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Abstract

This thesis is concerned with stochastically optimal adaptive control strategies and their

so-called active adaptive modifications, which represent computationally feasible approxi-

mations of dual control. A control strategy is called stochastically optimal, if it optimally

solves a given control problem defined for a stochastic system, i.e. a system, the behavior of

which is described by the means of probability theory. The thesis is particularly concerned

with analysis of the cautious control strategy. The term active adaptive then means, that

the control strategy adapts to new information about the system and at the same time

actively examines the system and aims to induce such response from the system that brings

as much information as possible, while not violating the control performance more than

allowable.

The first part of this thesis contains derivation and analysis of the cautious controller

of a general ARMAX model with known MA part. A complete analysis of convergence of the

associated cautious Riccati-like equation is presented, which is important when extending

the control horizon to infinity to find a steady state controller. It is also shown that a finite

steady state control law exists even in the case of divergence of the cautious Riccati-like

equation. Because the results are formulated for an ARMAX model, they are applicable to

a wide range of linear dynamical systems.

The second part of the thesis proposes novel active adaptive control algorithms. It

starts with a single-step algorithm for an ARX system based on cautious control. Extension

of this algorithm to multiple step is possible, but has not been studied because of the

inconvenient properties of cautious control derived in the first part of the thesis. Multiple

step adaptive active algorithms based on information matrix properties are presented next,

including the so-called ellipsoid algorithm that is studied in more detail. These algorithms

are based on a two-phase bicriterial approach, which means that an initial control is first

found using a classical control design method (MPC is usually used throughout the thesis)

and this control is afterwards altered to achieve active excitation. The thesis also presents

a conservative convexification of the ellipsoid algorithm that makes it solvable for higher

dimensional systems, where the original nonconvex algorithm becomes infeasible.
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Abstrakt

Tato dizertačńı práce se zabývá stochasticky optimálńımi adaptivńımi strategiemi ř́ızeńı

a jejich takzvanými aktivńımi adaptivńımi modifikacemi, jež představuj́ı spočitatelné apro-

ximace duálńıho ř́ızeńı. Strategie ř́ızeńı se nazývá stochasticky optimálńı, pokud optimálně

řeš́ı daný problém ř́ızeńı stochastického systému, tj. systému, jehož chováńı je popsáno po-

moćı nástroj̊u teorie pravděpodobnosti. Práce se zejména zabývá analýzou opatrné strategie

ř́ızeńı. Pojem aktivńı adaptivńı potom znamená, že se daná strategie ř́ızeńı přizp̊usobuje

nově źıskaným informaćım o systému a zároveň systém aktivně zkoumá s ćılem vyvolat

v systému takovou odezvu, která poskytne co nejv́ıce informaćı, aniž by bylo porušeno

splněńı požadavk̊u na ř́ızeńı v́ıce, než je př́ıpustné.

Prvńı část práce obsahuje odvozeńı a analýzu opatrného regulátoru pro obecný

ARMAX model se známou MA část́ı. Uvedena je kompletńı analýza konvergence přidružené

opatrné Riccatiho rovnice, což je d̊uležité pro prodloužeńı horizontu ř́ızeńı do nekonečna

a nalezeńı ustáleného regulátoru. Dále je ukázáno, že konečný ustálený zákon ř́ızeńı existuje

i v př́ıpadě divergence opatrné Riccatiho rovnice. Jelikož jsou výsledky formulovány pro

ARMAX model, jsou aplikovatelné pro širokou tř́ıdu lineárńıch dynamických systémů.

Ve druhé části práce jsou navrženy nové aktivńı adaptivńı algoritmy ř́ızeńı. Nej-

prve je uveden jednokrokový algoritmus pro ARX systém založený na opatrném ř́ızeńı.

Možné rozš́ı̌reńı tohoto algoritmu na v́ıcekrokový je popsáno, ale nebylo studováno kv̊uli

nevhodným vlastnostem opatrného ř́ızeńı odvozeným v prvńı části práce. Dále jsou odvo-

zeny v́ıcekrokové aktivńı adaptivńı algoritmy založené na vlastnostech informačńı matice,

včetně takzvaného elipsoidového algoritmu, který je studován detailněji. Tyto algoritmy jsou

založené na dvoufázovém postupu, což znamená, že je nejprve klasickou metodou nalezeno

prvotńı ř́ızeńı (v celé práci se použ́ıvá pro tento účel MPC), a toto ř́ızeńı je následně upra-

veno tak, aby bylo dosaženo aktivńıho vybuzeńı. Práce také navrhuje konzervativńı konvexńı

modifikaci elipsoidového algoritmu, která umožňuje jeho řešeńı i v př́ıpadě systémů vyšš́ı

dimenze, kde p̊uvodńı algoritmus selhává kv̊uli výpočetńı náročnosti.
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Chapter 1

Introduction

Various techniques and methods exist for designing control algorithms, from rather simple

methods based on basic characteristics of the controlled system such as oscillation frequency

or bandwidth, to methods exploiting advanced optimization techniques that use sophisti-

cated system models. If the controller design relies on a model of the controlled system, the

model quality and accuracy is an important factor influencing the performance of the re-

sulting controller. The model can rarely describe the behavior of the system exactly. Many

classical design methods such as pole placing or the classical linear quadratic (LQ) controller

assume at the time of design that the model is exact and rely on inherent robustness of the

design methods, i.e. on the ability of the controller to cope to a certain extent with different

behavior of the controlled system.

Robustness of a controller can be analyzed by determining the nature and amount

of uncertainty in the model (e.g. the gain and phase margin) that still does not significantly

jeopardize the control objectives such as stability or overshoot. Methods also exist to include

the assumed uncertainty of the model into the design process, thus developing a controller

that is apriori robust to the modelled uncertainty. These methods include frequency domain

based design using additive, multiplicative or even structured uncertainty models and finding

the optimal controller via H∞ or similar optimization techniques [54, 63].

The uncertainty in the model is not always caused only by inaccurate approxima-

tion of the system. Even if the model is quite accurate at the time of design, the system

behavior may change over time, which may lead to deteriorated performance. Methods of

adaptive control aim to solving these problems by observing the system behavior, detecting

its changes, improving the knowledge about the system and adapting the control algorithm

accordingly. The use of adaptive methods is obviously not limited to control of time-variant

systems, they may be as well convenient for designing self-tuning regulators that improve

their performance with the use of the knowledge gained from observation.

Adaptive methods may be divided into two groups – methods that use identifica-

tion to improve the model and then adapt the control algorithm based on the new model

(indirect methods), and methods that directly adapt the algorithm without identification

1



(direct methods). The former adaptive methods must therefore also include identification

algorithms that make the adaptation possible.

This thesis is concerned with stochastically optimal control strategies and their so-

called active adaptive modifications. A control strategy is called stochastically optimal, if

it optimally solves a given control problem defined for a stochastic system, i.e. a system

the behavior of which is described by the means of probability theory. These strategies

naturally use discrete-time-domain models described by some parameters that are considered

uncertain (or unknown) and the goal of the adaptation process is to identify these parameters

with a sufficient accuracy. The term active then means, that the control strategy actively

examines the system and aims to induce such response from the system that brings as much

information about parameters as possible, while not violating the control performance more

than allowable.

The goal of the thesis is to examine existing stochastically optimal control strategies

and to propose new active adaptive strategies in time domain as computationally feasible

approximations of dual control. These strategies should be designed for linear discrete-time

system models with uncertain parameters, preferably the ARMAX model. The next goal

of the thesis is to analyze properties of cautious control. Although cautious control plays

an important role among stochastic control strategies, the goal is to show, that it uses

an unrealistic uncertainty model and that the interpretation of its results is problematic,

especially when trying to extend the problem to an infinite control horizon. Attention is

therefore particularly given to analyzing the limit behavior of the cautious linear quadratic

controller, including its convergence to a limit solution and the closed loop stability of this

solution, and consequently also the use of cautious control as a basis for developing the

active adaptive strategies.

Some of the problems addressed in the thesis, such as cautious or dual control, were

defined in the 60’ and 70’ of the 20th century. The concept of dual control and cautiousness

comes from [17, 18] and was further developed in [7, 8, 42] and [43]. The term active adaptive

control appeared in [56] and [57]. The problems of controlling an uncertain system, modeling

the uncertainty and improving the knowledge about the system are, however, still intensively

studied, as for example in the books [10, 19] or more recent publications [26, 33] or [15] and

[16].

The next sections of this chapter are concerned with definitions of terminology used

in this thesis. We will not use formal mathematical definitions in this section, as the goal

is not to define these commonly used objects properly, but rather to put them in the right

context and explain their usage. We will particularly focus on time-domain uncertainty

modelling and on stochastically optimal control strategies based on these uncertainty models.

1.1 Time-domain system models

The use of probabilistic methods in uncertainty description in time-domain models is usual,

however, there may be various sources of uncertainty in the system description and the

use of probabilistic methods should be considered carefully. Therefore we will first present

2



(k − 1)Ts kTs (k + 1)Ts

xk−1 xk
xk+1

t

xt

yt

uk−1

uk
uk+1

yk−1

yk

Tc Tc

Figure 1.1: Asynchronous sampling of a continuous system with sampling interval Ts. The control
law computation indicated by the arrows takes place within the time interval Tc. First, the state
estimate is calculated using the output measurement. The control input is then generated according
to the control law u∗

k = µ∗
k(xk).

a general analysis of uncertainty modelling. It is important to emphasize, that we are

considering discrete-time systems according to the Figure 1.1 throughout the thesis. The

figure shows, how a deterministic system is created by asynchronous sampling of a continuous

system, i.e. the input and output of such system are sampled at different time instants. One

consequence is, that we always assume a direct influence of input uk on output yk. Second

consequence of this assumption is that when estimating xk+1 from information including yk,

the yk is sampled short before xk+1 and therefore contains more information than if it were

sampled at the same instant as uk. This information is expressed by correlation between the

output noise and the process noise in the stochastic system description later in the chapter.

1.1.1 Deterministic system

A deterministic discrete-time system is described by the equations

xk+1 = f(θk, xk, uk), (1.1)

yk = g(θk, xk, uk),

where, as usual, uk, yk and xk denote the system input, output and state, respectively.

The variable θk represents dependence of the function f on some parameters, which may be

generally time varying. An example of such system is a deterministic discrete-time linear

system

xk+1 = Akxk +Bkuk, (1.2)

yk = Ckxk +Dkuk,

3



where Ak, Bk, Ck and Dk are (generally time-varying) matrices of appropriate dimensions,

which are parametrized by θk.

1.1.2 Stochastic system

A stochastic discrete-time system is a system, where the state transition cannot be described

by a deterministic function, but rather by a probability distribution. We will use a condi-

tional probability density function (c.p.d.f.) to describe the joint distribution of xk+1 and

yk and their dependence on xk, uk and θk, i.e.

p(yk, xk+1|θk, xk, uk). (1.3)

The reason why we use the joint c.p.d.f. is that due to the sampling scheme depicted

in Figure 1.1, the output yk and state xk+1 are not conditionally independent. In some

situation, it is useful to work with the marginals of the joint distribution (1.3), i.e.

p(xk+1|θk, xk, uk)

for the state and similarly for the system output

p(yk|θk, xk, uk).

However note, that for the evaluation of the control law u∗
k+1 = µ∗

k+1(xk+1), the full infor-

mation about the state xk+1 is represented by the c.p.d.f p(xk+1|θk, xk, uk, yk), as indicated

by Figure 1.1.

Stochastic systems usually model random influences on systems that are not directly

explained by the system. These influences may include unmeasurable input noises of various

sources like temperature, air pressure or surface unevenness as well as sensor measurement

noise and other influences. The use of probability distributions to describe these effects

is justified by their usually random and unpredicable nature. An example of a stochastic

system is a linear stochastic system

xk+1 = Akxk +Bkuk + vk, (1.4)

yk = Ckxk +Dkuk + ek,

where vk is the process noise which models disturbances affecting the state dynamics, and ek
is the measurement noise that models the disturbances affecting the measurement process.

These random variables are usually considered to be white gaussian sequences, i.e.
[
ek
vk

]
∼ N

([
0

0

]
;

[
Q S

ST R

])
.

The matrix S is generally nonzero due to the assumed correlation between the process and

measurement noise.

We will now introduce some properties of stochastic systems that we assume further.

Let us first define the data set Dk as

Dk = {u0, . . . , uk, y0, . . . , yk} . (1.5)

4



The state of a stochastic system was defined in [45] as such quantity, that satisfies the state

property

p(yk, xk+1|θ, xk, uk,D
k−1) = p(yk, xk+1|θ, xk, uk),

i.e. the data set Dk−1 cannot improve the information about yk and xk+1 if the state xk

is known. The state thus contains all information about yk and xk+1 that is present in the

data set Dk−1. The natural condition of control introduced by [45] states that

p(xk|θ, uk,D
k−1) = p(xk|θ,D

k−1),

which says that the information about the state xk cannot be improved by adding the control

uk to the information in Dk−1. This holds if the control uk depends only on Dk−1.

1.1.3 Perfect and imperfect state information

The c.p.d.f. (1.3) depends on xk and θk. If both xk and θk are known at time k, then the

c.p.d.f. (1.3) can be directly used for modelling the system behavior. In such situation we

say that we have a perfect state information and the system has no uncertain parameters.

Let us now assume that the state xk is unknown at time k and we only have the information

about inputs and outputs, i.e. at time k we know the data set Dk and the input uk. Let us

also assume that the parameters are known and constant, i.e. θk = θ. With this knowledge,

we can use the c.p.d.f. (1.3) to express

p(yk, xk+1|θ, uk,D
k−1) =

∫
p(yk, xk+1|θ, xk, uk)p(xk|θ,D

k−1) dxk, (1.6)

where we used the state property and the natural conditions of control introduced above.

The expressions on the right-hand side of (1.6) are the model (1.3) and the c.p.d.f.

p(xk|θ,Dk−1) that is called the state estimate. For a linear system (1.4), such c.p.d.f. is

calculated by a Kalman filter and it is a p.d.f. of the normal distribution N (x̂k, Px,k).

We can use (1.6) for two purposes. One is to predict yk and xk+1 in an open loop,

based on the data Dk−1 and input uk, which can be done either jointly, using directly (1.6),

or marginally, for example as

p(xk+1|θ, uk,D
k−1) =

∫
p(yk, xk+1|θ, uk,D

k−1) d yk,

which is used when xk+1 must be predicted prior to measuring yk. The second purpose is

to express the update of the Kalman filter, i.e. the transition

p(xk|θ,D
k−1) → p(xk+1|θ,D

k),

which can be done formally as

p(xk+1|θ,D
k) =

p(yk, xk+1|θ, uk,Dk−1)∫
p(yk, xk+1|θ, uk,Dk−1) dxk+1

. (1.7)

The Kalman filter prediction is a closed loop prediction, as it also uses the output yk.

5



Note 1.1. The assumption θk = θ was made for simplicity of notation. However,

we could easily work with time-varying parameters θk similarly as with the data,

by defining a parameter history set

Θk = {θ0, . . . , θk}

and conditioning by this set instead of by θ. The derivation would then be analo-

gous to the presented one, adding the assumption

p(xk|Θ
k
,Dk−1) = p(xk|Θ

k−1
,Dk−1),

which says that the current parameter cannot influence the estimation of the cur-

rent state.

Note 1.2. If the parameters are known, they are usually omitted from the con-

dition of c.p.d.f.’s and their influence is assumed to be implicitly given by the

function p, e.g.

p(xk+1|θk, xk, uk) = pθk (xk+1|xk, uk) = pk(xk+1|xk, uk).

However, we keep the parameters in the condition, because it allows us to naturally

proceed to the uncertain parameter case.

.

1.1.4 Uncertain parameters

If the parameters of the model are unknown, we speak about a model with uncertain pa-

rameters. The concept of uncertain parameters is used to describe those systems, models

of which have a given structure, parametrized by a parameter vector θ. For example, the

structure of the given system can be a stable linear first order system with gain 1 with an

unknown time constant τ as a parameter. The parameters can be constant or time-varying,

in which case we also need some model of parameter development. Similarly to the noise (or

disturbance) in stochastic systems, uncertain parameters are a way to include a specific kind

of uncertainty in the model. Unlike the inherently stochastic nature of noise (disturbance),

the uncertain parameters do not model unpredicable events or random dynamics, but they

express subjective knowledge about the system at the time of controller design. This lack

of knowledge is often described by bayesian probabilistic methods, because the probability

theory is a useful tool for uncertainty description. However, we should keep in mind that

the parameters are not really random, but only the knowledge about them is modelled in

such way. Therefore we should also be careful when interpreting the results of some control

strategies, where the stochastic modelling of parameters plays a central role, like for example

the cautious control.

Depending on the situation we need to model, we can have both deterministic and

stochastic systems with uncertain parameters, both with perfect and imperfect state infor-

mation. However, it is mostly assumed, that systems with uncertain parameters are also

stochastic in the sense of Definition (1.3) and that we do not have perfect state information.

We will also assume that the parameters are constant, i.e. θk = θ, or slowly time-varying.
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Note 1.3. Similarly to Note 1.1, we could also introduce time-varying parameters

θk. This time, however, we would have to define the joint c.p.d.f.

p(yk, xk+1, θk+1|θk, xk, uk)

and then proceed analogously, treating the parameter vector similarly as the state.

Involving time-varying parameter model leads to increasing the parameter uncer-

tainty by a certain level. For example, assuming a random walk model of param-

eter development, θk+1 = θk + νk, leads to a constant matrix Vk = var νk being

added to the parameter variance matrix in each step of the estimation algorithm,

i.e. Pk+1 = Pk + Vk. However, the time-varying parameter model is usually not

available and thus cannot be used directly in estimation algorithms. The lack of

this knowledge is then solved by introducing some heuristic methods for increas-

ing uncertainty, called forgetting, that keep the uncertainty above a certain level.

Forgetting is important, if the estimation algorithm should react on parameter

changes – one consequence of the constant parameter assumption is that the un-

certainty is only decreasing and after some time the uncertainty is already low

enough and new data has little or no impact on the parameter estimate. Forget-

ting forces the uncertainty to increase and thus also the algorithm to take the new

data into account. We will however use constant parameters for simplicity and

assume that modification by forgetting may be added later.

For uncertain parameters we have to generalize the equation (1.6) in the following way

p(yk, xk+1|uk,D
k−1) =

∫
p(yk, xk+1|θ, xk, uk)p(θ, xk|uk,D

k−1) d(θ, xk), (1.8)

where the state property was used. Note that the natural conditions of control cannot

be easily used here, as the quality of parameter estimation may depend on the input uk.

Equation (1.8) is important, because it describes the way in which the imperfect state

information and parameter uncertainty influence the state prediction. Various stochastically

optimal control strategies differ in the way they model this influence, i.e. what assumptions

about the c.p.d.f. p(θ, xk|uk,Dk−1) are made.

Note 1.4. It might seem that there is formally no difference between the state

and parameters, as both of them play a similar role of some internal, hidden

variables in the equation (1.8). Indeed, there are situations, where the role of

states and parameters can be switched over to obtain interesting results, as will

be for example showed in Section 2.1, where the simultaneous state estimator and

parameter tracker for ARMAX model is derived. However, an important difference

is the state property, i.e.

p(yk, xk+1|xk, uk,D
k−1) = p(yk, xk+1|xk, uk).

The parameters do not have this property. This is crucial for control design, be-

cause the control must use all available information. If the state did not contain

this information, any control depending only on the state would be suboptimal.

Therefore, the state must contain all important information from the past data

Dk−1. On the other hand, moving all uncertainty to the state vector is also not
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possible. Doing so could lead to needlessly complicated models (e.g. an originally

linear model might become nonlinear) or to losing important properties like con-

trollability or observability. Parameters are also often easier to estimate, because

they are mostly considered constant.

1.2 Stochastically optimal control strategies

A control problem in time domain is usually specified as finding such manipulated input

sequence u0, . . . , uN−1 that minimizes the cost function or control criterion in the form of

gN(xN ) +
N−1∑

i=0

gi(ui, xi), (1.9)

where gi assigns a cost to each combination of ui and xi, and N is referred to as control

horizon. To find the optimal control u∗
i , one should use all information available at time i,

therefore the optimal control u∗
i is usually expressed as a function µ∗

i of the state xi, i.e.

u∗
i = µ∗

i (xi). (1.10)

We can then define the optimal value of the cost-to-go function, i.e. the criterion (1.9)

calculated from time k to N as

J∗
k = gN(xN ) +

N−1∑

i=k

gi(µ
∗
i (xi), xi). (1.11)

It can be shown that if the criterion is additive, e.g. in the form (1.9), the dynamic pro-

gramming approach can be used, making use of the Bellman equation, that says

J∗
k (xk) = min

uk

[
gk(xk, uk) + J∗

k+1(xk+1)
]
, (1.12)

where the cost-to-go function at time k is a function of the state xk.

The formulation (1.12) is only valid for deterministic systems, where the future

state xk+1 can be predicted using equation (1.1). For stochastic systems with perfect state

information, the criterion is a random variable and therefore it must be reformulated using

the expected value E[·] as

J∗
k (xk) = min

uk

E
[
gk(xk, uk) + J∗

k+1(xk+1) | xk, uk, θ
]
. (1.13)

If there are no uncertain parameters, this expression can be evaluated using the state pre-

diction model

p(xk+1|θ, xk, uk).

In the case of imperfect state information and uncertain parameters, the optimal criterion

value J∗
k is a function of the data Dk−1 rather than directly of the state xk and the following

conditional mean must be used on the right-hand side of (1.13)

J∗
k (D

k−1) = min
uk

E
[
gk(xk, uk) + J∗

k+1(D
k) | uk,D

k−1
]
. (1.14)
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To evaluate the conditional expected value in this expression, it is necessary to use the

following distributions:

• state prediction p(xk+1|uk,Dk−1),

• joint state and parameter estimate p(θ, xk|uk,Dk−1).

Expression (1.14) does not explicitly depend on parameters θ, however, the joint state and

parameter estimate is necessary for the state prediction, as shown in (1.8).

We will now describe various control strategies based on Bellman equations (1.12)

and (1.13), and approaches to modelling the two c.p.d.f.’s above and thus to optimizing the

expression (1.14) in case of imperfect state information.

1.2.1 Control of a system with known parameters

Control of a deterministic system

Before moving to more complicated control strategies, let us first show, how the deterministic

case fits in the presented framework. Because a perfect state information is available and

there are no uncertain parameters, the equation (1.12) can be used. The state develops

according to the equation (1.1). In the presented framework, the state prediction c.p.d.f.

will then be

p(xk+1|θ, xk, uk) = δ(xk+1 − f(θ, xk, uk)),

where δ(·) is a Dirac distribution.

An example of such control strategy is the linear quadratic (LQ) control of a deter-

ministic linear system (1.2) based on minimization of a quadratic cost

gi(xi, ui) = xT
i Qixi + uT

i Riui, gN (xN ) = xT
NQNxN , (1.15)

with symmetrical matrices Q ≥ 0 and R > 0.

Control of a stochastic system

This case is more complicated than the previous one. We assume a stochastic system (1.3)

and imperfect state information. We have to use both prediction and estimation c.p.d.f.’s,

however, without estimating the parameters θ:

• p(xk+1|θ, uk,Dk−1),

• p(xk|θ,Dk−1).

An example is the linear quadratic gaussian (LQG) control of a linear stochastic system

(1.4), which immediately gives us the prediction c.p.d.f. The cost function is the same as in

the previous case, given by (1.15). This case is interesting for the following three reasons.
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1. The optimal control is given by the same state feedback as for the LQ control of a

deterministic system with equal matrices A and B, with the only difference, that the

state xk is substituted with its conditional mean x̂k = E[xk|Dk−1]. This is an example

of the so-called certainty equivalence principle which says, that random variables in

the problem may be substituted by their conditional means.

2. The state estimation c.p.d.f. is given by a Kalman filter, which gives p(xk|θ,Dk−1) ∼

N (x̂k, Px,k). This filter can be implemented independently of the controller – thus the

estimation and control parts of the strategy are separated. This is called the separation

principle. It is important that the variances Px,k are independent of control (the state

estimate quality cannot be influenced by the control input) and therefore the natural

conditions of control really hold. This is a great simplification in the derivation of the

LQG controller [10].

3. The value of the LQG cost-to-go function is higher than for the LQ control and the

difference is given by extra terms caused by disturbances and by the uncertainty of

the state estimation.

1.2.2 Control of a system with uncertain parameters

Certainty equivalent control

We have seen in the previous case that the certainty equivalence principle holds for the

state of a linear system when designing the LQG controller. Many other stochastic control

strategies use certainty equivalence to simplify calculations or to make these calculations

possible at all. In these cases, however, we talk about certainty equivalence (CE) hypothesis,

as the substitution of random variables by their conditional means is not justified theoret-

ically (and thus leads to suboptimal results), but rather serves as an effective method for

simplification. This approach is widely used in adaptive control, see e.g. [24], and is also

used as a basis for multiple-step algorithms in this thesis. In this framework, we will have

the joint parameter and state estimate in the form

p(θ, xk|uk,D
k−1) = p(xk|θ,D

k−1)δ(θ − E[θ|Dk−1]),

where we assume E[θ|Dk−1] = E[θ|uk,D
k−1], i.e. the conditional mean of θ at time k is

independent of the input uk.

Integration with respect to θ then yields the marginal distribution

p(xk|D
k−1) = p(xk|θ̂k,D

k−1),

and similarly for the prediction c.p.d.f.

p(xk+1|uk,D
k−1) =

∫
p(xk+1|θ̂k, xk, uk)p(xk|θ̂k,D

k−1) dxk,

where we have used the notation θ̂k = E[θ|Dk−1].
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An example of such strategy can be an LQG controller for a linear system with

uncertain parameters. Using certainty equivalence, both the controller and the (extended)

Kalman filter are designed as if the parameters were equal to their current estimates (con-

ditional means).

Note 1.5. We have so far only considered one-step predictions that must be used

in the Bellman equations (1.12) and (1.14). This could lead to an impression,

that similarly to the certainty equivalence of the state, the estimate θ̂k can be

used in the step k. However, this is not so. Although the control criterion of the

LQG controller at time k = 0 does not depend on the value of x̂k, k > 0, but

only on x̂0 and the variances Px,k, k = 0, . . . , N that can be precomputed, it does

depend on the parameter values which cannot be precomputed. In other words,

the separation principle does not hold here, even if the certainty equivalence is

assumed. Because the Bellman equations are solved backwards over the whole

control horizon N up to the time k = 0 and naturally, the estimate θ̂k for k > 0 is

unknown at time k = 0, the estimate θ̂0 must be used in all steps of the solution.

Note 1.6. Of course, the estimate θ̂k becomes available at time k. An adaptive

version of the CE controller is possible by redesigning the controller according to

the new information at time k. For slowly time-varying parameters, the controller

is usually not calculated completely with the new parameters, but it is updated

by only one step of the Bellman equation, which is called IST (Iterations Spread

in Time) [34].

Cautious control

Cautious control was originally formulated in [17, 18] and further developed in [43, 7, 42] and

[8] or later in [53]. It is often used as a basis for adaptive approximate dual algorithms, such

as in [19] or [20]. Unlike the CE strategy, the cautious control strategy takes into account

the whole c.p.d.f. of the parameters. The problem is that although all the future parameter

conditional means and variances are necessary for the controller design, similarly to Note

1.5 they are unknown at time k = 0, because both the future conditional mean and future

conditional variance of parameters depend on future inputs and outputs. On the other hand,

although the same is true for the state estimate, the state conditional mean at time k is

not used before the time k, therefore the controller can ‘wait’ for the estimate. Cautious

control deals with the mentioned problems by introducing the following assumptions about

the future parameter conditional mean and variance.

1. The future means and variances are substituted by the current ones, i.e.

E[θ|Dk−1] = E[θ|D−1], (1.16)

var[θ|Dk−1] = var[θ|D−1],

cov[xk, θ|D
k−1] = cov[x0, θ|D

−1],

for all k > 0.
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2. The conditional distributions of parameters at time i and j are independent for i 6= j.

Formally, we need the following

cov

([
xk

θ

]
,E

([
xk+1

θ

] ∣∣∣ Dk

) ∣∣∣∣∣ D
k−1

)
= 0, (1.17)

because this expression appears in sequential application of the Bellman equation.

With these two assumptions, the model is equivalent to a model, where the parameters are

independent, identically distributed random variables with the first two moments given by

(1.16). The expressions (1.16) and (1.17) also contain covariance between the state and

parameter, because these cannot be calculated in advance either. However, it depends on

the way states and parameters are estimated. If we assume that state and parameters are

estimated independently, then we can predict the future variances of the states separately

(for example by Kalman filter) and apply the assumptions of cautious control only to the

parameter mean and variance. An example of this approach is the cautious controller for

an ARX model with uncertain parameters. It is possible to find a state-space model with

perfect state information where no state estimation is necessary. The parameter estimate is

then given by recursive least squares and it holds that

p(θ|u0,D
−1) = N (θ̂0, σ

2
eP

′
0),

where σ2
e is the input noise variance and P ′

0 is the normalized estimate variance matrix at

time k = 0. More information also in Chapter 2 or in [27].

Note 1.7. If the noise variance σ2
e is unknown, it can be substituted by an esti-

mate s2 with a χ2 distribution, and the compound c.p.d.f. will have the Student

distribution. The Student distribution however converges quickly to the normal

distribution and therefore this model is usually not considered.

Another example of cautious control is the cautious LQ controller of ARMAX model derived

in Chapter 2. Here the parameter and state estimation are not separated and the form (1.16)

is used. Therefore also the future state estimate variances cannot be precomputed.

The assumptions of cautious control make it possible to use stochastic dynamic

programming, as the calculation of individual steps of control can be separated, because the

assumptions remove the dependence of parameter conditional variance on the inputs. The

name ‘cautious’ indicates that the optimal control in the presence of uncertainty tends to

be more careful and thus avoids for example large overshoots if the parameter uncertainty

is high. Analysis of properties of cautious LQ controller for an ARMAX model with known

MA part (the ‘c-parameters’) is a substantial part of this thesis and is presented in Chapters

2 and 3. We also discuss some problems of the cautious approach at the end of this chapter

in Section 1.4, where some unfavorable properties are shown on a simple example.

Adaptive modification of the cautious algorithm is straightforward – an updated

controller can be designed after receiving new data and determining the current conditional

c.p.d.f.
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Dual adaptive control

If the cautious assumptions are not made, the c.p.d.f. p(θ, xk|uk,Dk−1) is a function of the

data Dk−1. We usually work with quadratic cost functions like (1.15), and therefore the first

two moments of the distributions are sufficient for evaluating the criterion. Dual control

strategy takes the dependence of future conditional variances on inputs into account. Each

control input has then influence on the future variances and thus also on the criterion value.

In other words, the dual approach allows to minimize the criterion not only via controlling

the future state, but also by decreasing the future conditional variance of parameters. The

optimal dual control thus not only aims to fulfill the control objective while taking the

parameter uncertainty into account, but also excites the system in such way, that some

useful information about the system is gained, and as a result, the uncertainty in the system

is lowered in the future, allowing more reliable control.

The concept of dual control was first introduced by Feldbaum in [17]. It is known to

be analytically solvable for only very special systems as in [55] or in [4] as it requires solving

a complicated Bellman equation [10]. The system described in [4] is a simple integrator

with an unknown gain on the input. Numerical solution faces the curse of dimensionality

problem, because solving the Bellman equation by stochastic dynamic programming requires

iterative computations of the conditional mean and its minimization. In a general case, the

complexity of such problem grows exponentially with the dimension.

There exist approximations of the optimal solution based on suboptimal solutions

of the original problem, usually using approximate stochastic dynamic programming as in

[37, 13], or on problem reformulation as in [21, 19] or [20]. The dual control problem is

analysed from the probabilistic point of view in [40] and [39]. An overview of the state-of-

the-art methods is given in [62] and [61] and a profound survey in [23] and [19], where an

algorithm with dual properties is defined as one that cautiously, but also actively gathers

information during the control process, while satisfying the given control performance.

Active adaptive control

In this thesis we propose an approximation of dual adaptive algorithms based on the idea

of persistent system excitation [27]. We call such algorithms active adaptive algorithms,

because they actively collect information about the system via input control and measure

the amount of information by the information matrix. The persistent excitation condition

requires that the information about the system parameters in the sense of its parameter

information matrix is increasing linearly, i.e.

P−1
t+M − P−1

t ≥ γI (1.18)

for all t and some given M , where P−1
k denotes the information matrix (the inverse of

the variance matrix Pk) after k steps of estimation, γ is a given positive real constant

and I denotes the identity matrix of a corresponding dimension. The inequality symbol

> (≥) is used in the positive (semi)definiteness meaning, i.e. for two matrices A and B,

A > B(A ≥ B) means that A − B is a positive (semi)definite matrix. Satisfying the
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persistent excitation condition is a necessary precondition for adaptive control algorithms

to converge [27].

Similar methods based on so-called input design have been intensively studied re-

cently. An input design methods based on frequency domain description is presented in

[26, 33] and [31]. Other input design techniques can be found in [16] and [15] and further

in [28] and [29].

The proposed algorithms are based on a constrained MPC control design, that is

adjusted such that the persistent excitation condition is satisfied for some γ. The idea of

persistent excitation has been used before in algorithms for simultaneous identification and

control, such as in [1, 25, 41] or [60]. The presented approach solves the task as a two-

phase optimization problem. First, the standard MPC problem is solved and its solution

is used to construct a set of admissible perturbations. Second, the perturbation that most

increases the information matrix in the sense of (1.18) is searched in the admissible area.

This is a modification and generalization of the so called bicriterial approach, introduced in

[19], where the control design is also done in two phases. Examples of application of this

approach can be found in [20] and [22].

The proposed methods differ from the approach in [19] in two main aspects. First,

the cautious controller is not used for the initial control computation, because there might

be serious problems regarding the stability and convergence as shown in Chapter 2 and in

[5, 6]. This is also a difference from the general definition of dual properties by [19], that

requires the dual controller to be cautious. This can be easily eliminated as we show in

Section 3.1 and 3.2 that cautious control of ARMAX model can be achieved by CE control

by using properly adjusted cost functions. Second, the proposed algorithm predicts the

information matrix over more than one step of control. It is shown in Section 5.1 how the

multiple-step prediction can significantly improve the parameter tracking performance.

The information matrix prediction is one of the two major problems of the presented

methods, as the prediction based on certainty equivalence assumption is used. However, it

is confirmed by simulations that such prediction is sufficient. The second problem of this

approach is the inherent nonconvexity of the problem formulation that has to be dealt with.

The multiple-step algorithm brings more effective parameter estimation compared to the

single-step methods, but the price has to be paid in terms of higher computational effort.

One of the proposed methods is based on iterative local approximation of the lowest

eigenvalue function by quadratic forms. The term ‘lowest eigenvalue function’ is used to

denote a function that assigns the lowest eigenvalue to a matrix, the elements of which

are functions of given variables. In this case, this is the parameter information matrix,

which is a function of system inputs. This simplification makes it possible to solve the

problem effectively for low-dimensional systems. A conservative partial convexification of

this problem is also presented in Section 6.5, thus making the method usable also for higher

dimensional systems.

The methods are derived for single-input single-output (SISO) autoregressive mod-

els with external input (ARX), but modification for a general ARMAX model with known

moving average (MA) parts is possible. Because they are based on perturbation of the con-
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trol trajectory generated by an MPC controller and on a simultaneous control and recursive

identification, they are based on a very general principle and as such, the modification is

available for any controller that is adaptive and any identification algorithm, the accuracy

of which can be measured by the information matrix.

1.3 Thesis structure

The first part of this thesis contains derivation and analysis of the cautious controller of a

general ARMAXmodel with known MA part. Chapter 2 contains derivation of the controller

and of the simultaneous parameter and state estimator for this model. These results have

already been derived in [30, 45] and [59], but the results presented in Chapter 2 are shown in

a more compact and understandable form. Chapter 3 then contains a complete analysis of

convergence of the so-called cautious Riccati equation that arises from the cautious control

problem for ARMAX model. Convergence issues are important when extending the control

horizon to infinity to find a steady state controller. These issues have been studied in

[5, 6] for scalar systems and systems with a specific structure of uncertainty. The presented

analysis is new and covers more general systems. It is also shown that a finite steady state

control law exists even in the case of divergence of the cautious Riccati-like equation.

The second part of the thesis proposes novel active adaptive control algorithms.

Chapter 4 starts with a single-step algorithm for ARX system based on cautious control.

Extensions of this algorithm to multiple step is possible, but has not been studied for incon-

venient properties of cautious control. Multiple step active algorithms based on information

matrix maximization are presented in Chapter 5. Chapter 6 contains the so-called ellipsoid

algorithm that is studied in more detail. It also presents a conservative convexification of

the algorithm that makes it solvable for higher dimensional systems. Simulations are usually

shown at the end of each chapter.

1.4 Problems of cautious control

The bicriterial approach in [19] suggests using cautious control as the initial control uc
k, with

the aim to control more carefully in case the parameter uncertainty is high. The goal of

this section is to show problems that arise when using cautious controllers as the primary

solutions and thus to justify the use of certainty equivalent controllers. The problems

are illustrated on a simple first order system controlled by a cautious modification of the

minimum variance controller, but they remain valid for more sophisticated controllers such

as the cautious LQ controller presented in Chapter 2.

Let us consider an autoregressive system with external input

yk = ayk−1 + buk + ek (1.19)

with uk, yk and ek denoting the system input, output and noise, respectively. The noise ek
is assumed to be gaussian white noise with variance σ2

e . The minimum variance controller
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is a controller based on minimization of the criterion

u∗
k = argmin

uk

E(yk − r)2, (1.20)

which for this system has the form

u∗
k =

a

b
(
r

a
− yk−1), (1.21)

where r denotes the reference value, see [19, 10]. Let us now consider the case when the

system parameters are uncertain. By uncertain it is meant that they are not known exactly,

but they remain constant or change slowly in time. However, a cautious modification of

the controller (1.20) is gained when the uncertainty of the system parameters is described

by the parameter conditional expected values and variances, with â and b̂ denoting the

conditional expected values and σ2
a, σ2

b and σab denoting the conditional variance of a,

b and the covariance of a and b, respectively. Cautious control thus in fact interprets

the uncertainty in a probabilistic way, assuming the parameters to be random variables,

identically distributed, independent in time and independent with the system noise. This

interpretation is already inconsistent with the uncertainty assumption made above in Section

1.1, which is a conceptual problem of cautious control. Minimization (1.20) then yields the

following cautious modification of the minimum variance controller

uc
k =

b̂

b̂2 + σ2
b

r −
âb̂+ σab

b̂2 + σ2
b

yk−1, (1.22)

see [19, 10]. Such a controller is not robust (only the overall unit gain of the control loop

is assured, but tracking is achieved only for a precise nominal model) and is used only for

illustrative purposes. In contrast to the cautious controller, the certainty equivalent (CE)

controller has the same form as (1.21), where the actual parameters are substituted with

their expected values. Certainty equivalence thus simply assumes the expected values to be

correct estimates and the controller is thus designed for the nominal system.

We can see immediately that the control design does not take the uncertainty of the

dynamics into account, as it only depends on σ2
b and σab, so it is not very helpful in case

the dynamics is uncertain. Let us next assume that parameter a is known precisely, so the

only uncertain parameter is b. The cautious controller has now the following form

u∗
k =

ab̂

b̂2 + σ2
b

(
r

a
− yk−1). (1.23)

Let us assume a zero reference signal, then the closed loop system is

yk = a(1−
bb̂

b̂2 + σ2
b

)yk−1 (1.24)

and the closed loop eigenvalue is a(1−bb̂/(b̂2+σ2
b )). For a nominal system, where b = b̂, this

value lies in the interval [0, a), depending on the uncertainty σ2
b and if a > 1, the closed loop
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Figure 1.2: Areas of stability for a cautious and CE controller applied to a first order ARX system
with a = 4 and an uncertain input gain b. The Figure shows the probability density function of the
parameter b and the intervals of the actual values of b for which the cautious and CE controller are
stable, respectively. The colored areas correspond to probabilities of a closed loop being stable.

may become unstable for the nominal system if σ2
b is sufficiently large. Figure 1.2 shows the

regions of parameter b for which the closed loop is stable. The depicted situation describes

a first order ARX system (1.19) with parameters a = 4 and b uncertain with mean b̂ = 1

and σ2
b = 2. While the nominal system lies in the center of the stability interval of the

CE controller, it is clearly not stabilized by the cautious controller. The presented example

shows this effect only for unstable systems (|a| > 1), but this is not true for more complex

systems, where also a stable nominal system can be destabilized by cautious controller.

The stability of the nominal system might not be a crucial requirement for stochastic

control, if for example the probability of the system being stable is increased. However, this

is also generally not the case. The probability is equal to the area under the probability

density function in Figure 1.2. Increasing the variance σ2
b moves the stability interval of

cautious control further to the right, so eventually, the area gets smaller than the area of

the CE controller, as shown in Figure 1.3, where the situation is shown for a = 1.5 and

σ2
b = 100.

Problems also arise when trying to extend the problem formulation to infinite hori-

zon. It can happen that the criterion value goes to infinity, as pointed out in [5] and [6],

where the situation is analyzed for a first order system and a general system with specifically

structured uncertainty, respectively. The limit feedback gain, however, converges to a finite

value even if the criterion is infinite, so a time invariant control law might be still evaluated.
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Figure 1.3: Areas of stability for a cautious and CE controller applied to a first order ARX system
with a = 1.5 and an uncertain input gain b. Similarly to Figure 1.2 the intervals of stability are
depicted. It is clearly seen that the probability of cautious control being stable is lower than the
probability of the CE stability interval.

The problem is, however, the same as in the previous case and that is the unstable nominal

closed loop system and a low probability of closed loop stability.

It was already mentioned in the previous section, that if the system parameters are

unknown, they are described as uncertain. Using bayesian approach, parameter uncertainty

can be described, using probability densities to express the available knowledge about the

parameter values. This is the case in bayesian identification algorithms [12] or in standard

recursive least square methods [27]. However, it is important to realize that uncertainty does

not necessarily mean randomness. In reality, it is much more likely that the parameters will

stay constant or change slowly. The probabilistic description of uncertainty thus does not

express the parameters themselves but rather our knowledge about them.

Cautious control is strongly incoherent with this interpretation as it assumes that

parameters at different time instants are identically distributed independent random vari-

ables. When designing a cautious controller over a horizon of N > 1 steps, it is assumed

that the parameters have a different value at each step, according to their joint probability

density. In such case, the system behavior would depend strongly on the parameter expected

values that express the system ‘average’ behavior. On the other hand, the real system will

behave according to the real parameter values, which may differ from the ‘average’ case.

Another approach to computing the criterion value over steps 2, . . . , N would be to

assume that the parameters remain constant over the control horizon, and so their (marginal)
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distributions are the same for all k = 2, . . . , N and are given by the estimate at time k = 2.

Under this assumption the parameters are no longer independent. The criterion value would

then be computed as a mean of the criterion on the whole horizon with respect to the (initial)

parameter distribution. Extension of this approach to infinite horizon brings even bigger

problems, because as soon as there is a set of parameters with nonzero probability for which

the controlled system is unstable, the criterion is infinite. This is indeed the case of the

gaussian assumption of parameter distribution.

For illustration, recall the criterion convergence problem mentioned above. If the

criterion evaluation is based on the cautious assumption, it may or may not happen that

the limit criterion value is finite. If it is finite, it means that the controller works well for

the ‘average’ system, even if there is a nonzero probability of the closed loop system being

unstable. In reality, however, the criterion value must always diverge if there is a nonzero

probability of an unstable closed loop.

These remarks show the importance of choosing a proper model for parameter un-

certainty and that extension to infinite horizon may not be as straightforward as for deter-

ministic systems or systems with only input uncertainties.
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Chapter 2

Cautious LQ control of

ARMAX model

The first section of this chapter shows the derivation of a simultaneous parameter and state

estimator (tracker) for a general ARMAX model under the assumption of perfectly known

MA part (c-parameters). The tracker has already been derived in [30, 45], but we propose a

simpler method based on a classical Kalman filter design. The second section of the chapter

presents derivation of a cautious modification of the linear quadratic (LQ) controller for

the ARMAX model, again under the assumption of known c-parameters. Such controller

has already been derived in [59] using similar techniques as in this chapter, the presented

method is however new due to a more convenient choice of the state-space representation

of the ARMAX model, thus leading to simpler and more compact results. The parameter

and state estimator forms a counterpart to the cautious LQ controller in the sense that

the results of the estimator (estimate of the current state and parameter vector) form a

necessary input to the controller, as will be shown in Section 2.2.

The general ARMAX model is described by the equation

yk =

n∑

i=1

aiyk−i +

n∑

i=0

biuk−i +

n∑

i=0

ciek−i, (2.1)

where yk, uk and ek are the system output, input and input noise at time k, respectively.

As mentioned before, the parameters ci are assumed to be known as well as the observed

(directly measurable) inputs and outputs, uk and yk, while the parameters ai and bi and

the input noise ek are unknown. According to the terminology introduced in Section 1.1,

the unknown parameters ai and bi are considered uncertain, because they are unknown but

probably constant or changing slowly, while the noise ek is a source of random disturbance

in the system and it is assumed to be a gaussian white noise process, i.e. ek ∼ N (0, σ2
e) and

cov(ei, ej) = 0 for i 6= j.

As described in Section 1.2, a cautious controller is derived under the assumptions

that uncertainty is modeled by stochastic methods, particularly that the conditional distri-
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butions of the uncertain parameters are assumed to be identical (equal to the conditional

distribution at the initial time) and independent with respect to time. The assumption of

known parameters ci ensures that there are no products of random variables in the equation

(2.1) and that we will not need higher than second order moments of the distributions. The

parameter c0 is chosen to be equal to 1 to remove the degree of freedom in the representation.

Note that we use two different state space representations of the model (2.1), one

for derivation of the tracker/estimator and one for derivation of the controller. The state-

space representation is always chosen to best fit the current purpose. When combining

the cautious controller with the estimator to construct an adaptive controller, it must be

understood that the estimated state is different from the state defining control input – this

state must be transformed extra from the available data.

2.1 Simultaneous state estimation and parameter track-

ing of ARMAX model

This section presents derivation of a parameter tracker and state observer of a general

ARMAXmodel in case the MA part (c-parameters) are known. The presented method uses a

standard Kalman filtering theory applied to the following specific state-space representation

on the ARMAX model.

xk+1 = Axk + Γek,

yk = Ckxk + ek,

with the state vector

xk = [b0, a1, . . . , an, b1, . . . , bn, ek−1, . . . , ek−n]
T ,

noise matrix

Γ =
[
01,2n+1 1 01,n−1

]T
,

time-varying output matrix

Ck =
[
uk yk−1 . . . yk−n uk−1 . . . uk−n c1 . . . cn

]

and the system matrix

A =

[
I2n+1 02n+1,n

0n,2n+1 Ae

]
,

where 0i,j is a zero matrix with i rows and j columns, In is an identity matrix of order n,

0n = 0n,n and

Ae =

[
01,n−1 0

In−1 0n−1,1

]
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is an n×n matrix. Because the noise ek appears both in the state and the output equation,

the noise variance matrices have the form

Q = σ2
eΓΓ

T =




02n+1 02n+1,1 02n+1,n−1

01,2n+1 σ2
e 01,n−1

0n−1,2n+1 0n−1,1 0n−1


 , R = σ2

e , S = σ2
eΓ =



02n+1,1

σ2
e

0n−1,1


 .

2.1.1 The estimator equations

It is now possible to construct a simultaneous state and parameter estimator using the

standard Riccati equation for developing the estimate variance matrix and the Kalman

gain. Considering an initial state estimate x̂0 and initial estimate variance matrix P0, the

filter equations are given by

Pk+1 = APkA
T +Q−

(APkC
T
k + S)(CkPkA

T + ST )

CkPkCT
k +R

(2.2)

and

x̂k+1 = Ax̂k +
APkC

T
k + S

CkPkCT
k +R

(yk − Ckx̂k), (2.3)

where the denominator CkPkC
T
k + R is a scalar. Dividing the equation (2.2) by σ2

e yields

the more common form for a normalized variance matrix

P ′
k+1 = AP ′

kA
T +Q′ −

(AP ′
kC

T
k + S′)(CkP

′
kA

T + S′T )

CkP ′
kC

T
k + 1

(2.4)

and

x̂k+1 = Ax̂k +
AP ′

kC
T
k + S′

CkP ′
kC

T
k + 1

(yk − Ckx̂k), (2.5)

where the noise variance matrices are also divided by σ2
e , i.e.

Q′ = ΓΓT =




02n+1 02n+1,1 02n+1,n−1

01,2n+1 1 01,n−1

0n−1,2n+1 0n−1,1 0n−1


 , S′ = Γ =



02n+1,1

1

0n−1,1


 .

Note 2.1. The equations above assume that σ2
e is known. If this is not the case,

it must be estimated from the output errors, for example as

s
2
k+1 =

k

k + 1
s
2
k +

1

k + 1

(yk − Ckx̂k)
2

CkPkC
T
k + 1

.

The estimate s2 has a χ2 distribution and the state estimator then produces esti-

mates with Student distribution, see [45] for details. However, the convergence to

normal distribution is fast and normality is assumed in practical cases.

Note 2.2. As the matrix Ck is time-varying, there will be no limit solution of the

equation and thus no steady-state filter can be used. There is, however, an interest-

ing connection to the persistent excitation, which we will informally describe. The
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part of the system describing the parameter development is uncontrollable from

the input noise. The theory of Riccati equations shows, that the corresponding

part of the variance matrix Pk should go to zero, provided this part is observable.

The observability depends on the time-varying matrix Ck that is formed by past

inputs and outputs. Intuitively, this part of the system will be observable, if the

matrices Ck are linearly independent, or at least, if for each k there is nk such that

the lines Ck, . . . , Ckn are linearly independent. This is equivalent to the persistent

excitation condition.

On the other hand, the part of the system describing the past noises is

controllable and due to time varying Ck will the corresponding part of the variance

matrix Pk not converge.

2.1.2 Notation

If we denote

a = [a1, . . . , an]
T , b = [b1, . . . , bn]

T , c = [c1, . . . , cn]
T , θ =

[
aT bT cT

]T
, (2.6)

it is possible to denote the blocks of the variance matrix P (or P ′) as

Pk =




σ2
b0

Pb0,a Pb0,b Pb0,e

Pa,b0 Pa Pa,b Pa,e

Pb,b0 Pb,a Pb Pb,e

Pe,b0 Pe,a Pe,b Pe


 , (2.7)

where the symbol e represents the past noises ek−i, i = 1, . . . , n in the state vector xk. To

be precise, we should also use time indexation in the notation of the individual blocks, but

we will omit this indexation to keep the notation simple.

2.1.3 ARX model

For an ARX model, the equations reduce to the recursive least squares algorithm, see [27].

The state-space representation of an ARX model for this purpose has the following state

and output matrices

A = I2n+1, Ck = zTk =
[
uk yk−1 . . . yk−n uk−1 . . . uk−n

]
,

where Ck is usually called the regressor and denoted as zTk . The state vector is formed only

by parameters and is usually denoted as

θk = [b0, a1, . . . , an, b1 . . . , bn]
T ,

and the noise variance matrices Q and S are zero matrices and R = σ2
e . Substituting the

matrices into equations (2.4) and (2.5) yields the standard formulas

P ′
k+1 = P ′

k −
P ′
kzkz

T
k P

′
k

zTk P
′
kzk + 1

(2.8)
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and

θ̂k+1 = θ̂k +
P ′
kzk

zTk P
′
kzk + 1

(yk − zTk θ̂k). (2.9)

Note 2.3. Although it is usual to denote the parameter vector as θk as in the

description of ARX model above, in this chapter we will prefer to keep the symbol

θ according to the Definition (2.6), i.e. without b0. The reason will be made

clear in the next section, where the parameter b0 plays an important role in the

derivation of the cautious controller.

2.2 Cautious control of ARMAX model

For the purpose of derivation of the cautious LQ controller, the following state-space repre-

sentation of the ARMAX model will be used

xk+1 = Axk +Buk + Γek, (2.10)

yk = Ckxk +Duk + ek,

with the state vector

xk = [yk−1, . . . , yk−n, uk−1, . . . , uk−n, ek−1, . . . , ek−n]
T (2.11)

and system matrices

A =




a1 . . . an b1 . . . bn c1 . . . cn
In−1,n 0n−1,n 0n−1,n

0n Ae 0n
0n 0n Ae


 , B =




b0
0n−1,1

1

02n−1,1


 , Γ =




1

02n−1,1

1

0n−1,1


 ,

C =
[
a1 . . . an b1 . . . bn c1 . . . cn

]
, D = b0, (2.12)

where 0i,j is a zero matrix with i rows and j columns, In−1,n = [In−1 0n−1,1], In is an

identity matrix of order n, 0n = 0n,n and

Ae =

[
0 0

In−1 0

]
.

The criterion that is to be minimized is the usual quadratic functional for the LQ problem

E

[
xT
NQxN +

N−1∑

k=0

xT
kQxk + uT

kRuk

]
, (2.13)

where the expected value is taken with respect to all uncertainties. The input uk is a scalar

and therefore there is no need to distinguish between uk and uT
k , but we will keep the

transposed notation to avoid confusion. The symmetrical weighting matrices Q ≥ 0 and

R > 0 may also be time varying, in which case the notation Qk, Rk is necessary.
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2.2.1 Results for classical LQ and LQG control

Let us now briefly present the important properties of linear quadratic control. The result

of the classical LQ control of a deterministic system (1.2) is that the optimal criterion value

at time k (or the cost-to-go function) is a quadratic function of the state at time k, i.e.

J∗
k (xk) = xT

NQxN +

N−1∑

i=k

(xT
i Qxi + u∗T

i Ru∗
i ) = xT

k Gkxk, (2.14)

where Gk is a positive semidefinite symmetrical matrix and generally Gk, k = 0, . . . , N−1 is

given by a discrete-time Riccati equation that is solved backwards from an end conditionGN .

A limit solution for such equation for N → ∞ exists under the assumptions of stabilizability

of the pair (A,B) and observability of the pair (A,ΓQ), where ΓQΓ
T
Q = Q (see e.g. [63, 10])

The optimal control is then realized by a linear state feedback, i.e.

u∗
k = −Kkxk.

The LQ problem for a stochastic system with perfect state information leads to the same

control law as for the deterministic system above. The criterion, however, contains an

additional absolute term gk, linearly increasing with time, i.e.

J∗
k (xk) = E

[
xT
NQxN +

N−1∑

i=k

(xT
i Qxi + u∗T

i Ru∗
i )

]
= xT

kGkxk + gk.

The term gk represents the criterion increase due to the noise. In the case of a stochastic

system with imperfect state information is the criterion equal to a more general quadratic

function

J∗
k (D

k−1) = E

[
xT
NQxN +

N−1∑

i=k

(xT
i Qxi + u∗T

i Ru∗
i ) | D

k−1

]
=

= E(xk|D
k−1)TGk E(xk|D

k−1) + g1k + g2k,

where the absolute scalar terms g1k and g2k have the meaning of increase of the criterion

due to uncertainty in prediction caused by the noise and due to the uncertainty in state

estimation, respectively. The matrix Gk is however given by the same Riccati equation as

in the deterministic case and therefore also the convergence conditions for Gk remain the

same. Note that the cost-to-go function J∗
k is no longer a function of the state xk, but rather

a function of the available data, i.e. the data Dk−1. The state feedback gain is also the

same with the only difference that the (unknown) state xk is substituted with its conditional

mean, i.e.

u∗
k = −Kk E(xk|D

k−1),

where the conditional mean E(xk|Dk−1) is the Kalman filter estimate of the current state.

The scalar sequences gk, g
1
k and g2k depend on Gk and if Gk converges, then gk has asymp-

totically a linear growth. This is the reason why a modified criterion should be used for
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stochastic systems, e.g.

1

N
E

[
xT
NQxN +

N−1∑

k=0

(xT
k Qxk + uT

kRuk)

]
.

The division by N solves the problem of linearly increasing absolute terms, but has no

impact on the convergence of Gk, therefore we can work with the criterion (2.13). For the

three described cases, a sufficient condition for the matrix Gk to converge is stabilizability of

the controlled system and observability of the pair (A,ΓQ), where Γ
T
QΓQ = Q. We will now

derive a cautious LQ controller for a linear stochastic system with uncertain parameters.

This derivation is the topic of the rest of this chapter. The convergence of Gk is more

complicated for such controller, and is in detail discussed in the next chapter.

2.2.2 Bellman equation

Similarly to these LQ problems for a deterministic system, we will show that the criterion

(2.13) for the cautious LQ control problem for ARMAX model with uncertain parameters

has the form

J∗
k (D

k−1) = E(xT
k Gkxk|D

k−1) + 2γT
k E(xk|D

k−1) + gk (2.15)

for some matrix Gk, column vector γk and a scalar gk. We will show this by induction using

the general scheme of stochastic dynamic programming.

Note 2.4. The first part of the quadratic function in (2.15) is slightly different

from the previous cases, where the form E(xk|D
k−1)TGk E(xk|D

k−1) was used. It

is easily seen that

E(xT
kGkxk|D

k−1) = E(xk|D
k−1)TGk E(xk|D

k−1) +

+ E

[(
x
T
k − E(xk|D

k−1)T
)
Gk

(
xk − E(xk|D

k−1)
)
|Dk−1

]
,

where the second term on the right-hand side of the equality is equal to the estimate

error weighted by the matrix Gk and is thus independent of xk. It is then easy to

transform the expression (2.15) to a quadratic function in estimates E(xk|D
k−1)

by adding the additional term to the absolute term. The form (2.15) is used for

convenience in the following derivation.

The statement (2.15) is obviously true for k = N , as from the cost definition (2.13)

J∗
N (DN−1) = E(xT

NQxN |DN−1), (2.16)

which gives us immediately the terminal conditions GN = Q, γN = 0, gN = 0, where 0

has the meaning of zero vector, scalar (or possibly matrix in the future text) of appropriate

dimensions.
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For a general time k it holds by the Bellman equation for problems with imperfect

state information (see [10])

J∗
k (D

k−1) = min
uk

[
E
(
xT
kQxk + uT

kRuk + J∗
k+1(D

k) | uk,D
k−1
)]

=

= min
uk

[
E
(
xT
kQxk + uT

kRuk + E(xT
k+1Gk+1xk+1|D

k) +

+ 2γT
k+1 E(xk+1|D

k) + gk+1 | uk,D
k−1
) ]

, (2.17)

where we used the induction hypothesis (2.15). Let us now substitute for xk+1 from the

system equations (2.10)

J∗
k (D

k−1) = min
uk

{
E
[
xT
k (Q +ATGk+1A)xk + eTk Γ

TGk+1Γek + (2.18)

+ 2γT
k+1Axk + uT

k (R +BTGk+1B)uk +

+ 2γT
k+1Buk + 2xT

k A
TGk+1Buk + gk+1 | uk,D

k−1
]}

.

2.2.3 Notation

To be able to perform the minimization in (2.18) and to close the recursion, we have to

evaluate several terms. To simplify the expressions, we will use the following notation for

the Kalman filter estimates at time k

E(xk|D
k−1) = x̂k, E(A|Dk−1) = Âk, E(B|Dk−1) = B̂k. (2.19)

Recall that estimates Âk and B̂k are given by the Kalman filter (2.3) from Section 2.1. The

state estimate x̂k is also given by the filter (2.3), as it is only necessary to estimate the past

noises ek−i, i = 1, . . . , n.

Note 2.5. The Kalman filter estimates Âk, B̂k and x̂k do not depend on the

current input uk. Therefore it holds

E(xk|uk,D
k−1) = E(xk|D

k−1) = x̂k

and similarly for Âk and B̂k. This will allow us to use the estimates in evaluation

of the expression (2.18).

Note 2.6. It is important to realize that the state xk in this section is defined

differently from the state in the previous section, where the parameter and state

estimator was derived. This should not lead to any confusion, because xk in this

section always means the state according to the Definition (2.11). Constructing

the estimate x̂k as well as the estimates Âk and B̂k from the estimate (2.3) is

straightforward.

To further simplify some expressions that appear in the derivation, we will also introduce
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the following notation

Pb0,θ = cov(b0, θ
T |Dk−1) =

[
Pb0,a Pb0,b 01,n

]
= PT

θ,b0
, (2.20)

Pθ = var(θ|Dk−1) =



Pa Pa,b 0n
Pb,a Pb 0n
0n 0n 0n


 ,

Pb0,x = cov(b0, x
T
k |D

k−1) =
[
01,n 01,n Pb0,e

]
= PT

x,b0
,

Pθ,x = cov(θ, xT
k |D

k−1) =



0n,2n Pa,e

0n,2n Pb,e

0n,2n 0n


 = PT

x,θ,

Px = var(xk|D
k−1) =

[
02n 0n
0n Pe

]
,

where we have used the notation from Definitions (2.7) and (2.6).

Note 2.7. Similarly to the Kalman filter estimates, also the estimate covariances

(2.20) were defined as independent of uk. This is true for the covariance Px

in the case of a system without uncertain parameters and it is a key step in

derivation of LQG control. The formula for the estimate covariance (2.2) clearly

shows dependence on the data accumulated in the output matrix Ck (here we

mean the output matrix of the system representation used for estimation) and

therefore, for the covariances in (2.20), the independence of uk is assumed in order

to make the evaluation of (2.18) possible. This is the first time where we use

the assumptions of cautious control. Taking the influence of uk on the quality

of estimate into account would result in a dual controller – this approach would

however lead to analytically unsolvable equations.

Note 2.8. It will also be assumed that Gk+1, γk+1 and gk+1 are constant, i.e.

E(Gk+1|uk,D
k−1) = Gk+1

(and similarly for γk+1 and gk+1) and covariances of these terms with any random

variables are zero. This is also not generally true, as we will see later, and this

assumption is another use of cautious assumptions to simplify the derivation.

We will also denote Gi,j the element in the i-th row and j-th column of matrix G and G·,j

and Gi,· the j-th column and the i-th row of G, respectively. Finally, let us denote

x̃k = xk − x̂k, Ãk = A− Âk, B̃k = B − B̂k, θ̃k = θ − θ̂k,

to simplify the derivation of the expected values.
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2.2.4 Optimal control

Using this notation and assumptions we can now write

E
[
xT
k A

TGk+1Axk | uk,D
k−1
]
= E

[
xT
k A

TGk+1Axk | Dk−1
]
= (2.21)

= E

[
(x̂k + x̃k)

T (Âk + Ãk)
TGk+1(Âk + Ãk)(x̂k + x̃k) | D

k−1
]
=

= E

[
xT
k Â

T
k Gk+1Âkxk | Dk−1

]
+ x̂T

kG
1,1
k+1Pθx̂k +

+2E
[
x̃T
k Â

T
kGk+1Ãk | Dk−1

]
x̂k =

= E

[
xT
k (Â

T
k Gk+1Âk +G1,1

k+1Pθ)xk | Dk−1
]
− E

[
x̃T
k G

1,1
k+1Pθx̃k | Dk−1

]
+

+2G1,·
k+1ÂkPx,θx̂k,

where the following equalities have been used

Ãkx̃k = 0,

E
[
x̃k|D

k−1
]
= 0, E

[
Ãk|D

k−1
]
= 0,

E

[
ÃT

k Gk+1Ãk | Dk−1
]
= G1,1

k+1Pθ,

E

[
x̃T
k Â

T
k Gk+1Ãk | Dk−1

]
x̂k = tr

{
E

[
Ãkx̂kx̃

T
k Â

T
k Gk+1 | Dk−1

]}
=

= E

[
θ̃T x̂kx̃

T
k Â

T
kG

·,1
k+1 | Dk−1

]
= x̂T

k E

[
θ̃x̃T

k | Dk−1
]
ÂT

kG
·,1
k+1 = G1,·

k+1ÂkPx,θx̂k,

with tr(·) denoting the matrix trace operator. Using similar ideas, we can evaluate the rest

of the terms from (2.18) to obtain the following expressions

E
[
eTk Γ

TGk+1Γek | uk,D
k−1
]
= ΓTGk+1Γσ

2
e , (2.22)

E
[
2γT

k+1Axk | uk,D
k−1
]
= 2γT

k+1Âkx̂k, (2.23)

E
[
uT
k (R+BTGk+1B)uk | uk,D

k−1
]
= (2.24)

= uT
k (R + B̂T

k Gk+1B̂k +G1,1
k+1σ

2
b0
)uk,

E
[
2γT

k+1Buk | uk,D
k−1
]
= 2γT

k+1B̂kuk, (2.25)

E
[
2xT

kA
TGk+1Buk | uk,D

k−1
]
= (2.26)

= 2x̂T
k (Â

T
k Gk+1B̂k +G1,1

k+1Pθ,b0)uk + 2G1,·
k+1ÂkPx,b0uk.

It is now possible to rewrite (2.18) using expressions above

J∗
k (D

k−1) = E

[
xT
k (Â

T
k Gk+1Âk +G1,1

k+1Pθ +Q)xk | Dk−1
]
− (2.27)

− E

[
x̃T
k G

1,1
k+1Pθx̃k | Dk−1

]
+ 2G1,·

k+1ÂkPx,θx̂k +

+ 2γT
k+1Âkx̂k + ΓTGk+1Γσ

2
e + gk+1 +

+ min
uk

[
uT
k (R+ B̂T

k Gk+1B̂k +G1,1
k+1σ

2
b0
)uk + 2γT

k+1B̂kuk +

+ 2x̂T
k (Â

T
k Gk+1B̂k +G1,1

k+1Pθ,b0)uk + 2G1,·
k+1ÂkPx,b0uk

]
.
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The first terms have been excluded from minimization according to assumptions of inde-

pendence on uk made earlier. Differentiating the terms in the minimization with respect to

uk and setting the derivative equal to zero yields

0 = (R+ B̂T
k Gk+1B̂k +G1,1

k+1σ
2
b0
)uk + (B̂T

k Gk+1Âk +G1,1
k+1Pb0,θ)x̂k + (2.28)

+ B̂T
k γk+1 + Pb0,xÂ

T
k G

·,1
k+1.

Assuming R > 0 guarantees the existence of (R + B̂T
k Gk+1B̂k + G1,1

k+1σ
2
b0
)−1 and we can

write an explicit formula for the optimal control u∗
k

u∗
k = −(R+ B̂T

k Gk+1B̂k +G1,1
k+1σ

2
b0
)−1(B̂T

k Gk+1Âk +G1,1
k+1Pb0,θ)x̂k − (2.29)

− (R + B̂T
k Gk+1B̂k +G1,1

k+1σ
2
b0
)−1(B̂T

k γk+1 + Pb0,xÂ
T
k G

·,1
k+1).

The first term on the right hand side of the expression (2.29) represents a state feedback

from the current state estimate. The second term is independent from the current state and

can be seen as a correction of the state feedback according to the covariance Pb0,x between

the state and the uncertain input gain b0. To simplify the expression (2.29) as well as some

further considerations, let us define

Kk = (R + B̂T
k Gk+1B̂k +G1,1

k+1σ
2
b0
)−1(B̂T

k Gk+1Âk +G1,1
k+1Pb0,θ) (2.30)

Lk = (R+ B̂T
k Gk+1B̂k +G1,1

k+1σ
2
b0
)−1(B̂T

k γk+1 + Pb0,xÂ
T
kG

·,1
k+1).

The optimal control can be now expressed as

u∗
k = −Kkx̂k − Lk.

2.2.5 Optimal cost and recursive equations

Substituting uk in (2.27) with the optimal control u∗
k from (2.29) yields

J∗
k (D

k−1) = E

[
xT
k (Â

T
k Gk+1Âk +G1,1

k+1Pθ +Q)xk | Dk−1
]
− (2.31)

− E

[
x̃T
k G

1,1
k+1Pθx̃k | Dk−1

]
−

− E

[
xT
k (Â

T
k Gk+1B̂k +G1,1

k+1Pθ,b0)(R+ B̂T
k Gk+1B̂k +G1,1

k+1σ
2
b0
)−1

(B̂T
k Gk+1Âk +G1,1

k+1Pb0,θ)xk | Dk−1
]
+

+ E

[
x̃T
k (Â

T
k Gk+1B̂k +G1,1

k+1Pθ,b0)(R+ B̂T
k Gk+1B̂k +G1,1

k+1σ
2
b0
)−1

(B̂T
k Gk+1Âk +G1,1

k+1Pb0,θ)x̃k | Dk−1
]
+

+ 2
[
G1,·

k+1ÂkPx,θ + γT
k+1Âk − (γT

k+1B̂k +G1,·
k+1ÂkPx,b0)

(R+ B̂T
k Gk+1B̂k +G1,1

k+1σ
2
b0
)−1(B̂T

k Gk+1Âk +G1,1
k+1Pb0,θ)

]
x̂k +

+ gk+1 + ΓTGk+1Γσ
2
e −

− (γT
k+1B̂k +G1,·

k+1ÂkPx,b0)(R+ B̂T
k Gk+1B̂k +G1,1

k+1σ
2
b0
)−1

(B̂T
k γk+1 + Pb0,xÂ

T
k G

·,1
k+1).
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The terms of the form E
[
x̃T
k (. . .)x̃k | Dk−1

]
do not depend on xk, because we can rewrite

them as

E
[
x̃T
k (. . .)x̃k | Dk−1

]
= tr

{
(. . .)E

[
x̃kx̃

T
k | Dk−1

]}
= tr {(. . .)Px} ,

where we have assumed the variance matrix Px to be independent of uk as well. After

reordering the terms, we finally get the main result of this section which is the formula for

recursive computation of Gk, γk and gk

Gk = ÂT
kGk+1Âk +G1,1

k+1Pθ +Q− (ÂT
k Gk+1B̂k +G1,1

k+1Pθ,b0) (2.32)

(R+ B̂T
k Gk+1B̂k +G1,1

k+1σ
2
b0
)−1(B̂T

k Gk+1Âk +G1,1
k+1Pb0,θ),

γT
k = G1,·

k+1ÂkPx,θ + γT
k+1Âk − (γT

k+1B̂k +G1,·
k+1ÂkPx,b0) (2.33)

(R+ B̂T
k Gk+1B̂k +G1,1

k+1σ
2
b0
)−1(B̂T

k Gk+1Âk +G1,1
k+1Pb0,θ),

gk = gk+1 + ΓTGk+1Γσ
2
e − (2.34)

− (γT
k+1B̂k +G1,·

k+1ÂkPx,b0)(R + B̂T
k Gk+1B̂k +G1,1

k+1σ
2
b0
)−1

(B̂T
k γk+1 + Pb0,xÂ

T
k G

·,1
k+1) +

+ tr
{[

(ÂT
k Gk+1B̂k +G1,1

k+1Pθ,b0)(R+ B̂T
k Gk+1B̂k +G1,1

k+1σ
2
b0
)−1

(B̂T
k Gk+1Âk +G1,1

k+1Pb0,θ)−G1,1
k+1Pθ

]
Px

}
.

Note 2.9. The recursive formulas (2.32), (2.33) and (2.34) calculate backwards

the terms Gk, γk and gk, starting from end conditions GN , γN and gN . Here it is

necessary to assume the independence and identical distribution of the estimates

Âi and B̂i, i = k, . . . , N . If we did not assume identical distribution, we would

know neither the future estimates Âi and B̂i, i = k + 1, . . . , N at time k nor the

estimate variances. Moreover, without assuming independence, we would not be

able to treat the terms Gk+1, γk+1 and gk+1 as constants in the derivation, as

there would be nonzero variances between Âk and Âs, k < s ≤ N and so on for

other estimates. The assumption of independence and identical distribution allows

us to use the current estimates of parameters and their variances and use them to

calculate the recursion.

Note 2.10. Unlike the case without uncertain parameters, we cannot even cal-

culate the future state estimate variance Px. This is normally done by a Kalman

filter, which does not depend on future inputs and outputs. The specific structure

of the Kalman filter used in the case of ARMAX model with uncertain parameters

does not allow this computation, because it depends on the future data. This is

however not a significant drawback, because the variance Px has influence only on

the absolute term gk, which has no impact on the control law.

2.2.6 Cautious Riccati-like equation

The equation (2.32) resembles the standard Riccati equation for a problem without uncertain

parameters. The formula for Gk does not depend on γT
k+1 or gk+1, on the contrary, both

γT
k and gk depend on Gk+1. The limit behavior of equation (2.32) is thus important for the
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behavior of the resulting controller and will be studied extensively in Chapter 3. At this

point we will define the following terminology.

Definition 2.11. The discrete-time equation of the form

Gk = AT
kGk+1Ak +G1,1

k+1Pθ +Q− (AT
k Gk+1Bk +G1,1

k+1Pθ,b0) (2.35)

(R +BT
k Gk+1Bk +G1,1

k+1σ
2
b0
)−1(BT

k Gk+1Ak +G1,1
k+1Pb0,θ)

is called a discrete-time cautious Riccati-like equation.

Note 2.12. The hat notation Â and B̂ has been omitted in Definition 2.11 to

simplify notation – the limit behaviour of the equation will be studied in further

text and the matrices Ak and Bk can be considered to be constants without loss

of generality. On the other hand, the time indexation has been preserved in the

general definition, as we will also study the case when the system matrices vary

over time. However, for studying the limit behavior, we have to assume that

Ak = A, Bk = B for some A, B and all k ∈ N. Therefore we will mostly work with

constant system matrices. Working with constant matrices indeed makes good

sense for the cautious controller, because we assume Âk = Â0, B̂k = B̂0 for all

k ∈ N.

2.2.7 ARX model

Cautious control of an ARX model can be viewed as a special case of the previously derived

algorithm. However, it brings such significant simplifications that it is useful to point them

out.

• The are no parameters ci in the model, therefore a state-space representation with the

following system matrices can be used

A =



a1 . . . an b1 . . . bn
In−1,n 0n−1,n

0n Ae


 , B =




b0
0n−1,1

1

0n−1,1


 , Γ =

[
1

02n−1,1

]
,

C =
[
a1 . . . an b1 . . . bn

]
, D = b0, (2.36)

which is a nonminimal state-space representation.

• The state vector in this representation is

xk = [yk−1, . . . , yk−n, uk−1, . . . , uk−n]
T . (2.37)

The state vector contains only past inputs and outputs which means a perfect state

information, i.e. x̂k = xk. In other words, the state vector need not be estimated and

the control uk is calculated from a direct state feedback.

• The covariances Px, Pb0,x and Pθ,x are all zero, because the state xk is directly mea-

surable.
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• The vector γT
k = 0 for all k ∈ N. This is a consequence of zero covariances Pb0,x and

Pθ,x.

• The absolute term is simplified as

gk = gk+1 +G1,1
k+1σ

2
e ,

due to zero covariances and γT
k = 0

• Parameter estimate is calculated by simpler formulas (2.8) and (2.9)

It is indeed interesting that the equation for Gk (the discrete-time cautious Riccati-like

equation) remains unchanged.
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Chapter 3

Convergence of the cautious

Riccati-like equation

This chapter presents a criterion for convergence of a discrete-time Riccati-like equation that

is associated with the cautious LQ control problem for a general ARMAX model presented

in Chapter 2. According to Definition 2.11, the cautious discrete-time Riccati-like equation

has the following form

Gk = ATGk+1A+Q+G1,1
k+1Pθ − (3.1)

− (ATGk+1B +G1,1
k+1Pθ,b0)(B

TGk+1B +R +G1,1
k+1σ

2
b0
)−1(BTGk+1A+G1,1

k+1Pb0,θ),

where G1,1 denotes the upper-left element of the matrix G (row and column index equal

to 1). Because this chapter studies limit behavior of the equation, we assume Ak = A and

Bk = B for all k ∈ N. Note that although the equation was derived as a solution to a

specific problem (cautious LQ control problem for a SISO ARMAX model) and a special

form of system matrices A and B has been made use of, the presented convergence criterion

and its proof are valid for a general discrete-time equation in the form (3.1) with arbitrary

system matrices.

To complete the analysis of the limit behavior of the recursive equations defining

the cautious LQ controller from Chapter 2, we also show in Section 3.3 the limit behavior

of the vector γT
k given by (2.33) and the scalar gk given by (2.34).

Let us remind that the standard Riccati equation describing the deterministic LQ

control has the form

Gk = ATGk+1A+Q− (ATGk+1B)(BTGk+1B +R)−1(BTGk+1A), (3.2)

that can be seen as a special case of (3.1) for zero covariances of parameter estimates. We

will often use the similarity of equations (3.1) and (3.2) in proofs later.
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3.1 Scalar equation

Before we formulate and prove the criterion for the matrix equation (3.1), let us first infor-

mally examine the problem for a one-dimensional system with two parameters a and b, i.e.

for a system

xk+1 = axk + buk + ek, (3.3)

with a and b satisfying the assumptions of cautious control. For such system, the equation

becomes much simpler, i.e.

Gk = Q+Gk+1(â
2 + σ2

a)−
G2

k+1(âb̂+ σab)
2

R+Gk+1(b̂2 + σ2
b )
, (3.4)

where the meaning of symbols is as follows:

â = E{a}, (3.5)

b̂ = E{b},

σ2
a = var{a} = E{(a− â)2},

σ2
b = var{b} = E{(b− b̂)2},

σab = cov{(a, b)} = E{(a− â)(b − b̂)}.

Let us start with the case when parameters a and b are not uncertain. This is equivalent

to all variances being equal to zero and the problem is described by the standard Riccati

equation

Gk = Q+Gk+1a
2 −

G2
k+1a

2b2

R+Gk+1b2
, (3.6)

which is always convergent (if b 6= 0). The convergence can be derived by the following

analysis of (3.6). The equation expresses one step of a solution of a discrete-time equation.

It is convenient to rewrite the discrete-time equation (3.6) to a general form

Gk = f(Gk+1), (3.7)

where f(Gk+1) represents the right-hand side of (3.6). If such equation converges to some

G > 0, then the function f(Gk+1) has a fixed point in G. The conditions for uniqueness

and existence of the fixed point G, as well as convergence of the discrete-time equation to

this point is given by the Banach fixed-point theorem. Because the function f(Gk+1) is

increasing, the convergence to the unique fixed point G is ensured if and only if the function

f(Gk+1) asymptotically follows a line (for Gk+1 → ∞) that intersects with a function

Gk = Gk+1.

This happens if the tangent of the asymptotical line is smaller than one. The tangent of the

asymptotical line is calculated as

α = lim
Gk+1→∞

f(Gk+1)

Gk+1
= 0,
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G

Figure 3.1: Dependence of Gk on Gk+1 for standard discrete time Riccati equation. The dashed
lines represent the asymptotes.

and the offset of the asymptote is

β = lim
Gk+1→∞

[f(Gk+1)− αGk+1] = Q+R
a2

b2
.

The tangent α = 0 implies that the asymptote is a horizontal line and thus the fixed point G

always exists. The situation is depicted in Figure 3.1 for a system with parameters a = 0.9

and b = 1. The function f has two asymptotes that are represented by the dashed lines. The

horizontal asymptote calculated above is a function y = β, the vertical asymptote intersects

the horizontal axis at Gk+1 = −R/b2. The figure also shows graphically, how the iterations

of the equation converge to the fixed point G from the zero initial condition, however, the

iteration would be analogous for any nonnegative initial condition. The fixed point G is

then the intersection of function f (the right-hand side of (3.6) as a function of Gk+1) and

the identity function Gk = Gk+1.

Let us now return to the case with uncertain parameters a and b and the corre-

sponding scalar cautious Riccati-like equation (3.4). In [5] an analysis of solution of this

Riccati-like equation is given and a condition for convergence of a cautious discrete-time

Riccati-like equation is formulated for the scalar case. Later, in [6], another condition for

a more general higher order system with a special structure of uncertainty is given. Such

systems are, however, not a subject of this text. The condition based on [5] is

σ2
aσ

2
b + b̂2σ2

a + â2σ2
b − 2âb̂σab − σ2

ab

b̂2 + σ2
b

< 1 (3.8)

37



−2 0 2 4 

−4

−2

0 

2 

4 

Gk = Gk+1

f(Gk+1) G

(a) Convergent case: σ2
a = 0.1.
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(b) Divergent case: σ2
a = 1.5.

Figure 3.2: Dependence of Gk on Gk+1 for a discrete time cautious Riccati-like equation (3.4).
The dashed lines represent the asymptotes.

and can be derived by calculating the asymptote tangent for the right-hand side of (3.4),

i.e.

α = lim
Gk+1→∞

f(Gk+1)

Gk+1
= (â2 + σ2

a)−
(âb̂+ σab)

2

b̂2 + σ2
b

,

which is equal to the left-hand side in condition (3.8). If the tangent is smaller than one,

then there will exist a fixed point G. The offset of the asymptote is

β = lim
Gk+1→∞

[f(Gk+1)− αGk+1] = Q+R
(âb̂ + σab)

2

(b̂2 + σ2
b )

2

and the situation is depicted in Figure 3.2 for a system with the following parameters:

â = 0.9, b̂ = 1, σab = 0 and σ2
b = 10−2. The variance σ2

a varies and the concrete values are

stated in the figure descriptions. The function f has two asymptotes that are represented

by the dashed lines. One asymptote is a function y = α ·Gk+1 + β, the vertical asymptote

intersects the horizontal axis at Gk+1 = −R/(b̂2 + σ2
b ). The Figure 3.2(b) shows that if the

condition (3.8) is not satisfied, then it holds for all G > 0 that f(G) > G, i.e. the sequence

Gk is increasing and Gk → ∞ as N → ∞ (the equation is solved backwards from N).

The feedback gain Kk is given by the formula

Kk = −
Gk+1(âb̂+ σab)

R+Gk+1(b̂2 + σ2
b )
. (3.9)

Taking the limit for N → ∞ in the equation (3.9) yields either

K = lim
N→∞

Kk = −
G(âb̂+ σab)

R+G(b̂2 + σ2
b )
, (3.10)
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if the limit G = limN→∞ Gk exists, or

K = lim
N→∞

Kk = −
âb̂+ σab

b̂2 + σ2
b

, (3.11)

if Gk → ∞ and thus the feedback gain is convergent even if the criterion itself is not. The

case of divergence be studied in more detail in Section 3.2, where also stability issues are

addressed.

Let us now make the following consideration that will help us derive the criterion

for convergence of the matrix equation (3.1). If G is the fixed point of the function f(Gk),

then it satisfies the (algebraic) equation

G = Q+G(â2 + σ2
a)−

G2(âb̂+ σab)
2

R+G(b̂2 + σ2
b )
. (3.12)

Dividing the equation by G, we get

1 =
Q

G
+ â2 + σ2

a −
(âb̂+ σab)

2

R
G
+ b̂2 + σ2

b

. (3.13)

The right-hand side is given by the control problem up to the unknown variable G, so

the existence of the fixed point can be interpreted as existence of such finite G, that the

equation (3.13) holds. If we see the right-hand side of the equation as a function of G, then

it is continuous, decreasing as G → ∞ and goes to infinity as G → 0. The fixed point will

exist, if and only if the right-hand side falls below 1 as G → ∞, i.e. if and only if

â2 + σ2
a −

(âb̂+ σab)
2

b̂2 + σ2
b

< 1. (3.14)

Condition (3.14) is equivalent to the condition (3.8), but the idea used to derive its form

is more general and will be used in the further text. Figures 3.3(a) and 3.3(b) show the

right-hand side of (3.13) as a function f(G) for a convergent and divergent case, respectively.

Figures 3.4 and 3.5 show the corresponding sequences Gk and Kk for the two different cases.

3.2 Matrix equation

In this section, we will focus on limit behavior of the sequence Gk given by the equation

(3.1). Compared to the scalar case, it will be more difficult to prove the convergence, but

the principle showed in derivation of the condition (3.14) for the scalar equation will be

used with only mild modification. Unlike in the study of the scalar case in the previous

subsection, we will use a formal approach to prove the convergence criterion.

Let us start with some changes in notation that will be more convenient for descrip-

tion of limit behavior. The nature of the control problem results in a backward recursion

in the equation (3.1), i.e. Gk is computed from Gk+1 with an initial condition GN . Such
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Figure 3.3: The right-hand side of equation (3.13) as a function f(G). In the convergent case is the
condition (3.14) satisfied, f(G) < 1 for G > 0.9 approximately. In the divergent case the function
f(G) stays approximately above the value 1.5.
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Figure 3.4: The sequence Gk given by the cautious discrete-time Riccati-like equation (3.4) for the
case of convergence and divergence.
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Figure 3.5: The sequenceKk given by the equation (3.9) for the case of convergence and divergence.
Kk converges even if the corresponding sequence Gk is divergent.

notation is not convenient, as studying the limit behavior means studying the term G0 as

N → ∞. That is why we prefer to reverse the indexation in the equations, obtaining the

following recursion.

Definition 3.1. A forward discrete-time cautious Riccati-like equation is an equation in the

following form

Gk+1 = ATGkA+Q +G1,1
k Pθ − (3.15)

− (ATGkB +G1,1
k Pθ,b0)(B

TGkB +R+G1,1
k σ2

b0
)−1(BTGkA+G1,1

k Pb0,θ),

with an initial condition G0.

In this notation, it holds that the feedback gain matrix is expressed as

Kk+1 = (BTGkB +R+G1,1
k σ2

b0
)−1(BTGkA+G1,1

k Pb0,θ). (3.16)

Note 3.2. Sometimes we will need to use the equation (3.15) in a form with

time-varying system matrices A, B and weighting matrices Q, R. In such case the

equation has the following form

Gk+1 = A
T
k+1GkAk+1 +Qk+1 +G

1,1

k Pθ −

− (AT
k+1GkBk+1 +G

1,1

k Pθ,b0)(B
T
k+1GkBk+1 +Rk+1 +G

1,1

k σ
2
b0
)−1

(BT
k+1GkAk+1 +G

1,1

k Pb0,θ).

We show this form because it might not be straightforward, that the matrices

appear in the equation with time index k + 1.
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Note 3.3. The cautious discrete-time Riccati-like equation resembles the standard

Riccati equation for a deterministic LQ problem. Assume a standard Riccati

equation with the same system matrices and constant weighting matrices Q′ =

Q + ξPθ, S′ = ξPθ,b0 and R′ = R + ξσ2
b0
, where ξ = G

1,1

N−1
with G

1,1

N−1
taken

from the cautious Riccati-like equation at a fixed time N − 1. Then the matrix

GN from the cautious Riccati-like equation will be equal to the matrix HN from

the standard Riccati equation. We will use this equality in some proofs later.

The standard Riccati equation has a nice interpretation of a criterion value, as it

holds (in the new forward notation) that the optimal criterion value for an N-step

deterministic LQ control problem is

J
∗
0 (x0) = x

T
0 HNx0 = (3.17)

=
[
xT
0 uT

0

] [Q+H
1,1

N−1
Pθ H

1,1

N−1
Pθ,b0

H
1,1

N−1
Pb0,θ R+H

1,1

N−1
σ2
b0

][
x0

u0

]

+ x
T
1 HN−1x1.

This equality is implied by the Bellman equation for the cost-to-go function (1.12)

and the result for deterministic LQ control (2.14). The analogous result for cau-

tious controller is more complicated and inconvenient to use in proofs. However,

due to the similarity of cautious and standard Riccati equation in one step, the

equality above holds also for the solution of the cautious Riccati-like equation Gk.

3.2.1 Criterion for convergence

Definition 3.4 (Algebraic cautious Riccati-like equation). The algebraic cautious Riccati-

like equation is a matrix equation in the following form

G = ATGA+Q+G1,1Pθ − (3.18)

− (ATGB +G1,1Pθ,b0)(R+ BTGB +G1,1σ2
b0
)−1(BTGA+G1,1Pb0,θ),

where the usual notation is used. The solution of an algebraic cautious Riccati-like equation

is a matrix G that satisfies the equation (3.18).

We will next prove the criterion for existence and uniqueness of a solution to an algebraic

cautious Riccati-like equation (3.18) and then prove convergence of a sequence Gk given

by the discrete-time equation (3.15) to this unique solution. Later we will also examine

the divergent behavior of Gk and the behavior of the feedback gain matrix. It will be

shown that even for divergent sequence Gk, the feedback gain matrix Kk converges to a

limit solution that corresponds to a limit solution for modified system matrices A and B.

Thus we will show that the class of all cautious LQ controllers for a general SISO ARMAX

model extends the class of all certainty equivalent LQ controllers for the same model. The

extension, however, contains also controllers that are not stabilizing the nominal system,

i.e. for the system defined by expected values of system parameters.

Lemma 3.5. Let G1,0, G2,0 be two symmetrical positive semidefinite matrices such that

G1,0 ≥ G2,0. Let G1,k be the sequence given by the cautious Riccati-like equation (3.15) with

weighting matrices Q1,k, R1,k and initial condition G1,0, i.e. the weighting matrices need
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not be constant, but may vary with each step k. Similarly, let G2,k be the sequence given

by the cautious Riccati-like equation (3.15) with weighting matrices Q2,k, R2,k and initial

condition G2,0. Assume Q1,k ≥ Q2,k and R1,k ≥ R2,k Then for each k ∈ N G1,k ≥ G2,k.

Proof. We will use induction to prove the lemma. For k = 0 the lemma is true by assump-

tion. Now let us assume that the lemma is true for k ∈ N. The following holds by the

analogy with the standard Riccati equation described in Note 3.3

xT
0 G1,k+1x0 =

[
xT
0 uT

1,0

]
[
Q1,k+1 +G1,1

1,kPθ G1,1
1,kPθ,b0

G1,1
1,kPb0,θ R1,k+1 +G1,1

1,kσ
2
b0

][
x0

u1,0

]
+ xT

1,1G1,kx1,1

and

xT
0 G2,k+1x0 =

[
xT
0 uT

2,0

]
[
Q2,k+1 +G1,1

2,kPθ G1,1
2,kPθ,b0

G1,1
2,kPb0,θ R2,k+1 +G1,1

2,kσ
2
b0

] [
x0

u2,0

]
+ xT

2,1G2,kx2,1,

where ui,k and xi,k are the optimal control and state sequences for the problem with initial

matrix Gi,0 and weighting matrices Qi,k, Ri,k. By assumption G1,k ≥ G2,k, therefore also

G1,1
1,k ≥ G1,1

2,k and consequently

[
Q1,k+1 +G1,1

1,kPθ G1,1
1,kPθ,b0

G1,1
1,kPb0,θ R1,k+1 +G1,1

1,kσ
2
b0

]
≥

[
Q2,k+1 +G1,1

2,kPθ G1,1
2,kPθ,b0

G1,1
2,kPb0,θ R2,k+1 +G1,1

2,kσ
2
b0

]
.

These inequalities imply that

xT
0 G1,k+1x0 =

[
xT
0 uT

1,0

]
[
Q1,k+1 +G1,1

1,kPθ G1,1
1,kPθ,b0

G1,1
1,kPb0,θ R1,k+1 +G1,1

1,kσ
2
b0

][
x0

u1,0

]
+ xT

1,1G1,kx1,1

≥
[
xT
0 uT

1,0

]
[
Q2,k+1 +G1,1

2,kPθ G1,1
2,kPθ,b0

G1,1
2,kPb0,θ R2,k+1 +G1,1

2,kσ
2
b0

][
x0

u1,0

]
+ xT

1,1G2,kx1,1,

where we used the optimal sequences u1,k and x1,k for both equations. This sequence is

indeed suboptimal for the second equation and therefore

[
xT
0 uT

1,0

]
[
Q2,k+1 +G1,1

2,kPθ G1,1
2,kPθ,b0

G1,1
2,kPb0,θ R2,k+1 +G1,1

2,kσ
2
b0

][
x0

u1,0

]
+ xT

1,1G2,kx1,1 ≥

≥
[
xT
0 uT

2,0

]
[
Q2,k+1 +G1,1

2,kPθ G1,1
2,kPθ,b0

G1,1
2,kPb0,θ R2,k+1 +G1,1

2,kσ
2
b0

][
x0

u2,0

]
+ xT

2,1G2,kx2,1.

The two inequalities imply

xT
0 G1,k+1x0 ≥ xT

0 G2,k+1x0, ∀x0 ∈ R
n,

which completes the proof.

Corollary 3.6. Let Gk, k ∈ N be a matrix sequence given by the discrete-time cautious

Riccati-like equation (3.15). If for some k′ ∈ N, Gk′ ≤ Gk′+1 (Gk′ ≥ Gk′+1) then Gk ≤

Gk+1 (Gk ≥ Gk+1) for every k ≥ k′.
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Proof. To prove the corollary, use the previous lemma for G1,0 = Gk′+1 and G2,0 = Gk′ .

Note 3.7. The statements of Lemma 3.5 and Corollary 3.6 are also true for a

cautious Riccati-like equation with constant weighting matrices and also for a

standard Riccati equation, that can be seen as a special case of equation (3.15)

with a zero variance matrix P . The proof of Lemma 3.5 and Corollary 3.6 will

then remain unmodified, as there were no conditions on the variance matrix in

Lemma 3.5.

Lemma 3.8. Let A and B be system matrices, (A,B) stabilizable. Let Qα ≥ 0 and Rα > 0

be weighting matrices and Gα be the solution of the corresponding algebraic Riccati equation.

Let Qβ ≥ 0 and Rβ > 0 be weighting matrices such that

Qβ ≥ Qα, Rβ ≥ Rα, (3.19)

and Gβ be the solution of the corresponding algebraic Riccati equation. Finally assume that

the pairs (A,ΓQα
), ΓT

Qα
ΓQα

= Qα and (A,ΓQβ
), ΓT

Qβ
ΓQβ

= Qβ are observable. Then

Gβ ≥ Gα.

Let Qn ≥ 0, Rn > 0 be sequences of weighting matrices such that

Qn
n→∞
−−−−→ Q, Rn

n→∞
−−−−→ R, (3.20)

where Q ≥ 0, R > 0 are weighting matrices, (A,ΓQ), Γ
T
QΓQ = Q observable. Then for the

solutions of the corresponding problems, Gn, G

Gn
n→∞
−−−−→ G.

Proof. According to the Note 3.7, the Lemma 3.5 is true for a standard Riccati equation

with constant matrices Qα, Rα and Qβ, Rβ , respectively. It is known from the theory of

Riccati equations [10], that the stabilizability and observability assumptions above ensure

the existence of unique solutionsGα andGβ of the corresponding algebraic Riccati equations.

It is also true that the sequence given by the discrete-time equation converges to the unique

solution for each positive semidefinite initial condition G0, i.e.

Gα = lim
k→∞

Gα,k

and

Gβ = lim
k→∞

Gβ,k.

Let us assume an arbitrary initial condition G0 ≥ 0. Then by Lemma 3.5, it holds that

Gα,k ≥ Gβ,k for each k ∈ N and therefore also Gα ≥ Gβ .

To prove the second part, first note that G > 0 due to the assumption of observ-

ability. The assumptions (3.20) imply that for each 0 < ε there is nε such that ∀n ≥ nε we

have Q − εQ ≤ Qn ≤ Q + εI and R − εR ≤ Rn ≤ R + εI, where I is an identity matrix.

The choice of asymmetrical bounds will be explained later in Note 3.9. Let us denote G+ε
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and G−ε the solution of the algebraic equation for matrices Q − εQ, R − εR and Q + εI,

R+ εI, respectively. By the first part of this lemma, the following holds:

G−ε ≤ Gn ≤ G+ε ∀n ≥ nε.

Note that the control problem with matrices Q+ εI, R+ εI is well defined as both matrices

are positive definite. For the lower bound, let us assume ε < 1 so that Q − εQ ≥ 0 and

R − εR > 0 and the control problem is well defined. By the first part of this lemma, as

ε → 0, the solution G−ε is increasing and G+ε decreasing. The solutions are also bounded

form above (below) by G, which is also implied by the first part of this lemma. There must

therefore exist limits

G−ε
ε→0
−−−→ G−

and

G+ε
ε→0
−−−→ G+.

Taking a limit for ε → 0 of both sides of the algebraic equation with matrices Q − εQ and

R − εR shows that the matrix G− must satisfy the algebraic equation for matrices Q and

R. By the uniqueness of the solution, G− = G and using the same technique, also G+ = G.

This clearly implies that

Gn
n→∞
−−−−→ G,

which completes the proof.

Note 3.9. Note that it was necessary to construct the two bounds differently.

We could not use a sequence Q+ εQ for the upper bound, as Q is not necessarily

positive definite and therefore the sequence would not be a general upper bound.

On the other hand, a sequence Q − εI might be indefinite for each ε > 0 if Q is

not positive definite.

Lemma 3.10. Let Qn, Rn be weighting matrices of the classical LQ control problem for

each n ∈ N such that

Qn = αnQ, Rn = αnR (3.21)

for some Q ≥ 0, R > 0, (A,ΓQ), Γ
T
QΓQ = Q observable, and a sequence αn ∈ R, αn

n→∞
−−−−→

∞. Then the following is true for solutions of the corresponding algebraic Riccati equation:

Gn = αnG, λmin(Gn)
n→∞
−−−−→ ∞, (3.22)

where λmin(Gn) denotes the minimum eigenvalue of matrix Gn.

Proof. We will use the fact that for the problem with matrices Q, R, the solution G > 0
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due to assumed observability. The criterion value for each n is

xT
0 Gx0 =

∞∑

k=0

x∗T
k Qnx

∗
k + u∗T

k Rnu
∗
k =

=

∞∑

k=0

x∗T
k αnQx∗

k + u∗T
k αnRu∗

k =

= αn

∞∑

k=0

x∗T
k Qx∗

k + u∗T
k Ru∗

k = αnx
T
0 Gx0. (3.23)

As G > 0, it must hold that λmin(G) > 0 and therefore λmin(Gn) = αnλmin(G)
n→∞
−−−−→

∞.

Theorem 3.11 (Existence of a solution to the algebraic cautious Riccati-like equation).

Assume an algebraic cautious Riccati-like equation (3.18), where

Q ≥ 0, R > 0, σ2
b0

> 0,

the pair (A,B) is stabilizable and the pairs (A,ΓQ) and (A,ΓPθ
) are observable, ΓT

QΓQ =

Q, ΓT
Pθ
ΓPθ

= Pθ. A positive semidefinite solution Ga to an algebraic cautious Riccati-

like equation (3.18) exists if and only if the unique positive semidefinite solution G∗ of an

(ordinary) algebraic Riccati equation

G = ATGA+ Pθ − (ATGB + Pθ,b0)(B
TGB + σ2

b0
)−1(BTGA+ Pb0,θ) (3.24)

satisfies the condition

G1,1
∗ < 1. (3.25)

Moreover, if the positive semidefinite solution Ga exists, then Ga > 0 and it is unique in

the set of all positive semidefinite matrices.

Note 3.12. It is important that the inequality in (3.25) is strict. Also note that

similarly to the equation (3.13), the equation (3.24) can be derived by dividing

both sides of the algebraic equation (3.18) by G1,1 and then neglecting the terms

containing matrices Q and R.

Proof of Theorem 3.11. The equation (3.24) has a form of a standard Riccati equation with

weighting matrices Q = Pθ, R = σ2
b0

and S = Pθ,b0 . The assumption of the theorem gives

us observability of the pair (A,ΓPθ
). Together with the assumed stabilizability of (A,B),

we get the existence, uniqueness and positive definiteness of the solution G∗, as shown in

[10], and therefore also G1,1
∗ > 0.

If the solution G∗ in the theorem satisfies G1,1
∗ < 1, then there exists ε such that

the solution G∗,ε of the equation

G = ATGA+ εQ+ Pθ − (ATGB + Pθ,b0)(B
TGB + εR+ σ2

b0
)−1(BTGA+ Pb0,θ) (3.26)
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satisfies G1,1
∗,ε = 1. This is a corollary of Lemma 3.8 and Lemma 3.10 as we assume the pair

(A,ΓQ) to be observable. Dividing the equation (3.26) by ε will give the original equation

(3.18) and its solution Ga = G∗,ε/ε. This also explains why the inequality (3.25) must be

strict - we need to have ε > 0 to be able to find the solution.

Conversely, assume there exists a solution Ga of the equation (3.18). Observability

of (A,ΓQ) and positive definiteness of the variance matrix P yields G1,1
a > 0. Then dividing

the equation by G1,1
a gives an algebraic equation in a form (3.26) where ε = 1/G1,1

a and the

upper-left element of its solution equals 1. Using Lemma 3.8 and Lemma 3.10, the solution

G∗ of (3.24) will satisfy the condition (3.25).

Lemma 3.13. Let M,Ak, k ∈ N be symmetrical matrices, Ai ≤ Aj whenever i < j, M ≥ Ak

for all k ∈ N. Then there exists a symmetrical matrix A = limk→∞ Ak.

Proof. The Lemma is true for sequences of real numbers. Using vector x1 = [1 0 · · · 0]T ,

we get xT
1 Akx1 = A1,1

k and similarly xT
i Akxi = Ai,i

k , where xi is a vector with 1 in the i-th

position and zeros elsewhere. The sequences Ai,i
k are monotonous by the assumption of the

lemma and thus the limit exists for all diagonal elements. Existence of the remaining limits

can be proved by using vectors with 1 in the corresponding places and the fact that diagonal

elements converge, e.g. vector [1 1 0 · · · 0] for the element A1,2
k = A2,1

k and so on.

Lemma 3.14. Let α > 1 is a real number, G is a solution to an algebraic cautious Riccati-

like equation with matrices A, B, Q, R and P . Then

αG ≥ ATαGA+Q+ αG1,1Pθ − (3.27)

− (ATαGB + αG1,1Pθ,b0)(B
TαGB +R+ αG1,1σ2

b0
)−1(BTαGA+ αG1,1Pb0,θ).

Proof. Multiplying the algebraic cautious Riccati-like equation by α yields the following

equality

αG = ATαGA + αQ+ αG1,1Pθ − (3.28)

− (ATαGB + αG1,1Pθ,b0)(B
TαGB + αR + αG1,1σ2

b0
)−1(BTαGA+ αG1,1Pb0,θ).

Because α > 1, then also αQ ≥ Q and αR ≥ R and thus the right-hand side of (3.28) is

greater than the right-hand side of (3.27).

Theorem 3.15 (Convergence of the discrete-time cautious Riccati-like equation). Let Gk

be a matrix sequence given by the discrete-time cautious Riccati-like equation for some initial

condition G0 ≥ 0, stabilizable pair of system matrices (A,B), and weighting matrices Q ≥ 0

and R > 0, such that the pair (A,ΓQ) is observable, Γ
T
QΓQ = Q. Let the positive semidefinite

solution G of the algebraic cautious Riccati-like equation exist. Then

Gk
k→∞
−−−−→ G.

Proof. Let us divide the proof into three parts. We will denote Gk(G0) the k-th element

of the sequence given by the discrete-time cautious Riccati-like equation with an initial

condition G0. The system (A,B) is stabilizable and the pair (A,ΓQ) observable, and thus

the algebraic solution G is positive definite.
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1. LetG0 = 0. Then G1 = Q andQ > G0. It follows from Corollary 3.6 that the sequence

Gk(0) is monotonous. The sequence Gk(G) is a constant sequence Gk = G for every

k ≥ 0. As G > 0, Gk(0) ≤ G for every k ≥ 0 by Lemma 3.5. Gk(0) is therefore

an increasing, bounded from above sequence, and as such has a limit according to

lemma 3.13. This limit must satisfy the algebraic equation and be positive definite.

As the positive definite solution od the algebraic equation is unique, the sequence

Gk(0) converges to the algebraic solution G.

2. Let α > 1 be an arbitrary real number. Using αG as initial condition yields G1(αG) <

αG according to lemma 3.14. The sequence Gk(αG) is a decreasing sequence by

Lemma 3.5. Similarly to step 1, αG > G implies Gk(αG) > G for every k ≥ 0. The

sequence is thus bounded from below and therefor convergent. Due to uniqueness of

the positive definite algebraic solution G, the limit must be G.

3. Let G0 ≥ 0 be an arbitrary initial condition. Then there exists α > 1 such that

αG > G0. Lemma 3.5 yields that Gk(0) < Gk(G0) < Gk(αG) for every k ≥ 0.

As we have shown that both Gk(0)
k→∞
−−−−→ G and Gk(αG)

k→∞
−−−−→ G, it holds that

Gk(G0)
k→∞
−−−−→ G.

3.2.2 Divergent equation

Lemma 3.16. Let A, B be system matrices and Q, R weighting matrices. Let αk > 0

and βk > 0 k ∈ N be two real sequences, αk ≥ βk. Let Gα,0, Gβ,0 be two symmetrical

positive semidefinite matrices such that Gα,0 ≥ Gβ,0. Let Gα,k be the sequence given by the

cautious Riccati-like equation (3.15) with weighting matrices Q, R, system matrices αkA,

αkB and initial condition Gα,0, i.e. the system matrices need not be constant, but may vary

with factor αk with each step k. Similarly, let Gβ,k be the sequence given by the cautious

Riccati-like equation (3.15) with weighting matrices Q, R, system matrices βkA, βkB and

initial condition Gβ,0. Then for each k ∈ N Gα,k ≥ Gβ,k.

Proof. The proof is similar to the proof of Lemma 3.5. We will again use induction to prove

the lemma. For k = 0 the lemma is true by assumption. Now let us assume that the lemma

is true for k ∈ N. The following holds by the analogy described in Note 3.3

xT
0 Gα,k+1x0 =

[
xT
0 uT

α,0

]
[
Q+G1,1

α,kPθ G1,1
α,kPθ,b0

G1,1
α,kPb0,θ R+G1,1

α,kσ
2
b0

][
x0

uα,0

]
+ xT

α,1Gα,kxα,1,

and

xT
0 Gβ,k+1x0 =

[
xT
0 uT

β,0

] [Q+G1,1
β,kPθ G1,1

β,kPθ,b0

G1,1
β,kPb0,θ R +G1,1

β,kσ
2
b0

][
x0

uβ,0

]
+ xT

β,1Gβ,kxβ,1,

where uα,0 and xα,1 are the optimal control and state for the problem with initial matrixGα,0

and system matrices αk+1A, αk+1B (and the same for βk). By assumption Gα,k ≥ Gβ,k,
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therefore also G1,1
α,k ≥ G1,1

β,k and consequently

[
Q+G1,1

α,kPθ G1,1
α,kPθ,b0

G1,1
α,kPb0,θ R+G1,1

α,kσ
2
b0

]
≥

[
Q+G1,1

β,kPθ G1,1
β,kPθ,b0

G1,1
β,kPb0,θ R+G1,1

β,kσ
2
b0

]
. (3.29)

Due to the modified indexation introduced at the beginning of this subsection, the optimal

control uα,0 is given by a state feedback control law with index k+1, i.e. uα,0 = −Kα,k+1x0,

where Kα,k+1 is a matrix given by the the equation (3.16). Similarly, the state xα,1 =

αk+1Ax0 + αk+1Buα,0. Using the control law Kα,k+1 for the system βk+1A, βk+1B will

result in the control uα,0 and the state βk+1

αk+1
xα,1. The inequality (3.29) and the fact that

βk+1 ≤ αk+1 imply that

xT
0 Gα,k+1x0 =

[
xT
0 uT

α,0

]
[
Q+G1,1

α,kPθ G1,1
α,kPθ,b0

G1,1
α,kPb0,θ R+G1,1

α,kσ
2
b0

][
x0

uα,0

]
+ xT

α,1Gα,kxα,1 ≥

≥
[
xT
0 uT

α,0

]
[
Q+G1,1

β,kPθ G1,1
β,kPθ,b0

G1,1
β,kPb0,θ R+G1,1

β,kσ
2
b0

] [
x0

uα,0

]
+

βk+1

αk+1
xT
α,1Gβ,k

βk+1

αk+1
xα,1,

where we used the same control law for both equations, as described above. Such control

law is indeed suboptimal for the second equation and therefore

[
xT
0 uT

α,0

]
[
Q+G1,1

β,kPθ G1,1
β,kPθ,b0

G1,1
β,kPb0,θ R+G1,1

β,kσ
2
b0

][
x0

uα,0

]
+

βk+1

αk+1
xT
α,1Gβ,k

βk+1

αk+1
xα,1 ≥

≥
[
xT
0 uT

β,0

] [Q +G1,1
β,kPθ G1,1

β,kPθ,b0

G1,1
β,kPb0,θ R+G1,1

β,kσ
2
b0

][
x0

uβ,0

]
+ xT

β,1Gβ,kxβ,1.

The two inequalities imply

xT
0 G1,k+1x0 ≥ xT

0 G2,k+1x0, ∀x0 ∈ R
n,

which completes the proof.

Note 3.17. The statements of Lemma 3.16 are also true for a cautious Riccati-like

equation with constant α and β and also for a standard Riccati equation, that can

be seen as a special case of equation (3.15) with a zero variance matrix P . The

proof of Lemma 3.16 will then remain unmodified, as there were no conditions on

the variance matrix in Lemma 3.16.

Lemma 3.18. Let (A,B) be a stabilizable pair of system matrices and Q ≥ 0, R > 0

weighting matrices, such that the pair (A,ΓQ) is observable, ΓT
QΓQ = Q. Let α ≥ β > 0.

Let Gα and Gβ be the solution of an algebraic Riccati equation with weighting matrices Q

and R and system matrices αA, αB and βA, βB, respectively. Then Gα ≥ Gβ . Let αn > 0,

n ∈ N be a real sequence, αn
k→∞
−−−−→ 1. Let Gn be a solution of an algebraic Riccati equation

with weighting matrices Q, R and system matrices αnA, αnB. Then Gn
k→∞
−−−−→ G, where

G is a solution of an algebraic Riccati equation for weighting matrices Q, R and system

matrices A, B.
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Proof. According to the Note 3.17, the Lemma 3.16 is true for a standard Riccati equation.

It is known from the theory of Riccati equations [10], that the stabilizability and observability

assumptions above ensure the existence of unique solutions Gα and Gβ of the corresponding

algebraic Riccati equations. It is also true that the sequence given by the discrete-time

equation converges to the unique solution for each positive semidefinite initial condition G0,

i.e.

Gα = lim
k→∞

Gα,k

and

Gβ = lim
k→∞

Gβ,k.

Let us assume an arbitrary initial condition G0 ≥ 0. Then by Lemma 3.16, it holds that

Gα,k ≥ Gβ,k for each k ∈ N and therefore also Gα ≥ Gβ .

To prove the second part, first note that G > 0 due to the assumption of observ-

ability. We can easily construct two sequences βn > 0 and γn > 0 such that ∀n ∈ N we

have βn ≤ αn ≤ γn, βn
k→∞
−−−−→ 1, γn

k→∞
−−−−→ 1, βn nondecreasing, γn nonincreasing. (Such

sequences can be for example βn = inf
i≥n

αi and γn = sup
i≥n

αi). Let us denote Gβ,n and Gγ,n

the solution of the algebraic equation for matrices βnA, βnB and γnA, γnB, respectively.

By the first part of the Lemma, the following holds:

Gβ,n ≤ Gn ≤ Gγ,n ∀n ∈ N.

By the first part of this lemma, as n → ∞, the solution Gβ,n is increasing and Gγ,n

decreasing. The solutions are also bounded form above (below) by G, which is also implied

by the first part of this lemma. There must therefore exist limits

Gβ,n
n→∞
−−−−→ Gβ

and

Gγ,n
n→∞
−−−−→ Gγ .

Taking a limit for n → ∞ of both sides of the algebraic equation with matrices βnA, βnB

and γnA, γnB shows that the matrix Gβ must satisfy the algebraic equation for matrices

A and B. By the uniqueness of the solution, Gβ = G and using the same technique, also

Gγ = G. This clearly implies that

Gn
n→∞
−−−−→ G,

which completes the proof.

Lemma 3.19. Let (A,B) be a stabilizable pair of system matrices, Qk ≥ 0, Rk > 0 weighting

matrices, (A,ΓQk
) observable, ΓT

Qk
ΓQk

= Qk for every k ∈ N. Let Qk
k→∞
−−−−→ Q ≥ 0,

Rk
k→∞
−−−−→ R > 0, (A,ΓQ) observable, ΓT

QΓQ = Q. Let 0 < αk ∈ R, αk
k→∞
−−−−→ 1. Let us

denote Ak = αkA, Bk = αkB. Let Gk be a sequence of matrices given by the discrete-time

Riccati equation

Gk+1 = AT
k+1GkAk+1 +Qk+1 − (AT

k+1GkBk+1)(B
T
k+1GkBk+1 +Rk+1)

−1(BT
k+1GkAk+1).

(3.30)
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Then

Gk
k→∞
−−−−→ G,

where G is a solution of the algebraic Riccati equation for system matrices A, B and weight-

ing matrices Q, R.

Proof. Similarly to the proofs of Lemma 3.8 and Lemma 3.18, let us define sequences

0 < βk ≤ αk ≤ γk∀k ∈ N, such that βk
k→∞
−−−−→ 1 and γk

k→∞
−−−−→ 1, βk nondecreasing, γk

nonincreasing. Let us also define 0 ≤ Q−
k ≤ Qk ≤ Q+

k and 0 < R−
k ≤ Rk ≤ R+

k , such that

Q−
k

k→∞
−−−−→ Q, Q+

k

k→∞
−−−−→ Q, R−

k

k→∞
−−−−→ R, R+

k

k→∞
−−−−→ R, where Q−

k and R−
k nondecreasing,

Q+
k and R+

k nonincreasing. Let us denote G−
k the sequence given by a discrete-time Riccati

equation with system matrices βkA, βkB and weighting matrices Q−
k , R

−
k . Let us denote

G+
k the sequence given by a discrete-time Riccati equation with system matrices γkA, γkB

and weighting matrices Q+
k , R+

k . By Lemma 3.8 nad Lemma 3.18, the sequence G−
k is

nondecreasing bounded by G from above and G+
k nonincreasing, bounded by G from below.

This implies the existence of limits

G− = lim
k→∞

G−
k

and

G+ = lim
k→∞

G+
k .

The limits must satisfy the equation taken to limits on both sides and by the uniqueness of

solution of the algebraic Riccati equation, it must hold that G− = G+ = G. As G−
k ≤ Gk ≤

G+
k for every k ∈ N, it also holds that

lim
k→∞

Gk = G,

which completes the proof.

We will now study the behavior of the discrete-time cautious Riccati-like equation

in the case that no positive semidefinite solution of the algebraic equation exists. We will

first show, that the solution is unbounded and we will then study the divergent behavior in

more detail. In particular, it will be shown, that the divergence is ‘uniform’ in the sense

that although all elements of the matrix Gk go to infinity, there is a matrix G such that

Gk/G
1,1
k

k→∞
−−−−→ G. As a consequence, the feedback gain converges to a limit matrix and as

such gives a time-invariant control law.

Theorem 3.20. Let Gk be a matrix sequence given by the discrete-time cautious Riccati-like

equation for some initial condition G0 ≥ 0, stabilizable pair of system matrices A, B and

weighting matrices Q ≥ 0 and R > 0. Assume that no algebraic solution of the algebraic

cautious Riccati-like equation exists. Then

G1,1
k

k→∞
−−−−→ ∞.
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Proof. Assume the sequence Gk(0). This sequence is increasing by Lemma 3.5 and the fact

that G1(0) = Q > 0. We will first show that the sequence is not bounded from above.

Assume that Gk(0) is bounded from above, then it is a bounded monotonous sequence and

as such has a limit that must satisfy the algebraic equation. This is a contradiction, as such

matrix does not exist by assumption.

We have shown that Gk(0) si unbounded, in particular, there exist 1 ≤ i, j ≤ n

such that Gi,j
k (0)

k→∞
−−−−→ ∞. This, however, does not ensure G1,1

k (0)
k→∞
−−−−→ ∞. We will

prove this again by contradiction. Let us assume, that G1,1
k (0)

k→∞
−−−−→ L ∈ R (G1,1

k (0) is

monotonous, and thus either convergent or divergent to infinity). If we substitute L for

G1,1
k in the cautious equation (3.15), we get a standard Riccati equation with constant

weighting matrices. This equation has an algebraic solution GL and also defines a sequence

GL
k (0)

k→∞
−−−−→ GL. According to Lemma 3.5 and Note 3.7, the sequence is monotonous and

bounded from above by GL.

Let us now assume the sequence Gk(0) given by the original equation. As G1,1
k (0) <

L for each k ≥ 0, then also Gk(0) < GL
k (0) by Lemma 3.5 and therefore Gk(0) is bounded

from above. This is a contradiction with assumptions.

Let us now consider the case, when the sequence Gk given by the cautious discrete-

time Riccati-like equation does not converge. According to Theorem 3.15, this happens if

and only if the corresponding algebraic equation has no positive semidefinite solution, which

is equivalent to the condition (3.25) in Theorem 3.11. Let us now assume, that G1,1
∗ = 1.

We can define a modified equation, where we divide both sides of the equation (3.15) by the

number G1,1
k , i.e.

Gk+1

G1,1
k

= AT Gk

G1,1
k

A+
Q

G1,1
k

+ Pθ (3.31)

− (AT Gk

G1,1
k

B + Pθ,b0)(B
T Gk

G1,1
k

B +
R

G1,1
k

+ σ2
b0
)−1(BT Gk

G1,1
k

A+ Pb0,θ).

We can do this without loss of generality, as we have proven that G1,1
k > 0 for k ≥ k0 for

some finite k0. If k0 > 0, we can formally put G0 = Gk0
and start the solution from this

point. If we denote Gk+1 = Gk+1

G
1,1

k

and define G1,1
−1 = 1, then the equation (3.31) will have

the following form

Gk+1 = AT Gk

Gk
1,1A+

Q
k∏

i=0

Gi
1,1

+ Pθ (3.32)

− (AT Gk

Gk
1,1B + Pθ,b0)(B

T Gk

Gk
1,1B +

R
k∏

i=0

Gi
1,1

+ σ2
b0
)−1(BT Gk

Gk
1,1A+ Pb0,θ).

Note that we can always return to the original solution by a simple mapping Gk+1 =

Gk+1G
1,1
k = Gk+1

k∏
i=0

Gi
1,1

, as in this notation it holds that G1,1
k =

k∏
i=0

Gi
1,1

. The equa-
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tion (3.32) thus describes the behavior of a normalized solution Gk. We have shown that

G1,1
k

k→∞
−−−−→ ∞. If we show that Gk

1,1 k→∞
−−−−→ 1, we will get the equation in a form (3.30)

and we will be able to use Lemma 3.19.

Theorem 3.21. Let A, B be system matrices and Q, R weighting matrices. Let there be no

solution to the algebraic equation (3.18) and let G1,1
∗ = 1, where G1,1

∗ is defined in Theorem

3.11. Let Gk be a sequence given by the cautious discrete-time Riccati-like equation with

matrices A, B, Q and R. Then
Gk

G1,1
k

k→∞
−−−−→ G∗, (3.33)

where G∗ is given in Theorem 3.11

Proof. We will first prove the theorem for a nondecreasing sequenceGk given by the discrete-

time equation (3.15). Let us define G∗
k as a solution to an algebraic equation

G = ATGA+Q+G1,1
k Pθ (3.34)

− (ATGB +G1,1
k Pθ,b0)(B

TGB +R+G1,1
k σ2

b0
)−1(BTGA+G1,1

k Pb0,θ).

Then
G∗

k

G
1,1

k

solves the equation

G = ATGA+
Q

G1,1
k

+ Pθ (3.35)

− (ATGB + Pθ,b0)(B
TGB +

R

G1,1
k

+ σ2
b0
)−1(BTGA+ Pb0,θ),

and therefore, by Lemma 3.8, G∗ ≤ G∗

k

G
1,1

k

. As Gk is assumed to be nondecreasing, it also

holds that Gk+1 ≥ Gk and G∗
k ≥ Gk+1. The second inequality follows from the following.

If we take Gk as an initial condition for the equation (3.15), then the right-hand side of the

equation will be the same as in (3.34). After one iteration, we get the matrix Gk+1, which

by assumption is greater that Gk. If we continue solving the equation with the right-hand

side given by (3.34), i.e. if we do not update the factor G1,1
k to G1,1

k+1, we will continue

with a nondecreasing sequence (Corollary 3.6) to the limit solution G∗
k, which implies the

inequality G∗
k ≥ Gk+1. Dividing both inequalities by G1,1

k > 0 yields

G∗
k

G1,1
k

≥
Gk+1

G1,1
k

≥
Gk

G1,1
k

.

The leftmost expression converges from above to G∗ by Lemma 3.8 and by assumption,

G1,1
∗ = 1. The (1, 1)-element (upper-left element) of the rightmost expression is equal to 1

for each k ∈ N. Finally, the expression in the middle is by definition equal to Gk+1. Taking

the inequality to the limit as k → ∞ yields G1,1
k+1

k→∞
−−−−→ 1. By Lemma 3.19 is the proof

complete for a nondecreasing sequence Gk.

For a general sequence Gk, let us consider two nondecreasing sequences G−
k and G+

k

such that G−
k ≤ Gk ≤ G+

k . Let us choose G−
0 = 0 and G+

0 = G−
m ≥ G0. Such m exists
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for every G0 ≥ 0 as it is implied by Theorem 3.20 and Lemmas 3.8 and 3.10 that for zero

initial condition, the minimum eigenvalue of G−
k goes to infinity as k → ∞. The number m

is fixed for each G0 and therefore it holds

G+,1,1
k =

k+m∏

i=k+1

Gi
1,1

G−,1,1
k ,

where the finite product goes to 1 as k → ∞. Let us examine the inequality

G−
k+1

G−,1,1
k

≤
Gk+1

G−,1,1
k

≤
G+

k+1

G−,1,1
k

and the inequality
G−

k+1

G+,1,1
k

≤
Gk+1

G+,1,1
k

≤
G+

k+1

G+,1,1
k

.

The (1, 1)-elements of leftmost and rightmost expressions in both inequalities converge to

1, therefore it also holds for the middle. Finally, note that

Gk+1

G−,1,1
k

≥
Gk+1

G1,1
k

≥
Gk+1

G+,1,1
k

,

and therefore Gk
1,1 k→∞

−−−−→ 1 for an arbitrary initial condition G0.

In the case G1,1
∗ > 1, the Theorem 3.21 does not hold, but it can be used to derive

a form of ’normalized convergence’ similar to (3.33). Let us consider the following algebraic

equation

G = ε2
[
ATGA+ Pθ − (ATGB + Pθ,b0)(B

TGB + σ2
b0
)−1(BTGA+ Pb0,θ)

]
, (3.36)

which corresponds to the equation (3.24) for a system εA, εB and variances ε2Pθ, ε
2Pθ,b0

and ε2σ2
b0
. The factor ε is chosen such that the solution Gε of the algebraic equation (3.36)

satisfies G1,1
ε = 1. By Lemmas 3.8 and 3.10, there always exists such a factor 0 < ε < 1.

Let us denote Gε
k the sequence given by the cautious discrete-time Riccati-like equation

Gk+1 = ε2
[
ATGkA+Q+G1,1

k Pθ− (3.37)

− (ATGkB +G1,1
k Pθ,b0)(B

TGkB +R+G1,1
k σ2

b0
)−1(BTGkA+G1,1

k Pb0,θ)
]
,

derived from the equation (3.15) by using scaled matrices εA, εB, ε2Q, ε2R, ε2Pθ, ε
2Pθ,b0

and ε2σ2
b0
. Due to the scaling, the sequence Gk given by the original equation (3.15) will be

given by the mapping

Gk = ε−2kGε
k.

According to Theorem 3.21 above, the normalized sequence Gε
k given by a modified discrete-

time equation (3.32) with scaled matrices εA, εB, ε2Q, ε2R, ε2Pθ, ε
2Pθ,b0 and ε2σ2

b0
will

converge to Gε. As it holds that

Gε
k+1 = Gε

k+1G
ε,1,1
k = Gε

k+1

k∏

i=0

Gε,1,1
i ,
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the mapping from the normalized sequence Gε
k+1 to the original sequence Gk+1 is given by

Gk+1 = ε−2(k+1)Gε
k+1G

ε,1,1
k = ε−2(k+1)Gε

k+1

k∏

i=0

Gε,1,1
i .

Let us now use these equalities to write

Gk+1

G1,1
k+1

=
ε−2(k+1)Gε

k+1G
ε,1,1
k

G1,1
k+1

=
ε−2(k+1)Gε

k+1G
ε,1,1
k

ε−2(k+1)Gε,1,1
k+1

=
Gε

k+1

Gε,1,1
k+1

.

We can now express the limit

lim
k→∞

Gk+1

G1,1
k+1

= lim
k→∞

Gε
k+1

Gε,1,1
k+1

= Gε, (3.38)

where the last equality follows from the previous text. We have now proven the last theorem

of this section.

Theorem 3.22. Let A, B be system matrices and Q, R weighting matrices. Let there be no

solution to the algebraic equation (3.18) and let G1,1
∗ > 1, where G1,1

∗ is defined in Theorem

3.11. Let Gk be a sequence given by the cautious discrete-time Riccati-like equation with

matrices A, B, Q and R. Then
Gk

G1,1
k

k→∞
−−−−→ Gε, (3.39)

where Gε a solution of the equation (3.36), where the factor ε is chosen such that G1,1
ε = 1.

Proof. The proof follows from equation (3.38) and the considerations in the preceding text.

3.3 The limit cautious controller

The feedback gain matrix is given by the equation (3.16). Using the theorems from the

previous section, we can examine the limit behavior of the feedback gain also in the divergent

case

lim
k→∞

Kk+1 = lim
k→∞

(BTGkB +R+G1,1
k σ2

b0
)−1(BTGkA+G1,1

k Pb0,θ) = (3.40)

= lim
k→∞

(BT Gk

G1,1
k

B +
R

G1,1
k

+ σ2
b0
)−1(BT Gk

G1,1
k

A+ Pb0,θ).

The expression on the right-hand side of the equation (3.40) converges to a constant finite

matrix independent of convergence of the corresponding sequence Gk, which follows from

Theorems 3.21 and 3.22. In the case described by Theorem 3.21 (G1,1
∗ = 1), the limit

controller is equivalent to the LQ controller designed for the nominal system and weighting

matrices Pθ, Pθ,b0 and σ2
b0
. In this case the equation (3.40) yields

K = (BTG∗B + σ2
b0
)−1(BTG∗A+ Pb0,θ).
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In the case described by Theorem 3.22 (G1,1
∗ > 1), the limit controller is equivalent to the

LQ controller for a scaled system εA, εB with scaled weighting matrices given by ε2Pθ,

ε2Pθ,b0 and ε2σ2
b0

(the scaling factor will not change the result in (3.40)). In this case the

equation (3.40) takes the form

K = (BTGεB + σ2
b0
)−1(BTGεA+ Pb0,θ).

The resulting feedback gain K ensures stability of the closed-loop matrix ε(A− BK). De-

pending on the factor 0 < ε < 1, the limit controller may cause an unstable closed loop for

the nominal system, i.e. the matrix (A−BK) may have eigenvalues outside the unit circle.

The cautious Riccati-like equation analyzed in the previous sections describes the

development of the matrix Gk which is just one of the three terms defining the cautious LQ

controller of an ARMAX model, the other two being γT
k and gk. Recursive expressions for

calculating Gk, γ
T
k and gk are given by equations (2.32), (2.33) and (2.34) in Chapter 2,

respectively. The limit behavior of γT
k and gk will now be studied. Similarly to the cautious

Riccati-like equation, this only makes sense if Âk = A and B̂k = B for some A, B and

all k ∈ N. We will first rewrite the equations (2.33) and (2.34) using the notation (2.30),

assuming constant system matrices and reversing the time indexation similarly to Definition

3.1

γT
k+1 = G1,·

k A(Px,θ − Px,b0Kk+1) + γT
k (A−BKk+1), (3.41)

gk+1 = gk + ΓTGkΓσ
2
e − LT

k+1(R+BTGkB +G1,1
k σ2

b0
)Lk+1 + (3.42)

+ tr
{[

KT
k+1(R+BTGkB +G1,1

k σ2
b0
)Kk+1 −G1,1

k Pθ

]
Px

}
,

where

Kk+1 = (R + B̂TGkB̂ +G1,1
k σ2

b0
)−1(B̂TGkÂ+G1,1

k Pb0,θ), (3.43)

Lk+1 = (R + B̂TGkB̂ +G1,1
k σ2

b0
)−1(B̂Tγk + Pb0,xÂ

TG·,1
k ).

We showed in Section 3.2 that under some very general conditions is the equation (2.35)

from Definition 2.11 either convergent (Theorem 3.15) or uniformly divergent (Theorems

3.21 and 3.22). Thus we have either

Gk
k→∞
−−−−→ G, (3.44)

where G is a finite, symmetrical, positive semidefinite matrix, or

Gk

G1,1
k

k→∞
−−−−→ Gε, G1,1

k

k→∞
−−−−→ ∞. (3.45)

We will assume in the further text that one of the conditions (3.44) and (3.45) holds. Both

conditions directly imply the convergence of the feedback gain Kk, i.e.

Kk
k→∞
−−−−→ K.

This is straightforward in the convergent case and in the divergent case it is shown in

equation (3.40). The main goal of this section is to show the limit behavior of γT
k .
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Note 3.23. The matrix Gε is defined in Theorem 3.22 together with 0 < ε < 1.

We will extend the definition also for ε = 1, in which case Gε = G∗ from Theorem

3.21. Considering 0 < ε ≤ 1 will thus also include the case described in Theorem

3.21.

Theorem 3.24. Assume that the sequence Gk is given by the cautious discrete-time Riccati-

like equation (3.15) and that the pair (A,B) is stabilizable. Then

(i) If the condition (3.44) is satisfied, then

γT
k

k→∞
−−−−→ γT < ∞, (3.46)

where γT is a solution of a linear equation

γT (I − A+BK) = G1,·A(Px,θ − Px,b0K). (3.47)

(ii) If the condition (3.45) is satisfied, then

γT
k

G1,1
k

k→∞
−−−−→ γT

ε < ∞, (3.48)

where γT
ε is a solution of a linear equation

ξT
(
I − ε2(A−BK)

)
= G1,·

ε ε2A(Px,θ − Px,b0K) (3.49)

in variable ξT .

Proof. (i) The development of γT
k is described by the equation (3.41), which is an equation

of a discrete-time linear time-variant system with system matrix A−BKk+1 and input

G1,·
k A(Px,θ−Px,b0Kk+1). BecauseKk → K, there is such k0 > 0 that the system matrix

is stable for all k > k0. The vector γT
k thus converges to the system equilibrium given

by the equation (3.47). Such solution is unique, because the matrix I − A + BK is

regular, if A−BK is stable.

(ii) Let us divide both sides of the equation (3.41) by G1,1
k and multiply them by ε2 to

obtain

γT
k+1

G1,1
k+1

G1,1
k+1

G1,1
k

ε2 =
G1,·

k

G1,1
k

ε2A(Px,θ − Px,b0Kk+1) +
γT
k

G1,1
k

ε2(A−BKk+1).

The factor ε is defined in Theorem 3.22 and is uniquely given by the cautious Riccati-

like equation producing the sequence Gk. We can see this modified equation as a linear

system in variable
γT
k

G
1,1

k

. Such system is stable, because matrix ε(A−BK) is guaranteed

to be stable and 0 < ε ≤ 1 (the case ε = 1 is described in Note 3.23). Therefore the

system will converge to the stable equilibrium. According to the considerations in

Theorem 3.22, it holds that
G1,1

k+1

G1,1
k

ε2
k→∞
−−−−→ 1.
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Taking the limit k → ∞ on both sides of the equation and defining

ξT = lim
k→∞

γT
k

G1,1
k

yields the equation (3.49). The solution is unique for the same reason as in the proof

of the first part.

The previous theorem says that the vector γT
k converges if and only if Gk is convergent.

The possible divergence is ‘uniform’ in the sense of Theorem 3.24. The theorem also makes

it possible to derive the convergence of Lk by considerations similar to those in (3.40).

The convergence of Gk thus implies convergence of γT
k and also the linear growth of

term gk, as can be seen from equation (3.42). This justifies the use of theoretically correct

division by N in the cost function. On the other hand, divergence of Gk implies divergence

of γk and gk and all these divergences are exponential. The optimal control law, however,

remains finite, because it is given by the state feedback Kk and the absolute term Lk that

have both been shown to converge although Gk diverges.
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Chapter 4

Single-step active adaptive

control

In this chapter, we will derive a single-step ahead active adaptive controller based on modi-

fication of cautious control. Cautious control was introduced as a concept in Chapter 1 and

a cautious controller for ARMAX model was presented in Chapter 2. The single-step ac-

tive adaptive controller assumes, that the control input may influence the knowledge about

system parameters in the future, thus reducing the uncertainty and improving the over-

all control performance. Such controller is an example of an approximate dual controller,

because it minimizes the control criterion, taking into account the impact on uncertainty.

First a general idea of modification of the cautious LQ controller to a single-step

active adaptive controller will be shown. Then we will present application of this scheme

to an ARX system with some simulations and remarks. The purpose of this chapter is to

introduce the idea of active control on an example and at the same time point out some

difficulties that arise when cautious control is used. An extension of the idea of the presented

single-step controller to multiple-step is also proposed. This extension is however not studied

in this thesis, because of problems with cautious control convergence.

4.1 Controller based on cautious strategy

The drawback of the cautious control strategy is the fact that the parameter uncertainty

is assumed to remain constant during the control process. Such model of parameter un-

certainty is easy to deal with but it is also unrealistic. In fact, the parameter vector is an

unknown but constant vector that can be estimated using statistical methods. As usual,

we will denote (̂·)k the (parameter) conditional mean at time k and P(·),k the (parameter)

conditional variance matrix at time k. The variance matrix is indexed by time k, because

it is assumed that it may change over time. The (·) notation is used here, where the dot

represents the concrete parameters being estimated, such as θ or b0.
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It is possible to use the parameter estimate for computing the cautious control

strategy in each step, but such approach expects the uncertainty to remain the same during

the whole process. In reality, we can expect some improvement of the knowledge about the

system, expressed by the change of the variance matrix P(·),k. This approach leads to a

strategy that actively improves the knowledge about the system.

In the case of cautious control of ARMAX model, the optimal criterion value at

time k is a function of the state xk given by (2.15). The matrices Gk, γ
T
k and gk of the

quadratic form are given by (2.32), (2.33) and (2.34), respectively. The resulting matrices

Gk, γ
T
k and gk depend on the variances of uncertain parameters and so does the optimal

criterion value J∗
k (xk). In the case of cautious controller, we assumed the variances to be

constant for all k = 1, . . . , N . However, it is possible to take into account the influence of

the input uk on variance matrices P(·),k+1 at time k+1, i.e. P(·),k+1 = P(·),k+1(uk). Thus we

have to consider the matrices Gk+1, γ
T
k and gk to be functions of uk, i.e. Gk+1 = Gk+1(uk)

etc. Consequently the criterion J∗
k+1 depends on uk not only via the state prediction, but

also via matrices Gk+1(uk) etc. Therefore we will write J
∗
k+1(D

k−1, uk, yk) to emphasize the

dependence. If we assume this influence only one step ahead and the rest of the criterion

(from time k+1 to N) is estimated by the cautious control criterion, the Bellman equation

(2.17) still holds, but it will now take the form

J∗
k (D

k−1) = min
uk

E
[
xT
k Qxk + uT

kRuk + J∗
k+1(D

k−1, uk, yk)|uk,D
k−1
]
. (4.1)

So in the single-step active control strategy, we assume that the variance matrix of the

parameter estimate is changed only after the current step of control and that cautious

strategy based on the last estimate will be applied on the rest of the horizon. Under this

assumption, it is possible to evaluate the criterion value J∗
k+1(D

k−1, uk, yk), provided we

know, how the input uk changes the covariance P(·),k in the next step, i.e. the transition

from P(·),k to P(·),k+1 is expressed as a function of uk. This influence is known for the

ARMAX model of a stochastic system, where the parameters can be estimated using the

Kalman filter (2.2). The minimization does not lead to a closed form functions of the state

xk, as in the case of cautious controller and must be performed numerically. The minimized

expression is a continuous function of uk, so standard optimization methods can be used

for minimizing the criterion. The function need not be convex and therefore only a local

optimum is expected to be found. Because the optimal input for cautious control strategy

is known, the optimization can be started at this point. This guarantees that the locally

optimal solution of (4.1) is not worse than the cautious control.

It is important to remind that this approach is based on finite horizon optimization

and therefore its disadvantage is that the criterion matrix Gk must be computed iteratively

and so must be the optimization for finding u∗
k in each step. It would seem reasonable to

extend the problem to infinite horizon and find a limit solution as a solution of an algebraic

cautious Riccati-like equation. However, this approach may lead to problems because the

limit solution of the equation is not guaranteed to exist. This issue was thoroughly studied

in Chapter 3.

Generalization of this method to multiple-step can be done by using the matrix
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Gk+M to estimate the criterion at time k+M , where M is the number of steps in which the

decrease of variance is considered. The task is then to find the minimizers uk, . . . , uk+M−1

for the nonconvex multidimensional optimization problem

J∗
k (D

k−1) = min
uk,...,uk+M−1

E

[
k+M−1∑

i=k

(
xT
i Qxi + uT

i Rui

)
+ (4.2)

+ J∗
k+M (Dk+M−1;uk, . . . , uk+M−1)|D

k−1, uk, . . . , uk+M−1

]
.

This is a partially predictive formulation, because the expression on the right-hand side

is conditioned by measurements until k − 1, therefore all states xk+1 to xk+M must be

predicted. The minimum must be found numerically, taking the cautious optimal control

as a starting point. Note that also the cautious optimal control is predicted, as it is based

on predictions E[xk+i|Dk−1, uk, . . . , uk+i−1] for i = 0, . . . ,M .

4.2 Simulations

In this section we present simulation experiments performed for the discrete integrator with

unknown gain on the input

yk = yk−1 + buk + ek. (4.3)

The following values are assumed

b̂ = 10, σ2
e = 1, σ2

b ∈ [1, 105]. (4.4)

The further settings are used: the number of steps for computing the criterion (the control

horizon) N = 10, the weighting factor R = 1 and the initial condition y(0) = 10.

Figure 4.1 shows the optimal criterion values computed for the system (4.3) on the

horizon of N = 10 steps. It compares the values of criterion for cautious and active control

strategy. It can be seen that the highest difference is around the variance σ2
b = 4 · 103 and

that for high uncertainty, the benefit of using active strategy disappears.

This can be explained by analyzing the shape of the curve describing the cautious

strategy. The value of criterion for the active strategy is composed of the cost of the first step

and the cost of the cautious strategy over steps 2, . . . , N . In step 2, uncertainty is decreased

to a value given by the Kalman filter (2.8). The benefit of using the active strategy is thus

given mainly by the difference of the cautious strategy criterion value at points given by

uncertainty in step 1 and 2. This difference is greatest in the area where the curve is rising.

On the other hand, for high uncertainties, the curve remains almost constant and the benefit

is negligible.

For the next experiment, both control strategies (cautious and active) are applied on

the system (4.3) in the following way. In each step of control k, the optimal input sequence

over the whole horizon N = 10 is computed. Then only the first input u∗
k is applied and

after the real output yk is measured, the knowledge about parameter b is updated in terms
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of expressions (2.9) and (2.8). In the next step k +1 the new control sequence is computed

based on this improved knowledge and again, only the first input u∗
k+1 is applied. This makes

it possible to see that the active strategy takes the identification process into account. The

control process is simulated for K = 10 steps of control.

Figures 4.2 and 4.5 show an example of the control process with b = 25. The graph

shows that the active strategy starts with a greater (absolute) value of control signal than

the cautious one. This leads to faster parameter identification as well as faster decrease of

the uncertainty expressed by σ2
b , as can be seen in Figure 4.3 and Figure 4.6. This shows

how the controller looks for an optimal tradeoff between identification and control in the

first step.

Figure 4.4 shows the dependence of the real (measured) criterion value on the real

gain b. The values of parameter b are chosen in the interval [−80, 100]. Other settings are

chosen as in (4.4), with σ2
b = 103. To reduce the influence of the noise e on the result, the

control process is simulated 10 times for each parameter value from interval [−80, 100] and

the average of the criterion is taken.

It can be seen that the active strategy brings better results if the initial estimate

is not far from the real parameter value. This can be explained by the fact that the first

control is more aggressive in order to excite the system and enable faster identification. If

such input is applied to a system that is far from the estimate assumed by the controller,

the unexpectedly high output in the first step followed by a necessarily high input in the

second step may cause a rise of the criterion. This is shown in Figure 4.7 and Figure 4.8,

where the control process is simulated for a real parameter value b = −25.

62



10
1

10
2

10
3

10
4

10
5

0

200

400

600

800

1000

1200

variance σ
b
2

cr
ite

rio
n 

J*

 

 

Cautious strategy
Active strategy

Figure 4.1: The dependence of the optimal criterion value J∗ on the parameter variance σ2
b for

cautious and active control strategy.
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Figure 4.2: Input to a controlled process with b = 25, while b̂ = 10 and σ2
b = 103 is assumed.
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Figure 4.3: The estimate of the system gain for b = 25, while b̂ = 10 and σ2
b = 103 is assumed.
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Figure 4.4: Measured criterion values according to the real value of gain b, while b̂ = 10 and
σ2
b = 103 is assumed.
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Figure 4.5: Output of a controlled process with b = 25, while b̂ = 10 and σ2
b = 103 is assumed.
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Figure 4.6: The variance σ2
b of the estimate of the gain b with b = 25, while b̂ = 10 and σ2

b = 103

is assumed.
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Figure 4.7: Input of a controlled process with b = −25, while b̂ = 10 and σ2
b = 103 is assumed.
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Figure 4.8: Output of a controlled process with b = −25, while b̂ = 10 and σ2
b = 103 is assumed.
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Chapter 5

Multiple-step active adaptive

control

This chapter presents the multiple-step active adaptive strategy based on maximizing the

lowest eigenvalue of the predicted information matrix, by which the persistent excitation of

the system is reached. Persistent excitation is a sufficient condition for the least squares

identification algorithm to converge. The chapter starts with analyzing the benefit of the

multiple-step approach and shows it on a simple example. The formal definition of the

approach is given next as a nonconvex optimization problem, continuing with three concrete

approximate solutions of the original task. Simulations are provided at the end of the

chapter.

5.1 Benefit of the multiple step approach

Most methods used to approximate the dual control strategy use just a single step ahead

looking approach. In this section we will show that it is important to look more steps

ahead when designing an excitation signal. The problem with single-step ahead design

is illustrated on a simple first order example controlled by a cautious modification of the

minimum variance controller.

Let us assume the simple ARX system in (1.19) and the cautious minimum variance

controller (1.22). The single-step bicriterial active approach in [19] suggests that the control

input is augmented by a predefined value ∆u so that the absolute value of the input is

increased, i.e.

ua
k = uc

k + sign(uc
k)∆u, (5.1)

where uc
k is the optimal control from (1.22). The signum function is used to indicate the sign

of the optimal control uc
k and thus decide, whether ∆u should be added or subtracted, in

order to increase the absolute value of the sum ua
k. The reason is that, while the optimality

of the solution is violated in a similar way no matter what the sign of the perturbation
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Figure 5.1: An example of the single-step and two-step control of an uncertain first order ARX
system. A step in the reference signal occurs at time k = 460.

is, the absolute value of the input is on the other hand crucial for efficient identification.

For more detail see [19]. The two-step approach, on the other hand, calculates the biggest

information gain, measured by the lowest eigenvalue of the information matrix, after two

steps of control, when both steps may be altered by at most ±∆u. This leads to a different

excitation strategy as shown later.

Simulation of both different strategies were done for a simple system

yk = 0.9yk−1 + 0.5uk + ek, (5.2)

with noise variance σ2
e = 10−4. Initial parameter estimates were chosen â = 0.1, b̂ = 0.8

with covariances of elements σ2
b = σ2

a = 1 and σab = 0. Figures 5.1(a) and 5.1(b) show the

response to a reference signal with a step from 0 to 10 occurring at time k = 460. Figure

5.1(a) shows the simulation when the single-step ahead active control is used, while Figure

5.1(b) shows the same situation for the two-step ahead active control. Figures 5.2(a) and

5.2(b) show the eigenvalues of the parameter estimate variance matrix when the single-step

and two-step ahead active control is used, respectively. Finally, Figures 5.3(a) and 5.3(b)

show the parameter estimates when the single-step and two-step ahead active control is

used, respectively.

The parameter eigenvalues in Figures 5.2(a) and 5.2(b) show that in the case of the

single-step controller, the parameter space is not excited uniformly and there is a direction

(vector) in which the uncertainty is only little improved. In this case parameter estimates

in Figure 5.3(a) do not converge to the true values, which is caused by the shape of the

input, that is not persistently exciting, as shown in the detailed Figure 5.4. The responses

in Figures 5.1(a) and 5.1(b) show that after the step change of the reference has occurred,

the single-step ahead controller has a worse performance in terms of the overshoot.
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(b) Two-step control.

Figure 5.2: Eigenvalues of the parameter estimate variance matrix when the single-step and two-
step control is applied. For the single-step control, one eigenvalue is decreased rapidly, while the
other remains almost unchanged, indicating that there is a direction in the parameter space, in
which only little information is gathered. For the two-step control, both eigenvalues are decreased
uniformly. The change is slower than the fastest change in the single-step case, but information is
gathered in all directions.
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(a) Single-step control.
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Figure 5.3: Results of the parameter identification process for the single-step and two-step con-
troller. For the single-step control, the parameters do not converge to the actual values, as the
persistent excitation condition is not satisfied. For the two-step control, the persistent excitation
condition is satisfied, so the parameters converge to their actual values.
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Figure 5.4: A detail of Figure 5.1(a) between the times k1 = 250 and k2 = 280.

A detailed look at the excitation signal from Figures 5.1(a) and 5.1(b) is in Figures

5.4, 5.5 and 5.6, where we can see a significant difference. The single-step controller is

getting as much information as possible about the gain by changing signs rapidly. The two-

step controller, on the other hand, makes a fast change to improve the knowledge about the

gain and then keeps unchanged for several steps, to identify also the dynamics. Figure 5.5

shows the excitation between the time k1 = 50 and k2 = 100, where the parameter estimate

is still quite far from the truth. That is why the system output stays in negative values

most of the time. The situation between k1 = 250 and k2 = 300 is shown in Figure 5.6,

where the system output is already equally distributed around the zero value.

The single-step effect when information is not gathered about all parameters uni-

formly is even more significant in case of higher order systems. It is possible to tell in

advance, which parameters need to be identified well and which do not have much influence

on the quality of control. Such approach based on the criterion sensitivity to parameters is

used for example in [32]. However, the algorithms proposed in this thesis aim to excite the

system uniformly and thus to minimize the risk of any parameter being poorly identified.
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Figure 5.5: A detail of Figure 5.1(b) between the times k1 = 50 and k2 = 100.
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Figure 5.6: A detail of Figure 5.1(b) between the times k1 = 250 and k2 = 300.
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5.2 Problem formulation and definitions

The presented algorithms are derived using the state-space descriptions of a SISO linear

stochastic discrete-time system [3], in an innovation form

xk+1 = Axk +Buk + Γek, (5.3)

yk = Cxk +Duk + ek,

where A, B, C, D and Γ are system matrices of proper dimensions, uk, yk and xk are the

system input, output and state, respectively, and ek is a gaussian white noise sequence with

a zero mean and constant finite variance. Let us next consider that the system matrices

depend on some vector of parameters θ that is uncertain. Uncertain is used here to express

that it is unknown, possibly described by a probability distribution, but constant or slowly

changing in time. Because the persistent excitation condition (1.18) is easily defined for

ARX systems, we will consider that the system of interest is in an ARX form

yk = −
n∑

i=1

aiyk−i +

n∑

i=0

biuk−i + ek = zTk θ + ek, (5.4)

where zk is the system regressor at time k defined for a SISO ARX system as zk =

[uk,−yk−1, uk−1, . . . ,−yk−n, uk−n]
T , where n is the system order. The uncertain parame-

ters θ are now simply the parameters of the model, i.e. ai and bi from (5.4). Note that

unlike in Chapter 2, θ includes the parameter b0 for convenience of notation.

Note 5.1. The persistent excitation condition for ARX model can be also used for

ARMAX model with known c-parameters, that was used in Chapter 2. A variance

matrix update for the estimator is given in equation (2.2). This matrix cannot be

easily inverted to obtain the information matrix update as it is in the case of ARX

model. However, the only interesting part of the variance (or in fact information)

matrix is the part corresponding to parameters ai and bi, because the accuracy of

the estimate of the past noises ek−i is limited. Maximizing the information matrix

of an ARX system is thus a reasonable approach also for ARMAX models.

We will work with a nonminimal state-space representation of this model

A =




a1 b1 · · · bn−1 an bn
0 0 · · · 0 0 0

1 0 · · · 0 0 0

0 1 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · 1 0 0




, B =




b0
1

0

0
...

0




,

C =
[
a1 b1 · · · bn−1 an bn

]
, D =

[
b0
]
,

Γ =
[
1 0 0 · · · 0

]T
. (5.5)

In a minimal representation, each state is formed by a linear combination of the input and

output at time k. The representation (5.5) resembles the controllable canonical form built
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of 2x2 matrix blocks, but is in fact uncontrollable. This corresponds to the fact, that the

form (5.5) is nonminimal and each block can thus be replaced by one state of the minimal

representation. However, the system is stabilizable with n uncontrollable eigenvalues that

are equal to zero, which enables its use for control design. The state vector in representation

(5.5) is formed by previous inputs and outputs, xk = [−yk−1, uk−1, . . . ,−yk−n, uk−n]
T and

is directly measurable.

The uncertainty is described in a probabilistic way, i.e. the parameter vector is

described by the conditional mean and variance matrix at time k

θ̂k = E
[
θ|Dk−1

]
, Pθ,k = var

[
θ|Dk−1

]
, (5.6)

where the symbol Dk−1 is used to denote available data up to time k− 1 as defined in (1.5)

and the parameters are considered to be stochastically independent on the noise ek. As the

controller design is formulated for a fixed time k, we will consider k = 0 for simplicity of

notation, and thus omit the time indexation in (5.6), defining θ̂ = θ̂0 and Pθ = Pθ,0.

It was said in the introductory section that the algorithm is based on a bicriterial

approach, i.e. in the first step an initial control sequence U∗
c = [uc

1, u
c
2, . . . , u

c
N ]T is found

as a result of any existing control algorithm and in the second step, a control sequence

U∗ = [u∗
1, u

∗
2, . . . , u

∗
N ]T maximizing the lowest eigenvalue of the information matrix is found

in a feasible set around the initial sequence U∗
c . Here, N is the control horizon. The

feasibility set is defined as some neighborhood of U∗
c in which the altered control does not

change the overall performance significantly.

The presented algorithm uses MPC control for the initial solution U∗
c . In such case,

it is usual to define the performance criterion as an expected value of the quadratic cost

Jmpc = E

[
N∑

k=1

(
ρu2

k + y2k
)
| D0, u1, . . . , uN

]
=

N∑

k=1

(
ρu2

k + E
[
y2k | D0, u1, . . . , uk

])
, (5.7)

where ρ is a positive real weighting constant and the expectation is taken with respect

both to the parameter uncertainty and the noise ek. The MPC algorithm searches the N

dimensional space of input sequences to find the optimal one, so in this formulation all

inputs uk are deterministic variables, which justifies the second equality in (5.7).

The expectations of outputs in (5.7) are difficult to calculate as the formula for

open loop output prediction contains multiplications of parameters θ and thus also higher-

order moments of parameter distribution. Therefore, as explained in Section 1.4, we will

not consider parameter uncertainty in the controller design, but rather use the certainty

equivalence (CE) approach, i.e. parameter mean values will be used as if they were the

actual ones. The predictive c.p.d.f. is

p(yk | D0, u1, . . . , uk) =

∫
p(yk | D0, u1, . . . , uk, θ)p(θ | D0, u1, . . . , uk) d θ

= p(yk | D0, u1, . . . , uk, θ̂),

where the following CE assumption was used

p(θ | D0, u1, . . . , uk) = δ(θ − θ̂).
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The CE criterion will be defined as

Jce =

N∑

k=1

(
ρu2

k + E

[
y2k
∣∣ D0, u1, . . . , uk, θ̂

])
, (5.8)

which makes the open loop predictions simple. The notation x̂ will be used for the con-

ditional expectation E[x|θ = θ̂], i.e. for objects that generally depend on θ, in which θ is

substituted by θ̂, e.g. the matrix Â = A(θ̂).

It can be shown that the problem (5.8) is equivalent to the MPC problem for a

deterministic system (ek = 0), with the only difference in the criterion value, which for a

stochastic system has a linearly increasing additive term Js that does not depend on control,

i.e.

Jce =

N∑

k=1

(
ρu2

k + ŷ2k
)
+ Js. (5.9)

The optimal control U∗
c minimizing the cost (5.8) is thus equivalent to the optimal control

minimizing the cost

J =
N∑

k=1

(
ρu2

k + ŷ2k
)
. (5.10)

The problem can now be formulated as the following minimization problem for a SISO

system

U∗
c = argmin

UN
1

J = argmin
UN

1

N∑

k=1

(
ρu2

k + ŷ2k
)
, (5.11)

s. t. x̂k+1 = Âx̂k + B̂uk,

ŷk = Ĉx̂k + D̂uk,

|uk| ≤ umax,

x̂1 = ξ,

where umax is a hard constraint on inputs, ξ is an initial condition for the problem and

UN
1 = [u1, . . . , uN ]T is an input sequence. The initial control U∗

c is thus a result of a

quadratic optimization problem.

For the case of a variety of recursive identification algorithms (e.g. for ARX identi-

fication by recursive least squares) the information matrix yields the formula [2]

P−1
M − P−1

0 =

M∑

k=1

(
zkz

T
k

)
. (5.12)

As the future regressors are unknown at time t = 0, the future value of the information

matrix cannot be computed exactly and for a given control sequence UN
1 with N ≥ M it

will be estimated as

P̂−1
M = P−1

0 +

M∑

k=1

(
ẑkẑ

T
k

)
, (5.13)
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where ẑk is the system regressor, where unknown future outputs yk for k > t are substituted

by their predictions ŷk. An exception to this is the finite impulse response (FIR) model, for

which ai = 0 and the regressor consists of inputs only. Note that the prediction horizon N

in (5.11) is different from (greater than) M which expresses the number of steps after which

the matrix P̂−1
M is evaluated and which will be called the excitation horizon. That is why in

the second step, only M first inputs are involved in optimization and the following N −M

steps remain unchanged.

Let us now introduce some useful notation. It holds that
∑M

k=1

(
ẑkẑ

T
k

)
= ẐT

M ẐM ,

where ẐM = [ẑ1, . . . , ẑM ]T . The transposed predicted regressors ẑk, k = 1, . . . ,M form the

rows of the matrix ZM and can be expressed as a linear function of the initial state x1 and

an input vector UM
1 = [u1, . . . , uM ]T as

ẑk = Fk

[
x1

UM
1

]
, k = 1, . . . ,M. (5.14)

The predicted information matrix P̂−1
M is thus a function of the system matrices Â, B̂, Ĉ

and D̂, the vector x1 and the input vector UM
1 . As the only variable here is the input vector

UM
1 , we will denote P̂−1

M : RM → R
(2n+1)×(2n+1) the matrix-valued function

P̂−1
M (UM

1 ) = P−1
0 +

M∑

k=1

{
Fk

[
x1

UM
1

] [
xT
1 (UM

1 )T
]
FT
k

}
, (5.15)

the value of which is a symmetric, positive semidefinite matrix, that can only be posi-

tive definite, if M ≥ 2n + 1, i.e. greater than the length of the regressor. Similarly, the

columns of ZM are formed by shifted inputs and outputs, particularly [u1, . . . , uM ]T to

[u−n+1, . . . , uM−n]
T and [y0, . . . , ŷM−1]

T to [y−n+1, . . . , ŷM−n]
T . Let us denote the k-th

column of ZM as wk, k = 1, . . . , 2n+ 1. Then wk can be expressed by

wk = Kk

[
x1

UM
1

]
, k = 1, . . . , 2n+ 1, (5.16)

where Kk is a matrix of appropriate dimensions. The vector of output predictions Ŷ N
1 =

[ŷ1, . . . , ŷN ]T can be expressed as

Ŷ = G

[
x1

UN
1

]
= G




x1

UM
1

UN
M+1


 , (5.17)

where G is a matrix of corresponding dimensions, x1 is the initial state of the system

and UN
M+1 is the part of the input sequence that is not changed in the second step, i.e.

UN
M+1 = [uM+1, . . . , uN ]. Using this notation (5.17), the MPC criterion in (5.11) is expressed

as

J =
[
xT
1 (UM

1 )T (UN
M+1)

T
]
H




x1

UM
1

UN
M+1


 , (5.18)

75



where

H = GTG+

[
0 0

0 ρI

]
.

As mentioned above, the excitation horizon M is generally shorter than the control horizon

N so the final control U∗ differs from the MPC control only in the first M steps. In fact, N

should be significantly greater than M so that the control criterion can take into account

the future impact of identification procedure on the control quality. Let us decompose the

input sequences by the following notation

U∗ =

[
(U∗)M1

(U∗)NM+1

]
U∗
c =

[
(U∗

c )
M
1

(U∗
c )

N
M+1

]
. (5.19)

It is now possible to formulate the problem as

(U∗)NM+1 = (U∗
c )

N
M+1, (5.20)

(U∗)M1 = argmax γ,

s. t. UM
1 ∈ U ,

|uk| ≤ umax,

P̂−1
M (UM

1 )− P−1
0 ≥ γI. (5.21)

To describe the set U , let us denote the optimal MPC criterion value J∗ = J(U∗
c ). In this

case, it is natural to define the feasibility set as such neighborhood, in which the MPC

quadratic criterion does not change more than specified, i.e.

U =

{
UM
1 ∈ R

M : J

([
UM
1

(U∗
c )

N
M+1

])
< J∗ +∆J

}
(5.22)

for a given maximum criterion change ∆J . Note that such feasible set (not taking into

account the hard constraint) is an M -dimensional ellipsoid in R
M . This is clear from the

criterion formulation in (5.18). The choice of ∆J is a part of the controller design. One

possibility is to design a time-varying ∆J depending on the information matrix, so that ∆J

is large if P−1
0 is small and vice versa. Such choice leads to faster parameter identification

when the uncertainty is high and as soon as the information is gained, the perturbation is

decreased. However, ∆J should be bounded from above, to guarantee that the perturbations

are also bounded.

Note 5.2. The condition (5.21) is expressed for the information matrix P̂−1

M (UM
1 ).

This means that the influence of inputs UM
1 is measured at time M . However, the

influence could also be evaluated later, e.g. on the control horizon N as P̂−1

N (UM
1 )

or generally at any time M ≤ k ≤ N as P̂−1

k (UM
1 ). The time k may be then

viewed as additional tuning parameter of the controller design.

Because the information matrix (5.13) consists of quadratic and bilinear terms, the problem

is nonconvex in control inputs, as demonstrated in Figure 5.7, which shows the lowest

eigenvalue of the information matrix of a second order ARX system after two steps of
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control as a function of the two inputs u1 and u2. This is a difference from simple single-

step approaches where the solution always lies on the constraints ([19]) and is a reason for

using numerical methods.

5.3 Multiple-step algorithms

In the previous section, the problem was formulated as a nonconvex problem. The non-

convexity introduced by (5.21) can be handled in several ways. This section presents three

different methods to solve the problem (5.20).

5.3.1 Rank 1 algorithm

The Rank 1 algorithm is based on a convex relaxation of the problem and concentrating all

nonconvexity into a rank constraint. Using the Definition (5.15), (5.21) is rewritten as

M∑

k=1

Fk

[
x1

UM
1

] [
xT
1 (UM

1 )T
]
FT
k > γI, (5.23)

or in a simplified form

M∑

k=1

FkUXFT
k > γI, (5.24)

using the notation

[
x1

UM
1

] [
xT
1 (UM

1 )T
]
=

[
x1x

T
1 x1(U

M
1 )T

UM
1 xT

1 UM
1 (UM

1 )T

]
= UX . (5.25)

The matrix UX consists of constant terms x1x
T
1 , terms x1(U

M
1 )T and UM

1 xT
1 linear in UM

1 ,

and the term UM
1 (UM

1 )T quadratic in UM
1 . The quadratic term makes the problem (5.24)

unsolvable as an LMI directly, and therefore the following reformulation is used

UX2 =

[
x1x

T
1 x1(U

M
1 )T

UM
1 xT

1 Uq

]
, (5.26)

s. t. rank (UX2) = 1, (5.27)

where Uq is a general positive semidefinite matrix, replacing the quadratic term UM
1 (UM

1 )T .

All nonconvexity is now concentrated in the rank constraint (5.27) and dropping this con-

straint the task can be solved as a normal LMI problem ([11]) in more variables, known also

as Schor’s relaxation ([58, 36]). Expressing the criterion as a Schur complement ([9]) this
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relaxation makes it possible to solve the original problem as a rank constrained LMI

(U∗)NM+1 = (U∗
c )

N
M+1, (5.28)

(UM
1 )∗ = argmax

UM
1

γ,

s. t.




J∗ +∆J
[
xT
1 (UN

1 )T
]
GT (UN

1 )T

G

[
x1

UN
1

]
I 0

UN
1 0 1

ρ
I


 ≥ 0,

|uk| < umax,
M∑

k=1

FkUX2F
T
k > γI,

rank UX2 = 1.

5.3.2 Gershgorin circle algorithm

This algorithm is based on eigenvalue approximation in terms of Gershgorin circles ([9]).

For a real matrix A with entries aij define Ri =
∑

j 6=i |aij |, i.e. the sum of absolute values

of elements of the i-th row without the diagonal element. Then each eigenvalue lies in at

least one of the Gershgorin circles defined as intervals [aii − Ri; aii + Ri] for every i. This

idea can be used to create constraints on the elements of the matrix P̂−1
M − P−1

0 . If the

diagonal elements aii are greater than some γ1 and the nondiagonal sum less than γ2, then

the lowest eigenvalue must be greater than γ1 − γ2.

Let us now formulate the above idea as an optimization problem. The first part is

formed similarly to (5.20)

(U∗)NM+1 = (U∗
c )

N
M+1, (5.29)

(U∗)M1 = argmax γ1 − γ2,

s. t. UM
1 ∈ U ,

|uk| ≤ umax,

with the set U given by (5.22). The additional constraint (5.21) is replaced by conditions

imposed on the elements aij of the information matrix increase P̂−1
M −P−1

0 = ZMZT
M . Using
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the fact that aij = wiw
T
j and notation (5.16), it is necessary to ensure that

bij >
[
xT
1 (UM

1 )T
]
KT

i Kj

[
x1

UM
1

]
, ∀i, j = 1, . . . , 2n+ 1, i < j, (5.30)

bij > −
[
xT
1 (UM

1 )T
]
KT

i Kj

[
x1

UM
1

]
, ∀i, j = 1, . . . , 2n+ 1, i < j,

bij = bji,

γ2 >
∑

j 6=i

bij , ∀i = 1, . . . , 2n+ 1,

γ1 <
[
xT
1 (UM

1 )T
]
KT

i Ki

[
x1

UM
1

]
, ∀i = 1, . . . , 2n+ 1.

where bij are artificial variables that have the meaning of absolute values of aij . Because

the matrix P̂−1
M is symmetrical, the first two constraints in are only required for i < j.

5.3.3 Orthogonal regressors algorithm

This algorithm is based on the idea, that the regressors shape the information ellipsoid, that

is the ellipsoid xT (P̂−1
M − P−1

0 )−1x = 1. The eigenvalues of P̂−1
M − P−1

0 correspond to the

ellipsoid radii. Therefore similarly to the previous algorithm, it is necessary to ensure that

the regressors’ norms |zi| > γ1 and that the regressors are ‘as much orthogonal as possible’,

meaning that for all i 6= j, zTi zj < γ2. The problem starts the same as (5.29), with the

following constraints

bij >
[
xT
1 (UN

1 )T
]
FT
i Fj

[
x1

UN
1

]
, ∀i, j = 1, . . . ,M, i < j, (5.31)

bij > −
[
xT
1 (UN

1 )T
]
FT
i Fj

[
x1

UN
1

]
, ∀i, j = 1, . . . ,M, i < j,

bij < γ2, ∀i, j = 1, . . . ,M, i < j,

γ1 <
[
xT
1 (UN

1 )T
]
FT
i Fi

[
x1

UN
1

]
, ∀i = 1, . . . ,M.

The structure of the problem is similar to the previous one, the difference is in the problem

dimension. While the number of constraints is (2n+1)(2n)
2 and the dimension of the vectors is

M in the Gershgorin algorithm, in this case it is the reverse, i.e. the dimension of regressors

is 2n+1 and the number of constraints is (M)(M−1)
2 . This implies that in this case, M should

be equal to 2n+ 1, as the number of regressors should not be higher than their dimension.

5.4 Simulations

Simulations of the previously proposed algorithms are shown in this section. The following

ARX system was used

yk = 1.64yk−1 − 0.67yk−2 + 0.2uk + 0.22uk−1 − 0.12uk−2 + ek, (5.32)
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which is obtained by discretization of a system 1/(s+1)2 with a sampling period Ts = 0.2s

and modified in order to have b0 6= 0. The system is controlled to zero from the initial state

x0 = [10, 0, 0, 0]T . Note that the nonminimal representation (5.5) is used, so the system order

is 4. The control was designed for N = 30, M = 5, r = 1 and ∆J = 0.1J∗. Figures 5.8(a)

and 5.9(a) show the inputs and outputs of a control process for optimal MPC controller and

all three designed controllers, respectively. For comparison, Figures 5.8(b) and 5.9(b) show

the results for the ellipsoid algorithm presented in the next section. Figure 5.10 shows the

development of the variance matrix in the sense of its greatest eigenvalue. The best results

in terms of minimizing the maximum eigenvalue of the variance matrix were achieved by

the Rank 1 algorithm, which obviously outperformed all the other methods, including the

ellipsoid algorithm from the next section. However, this is rather a coincidence than a

general rule, because all the algorithms solve nonconvex problems and the performance of

individual algorithms depends on the controlled system, initial conditions for optimization,

etc. On the other hand, the ellipsoid algorithm is more sophisticated and therefore it would

probably beat the other algorithms on average.

The Rank 1 algorithm was solved by YALMIP ([38]) in MATLAB, with help of

the LMIRANK solver ([44]). As the solver only searches for feasible points, the algorithm

was run sequentially with γ varying according to the interval bisection method to find the

maximum information. Both the Gershgorin and the regressor algorithm were solved by the

MATLAB standard function FMINCON.
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Figure 5.7: The lowest eigenvalue of the predicted information matrix after M = 5 steps of control
as a function of the two first inputs u1 and u2 around the optimal MPC solution for the ARX
system (5.32).
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Figure 5.8: The control input designed by classical MPC and modifications by all proposed algo-
rithms for excitation horizon M = 5.
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Figure 5.9: The output of a system controlled by classical MPC and modifications by all proposed
algorithms for excitation horizon M = 5.
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Figure 5.10: The maximum eigenvalue of the estimate variance matrix for control designed by
classical MPC and modifications by all three proposed algorithms for excitation horizon M = 5.
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Chapter 6

The ellipsoid algorithm

In the previous chapter, the problem of MPC control with information matrix maximiza-

tion was formulated as a nonconvex problem, where the nonconvexity is introduced by the

constraint (5.21). This chapter presents a more advanced method to solve the problem

(5.20) than the simple algorithms introduced in the previous section. The algorithm uses

a uniform approximation of the minimum eigenvalue function by an upper bound, formed

by the minimum of specific quadratic forms. In this chapter, U denotes an M -dimensional

vector, the usual notation UM
1 will be omitted.

6.1 Derivation of the algorithm

Recall that the nonconvex constraint in (5.20) is in the form

P̂−1
M (U)− P−1

0 ≥ γI, (6.1)

which is equivalent to requiring that the minimum eigenvalue of P̂−1
M (U)− P−1

0 be greater

than γ. If we denote m(U) the function that maps an input sequence U to the minimum

eigenvalue of the information matrix increase P̂−1
M (U) − P−1

0 , we can write the problem

(5.20) as

U∗ = argmaxm(U), (6.2)

s. t. U ∈ U ,

|uk| ≤ umax,

where U denotes the feasible set given by the criterion relaxation (5.22). The ellipsoid

algorithm is based on approximation of the function m(U) by an upper bound constructed

as a minimum of a set of quadratic forms. The construction of the algorithm will be shown

intuitively, see Section 6.4 for a more formal approach.

Using basic eigenvalue properties, the function m(U) can be expressed as

m(U) = min
|v|=1

vT (P̂−1
M − P−1

0 )v, (6.3)
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i.e. the minimum value of the quadratic form on the set of unit vectors v (unit ball). Using

the trace operator and substituting (5.15) for P̂−1
M (U) we get an equivalent expression

m(U) = min
|v|=1

[
xT
1 UT

] M∑

k=1

(
FT
k vvTFk

) [ x1

U

]
, (6.4)

see Theorem 6.2 for details.

The expression (6.4) shows the minimum eigenvalue function as a minimum of

quadratic forms in U . For each v, (6.4) defines a matrix

W (v) =

M∑

k=1

{
FT
k vvTFk

}
.

The set v : |v| = 1 is uncountable, but it is compact and the function m(U) has a limited

growth (it is Lipschitz, see proof of Lemma 6.4), which makes it possible to approximate the

function m(U) with a given precision by taking the minimum over a finite subset of unit vec-

tors, i.e. the minimum of a finite set of quadratic forms given by matricesW (v1), . . . ,W (vK).

Maximizing the approximation is still a nonconvex task, but it is computationally more con-

venient than the original task, as it requires evaluation of the minimum of a finite number

of quadratic forms compared to evaluation of the minimum eigenvalue.

The approach proposed in this algorithm is based on covering the feasible set U

by a sufficiently dense net of points U ′. In each step k, the minimum of the given (k − 1)

quadratic forms at each of these points is evaluated (let us denote the minimum m′(U) as an

approximation of m(U) at step k) and the maximum of these values is found at a point U∗
k .

Next, a new quadratic form is added to the set, that best approximates the function around

the maximizer U∗
k . Such form is found in the following way: The minimum eigenvalue λk

and the corresponding eigenvector vk of P̂−1
M (U∗

k ) − P−1
0 are computed. The form defined

by the matrix W (vk) is added to the current set of quadratic forms. It holds (see Lemma

6.3) that the value of the form given by W (vk) at the point U∗
k is equal to λk = m(U∗

k ),

so the approximation at U∗
k is exact. The algorithm will finish in a finite number of steps,

when no other improvement of the precision can be done. This is identified by U∗
k = U∗

k−1,

meaning that no new form would be added to the set.

Note, that we are constructing an upper bound for the original function, therefore

the approximation can only be lowered by adding new quadratic forms. Therefore, if at

some point U , the approximation m′(U) is lower than already achieved value m(U∗
k ) = λk,

such point U can be removed from the set, because it will never be the optimal point.

The algorithm also has a straightforward geometric interpretation of searching for

such feasible control U ∈ U that lies outside of a union of ellipsoids. The situation is

illustrated in Figure 6.1 for a two-dimensional problem. The dark contour restricts a region

of admissible control U , so the searched point must lie inside the dark contour. On the

other hand, the lighter contours correspond to quadratic forms W (v) for some v and the

requirement is that the quadratic form given by W (v) be greater than γ for the variable

U , so the point U must lie outside the union of all such ellipsoids. Figure 6.2 shows a two-
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Figure 6.1: Geometric interpretation of the algorithm. The black contour marks the boundary
of U , originally an ellipse with a center marked by the red +. The green contours represent two
different quadratic forms corresponding to two different directions in parameter space, which are
to be excited. The optimal solution lies inside the black contour and outside all grey contours and
is marked by a red circle.

dimensional region U and how the points are removed from the set during the algorithm,

based on the above note.

It is shown in detail in Section 6.4 that it is possible to approximate the function

m(U) with an arbitrary precision. The algorithm starts with an empty set of quadratic

forms and the initial point U∗
c , which is the initial optimal (MPC) control.

6.1.1 Algorithm

The inputs to the algorithm are the system matrices Â, B̂, Ĉ and D̂, the MPC parameter

ρ, the admissible criterion perturbance ∆J , the initial condition x1, the control horizon

N , the excitation horizon M (greater or equal to the number of system parameters), the

hard constraint on inputs umax and the required precision ε. The outputs are the control

sequence U∗ and the information gain γ. The variables that are changed iteratively are

marked with an accent, such as m′, U ′ etc.

1. Solve the original MPC task (5.11).

2. Estimate the Lipschitz constant L as described in the proof of Lemma 6.4 and find a

corresponding k such that max
U∈U

(mk(U)−m(U)) < ε.
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(d) Step 4.

Figure 6.2: Restriction of the set U of admissible input perturbations during the algorithm. The
original shape is an ellipsoid with a center marked by the red +, from which areas are removed in
each step of the algorithm.
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3. Construct the set U ′ = Uk from Lemma 6.5 and choose an initial point U ′ as the

solution of the MPC task in step 1.

4. Initialize m′(U) = ∞ for all U ∈ U ′.

5. Compute vU ′ and for all U ∈ U ′ do:

if
[
xT
1 UT

]
W (vU ′ )

[
x1

U

]
< m′(U),

then set

m′(U) =
[
xT
1 UT

]
W (vU ′)

[
x1

U

]
.

6. Remove all U ∈ U ′ for which m′(U) < m′(U ′) = m(U ′).

7. If

arg max
U∈U ′

m′(U) 6= U ′,

set U ′ = argmaxU∈U ′ m′(U) and go to step 5.

8. Set U∗ = U ′ and finish.

Note 6.1. The proposed algorithm was derived using the constraint (5.21), i.e.

P̂−1

M (UM
1 ) − P−1

0 ≥ γI . In some cases, if the eigenvalues of the initial informa-

tion matrix P−1

0 are different, it may be useful to define this constraint for the

information matrix itself instead of its increase, i.e.

P̂
−1

M (UM
1 ) ≥ γI. (6.5)

The algorithm is then slightly modified, because the minimum eigenvalue function

has to be redefined as

m(U) = min
|v|=1

{

v
T
P

−1

0 v +
[

xT
1 UT

] M∑

k=1

(
F

T
k vv

T
Fk

)[
x1

U

]}

,

and consequently the quadratic function in the step 5 of the algorithm above is

changed to

v
T
U′P

−1

0 vU′ +
[

xT
1 UT

]
W (vU′)

[
x1

U

]

.

The term vTU′P
−1

0 vU′ is constant for a fixed vU′ and therefore only changes the

size of the ellipsoids in the geometric interpretation in Figure 6.1 without affecting

their shape.
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6.2 Simulations

The algorithm was tested on the following second order ARX system with oscillatory be-

havior

yk = 0.91yk−1 − 0.67yk−2 + 0.35uk−1 + 0.4uk−2 + ek,

with σ2
e = 10−6. First, an MPC controller was designed with the weighting parameter

ρ = 0.5. The perturbation was then searched in a region J(U) ≤ J∗ +∆J with ∆J = 0.01.

The control horizon for the MPC controller was 20 steps and as the system has 5 parameters

(b0 = 0), the excitation horizon M = 5. The control was applied as a receding horizon, i.e.

in each step the whole control sequence was computed, but only the current input was used

and a new sequence was computed after the measurement and data update.

The initial guess of the parameters was

b0 = 0.5

a1 = −0.1

b1 = 0.1

a2 = 0.1

b2 = 1 (6.6)

and the initial parameter uncertainty was given by a variance matrix P−1
0 = I (identity

matrix). After each measurement the initial guess was updated by the recursive least square

algorithm and the control in the next step was already based on the updated parameter

values. This algorithm was compared to a single-step approach, which is also based on

MPC as the initial control, but uses only information about the parameter variance matrix

after one step in the future. This algorithm perturbates the initial control by the following

rule

U∗ = U∗
C + sign(U∗

C)∆U, (6.7)

where ∆U is a predescribed value. Both algorithms were supposed to keep the system

output at a zero level and at the same time slightly perturb the control input to identify

the system parameters, starting with values (6.6).

For the first simulation, the perturbation ∆U in the single-step algorithm was chosen

∆U = 4, so that the output variance is comparable to the multiple-step case. Figures 6.3(a),

6.3(c) and 6.3(b), 6.3(d) show the input and output, respectively, during simulation with

the proposed dual controller compared to the MPC single-step solution. Figures 6.5(a) and

6.5(c) show how the eigenvalues of the parameter estimate variance matrix change during the

control process for the dual and the single-step MPC-based controller, respectively. Finally,

Figures 6.5(b) and 6.5(d) show the development of the parameter estimates for both cases.

The parameters were estimated by the classical recursive least square method.

The experiment shows that the single-step algorithm is much more aggressive with an

immediate effect on parameter estimation. The multiple-step algorithm, on the other hand,

needs a longer time interval to achieve the same precision, but keeps improving identification
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(b) Output of the system until the time k = 50.
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(c) Control input between the times k1 = 1500 and
k2 = 1550.
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(d) Output of the system between the times k1 =
1500 and k2 = 1550.

Figure 6.3: Comparison of the control input and system output for the single-step and multiple-step
controller, where the single-step controller changes the excitation ∆U in each step. The controllers
were tuned to achieve a comparable output perturbation.

for the whole simulation period. Also the overall criterion value differs significantly, J = 17.8

for the multiple-step algorithm and J = 2.5 · 104 for the single-step algorithm.

For the second experiment, we adjusted the single-step algorithm so that the input

perturbation can be changed only every 5th step. This change would excite the system

at lower frequencies, with a possibly better effect on identification. The perturbation was

chosen ∆U = 0.08, again so that the output variance is comparable to the multiple-step

algorithm.

Similarly to the previous case, Figures 6.4(a), 6.4(c) and 6.4(b), 6.4(d) show the in-

put and output, respectively, during simulation with the proposed dual controller compared

to the MPC single-step solution. Figures 6.5(a) and 6.5(e) show how the eigenvalues of the

parameter estimate variance matrix change during the control process for the dual and the
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(a) Control input of the multiple-step controller
compared to the single-step controller until the time
k = 50.
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(b) Output of the system controlled by the multiple-
step controller and the single-step controller until
the time k = 50.
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(c) Control input of the multiple-step controller
compared to the single-step controller between the
times k1 = 1500 and k2 = 1550.
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(d) Output of the system controlled by the multiple-
step controller and the single-step controller between
the times k1 = 1500 and k2 = 1550.

Figure 6.4: Comparison of the control input and system output for the single-step and multiple-
step controller, where the single-step controller changes the excitation ∆U once in 5 steps. The
controllers were tuned to achieve a comparable output perturbation.

single-step MPC-based controller, respectively. Finally, Figures 6.5(b) and 6.5(f) show the

development of the parameter estimates for both cases.

The second experiment shows that the lower frequency perturbation excites the

system output more than the high frequency signal. The criterion is comparable, J = 17.6

for the multiple-step case and J = 14.6 in the modified single-step case. However, as seen

from the eigenvalue responses, the single-step algorithm is significantly less effective in terms

of improving parameter precision.
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(a) Eigenvalues for the multiple-step controller. The
dashed line represents the maximum eigenvalue of
the single-step algorithm in Figure 6.5(c).
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(b) Parameter estimates for the multiple-step con-
troller.
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(c) Eigenvalues for the single-step controller. The
excitation ∆U is changed in each step.
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(d) Parameter estimates for the single-step con-
troller. The excitation ∆U is changed in each step.
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(e) Eigenvalues for the single-step controller. The
excitation ∆U is changed every 5th step.
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(f) Parameter estimates for the single-step con-
troller. ∆U is changed every 5th step.

Figure 6.5: Comparison of the development of parameter estimates and the eigenvalues of the
parameter estimate variance matrix for the single-step and multiple-step controller.
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6.3 Properties of the algorithm

This section contains remarks on complexity and stability of the ellipsoid algorithm.

6.3.1 Complexity

The covering net of points is a subset of RM . To ensure that the error is no larger than a

specified ε, the distance between adjacent points must be lower than a fixed δε. Thus the

number of points grows exponentially with the system order. However, this is caused by

the nonconvexity of the problem and the number of points may be lowered in case locally

optimal solutions are sufficient. The major advantage of the algorithm is that evaluation of

a quadratic form at a given point is computationally much faster than computing the lowest

eigenvalue function. The quadratic forms are also useful for error estimation, because they

are second order approximations of the lowest eigenvalue function at a given point.

6.3.2 Stability

The stability of a system controlled by the proposed controller in the usual (Lyapunov)

sense can be guaranteed for the nominal system, i.e. the system for which âi = ai and

b̂i = bi for all i = 1 . . . n. This follows from the stability of the MPC controller [51, 52],

which gives us stability of the nominal system controlled by the MPC control input U∗
c , if

there is no limitation on the input signal. In case of constrained input, stability is achieved

only for a certain set X of initial states, which is a known limitation. Let us assume the

unconstrained case first. Let us also assume that the necessary conditions for MPC stability,

such as control horizon length or sufficient weight on terminal state, are satisfied.

The control U∗ can be viewed as a sum of the MPC control U∗
c and a perturbation

∆U∗. The fact that the criterion relaxation ∆J is bounded implies that ∆U∗ is bounded.

It is important that ∆J be bounded uniformly with respect to time, so that ∆U∗ is also

uniformly bounded.

The MPC control U∗
c has a stabilizing effect on the nominal system. In a linear

system, the effect of U∗ on the nominal system can be viewed as an effect of the input

perturbation ∆U∗ on a nominal system already stabilized by U∗
c . As a result, the effect of

the optimal control U∗ is an effect of a bounded input sequence on a stable system. A stable

system is also BIBO (Bounded input, bounded output) stable, therefore the closed loop is

stable for the nominal system.

Note that if U∗ satisfies the input constraints imposed by the MPC problem (5.11),

the idea given above also holds for a constrained problem. However, as in the standard

MPC problem, it must be assured that the system state does not leave the set X . This can

be achieved by a suitable choice of ∆U∗.
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6.4 Formal derivation of the algorithm

This section contains a formal proof of convergence of the ellipsoid algorithm. The proof

is based on constructing a sequence of approximations and showing that this sequence

converges to the original function. As usual in this chapter, U denotes an M -dimensional

vector and the usual notation UM
1 will be omitted.

6.4.1 Expressing the minimum eigenvalue by quadratic forms

The information matrix maximization in (5.20) is equivalently expressed as maximization

of its lowest eigenvalue. Let us define a function m̃ : Rn×n → R, that assigns a matrix its

lowest eigenvalue, i.e. m̃ : A 7→ λm, where λm = min{λ ∈ R : ∃0 6= v ∈ R
n, Av = λv}.

Such function is correctly defined, as a real symmetric matrix of order n has exactly n real

eigenvalues. The problem is then to find

U∗ = argmax
U∈U

m̃(P−1
M (U)− P−1

0 )
def

= argmax
U

m(U), (6.8)

where U denotes the (without loss of generality compact) admissible region of U defined by

the constraints in (5.20).

Theorem 6.2. The function m defined in (6.8) above is continuous in U and the following

holds:

m(U) = min
v∈Sn−1

[
xT
1 UT

] M∑

k=1

(
FT
k vvTFk

) [ x1

U

]
, (6.9)

where Sn−1 = {v ∈ R
n : ‖v‖ = 1} denotes the unit sphere in R

n (the Hausdorff dimension

of which is n− 1).

Proof. The right hand side of (6.9) is well defined, as it is a continuous function in v and

the minimum exists on the compact set Sn−1. By definition, m(U) is the lowest eigenvalue

of the matrix

P−1
M (U)− P−1

0 =
M∑

k=1

{
Fk

[
x1

U

] [
xT
1 UT

]
FT
k

}
,

so, using the properties of eigenvectors,

m(U) = min
v∈Sn−1

vT
M∑

k=1

{
Fk

[
x1

U

] [
xT
1 UT

]
FT
k

}
v,

where the minimum is achieved for the eigenvector belonging to the lowest eigenvalue. Then,

using the matrix trace properties

vT
∑M

k=1

{
Fk

[
x1

U

] [
xT
1 UT

]
FT
k

}
v =

=
[
xT
1 UT

]∑M
k=1

(
FT
k vvTFk

) [ x1

U

]
.
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Finally, the function m(U) is continuous, because it is a minimum of (quadratic) continuous

functions of U .

Theorem 6.2 says that the minimum eigenvalue of the information matrix (5.15) can

be expressed as a minimum of quadratic forms in U parametrized by v. Let us denote

W (v) =

M∑

k=1

(
FT
k vvTFk

)
, (6.10)

for simplification of further expressions.

6.4.2 Approximation by finite sets of functions

The idea is now to approximate the function m(U) with a sufficient precision by minimizing

(6.9) over a finite subset V of the unit sphere Sn−1. Let us first notice, that due to the

continuity of m and separability of the (compact) unit sphere Sn−1, there exists a dense

countable subset S′ ⊂ Sn−1 such that

min
v∈Sn−1

[
xT
1 UT

]
W (v)

[
x1

U

]
=

= inf
v∈S′

[
xT
1 UT

]
W (v)

[
x1

U

]
. (6.11)

Our goal now is to construct a monotone sequence of finite subsets {Vk}k∈N, Vk ⊂ Sn−1, Vk ⊂

Vk+1 in such way that

lim
k→∞

min
v∈Vk

[
xT
1 UT

]
W (v)

[
x1

U

]
= m(U), U ∈ U , (6.12)

where the limit is uniform (i.e. in supremum metrics) on the compact set U ⊂ R
N . Let us

first summarize some important properties of the function m(U).

Lemma 6.3. For every fixed x1 and every U ∈ U there is a vU ∈ Sn−1 such that

[
xT
1 UT

]
W (vU )

[
x1

U

]
= m(U).

Proof. The searched vU ∈ Sn−1 is the eigenvector corresponding to the lowest eigenvalue

of the information matrix increase P−1
M (U) − P−1

0 . This is a direct corollary of the trace

properties used in the proof of Theorem 6.2

Lemma 6.4. Let

mV (U) = min
v∈V⊂Sn−1

[
xT
1 UT

]
W (v)

[
x1

U

]
,

where the minimum is taken over any closed nonempty subset V of the unit sphere Sn−1.

Then the function mV (U) is Lipschitz with a constant L independent of the set V , i.e.

|mV (U1)−mV (U2)| < L‖U1 − U2‖.
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Proof. The function mV (U) is well defined, since any closed subset of a compact set is a

compact set, hence the minimum exists. It holds that

mV (U1)−mV (U2) =

=
[
xT
1 UT

1

]
W (v1)

[
x1

U1

]
−

−
[
xT
1 UT

2

]
W (v2)

[
x1

U2

]
≤

≤
[
xT
1 UT

1

]
W (v2)

[
x1

U1

]
−

−
[
xT
1 UT

2

]
W (v2)

[
x1

U2

]
,

where v1, v2 ∈ V are the minimizers at points U1, U2. The last expression is a difference

between two values of the same quadratic form in two different points. Symmetrically, we get

the inequality for absolute values. Therefore we have from the multidimensional mean value

theorem that L is at most the maximal norm of the all the gradients, where the maximum

is taken over the feasible set for each quadratic form and then over all unit vectors v, i.e.

L ≤ max
v∈Sn−1

max
U∈U

2‖W12(v)x1 +W22U‖2. (6.13)

The maximum is well defined, as both U and Sn−1 are compact sets and x1 is fixed. The

formal proof is left out for brevity.

Lemma 6.5. Let {Uk}k∈N be a sequence of finite subsets of U , Uk ⊂ Uk+1, such that for

every U ∈ U there exists U ′ ∈ Uk such that ‖U − U ′‖ ≤ 1
k
. Let Vk = {vU : U ∈ Uk} be a

set of all eigenvectors corresponding to the minimum eigenvalues of matrices P−1
M (U)−P−1

0

for all U ∈ Uk. Then the sequence

mk(U) = mVk
(U) = min

v∈Vk

[
xT
1 UT

]
W (v)

[
x1

U

]

converges pointwise to m(U).

Proof. The set Uk exists for every k ∈ N from compactness of U . It holds that mk(U) =

m(U) for every U ∈ Uk. Let U ∈ U be an arbitrary point. Then there exists a sequence

U1, U2, . . . → U,Uk ∈ Uk. Let ε > 0. Then |mk(U)−m(U)| ≤ |mk(U)−mk(Uk)|+|mk(Uk)−

m(Uk)|+|m(Uk)−m(U)| = |mk(U)−mk(Uk)|+|m(Uk)−m(U)| because |mk(Uk)−m(Uk)| =

0. From the Lipschitz property from Lemma 6.4, |mk(U) −mk(Uk)| ≤ L‖U − Uk‖, where

it is important that L is independent of k. Now k can be chosen so that L‖U − Uk‖ < ε/2

and |m(Uk)−m(U)| < ε/2 as m is a continuous function.

Lemma 6.6. The sequence of functions {mk}k∈N from Lemma 6.5 converges uniformly to

m.
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Proof. The sequence {mk}k∈N is a decreasing sequence of continuous functions converging

pointwise to a continuous function m on a compact set U . Uniform convergence is a direct

corollary of Dini’s theorem.

Theorem 6.7. Let ε > 0. Then the ellipsoid algorithm converges to a point U ′ ∈ U in a

finite number of steps and m(U∗)−m(U ′) < ε.

Proof. The algorithm operates on a finite set of points and must finish, if the point U ′ does

not change at the end of the iteration. Thus the algorithm must finish in a finite number of

steps. The points that were removed from the set U ′ in step 6 can not be candidates for the

maximum U ′, as for such U it holds that m(U) ≤ m′(U) < m′(U ′) = m(U ′) The solution

U ′ is a maximum of the approximate function m′ and at the same time m′(U ′) = m(U ′).

Therefore m(U∗) < m′(U ′) + ε from the construction of the initial U ′.

6.5 Approximation by outer ellipsoid

The ellipsoid algorithm presented in this chapter has one major disadvantage – the amount

of points needed to guarantee a given precision grows exponentially with the dimension.

Considering a second order ARX system, we already have 5 parameters to be estimated

and thus also at least a 5-dimensional problem. Generally, the minimum dimension for an

n-th order system is 2n+1 and the algorithm is thus practically usable only for lower order

systems.

In this section, we present a method for transforming the optimization problem

into a one-dimensional conservative approximation of the problem. The idea is based on the

geometric ellipsoid interpretation of the algorithm. The interpretation was shown in Section

6.1, where the Figure 6.1 shows the geometry for a 2-dimensional example. Each quadratic

function given by a matrix W (v) represents the direction v in the parameter space, and the

value of the quadratic function at a given point U determines the improvement of information

in the corresponding direction v. The curves of constant values γ of the quadratic forms

are ellipsoids, shown in Figure 6.1. The ellipsoid algorithm ‘inflates’ all ellipsoids uniformly

until the last feasible point outside the union of uniformly inflated ellipsoids is found.

The proposed modification is based on finding an outer ellipsoid for the union of

ellipsoids and ‘inflating’ only this one ellipsoid instead. Such simplification is conservative

and transforms the ‘inflating’ to a one-dimensional problem. Finding the outer ellipsoid

itself is a convex positive semidefinite programming task.

6.5.1 Minimum-volume outer ellipsoid

Assume we already have a set ofK vectors v1, . . . , vK and corresponding matricesW (vi), i =

1, . . . ,K. Each constant γ ∈ R defines a set of K ellipsoids in the parameter space, given

by equations

Ti(U) =
[
xT
1 UT

]
W (vi)

[
x1

U

]
− γ ≤ 0, i = 1, . . . ,K. (6.14)
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The outer minimum-volume ellipsoid for the union of ellipsoid (6.14) can be defined by an

equation

T0(U) ≤ 0, (6.15)

where T0 is a quadratic function in variable U , which is unique up to a positive scaling factor,

because the inequality (6.15) is not affected by multiplication by a positive real constant.

The minimum-volume outer ellipsoid for a set of ellipsoids is found as an LMI

optimization task, which is in detail described in [11]. Let us first introduce a general

quadratic function in variable U using the following notation

T (U) = UTAU + 2UT b+ c, (6.16)

where A = AT > 0 is a square matrix, b is a column vector and c ∈ R. An inequality

T (U) ≤ 0 then defines an ellipsoid as a set all U for which this inequality is true. Completing

the square gives an alternative expression T (U) = (U+A−1b)TA(U+A−1b)−bTA−1b+c ≤ 0,

which shows that the set T (U) ≤ 0 is nonempty if and only if

bTA−1b− c > 0, (6.17)

therefore we will only take into account those quadratic functions that satisfy this inequality.

To transform quadratic functions in (6.14) into the form (6.16), let us first rewrite the matrix

W (vi) as

W (vi) =

[
W1(vi) W2(vi)

WT
2 (vi) W3(vi)

]
, (6.18)

where the dimensions of the blocks correspond to dimensions of vectors x1 and U . The

inequalities (6.14) can then be written as

xT
1 W1(vi)x1 + UTWT

2 (vi)x1 + xT
1 W2(vi)U + UTW3(vi)U − γ ≤ 0, i = 1, . . . ,K, (6.19)

which corresponds to the notation (6.16) with matrices given by the following transforma-

tions

Ai = W3(vi), (6.20)

bi = WT
2 (vi)x1,

ci = xT
1 W1(vi)x1 − γ.

Using the notation (6.16), the minimum-volume outer ellipsoid is given by the in-

equality T0(U) = UTA0U + 2UT b0 + c0 ≤ 0. The unknown variables A0, b0 and c0 are

computed by solving the following LMI optimization task

min log detA−1
0 (6.21)

s. t. A0 > 0, τ1 ≥ 0, . . . , τK ≥ 0,


A0 b0 0

bT0 −1 bT0
0 b0 −A0


− τi



Ai bi 0

bTi ci 0

0 0 0


 ≤ 0, i = 1, . . . ,K,
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where c0 = bT0 A
−1
0 b0 − 1 to get rid of the extra degree of freedom in the representation.

Note that depending on γ, the condition (6.17) might not be satisfied for some i. Therefore

the condition (6.17) should be checked prior to solving the optimization task and those

quadratic forms not satisfying the condition should be excluded from the constraints. An

example of the minimum-volume outer ellipsoid is shown in Figure 6.6(a).

Having found the minimum-volume outer ellipsoid, it is possible to define an approx-

imate solution to the problem (5.20) as maximization of the quadratic function T0(U) defin-

ing the outer ellipsoid, within the feasible set U . Such maximization is a one-dimensional

convex task solvable for example by the Newton method or the interval bisection method,

as will be shown in the next subsection. A drawback of this method is that hard constraints

on inputs |uk| ≤ umax cannot be used.

Maximizing the quadratic function T0(U) given by the outer ellipsoid within the

feasible set U means finding the lowest possible δ ∈ R such that the feasible set U is still

a subset of an ellipsoid given by T0(U) ≤ δ, as depicted in Figures 6.6(b) and 6.6(c). The

problem is, that this new bigger (or smaller for δ < 0) ellipsoid T0(U) ≤ δ is not the

minimum-volume ellipsoid for ellipsoids Ti ≤ δ, as shown in Figure 6.6(d). Therefore it is

desirable to find such γ, for which the value δ is zero, or in practice |δ| ≤ ε for some ε > 0.

Such γ can be again found e.g. by using the interval bisection method. The initial interval

for γ is (−∞,∞), so it is convenient to work with some substitution, for example γ = tan(x)

with x ∈ (−π/2, π/2).

6.5.2 Quadratic programming with one quadratic constraint

The control U ′ is the point for which the function T0 is maximal within the feasible set U .

After this point is found, the algorithm proceeds analogously to the idea presented in Section

6.1. The algorithm finds such direction vU ′ in the parameter space that is least excited by

the control U ′. A new ellipsoid associated with this direction (given by the matrix W (vU ′ )

is added to the set (6.14) and the algorithm repeats for the updated set. The algorithm

ends when no new direction vU ′ can be found.

Maximizing the quadratic function T0(U) that defines the outer ellipsoid within the

feasible set (U) is in fact a quadratic programming task that can be written as

max T0(U) = UTA0U + 2UT b0 + c0 (6.22)

s. t. U ∈ U ,

(6.23)

where the constraint U ∈ U is in fact a quadratic constraint in variable U that can be

rewritten to the general form (6.16) as

UTHU + 2UTf + g ≤ 0

for some positive definite matrix H , vector f and real constant g. We will show one method

of solving this problem, more information about the topic can be found in [14] and [35]. It is
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(a) Two ellipsoids (green) and the outer ellipsoid
(red).

(b) The black contour represents the boundary of
the feasible set U .

(c) The shrunken outer ellipsoid is showed by the
dashed red contour and the point U

′ is marked by
the red circle.

(d) The situation after shrinking the green ellip-
soids by the same factor as the outer ellipsoid was
shrunken in Figure 6.6(c).

Figure 6.6: Graphical representation of the outer ellipsoid approximate algorithm. Two ellipsoids
are first covered by an outer ellipsoid, which is then shrunken to find the point U ′ in the feasible
set U . It can be directly seen, that the point U ′ is suboptimal, as the optimal solution would lie on
the intersection of both green ellipsoids. Finally, it is showed, that after shrinking all ellipsoids by
the same factor, the shrunken outer ellipsoid is no longer an outer ellipsoid for the shrunken ones.
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Figure 6.7: An example of dependence between δ and γ for a set of 5 ellipsoids.

convenient to transform the problem to a new system of coordinates, in which the constraint

has the form

UTU ≤ 1, (6.24)

i.e. the maximization of T0 takes place on a unit ball. This can be always done using an

appropriate affine transformation. To avoid introducing new variables, let us simply assume

the constraint in the form (6.24), keeping in mind, that the function T0 must also change

accordingly after the transformation.

Note that the maximum of a quadratic function with a positive definite matrix

always lies on the boundary of the feasible set. Therefore we can even assume the constraint

to be

UTU = 1, (6.25)

which is convenient in further considerations. Let us now define the function

f(U, α) = −α(UTA0U + 2UT b0) + UTU, (6.26)

where

α ∈

(
0,

1

λmax(A0)

)
.

Such alpha ensures positive definiteness of the function f and the unconstrained minimum

is

U ′(α) = (I − αA0)
−1α · b0. (6.27)

We can now find the solution of the task (6.22) by finding such α, for which the unconstrained

minimum (6.27) satisfies

U ′(α)TU ′(α) = 1,
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which can be found by any appropriate one-dimensional optimization method, such as in-

terval bisection or Newton method. The maximum value is then

δ = T0(U
′)

and can be generally both positive and negative, depending on the original size of the

ellipsoid given by T0.

6.5.3 Algorithm

The inputs to the algorithm are the system matrices Â, B̂, Ĉ and D̂, the MPC parameter

ρ, the admissible criterion perturbance ∆J , the initial condition x1, the control horizon N ,

the excitation horizon M (greater or equal to the number of system parameters) and the

precision ε. The outputs is the optimal control sequence U∗ and the information gain γ.

The algorithm starts with an empty set of vectors V , k = 1, δ = 0 and γ = 0.

1. Solve the original MPC task (5.11)

2. Choose an initial point U ′ as the solution of the MPC task in step 1, find the corre-

sponding vector v1 = v(U ′) and add it to the (empty) set V .

3. For all vectors vi from the set V create an ellipsoid representation (6.20) using the

current value γ.

4. Repeat iterations by interval bisection in γ:

(a) Check condition (6.17) for all ellipsoids in set V . Find the outer ellipsoid by

solving (6.21), considering only those ellipsoids satisfying (6.17).

(b) Find U ′ and δ by solving the task (6.22).

(c) Update γ according to δ and adjust the ellipsoid representation (6.20) according

to the new γ.

until |δ| < ε.

5. Set k = k + 1.

6. Take the input U ′ from the last iteration of solving (6.22) in step 4 and find the

corresponding vector vk = v(U ′).

7. If vk 6∈ V , then add vk to V and go to step 3.

8. Set U∗ = U ′ and finish.

Note 6.8. Similarly to the original algorithm, an initial information matrix P0

may be considered in the algorithm. This would lead to a modification of ci in the

representation (6.20) to

ci = x
T
1 W1(vi)x1 − γ + v

T
i P

−1

0 vi.

The additional term vTi P
−1

0 vi is constant for a fixed vi and thus only changed the

size of the associated ellipsoid, not its shape.
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6.5.4 Properties of the algorithm

The main structure of the algorithm is the same as for the original algorithm presented

in Section 6.1. In each iteration of the main loop a control perturbation is found and

consequently such direction in the parameter space, that is least excited by this control

perturbation. The proposed approximation takes place in the subtask of finding the control

perturbation for each step, i.e. in step 4 of the algorithm above.

The advantage of the outer ellipsoid approximation is the transformation of the mul-

tidimensional nonconvex optimization problem into a sequence of iterations, each iteration

involving one multidimensional convex problem (finding the outer ellipsoid) and one one-

dimensional convex problem (maximizing the quadratic function given by the outer ellipsoid

within the feasible set). Although the number of iterations may be large, the transformation

makes the problem feasible more or less independent of the problem dimension. Finding

the control perturbation U ′ in step 4 is in fact still a nonsmooth optimization problem

in variable γ. An example of a continuous nonconvex dependence of δ on γ is shown in

Figure 6.7(a), another example of even discontinuous dependence is in Figure 6.7(b). The

dependence is nonsmooth, because it may happen that the condition (6.17) is satisfied for

one ellipsoid at some point γ0, but is not satisfied for all γ < γ0. In such case, the task is

qualitatively changed at the point γ0, because this ellipsoid is added to (removed from) the

set (6.14) and thus the shape and position of the outer ellipsoid may change stepwise.

A disadvantage of the approximation is that there is currently no usable upper

bound for the optimal excitation. In other words, there is no reasonable estimate, of how

suboptimal we are at the current point.
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Chapter 7

Conclusions

The goal of this thesis was to analyze existing stochastically optimal control strategies and

to develop new active adaptive strategies for linear discrete-time systems with uncertain

parameters as computationally feasible approximations of dual control. Bayesian methods

were chosen as a framework for describing time-domain system models as well as different

stochastically optimal control strategies. The bayesian approach helped us understand the

problems connected with stochastic control in a systematic way and served as a basis for the

consequent considerations. It was particularly important to understand the correct inter-

pretation of probabilistic description of uncertainty in different cases, both as a description

of i.i.d. random variables (e.g. noise) and as a description of a progressively accumulating

subjective knowledge about a constant unknown parameter. Our first results in the area of

stochastic control were published in [48].

After the introductory chapter, the thesis starts with the first result, which is a

novel derivation of the cautious LQ control strategy for the ARMAX model with uncertain

parameters and known MA part and a novel derivation of a simultaneous parameter tracker

and state estimator for this system. The derivation of the control strategy uses a specific

state-space representation that leads to simpler expressions containing only the first two

moments of probability distributions that describe the uncertainty in the ARMAX model.

These moments are determined by the simultaneous parameter tracker and state estimator,

which forms a counterpart to the controller by supplying it with the necessary information.

Unlike a general linear stochastic model with uncertain parameters, the special structure of

the ARMAX model makes derivation of the controller and estimator possible. On the other

hand, the ARMAX model is general enough to describe a variety of systems, in fact it is

equivalent to the system state-space representation in the observer canonical form.

The derived cautious control strategy is calculated as a feedback control law that is

an affine function of the current state estimate. The control law is calculated via a cautious

Riccati-like equation that, unlike the standard Riccati equation of the deterministic LQ

problem, does not always have a limit solution, if extended to infinite control horizon. The

next part of the thesis presents a necessary and sufficient condition for the cautious Riccati-
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like equation to converge to a limit solution. It also presents an analysis of the feedback

control law in case of divergence of the equation. It is shown that the control law always

converges to a limit solution. This convergence analysis is the newest result of the thesis

and it is currently being prepared for publication.

The next result of the thesis are new active adaptive control algorithms, starting with

a single-step ahead algorithm based on the cautious strategy and continues with multiple-

step strategies based on perturbations of the certainty equivalence controller. The benefit of

the multiple-step approach is discussed and showed by simulations. Also the inconvenience

of cautious control is discussed, pointing out problems with stability and convergence of

cautious control. These issues are also discussed in the publication [50]. Three multiple-

step active adaptive strategies are then presented, all based on maximizing the minimum

eigenvalue of the parameter estimate information matrix. The single step algorithm was

published in [49], the multiple-step algorithms in [46]

Finally, an iterative ellipsoid algorithm is proposed that solves the problem of maxi-

mizing the lowest eigenvalue of the parameter estimate information matrix of an ARX system

with uncertain parameters. Information matrix maximization corresponds to persistent ex-

citation and thus effective system identification, so the algorithm gives a computationally

feasible approximation of dual control. The method is based on a bicriterial approach, where

in the first step, the optimal control is found using MPC problem formulation, and in the

second step, such perturbation of the optimal control sequence is searched, that maximally

increases the information matrix lowest eigenvalue. This ellipsoid algorithm is the fourth

result of the thesis and was published in [47].

Simulations also show that the multiple step algorithms tend to excite the system

uniformly even if there is no reference signal, which pays off in the future during the control

process, when the reference signal changes. The ellipsoid algorithm was proved to converge

to the optimal solution and to stabilize the nominal system. As the problem is noncon-

vex, finding a globally optimal solution with a given precision requires a large number of

iterations. The nonconvexity of the problem makes the ellipsoid algorithm usable only for

low-dimensional systems. This issue is addressed by proposing a conservative modification

that transforms the problem to a one-dimensional one and makes it practically insensitive

to problem dimension at the cost of suboptimality.

The goals of the thesis were accomplished by the described four main results. The

last mentioned conservative modification of the ellipsoid algorithm can be a topic for future

research. The thesis contains the basic idea, which should be at least tested on simulations

and if succesful, it could be further used in practical applications. Theoretical issues such

as suboptimality of the solution or discontinuities in the optimized function should also

be addressed. The other proposed multiple-step algorithms can be also further studied,

especially in terms of optimization techniques for their solution.
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[4] Karl J. Åström and A. Helmersson. Dual control of an integrator with unknown gain.

Computers & Mathematics with Applications – part A, 12(6):653–662, jun 1986.

[5] Michael Athans, Richard Ku, and Stanley B. Gershwin. The uncertainty threshold

principle. IEEE Transactions on Automatic Control, AC–22:491–495, 1977.

[6] Michael Athans and Richard T. Ku. Further results on the uncertainty threshold

principle. IEEE Transactions on Automatic Control, AC–22:866–868, 1977.

[7] Y. Bar-Shalom. Stochastic dynamic programming: Caution and probing. Automatic

Control, IEEE Transactions on, 26(5):1184–1195, Oct 1981.

[8] Y. Bar-Shalom and E. Tse. Dual effect, certainty equivalence, and separation in stochas-

tic control. Automatic Control, IEEE Transactions on, 19(5):494–500, Oct 1974.

[9] Dennis S. Bernstein. Matrix Mathematics. Princeton University Press, 2005.

[10] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume I. Athena

Scientific, 3rd edition, 2005.

[11] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and V. Balakrishnan. Linear Matrix

Inequalities in System and Control Theory. Society for Industrial and Applied Mathe-

matics, 1994.

[12] James V. Candy. Bayesian Signal Processing: Classical, Modern, and Particle Filtering

Methods. Wiley-Interscience, 2009.

105



[13] Rong Chen and Kenneth A. Loparo. Dual control of linear stochastic systems with

unknown parameters. In IEEE International Conference on Systems Engineering, pages

65–68. IEEE, 1991.

[14] Z. Dostál. Optimal Quadratic Programming Algorithms With Applications to Varia-

tional Inequalities. Springer Verlag, 2009.

[15] Afrooz Ebadat, Mariette Annergren, Christian A. Larsson, Cristian R. Rojas,

Bo Wahlberg, H̊akan Hjalmarsson, Mats Molander, and Johan Sjöberg. Application
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