) represents the direction v in the parameter space, and the
value of the quadratic function at a given point U determines the improvement of information
in the corresponding direction v. The curves of constant values v of the quadratic forms
are ellipsoids, shown in Figure The ellipsoid algorithm ‘inflates’ all ellipsoids uniformly
until the last feasible point outside the union of uniformly inflated ellipsoids is found.

The proposed modification is based on finding an outer ellipsoid for the union of
ellipsoids and ‘inflating’ only this one ellipsoid instead. Such simplification is conservative
and transforms the ‘inflating’ to a one-dimensional problem. Finding the outer ellipsoid
itself is a convex positive semidefinite programming task.

6.5.1 Minimum-volume outer ellipsoid

Assume we already have a set of K vectors vy, ..., vk and corresponding matrices W (v;), i =
1,..., K. Each constant v € R defines a set of K ellipsoids in the parameter space, given
by equations

T1

Ti(U)=[ «f UT [W(v) [ U

}—ygo, i=1,..., K. (6.14)
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The outer minimum-volume ellipsoid for the union of ellipsoid ([G.I4) can be defined by an
equation
To(U) <0, (6.15)

where Tj is a quadratic function in variable U, which is unique up to a positive scaling factor,
because the inequality (G.I3]) is not affected by multiplication by a positive real constant.

The minimum-volume outer ellipsoid for a set of ellipsoids is found as an LMI
optimization task, which is in detail described in [I1]. Let us first introduce a general
quadratic function in variable U using the following notation

T(U)=UYAU 4+ 2U"b + ¢, (6.16)

where A = AT > 0 is a square matrix, b is a column vector and ¢ € R. An inequality
T(U) < 0 then defines an ellipsoid as a set all U for which this inequality is true. Completing
the square gives an alternative expression T'(U) = (U+A10)T A(U+A"1b)—bT A= b+c < 0,
which shows that the set T(U) < 0 is nonempty if and only if

b'A™ D —c>0, (6.17)

therefore we will only take into account those quadratic functions that satisfy this inequality.
To transform quadratic functions in (6.14)) into the form ([6.I6), let us first rewrite the matrix
W(v;) as

W1 (’Uz) W2 (’Ui)
Wi (vi)  Wa(vi)]’

where the dimensions of the blocks correspond to dimensions of vectors z; and U. The
inequalities (614]) can then be written as

W(v;) = (6.18)

J){Wl(’l)i).ﬁl + UTWQT(’Ui)J)l + J){WQ(’W)U + UTW3(’U,L')U —v<0, i=1,...,K, (619)

which corresponds to the notation (6I6) with matrices given by the following transforma-

tions
bi = WQT (vi)xl,
c; = J){Wl (’Ui)l‘l - .

Using the notation (616)), the minimum-volume outer ellipsoid is given by the in-
equality To(U) = UTAqU + 2UTby + ¢y < 0. The unknown variables Ay, by and cy are
computed by solving the following LMI optimization task

min logdet Ag! (6.21)
s.t. Ag>0,71>0,...,7x >0,

Ay b 0 A; b O

b -1 ol | -7 (b e« 0] <0, i=1,...,K,

0 by —Ap 0 0 O
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where ¢y = bl Ay by — 1 to get rid of the extra degree of freedom in the representation.
Note that depending on +, the condition (6.I7) might not be satisfied for some 7. Therefore
the condition (GIT) should be checked prior to solving the optimization task and those
quadratic forms not satisfying the condition should be excluded from the constraints. An
example of the minimum-volume outer ellipsoid is shown in Figure [6.6(a )|

Having found the minimum-volume outer ellipsoid, it is possible to define an approx-
imate solution to the problem (5.20) as maximization of the quadratic function To(U) defin-
ing the outer ellipsoid, within the feasible set /. Such maximization is a one-dimensional
convex task solvable for example by the Newton method or the interval bisection method,
as will be shown in the next subsection. A drawback of this method is that hard constraints
on inputs |ug| < Umaee cannot be used.

Maximizing the quadratic function To(U) given by the outer ellipsoid within the
feasible set U means finding the lowest possible § € R such that the feasible set U is still
a subset of an ellipsoid given by To(U) < §, as depicted in Figures [6.6(b)| and [6.6(c)l The
problem is, that this new bigger (or smaller for § < 0) ellipsoid Tp(U) < 4 is not the
minimum-volume ellipsoid for ellipsoids T; < §, as shown in Figure Therefore it is
desirable to find such ~, for which the value § is zero, or in practice || < e for some £ > 0.
Such v can be again found e.g. by using the interval bisection method. The initial interval
for 7 is (—00, ©0), so it is convenient to work with some substitution, for example v = tan(z)
with z € (=7/2,7/2).

6.5.2 Quadratic programming with one quadratic constraint

The control U’ is the point for which the function Ty is maximal within the feasible set U.
After this point is found, the algorithm proceeds analogously to the idea presented in Section
The algorithm finds such direction vy in the parameter space that is least excited by
the control U’. A new ellipsoid associated with this direction (given by the matrix W (vy-)
is added to the set ([E.I4]) and the algorithm repeats for the updated set. The algorithm
ends when no new direction vy can be found.

Maximizing the quadratic function Tp(U) that defines the outer ellipsoid within the
feasible set (U) is in fact a quadratic programming task that can be written as

max To(U) = UT AgU 42U by + ¢ (6.22)
s.t. Ue€elU,
(6.23)

where the constraint U € U is in fact a quadratic constraint in variable U that can be
rewritten to the general form (6.16) as

UTHU +2UTf+4¢<0

for some positive definite matrix H, vector f and real constant g. We will show one method
of solving this problem, more information about the topic can be found in [14] and [35]. It is
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(a) Two ellipsoids (green) and the outer ellipsoid
(red).

¥

(¢) The shrunken outer ellipsoid is showed by the
dashed red contour and the point U’ is marked by
the red circle.

(b) The black contour represents the boundary of
the feasible set U.
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(d) The situation after shrinking the green ellip-
soids by the same factor as the outer ellipsoid was
shrunken in Figure [6.6(c)|

Figure 6.6: Graphical representation of the outer ellipsoid approximate algorithm. Two ellipsoids
are first covered by an outer ellipsoid, which is then shrunken to find the point U’ in the feasible
set U. It can be directly seen, that the point U’ is suboptimal, as the optimal solution would lie on
the intersection of both green ellipsoids. Finally, it is showed, that after shrinking all ellipsoids by
the same factor, the shrunken outer ellipsoid is no longer an outer ellipsoid for the shrunken ones.
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Figure 6.7: An example of dependence between ¢ and v for a set of 5 ellipsoids.

convenient to transform the problem to a new system of coordinates, in which the constraint
has the form

Utu <1, (6.24)

i.e. the maximization of Ty takes place on a unit ball. This can be always done using an
appropriate affine transformation. To avoid introducing new variables, let us simply assume
the constraint in the form (6.24), keeping in mind, that the function 7 must also change
accordingly after the transformation.

Note that the maximum of a quadratic function with a positive definite matrix
always lies on the boundary of the feasible set. Therefore we can even assume the constraint
to be

Ut =1, (6.25)

which is convenient in further considerations. Let us now define the function
fU,a) = —a(UT AU + 2U0"by) + UTU, (6.26)

where

)

Such alpha ensures positive definiteness of the function f and the unconstrained minimum
is

U'e) = (I — ado) ta-by. (6.27)

We can now find the solution of the task ([6:22)) by finding such «, for which the unconstrained
minimum (6.27) satisfies



which can be found by any appropriate one-dimensional optimization method, such as in-
terval bisection or Newton method. The maximum value is then

5 = To(U")

and can be generally both positive and negative, depending on the original size of the
ellipsoid given by Tj.

6.5.3 Algorithm

The inputs to the algorithm are the system matrices 121, 3, C and D, the MPC parameter
p, the admissible criterion perturbance AJ, the initial condition x1, the control horizon N,
the excitation horizon M (greater or equal to the number of system parameters) and the
precision . The outputs is the optimal control sequence Ux and the information gain ~.
The algorithm starts with an empty set of vectors V, k=1, § =0 and v = 0.

1. Solve the original MPC task (&.11])

2. Choose an initial point U’ as the solution of the MPC task in step [ find the corre-
sponding vector v1 = v(U’) and add it to the (empty) set V.

3. For all vectors v; from the set V create an ellipsoid representation (G.20) using the
current value ~.

4. Repeat iterations by interval bisection in ~:

(a) Check condition ([GI7) for all ellipsoids in set V. Find the outer ellipsoid by
solving (62T]), considering only those ellipsoids satisfying (G.I7).

(b) Find U’ and § by solving the task ([6:22]).

(c¢) Update v according to ¢ and adjust the ellipsoid representation ([6:20) according
to the new ~.

until [d] < e.
5. Set k =k + 1.

6. Take the input U’ from the last iteration of solving ([G.22) in step Hl and find the
corresponding vector vy, = v(U’).

7. If v € V, then add v, to V and go to step [Bl
8. Set U* = U’ and finish.

Note 6.8. Similarly to the original algorithm, an initial information matrix Py
may be considered in the algorithm. This would lead to a modification of ¢; in the
representation ([6.20) to

ci = x1 Wi(vi)zr — v +vf Py v

The additional term v Poflvi is constant for a fixed v; and thus only changed the
size of the associated ellipsoid, not its shape.
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6.5.4 Properties of the algorithm

The main structure of the algorithm is the same as for the original algorithm presented
in Section In each iteration of the main loop a control perturbation is found and
consequently such direction in the parameter space, that is least excited by this control
perturbation. The proposed approximation takes place in the subtask of finding the control
perturbation for each step, i.e. in step Ml of the algorithm above.

The advantage of the outer ellipsoid approximation is the transformation of the mul-
tidimensional nonconvex optimization problem into a sequence of iterations, each iteration
involving one multidimensional convex problem (finding the outer ellipsoid) and one one-
dimensional convex problem (maximizing the quadratic function given by the outer ellipsoid
within the feasible set). Although the number of iterations may be large, the transformation
makes the problem feasible more or less independent of the problem dimension. Finding
the control perturbation U’ in step [ is in fact still a nonsmooth optimization problem
in variable 4. An example of a continuous nonconvex dependence of ¢ on ~ is shown in
Figure another example of even discontinuous dependence is in Figure The
dependence is nonsmooth, because it may happen that the condition ([G.I7) is satisfied for
one ellipsoid at some point 7g, but is not satisfied for all v < ~g. In such case, the task is
qualitatively changed at the point ~p, because this ellipsoid is added to (removed from) the
set (GI4) and thus the shape and position of the outer ellipsoid may change stepwise.

A disadvantage of the approximation is that there is currently no usable upper
bound for the optimal excitation. In other words, there is no reasonable estimate, of how
suboptimal we are at the current point.
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Chapter 7

Conclusions

The goal of this thesis was to analyze existing stochastically optimal control strategies and
to develop new active adaptive strategies for linear discrete-time systems with uncertain
parameters as computationally feasible approximations of dual control. Bayesian methods
were chosen as a framework for describing time-domain system models as well as different
stochastically optimal control strategies. The bayesian approach helped us understand the
problems connected with stochastic control in a systematic way and served as a basis for the
consequent considerations. It was particularly important to understand the correct inter-
pretation of probabilistic description of uncertainty in different cases, both as a description
of i.i.d. random variables (e.g. noise) and as a description of a progressively accumulating
subjective knowledge about a constant unknown parameter. Our first results in the area of
stochastic control were published in [4§].

After the introductory chapter, the thesis starts with the first result, which is a
novel derivation of the cautious LQ control strategy for the ARMAX model with uncertain
parameters and known MA part and a novel derivation of a simultaneous parameter tracker
and state estimator for this system. The derivation of the control strategy uses a specific
state-space representation that leads to simpler expressions containing only the first two
moments of probability distributions that describe the uncertainty in the ARMAX model.
These moments are determined by the simultaneous parameter tracker and state estimator,
which forms a counterpart to the controller by supplying it with the necessary information.
Unlike a general linear stochastic model with uncertain parameters, the special structure of
the ARMAX model makes derivation of the controller and estimator possible. On the other
hand, the ARMAX model is general enough to describe a variety of systems, in fact it is
equivalent to the system state-space representation in the observer canonical form.

The derived cautious control strategy is calculated as a feedback control law that is
an affine function of the current state estimate. The control law is calculated via a cautious
Riccati-like equation that, unlike the standard Riccati equation of the deterministic LQ
problem, does not always have a limit solution, if extended to infinite control horizon. The
next part of the thesis presents a necessary and sufficient condition for the cautious Riccati-
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like equation to converge to a limit solution. It also presents an analysis of the feedback
control law in case of divergence of the equation. It is shown that the control law always
converges to a limit solution. This convergence analysis is the newest result of the thesis
and it is currently being prepared for publication.

The next result of the thesis are new active adaptive control algorithms, starting with
a single-step ahead algorithm based on the cautious strategy and continues with multiple-
step strategies based on perturbations of the certainty equivalence controller. The benefit of
the multiple-step approach is discussed and showed by simulations. Also the inconvenience
of cautious control is discussed, pointing out problems with stability and convergence of
cautious control. These issues are also discussed in the publication [50]. Three multiple-
step active adaptive strategies are then presented, all based on maximizing the minimum
eigenvalue of the parameter estimate information matrix. The single step algorithm was
published in [49], the multiple-step algorithms in [406]

Finally, an iterative ellipsoid algorithm is proposed that solves the problem of maxi-
mizing the lowest eigenvalue of the parameter estimate information matrix of an ARX system
with uncertain parameters. Information matrix maximization corresponds to persistent ex-
citation and thus effective system identification, so the algorithm gives a computationally
feasible approximation of dual control. The method is based on a bicriterial approach, where
in the first step, the optimal control is found using MPC problem formulation, and in the
second step, such perturbation of the optimal control sequence is searched, that maximally
increases the information matrix lowest eigenvalue. This ellipsoid algorithm is the fourth
result of the thesis and was published in [47].

Simulations also show that the multiple step algorithms tend to excite the system
uniformly even if there is no reference signal, which pays off in the future during the control
process, when the reference signal changes. The ellipsoid algorithm was proved to converge
to the optimal solution and to stabilize the nominal system. As the problem is noncon-
vex, finding a globally optimal solution with a given precision requires a large number of
iterations. The nonconvexity of the problem makes the ellipsoid algorithm usable only for
low-dimensional systems. This issue is addressed by proposing a conservative modification
that transforms the problem to a one-dimensional one and makes it practically insensitive
to problem dimension at the cost of suboptimality.

The goals of the thesis were accomplished by the described four main results. The
last mentioned conservative modification of the ellipsoid algorithm can be a topic for future
research. The thesis contains the basic idea, which should be at least tested on simulations
and if succesful, it could be further used in practical applications. Theoretical issues such
as suboptimality of the solution or discontinuities in the optimized function should also
be addressed. The other proposed multiple-step algorithms can be also further studied,
especially in terms of optimization techniques for their solution.
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