
CZECH TECHNICAL UNIVERSITY IN PRAGUE
FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MODEL DRIVEN APPLICATION AND DATABASE

CO-EVOLUTION

Ing. Ondřej Macek

A thesis submitted for the degree of Doctor

PhD programme: Electrical Engineering and Information Technology
Specialization: Computer Science and Engineering

July 2014

Abstract and Contributions

An evolution of application’s persistent objects affects not only the source code but
the stored data as well. The change is usually processed in three steps: application
evolution, database schema evolution and data migration. Because the process is often
done manually, it is ineffective and error prone. We provide a solution in form of a model
driven framework. The framework is described as a formal model which is capable to
migrate database according to an evolution of the application code. The feasibility of the
change and its data-secure processing is addressed in the framework as well. Because the
evolution is not always straightforward process the capabilities of the proposed framework
in the area of versioning are discussed as well and an operation-based versioning system is
proposed. Finally the prototype implementation is introduced as well as lessons learned
from its implementation and usage.

The main contributions are:

1. The architecture of the framework for application and database co-evolution is
provided and discussed in context of application and database co-versioning.

2. The formal model in the Z-language specifies the most common evolutionary cases
(refactorings) and their impact on application and database. This formal framework
can be used as an entry point for an implementation of a MDD tool for co-evolution.

3. The formal model describes the basic cases of application and database co-versioning
such as branching, merging of the repository and reverting of a transformation.

4. The formal is verified by prototype called MigDb, which provides feedback on the
formal framework in a real-world scenario.

The results of the thesis improve the understanding of the area of model driven application
and database co-evolution and co-versioning.

Keywords:
application and database co-evolution, application and database co-evolution, model

driven development, formal model

Copyright c© 2014 by Ing. Ondřej Macek

iii

iv

Thesis Supervisor:

doc. Ing. Karel Richta CSc.

Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo nám. 13
121 35 Praha 2
Czech Republic

Acknowledgements

First of all, I would like to express my gratitude to my thesis supervisor, doc. Ing. Karel
Richta CSc. His efforts as thesis supervisor contributed substantially to the quality and
completeness of the thesis. I thank my colleagues for their support during my study.
I thank especially to Božena Mannová, Martin Komárek, Jan Kubr, Pavel Strnad and
Ondřej Votava. I thank to Tomáš Čechal for proofreading.

Finally, my greatest thanks to my family and friends whose support was of great
importance during the whole period of PhD study.

v

Contents

1 Introduction 2
1.1 Goals of the thesis . 3
1.2 Organization of the thesis . 4

2 Problem Statement 5
2.1 Data Evolution Process . 6
2.2 Evolution and Versioning . 8
2.3 Problems of Co-Evolution and Co-Versioning 9
2.4 Summary . 10

3 State of the Art 11
3.1 Database Evolution . 11

3.1.1 Tools for Database Evolution . 11
3.1.2 Formal and Informal Models . 12
3.1.3 Model Driven Frameworks . 13
3.1.4 Data Evolution of Non-relational Databases 15

3.2 Version Management . 16
3.2.1 State-based VCS . 16
3.2.2 Opertation-based VCS . 18
3.2.3 Model Versioning . 20

3.3 Related Work Summary . 21

4 Model of Software Evolution 22
4.1 The Architecture of a MDD Framework for Data Evolution 23
4.2 Note on Notation . 24

4.2.1 Types . 25
4.2.2 Declaration . 25
4.2.3 Schemas . 25
4.2.4 Predicates . 26
4.2.5 States . 26
4.2.6 Axioms . 27
4.2.7 Name Conventions . 27

vii

CONTENTS viii

5 Meta-Models of Entites and Database 28
5.1 Meta-Model of Entities . 28

5.1.1 Cardinality . 28
5.1.2 Types in Application . 29
5.1.3 Class . 30
5.1.4 Attribute . 30
5.1.5 Association . 31
5.1.6 Layer of Entities . 31
5.1.7 Invariants Constraining Entites 32
5.1.8 Consistency of Entities . 34
5.1.9 Transformations for Entities Manipulation 34

5.2 Meta-Model of Database . 35
5.2.1 Data Types . 35
5.2.2 Values . 36
5.2.3 Constraints . 36
5.2.4 Column . 36
5.2.5 Primary key . 36
5.2.6 Table Schema . 37
5.2.7 Foreign key . 37
5.2.8 Data Values . 37
5.2.9 Sequence . 38
5.2.10 Database . 38
5.2.11 Database Invariants . 38
5.2.12 Database Consistency . 40
5.2.13 Transformations for Database Manipulation 41

5.3 Mapping between Data . 42
5.3.1 Inverse Mapping . 43
5.3.2 Mapping Invariants . 43
5.3.3 Mapping Features . 44

5.4 Entites - Database Mapping . 47
5.5 Software . 48

6 Transformations for Co-Evolution 49
6.1 Transformation Definition . 49
6.2 Composition of Transformations . 50
6.3 Catalogue of Transformations . 51

6.3.1 Add Class . 52
6.3.2 Remove Class . 53
6.3.3 Add Attribute . 54
6.3.4 Remove Attribute . 55
6.3.5 Remove Attribute with no Data 56
6.3.6 Add Association . 57
6.3.7 Remove Association . 58
6.3.8 Remove Association with no Data 59

CONTENTS ix

6.3.9 Move Attribute . 59
6.3.10 Inline Class . 61
6.3.11 Split Class . 63
6.3.12 Extract Class . 64
6.3.13 Add Parent . 65
6.3.14 Remove Parent . 67
6.3.15 Push Down . 69
6.3.16 Push Attribute Down to a Class 69
6.3.17 Pull Up . 70
6.3.18 Pull Common Attribute Up . 71
6.3.19 Extract Parent . 72
6.3.20 Merge Classes . 73

6.4 Transformation Set Completness . 74

7 Model of Software Versioning 77
7.1 The Model of Operation-Based VCS . 77
7.2 Revert a Transformation . 78

7.2.1 Missing Inverse Transformation 79
7.2.2 Change of the Data . 79

7.3 Branches . 81
7.4 Merge of Branches . 82

7.4.1 Structural Adaptation . 84
7.4.2 Data Adaptation . 86

7.5 The Extension of Transformations for VCS 86
7.6 Software Versioning Summary . 87

8 Implementation of Prototypes 89
8.1 Transformations Implemented in the MigDb Framework 90
8.2 Case Study . 91

8.2.1 Description of the Case . 91
8.2.2 First Iteration . 91
8.2.3 Second Iteration . 93
8.2.4 Third Iteration . 93

8.3 Case Study Summary . 94
8.4 Lessons Learned from the MigDb Implementation 95

9 Conclusion 97
9.1 Results and Contribution . 97

Bibliography 99

Publications by Ondřej Macek 108

Appendices

CONTENTS x

Appendix A Queries Used in the Model 111

Appendix B Queries for VCS Manipulation 139

Appendix C Object-Relational Mapping 140

Appendix D SQL Generated by the MigDb Framework 148

Appendix E Case Study in the Java Framework 153

List of Figures

2.1 The illustration of the software components and theirs evolution 7

3.1 A difference between two software states with unclear semantic 13
3.2 The architecture of MDD based framework for data evolution. 15
3.3 Different approaches to versioning of a large software 19

4.1 The problem of data evolution from the MDD point of view. 23

5.1 The meta-model of the layer of entities. 29
5.2 The meta-model of the database. 35

7.1 The approach for transformation reverting 81

8.1 The initial state of the case study example 92
8.2 The final state of the case study . 94

xi

Listings

8.1 Implementation of the addClass transformation in the MigDb framework. 90
8.2 The transformations which produce the state of the software after in the

first iteration. 91
8.3 Transformations which extracts a common parent class and moves at-

tributes up. 93
8.4 Extracting class Address from the class Party. 94

xii

Acronyms

CVS Concurrent Versioning System

CRM Customer Relationship Management

EMF Eclipse Modeling Framework

GUI Graphical User Interface

MDA Model Driven Architecture

MDD Model Driven Development

ORM Object-Relational Mapping

OCL Object Constraint Language

QVT Query/View/Transformation

SQL Structured Query Language

VCS Version Control System

XML eXtensible Markup Language

xiii

Chapter 1

Introduction

The evolution (change) of a software is a common issue during the software development.

It occurs for many reasons in all phases of the software lifecycle. A success of a company

may rely on the speed of the development team and its capability to create a new evolved

software. The software is usually a complex system, which consists of multiple layers

(e.g. code, database, GUI) and an evolution very often affect more than one layer. The

evolution of different layers has different complexity. The code of an application can be

evolved relatively fast thanks to the developer’s IDE capabilities, whereas the evolution

of database of the same application can be very difficult especially in case there are data

stored in the database, because it has to be done manually. A change may affect only a

single software layer, but often it has to be propagated from one layer to another.

Moreover, the software evolution is often not a straightforward process. Developers

have to implement prototypes of the final product or they have to explore a possible

solution of a problem. When software is finished and prepared for release, developers

start to develop the next version. They are fixing errors or customizing software for

concrete customers and their requirements. All these activities lead to creation of various

versions of the software. There are two main reasons for maintaining various versions

of software in general. First reason is different versions of the software, which differs

significantly, however they have some core functionality in common e.g. software, which

design is customized for various customers, but the functionality is the same for all

customers. The second reason for maintaining various versions of software is the need for

maintaining the history of software development e.g. the case when we want to return

to the code of the last stable software release, when a prototype of the new software

version contains bugs. Maintaining various versions of software become an integral part

2

CHAPTER 1. INTRODUCTION 3

of software development process and the version control systems (VCS) are widely used

in the community of software developers.

A common situation when an application’s model layer (so called entities) evolves

together with a database layer is addressed in this thesis. Refactoring [1] is a very

popular practice in object-oriented environments for evolving the source code and software

architecture. Evolution of database schema and stored data is implemented separately

from source code refactoring, although the change of entities also affects the database.

Object-relational mapping (ORM) frameworks can help with propagation of the evolution

from an application to a database. However, these frameworks are usually neither capable

of solving complex refactoring cases nor they migrate data properly.

We propose a solution for the problem of entities and database co-evolution and co-

versioning, which uses the model driven development (MDD) paradigm i.e. it is based on

model transformations. The solution allows automatization of the evolution process as it

allows to co-evolve code, database schema and stored data at the same time. Because the

evolution process has to be versioned, we discuss all the important aspects of a VCS tool

(versioning, reverting, branching and merging) in context of the MDD software evolution.

The idea of the MDD approach for application and database co-evolution is illustrated

on a formal specification in the Z-language and a prototype implementation.

1.1 Goals of the thesis

This thesis discuss the idea of the MDD framework for entities and database co-evolution

and co-versioning. The main goals of the thesis are:

1. Show that the MDD solution for the co-evolution and co-versioning of application

and database is possible and that co-evolution can speed up the development pro-

cess.

2. Provide a formal model of code and database co-evolution and co-versioning in

context of MDD environment. The model of co-evolution should cover the main

evolutionary transformations and the model of co-versioning should define branch-

ing, merging of the repository and reverting of a transformation.

3. Verify the idea by a prototype implementation. Moreover the implementation

should provide a feedback on the framework behavior in real-world scenarios.

CHAPTER 1. INTRODUCTION 4

1.2 Organization of the thesis

The problems connected with application and database co-evolution and co-versioning

are described in Sect. 2 as well as solution proposals based on the MDD paradigm.

The state of the art is overviewed in Sect. 3, where different approaches to co-evolution

and co-versioning and similar solutions are introduced.

The formal model of application and database co-evolution is introduced in Sect. 4

and 5, where the architecture of the framework is introduced as well as static models.

The set of transformation for co-evolution is defined in Sect. 6. Finally the model of

co-versioning is introduced in Sect. 7.

The implementation of a prototype is introduced in the Sect. 8. The implementation

is verified on a case-study and a lessons learned are discussed as well.

Chapter 2

Problem Statement

The evolution of the software is a common issue during software development lifecycle.

The evolution can affect one or more layers of the software. The process of change propa-

gation between various software layers is sometimes time consuming and error prone. The

importance of evolution grows with the use of agile development where the prototyping

is a common approach as well as small releases. The change in requirements, continuous

integration of requirements during prototyping, software architecture improvement - all

this can cause an evolution of the whole software. This chapter introduces the problem

of software evolution in the context of data evolution from the point of view of a software

developer.

We focus on a situation when data structure changes as a consequence of an evolution.

The area of interest is not the data evolution in the context of the whole application,

which can consist of many layers such as GUI, security layer, etc. Our focus is only on

the layer of persistent objects (so-called entities) and the database itself. From our point

of view, the software is reduced to one layer (entities), whereas the database consists of

two layers - the database schema and data.

This thesis address the common situation, when a software is developed in an object-

oriented language (such as Java [2] or C# [3]) and a relational database (such as MySQL [4]

or PostgeSQL [5]) is used. This software architecture was chosen because it is commonly

used by programmers in real-world software applications. Entities’ layer and database

are linked together by an object-relational mapping which overcame the gap between the

world of objects and the world of relational data.

The developers’ point of view limits the software evolution to cases which origin on the

level of entities and are propagated to the database (so called code-first approach). The

5

CHAPTER 2. PROBLEM STATEMENT 6

change of a database structure or of object-relation mapping (e.g. because of database

performance optimization) is not regarded as an evolution in this thesis.

2.1 Data Evolution Process

The process of data co-evolution in context of application and database is often processed

by the object-relational mapping framework, which is used by developers. There are lot of

object-relational mapping frameworks available for developers, and some of them provide

tools for database evolution as well. Hibernate [6] is one of the most popular ORM

frameworks in the Java community. It provides customizable ORM for a wide range of

databases, however it does not support complex database evolution. It is capable only

to create a new table or to add a new column, hence it is not possible to, for example,

drop a table or copy values from one column to another. Another example is the Active

Record [7], which is an ORM framework in the Ruby on Rails environment. Since its first

version, it has contained support for database evolution according to the create-update-

delete principle. In the form of so-called migrations [8] which can be extended by adding

user (SQL) commands. Entity Framework [9] is Microsoft’s ORM solution for the .NET

platform, which evolves rapidly in last years. Its capabilities of data evolution support

are similar to those of Active Record.

Each of presented ORM frameworks provides support for evolutions, which change

the database structure according to change in of the application. These frameworks

are capable e.g. to add a new class as an entity and to create a corresponding table

in the database etc. On the other hand, only two of them (Active Record and Entity

Framework) are capable to update or delete structure and preserve stored data. In the

case of evolution, which needs to manipulate data, e.g. moving an attribute, none of the

mentioned frameworks provides a built-in solution. Active Record and Entity Framework

allow developers to describe the data migration manually.

Another solution widely used by developers is a tool for database refactoring and

evolution called Liquibase [10]. It is capable to migrate both database schema and stored

data. The evolution is described in form of a XML document, which can be interpreted

in various databases. At the moment the transformations for data migration are not

implemented in the default set of Liquibase transformations.

The process of data evolution can vary from project to project, but the main scenario

follows the illustration in Fig. 2.1. The process is initiated at the level of entities and

CHAPTER 2. PROBLEM STATEMENT 7

Figure 2.1: The illustration of the software components and theirs evolution: first ap-
plication code is evolved, then the database schema is generated and finally data are
migrated.

then the change is propagated to the other parts of the software. The process consists of

the following steps:

1. A new version (generation) of entities is created - the code is changed. The developer

processes this change.

2. The database schema has to be adapted to the new version of entities. This change

can be processed manually, however numerous ORM frameworks provide a genera-

tor of the schema according given entities and mapping.

3. Stored data have to be migrated from the old schema to the new one. ORM

frameworks usually do not support data migration, therefore the developer together

with the database administrator (if needed) prepare scripts for data migration. This

step is challenging because the migration has to respect not only new entities, ORM

and database schema (let us say technical features of software), but it has to respect

the domain as well. Another problem with the data migration is its feasibility needs

to be verified for each running instance of software, because the stored data and

their relations can vary from instance to instance. Therefore developers should

prepare not only migration scripts, but a verification script as well.

These steps have to repeat every time an evolution occurs. At least the last step of data

evolution (data migration) needs manual work. Moreover, the transformation semantic

CHAPTER 2. PROBLEM STATEMENT 8

has to be defined twice - once for the code and once for the database. Automatization of

the data migration can speed up the development process.

2.2 Evolution and Versioning

The software evolution is often not a straightforward process. Developers have to im-

plement prototypes of the final product or they have to explore a possible solution of a

problem. When software is finished and prepared for release, developers start to develop

the next version. They are fixing errors or customizing software for concrete customers

and their requirements. All these activities lead to creation of various versions of the

software. Maintaining various versions of software become an integral part of software

development process and VCS are widely used in the community of software developers.

There are numerous implementations of VCS available. We differ them into two

groups according to the approach they use for versioning. First group of state-based VCS

is based on maintaining the states of the software, whereas the second group of operation-

based VCS is based on maintaining the transitions from state to its following state. In

the following sections, we introduce both groups and we discus how they approach to

versioning and their other features (see Sec. 3.2).

The activities connected with the software versioning can be described in terms of

evolution. The process of creating new versions is equal to evolution, which preserves

all previous states of the software. Branching is the process of creating different versions

of the same software - different evolution lines. Reverting a change is equivalent to the

degeneration of the software (i.e. backward evolution). The revert in previous state

means that the state of the application (and the database) structure is restored. Because

the data themselves are not stored in the VCS (which is a best practice) we can lose data

we stored since the version we are reverting too. This is problem in case of deployed

software when the stored data contain important business information. We have to know

the semantics of the change in case we are going to revert it and we want to preserve

stored information. The semantics of the change can provide information if the revert

is feasible without the data loss and how the data have to be adapted to the reverted

state. The semantics of the change is maintained as a text message from a developer,

which often explains why the code was changed (e.g. to solve some bug) but not how

it was changed. The information how the code was changed is important for the revert

without data loss. If it is not in the VCS than it has to be obtained e.g. by comparing

both states.

CHAPTER 2. PROBLEM STATEMENT 9

Because of this connection between versioning and evolution we decide to pay atten-

tion to the phenomenon of software versioning in this thesis as well.

2.3 Problems of Co-Evolution and Co-Versioning

The process of data evolution is considered to be a difficult task during the software

development. This is caused due to following reasons:

1. Manual processing A lot of current ORM frameworks do not provide support for

the data evolution as they implement the ORM only. Some of them provide the

solution for the database schema evolution and do not handle the data migration;

therefore the data evolution process needs to be processed manually.

2. Multiple definitions of the evolution Even when there is only one small evo-

lutionary step to be processed, a developer has to define its semantics twice. The

basic definition is for entities; the second is for the database (both schema and

data).

3. Feasibility verification Because data evolution influences three different layers

(entities, database schema and stored data). Its feasibility depends on the evolu-

tion’s feasibility on each layer. The structure cannot be evolved if it is not feasible

to migrate data. The feasibility needs to be verified for each deployed database as

stored data differ from the software instance to the instance and thus the evolution

feasibility may differ as well.

4. Verification of success Once the database code is changed and the database

migrated the result should be verified if the migration has been processed properly.

5. Lack of automatization of the whole process Set of standard evolutions of

the level of entities is known (refactorings) and it is automated by many IDEs.

However, this set is not propagated to the database automatically. The lack of

automation slows down the software development.

The automatization of data evolution can significantly speed up the time needed for

developing a new software release. Our goal is to provide a solution, which is able to

verify the feasibility of the evolution process. Functionality of such a tool has to be

verified carefully because a data loss during evolution could have serious consequences.

We have extended the data evolution by terms from software versioning - such as

versioning, branching etc. This adds two more problems to the list:

CHAPTER 2. PROBLEM STATEMENT 10

6. Reverting a change can result in an inconsistent state of the software or in data

loss. The existing tools does not provide mechanisms for assuring safe revert.

7. Semantics versioning of multiple software layers is not supported by current

VCS. Although there is usually one change which affect multiple software layers,

the VCS tools are not able to keep the semantics of the change effectively.

2.4 Summary

Data evolution is a common part of a software development process. The current ap-

proaches prefer the data evolution on the database schema level and its propagation to

the level of entities. We focus on the developers in this thesis in contrast. It means we

try to provide support for common developers’ activities such as coding and refactoring.

The current process of application and database co-evolution has several issues, which

have to be solved.

Chapter 3

State of the Art

The need of application and database co-evolution results in many industry or research

projects and implementations. These projects are at various formal levels and use various

approaches to the data evolution problem. We provide an overview of the main directions

and success in the area in this section.

3.1 Database Evolution

There are many tools which help with database administration. These tools are capable

of database refactorings. Some of them use a conceptual modeling and MDD.

3.1.1 Tools for Database Evolution

The MeDEA project [11] offers a tool for automatic evolution of both database schema

and stored data based on a model-driven approach. The framework is meant to be used

by database administrators; therefore it is aimed at database structures (such as views),

which are not considered by software developers

PRISM is a research project for data management under schema evolution [12] in

contrast with our proposal and with MeDEA it extends the SQL command set by so-

called schema modification operators which implement the schema evolution. The project

is meant to be used by database administrators (as well as MeDEA).

Project DB-MAIN [13] provides a MDD approach to data evolution of application

and database as well. The project is well documented formally. DB-MAIN starts with

a database modification and a database migration, and entities are created accordingly;

11

CHAPTER 3. STATE OF THE ART 12

whereas our focus is on entities evolution, which is then propagated to a database with

an emphasis on automation. Our goal is to hide the entire database level from our users.

The project IMIS [14] follows the same idea of applying MDD into evolution of a whole

software, but does not provide a formal model or an overview of capabilities (defined

transformations). An evolutionary approach to data evolution is described in [15], which

allows a database schema change to be propagated into the stored data and entities in the

programming language. The evolutions described in the paper are for creating, updating

and deleting of basic structural elements.

Most of the frameworks provide good service for database administrators, but they

are not design to be used by developers. The frameworks implement only the basic

transformations (i.e. the refactorings are not implemented).

3.1.2 Formal and Informal Models

The problem of application and database co-evolution is examined in formal models as

well. We provide a several models, which describe the problem. There are many other

formal frameworks published [16, 17, 18, 19]. These frameworks use various approaches to

describe the changes - extension of relational algebra, graph transformations and others.

Most of them focus only on simple scenarios (adding or deleting of table, reference or

column) or they consider only the database structure.

The taxonomy of relational database evolution based on the entity-relationship model

is proposed in [20]. The evolution is described as a change in the entity-relationship model

and change in the relational database. The change semantics patterns in the context of

a conceptual schema is described in [21], although its impact on the database schema or

data is not described. The main cases of data evolution are defined in both publications,

however the description is informal. The extensive set of possible database refactorings is

provided in [22], where both schema and data evolution is discussed. The refactorings are

intended to be used by database administrators, thus it assumes database-first approach

to evolution whereas our proposal is application-first.

A general formal framework for database evolution is defined in [23]. The framework is

based on a set of basic graph transformations, which are then extended to transformations

of the entity-relationship model. The framework does not consider stored data. The

contribution of the formal framework is the definition of equivalent structures in schemas.

A categorical framework for migration of object-oriented systems is proposed in [24].

This framework defines the refactoring of objects, data and methods, which are the main

CHAPTER 3. STATE OF THE ART 13

Figure 3.1: A difference between two software states with unclear semantic - one expla-
nation is one attribute (Person.Address) and one association (Person–City) was removed
and a new class was added, as well as a new association. Another explanation is the
attribute was extracted into a new class and the association was updated.

objectives of the framework. The influence of the object change on a relational database

is not considered in the paper as it is aimed at object-oriented systems only.

3.1.3 Model Driven Frameworks

The model driven frameworks for application and database co-evolution described in

this section are direct competition to our proposal. In this section we introduce more

projects which use the MDD approach to application and database co-evolution (some

MDD projects are introduced in Sec. 3.1.1) and we introduce possible MDD approaches

to the problem of application and database co-evolution.

Co-Evolution Based on Model Matching

The co-evolution based on model matching uses the backward round-trip engineering,

when a backward round-trip algorithm is used to describe the difference between the old

and new model of software state (in our case in a model of software). The differences then

serve to derive the semantics of the change - the way in which the model was changed

between versions.

There is one problem with the use of model matching: cases of evolution, which

cannot be derived automatically. A user input is needed in order to verify the differences

between the old and the new model. An example of a problematic situation is shown in

Fig.3.1. The difference between two states is a missing attribute of a class, association

and a new class. There could be several possible interpretations for such a change.

The interpretations are not so important for the source code layer, but can have fatal

consequences if they refer to stored data in a database.

The process of data evolution proceed in this case in following steps:

CHAPTER 3. STATE OF THE ART 14

1. Initial and final model is compared. The probable causes are derived from the

difference between models.

2. User chooses the right cause of evolution and adds detailed information about the

transformation.

3. The evolution is propagated into all relevant models of software or into database

(via an SQL script).

Advantage of this approach is that there is only one type of artifact needed - the

model of software. The rest is derived from the models and the user input. On the other

hand, it is therefore difficult to identify large changes in the system.

Co-Evolution Based on Transformations

The second MDD approach to data evolution is based on forward engineering. This ap-

proach is used e.g. in [25], where a forward-oriented evolution of application is proposed.

In our proposal we focus on the co-evolution and the database. It means that the evo-

lutionary transformations has to be defined for the entities as well as for the database

schema and data. In our case, the evolution of the whole software is interpreted as enti-

ties evolution and database evolution. The difference between initial and final software

version is defined as a transformation or sequence of transformations.

The principle is illustrated in Fig. 3.2. Each transformation contains information

needed for entities evolution as well as for database evolution. These transformations

are interpreted in the context of the application, the database schema and data. The

evolution of the database schema model needs to be interpreted in a real database instance

- it means the SQL scripts for schema alternation (re-generation) and for data migration

have to be created and executed.

The evolution then proceeds in following steps:

1. The evolution is defined as a subset of transformations from the set of the evolu-

tionary transformations.

2. The evolution is interpreted in the application level and a new model of the appli-

cation is created. Verification of evolution feasibility on the application level is a

part of the creation of the new application model.

3. The evolution is interpreted for the database level which means:

(a) A new model of the database schema is created.

CHAPTER 3. STATE OF THE ART 15

Figure 3.2: The architecture of MDD based framework for data evolution.

(b) An SQL migration script is created for the stored data. The script is created

in SQL dialect specific to the concrete database used in the software.

4. The SQL script created in the previous step 3b can be executed on all databases

deployed. Feasibility of the evolution and data consistency has to be verified.

This approach is more suitable for developers because it respects the direction of

evolution (from old to new) and thus corresponds more with the way a programmer

thinks, and because there is no need to implement a round-trip algorithm for model

matching. Moreover there is one further advantage: because the evolution has only one

source. The semantic of the evolution is known on all levels all the time, and the behavior

of the evolution on the entities and the database schema level can be simulated. This

approach is able to solve all issues related to evolution mentioned in Sec. 2.3.

Example of such an tool is a meta-model based approach to data evolution is pro-

posed in [26]. The solution is based on extended UML meta-model. It provides similar

capabilities to change in application and database as our proposal does. In contrast

our proposal is created with respect to ORM domain and therefore we extended the

application meta-model with constructs typical for this domain.

3.1.4 Data Evolution of Non-relational Databases

The issue of database evolution is discussed not only for relational databases, but for

object-oriented databases as well. There is proposed an approach, which evolve schemes

of object-oriented databases in [27] which based on a set of schema invariants (representing

CHAPTER 3. STATE OF THE ART 16

the attributes of the schema) and a set of rules for invariant preserving in case schema

changes. The impact of evolution on instances is considered as well. The approach is

presented informally.

The formal definition of evolution of object-oriented databases is presented in [28].

The approach is based on a type system representing the database schema as axioms,

which defines the schema structural constraints, and changes, which evolve the system.

There are three change operators: add, remove and modify defined in the paper. The

model satisfies the attributes of soundness and completeness.

The SERF framework [29] provides a similar functionality to the user of an object-

oriented database as our proposal for the user of a software based on ORM. The SERF

approach is based on templates, which a user can create and maintain. Limitation and

condition of some evolution cases are discussed in [30].

There are also works in the areas of object databases and XML databases [31]. These

works provide solutions specific to the concrete types of databases using various ranges of

solutions - domain specific languages [29], extensions of existing standards or MDD [32] or

formal specification [33]. These solutions are inspiring, however the domain of the ORM

has its specific issues, so a solution from another domain has to be adapted carefully.

3.2 Version Management

The versioning of software is represented by the two main approaches - state-based and

operation-based versioning systems. Because we use the MDD we are interested in ver-

sioning of models as well. Techniques of version management are introduced in [34],

where comprehensive survey on software merging is provided as well. Concepts of a

unified versioning tool are presented in [35].

3.2.1 State-based VCS

State-based VCS such as CVS [36], SVN [37], Mercurial [38] or Git [39] are very popular

nowadays. Their implementation is based on preserving of an ordered sequence of software

states. The states can be saved in various forms in the VCS. The easiest way is to store

a complete snapshot of all files, however this could be quite ineffective approach, because

the size of the storage increases dramatically with each commit. Thus, some VCS store

only the files, which have changed since the previous commit.

It is important to notice that the two following states could differ significantly as the

frequency of commits depends on the developer. In an extreme case, the initial state could

CHAPTER 3. STATE OF THE ART 17

be an empty initial commit and the following final state can contain the final version of

the software. The evolutionary approach depends on developer, which uses the VCS. The

semantics of the difference should be described in the message appended to the commit,

however many developers are very undisciplined and their messages are very vague (e.g.

’minor changes’), then the difference semantics stays unclear (as it was in example in

Fig. 3.1). If a change affects more than one software layer is often hard to identify where

the change origins from or its semantics is often unclear.

Approaches similar to the versioning are used for creating branches. Some VCS create

a new copy of the software, whereas other create a branch as a new set of files, which

changed. The process of branch merging consists of three steps: 1) identification of

collisions 2) collision solving 3) merge of compatible branches. The identification of

collisions depends on concrete VCS and format of stored files e.g. the comparison based

on the difference of lines is used in case the plain text files. The detection of collisions is

based on the difference between two states. The collision solving in common state-based

VCS is done manually by accepting one or the other version as final. After all conflicts

are solved, merging both branches into one can create the final state.

The fact the most popular VCS are used for versioning of plain text files means that

other file formats are hard to maintain in these VCS. Problematic can be binary files,

whose content is not human-readable and thus the conflict detection is impossible. This

problem is observed not only in case of binary files but in the case of XML files as well.

The XML format is very popular format for storing configuration records, models and

other kinds of structured information. In case of the XML files, the human readability

is one problem, the second problem is that a different structure (order of elements) of a

XML file is interpreted as a change in the VCS although the semantics of the document

did not change.

The versioning of plain text files without exact record of the semantics of the change

between versions is problematic in situation when the change affect multiple software

layers. A change in security configuration can affect stored data and GUI as well and

vice versa. The origin and the semantics of the change is hard to obtain from the VCS if

there is no information about change’s semantics stored in the VCS.

The state based VCS are very popular nowadays because of its simplicity and orienta-

tion on plain text files containing code. Although the semantics of change is defined only

by an informal textual message created by a developer. Nevertheless in case of model

driven production line we can reach another limitation - the low capability to maintain

CHAPTER 3. STATE OF THE ART 18

versions of models, which are represented in XML or in some proprietary format. In

model driven production line we can benefit from usage of an operation-based VCS.

3.2.2 Opertation-based VCS

The operation-based VCS [40] are based on maintaining an initial version of the software

and sequence of transformations. Application of the sequence on the initial version pro-

duces the actual version of the software. This approach can improve the understanding of

change between states [41]. The initial version is usually an empty software (e.g. a basic

project structure), however any consistent and valid software can be used as the initial

one in case the versioning starts later during the software development. Transformation

is the difference between software versions therefore the semantics of the change between

versions is always known and the difference always represents one single change.

Creating of branches in operation-based VCS is similar to in the case of the state-

based VCS. A new copy containing the whole history record can be created or a new

history record can be made, which will contain alternative subsequence of transitions

since the point, where the branch was created. The process of merging is again similar,

however instead for searching a new consistent state, we are searching for a new well-

formed sequence of transitions, which produce the requested final state. The process

could consist of the following steps: 1) construction of all possible well-formed sequences

of transitions, which conform to the history of both branches 2) choosing sequences, which

produce the requested final state 3) picking one sequence as the new history record.

The state-based VCS are used to maintain versions of all kinds of files, although

popular implementations recommend to use plain text files. In contrast, operation-based

VCS are recommended in situations when the versioned data are structured, because

then they can be easily evolved by transformations. Therefore operation-based VCS are

popular for versioning of models. On the other hand, this feature limits usability of

operation-based VCS, because a set of possible transformations has to be defined for

each meta-model (file format or content type). Moreover, a large group of meta-models

requires larger group of transitions.

The versioning of multiple software layers in state-based VCS is implemented in the

same way as versioning of one software layer or plain text file. In contrast in operation-

based VCS we can use the knowledge of the semantics of a change to effectively co-version

multiple software layers at once. We propose three possible three approaches to versioning

of multiple software layers in operation based VCS in [42].

CHAPTER 3. STATE OF THE ART 19

(a) (b)

(c)

Figure 3.3: Different approaches to versioning of a large software - set of history records
for each software aspect can be maintained (Fig. 3.3a) or a model considering all aspect
of software can be created (Fig. 3.3b) or transformations can be interpreted for multiple
models (Fig. 3.3c).

The first approach (in Fig. 3.3a) assumes there are separated metamodel and his-

tory record for each layer of software. When change is applied on a concrete layer of

software then the consistency verification with all other models has to be performed as

well or the layers have to be separated in a way that their change does not affect other

layers. Therefore creation of such an operation-based VCS is challenging. Maintenance

of such a tool would be challenging as well. An advantage of this approach is that all

information about specific layers of an application is in one place and is not mixed with

other information, which can improve the users’s understanding of each single model and

its changes. This is quite an ideal situation because the software aspects are mutually

dependent. Therefore another solution has to be used in real-world scenarios.

Second approach consists of creation of a metamodel, which contains information spe-

cific for numerous software aspects. This approach assumes that an application structure

can be described by one model as illustrated in Fig. 3.3b. The benefit is that all informa-

tion is in one place and the consistency of only one model has to be verified when changing

an application. The obvious disadvantage is a creation of one omnipotent (meta)model.

Not only the creation of such a metamodel is challenging as the metamodel should be

stable during the software lifecycle, but also such a metamodel is hard to maintain and

share with other developers and new team members. Finally the model describing a

whole software can be hard to maintain as well and such a model can quickly become

confusing for larger software. The feasibility and consistency verification takes part dur-

CHAPTER 3. STATE OF THE ART 20

ing (or after) the execution of transformations. Adding a new software aspect into the

metamodel means to re-define all existing transformations.

The last solution (illustrated in Fig. 3.3c) consists in interpretation of transformations.

Instead of creating one omnipotent (meta)model, an interpretation of each transforma-

tion is defined for each layer and its model. In other words, the change described as a

transformation from one software state to another is interpreted as transformations on

various metamodels. The interpretations should behave as one transaction - interpreta-

tion is applied on a set of consistent models and after the last interpretation is finished

the result is again consistent. Each interpretation can be considered as a module and

this modularity enables to build various operation-based VCS with different capabilities

and purposes. This approach combines advantages and disadvantages of both previously

mentioned approaches.

Each proposed approach has its pros and its cons and its use depends on a concrete

style of MDD, which is used in the model driven workflow. Next criterion is a size of the

application and complexity of an application domain. Multiple models may be useful if

the application domain is too complicated or if some aspect needs special care, in contrast

the omnipotent model could not be a problem in case of small applications. However the

approach based on interpretation of transformation is a compromise solution, thus we use

this structure of an operation-based VCS for our future experiments.

3.2.3 Model Versioning

The problem of model versioning can be reduced to the versioning of text files if a textual

modeling language is used [43]. However, more common approach is based on versioning

of models in their native (or proprietary) form, which is usually an XML-based format.

A tool for meta-model and model co-evolution is a part of EMF [44] which uses a

transformation based approach to versioning of meta-models and models. On the other

hand, it fails to provide all capabilities of VCS.

An approach for model versioning is described in [45]. The solution is represented

on an example of databases, which are represented as graphs. Operators and morphisms

are defined to manipulate the graph representation. Each change can be propagated into

relational databases or XML Schema. Comparison of models is based on model matching

in this case, which can cause semantic misunderstandings of the change.

Many CASE tools such as Enterprise Architect [46] support model versioning. A prob-

lem with these solutions is that the semantics of the changes are often unclear, because

the difference between two states is based on model matching. The next problem is that

CHAPTER 3. STATE OF THE ART 21

the solutions are often proprietary and cannot be used together with code versioning. The

area of model versioning is covered by surveys on model versioning approaches [47], [48].

The last provides not only information about model versioning approaches and tools,

but indicates challenges of model versioning as well. Topics such as generic VCS, fine-

tuning of model comparison, accurate conflict detection, representation and resolution

are introduced.

One of the crucial issues when implementing a VCS is merging of branches. An

approach based on versioning of models and users collaboration is presented in [49], a

formal approach for merging EMF models is described in [50] and [51] introduces model

merging based on transformations in the EML language. A practical implementation of

model comparison is the EMF versioning tool called EMF Compare [52].

The next important topic in VCS construction is verification of consistency. Com-

paring lines of text in common VCS solves the problem. Another approach has to be

used for versioning models or in case of an MDD. The problems of model consistency are

addressed in [53], [54] and [55].

There exists an approach to detect model inconsistencies introduced in [54], which is

based on transformations as well. It detects inconsistencies in use-case or requirements

models, but it can be extended to work for more kinds of UML models. The problem of

structural and methodological inconsistencies is solved by a set of validations predicates.

Various approaches to creation of version control by using MDD and thirs benefits to

developers’ work are measured according to their productivity and performance [56]. As

an example, the domain of relational databases is used in the paper. We share some ideas

described in this paper such as using a set of transformations for software evolution.

3.3 Related Work Summary

There are many approaches to data evolution and versioning. These approaches vary in

used language, database type, its formal definition or by its complexity. Most of them

should be used by database administrators and their use by developers is complicated.

There are frameworks, which share our idea of MDD approach to data evolution. How-

ever, we were not able to find a framework, which handles the code, the database schema

and stored data and describes complex transformations at the same time. On the other

hand, many frameworks especially at the database level are very mature.

Chapter 4

Model of Software Evolution

The Model Driven Architecture (MDA) [57] describes the MDD as a software develop-

ment approach based on multiple models at various levels of abstraction. The models are

created with respect to meta-models, which helps to define the concrete problem and its

context. Models and abstraction levels are connected by semantic links and by transfor-

mations. Semantic links are used to represent that an element in one model represents

the same entity modeled as an element in another model; transformations provide the

execution logic, which can change the state of the model or create a new model. A spe-

cific transformation is code generation, when a model is transformed into a programing

language, however the code can be considered to be a (textual) model. Because of various

levels of abstraction we differ horizontal transformations on the same level, and vertical

transformations between different levels.

The model driven development provides a good framework for automatic evolution of

software [26] [58]. In this section, we describe how the MDD could help in addressing

the problems connected with the data evolution. We published the formal framework

presented in Sect. 4 and Sec. 6 in [59]. The framework defined in the Z language is very

large. All schemas and functions important for the model are described in the following

sections or are attached in appendices. However we have to shorten some declaration,

therefore we provide the full version of the Z definition on-line [60].

22

CHAPTER 4. MODEL OF SOFTWARE EVOLUTION 23

Figure 4.1: The problem of data evolution from the MDD point of view.

4.1 The Architecture of a MDD Framework for Data

Evolution

The data evolution can be modeled as showed in Fig 4.1. Entities and database schema

are represented as models created according to their meta-models. Some authors prefer to

use only one conceptual model representing both layers of entities and database schema.

Our approach uses two different models because it gives us the possibility to use various

meta-models in future so we can e.g. model XML or other No-SQL databases instead

of relational ones. Next advantage of separating models is that platform specific models

can be used and the models can be used in more complex real-world scenarios.

The ORM can be described as a vertical transformation, which produces a database

schema model according to the given model of entities. The ORM affects the way how

entities and database co-evolve.

The data evolution is represented as a horizontal transformation. Each change of

entities results in a change of database. Each transformation defines a semantic difference

between the two states. The transformation is interpreted as an SQL script for migrating

a real database.

We choose to use the transformation-based approach to evolution. Therefore there is

the meta-model of the application and the set of transformations to evolve an application

CHAPTER 4. MODEL OF SOFTWARE EVOLUTION 24

model (see Fig. 3.2). The model of the database is not a necessary component of the

framework and there are many related projects, which use only one (conceptual) model.

However, we included it in the model for following reasons: i) the database model can be

used in more complex MDD scenarios e.g. another transformations may affect the model

or multiple models can be used as input for database schema generation ii) the database

model allows us to work on the platform specific level iii) the model of database helps us

to simulate the evolution before it is applied on the real instance of the database iv) the

database model provides the opportunity to simulate the behavior on stored data.

The evolution is code-first therefore they have to respect the application domain.

In contrast, database migration often needs information not only about the database

level but the application level as well the database migration needs information, which is

not available at the application level. Therefore we need special transformations, which

contain information needed for both levels. These transformations have to be interpreted

on both levels - application and database. This enables us to avoid multiple definition of

evolution.

All transformations and their interpretation are defined correctly so the user of the

framework can rely on it (e.g. the data preservation should be assured after their execu-

tion). Therefore we introduce a formal definition for all transformations in Sec. 4.

The code of an application can be obtained directly from the model as well as the

database schema. However, this is not part of our model, but it was implemented in

prototypes (see Sec. 8).

We introduce the architecture of the framework for data evolution and models of its

parts. The meta-models of static models are introduced and the evolutionary transfor-

mations are defined. We can define the operation-based versioning system, which uses

defined transformations as the history sequence, which is interpreted for the application

and for the database.

4.2 Note on Notation

The formal model is defined by using the Z notation [61] and some practices used in the

presented models were inspired in [62] and [63]. We briefly introduce the meaning of Z

notation’s symbols used in the model in this section.

CHAPTER 4. MODEL OF SOFTWARE EVOLUTION 25

4.2.1 Types

A type can be declared by its name only:

[TYPENAME]

or as an enumeration of its values:

BOOL ::= True | False

4.2.2 Declaration

A variable is defined by its name and its type:

varname : TYPENAME

4.2.3 Schemas

The main symbol of the Z notation is the schema, which can represent a static definition

of named tuple, transformation or predicate. Each schema is divided into two parts - the

first part defines the variables used in the schema and their types, whereas the second

part contains predicates defining a structural unit of a model or a change of the state of

a model. A schema can be denoted in a named vertical form:

SchemaName
declaration

predicate

or in an anonymous horizontal form:

[declaration | predicate]

We use the vertical form to define meta-models and their elements and transformations.

The horizontal form is used in the transformations’s definitions as a container for sub-

transformations.

CHAPTER 4. MODEL OF SOFTWARE EVOLUTION 26

4.2.4 Predicates

The predicates can be composed by logical symbols. A new line between two predicates

is considered to represent ’∧’.

Schemas themselves can be used as predicates, thus the schemas can be concatenated

by logical operators as well.

Predicates often use following notation: ∀ t : TYPE • P which has to be read as

{∀ t ∈ TYPE | P}, where P is a predicate.

4.2.5 States

The system can be in various states. The representation of one variable in two states is

denoted by the apostrophe symbol. A variable without apostrophe is considered to be

defined in the initial state, whereas variable with the same name, which is decorated by

the apostrophe is the same variable in the final state. The same can be used for schemas.

The schema, which defines the difference between two states is called transformation.

Delta Notation

To shortcut the notation of declaration in case we define change between states we use

’δ’ and ’Ξ’ notations.

To note the schema changed during the transformation, we use the symbol ’δ’, which

is defined as:

∆[X]
X
X ′

Xi Notation

If the change of a variable in the schema is not defined explicitly, we considered the value

of the variable was not changed by the transformation. To note the whole schema is not

affected by the transformation we use the symbol ’Ξ’:

Ξ[X]
X
X ′

X ′ = X

CHAPTER 4. MODEL OF SOFTWARE EVOLUTION 27

If the X represents a whole schema not just a simple variable, then the inner declarations

can be accessed directly by theirs names (e.g. X .varname). The whole schema can be

addressed by using the θ symbol.

Preconditions of a Transformation

The function pre [62] is defined to obtain all predicates describing the initial state of a

transformation and the function decl can be used to obtain all declarations of a schema:

pre : SCHEMA→ PPREDICATE
decl : SCHEMA→ PDECLARATION

4.2.6 Axioms

Axioms, which defines features of a model, and functions, which are used to query models,

are defined in Z by using so-called axiomatic definitions:

declaration

predicates

4.2.7 Name Conventions

We decide to use different name conventions in the model:

• Schemas, which represents elements of (meta-)models, have names in upper case

letters (e.g. CLASS).

• Schemas, which represents transformations are in lower camel case (e.g. initClass)

as well as functions’ names.

• A variable name which ends with the ’?’ symbol denotes an input variable of a

schema (transformation) - e.g. inputParameter?.

• Variables, which end with the ’ !’ symbol denoted an output variable of a schema

(transformation) e.g. outputParameter !.

• Variables without a special symbol are considered to be local variables.

Chapter 5

Meta-Models of Entites and

Database

The model of application has only one layer - entities, whereas the model of database

models two database concepts - database schema and data. Although the database

evolution and data migration could be modeled using one conceptual model we decide to

use two different models. It is because we like to emphasize that we focus on application

evolution and its propagation into database. Next reason for two models is that separate

models could be extended or adapted to specific conditions easier than one model used

for both concepts. Of course our models are limited in contrast with real-world systems,

but they illustrate the main problems of entities and database co-evolution.

In all models we assume there is a set of labels which serves as identifiers of the

elements in the model:

[LABEL]

5.1 Meta-Model of Entities

The application model models a simple structure of classes, their attributes and associa-

tions between classes. The meta-model is in Fig. 5.1 and all meta-models’ elements are

defined in the following sections.

5.1.1 Cardinality

The cardinality is used to specify the associations between classes. It is common to use

positive natural numbers to set the cardinality of an association, however for sake of

28

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 29

Figure 5.1: The meta-model of the layer of entities.

model simplicity we decide to use only one-to-one and one-to-many associations. Thus

the cardinality is defined as follows:

CARDINALITY ::= One | Many

5.1.2 Types in Application

Application type (ATYPE) represents primitive types in the application. There are

typically defined types such as String, Integer, Boolean etc. in a typed programming

language. Type casting is not part of transformations defined in this thesis, because

we focus on structural changes and their impact on data in the first place. Therefore

we choose to define only one universal type in an application. However, types and type

casting can be integrated into the described model and transformations. Each type is a

member of the set:

[ATYPE]

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 30

Although we are not interested in type castings, we decide to make an attribute type

part of our model for two reasons. First reason is it the difference between attributes of

primitive types and from attributes of types based on other modeled classes, which are

in our model represented as associations. Second reason is it helps us to keep in mind

that application and database types are not the same.

5.1.3 Class

Class represents a basic organizational unit in the application model.

CLASS
label : LABEL

All classes creates a domain with the bottom defined as:

NULLCLASS : CLASS

5.1.4 Attribute

Attribute represents a feature of a class which is represented as a primitive type. An

attribute can be optional and according to its cardinality, it can represent a single value

or a collection of values. The label identifies the attribute in the context of the owning

class.

ATTRIBUTE
optional : BOOL
upper : CARDINALITY
type : ATYPE
label : LABEL

The relation between an attribute and a class is represented by the ATTRIBUTEOf -

CLASS schema. The class in the relation with an attribute is called owning class of the

attribute.

ATTRIBUTEOfCLASS
class : CLASS
attribute : ATTRIBUTE

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 31

5.1.5 Association

Association represents a connection between two classes. The association is unidirectional

- each transformation has a source class and its target class. The source class of the

association is considered to be the owning class of the association. The associations allow

to model relationships of cardinality one to one and one to many.

ASSOCIATION
label : LABEL
upper : CARDINALITY
optional : BOOL
source : CLASS
target : CLASS

A class in the application can be members of an inheritance hierarchy.

INHERITANCE
parent : CLASS
child : CLASS

5.1.6 Layer of Entities

An application is described as a set of classes, attributes, associations and its relation-

ships. It creates the context for all structures used in the software persistent layer.

ENTITIES
classes : PCLASS
attributes : PATTRIBUTE
associations : PASSOCIATION
attributesOfClasses : PATTRIBUTEOfCLASS
inheritance : P INHERITANCE

A special kind of ENTITIES is used to denote an inconsistent layer of entities:

ERRENTITIES : ENTITIES

The ERRENTITIES is a bottom of the domain of all ENTITIES .

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 32

The transformations, which are capable to change the structure of entities are defined

in Sec. A.2. Set of functions, which query the layer of entities and its parts is defined in

appendix A.1.

5.1.7 Invariants Constraining Entites

The model itself provides only definitions of structural elements of the model. These

definitions are extended by a set of invariants, which define essential features of models.

Label Uniqueness

The labels identify elements in the model, therefore all class’ labels has to be unique in

the model:

∀ e : ENTITIES ; c1, c2 : CLASS •
c1 ∈ e.classes ∧ c2 ∈ e.classes ∧ c1.label = c2.label ⇒ c1 = c2

∀ e : ENTITIES ; poc1, poc2 : ATTRIBUTEOfCLASS •
poc1 ∈ e.attributesOfClasses ∧ poc2 ∈ e.attributesOfClasses ∧
poc1.class = poc2.class ∧ poc1 6= poc2 ⇒

(poc1.attribute).label 6= (poc2.attribute).label

Labels of associations are unique not in context of the whole entities model, but in

context of a single class only.

∀ e : ENTITIES ; a1, a2 : ASSOCIATION •
a1 ∈ e.associations ∧ a2 ∈ e.associations ∧
a1.label = a2.label ⇒ a1 = a2 ∨ a1.source 6= a2.source

Label Uniqueness within Inheritance Hierarchy

The names of attributes and associations have to be unique not only within one class,

but in the context of all parent classes in the hierarchy as well:

∀ e : ENTITIES ; c1, c2 : CLASS ; par : PCLASS ; p1 : ATTRIBUTE •
par = parentOf (c1, e)∗ ∧ c2 ∈ par ∧ c1 ∈ e.classes ⇒

p1 ∈ attributesOf (c1, e) ∧ p1 6∈ attributesOf (c2, e)

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 33

∀ e : ENTITIES ; c1, c2 : CLASS ; par : PCLASS ; a1 : ASSOCIATION •
par = parentOf (c1, e)∗ ∧ c2 ∈ par ∧ c1 ∈ e.classes ⇒

a1 ∈ associationsOf (c1, e) ∧ a1 6∈ associationsOf (c2, e)

Attributes Are Owned by Classes

If there is attribute in the entities layer, then it has to be owned by a class. And each

class which is in a relation to an attribute has to be member of the entities’ classes:

∀ e : ENTITIES ; p : ATTRIBUTE •
p ∈ e.attributes ⇔ ∃ poc : ATTRIBUTEOfCLASS •

poc ∈ e.attributesOfClasses ∧ p = poc.attribute
∀ e : ENTITIES ; c : CLASS ; poc : ATTRIBUTEOfCLASS •

c = poc.class ⇒ c ∈ e.classes

Associations Are between Entities’ Classes

If there is an association in the entities layer then both source and target classes have to

be in the entities’ classes:

∀ e : ENTITIES ; a : ASSOCIATION •
a ∈ e.associations ⇒ ∃ cs , ct : CLASS •

cs = a.source ∧ ct = a.target ∧ cs ∈ e.classes ∧ ct ∈ e.classes

Inheritance between Entities’ Classes Only

The inheritance relationship can be defined only between classes which are part of the

entities’ classes:

∀ e : ENTITIES ; i : INHERITANCE •
i ∈ e.inheritance ⇒ ∃ cp , cc : CLASS •

cp ∈ e.classes ∧ cc ∈ e.classes ∧ cp = i .parent ∧ cc = i .child

Only One Parent of Class

There is at most one parent for a class:

∀ e : ENTITIES ; i1, i2 : INHERITANCE •
i1 ∈ e.inheritance ∧ i2 ∈ e.inheritance ∧ i1.child = i2.child
∧ i1.parent = i2.parent ⇒ i1 = i2

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 34

No Cyclical Inheritance

The inheritance cannot be cyclical:

∀ e : ENTITIES ; c : CLASS •
c ∈ e.classes ⇒ isInheritanceCyclical(c, e) = False

5.1.8 Consistency of Entities

The invariants create a type system of entities layer. If all invariants are fulfilled, then

a model is consistent otherwise we consider the model to be ERRENTITIES . The con-

sistency or inconsistency of the entities’ layer is important in order to the evolutionary

transformations. An evolutionary transformation cannot be applied on an inconsistent

layer of entities.

5.1.9 Transformations for Entities Manipulation

The transformations, which are able to change the layer of entities are used during the

software evolution. The transformation we defined are introduced in this section infor-

mally and their formal definitions of selected transformations is in appendix A.2. The

selected set does not represent all transformations for the entities’ layer nor the minimal

set of transformations. Selected are the transformation used during the evolution of the

software as defined in Sec. 6. The transformation has name with suffix ”-EL”.

• addEntityEL The transformation adds a new entity into the entities’ layer.

• removeEntityEL Removes an entity from the entities’ layer.

• addAttributeEL Adds the given attribute into the given class.

• removeAttributeEL Removes the given attribute from the given class.

• addAssociationEL Adds a new association between two classes into the entities’

layer.

• removeAssociationEL Removes an association between two classes in the entities’

layer.

• addEntityParentEL Creates an inheritance (child – parent) relationship between

two classes.

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 35

• removeEntityParentEL Destroys an inheritance (child – parent) relationship be-

tween two classes.

• pushAttributeDownEL Moves the selected attribute from parent to all its child

classes.

• pullAttributeUpEL Moves the selected attribute from child to its parent.

5.2 Meta-Model of Database

A database consists of two parts - of a database schema, which defines the structure,

and stored data. The database model uses terminology from the domain of relational

databases. We use the relational database as it is the commonly used in software appli-

cations, whereas object or XML databases are not so widely used. To fit other domains the

model has to be changed or we can use mapping between various database types [64] [65].

The meta-model is designed as the platform independent model. Therefore we try to

avoid any elements specific for a concrete database.

Figure 5.2: The meta-model of the database.

5.2.1 Data Types

Similar as in case of application there is only one type in the database, however more

types can be added:

[DTYPE]

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 36

5.2.2 Values

A database consists not only of a schema but also of data which are represented as rows

in a table. The concrete values are not important for our purposes. Therefore a value is

defined only as a member of the set:

[VALUE]

5.2.3 Constraints

There are two types of constraints defined in the model. Both constraints are column

constraints - first constraint NOTNULL defines non-empty columns. Second constraint

UNIQUE defines there has to be unique records in a column or foreign key.

CONSTRAINT ::= NOTNULL | UNIQUE

5.2.4 Column

Column defines data values and types which can be a part of a table record. Each column

can contain one value.

COLUMN
constraints : PCONSTRAINT
type : DTYPE
label : LABEL

The column value is represented as:

COLUMNVALUE
definition : COLUMN
value : VALUE

5.2.5 Primary key

Primary key is unambiguous identifier of a record in a table. The primary key is al-

ways provided (automatically generated) by the database as a non-zero natural number.

Primary key is always defined with constraints NOTNULL and UNIQUE .

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 37

PRIMARYKEY
name : LABEL

The value of a primary key:

PRIMARYKEYVALUE
definition : PRIMARYKEY
value : Z

5.2.6 Table Schema

Table is a basic concept of the relational database schema. It has a name, one or more

columns and it can be related to other tables in the schema by foreign keys.

TABLESCHEMA
label : LABEL
primKey : PRIMARYKEY
columns : PCOLUMN

5.2.7 Foreign key

Foreign key is a reference to another table’s primary key. It has a unique name and it

can be constrained.

FOREIGNKEY
label : LABEL
constraints : PCONSTRAINT
source : TABLESCHEMA
reference : TABLESCHEMA

The value of a foreign key is 0 if there is no reference or a non-zero natural number.

FOREIGNKEYVALUE
definition : FOREIGNKEY
value : Z

5.2.8 Data Values

Rows in the table represent stored data. The values are stored as:

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 38

DATAVALUES
definition : TABLESCHEMA
key : PRIMARYKEYVALUE
colValues : PCOLUMNVALUE
foreignkeyValues : PFOREIGNKEYVALUE

All data values creates a domain with the bottom, defined as:

NULLDATAVALUE : DATAVALUES

5.2.9 Sequence

The sequence provides a value for the primary key if a new data value is add into a table.

SEQUENCE
current : Z

5.2.10 Database

A database consists of database schemas and its values.

DATABASE
schemas : PTABLESCHEMA
foreignKeys : PFOREIGNKEY
values : PDATAVALUES
sequence : SEQUENCE

A special kind of database is ERRDATABASE , which represents inconsistent database:

ERRDATABASE : DATABASE

The transformations, which are capable to change the structure of database schema

and data are defined in Sec. A.4. Set of functions, which query the layer of entities and

its parts is defined in appendix A.3.

5.2.11 Database Invariants

The database model is constrained by a set of invariants as is the entities model.

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 39

Label Uniqueness

Labels in the database are unique in certain context - TABLESCHEMAs’ labels are

unique in context of the whole database, COLUMN s’ labels are unique in the context of

owning TABLESCHEMA etc.

∀ ts1, ts2 : TABLESCHEMA; d : DATABASE •
ts1.label = ts2.label ∧ ts1 ∈ d .schemas ∧ ts2 ∈ d .schemas ⇒ ts1 = ts2
∀ col1, col2 : COLUMN ; ts : TABLESCHEMA •

col1.label = col2.label ∧ col1 ∈ ts .columns ∧ col2 ∈ ts .columns ⇒ col1 = col2
∀ fk1, fk2 : FOREIGNKEY ; d : DATABASE •

fk1.label = fk2.label ∧ fk1 ∈ d .foreignKeys ∧ fk2 ∈ d .foreignKeys ⇒ fk1 = fk2

Unique Constraint Invariant

The invariant assures that the values constrained by the UNIQUE constraint are unique

within the database’s data.

∀ cv1, cv2 : COLUMNVALUE ; cd : COLUMN •
cv1 6= cv2 ∧ cv1.definition = cd ∧ cv2.definition = cd ∧
UNIQUE ∈ cd .constraints ⇒ cv1.value 6= cv2.value

Notnull Constraint Invariant

The NOTNULL constraint assures that there is a COLUMNVALUE for each constrained

COLUMN in the TABLESCHEMA:

∀ d : DATABASE ; ts : TABLESCHEMA; col : COLUMN ; td : DATAVALUES •
ts ∈ d .schemas ∧
col ∈ ts .columns ∧
td .definition = ts ∧
td ∈ d .values ∧
NOTNULL ∈ col .constraints ⇒
∃ cv : COLUMNVALUE • cv ∈ td .colValues

Foreign Keys Reference Tables in Database

The TABLESCHEMA which is referenced by a foreign key has to be part of the database.

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 40

∀ d : DATABASE ; fk : FOREIGNKEY •
fk ∈ d .foreignKeys ⇔
∃ dss , dst : TABLESCHEMA •

dss = fk .source ∧
dst = fk .reference ∧
dss ∈ d .schemas ∧
dst ∈ d .schemas

Foreign Key References a Primary Key Value

The foreign key value can reference only a value of a primary key in our model.

∀ fv : FOREIGNKEYVALUE ; d : DATABASE ; dv : DATAVALUES •
fv ∈ dv .foreignkeyValues ∧ dv ∈ d .values ⇒
∃ dv2 : DATAVALUES •

dv2.key .value = fv .value ∧ dv2.definition = fv .definition.reference

Data Exists Only for Columns in Database

Each value which exists in the DATAVALUES has to refer to a member of TABLE -

SCHEMA existing within the DATABASE .

∀ d : DATABASE ; dv : DATAVALUES ; cv : COLUMNVALUE ;
fk : FOREIGNKEYVALUE •

(dv ∈ d .values ⇔ dv .definition ∈ d .schemas) ∧
(cv ∈ dv .colValues ⇔ cv .definition ∈ dv .definition.columns) ∧
(fk ∈ dv .foreignkeyValues ⇔ fk .definition ∈ d .foreignKeys)

Primary Key Values Uniqueness

The primary key value is an unique identifier of a DATAVALUE .

∀ dv1, dv2 : DATAVALUES ; d : DATABASE •
dv1 ∈ d .values ∧ dv2 ∈ d .values ∧ dv1.key = dv2.key ∧
dv1.definition = dv2.definition ⇒ dv1 = dv2

5.2.12 Database Consistency

The invariants create a type system of the database layer. If all invariants are fulfilled,

then a model is consistent otherwise we consider the model to be ERRDATABASE . The

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 41

consistency or inconsistency of the database’s layer is essential in order to the evolutionary

transformations. An evolutionary transformation cannot be applied on an inconsistent

database layer.

5.2.13 Transformations for Database Manipulation

The transformations for database manipulation are introduced informally in this section.

The formal definitions of mentioned transformations is in appendix A.4. In contrast

with the transformation for entities manipulation the database transformations are more

complex because they handle both database schema and stored data. The selected set

does not represent all transformations for the database layer nor the minimal set of

transformations as in case of the transformation for entities’ layer. The transformations

for database manipulation has the suffix ”-DB”.

• addTableDB Adds a table schema into the database schema. The transformation

has no impact on stored data.

• dropTableDB Removes a table from the database and removes all data stored in

the given table.

• dropEmptyTableDB Removes a table schema from the database only if there are

no stored data.

• addColumnDB Adds a column into the table schema in the database.

• dropColumnDB Removes a column from the table schema as well as all data

stored in the column.

• dropEmptyColumnDB Removes a column from the table schema only if there

are no data stored in the given column.

• addForeignKeyDB Adds a foreign key into the given table.

• dropForeignKeyDB Removes a foreign key from the table schema.

• dropEmptyForeignKeyDB Removes a foreign key from the table schema only if

there are no data stored.

• changeForeignKeyReference Changes the table referenced by the given foreign

key, according to the given mapping.

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 42

• copyColumnDB The transformations copies structure of the column from one

table schema to another. The data are copied from the source to the target table

according to the given mapping.

• copyTableStructureDB The transformations creates a copy of the given table.

The new table (copy) has a new name defined by the given label. The data are

copied as well.

5.3 Mapping between Data

A relation between data from different DATAVALUES needs to be known during execu-

tion of some transformations (e.g. moveAttribute). The relation is defined as a mapping

between DATAVALUES . The mapping is defined using MAPPINGPAIR as follows:

MAPPINGPAIR
source : DATAVALUES
target : DATAVALUES

source 6= NULLDATAVALUE

MAPPING
pairs : PMAPPINGPAIR

∀ p1, p2 : MAPPINGPAIR •
p1.source.definition = p2.source.definition ∧
p2.target .definition = p1.target .definition

The definition of mapping provides an opportunity to define one-to-many and many-to-

many relations between data. If there is no mapping (target) for a given source the bottom

of the DATAVALUES domain can be used. However, such mapping can cause data lost

between states. This issue is addressed in detail in the context of each transformation.

A special case of mapping is an empty mapping denoted as me , which is used when

there are no DATAVALUES in the domain and in the range i.e. the transformation takes

part on the structural level only.

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 43

5.3.1 Inverse Mapping

The inverse mapping is defined as follows:

inverse : MAPPING → MAPPING

∀m,m i : MAPPING •
inverse(m) = m i ⇔

(∀ p : MAPPINGPAIR • p ∈ m.pairs ⇒
∃ pi : MAPPINGPAIR •

pi ∈ m i .pairs ∧ p.source = pi .target ∧ p.target = pi .source) ∧
(∀ pi : MAPPINGPAIR • pi ∈ m i .pairs ⇒
∃ p : MAPPINGPAIR •

p ∈ m.pairs ∧ p.source = pi .target ∧ p.target = pi .source)

5.3.2 Mapping Invariants

The mapping is defined in the context of existing data only i.e. no new data can be added

into the database by mapping:

∀ d : DATABASE ; m : MAPPING ; p : MAPPINGPAIR •
p ∈ m.pairs ⇒ p.source.definition ∈ d .schemas

Each mapping has to fulfill constraints given by the structural definition of its range

DATAVALUES . Concretely uniqueness of column values:

∀m : MAPPING ; p1, p2 : MAPPINGPAIR; x1, x2, y1, y2 : DATAVALUES ;
c1, c2 : COLUMNVALUE •

p1 ∈ m.pairs ∧ p2 ∈ m.pairs ∧ x1 = p1.source ∧
x1 = p1.source ∧ x2 = p2.source ∧
y1 = p1.target ∧ y2 = p2.target ∧ c1 ∈ y1.colValues ∧
c2 ∈ y2.colValues ∧ c1.definition = c2.definition ∧
NOTNULL ∈ c1.definition.constraints ⇒ c1.value 6= c2.value

if this principle is violated then use of such mapping leads to an inconsistent database.

Similarly if there are COLUMNVALUES or FOREIGNKEYVALUES which violate the

NOTNULL constraint then the result of a transformation can be inconsistent. Therefore

another invariant for the mapping is defined:

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 44

∀m : MAPPING ; p : MAPPINGPAIR; c : COLUMN •
(p ∈ m.pairs ∧ c ∈ p.source.definition.columns ∧ NOTNULL ∈ c.constraints ⇒
∃ cv : COLUMNVALUE • cv ∈ p.source.colValues ∧ cv .definition = c) ∨

(c ∈ p.target .definition.columns ∧ NOTNULL ∈ c.constraints ⇒
∃ cv : COLUMNVALUE • cv ∈ p.target .colValues ∧ cv .definition = c)

∀m : MAPPING ; p : MAPPINGPAIR; f : FOREIGNKEY •
(p ∈ m.pairs ∧ f .source = p.source.definition ∧ NOTNULL ∈ f .constraints ⇒
∃ fv : FOREIGNKEYVALUE • fv ∈ p.source.foreignkeyValues ∧
fv .definition = f) ∨

(p ∈ m.pairs ∧ f .source = p.target .definition ∧ NOTNULL ∈ f .constraints ⇒
∃ fv : FOREIGNKEYVALUE • fv ∈ p.target .foreignkeyValues ∧
fv .definition = f)

5.3.3 Mapping Features

The mapping has crucial impact on feasibility of several transformations or data preser-

vation during their execution, therefore we define two features of mapping - completeness

and duplicity. This features helps us to describe easier the transformations.

Mapping Completeness

The completeness of mapping has crucial impact on data preservation in some transfor-

mations. We define three kinds on mapping completeness:

1. Source completeness A mapping is source complete, if there is a mapping pair

for each instance of the source class. The instances of the target class can occur in

the mapping once or multiple times or they are not part of the mapping.

MappingSourceComplete
ΞDATABASE
map? : MAPPING
m : MAPPINGPAIR

m ∈ map?.pairs
∀ ds : DATAVALUES •

ds ∈ values ∧ ds .definition = m.source.definition ⇔
∃mp : MAPPINGPAIR • mp.source = ds ∧ mp ∈ map?.pairs

2. Target completeness Is similar to the source completeness. A mapping is target

complete, if there is a mapping pair for each instance of the target class.

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 45

MappingTargetComplete
ΞDATABASE
map? : MAPPING
m : MAPPINGPAIR

m ∈ map?.pairs
∀ ds : DATAVALUES •

ds ∈ values ∧ ds .definition = m.target .definition ⇔
∃mp : MAPPINGPAIR • mp.target = ds ∧ mp ∈ map?.pairs

3. Full completeness A mapping is considered to be full complete, if there is a

mapping pair for each instance of the source and each instance of the target.

MappingFullComplete
ΞDATABASE
map? : MAPPING
m : MAPPINGPAIR

MappingSourceComplete
MappingTargetComplete

Duplicities in Mapping

The values in mapping has to follow the MappingRespectsUniquenessInv invariant. Nev-

ertheless, in case there is no constraint on uniqueness than there can be more than one

occurrence of the same instance in the mapping. We define four kinds of mapping based

on the duplicities:

1. Simple mapping A mapping is called simple if there is no duplicate instance of

target or source class.

MappingIsSimple
ΞDATABASE
map? : MAPPING

∀ dvs , dvt : DATAVALUES ; m,m2 : MAPPINGPAIR •
dvs ∈ values ∧ dvt ∈ values ∧ m ∈ map?.pairs ∧ m2 ∈ map?.pairs ⇒

(dvs = m.source ∧ dvs = m2.source ⇒ m = m2) ∧
(dvt = m.target ∧ dvt = m2.target ⇒ m = m2)

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 46

2. Mapping with source duplicates A mapping with source duplicates contains

duplicates of source class instances, but it contains no duplicates of target class

instances i.e. it represents the many-to-one relationship.

MappinNoTargetDuplicates
ΞDATABASE
map? : MAPPING

∃ dvs : DATAVALUES ; m,m2 : MAPPINGPAIR •
dvs ∈ values ∧ m ∈ map?.pairs ∧ m2 ∈ map?.pairs ∧
dvs = m.source ∧ dvs = m2.source ∧ m 6= m2

∀ dvt : DATAVALUES ; m,m2 : MAPPINGPAIR •
dvt ∈ values ∧ dvt ∈ values ∧ m ∈ map?.pairs ∧ m2 ∈ map?.pairs ∧
dvt = m.target ∧ dvt = m2.target ⇒ m = m2

3. Mapping with target duplicates The mapping with target duplicates is similar

to the previous case, but it represents one-to-many relationship. A mapping with

target duplicates contains duplicates of target class instances, but it contains no

duplicates of source class instances.

MappinNoSourceDuplicates
ΞDATABASE
map? : MAPPING

∃ dvt : DATAVALUES ; m,m2 : MAPPINGPAIR •
dvt ∈ values ∧ m ∈ map?.pairs ∧ m2 ∈ map?.pairs ∧
dvt = m.target ∧ dvt = m2.target ∧ m 6= m2

∀ dvs : DATAVALUES ; m,m2 : MAPPINGPAIR •
dvs ∈ values ∧ m ∈ map?.pairs ∧
dvs = m.source ∧ dvs = m2.source ⇒ m = m2

4. Mapping with duplicates Mapping with duplicates is the most general case

of mapping. It can contain duplicate of both source and target instances i.e. it

represents the many-to-many relationship.

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 47

MappinWithDuplicates
ΞDATABASE
map? : MAPPING

∃ dvt : DATAVALUES ; m,m2 : MAPPINGPAIR •
dvt ∈ values ∧ m ∈ map?.pairs ∧ m2 ∈ map?.pairs ∧
dvt = m.target ∧ dvt = m2.target ∧ m 6= m2

∃ dvs : DATAVALUES ; m,m2 : MAPPINGPAIR •
dvs ∈ values ∧ m ∈ map?.pairs ∧ m2 ∈ map?.pairs ∧
dvs = m.source ∧ dvs = m2.source ∧ m 6= m2

5.4 Entites - Database Mapping

Whereas entities and database can evolve, the entities - data mapping i.e. object-

relational mapping (ORM) is fixed during the software lifecycle. Its change causes that

the transformations defined in this thesis have to be redefined or extended in the way they

fit the new ORM. The mapping used in this thesis is similar to the Hibernate mapping [6],

thus a lot of developers should be familiar with it. The main ideas are:

• Classes are mapped to tables.

• Attribute representing a single value is mapped to a column; if the attribute repre-

sents a collection then the attribute is mapped as a table with a foreign key, which

references the table, which represents the owning class of the attribute.

• Associations are mapped to foreign keys or to tables if the association represents a

many-to-many relationship similarly to the attributes.

• Primary keys are created automatically for each table.

• Inheritance is mapped into the database according to the single table principle.

It means there is one table for all classes in the inheritance hierarchy. The table

contains one special column called INSTANCEDEF 1, which value determines the

class, which is represented by concrete instance.

• Labels used in the application are mapped into the labels of elements of database

schema by the function dbNameORM, which assures that a unique name in appli-

cation stays unique in database.

1It means that INSTANCEDEF ∈ LABEL and that the INSTANCEDEF is a keyword in the model
and cannot be used as a new of a class, attribute or association etc.

CHAPTER 5. META-MODELS OF ENTITES AND DATABASE 48

The whole ORM is defined in appendix C. Each schema which define the ORM is denoted

by the ’-ORM ’ postfix. The schemas in appendix C define how an entities layer can be

mapped into a database structure. They do not define how instances are obtained in a

working software. The relation between entities and database schema is given by the Z

schema called ORM .

5.5 Software

The software contains the entities and database, which is defined as the Z schema:

SOFTWARE
entities : ENTITIES
database : DATABASE

The consistency of software depends on consistency of its parts - if both entities and

database are consistent, then the software is consistent as well. Next condition of consis-

tency is that the database schema is created according to the given ORM.

∀ s : SOFTWARE ; entities : ENTITIES ; database : DATABASE •
entities = s .entities ∧ database = s .database ∧
entities 6= ERRENTITIES ∧
database 6= ERRDATABASE ∧
ORM [entities/e?, database/d?]

The SOFTWARE represents a consistent software, which can be transformed by the

transformations. A special kind of SOFTWARE is used in case the software is inconsistent

or if the transformation fails. This special state of software is defined as:

ERRSOFTWARE : SOFTWARE

All possible softwares creates a domain, where the ERRSOFTWARE represents the bot-

tom of the domain.

The transformations, which are able to change the structure of software are in the

Sec. 6.3. These transformations are interpreted as transformations on the level of entities

and database.

Chapter 6

Transformations for Application and

Database Co-Evolution

The catalogue of transformations contains definitions of the basic set of transformation

for data evolution. The transformations in the set are chosen because they represent

the basic transformations needed for model and data manipulation or because they rep-

resent common refactorings [1] and their usage can speed up the process of software

development. The group of common refactoring is chosen based on their popularity in

community [66] [67].

Most of the transformation waere defined in the Alloy modeling tool [68] [69] first to

prove transformation feasibility. Then they were rewriten in the Z language, because we

believe that the Z notation is easier to understand for the reader.

The transformations respect the description of the model driven co-evolution frame-

work architecture described in Sec. 3.1.3.

6.1 Transformation Definition

Each transformation definition consists of three parts, which defines the process of trans-

formation execution. These parts are:

1. Initial model verification First the initial model is verified if it is consistent and

contains no errors i.e. if it is not the ERRSOFTWARE .

2. Preconditions verification The preconditions of the transformation are verified

in context of the input SOFTWARE . If they are verified successfully, then the state

can be changed.

49

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 50

3. State difference description The last part of transformation definition describe

the difference between the initial and the final state.

The processing of transformation is described by the following schema1, where the

symbol ’X’ denotes the transformation:

executeOnSoftware[X]
∆SOFTWARE
decl(X)

θSOFTWARE 6= ERRSOFTWARE ∧ pre(X)⇒
X ∨

θSOFTWARE = ERRSOFTWARE ⇒
θSOFTWARE ′ = ERRSOFTWARE ∨

θSOFTWARE 6= ERRSOFTWARE ∧ ¬ pre(X)⇒
θSOFTWARE ′ = ERRSOFTWARE

Way transformations are executed assures the whole system is type-safe. The transforma-

tion has either valid software input and it is successful, then it produces a new software.

Or the transformation’s input is the ERRSOFTWARE , then a transformation cannot be

applied and the situation results in to the ERRSOFTWARE . The last case is that the

prerequisites of an transformations are not fulfilled in the context of the input software

then the result is the ERRSOFTWARE again.

6.2 Composition of Transformations

The schema executeOnSoftware is used to describe how the transformations can be con-

catenated. To describe concatenation of transformations we use the possibilities of the

Z-language.

The concatenation of transformations by logical symbol ’∧’ is used when the transfor-

mation has to be processed at the same time - i.e. preconditions of both has to be fulfilled

and the difference between the initial and final state has to conform to both definitions.

The concatenation of transformations by pipelining is denoted ’A>>B ’ and it is used

when the transformation A has to be executed before the transformation B is applied.

There is an intermediate state arising as the result of the transformation A. This inter-

mediate state is the input state for B as well as other outputs of A. These intermediate

1The schemas which describes the execution of a transformation is not syntactically correct Z schema.
However, we decide to use the Z-like notation because the semantics of the schemas is clear enough.
Moreover, these schemas shorten all transformations defined later in this theses.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 51

state and outputs are not visible to the user of the framework. The user sees the output

of B as the final state. The result of the composition is ERRSOFTWARE if the interme-

diate state is equal to ERRSOFTWARE , which corresponds with the executeOnSoftware

schema. This way of composition is used in the catalogue, if a transformation is processed

in a sequence of smaller steps.

This techniques of composition are used in the thesis as the evolutionary transforma-

tion are composed from the transformations of entities and database.

The declaration from all composed transformations have to be presented in the schema

which contains composition according to the Z definition [61]. We decide to not present

the declaration from composed transformations for sake of length of this thesis, there-

fore only the declaration used directly in the schema, which contains compositions, are

declared in a transformation.

6.3 Catalogue of Transformations

Evolutionary transformations, which creates the core of the framework, are described

in this section. All transformations are interpreted on the entities layer and on the

database layer of the software. The evolutionary transformations use the transformations

for application and database manipulation, which are defined in Appendix A.2 and in

Appendix A.4. The transformations, which change the layer of entities have postfix ’-EL’

and postfix ’-DB ’ denote the transformations, which change the database. The postfix

’-ORM ’ denotes schemas which define the entities - database mapping, which is defined in

Appendix C. The evolutionary transformations of the whole software are without postfix.

Each transformation is a transaction i.e. both application and database has to be

changed otherwise the transformation fails.

The transformation catalogue contains the definition of the transformation’s precon-

ditions and the difference between initial and final state only. The complete form of the

transformation is insertion of the definition from catalogue into schema executeOnSoftware

as the ’X’. All transformation presented in this section creates a set of all transformations:

[TRANSFORMATION]

Structure of Catalogue List

Each catalogue list in following section defines one transformation. The structure of the

list consists of four parts, which are common for all transformations:

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 52

• Definition: The first part describes the purpose of the transformation as well as its

definition in the Z language.

• Prerequisites: The second part defines the prerequisites of a transformation.The

prerequisites are emphasizes in separate section because the definition of a trans-

formation can consist of a set of smaller sub-transformations and therefore the

prerequisites could be hidden in the high-level transformation.

• Impact on Data: The third part describes how the transformation affects stored

instances.

• Inverse Transformation: The fourth part defines, which transformation can be used

to revert the defined transformation. In some case there are more possibilities in

dependency on concrete state of the software.

6.3.1 Add Class

Inserts a class into the application and corresponding table into the database and then

it adds all attributes from the given set to the given class. The database is changed

according to the ORM.

addClass
∆SOFTWARE
∆ENTITIES
∆DATABASE
c? : CLASS
att? : PATTRIBUTE

addEntityEL>> entityToTableORM >> addTableDB>>
[| ∀ p : ATTRIBUTE • p ∈ atts ⇒ addAttribute[p/p?]]

Prerequisites

The transformation is possible if there is no possible name collision. The precondition

respects the invariants of the model.

prerequisites(addClass) = {(∀ c : CLASS • c ∈ classes ⇒ c.label 6= c?.label)}

Impact on Data

The transformation has no impact on stored data.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 53

Inverse Transformation

The transformation can be reverted by the removeClass or by the removeClassWithNoIn-

stances transformation. The first option does not keep stored data, whereas the second is

possible only it there are no data stored in table representing the entity in the database.

6.3.2 Remove Class

The transformation removes the given class from the software as well as all attributes

belonging to the class. The database is changed as well.

removeClass
∆SOFTWARE
∆ENTITIES
∆DATABASE
c? : CLASS

∀ p : ATTRIBUTE •
p ∈ attributesOf (c?, θ(ENTITIES))⇒ removeAttribute[p/p?]>>

removeEntityEL>> entityToTableORM >> dropTableDB

Prerequisites Remove an entity is possible only if there are no children of the given

class and if there is no association, which targets the given class. Aim of these restriction is

to create atomic transformations, which are easy to understand. A transformation which

removes the entity and which is able to remove all references or handle the inheritance

relationship can be created as a composition of atomic transformations by the user. Next

condition is that the class is part of the entities’ layer. This condition can be considered

redundant, however its meaning is that if a user wants to delete a non-existing class

there is some kind of inconsistency between the real state of the entities and user’s

understanding of the entities layer.

prerequisetes(removeClass) = {(c? ∈ classes),
(children(c?, θ(ENTITIES)) = {NULLCLASS}),
(associationsTargeting(c?, θ(ENTITIES)) = {NULLASSOCIATION }) }

Impact on Data The transformation can delete all data, which represents instances

of the given class. If we want to preserve the stored data we can use the removeClass-

WithNoInstances transformation.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 54

Inverse Transformation The transformation cannot be reverted in general case. Only

in case, if there are no instances of the removed class the removeClass can be reverted

by the addClass transformation.

Remove Class with no Instances

The transformation removeClassWithNoInstances removes the given class only if there

are no instance of the class. The transformation is defined to provide a general reverse

transformation for the addClass transformation.

removeClassWithNoInstances
∆SOFTWARE
∆ENTITIES
∆DATABASE
c? : CLASS

entityToTableORM [ts/ts !]
selectAllData(ts , θDATABASE) = ∅
removeEntityEL
entityToTableORM >> dropEmptyTableDB

Prerequisites

prerequisites(removeClassWithNoInstances) =
{selectAllData(ts , θDATABASE) = ∅} ∪ prerequisites(removeClass)

Impact on Data The transformation has no impact on stored data.

Inverse Transformation The transformation can be reverted by the addClass trans-

formation.

6.3.3 Add Attribute

Inserts an attribute into the given class in the application and corresponding column or

table into the database.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 55

addAttribute
∆SOFTWARE
∆ENTITIES
∆DATABASE
c? : CLASS
p? : ATTRIBUTE

entityToTableORM [ts/ts !]
p?.optional = True ⇒ selectAllData(ts , θ(DATABASE)) 6= ∅
addAttributeEL
(p?.upper = One ⇒ attributeToColumnORM >> addColumnDB)
(p?.upper = Many ⇒ attributeToTableORM >> addTableDB)

Prerequisites The transformation is possible if the class exists in the context of enti-

ties’ layers and if there is no possible name collision between attributes’ label in the class.

Next the transformation cannot be applied in case the attribute is optional and there are

data stored in the table, which corresponds to the owning class. In such a case we are

missing a value, which can be added as the new column value.

prerequisites(addAttribute) = {(c? ∈ classes),
({p : ATTRIBUTE |

p ∈ attributesOf (c?, θ(ENTITIES)) ∧ p.label = p?.label} = ∅),
(p?.optional = True ⇒

selectAllData(entityToTableORM , θ(DATABASE)) 6= ∅)}

Impact on Data The transformation has no impact on stored data.

Inverse Transformation The transformation can be reverted by the removeAttribute.

The revert can cause data loss. If the transformation should proceed only if there are no

data values stored in the corresponding column or table in database the removeAttribute-

WithNoData transformation should be used.

6.3.4 Remove Attribute

The transformation removes the given attribute from the given class and corresponding

column (or table) is removed as well as stored data.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 56

removeAttribute
∆SOFTWARE
∆ENTITIES
∆DATABASE
∆TABLESCHEMA
c? : CLASS
p? : ATTRIBUTE

removeAttributeEL
(p?.upper = One ∧ attributeToColumnORM >> dropColumnDB) ∨
(p?.upper = Many ∧ attributeToTableORM >> dropTableDB)

Prerequisites The transformation is feasible if the attribute exists in the model.

prerequisites(removeAttribute) = {(c? ∈ classes), (p? ∈ attributes),
(∃ poc : ATTRIBUTEOfCLASS •

poc ∈ attributesOfClasses ∧ poc.class = c? ∧ poc.attribute = p?)}

Impact on Data The transformation can remove data from the database, therefore it

is not data safe.

Inverse Transformation In general case the transformation cannot be reverted. The

transformation can be reverted by the addAttribute transformation, if there are no values

in column (or table), which represents attribute in the database.

6.3.5 Remove Attribute with no Data

The evolutionary transformation which protects data in the database is called removeAt-

tributeWithNoData.

removeAttributeWithNoData
∆SOFTWARE
∆ENTITIES
∆DATABASE
∆TABLESCHEMA
c? : CLASS
p? : ATTRIBUTE

removeAttributeEL>>
(p?.upper = One ∧ attributeToColumnORM >> dropEmptyColumnDB) ∨
(p?.upper = Many ∧ attributeToTableORM >> dropEmptyTableDB)

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 57

Prerequisites The prerequisites of the transformation are the same as in case of stan-

dard removeAttribute with additional verification that there are no data stored in the

table or in the column (in dependency on the attribute cardinality).

prerequisites(removeAttributeWithNoData) = prerequisites(removeAttribute)∪
{({d : DATAVALUES |

d ∈ values ∧ d .definition = attributeToTableORM } = ∅⇔
p?.upper = Many) ∨

({cv : COLUMNVALUE |
cv .definition = attributeToColumnORM } = ∅⇔ p?.upper = One)}

Impact on Data The transformation has no impact on stored data.

Inverse Transformation The transformation can be reverted by the addAttribute

transformation.

6.3.6 Add Association

Inserts a new association between two existing classes into the application and corre-

sponding foreign key or mapping table into the database.

addAssociation
∆SOFTWARE
∆ENTITIES
∆DATABASE
a? : ASSOCIATION
c? : CLASS

entityToTableORM [ts/ts !]
a?.optional = True ⇒ selectAllData(ts , θ(DATABASE)) 6= ∅
addAssociationEL>>
[| a?.upper = One ⇒ assocToFkORM >> (addForeignKeyDB>>

insertDataToFKDB) ∨
a?.upper = Many ⇒ assocToTableORM >> (addTableDB>>

insertDataToMapTableDB)]

Prerequisites The transformation is possible if there are no name collisions between

the associations in the entities’ layer and the new association and if the source and target

of the association are in the entities’ layer. The mapping has to be source complete if the

association is mandatory.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 58

prerequisites(addAssociation) = {(a?.source ∈ classes),
(a?.target ∈ classes), (a?.optional = False ⇒ MappingSourceComplete)}

Impact on Data The transformation has no impact on stored data as it changes only

the structure of application and database.

Inverse Transformation The transformation can be reverted by the removeAssocia-

tion transformation, but this transformation is data loss. The data save inverse transfor-

mation is removeAssociationWithNoData.

6.3.7 Remove Association

The transformation removes the given association from the software and corresponding

foreign key (or table) and its data as well. Two versions of the transformation are

presented. The first version deletes stored data during its execution, whereas the second

one is executable only if there are no stored data.

removeAssociation
∆SOFTWARE
∆ENTITIES
∆DATABASE
a? : ASSOCIATION

removeAssociationEL>>
[| a?.upper = One ⇒ assocToFkORM >> dropForeignKeyDB ∨
a?.upper = Many ⇒ assocToTableORM >> dropTableDB]

Prerequisites The transformation is possible if the given association is in the entities’

layer. If the user wants to remove non-existing associations it is interpreted as an incon-

sistency between the real state of the entities layer and the user’s understanding of this

layer.

prerequisites(removeAssociation) = {(a? ∈ associations)}

Impact on Data The transformation can cause a data loss - concretely a connection

between instances.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 59

Inverse Transformation The transformation removeAssociation can be reverted by

the addAssociation only in case if there are no data stored in the foreign key or mapping

table.

6.3.8 Remove Association with no Data

The transformation implements removal of an attribute and corresponding database

structure, which protects stored data.

removeAssociationWithNoData
∆SOFTWARE
∆ENTITIES
∆DATABASE
a? : ASSOCIATION

removeAssociationEL>>
[| a?.upper = One ⇒ assocToFkORM >> dropEmptyForeignKeyDB ∨
a?.upper = Many ⇒ assocToTableORM >> dropEmptyTableDB]

Prerequisites The prerequisites of the removeEmptyAssociation are the same as in

case of removeAssociation transformation with additional verification if there are no

data stored in the database.

prerequisites(removeEmptyAssociation) = prerequisites(removeAssociation)∪
{({d : DATAVALUES |
d ∈ values ∧ d .definition = assocToTableORM } = ∅⇔ a?.upper = Many) ∨

({fv : FOREIGNKEYVALUE |
fv .definition = assocToFkORM } = ∅⇔ a?.upper = One)}

Impact on Data There is no impact on data.

Inverse Transformation The transformation can be reverted by the addAssociation

transformation.

6.3.9 Move Attribute

The transformation moves the given attribute from one class to another including stored

data. If the attribute represents a single value then the corresponding column is moved.

If the attribute represents a collection of values then the foreign key in the table, which

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 60

represents the attribute has to be redirected. If the mapping map? is the empty mapping,

then the moveAttribute takes part only on the structural level.

moveAttribute
∆SOFTWARE
∆ENTITIES
∆DATABASE
c? : CLASS
d? : CLASS
p? : ATTRIBUTE
map? : MAPPING

l = p?.label
c? 6= d?
d? 6∈ ran(childParentRelation(c?, θENTITIES)+)
c? 6∈ ran(childParentRelation(d?, θENTITIES)+)
entityToTableORM [ts/ts !]
entityToTableORM [d?/c?, to/ts !]
(p?.upper = One ⇒

addAttribute >> attributeToColumnORM [col/col !]>>
(copyColumnDB [col/col?, ts/sourceSchema?, to/targetSchema?]>>
dropColumnDB [col/col?])) ∨

(p?.upper = Many ⇒
addAttribute >> attributeToTableORM>>
changeAllReferencesInTable[to/target?]>> removeAttribute[d?/c?])

Prerequisites The transformation is possible if there are no possible name collisions

in the target class, the source and target class are not the same and if the source and

target class are not in the same inheritance hierarchy. If they are in the same inheritance

hierarchy the transformation pullUp should be used. The duplicates in mapping affects

the feasibility of the moveAttribute transformation as well. The transformation is feasible

if the mapping is simple or with no target duplicates. In other cases the transformation

is consider unfeasible.

prerequisites(moveAttribute) = {{(c?, d? ∈ classes), (c? 6= d?)
({p : ATTRIBUTE |

p ∈ attributesOf (c?, θ(ENTITIES)) ∧ p.label = p?.label} = ∅),
(d? 6∈ ran(childParentRelation(c?, θENTITIES)+)),
(c? 6∈ ran(childParentRelation(d?, θENTITIES)+)),
(MappingIsSimple ∨ MappinNoTargetDuplicates)}

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 61

Impact on Data The values are moved from one instance to another during the

moveAttribute transformation. The exact effect depends on the mapping map?. A so-

lution for a mapping with target duplicates could be creation of new instances. These

instances contain the original target value extended by the moved attribute and its value.

An issue can occur in such a situation - possible associations referencing the original tar-

get instance - should they be duplicated as well or only part of them or none of them? We

consider such a big change in instances to be undesirable because it is hard to predict the

impact of such a big change without detailed knowledge of the database and the domain.

Therefore we decide to limit the transformation moveAttribute to use mappings with no

target duplicates.

There are no data loss if the mapping is full complete. If the mapping is target

complete there can be some instances from the source, which values are not moved and

are deleted, this results in a data loss.

The attribute’s data stored in the source class’s instances is removed, but they are

still reachable in the software according to the mapping given in the transformation.

Inverse Transformation The feasibility of the moveAttribute transformation revert

depends on the mapping’s features. The mapping has to be simple and full or source

complete if the revert should be feasible. Then the transformation can be reverted by

the moveAttribute transformation with the inverse mapping.

The moveAttribute cannot be reverted in case its mapping contains source duplicates,

because we cannot decide which of many values has to be moved to the original class.

The mapping is problem during a revert in general, because the values which are

used in the mapping during the forward transformation can changed during application

lifecycle by an update or insert database query and therefore the inverse mapping can be

unfeasible.

6.3.10 Inline Class

The transformation inlineClass inlines two different classes into one. The transformation

is used when all features (attributes) have to be moved into another class and the original

owning class of moved attributes is going to be removed afterwards. The transformation

moves all attributes from inlined class, then all references in database are redirect (i.e.

attributes and associations are redirected from inlined to the target class). Finally the

inlined class is removed.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 62

inlineClass
∆ENTITIES
∆DATABASE
∆SOFTWARE
∆ASSOCIATION
c? : CLASS
d? : CLASS
map? : MAPPING

c? ∈ classes ∧ d? ∈ classes ∧ c? 6= d?
parentOf (c?, θENTITIES) = NULLCLASS
children(c?, θENTITIES) = ∅
∀ q , r : ATTRIBUTE •

q ∈ attributesOf (c?, θ(ENTITIES)) ∧
r ∈ attributesOf (d?, θ(ENTITIES))⇒ q .label 6= r .label
∀ a, b : ASSOCIATION •

a.source = c? ∧
b.source = d?⇒ a.label 6= b.label

[| ∀ p : ATTRIBUTE •
p ∈ attributesOf (c?, θ(ENTITIES))⇒

moveAttribute[p/p?]]>>
[| ∀ a : ASSOCIATION •

a.target = c?⇒ changeAssociationDirectionEL[d?/target?, a/a?] ∧
changeReferenceInDB [a/a?, d?/target?]

removeClass]

Prerequisites The transformation is feasible only if the class to be inlined is not part

of an inheritance hierarchy and if there are no possible name collisions between attributes

and associations labels. Next we assume no data loss is possible during the inlineClass

transformation, therefore the mapping has to be full complete and simple. We limit

the inlineClass transformation in a way it can be used only in case if there is only one

attribute in the inlined class. This restriction help us to create atomic transformations

and to create a reverse transformation for the inlineClass.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 63

prerequisites(inlineClass) = {(c? ∈ classes), (d? ∈ classes), (c? 6= d?),
(parentOf (c?, θENTITIES) = NULLCLASS),
(children(c?, θENTITIES) = ∅),
(∀ q , r : ATTRIBUTE •

q ∈ attributesOf (c?, θ(ENTITIES)) ∧
r ∈ attributesOf (d?, θ(ENTITIES))⇒ q .label 6= r .label),

(∀ a, b : ASSOCIATION •
a.source = c? ∧ b.source = b?⇒ a.label 6= b.label),

(MappingIsComplete ∧ MappingIsSimple)}

Impact on Data The transformation extends instances of the class, which is the tar-

get of the transformation, whereas instances of the inlined class are removed from the

software. Because the mapping is complete and simple there is no data loss during the

transformation.

Inverse Transformation The transformation can be reverted by the splitClass trans-

formation with usage of inverse mapping if there are no associations targeting the inlined

class. There are no special issue during the revert, because the mapping map? is complete

and simple.

6.3.11 Split Class

The transformation creates a new class and then moves an attribute from the source class

into the new class.

splitClass
∆ENTITIES
∆DATABASE
∆TABLESCHEMA
∆SOFTWARE
l? : LABEL
ps? : PATTRIBUTE
toSplit? : CLASS

att = ∅
initEntity [g/c!]
addClass [g/c?, att/att?]>> initMappingForSplit [toSplit?/old?, g/new?]>>
moveAttribute[toSplit?/d?, g/c?]

Prerequisites The prerequisites are the same as in case of addClass transformation.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 64

prerequisites(splitClass) = prerequisites(addClass)

Impact on Data The transformation creates new instances (new stored data). These

data have the same primary key value as it use to have in the source table. The mapping

created during the transformation is simple and full complete so no data loss occurs

during the transformation.

Inverse Transformation The transformation can be reverted by the inlineClass trans-

formation. The input mapping for the reverting transformation is based on equality of

primary keys’ values. The mapping has to be simple and full complete otherwise the

inlineClass does not revert the splitClass transformation.

6.3.12 Extract Class

The transformation is similar to the splitClass transformation with the difference it adds

an association between the original and the new class. Inspiration for this transformation

is the refactoring ”Replace Data Value with Object” [1]. The transformation proceeds in

following steps: a class is extracted, then a new association is initialized and added into

the application. All these steps are processed for the database level at the same time.

extractClass
∆SOFTWARE
∆ENTITIES
∆DATABASE
c?, d : CLASS
p? : ATTRIBUTE
l? : LABEL

l = p?.label
u = p?.upper
o = p?.optional
splitClass [c?/toSplit?, d/g]>>
initAssociation[l/label?, u/upper?, o/optional?, c?/source?, d/target?, a/a!]>>
initMappingForSplit [c?/old?, g/new?]>>
addAssociation[a/a?]

Prerequisites The prerequisites of the extractClass transformation are the same as in

case of splitClass transformation. Important is the first step - new class creation.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 65

prerequisites(extractClass) = prerequisites(addClass)

Impact on Data The transformation changes the structure and stored instances stored

in class, from which is extracted and its children (if exists). New instances occurs in the

extracted class and the association between classes and their instances occurs.

Inverse Transformation The transformation has the same prerequisites and similar

impact on data as the splitClass transformation. The only difference is that the extract-

Class transformation creates a new foreign keys’ values if there are instances in the source

class.

The transformation can be reverted by the combination of inlineClass and remove-

Association transformations. The mapping, which is used in inlineClass is based on the

association between the two classes created during the extractClass.

6.3.13 Add Parent

Adds a parent - child relationship between the two given classes. The transformation

creates a column which distinguish instances first, then it merges the tables which rep-

resents the parent and the child in one table. Finally all references are updated in the

database.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 66

addParent
∆ENTITIES
i? : INHERITANCE
map? : MAPPING
∆SOFTWARE
∆DATABASE

i?.parent = parent
i?.child = child
children(child , θENTITIES) = ∅
entityToTableORM [child/c?, cts/ts !]
entityToTableORM [parent/c?, pts/ts !]
children(parent , θENTITIES) = ∅⇒

[| constraints = {NOTNULL} ∧
initColumn[INSTANCEDEF/l?, constraints/constraints?]>>
addColumnDB [pts/ts?]]>>

addEntityParentEL>>
[| ∀ c : COLUMN • c ∈ cts .columns ⇒

copyColumnDB [col/col?, cts/sourceSchema?, pts/targetSchema?]>>
dropColumnDB [col/col?, cts/ts?]]>>

[| ∀ fk : FOREIGNKEY ; ts : TABLESCHEMA •
fk ∈ foreignKeys ∧ ts = fk .source ⇒
changeAllReferencesInTable[pts/target?, ts/ts?]>>

dropTableDB [cts/ts?]]

Prerequisites The transformation is possible if the to-be-child class has no parents,

because the multiple inheritance is not allowed in the model. Next, because we do

not insert values into the child class instances during the creation of the inheritance

relationship, we have to verify there are no optional values (attributes) in the parent

class. The last prerequisite is that only a class without children can be added into

inheritance hierarchy. This constraint is added for the simplicity of the model.

prerequisites(addParent) = {(parentOf (child , θ(ENTITIES)) = NULLCLASS),
({p : ATTRIBUTE | p ∈ attributesOf (parent , θ(ENTITIES)) ∧

NOTNULL 6∈ p.constraints}), (children(child , θENTITIES) = ∅),
(MappingSourceComplete ∨ MappingIsSimple)}

Impact on Data The transformation extends structure of instances stored in child

class by the structure of the parent class. There can occur instances of the to-be-parent

class, which are not extended by a child. Therefore the mapping is source complete.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 67

The mapping is simple to assure a direct reverting operation exists. A parent is added

only to one instance of a child class and a instance cannot correspond with two possible

parent’s instances.

Inverse Transformation The transformation can be reverted by the removeParent

transformation.

6.3.14 Remove Parent

Destroys the parent-child relationship between two classes. The transformation affects

the database significantly - a new table is created, columns are moved and references are

updated. Finally if the parent has no more children the column, which distinguish kind

of instances is removed from the parent.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 68

removeParent
∆SOFTWARE
∆ENTITIES
∆DATABASE
c? : CLASS

children(c?, θENTITIES) = ∅
parent = parentOf (c?, θENTITIES)
removeEntityParentEL>>
entityToTableNoAttributesORM [cts/ts !]>>
addTableDB [cts/ts?]>>
entityToTableORM [parent/c?, pts/ts !]>>
initMappingForRemoveParent [map/map!, cts/cts?]>>
[| ∀ c : COLUMN • (c ∈ pts .columns ∧ ∃ p : ATTRIBUTE •

p ∈ attributesOf (c?, θENTITIES) ∧
attributeToColumnORM [p/p?, c/col !])⇒

copyColumnDB [col/col?, pts/sourceSchema?, cts/targetSchema?,
map/map?]>> dropColumnDB [col/col?, pts/ts?]]>>

[| ∀ t : TABLESCHEMA • ∃ p : ATTRIBUTE •
p ∈ attributesOf (c?, θENTITIES) ∧ attributeToTableORM [p/p?, t/ts !]⇒

changeReferenceTableDB [t/ts?, c?/newTarget?, parent/oldTarget?,
me/map?]]>>

[| ∀ a : ASSOCIATION • a ∈ associationsTargeting(c?, θENTITIES)⇒
(a.upper = One ⇒ assocToFkORM [a/a?]>>

changeFKreferenceDB [cts/targetSchema?,me/map?]) ∨
(a.upper = Many ⇒ assocToTableORM [a/a?]>>

changeReferenceTableDB [c?/newTarget?, parent/oldTarget?,
me/map?])]>>

[col : COLUMN | children(parent , θENTITIES) = ∅⇒
col .label = INSTANCEDEF ∧ dropColumnDB [col/col?]]

Prerequisites The transformation is possible if the inheritance is part of the entities’

layer. Missing inheritance is considered to be a semantics inconsistency. To simplify the

model we assume the child class is a leaf of the inheritance hierarchy.

prerequisites(removeParent) = {(children(c?, θENTITIES) = ∅),
(∃ i : INHERITANCE • i ∈ inheritance ∧ i .child = c?)}

Impact on Data The instances of the child class looses information which was stored

in their parent.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 69

Inverse Transformation The transformation can be reverted by the addParent trans-

formation, where the mapping is based on equality of primary keys’ values.

6.3.15 Push Down

The transformations moves one attribute from the parent class to all child classes. The

transformation takes part at the level o entities only, because the inheritance is mapped

into the database as a single table by the ORM. Therefore no data moves are needed in

the database.

pushDown
∆ENTITIES
∆CLASS
p? : ATTRIBUTE

pushAttributeDownEL

Prerequisites The transformation is possible if the given attribute is an attribute

owned by the given class within the given entities.

prerequisites(pushDown) = {(θ(CLASS) ∈ classes),
(p? ∈ attributesOf (θ(CLASS), θ(ENTITIES))}

Impact on Data The transformation has impact on all instances of the parent class,

which are shortened by the pushed attribute. The transformation causes therefore a data

loss.

Inverse Transformation The transformation cannot be reverted by the simple pullUp

transformation, because the pullUp has only one attribute and one class as its input. To

revert the pushDown a new refactoring needs to be defined. This refactoring is called

pullCommonAttributeUp.

6.3.16 Push Attribute Down to a Class

The transformation is similar to the pushDown transformation. In contrast it moves

the attribute only to one child. Therefore the values in other children, which used to

represent the moved attribute has to be removed from the table.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 70

pushAttributeDownToClass
∆ENTITIES
∆CLASS
∆CLASS
p? : ATTRIBUTE

p? ∈ attributesOf (parent , θ(ENTITIES))
parent = parentOf (child , θ(ENTITIES))
addAttributeEL[child/c?]>>
removeAttributeEL[parent/c?]>>
[| (p?.upper = One ⇒ ∀ dv , dv ′ : DATAVALUES •

entityToTableORM [parent/c?, tab/ts !] ∧
isInstanceOf (dv , child) 6= True ⇒ attributeToColumnORM [col/col !] ∧

dv ′.colValues = dv .colValues \ {cv : COLUMNVALUE |
cv .definition = col})]

Prerequisites The prerequisites are the same as in case of the pushDown transforma-

tion.

prerequisites(pushAttributeDownToClass) = prerequisites(pushDown)

Impact on Data The transformation has impact on all instances of the parent class

and on all instances of child classes (besides the target class of the push down), which

are shortened by the pushed attribute. The transformation causes therefore a data loss.

Inverse Transformation The refactoring pullUp can be used to revert the pushAt-

tributeDownToClass. The revert is possible only if there were no stored instances when

pushing down, because the transformation pushAttributeDownToClass is data loss.

6.3.17 Pull Up

The transformation moves one attribute from the child class into the parent class.

pullUp
∆ENTITIES
∆CLASS
parent? : CLASS
p? : ATTRIBUTE

p?.optional = True ⇒ #children(parent?, θENTITIES) = 1
pullAttributeUpEL

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 71

Similarly to the pushDown the transformation takes part at the level o entities only,

because the inheritance is mapped into the database as a single table by the ORM.

Therefore no data moves are needed in the database.

Prerequisites If there are more than one children class, then the attribute has not be

optional, because we have no value, which can be used in instances of other children.

prerequisites(pullUp) = {(p?.optional = True ⇒
#children(parent?, θENTITIES) = 1)}

Impact on Data The transformation extends the structure of the instances of the

parent and all its children.

Inverse Transformation The transformation can be reverted by the pushAttribute-

DownToClass transformation.

6.3.18 Pull Common Attribute Up

The transformations pulls up a property only if it is defined in all child classes of a parent.

pullCommonAttributeUp
∆ENTITIES
c? : CLASS
p? : ATTRIBUTE

cp = parentOf (c?, θ(ENTITIES))
cs = {c : CLASS | p? ∈ attributesOf (c, θ(ENTITIES)) ∧

c ∈ children(cp , θ(ENTITIES))}
addAttributeEL[c/c?]
∀ c : CLASS •

c ∈ cs ⇒ removeAttributeEL[c/c?]

Prerequisites The prerequisite of the pullCommonAttributeUp is that the attribute,

which is going to be pulled up, has to be present in all child classes of the parent.

prerequisites(pullCommonAttributeUp) = {{cp = parentOf (c?, θ(ENTITIES))},
{∀ c : CLASS • c ∈ children(cp , θ(ENTITIES))⇔

p? ∈ attributesOf (c, θ(ENTITIES))}}

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 72

Impact on Data The transformation has no impact on stored data because they are

already stored in the appropriate table.

Inverse Transformation The transformation can be inverted by the pushDown trans-

formation.

6.3.19 Extract Parent

The transformation creates a new class with the given attribute and creates the parent-

child relationship between the new and the original class.

extractParent
∆SOFTWARE
∆ENTITIES
∆DATABASE
parent , child?, child : CLASS
l? : LABEL
p? : ATTRIBUTE

parentOf (child?, θ(ENTITIES)) = NULLCLASS
p? ∈ attributesOf (child?, θ(ENTITIES))
att = ∅
initEntity [parent/c!]
addClass [parent/c?, att/att?]>> initInheritance>>
initMappingForExtractParent [parent/parent?]>>
addParent [parent/parent?]>> pullUp[parent/parent?]

Prerequisites The prerequisites of the extractParent are that there is no parent of the

source class and that the attribute is owned by the to-be-child class.

prerequisites(extractParent) = {(p? ∈ attributesOf (child?, θ(ENTITIES))),
(parentOf (child?, θ(ENTITIES)) = NULLCLASS)}

Impact on Data The transformation causes no data loss during its execution. The

structure is changed only.

Inverse Transformation The transformation can be reverted by the combination of

pushDownToClass and removeParent.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 73

6.3.20 Merge Classes

The transformation merges two classes with the same structure into one class. The trans-

formation looks similar as the inlineClass transformation, but its meaning is different.

The mergeClasses transformation merges two classes with the same structure into one

and similarly it merge instances from two tables into one table. Whereas the inlineClass

transformation extends the structure of the target class (and table) and instances are not

merged but extended. This transformation is not part of the common code refactorings,

but we add into the framework to create possibility to reduce duplicities in code. As this

need occurs during some testing scenarios.

mergeClasses
∆SOFTWARE
∆ENTITIES
∆DATABASE
c?, c2? : CLASS

attributesOf (c?, θENTITIES) = attributesOf (c2?, θENTITIES)
associationsOf (c?, θENTITIES) = associationsOf (c2?, θENTITIES)
parentOf (c?, θENTITIES) = parentOf (c2?, θENTITIES)
parentOf (c?, θENTITIES) = NULLCLASS
children(c?, θENTITIES) = children(c2?, θENTITIES)
children(c?, θENTITIES) = ∅
∀ a : ATTRIBUTE •

a ∈ attributesOf (c?, θENTITIES)⇔ a.upper = One
isReferenced(c?, θENTITIES) = ∅
isReferenced(c2?, θENTITIES) = ∅
entityToTableORM [ts/ts !]
entityToTableORM [c2?/c?, ts2/ts !]
[| ∀ k , k2, k

′
2 : DATAVALUES •

k .definition = ts ∧ k2.definition = ts2 ∧ k ∈ values ∧ k2 ∈ values
∧ k .key 6= k2.key ⇒ (k ′2.definition = ts ∧ k ′2 6∈ values ∧ k ′2 ∈ values ′ ∧
k 6∈ values ′) ∨

(∀ k , k2, k
′
2 : DATAVALUES •

k .definition = ts ∧ k2.definition = ts2 ∧ k ∈ values ∧ k2 ∈ values
∧ k .key = k2.key ⇒ k ′2.definition = ts ∧ k ′2.key .value = next(sequence))]>>

removeClass [c2?/c?]

Prerequisites The transformation is possible only if the structure of both classes is the

same and if the classes are not part of an inheritance hierarchy and are not referenced.

Next, all the attributes has to be single values. The restriction are necessary to keep the

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 74

transformation small enough to be easy to understand by the user. Next reason is that

the transformation represents significant change (mostly) in the database. Therefore it

is necessary to create conditions for safe application of the transformation.

prerequisites(mergeClasses) = {
(attributesOf (c?, θENTITIES) = attributesOf (c2?, θENTITIES)),
(associationsOf (c?, θENTITIES) = associationsOf (c2?, θENTITIES)),
(parentOf (c?, θENTITIES) = parentOf (c2?, θENTITIES)),
(parentOf (c?, θENTITIES) = NULLCLASS),
(children(c?, θENTITIES) = children(c2?, θENTITIES)),
(children(c?, θENTITIES) = ∅),
(∀ a : ATTRIBUTE •
a ∈ attributesOf (c?, θENTITIES)⇔ a.upper = One),
(isReferenced(c?, θENTITIES) = ∅),
(isReferenced(c2?, θENTITIES) = ∅)}

Impact on Data The transformation moves instances from one class to another with

the same structure i.e. theirs definition name is changed. The primary key value of some

stored data can change during the transformation. Therefore the associations’ direction

and foreign keys’ values has to changed as well.

Inverse Transformation The transformation mergeClasses does not have a direct

inverse transformation, because the transformation changes not only the structure, but

the values as well. If there are no data in tables, the transformation can be reverted by

the combination of addClass, addAttribute and addAssociation.

6.4 Transformation Set Completness

As discussed in Sec. 6 there are many transformations, which do not have an inverse

transformation in general case. Thus the set TRANSFORMATION is not complete. The

conditions for completeness is that for each transformation t : TRANSFORMATION ,

there is a transformation t−1 : TRANSFORMATION , which is an inverse function to t

i.e. t−1(t(s)) = s , where s ∈ SOFTWARE and t(s) 6= ERRSOFTWARE .

We discuss alternative inverse transformations for transformations with no general

inverse in Sec. 6 and some transformations can be inverted if their input mapping fulfill

certain conditions or if given transformations’ prerequisites are fulfilled. Therefore there

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 75

is a subset of TRANSFORMATION set, which is complete. This subset is called:

[CoTRANSFORMATION]

and it contains following transformations, which can be reverted:

• addClass can be reverted by the removeClassWithNoInstances transformation.

• removeClassWithNoInstances can be reverted by the addClass transformation.

• addAttribute can be reverted by the removeAttributeWithNoData transformation.

• removeAttributeWithNoData can be reverted by the addAttribute transforma-

tion.

• addAssociation can be reverted by the removeAssociationWithNoData transfor-

mation.

• removeAssociationWithNoData can be reverted by the addAssociation trans-

formation.

• moveAttribute the transformation can be reverted by the moveAttribute trans-

formation with a inverse mapping.

• inlineClass the transformation can be reverted by the splitClass with a inverse

mapping.

• splitClass the transformation can be reverted by the inlineClass with a inverse

mapping.

• addParent the transformation can be reverted by the removeParent transforma-

tion.

• removeParent the transformation can be reverted by the addParent transforma-

tion.

• pushDown the transformation can be reverted by the pullCommonAttributeUp

transformation.

• pullCommonAttributeUp the transformation can be reverted by the pushDown

transformation.

CHAPTER 6. TRANSFORMATIONS FOR CO-EVOLUTION 76

On one side the set CoTRANSFORMATION creates a complete set, on the other side

this set provides limited user experience during framework usage; especially in case of

removing elements from the model.

Chapter 7

Model of Software Versioning

We have mentioned two approaches to software versioning in Sec. 2.2. First of them, state-

based versioning, is based on a sequence of software states and the second, operation-based

versioning, is based on a record of sequence of transformations, which produced current

state. We decide to use the second approach combined with our framework for applica-

tion and database co-evolution and create a model driven framework for application and

database co-versioning.

The model driven operation-based VCS and its important features are defined in this

section: first a model of operation-based VCS is introduced in Sec. 7.1, then creation and

deletion of branches is discussed in Sec. 7.3, versioning (evolution and revert to a previous

state) is introduced in Sec. 7.2 and finally merging of branches and collision solving in

Sec. 7.4. The transformation defined earlier are updated in a way, that they respect the

features in the VCS in Sec. 7.5. Parts of this section has been published in [42].

7.1 The Model of Operation-Based VCS

The set of transformations, which produce a new version in the operation-based VCS is

the most important part of the whole system. The set of transformations, which is used

in our model, contains all transformations defined in Sec. 6.3. In this section we show

how an operation-based VCS can be built with use of the TRANSFORMATION set.

A general operation-based VCS is represented as follows:

77

CHAPTER 7. MODEL OF SOFTWARE VERSIONING 78

GENERALOPVCS
initial : SOFTWARE
transformations : seq TRANSFORMATION

initial 6= ERRSOFTWARE

The operation-based VCS contains only the initial state of the software and the sequence

of transformations, which produces the current state from the initial one. Any consistent

SOFTWARE can be used as the initial state of the operation-based VCS. In the forth-

coming text we assume that the initial SOFTWARE is an empty one i.e. it does not

contain any classes. Therefore we can simplify the definition by omitting the initial state

of the GENERALOPVCS .

We are interested in the co-versioning of application and database from the devel-

oper’s point of view. Therefore we are interested in current state of the database as well.

Although we are able to reconstruct the structure of the SOFTWARE (definition of the

entities and database schema) from the transformations stored in the transformation se-

quence, we are not able to reconstruct the stored data, because the TRANSFORMATION

set contains only structural transformation and it does not contain transformations for

inserting, deleting or updating of data, which are not needed by the developer, but whose

results (i.e. stored data) can affect feasibility of the structural transformations.

The version is defined as follows in our case:

OPERATIONBASEDVCS
current : SOFTWARE
transformations : seq TRANSFORMATION

7.2 Revert a Transformation

The transformations for creation of a new version are identical with transformations for

application and database co-evolution as defined in Sec. 6. Inverse transformations were

discussed in the catalogue of evolutionary transformations as well. This section provides

a deeper insight on the revert in context of the operation-based VCS.

A revert to a previous state is a must-have function for each VCS. The fact we would

like to keep versions of application structure and stored data as well brings two challenges.

First is that the set of transformations we defined is not complete. Second challenge is lack

of information about changes of data, which are not caused by a structural data evolution.

CHAPTER 7. MODEL OF SOFTWARE VERSIONING 79

7.2.1 Missing Inverse Transformation

The TRANSFORMATION set is not complete, therefore there are limitations in some

cases of transformation’s revert. The problem is to get all necessary information for

inverse e.g. if we remove a class together with all its attributes and data by the trans-

formation removeClass then the result of the inverse transformation addClass will not

correspond to the original state because the attributes of the original class and its data

will be missing.

To solve this problem we define the CoTRANSFORMATION set (see Sec. 6.4). On

such restricted set of transformations, each adding transformation has a remove trans-

formation as its reversal transformation and vice versa. On the other hand, this solution

reduces users’ experience with the OPERATIONBASEDVCS , because they have to pre-

pare the software for each removal. Constraining of the transformation set is solution for

the structural transformations, but it does not cover the change of data in the running

software.

7.2.2 Change of the Data

Second problem of reverting a change is that the TRANSFORMATION set contains only

structural transformations and refactorings. It means, that all the data changes (such as

insert, delete or update) are not stored in the transformations history sequence and they

are not stored in the operation-based VCS.

The change of data may cause problems with consistency of pairs in the mapping e.g.

the mapping can refer to values, which no longer exist. Therefore data changes can cause

a situation when application of inverse transformation is no longer possible.

Possible solution is to add the transformations affecting data into the CoTRANSFOR-

MATION set. The transformations for insert and delete data are inverse transformations

and update can be reverted by another update. All data changing transformations have

to be in a form, which contains all information necessary for revert i.e. in update trans-

formation the whole original data has to be presented in the definition:

updateDataDB
∆DATABASE
original? : PDATAVALUES
new? : PDATAVALUES

values ′ = (values \ original?) ∪ new?

CHAPTER 7. MODEL OF SOFTWARE VERSIONING 80

and the inverse transformation is defined as follows:

updateDataDBInverse
∆DATABASE
original? : DATAVALUES
new? : DATAVALUES

values ′ = values \ {new?} ∪ {original?}

where

updateDataDB .original? = updateDataDBInverse.original? ∧

updateDataDB .new? = updateDataDBInverse.new?

This assures that the data are versioned as well. However, this solution is outside the goal

of this thesis, who is to speed up the work of developers, which are not interested in each

data change in running software. Moreover, this approach can cause security vulnerability

of the system as the data are stored outside database. A possible solution can use

a database backups created at the time of transformation execution. The revert of a

transformation is connected with database revert to corresponding backup. This solution

can consume a lot of disk space in case of large database. Moreover, all data collected

between transformation execution and its revert is lost. Finaly, the original purpose is

that the framework is capable to produce changes, which can be later propagated to

different databases, which is not possible if the changes of the data are stored in the

VCS. Therefore another solution has to be found.

The solution we propose is that the reverted state is not expected to be identical to the

original state on the data level, but on the structural level only. The idea is illustrated

in Fig. 7.1. During the evolution, new version of the entities layer and the database

is created. Whereas when reverting a transformation the structure of application and

database schema reverts to a previous state, but a new version of data is created. This

way even the data, which was added into the new version is preserved in the database; it

is adapted to the new schema.

Disadvantage of this approach is that a transformation, which has a mapping between

instances as its input, has to be updated in case of transformation revert, because some

data can be added or deleted from the database. It means that there can occur situations

when the revert may become impossible without data loss (e.g. if the mapping pairs for

CHAPTER 7. MODEL OF SOFTWARE VERSIONING 81

the new data cannot be created), but the data loss will become obvious due to the

mapping redefinition.

Figure 7.1: The approach for transformation reverting. An old version of entities (and
database schema) is used, in contrast a new version of the database is created.

The proposed solution is not ideal as it represents a compromise between developer’s

code-first approach and data preservation in different software instances.

The process of change reverting is not as straightforward as the evolution of software.

On the other hand it changes the structure into the desired former state and it preserves

data stored in the database.

7.3 Branches

Creation of branches and their merging is an important feature of every VCS, whose goal

is to provide the capability to develop several variants of final software or to separate the

released product version from the development versions.

The model of operation-based VCS with branches looks as follows:

OPVCSWITHBRANCHES
branches : POPERATIONBASEDVCS

∀ b1, b2 : OPERATIONBASEDVCS ; tt , tt1, tt2 : seq TRANSFORMATION •
b1 ∈ branches ∧ b2 ∈ branches ⇒
tt a tt1 = b1.transformations ∧ tt a tt2 = b2.transformations

All branches in the OPVCSWITHBRANCHES have a common subsequence in the be-

ginning, because they arise from the same initial branch. This feature is used later during

merge of branches. The VCS is initialized with one empty initial branch, therefore the

smallest common sequence is an empty sequence.

The creation of branches is simple. A new clone of a given branch is created and

added into the set of branches:

CHAPTER 7. MODEL OF SOFTWARE VERSIONING 82

newBranch
∆OPVCSWITHBRANCHES
ovcs : OPERATIONBASEDVCS

branches ′ = branches ∪ {ovcs}

The operation for branch removal just removes a branch from the set of branches:

remBranch
∆OPVCSWITHBRANCHES
ovcs : OPERATIONBASEDVCS

branches ′ = branches \ {ovcs}

Branching in operation-based VCS is in general very similar to branching in the state-

based VCS. However, when a new branch arises it is derived from an existing branch,

which means it contains its data (if exists) as well. This can be used during the develop-

ment when the test data adapts to the new versions of the software.

7.4 Merge of Branches

The most difficult problem related to branches is merging of two different branches. Merge

workflow has following steps in case of state-based VCS [48]: i) detecting of collisions

ii) solving collisions iii) creating of final consistent version. Similar approach is used

in case of operation-based VCS as well. The difference is that the collision consists

of different sequences of transformations (and therefore different current state of the

entities’ structure as well) or in difference of stored data, whereas in state-based VCS we

are interested only in the difference between states. The collisions in an operation-based

VCS are defined as violations of one of following principles of equivalency of operation-

based VCS:

1. First kind of equivalency between two operation-based VCS is the equivalency of the

transformation history records. Two history records are equivalent if they produce

the same final structure of software.

CHAPTER 7. MODEL OF SOFTWARE VERSIONING 83

areTransformationsEquivalent :
OPERATIONBASEDVCS ×OPERATIONBASEDVCS → BOOL

∀ o1, o2 : OPERATIONBASEDVCS •
areTransformationsEquivalent(o1, o2) = True ⇔

o1.current .entities = o2.current .entities ∨
areTransformationsEquivalent(o1, o2) = False ⇔

o1.current .entities 6= o2.current .entities

This kind of equivalency includes the equality of transformations as well as the

equality of the entities’ structure. (Database structure is derived from the entities

by the ORM and thus it is considered as well.) Two OPERATIONBASEDVCS

can be equivalent according to the definition even if they have different historical

records. This kind of equivalency is called structural equivalency in the follow-

ing text. A special case of equivalency is, when the historical records of both

OPERATIONBASEDVCS are equal.

2. Second kind of equality is the equivalency of stored data. This kind of equivalency

is important because even two OPERATIONBASEDVCS , which are equivalent

according to the historical records could differ in stored data.

areDataEquivalent :
OPERATIONBASEDVCS ×OPERATIONBASEDVCS → BOOL

∀ o1, o2 : OPERATIONBASEDVCS •
areDataEquivalent(o1, o2) = True ⇔

o1.current .database.values = o2.current .database.values ∨
areDataEquivalent(o1, o2) = False ⇔

o1.current .database.values 6= o2.current .database.values

Two history records which are data equivalent are structural equivalent as well, whereas

structurally equivalent history records could differ in stored data.

The merge process of two version proceeds in following two steps:

1. Structural adaptation The two merged versions are changed in a way they are

structurally equivalent. This step contains collision detection and solving on the

structural level.

2. Data adaptation The result of the step is a final version (product of the merge)

which contains only desired data. The approach of data adaptation may differ

according to the purpose of merge as discussed in detail later.

CHAPTER 7. MODEL OF SOFTWARE VERSIONING 84

7.4.1 Structural Adaptation

The purpose of structural adaptation is to create two structurally equivalent versions,

which has the required features. The structural adaptation prepares the versions for the

next step - data adaptation.

Adaptation If One Branch has Final Structure

The adaptation with the know final structure is the most simple case of structural adap-

tation of two branches. This approach can be used if there is one version (branch), which

represents the desired state and the other branch represents some older version of the

software. This is a common situation when a new functionality is integrated with the

previous version.

The most simple case is, when first version is direct predecessor of the second version,

which represents desired structure. Direct predecessor means, that the whole history

record of the predecessor’s is a prefix of the ancestor’s history record:

isAncestor
pred , anc : OPERATIONBASEDVCS

pred .transformations ⊆ anc.transformations

The predecessor has to be updated by applying the transformations, which creates the

difference between predecessor’s and ancestor’s history record.

The second case is when one branch represents the desired final state, but there is

no predecessor - ancestor relationship between versions. In such a case, the difference

between current states has to be defined in the form of transformations’ sequence. This

sequence is then applied on the branch, which needs to be adapted. The transformation

sequence can be obtained as a result of a model matching algorithm, applied on the

models of current SOFTWARE states.

However, it means that this approach can produce multiple possible differences be-

tween branches [70] and a suitable one has to be chosen by the user.

Creation of the Final Structure from Both Branches

This section discuss the case desired features of the final version origins from both

branches. This situation occurs e.g. in case when two branches containing newly devel-

oped functionality are going to be merged - both contain important information, which

CHAPTER 7. MODEL OF SOFTWARE VERSIONING 85

has to be propagated in to the final version. We can use similar approaches as in case of

state-based VCS [48] in this case. The possible approaches are illustrated on the example

of two history records:

t1, t2, t3, t4, t5 : TRANSFORMATION

h1 == 〈t1, t2, t3, t4〉
h2 == 〈t1, t2, t3, t5〉

The naive approach consists in sequential application of both history records on the

last common version. The final sequence of transformations starts with the common

parts of histories’ records (in our case hc == 〈t1, t2, t3〉) and then two possible varia-

tions arise from sequential application of h1 and h2. In our case we get two sequences

h1,2 == 〈t1, t2, t3, t4, t5〉 and h2,1 == 〈t1, t2, t3, t5, t4〉, which both can result in a final

state of the software and the user can select the sequence, which is most suitable for

hers purposes. However, the choice can be limited by possible collisions. The collisions

can arise because the application of transformations is not always commutative e.g. if

t4 = remClass(Person, Software) and t5 = newAssociation(Address ,Person, Software)

then h1,2 cause an error because for t5 there is no class Person, whereas h2,1 will create

a new consistent version of the software. The naive approach considers the set of trans-

formations only and it is based on sequential application of transformations in history

records. A verification if the produced transformation sequence is well-formed (i.e. if it

produce consistent final state) has to be processed by the VCS or by the user.

More sophisticated approach to creating a common final state uses information from

both transformation sequences. Its application in operation-based VCS consists of search-

ing for all possible well-formed sequences, which can produce a consistent final state of

the software and which contains only the transformations, which are contained in one or

both merged sequences. All such sequences are based on permutation of transformations

from the sets of transformations’ histories. To build all permutation is an operation with

high time complexity. To reduce it we omit the initial common part of the history record

and permute only the rest of history sequence (e.g. in our example the sequence hc is

not used for permutation and permuted is only following set of transformations: {t4, t5}).
We do not assume there will be hundreds of transformations to permute in the real world

scenarios. However, this assumption has to be verified on real projects. In case, this as-

sumption is invalid a commutativity of transformations and partial order reduction could

improve the time complexity of the merge process.

CHAPTER 7. MODEL OF SOFTWARE VERSIONING 86

Structural Adaptation Summary

All mentioned approaches are suitable for situations when the requested final state of

software can be obtained from historical records of merged branches. However, there are

situations when the desired state has part of its features from one branch and the other

features from the other branch. The VCS cannot help in such a case because user’s intent

cannot be derived automatically. If users want to use the features of the operation-based

VCS, they should update one branch to the desired state and then use the first approach

to structural merge of branches.

7.4.2 Data Adaptation

The data adaptation is a challenging process, because its failure can cause loss or corrup-

tion of stored data. We aim at software developers with our operation-based framework.

Therefore we provide support for the data adaptation cases they can use during develop-

ment.

First case represents the situation when a development branch is merged with the

production branch. This case is simple, because we do not want to put our development

(test) data in to the deployed software, we simply ignore the development data. The merge

of branches then produce only a description of the structural change (i.e. adaptation of

the deployed version to the newly developed structure) and the data stored in the deployed

software’s database changes accordingly to the structural changes.

Second case represents the situation when two development branches are merged. We

can use the same approach as in the first case if the data in the source branch are not

important, or we can use the mergeClasses transformation if the data from both branches

has to be kept.

More complex solutions of collisions should be still solved manually and in cooperation

with database administrator and domain specialist, because their meaning has to be

interpreted in context of the whole domain.

7.5 The Extension of Transformations for VCS

The execution of each transformation, which has been defined by the schema executeOn-

Software in Sec. 6.1 has to be updated, because the transformation and the new current

state of the software has to be saved in the VCS.

CHAPTER 7. MODEL OF SOFTWARE VERSIONING 87

First we define how a branch in the operation-based VCS is changed during the

evolution:

updateBranch[X]
∆OPVCSWITHBRANCHES
∆OPERATIONBASEDVCS
∆SOFTWARE
X : TRANSFORMATION
decl(X)

θOPERATIONBASEDVCS ∈ branches
θSOFTWARE = current
θ(SOFTWARE)′ = current ′

current ′! = ERROSOFTWARE

transformations ′ = transformations a 〈X 〉
branches ′ = (branches \ {θOPERATIONBASEDVCS})∪
{θ(OPERATIONBASEDVCS)′}

A transformation is stored in the branch only if the transformation is successfully executed

on the software i.e. it does not produce the ERRSOFTWARE .

The execution of a transformation introduced in Sec. 6.1 is suitable in the case of

evolution. For the case of versioning the transformation has to be processed together

with the branch update:

executeOnOPERATIONBASEDVCS [X]
∆OPVCSWITHBRANCHES
∆OPERATIONBASEDVCS
∆SOFTWARE
X : TRANSFORMATION
decl(X)

executeOnSoftware ∧ updateBranch

7.6 Software Versioning Summary

The operation-based approach to software versioning can be used for co-versioning of

entities and database, which preserves the semantics of the change and data stored in the

application’s database. However, there are limitations of the operation-based VCS e.g.

the CoTRANSFORMATION set has to be used to allow reversal transformations, which

reduces the users’ experience.

CHAPTER 7. MODEL OF SOFTWARE VERSIONING 88

It is obvious, that the operation-based VCS cannot solve all special cases during

merge, however it can be useful in simple cases. The complex scenarios will be verified

by future research and implementation.

Chapter 8

Implementation of Prototypes

The formal framework shows that the automatic co-evolution and even co-versioning of

application and database is possible, but with many limitations. To verify if the formal

model can be refined into a tool for developers we decide to implement such a tool. The

framework, which was implemented to prove the model presented in this thesis, is called

MigDb and it was implemented as the set of bachelor’s thesis [71, 72, 73, 67, 74]. The

source code is available online [75].

The architecture of the framework respect the structure presented in Fig. 3.2, which

conform to the data evolution principle introduced in Sec. 2.1. The co-evolution is imple-

mented as a set of model-to-model transformations and the final part consists in genera-

tion of an SQL script. The transformations defined in the framework slightly differs from

transformations defined in Sec. 6, because different approach to inheritance mapping is

used in the framework.

The SQL script produced by the framework contains queries for data definition and

manipulation, which changes the structure of the database. However, it contains a queries,

which verifies the state of instances in stored in the database, which is changed. The

component of the framework, which executes the SQL script is capable to stop and

rollback the database if it does not fulfill some preconditions.

MigDb framework implements the MDD approach to data evolution by using various

tools from Eclipse Modeling Framework [76] (EMF) e.g. the technologies related to the

MDD environment such as OCL [77] and QVT [78] are used.

The (meta)models are created using Ecore language and the transformations are im-

plemented in the QVT language. A domain specific language is implemented on the

top of the framework so the user can used for describing evolution instead of creating

a sequence of QVT transformations. The process of co-evolution is orchestrated by the

89

CHAPTER 8. IMPLEMENTATION OF PROTOTYPES 90

Modeling Workflow Engine (MWE). The result of the evolution are evolved models and

an SQL script for database migration. The metamodels of entities and database are cre-

ated as platform independent. However, the database schema generators are created with

respect to the PostgreSQL database. To improve the user experience with the framework

we extend the metamodels so they are able to represent a real-world scenarios and more

complex cases that the formal model. The evolution of the database schema model could

be interpreted on a real database instance - it means the SQL scripts for schema alter-

nation (re-generation) and for data migration are created and are executed. The SQL

execution component of the framework is capable to verify the feasibility and consistency

of the database and rollback the evolution if the evolution could not be processed safely.

The framework is able to co-evolve entities and database, however, the versioning -

i.e. branching and revert - is not yet implemented.

8.1 Transformations Implemented in the MigDb Fra-

mework

The transformation are created according to the formal model to cover the basic cases of

evolution - creating, updating and deleting parts of the application metamodel.

Each operation implementation consists of two parts - first there is a query which

verifies the feasibility of the operation; the second part of the operation implementation

is mapping from the old to the new model. The example of it is the code for adding a

new class into the model:

Listing 8.1: Implementation of the addClass transformation in the MigDb framework.

1 query AddStandardClass : : i s V a l i d (gen : Model) : Boolean {
2 re turn not gen . i sEnt i tyInMode l (s e l f . name)

3 }
4

5 mapping AddStandardClass : : apply (inout gen : Model) {
6 gen . e n t i t i e s += gen . AddStandardClass (s e l f) ;

7 }

CHAPTER 8. IMPLEMENTATION OF PROTOTYPES 91

8.2 Case Study

Usage of the framework is presented on examples which are small, but they have their

base in a real world problems. First we introduce the case, than we introduce how it can

be solved with the defined framework.

8.2.1 Description of the Case

A company implements the customer relationship management system (CRM). Part of its

class model is in Fig. 8.1a. There are two types of customers - individuals (represented

by a class NaturalPerson) and companies (represented by a class LegalPerson). Both

classes provide information on the address, thus there are duplicities in the code (e.g.

ZIP validation). Moreover more addresses of a customer cannot be stored. It means

a new class Address should be created. The change of the entity’s code structure is

quite straightforward as well as the automatic generation of the new schema by a ORM

framework. In contrast the evolution of stored data is more difficult, because we have

to 1) merge part of the information stored in two different tables (NaturalPerson and

LegalPerson) into the new one (Address) and preserve information about the address

of each customer 2) create a new connection between the customer and the address 3)

preserve connection between the address and the country.

The data migration has to solve following questions: ”How to merge data from the two

different sources?” and ”How to preserve the information (data with their relationships)

when extracting a part of a table from a table and how to verify no data were lost

during the transformation?” These questions have to be solved in migration scripts and

the feasibility of the solution needs to be verified for each of the deployed application,

because of the stored data.

8.2.2 First Iteration

During the first iteration three entities are created. The entity Country represents a list

of all countries used in the software; in addition there are two entities representing a

natural person and a legal person. Both the NaturalPerson and the LegalPerson classes

have a set of attributes, and as you can see some of them are the same (street, city, zip),

and both entities are associated with the entity Country. The model is in the Fig. 8.1a.

The database schema corresponding to this application model is in Fig. 8.1b.

CHAPTER 8. IMPLEMENTATION OF PROTOTYPES 92

-regNo : Integer

-bizName : String

-street : String

-city : String

-zip : String

LegalPerson

-name : String

Country

-name : String

-surname : String

-street : String

-city : String

-zip : String

NaturalPerson

-country

1

* *

-country

1

(a)

LegalPerson

-regNo : Integer
-bisName : String
-street : String
-city : String
-zip : String

Country

-name : String

NaturalPerson

-name : Integer
-surname : String
-street : String
-city : String
-zip : String

-country

1

* *

-country

1

(b)

Figure 8.1: The initial state of the case study example - the model of entities in Fig. a
and there is the database schema in Fig. b.

Listing 8.2: The transformations which produce the state of the software after in the first

iteration.

1 addClass (” Country ” , f a l s e , APP: : Inher i tanceType : : j o i n ed) ;

2 addProperty (” Country ” , ”name” , ” St r ing ”) ;

3

4 addClass (” LegalPerson ” , f a l s e , APP: : Inher i tanceType : : j o i n ed) ;

5 addProperty (” LegalPerson ” , ”regNo ” , ” I n t eg e r ”) ;

6 addProperty (” LegalPerson ” , ”bizName ” , ” St r ing ”) ;

7 addProperty (” LegalPerson ” , ” s t r e e t ” , ” S t r ing ”) ;

8 addProperty (” LegalPerson ” , ” c i t y ” , ” S t r ing ”) ;

9 addProperty (” LegalPerson ” , ” z ip ” , ” S t r ing ”) ;

10 addProperty (” LegalPerson ” , ” country ” , ”Country ”) ;

11

12 addClass (” NaturalPerson ” , f a l s e , APP: : Inher i tanceType : : j o i n ed) ;

13 addProperty (” NaturalPerson ” , ”name” , ” St r ing ”) ;

14 addProperty (” NaturalPerson ” , ”surname ” , ” St r ing ”) ;

15 addProperty (” NaturalPerson ” , ” s t r e e t ” , ” S t r ing ”) ;

16 addProperty (” NaturalPerson ” , ” c i t y ” , ” St r ing ”) ;

17 addProperty (” NaturalPerson ” , ” z ip ” , ” St r ing ”) ;

18 addProperty (” NaturalPerson ” , ” country ” , ”Country ”) ;

CHAPTER 8. IMPLEMENTATION OF PROTOTYPES 93

8.2.3 Second Iteration

It is obvious that the software design from the first iteration suffers from duplication of

code (the address has to be handled in two different entities); moreover it is impossible

to have a person with two or more addresses (e.g. residential and contact). To improve

the design the developers decided to evolve the software. Unfortunately there are already

stored data in the database, thus the developers have to evolve the entities, database

schema and migrate data.

The developers decide to do the second iteration. In this iteration they decide to

solve the issue of code duplication - the aim of the code evolution is to concentrate all the

address information in one class, where all the necessary application logic will be located

according to the Don’t Repeat Yourself (DRY) principle. This new class is called Party

and it is a generalization of both NaturalPerson and LegalPerson.

Listing 8.3: Transformations which extracts a common parent class and moves attributes

up.

1 addClass (” Party ” , f a l s e , Inher i tanceType : : j o i n ed) ;

2 addProperty (” Party ” , ” s t r e e t ” , ” S t r ing ”) ;

3 addProperty (” Party ” , ” c i t y ” , ” S t r ing ”) ;

4 addProperty (” Party ” , ” z ip ” , ” S t r ing ”) ;

5 addProperty (” Party ” , ” country ” , ”Country ”) ;

6 setParent (” LegalPerson ” , ”Party ” ,

7 OrderedSet {” s t r e e t ” , ” c i t y ” , ” z ip ” , ” country ”}) ;

8 setParent (” NaturalPerson ” , ”Party ” ,

9 OrderedSet {” s t r e e t ” , ” c i t y ” , ” z ip ” , ” country ”}) ;

8.2.4 Third Iteration

After the second iteration the business analysts find out, they need more than one ad-

dress for a customer. Therefore the the developers implement the third iteration, which

adds multiple addresses per person - a new entity Address is extracted from the Party

class and then two associations between entities are established - residentialAdress and

contactAddress. The final state of the software is in Fig. 8.2.

CHAPTER 8. IMPLEMENTATION OF PROTOTYPES 94

Party

LegalPerson

-regNo : Integer
-bisName : String

NaturalPerson

-name : String
-surname : String

Address

-street : String
-city : String
-zip : String

1

-residentialAddress

1

Country

-name

*

-country1

1
-contactAddress0..1

country

PK,I1 id_country

 name

party

PK,I1 id_party

FK1 residential_address
FK2 contact_address

natural_person

PK,FK1,I1 id_party

 name
 surname

address

PK,I1 id_address

 street
 city
 zip
FK1 id_country

legal_person

PK,FK1,I1 id_party

 reg_no
 biz_name

Figure 8.2: The final state of the entities model and database schema after the data
evolution - the model of entities a and the database schema b.

Listing 8.4: Extracting class Address from the class Party.

1 e x t r a c t C l a s s (” Party ” ,

2 OrderedSet {” s t r e e t ” , ” c i t y ” ,” z ip ” , ” country ”} , ”Address ”) ;

3 renameProperty (” Party ” , ” address ” , ” r e s i d e n t i a l A d d r e s s ”) ;

4 addProperty (” Party ” , ” contactAddress ” , ”Country ”) ;

8.3 Case Study Summary

The complete SQL script which is generated by the MigDb framework is in the Ap-

pendix D. There is twenty-six transformations defined as the input of MigDb framework

in the case study and there is about sixty-five SQL commands in the generated script. It

is obvious that a user can create better - more compact - code, but the primary source is

the short sequence of transformations. The main contribution of the MigDb framework is

not the reduction of code, but the fact that it can generate script for data manipulation,

which preserve data in the database.

CHAPTER 8. IMPLEMENTATION OF PROTOTYPES 95

8.4 Lessons Learned from the MigDb Implementa-

tion

During the implementation of the MigDb framework we found out that the MDD ap-

proach based on models and their transformations is on one hand very good tool to solve

this issue on the other hand it brings a lot of problems. The biggest problem is, that

change of a metamodel causes changes in all other components. Due to the immaturity

of some used technologies it is hard to process these changes effectively. Moreover, it

shows that the MDD approach for co-evolution and co-versioning is suitable mostly for

environment where there are no big changes of the metamodels. It means that the domain

has to be well known and the company has to implement a lot of projects in this domain

to cover the expenses related to the creation and maintenance of proposed MDD system.

Next lesson learned from the MigDb implementation is that the mapping, which is

defined in Sect. 5.3 as a general function, can be defined more specifically in the real-

world scenarios. There is usually already existing connection between classes in case a

copyAttribute or moveAttribute transformation is used. This allows us to implement the

transformation copyAttribute, which uses an existing association.

Next lesson learned is that users sometimes need to specify more information for the

ORM during the creation of application entity or attribute. The information, which are

needed to be specified concern the database types (e.g. the representation of a number

or a length of a VARCHAR column). This capability has to be added to the framework.

We verify that the framework is capable to solve common refactoring cases in context

of entities and database co-evolution. However there are some known issues during trans-

formations. Next limitation of the framework are technologies, which are used. These

technologies limit the group of framework’s potential users to the people with knowledge

of MDD and EMF i.e. to the MDD-enthusiasts. Therefore we tried to implement two

frameworks, which are using a more common technologies - Java and .NET.

The framework for Java [79] uses capabilities of the Spring Roo [80] and Liquibase.

The Java framework allows to add more specific information about the ORM to the

transformation. The example implementing the case study can be seen in Appendix E,

where the case study example is described in form of the Spring Roo commands. From the

example it is obvious that adding database specific information into the transformation

definitions produce script which is about the same size as the pure SQL script.

The framework for the .NET platform [81] extends the set of Entity framework mi-

grations and offers the capabilities of the framework defined in this thesis. Instead of

CHAPTER 8. IMPLEMENTATION OF PROTOTYPES 96

using a DSL the transformations are described in form of a class, which defines the entity

framework migration.

We hope at least one of the prototypes will find its users and become a valuable

developer tool.

Chapter 9

Conclusion

The phenomenon of application and database co-evolution and co-versioning is examined

in the thesis. We find out that the MDD approach to the co-evolution can speed up

the software development, because it provides a good framework for automatic code-first

co-evolution of the application and the database, which preserves stored data.

We provide a formal definition of the framework which is capable to co-evolve the

application entities and the database (including data) at the same time. The definition

of transformations, which represent the most common refactorings is provided in the

thesis.

Next we discuss how the co-evolution can be used in the context of software version-

ing and how a model of operation-based VCS can be implemented based on the MDD

framework for co-evolution.

Finally the implementation of the MigDb prototype is introduced. The prototype

proves the idea of the proposed framework. Based on our experience from the building

of the prototype the MDD approach is an efficient solution, but implementation and

maintenance of such a tool is challenging.

Our future research will aim at co-evolution and co-versioning of other software layers

such as GUI and security.

9.1 Results and Contribution

The thesis provides the model driven framework for application and database co-evolution

and co-versioning. There are several similar projects, but this thesis still provides unique

contribution to the topic. The main contributions are:

97

CHAPTER 9. CONCLUSION 98

1. The architecture of the framework for application and database co-evolution is

provided and discussed in context of application and database co-versioning.

2. The formal model in Z-language specifies the most common evolutionary cases

(refactorings) and their impact on application and database. This formal framework

can be used as an entry point for an implementation of a MDD tool for co-evolution.

3. The formal model describes the basic cases of application and database co-versioning

such as branching, merging of the repository and reverting of a transformation.

4. The formal framework is verified by the prototype called MigDb, which provides

feedback on the formal framework in real-world scenarios.

The results of the thesis improve the understanding of the area of model driven application

and database co-evolution and co-versioning.

Bibliography

[1] Martin Fowler. Refactoring: Improving the Design of Existing Code. Boston, MA,

USA: Addison-Wesley, 1999. isbn: 0-201-48567-2.

[2] Oracle. java.com: Java + you. [Accessed 29. November 2013]. 2013. url: http:

//java.com/en/.

[3] Microsoft. Visual C#. [Accessed 29. November 2013]. 2013. url: http://msdn.

microsoft.com/en-us/library/vstudio/kx37x362.aspx.

[4] Oracle. MySQL::The world’s most popular open source database. [Accessed 29.

November 2013]. 2013. url: http://www.mysql.com.

[5] The PostgreSQL Global Development Group. PostgreSQL: The world’s most ad-

vanced open source database. [Accessed 29. November 2013]. 2013. url: http :

//www.postgresql.org.

[6] JBoss Community. Hibernate. [Accessed 6. September 2012]. 2011. url: http:

//www.hibernate.org/.

[7] D. H. Hansson and J. Kemper. RubyForge:ActiveRecord: Project Info. [Accessed 6.

September 2012]. 2009. url: http://rubyforge.org/projects/activerecord.

[8] D. H. Hansson and J. Kemper. ActiveRecord::Migration. [Accessed 6. September

2012]. 2009. url: http : / / api . rubyonrails . org / classes / ActiveRecord /

Migration.html.

[9] Microsoft. ADO.NET Enitity Framework. [Accessed 6. September 2012]. 2011. url:

http://msdn.microsoft.com/en-us/library/bb399572.aspx.

[10] N. Voxland. Liquibase. [Accessed 19. March 2013]. Jan. 2013. url: http://www.

liquibase.org.

99

http://java.com/en/
http://java.com/en/
http://msdn.microsoft.com/en-us/library/vstudio/kx37x362.aspx
http://msdn.microsoft.com/en-us/library/vstudio/kx37x362.aspx
http://www.mysql.com
http://www.postgresql.org
http://www.postgresql.org
http://www.hibernate.org/
http://www.hibernate.org/
http://rubyforge.org/projects/activerecord
http://api.rubyonrails.org/classes/ActiveRecord/Migration.html
http://api.rubyonrails.org/classes/ActiveRecord/Migration.html
http://msdn.microsoft.com/en-us/library/bb399572.aspx
http://www.liquibase.org
http://www.liquibase.org

BIBLIOGRAPHY 100

[11] Eladio Domı́nguez et al. “MeDEA: A Database Evolution Architecture with Trace-

ability”. In: Data Knowl. Eng. 65.3 (June 2008), pp. 419–441. issn: 0169-023X.

doi: 10.1016/j.datak.2007.12.001. url: http://dx.doi.org/10.1016/j.

datak.2007.12.001.

[12] Carlo A. Curino, Hyun J. Moon, and Carlo Zaniolo. “Graceful Database Schema

Evolution: The PRISM Workbench”. In: Proc. VLDB Endow. 1.1 (Aug. 2008),

pp. 761–772. issn: 2150-8097. url: http://dl.acm.org/citation.cfm?id=

1453856.1453939.

[13] Jean-Marc Hick and Jean-Luc Hainaut. “Database Application Evolution: A Trans-

formational Approach”. In: Data Knowl. Eng. 59.3 (Dec. 2006), pp. 534–558. issn:

0169-023X. doi: 10.1016/j.datak.2005.10.003. url: http://dx.doi.org/10.

1016/j.datak.2005.10.003.

[14] Behzad Bordbar et al. “Integrated Model-based Software Development, Data Ac-

cess, and Data Migration”. In: Proceedings of the 8th International Conference on

Model Driven Engineering Languages and Systems. MoDELS’05. Berlin, Heidel-

berg: Springer-Verlag, 2005, pp. 382–396. isbn: 3-540-29010-9, 978-3-540-29010-0.

doi: 10.1007/11557432_28. url: http://dx.doi.org/10.1007/11557432_28.

[15] A. Cleve and J. Hainaut. “Co-transformations in Database Applications Evolution”.

In: GTTSE. 2005, pp. 409–421. doi: http://dx.doi.org/10.1007/11877028_17.

[16] Enrico Franconi, Fabio Grandi, and Federica Mandreoli. “A general framework for

evolving schemata support”. In: SEBD. 2000, pp. 371–384.

[17] Shi-Kuo Chang et al. “A Logic Framework to Support Database Refactoring”.

English. In: Database and Expert Systems Applications. Ed. by Roland Wagner,

Norman Revell, and Günther Pernul. Vol. 4653. Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2007, pp. 509–518. isbn: 978-3-540-74467-2. doi: 10.

1007/978-3-540-74469-6_50. url: http://dx.doi.org/10.1007/978-3-540-

74469-6_50.

[18] Peter McBrien and Alexandra Poulovassilis. “Schema Evolution in Heterogeneous

Database Architectures, A Schema Transformation Approach”. English. In: Ad-

vanced Information Systems Engineering. Ed. by AnneBanks Pidduck et al. Vol. 2348.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2002, pp. 484–

499. isbn: 978-3-540-43738-3. doi: 10.1007/3- 540- 47961- 9_34. url: http:

//dx.doi.org/10.1007/3-540-47961-9_34.

http://dx.doi.org/10.1016/j.datak.2007.12.001
http://dx.doi.org/10.1016/j.datak.2007.12.001
http://dx.doi.org/10.1016/j.datak.2007.12.001
http://dl.acm.org/citation.cfm?id=1453856.1453939
http://dl.acm.org/citation.cfm?id=1453856.1453939
http://dx.doi.org/10.1016/j.datak.2005.10.003
http://dx.doi.org/10.1016/j.datak.2005.10.003
http://dx.doi.org/10.1016/j.datak.2005.10.003
http://dx.doi.org/10.1007/11557432_28
http://dx.doi.org/10.1007/11557432_28
http://dx.doi.org/http://dx.doi.org/10.1007/11877028_17
http://dx.doi.org/10.1007/978-3-540-74469-6_50
http://dx.doi.org/10.1007/978-3-540-74469-6_50
http://dx.doi.org/10.1007/978-3-540-74469-6_50
http://dx.doi.org/10.1007/978-3-540-74469-6_50
http://dx.doi.org/10.1007/3-540-47961-9_34
http://dx.doi.org/10.1007/3-540-47961-9_34
http://dx.doi.org/10.1007/3-540-47961-9_34

BIBLIOGRAPHY 101

[19] E. McKenzie and R. Snodgrass. “Schema evolution and the relational algebra”. In:

Information Systems 15.2 (1990), pp. 207–232.

[20] John F. Roddick, Noel G. Craske, and Thomas J. Richards. “A Taxonomy for

Schema Versioning Based on the Relational and Entity Relationship Models”. In:

Proceedings of the 12th International Conference on the Entity-Relationship Ap-

proach: Entity-Relationship Approach. ER ’93. London, UK, UK: Springer-Verlag,

1994, pp. 137–148. isbn: 3-540-58217-7. url: http://dl.acm.org/citation.cfm?

id=647515.727030.

[21] Lex Wedemeijer. “Semantical Change Patterns in the Conceptual Schema”. In: Pro-

ceedings of the Workshops on Evolution and Change in Data Management, Reverse

Engineering in Information Systems, and the World Wide Web and Conceptual

Modeling. ER ’99. London, UK, UK: Springer-Verlag, 1999, pp. 122–133. isbn: 3-

540-66653-2. url: http://dl.acm.org/citation.cfm?id=647523.728210.

[22] S. W. Ambler and P. J. Sadalage. Refactoring Databases: Evolutionary Database

Design. Addison-Wesley Professional, 2006. isbn: 0321293533.

[23] Alexandra Poulovassilis and Peter Mc. Brien. “A General Formal Framework for

Schema Transformation”. In: Data Knowl. Eng. 28.1 (Oct. 1998), pp. 47–71. issn:

0169-023X. doi: 10.1016/S0169-023X(98)00013-5. url: http://dx.doi.org/

10.1016/S0169-023X(98)00013-5.

[24] Christoph Schulz, Michael Löwe, and Harald König. “A categorical framework for

the transformation of object-oriented systems: Models and data”. In: J. Symb.

Comput. 46.3 (Mar. 2011), pp. 316–337. issn: 0747-7171. doi: 10.1016/j.jsc.

2010.09.010. url: http://dx.doi.org/10.1016/j.jsc.2010.09.010.

[25] Ellen Van Paesschen, Wolfgang De Meuter, and Maja D’Hondt. “SelfSync: A Dy-

namic Round-trip Engineering Environment”. In: Companion to the 20th Annual

ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages,

and Applications. OOPSLA ’05. New York, NY, USA: ACM, 2005, pp. 146–147.

isbn: 1-59593-193-7. doi: 10.1145/1094855.1094906. url: http://doi.acm.

org/10.1145/1094855.1094906.

[26] Mohammed A. Aboulsamh and Jim Davies. “A Metamodel-Based Approach to In-

formation Systems Evolution and Data Migration”. In: Proceedings of the 2010 Fifth

International Conference on Software Engineering Advances. ICSEA ’10. Washing-

ton, DC, USA: IEEE Computer Society, 2010, pp. 155–161. isbn: 978-0-7695-4144-

http://dl.acm.org/citation.cfm?id=647515.727030
http://dl.acm.org/citation.cfm?id=647515.727030
http://dl.acm.org/citation.cfm?id=647523.728210
http://dx.doi.org/10.1016/S0169-023X(98)00013-5
http://dx.doi.org/10.1016/S0169-023X(98)00013-5
http://dx.doi.org/10.1016/S0169-023X(98)00013-5
http://dx.doi.org/10.1016/j.jsc.2010.09.010
http://dx.doi.org/10.1016/j.jsc.2010.09.010
http://dx.doi.org/10.1016/j.jsc.2010.09.010
http://dx.doi.org/10.1145/1094855.1094906
http://doi.acm.org/10.1145/1094855.1094906
http://doi.acm.org/10.1145/1094855.1094906

BIBLIOGRAPHY 102

0. doi: 10.1109/ICSEA.2010.31. url: http://dx.doi.org/10.1109/ICSEA.

2010.31.

[27] Jay Banerjee et al. Semantics and Implementation of Schema Evolution in Object-

oriented Databases. New York, NY, USA, Dec. 1987, pp. 311–322. doi: 10.1145/

38714.38748. url: http://doi.acm.org/10.1145/38714.38748.

[28] Randel J. Peters and M. Tamer Özsu. “An Axiomatic Model of Dynamic Schema

Evolution in Objectbase Systems”. In: ACM Trans. Database Syst. 22.1 (Mar.

1997), pp. 75–114. issn: 0362-5915. doi: 10.1145/244810.244813. url: http:

//doi.acm.org/10.1145/244810.244813.

[29] Kajal T. Claypool, Jing Jin, and Elke A. Rundensteiner. “SERF: Schema Evolution

Through an Extensible, Re-usable and Flexible Framework”. In: Proceedings of

the Seventh International Conference on Information and Knowledge Management.

CIKM ’98. New York, NY, USA: ACM, 1998, pp. 314–321. isbn: 1-58113-061-9. doi:

10.1145/288627.288672. url: http://doi.acm.org/10.1145/288627.288672.

[30] Kajal T. Claypool, Elke A. Rundensteiner, and George T. Heineman. “Evolving

the Software of a Schema Evolution System”. In: FoMLaDO/DEMM 2000 (2001),

pp. 68–84. url: http://dl.acm.org/citation.cfm?id=646201.681981.

[31] Martin Nečaský et al. “Evolution and change management of XML-based systems”.

In: Journal of Systems and Software 85.3 (2012). Novel approaches in the design

and implementation of systems/software architecture, pp. 683 –707. issn: 0164-

1212. doi: http://dx.doi.org/10.1016/j.jss.2011.09.038. url: http:

//www.sciencedirect.com/science/article/pii/S0164121211002524.

[32] Barbara Staudt Lerner and A. Nico Habermann. “Beyond Schema Evolution to

Database Reorganization”. In: Proceedings of the European Conference on Object-

oriented Programming on Object-oriented Programming Systems, Languages, and

Applications. OOPSLA/ECOOP ’90. New York, NY, USA: ACM, 1990, pp. 67–76.

isbn: 0-89791-411-2. doi: 10.1145/97945.97956. url: http://doi.acm.org/10.

1145/97945.97956.

[33] M. Tresch. “A Framework for Schema Evolution by Meta Object Manipulation”.

In: In Proceedings of the 3d International Workshop on Foundations of Models and

Languages for Data and Objects, Aigen. 1991, pp. 1–13.

http://dx.doi.org/10.1109/ICSEA.2010.31
http://dx.doi.org/10.1109/ICSEA.2010.31
http://dx.doi.org/10.1109/ICSEA.2010.31
http://dx.doi.org/10.1145/38714.38748
http://dx.doi.org/10.1145/38714.38748
http://doi.acm.org/10.1145/38714.38748
http://dx.doi.org/10.1145/244810.244813
http://doi.acm.org/10.1145/244810.244813
http://doi.acm.org/10.1145/244810.244813
http://dx.doi.org/10.1145/288627.288672
http://doi.acm.org/10.1145/288627.288672
http://dl.acm.org/citation.cfm?id=646201.681981
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2011.09.038
http://www.sciencedirect.com/science/article/pii/S0164121211002524
http://www.sciencedirect.com/science/article/pii/S0164121211002524
http://dx.doi.org/10.1145/97945.97956
http://doi.acm.org/10.1145/97945.97956
http://doi.acm.org/10.1145/97945.97956

BIBLIOGRAPHY 103

[34] Tom Mens. “A state-of-the-art survey on software merging”. In: IEEE Transactions

on Software Engineering 28.5 (May 2002), pp. 449–462. issn: 0098-5589. doi: 10.

1109/TSE.2002.1000449. url: http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=1000449.

[35] Reidar Conradi and Bernhard Westfechtel. “Towards a Uniform Version Model for

Software Configuration Management”. In: Proceedings of the SCM-7 Workshop on

System Configuration Management. ICSE ’97. London, UK, UK: Springer-Verlag,

1997, pp. 1–17. isbn: 3-540-63014-7. url: http://dl.acm.org/citation.cfm?

id=647176.716423.

[36] The CVS Team. Concurrent Versions System - Summary. [Accessed 3. December

2013]. 2013. url: http://savannah.nongnu.org/projects/cvs.

[37] The Apache Software Foundation. Apache Subversion. [Accessed 3. December 2013].

2013. url: http://subversion.apache.org.

[38] Mercurial SCM. [Accessed 6. September 2012]. 2014. url: http://mercurial.

selenic.com/.

[39] Git. [Accessed 3. December 2013]. 2013. url: http://git-scm.com.

[40] Ernst Lippe and Norbert van Oosterom. “Operation-based merging”. In: Proceed-

ings of the fifth ACM SIGSOFT symposium on Software development environ-

ments - SDE 5. New York, New York, USA: ACM Press, 1992, pp. 78–87. isbn:

0897915542. doi: 10.1145/142868.143753. url: http://portal.acm.org/

citation.cfm?doid=142868.143753.

[41] M Koegel et al. “Comparing State- and Operation-Based Change Tracking on Mod-

els”. In: Enterprise Distributed Object Computing Conference EDOC 2010 14th

IEEE International. Vol. 0. Ieee, 2010, pp. 163–172. isbn: 9781424479665. doi:

10.1109/EDOC.2010.15. url: http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=5630213.

[42] Ondrej Macek. “Model Driven Approach to Software Versioning”. English. In: Inter-

national Journal on Information Technologies and Security 6.1 (Mar. 2014), pp. 27–

38. issn: 1313-8251.

[43] Martin Mazanec and Ondrej Macek. “On General-purpose Textual Modeling Lan-

guages”. English. In: DATESO 2012. Prague: MATFYSPRESS, 2012, pp. 1–12.

isbn: 978-80-7378-171-2. url: http://ceur-ws.org/Vol-837/paper10.pdf.

http://dx.doi.org/10.1109/TSE.2002.1000449
http://dx.doi.org/10.1109/TSE.2002.1000449
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1000449
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1000449
http://dl.acm.org/citation.cfm?id=647176.716423
http://dl.acm.org/citation.cfm?id=647176.716423
http://savannah.nongnu.org/projects/cvs
http://subversion.apache.org
http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://git-scm.com
http://dx.doi.org/10.1145/142868.143753
http://portal.acm.org/citation.cfm?doid=142868.143753
http://portal.acm.org/citation.cfm?doid=142868.143753
http://dx.doi.org/10.1109/EDOC.2010.15
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5630213
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5630213
http://ceur-ws.org/Vol-837/paper10.pdf

BIBLIOGRAPHY 104

[44] Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Juergens. “COPE - Au-

tomating Coupled Evolution of Metamodels and Models”. In: Proceedings of the

23rd European Conference on ECOOP 2009 — Object-Oriented Programming. Genoa.

Berlin, Heidelberg: Springer-Verlag, 2009, pp. 52–76. isbn: 978-3-642-03012-3. doi:

10.1007/978-3-642-03013-0_4. url: http://dx.doi.org/10.1007/978-3-

642-03013-0_4.

[45] Sergey Melnik, Erhard Rahm, and Philip A. Bernstein. “Rondo: A Programming

Platform for Generic Model Management”. In: SIGMOD Conference. 2003, pp. 193–

204. url: http://doi.acm.org/10.1145/872757.872782.

[46] Spark Systems. Enterprise Architect. [Accessed 13. April 2014]. 2014. url: http:

//www.sparxsystems.com/products/ea/index.html.

[47] Kerstin Altmanninger et al. “Why Model Versioning Research is Needed!? An Expe-

rience Report”. In: Proceedings of the Joint MoDSE-MCCM 2009 Workshop. 2009.

url: http://publik.tuwien.ac.at/files/PubDat_177761.pdf.

[48] Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. “A survey on model

versioning approaches”. In: IJWIS 5.3 (2009), pp. 271–304. url: http://dx.doi.

org/10.1108/17440080910983556.

[49] Amanuel Koshima, Vincent Englebert, and Philippe Thiran. “Distributed Collabo-

rative Model Editing Framework for Domain Specific Modeling Tools”. In: ICGSE

’11 (2011), pp. 113–118. doi: 10.1109/ICGSE.2011.18. url: http://dx.doi.

org/10.1109/ICGSE.2011.18.

[50] Bernhard Westfechtel. “A Formal Approach to Three-way Merging of EMF Mod-

els”. In: IWMCP ’10 (2010), pp. 31–41. doi: 10.1145/1826147.1826155. url:

http://doi.acm.org/10.1145/1826147.1826155.

[51] Klaus-D. Engel, Richard F. Paige, and Dimitrios S. Kolovos. “Using a Model Merg-

ing Language for Reconciling Model Versions”. In: ECMDA-FA’06 (2006), pp. 143–

157. doi: 10.1007/11787044_12. url: http://dx.doi.org/10.1007/11787044_

12.

[52] Eclipse Foundation. EMF Models. [Accessed 13. April 2014]. 2014. url: http:

//www.eclipse.org/emf/compare/l.

[53] Yuehua Lin, Jing Zhang, and Jeff Gray. “Model comparison: A key challenge for

transformation testing and version control in model driven software development”.

In: (2004), pp. 219–236.

http://dx.doi.org/10.1007/978-3-642-03013-0_4
http://dx.doi.org/10.1007/978-3-642-03013-0_4
http://dx.doi.org/10.1007/978-3-642-03013-0_4
http://doi.acm.org/10.1145/872757.872782
http://www.sparxsystems.com/products/ea/index.html
http://www.sparxsystems.com/products/ea/index.html
http://publik.tuwien.ac.at/files/PubDat_177761.pdf
http://dx.doi.org/10.1108/17440080910983556
http://dx.doi.org/10.1108/17440080910983556
http://dx.doi.org/10.1109/ICGSE.2011.18
http://dx.doi.org/10.1109/ICGSE.2011.18
http://dx.doi.org/10.1109/ICGSE.2011.18
http://dx.doi.org/10.1145/1826147.1826155
http://doi.acm.org/10.1145/1826147.1826155
http://dx.doi.org/10.1007/11787044_12
http://dx.doi.org/10.1007/11787044_12
http://dx.doi.org/10.1007/11787044_12
http://www.eclipse.org/emf/compare/l
http://www.eclipse.org/emf/compare/l

BIBLIOGRAPHY 105

[54] Tom Mens, Ragnhild Van Der Straeten, and Maja D'Hondt. “Detecting and

Resolving Model Inconsistencies Using Transformation Dependency Analysis”. In:

MoDELS’06 (2006), pp. 200–214. doi: 10.1007/11880240_15. url: http://dx.

doi.org/10.1007/11880240_15.

[55] Xavier Blanc et al. “Detecting Model Inconsistency Through Operation-based Model

Construction”. In: Proceedings of the 30th International Conference on Software

Engineering. ICSE ’08. New York, NY, USA: ACM, 2008, pp. 511–520. isbn: 978-

1-60558-079-1. doi: 10.1145/1368088.1368158. url: http://doi.acm.org/10.

1145/1368088.1368158.

[56] Jernej Kovse and Theo Härder. Model-Driven Development of Versioning Systems:

An Evaluation of Different Approaches. Tech. rep. University of Kaiserslautern,

Kaiserslautern, 2005.

[57] Object Management Group. OMG Model Driven Architecture. [Accessed 19. March

2013]. 2012. url: http://www.omg.org/mda/.

[58] Pavel Moravec et al. “An practical approach to dealing with evolving models and

persisted data”. In: Code Generation. 2012.

[59] Ondrej Macek and Karel Richta. “Application and Relational Database Co-Refactoring”.

English. In: Computer Science and Information Systems (). forthcoming. issn:

1820-0214.

[60] Ondrej Macek. Thesis Model in the Z language. [Accessed 7. July 2014]. 2014. url:

https://github.com/macekond/thesis_z_model.

[61] Mike J. Spivey. The Z notation: a reference manual. Upper Saddle River, NJ, USA:

Prentice-Hall, Inc., 1989. isbn: 0-13-983768-X.

[62] Jim Woodcock and Jim Davies. Using Z: specification, refinement, and proof. Upper

Saddle River, NJ, USA: Prentice-Hall, Inc., 1996. isbn: 0-13-948472-8.

[63] J. P. Bowen. Formal Specification and Documentation Using Z: A Case Study Ap-

proach. International Thomson Computer Press, 1996. isbn: 1-85032-230-9. url:

http://www.afm.sbu.ac.uk/zbook/.

[64] Dongwon Lee, Murali Mani, and Wesley W. Chu. “Effective Schema Conversions

between XML and Relational Models”. In: IN EUROPEAN CONF. ON ARTIFI-

CIAL INTELLIGENCE (ECAI), KNOWLEDGE TRANSFORMATION WORK-

SHOP (ECAI-OT. 2002, pp. 3–11.

http://dx.doi.org/10.1007/11880240_15
http://dx.doi.org/10.1007/11880240_15
http://dx.doi.org/10.1007/11880240_15
http://dx.doi.org/10.1145/1368088.1368158
http://doi.acm.org/10.1145/1368088.1368158
http://doi.acm.org/10.1145/1368088.1368158
http://www.omg.org/mda/
https://github.com/macekond/thesis_z_model
http://www.afm.sbu.ac.uk/zbook/

BIBLIOGRAPHY 106

[65] Pavel Strnad, Oondrej Macek, and P. J́ıra. “Mapping XML to Key-Value Database”.

English. In: DBKDA 2013, The Fifth International Conference on Advances in

Databases, Knowledge, and Data Applications. Vol. 1. Red Hook: Curran Associates,

Inc., 2013, pp. 121–127. isbn: 978-1-61208-247-9. url: http://www.thinkmind.

org/index.php?view=article\&articleid=dbkda_2013_5_30_30098.

[66] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. “How We Refactor, and

How We Know It”. In: ICSE ’09 (2009), pp. 287–297. doi: 10.1109/ICSE.2009.

5070529. url: http://dx.doi.org/10.1109/ICSE.2009.5070529.

[67] David Luksch. Katalog refaktoring̊u frameworku MigDb. CVUT FEL, bachelor the-

sis. 2013.

[68] Daniel Jackson. “Alloy: A Lightweight Object Modelling Notation”. In: ACM Trans.

Softw. Eng. Methodol. 11.2 (Apr. 2002), pp. 256–290. issn: 1049-331X. doi: 10.

1145/505145.505149. url: http://doi.acm.org/10.1145/505145.505149.

[69] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT

Press, 2006. isbn: 0262101149.

[70] D.S. Kolovos et al. “Different models for model matching: An analysis of approaches

to support model differencing”. In: Comparison and Versioning of Software Models,

2009. CVSM ’09. ICSE Workshop on. 2009, pp. 1–6. doi: 10.1109/CVSM.2009.

5071714.

[71] Martin Lukeš. Transformace objektových model̊u. CVUT FEL, bachelor thesis. 2011.

[72] Jǐŕı Ježek. Modelem ř́ızená evoluce aplikace. CVUT FEL, bachelor thesis. 2012.

[73] Petr Tarant. Modelem ř́ızená evoluce databáze. CVUT FEL, bachelor thesis. 2012.

[74] Martin Mazanec. Domain Specific language for MigDb. CVUT FEL, master thesis.

2014.

[75] Macek, O. et. all. MigDb - Database Migration Framework. [26. March 2014]. 2014.

url: https://github.com/migdb/migdb.

[76] Eclipse Foundation. Eclipse Modeling - EMF. [Accessed 26. February 2014]. 2012.

url: http://www.eclipse.org/modeling/emf/.

[77] Object Management Group. OCL 2.2 Specification. Feb. 2010. url: http://www.

omg.org/spec/OCL/2.2.

[78] Object Management Group. Query/View/Transformation, v 1.1. 2011. url: http:

//www.omg.org/spec/QVT/1.1/.

http://www.thinkmind.org/index.php?view=article\&articleid=dbkda_2013_5_30_30098
http://www.thinkmind.org/index.php?view=article\&articleid=dbkda_2013_5_30_30098
http://dx.doi.org/10.1109/ICSE.2009.5070529
http://dx.doi.org/10.1109/ICSE.2009.5070529
http://dx.doi.org/10.1109/ICSE.2009.5070529
http://dx.doi.org/10.1145/505145.505149
http://dx.doi.org/10.1145/505145.505149
http://doi.acm.org/10.1145/505145.505149
http://dx.doi.org/10.1109/CVSM.2009.5071714
http://dx.doi.org/10.1109/CVSM.2009.5071714
https://github.com/migdb/migdb
http://www.eclipse.org/modeling/emf/
http://www.omg.org/spec/OCL/2.2
http://www.omg.org/spec/OCL/2.2
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/QVT/1.1/

BIBLIOGRAPHY 107

[79] Petr Valeš. Framework for automatic evolution of data model and database. CVUT

FIT, master thesis (in Czech Language). 2014.

[80] GoPivotal. Spring Roo. [Accessed 17. May 2014]. 2014. url: http://projects.

spring.io/spring-roo/.

[81] Filip Č́ıž. The framework for evolution and refactoring of domain model in the

.NET environment with the use of ORM tool Entity Framework. CVUT FIT, master

thesis. 2014.

http://projects.spring.io/spring-roo/
http://projects.spring.io/spring-roo/

Publications by Ondřej Macek

Referred Publications Relevant for the Thesis

Peer Reviewed Journal Papers with Impact Factor

[A.1] Macek O. et al., Application and Relational Database Co-Refactoring, Computer

Science and Information Systems ISSN: 1820-0214 (forthcoming). (WOS)

Peer Reviewed Journal Papers

[A.2] Macek, O. Model Driven Approach to Software Versioning In: International Jour-

nal on Information Technologies and Security. 2014, vol. 6, no. 1, p. 27-38. ISSN

1313-8251. (Google Scholar)

Peer Reviewed Proceedings Papers

[A.3] Strnad, P. - Macek, O. - J́ıra, P. Mapping XML to Key-Value Database In: DBKDA

2013, The Fifth International Conference on Advances in Databases, Knowledge,

and Data Applications. Red Hook: Curran Associates, Inc., 2013, vol. 1, p. 121-

127. ISBN 978-1-61208-247-9. (Google Scholar)

[A.4] Mazanec, M. - Macek, O. On General-purpose Textual Modeling Languages In:

DATESO 2012. Prague: MATFYSPRESS, 2012, p. 1-12. ISSN 1613-0073.ISBN

978-80-7378-171-2.(SCOPUS)

The paper has been cited in (autocitations excluded):

– da Silva, Mário Sergio, Valéria Cesário Times, and Michael Mireku Kwakye.

”A Framework for ETL Systems Development.” Journal of Information and

Data Management 3.3 (2012): 300.

108

BIBLIOGRAPHY 109

[A.5] Macek, O. - Richta, K. The BPM to UML Activity Diagram Transformation Using

XSLT In: Databases, Texts, Specifications, and Objects. Praha: ČVUT v Praze,

2009, p. 119-129. ISBN 978-80-01-04323-3.(WOS)

The paper has been cited in (autocitations excluded):

– Rodŕıguez, Alfonso, et al. ”Semi-formal transformation of secure business

processes into analysis class and use case models: An MDA approach.” Infor-

mation and Software Technology 52.9 (2010): 945-971. (WOS)

– Nečaský, Martin, and Irena Mlýnková. ”A Framework for Efficient Design,

Maintaining, and Evolution of a System of XML Applications.” DATESO.

2010. (SCOPUS)

– Górski, Tomasz. ”Transformacje do automatyzacji projektowania architek-

tury platformy integracyjnej.” Biuletyn Wojskowej Akademii Technicznej 62.2

(2013): 145-165. (Google Scholar)

– Conrad Bock, Raphael Barbau, Anantha Narayanan, “BPMN Profile for Op-

erational Requirements ”, Journal of Object Technology, Volume 13, no. 2

(June 2014), pp. 2:1-35 (SCOPUS)

Refered Publications with Partial Relevance to the

Thesis

Peer Reviewed Proceedings Papers

[B.1] Macek, O. - Nečaský, M. An Extension of Business Process Model for XML Schema

Modeling In: 2010 6th World Congress on Services. Los Alamitos: IEEE Computer

Society Press, 2010, p. 383-390. ISBN 978-0-7695-4129-7.(SCOPUS)

Unrefered Publications

Peer Reviewed Proceedings Papers

[C.1] Loupal, P. - Kantor, A. - Macek, O. - Strnad, P. On Indexing in Native XML

Database Systems In: DATESO 2012. Prague: MATFYSPRESS, 2012, p. 127-

134. ISSN 1613-0073.ISBN 978-80-7378-171-2. (SCOPUS)

BIBLIOGRAPHY 110

[C.2] Macek, O. - Komárek, M. Evaluation of Student Teamwork In: 2012 25th IEEE

Conference on Software Engineering Education and Training. Los Alamitos, CA:

IEEE Computer Soc., 2012, p. 130-134. ISSN 1093-0175.ISBN 978-0-7695-4693-3.

(WOS)

The paper has been cited in (autocitations excluded):

– Eterovic, Yadran, Gemma Grau, and Jorge Bozo. ”Teaching software pro-

cesses to professionals: The approach taken by an evening master’s degree pro-

gram.” Software Engineering Education and Training (CSEE&T), 2013 IEEE

26th Conference on. IEEE, 2013. (WOS)

– Ashraf, M.A., Shamail, S., Rana, Z.A., ”Agile model adaptation for e-learning

students’ final-year project,” Teaching, Assessment and Learning for Engi-

neering (TALE), 2012 IEEE International Conference on, pp.T1C-18,T1C-21,

2012. (SCOPUS)

[C.3] Macek, O. - Komárek, M. The practical method of motivating students to itera-

tive software development In: 24th IEEE-CS Conference on Software Engineering

Education and Training, CSEE&T 2011. New Jersey: IEEE, 2011, p. 512-516.

ISSN 1093-0175.ISBN 978-1-4577-0348-5. (WOS)

The paper has been cited in (autocitations excluded):

– Eterovic, Yadran, Gemma Grau, and Jorge Bozo. ”Teaching software pro-

cesses to professionals: The approach taken by an evening master’s degree pro-

gram.” Software Engineering Education and Training (CSEE&T), 2013 IEEE

26th Conference on. IEEE, 2013. (WOS)

Appendix A

Queries Used in the Model

A.1 Queries for Entites Layer

The sections introduces queries, which are used to query the layer of entities.

A.1.1 associationsOf

The function returns all ASSOCIATION s which have the given class as the source (i.e.

all associations, which leads from the class).

associationsOf : CLASS × ENTITIES → PASSOCIATION

∀ c : CLASS ; s : ENTITIES ; as : PASSOCIATION •
associationsOf (c, s) =
{a : ASSOCIATION | a ∈ s .associations ∧ c = a.source}

A.1.2 associationsTargeting

The function returns all ASSOCIATION s in the entities layer, which reference the given

class.

associationsTargeting : CLASS × ENTITIES → PASSOCIATION

∀ c : CLASS ; s : ENTITIES ; r : PASSOCIATION •
associationsTargeting(c, s) =
{a : ASSOCIATION | a ∈ s .associations ∧ a.target = c}

111

APPENDIX A. QUERIES USED IN THE MODEL 112

A.1.3 attributesOf

The function returns all attributes, which belongs to the given class.

attributesOf : CLASS × ENTITIES → PATTRIBUTE

∀ c : CLASS ; e : ENTITIES •
attributesOf (c, e) = {p : ATTRIBUTE |

p ∈ e.attributes ∧ ∃ poc : ATTRIBUTEOfCLASS •
poc.class = c ∧ poc.attribute = p}

A.1.4 children

The function returns all direct children of the given class (i.e. children of children are

not returned by the functions).

children : CLASS × ENTITIES → PCLASS

∀ cp : CLASS ; s : ENTITIES •
children(cp , s) = {c : CLASS |
∃ i : INHERITANCE • i .parent = cp ∧ i .child = c ∧

i ∈ s .inheritance}

A.1.5 childParentRelation

The functions provides a relation between a child and its parent. The relation is used to

determine all predecessors in the inheritance hierarchy.

childParentRelation : CLASS × ENTITIES → CLASS → CLASS

∀ cc, cp : CLASS ; s : ENTITIES •
childParentRelation(cc, s) = {cc 7→ cp} ⇔ cp = parentOf (cc, s)

A.1.6 initAssociation

The schema creates a new association according to the given information.

APPENDIX A. QUERIES USED IN THE MODEL 113

initAssociation
label? : LABEL
upper? : CARDINALITY
optional? : BOOL
source?, target? : CLASS
a! : ASSOCIATION

a!.label = label?
a!.upper = upper?
a!.optional = optional?
a!.source = source?
a!.target = target?

A.1.7 initAttribute

The schema creates a new attribute according to the given information.

initAttribute
label? : LABEL
upper? : CARDINALITY
optional? : BOOL
p! : ATTRIBUTE

p!.label = label?
p!.upper = upper?
p!.optional = optional?
p!.type ∈ ATYPE

A.1.8 initAttributeOfClass

The query creates a new instance of the ATTRIBUTEOfCLASS - i.e. a new relationships

between a class and an attribute.

initAttributeOfClass
c? : CLASS
p? : ATTRIBUTE
poc! : ATTRIBUTEOfCLASS

poc!.class = c?
poc!.attribute = p?

APPENDIX A. QUERIES USED IN THE MODEL 114

A.1.9 initEntity

The schema creates a new entity according to the given information.

initEntity
c! : CLASS
l? : LABEL

c!.label = l?

A.1.10 initEntitites

The schema creates a new entities layer.

initEntities
e? : ENTITIES

e?.classes = ∅
e?.attributes = ∅
e?.associations = ∅
e?.attributesOfClasses = ∅
e?.inheritance = ∅

A.1.11 initInheritance

The schema creates a new parent - child relationship.

initInheritance
i ! : INHERITANCE
parent , child : CLASS

i !.parent = parent
i !.child = child

A.1.12 isInheritanceCyclical

The function isInheritanceCyclical returns true if there is a cyclical hierarchy between

entities (i.e. some class is its own parent) and false if there is no such cyclical relation.

APPENDIX A. QUERIES USED IN THE MODEL 115

isInheritanceCyclical : CLASS × ENTITIES → BOOL

∀ c : CLASS ; s : ENTITIES •
isInheritanceCyclical(c, s) = True ⇔
∃ par == childParentRelation(c, s) • c ∈ ran(par+) ∨

isInheritanceCyclical(c, s) = False ⇔
∀ par == childParentRelation(c, s) • c 6∈ ran(par+)

A.1.13 isReferenced

The function returns all classes which references the given class.

isReferenced : CLASS × ENTITIES → PCLASS

∀ c : CLASS ; e : ENTITIES • isReferenced(c, e) =
{cr : CLASS | cr ∈ e.classes ∧ ∃ a : ASSOCIATION •

a.source = cr ∧ a.target = c}

A.1.14 parentOf

The function returns the parent of the given class if exists or NULLCLASS in case there

is no parent of the given class.

parentOf : CLASS × ENTITIES → CLASS

∀ cc, cp : CLASS ; s : ENTITIES •
parentOf (cc, s) = cp ⇔ ∃ i : INHERITANCE •

i .parent = cp ∧ i .child = cc ∨
parentOf (cc, s) = NULLCLASS ⇔ ∀ i : INHERITANCE •

i .parent = cp ∧ i .child 6= cc

A.1.15 parentChildRelation

The function provides a relation between a class and all its children.

parentChildRelation : CLASS × ENTITIES → CLASS → CLASS

∀ cc, cp : CLASS ; s : ENTITIES •
cc 7→ cp ∈ parentChildRelation(cp , s)⇔ cp = parentOf (cc, s)

APPENDIX A. QUERIES USED IN THE MODEL 116

A.2 Transformations for Entites Manipulation

This section contains the transformations, which are able to change the layer of entities.

We pick only the transformations, which are later used in the evolutionary transforma-

tions. The selected set does not represent all transformations for the entities’ layer nor

the minimal set of transformations.

The full definition of transformations is according to the schema, where the symbol

’X’ denotes the transformation, which is executed in the context of entities:

executeOnEntities [X]
∆ENTITIES
declarations(X)

θENTITIES 6= ERRENTITIES ∧ pre(X)⇒ θENTITIES ′ 6= ERRENTITIES ∨
θENTITIES = ERRENTITIES ⇒ θ(ENTITIES) = θENTITIES ′ ∨
θENTITIES 6= ERRENTITIES ∧ ¬ pre(X)⇒ θENTITIES ′ = ERRENTITIES

This assures the type safety of transformations for entities manipulation.

A.2.1 addAssociationEL

Adds a new association between two classes into the entities’ layer.

addAssociationEL
∆ENTITIES
a? : ASSOCIATION

∀ a : ASSOCIATION •
a ∈ associations ⇒ a.label 6= a?.label

a?.source ∈ classes
a?.target ∈ classes
associations ′ = associations ∪ {a?}

A.2.2 addAttributeEL

Adds the given attribute into the given class.

APPENDIX A. QUERIES USED IN THE MODEL 117

addAttributeEL
∆ENTITIES
c? : CLASS
p? : ATTRIBUTE
poc : ATTRIBUTEOfCLASS

c? ∈ classes
{p : ATTRIBUTE | p ∈ attributesOf (c?, θ(ENTITIES)) ∧

p.label = p?.label} = ∅
attributes ′ = attributes ∪ {p?}
initAttributeOfClass [poc/poc!]
attributesOfClasses ′ = attributesOfClasses ∪ {poc}

A.2.3 addEntityEL

The transformation adds a new entity into the entities’ layer.

addEntityEL
∆ENTITIES
c? : CLASS

∀ c : CLASS •
c ∈ classes ⇒ c.label 6= c?.label

attributesOf (c?, θ(ENTITIES)) = ∅
classes ′ = classes ∪ {c?}

A.2.4 addEntityParentEL

Creates an inheritance (child – parent) relationship between two classes.

addEntityParentEL
∆ENTITIES
i? : INHERITANCE

parentOf (i?.child , θ(ENTITIES)) = NULLCLASS
children(i?.child , θ(ENTITIES)) = ∅
∀ pc, pp : ATTRIBUTE •

pc ∈ attributesOf (i?.child , θ(ENTITIES)) ∧
pp ∈ attributesOf (i?.parent , θ(ENTITIES))⇒
pp .label 6= pc.label
∀ ac, ap : ASSOCIATION •

ac.source = i?.child ∧ ap .source = i?.parent ⇒ ap .label 6= ac.label
inheritance ′ = inheritance ∪ {i?}

APPENDIX A. QUERIES USED IN THE MODEL 118

A.2.5 changeAssociationDirectionEL

Changes the direction of the given association to the new target class.

changeAssociationDirectionEL
∆ASSOCIATION
target? : CLASS
a? : ASSOCIATION

a? = θ(ASSOCIATION)
target ′ = target?

A.2.6 pushAttributeDownEL

Moves the selected attribute from parent to all its child classes.

pushAttributeDownEL
∆ENTITIES
∆CLASS
p? : ATTRIBUTE
poc : ATTRIBUTEOfCLASS
c : CLASS

c = θ(CLASS)
c ∈ classes
p? ∈ attributesOf (c, θ(ENTITIES))
[| ∀ c ′ : CLASS •

c ′ ∈ children(c, θ(ENTITIES))⇒ addAttributeEL[c ′/c?]]>>
removeAttributeEL[c/c?]

A.2.7 pushAttributeDownToClassEL

To allow reverting of the pullAttributeUpEL transformation a new refactoring has to be

defined, which pushes the attribute down to the specified class.

APPENDIX A. QUERIES USED IN THE MODEL 119

pushAttributeDownToClassEL
∆ENTITIES
∆CLASS
∆CLASS
p? : ATTRIBUTE
a, a ′, b, b ′ : CLASS
poc : ATTRIBUTEOfCLASS

a = θ(CLASS)
a ′ = θ(CLASS)′

a ∈ classes
b = θ(CLASS)
b ′ = θ(CLASS)′

b ∈ classes
p? ∈ attributesOf (a, θ(ENTITIES))
a = parentOf (b, θ(ENTITIES))
addAttributeEL[b/c?]
removeAttributeEL[a/c?]

A.2.8 pullAttributeUpEL

Moves the selected attribute from child to its parent.

pullAttributeUpEL
∆ENTITIES
∆CLASS
p? : ATTRIBUTE
poc : ATTRIBUTEOfCLASS
c, d : CLASS

p? ∈ attributes
d = parentOf (θ(CLASS), θ(ENTITIES))
c = θ(CLASS)
addAttributeEL[d/c?]>> removeAttributeEL[c/c?]

A.2.9 pullCommonAttributeUpEL

The transformation is able to pull up an attribute, which is common for all children of

the given class.

APPENDIX A. QUERIES USED IN THE MODEL 120

pullCommonAttributeUpEL
∆ENTITIES
p? : ATTRIBUTE
cc? : CLASS
poc : ATTRIBUTEOfCLASS
d : CLASS

∃ d == parentOf (cc?, θ(ENTITIES)) •
∃ cs == children(d , θ(ENTITIES)) •
∀ c : CLASS •

c ∈ cs ⇔ c ∈ children(d , θ(ENTITIES)) ∧
p? ∈ attributesOf (c, θ(ENTITIES)) ∧
removeAttributeEL[c/c?]

addAttributeEL[d/c?]

A.2.10 removeAssociationEL

Removes an association between two classes in the entities’ layer.

removeAssociationEL
∆ENTITIES
a? : ASSOCIATION

a? ∈ associations
associations ′ = associations \ {a?}

A.2.11 removeAttributeEL

Removes the given attribute from the given class.

removeAttributeEL
∆ENTITIES
c? : CLASS
p? : ATTRIBUTE
poc : ATTRIBUTEOfCLASS

c? ∈ classes
p? ∈ attributes
poc ∈ attributesOfClasses
poc.class = c?
poc.attribute = p?
attributesOfClasses ′ = attributesOfClasses \ {poc}
attributes ′ = attributes \ {p?}

APPENDIX A. QUERIES USED IN THE MODEL 121

A.2.12 removeEntityEL

Removes an entity from the entities’ layer.

removeEntityEL
∆ENTITIES
c? : CLASS

c? ∈ classes
children(c?, θ(ENTITIES)) = ∅
associationsTargeting(c?, θ(ENTITIES)) = ∅
classes ′ = classes \ {c?}

A.2.13 removeEntityParentEL

Destroys an inheritance (child – parent) relationship between two classes.

removeEntityParentEL
∆ENTITIES
c? : CLASS

∃ i : INHERITANCE •
i ∈ inheritance ∧ i .child = c? ∧
inheritance ′ = inheritance ′ \ {i}

A.3 Queries for Database Layer

Transformations for database manipulation and initialization are defined in this section.

A.3.1 initColumn

The schema initialize a new column according to the given information.

initColumn
col ! : COLUMN
constraints? : PCONSTRAINT
l? : LABEL

col !.label = l?
col !.type ∈ DTYPE
col !.constraints = constraints?

APPENDIX A. QUERIES USED IN THE MODEL 122

A.3.2 initDatabase

The schema initialize a new empty database.

initDatabase
d? : DATABASE

d?.schemas = ∅
d?.foreignKeys = ∅
d?.values = ∅
d?.sequence.current = 0

A.3.3 initForeignKey

The schema initialize a new foreign key according to the given information.

initForeignKey
l? : LABEL
constraints? : PCONSTRAINT
source? : TABLESCHEMA
reference? : TABLESCHEMA
fk ! : FOREIGNKEY

fk !.label = l?
fk !.constraints = constraints?
fk !.source = source?
fk !.reference = reference?

A.3.4 initPrimaryKey

The schema initialize a new foreign key according to the given information.

initPrimaryKey
primKey ! : PRIMARYKEY
l? : LABEL

primKey !.name = l?

A.3.5 initTableSchema

The schema initialize a new table schema according to the given information.

APPENDIX A. QUERIES USED IN THE MODEL 123

initTableSchema
ts ! : TABLESCHEMA
label? : LABEL
primKey? : PRIMARYKEY
columns? : PCOLUMN

ts !.label = label?
ts !.primKey = primKey?
ts !.columns = columns?

A.3.6 referringSchemas

The functions returns all foreign keys, which reference the given class.

referringSchemas : TABLESCHEMA× DATABASE → PFOREIGNKEY

∀ ts : TABLESCHEMA; d : DATABASE ; fks : PFOREIGNKEY •
referringSchemas(ts , d) =
{fk : FOREIGNKEY | fk ∈ d .foreignKeys ∧ fk .reference = ts}

A.3.7 selectAllData

The function returns all values in the table schema.

selectAllData : TABLESCHEMA× DATABASE → PDATAVALUES

∀ ts : TABLESCHEMA; d : DATABASE • ts ∈ d .schemas ⇒
selectAllData(ts , d) = {dv : DATAVALUES |
dv ∈ d .values ∧ dv .definition = ts}

A.3.8 valueOfColumn

The functions returns the value of the given column.

valueOfColumn : COLUMN × DATAVALUES → PCOLUMNVALUE

∀ c : COLUMN ; d : DATAVALUES •
valueOfColumn(c, d) =
{cv : COLUMNVALUE | cv .definition = c ∧ cv ∈ d .colValues}

APPENDIX A. QUERIES USED IN THE MODEL 124

A.4 Transformations for Database Manipulation

The transformations for database manipulation are defined in this section. In contrast

with the transformation for entities manipulation the database transformations are more

complex because they handle both database schema and stored data. The selected set

does not represent all transformations for the database layer nor the minimal set of

transformations as in case of the transformation for entities’ layer.

The full definition of transformations is according to the schema, where the symbol

’X’ denotes the transformation, which is executed in the context of database:

executeOnDatabase[X]
∆DATABASE
declarations(X)

θDATABASE 6= ERRDATABASE ∧
pre(X)⇒ θDATABASE ′ 6= ERRDATABASE ∨

θDATABASE = ERRDATABASE ⇒ θDATABASE = θDATABASE ′ ∨
θDATABASE 6= ERRDATABASE ∧
¬ pre(X)⇒ θDATABASE ′ = ERRDATABASE

This assures the type safety of transformations for database manipulation.

A.4.1 addColumnDB

Adds a column into the table schema in the database.

addColumnDB
∆DATABASE
∆TABLESCHEMA
col? : COLUMN

∀ col : COLUMN •
col ∈ columns ⇒ col .label 6= col?.label

columns ′ = columns ∪ {col?}

A.4.2 addForeignKeyDB

Adds a foreign key into the given table.

APPENDIX A. QUERIES USED IN THE MODEL 125

addForeignKeyDB
∆DATABASE
fk? : FOREIGNKEY

fk?.source ∈ schemas
fk?.reference ∈ schemas
NOTNULL ∈ fk?.constraints ⇔
{dv : DATAVALUES | dv .definition = fk?.source} = ∅
foreignKeys ′ = foreignKeys ∪ {fk?}

A.4.3 addTableDB

The schema adds a table into the database.

addTableDB
∆DATABASE
ts? : TABLESCHEMA

∀ ts : TABLESCHEMA •
ts ∈ schemas ∧ ts .label 6= ts?.label

schemas ′ = schemas ∪ {ts?}

A.4.4 changeAllReferencesInTable

The schema changes all foreign keys in the given schema so it references a new target.

changeAllReferencesInTable
∆DATABASE
ts? : TABLESCHEMA
target? : TABLESCHEMA
map? : MAPPING

∀ fk : FOREIGNKEY •
fk ∈ foreignKeys ∧ fk .source = ts?⇒
changeFKreferenceDB [fk/fk?, target?/targetSchema?]

A.4.5 changeFKreferenceDB

Changes the referenced table in the foreign key definition. All values are updated accord-

ing to the given mapping to respect the new referenced table.

APPENDIX A. QUERIES USED IN THE MODEL 126

changeFKreferenceDB
∆DATABASE
fk? : FOREIGNKEY
targetSchema? : TABLESCHEMA
map? : MAPPING
fk : FOREIGNKEY

fk .label = fk?.label
fk .constraints = fk?.constraints
fk .source = fk?.source
fk .reference = targetSchema?
foreignKeys ′ = foreignKeys \ {fk?} ∪ {fk}
∀ dv , dv ′ : DATAVALUES ; fkv , fkv ′ : FOREIGNKEYVALUE ;

p : MAPPINGPAIR •
dv .definition = fk .source ∧
fkv .definition = fk ∧
fkv ∈ dv .foreignkeyValues ∧ dv = p.source ⇒
fkv ′.definition = fk? ∧
fkv ′.value = p.target .key .value ∧
dv ′.foreignkeyValues = dv .foreignkeyValues \ {fkv} ∪ {fkv ′}

A.4.6 changeForeignKeyReferenceDB

Change references (foreign keys) in all tables in the database. Data are not affected by

this transformation.

APPENDIX A. QUERIES USED IN THE MODEL 127

changeForeignKeyReferenceDB
∆DATABASE
newReference?, oldReference? : TABLESCHEMA
label : LABEL
constraints : PCONSTRAINT
source : TABLESCHEMA
fk1, fk2 : FOREIGNKEY
fkv , fkv ′ : FOREIGNKEYVALUE

∀ ts : TABLESCHEMA; fk : FOREIGNKEY •
ts ∈ schemas ∧ fk .source = ts ∧
fk .reference = oldReference? ∧
label = fk .label ∧
constraints = fk .constraints ∧
source = fk .source ∧
initForeignKey [label/l?, constraints/constraints?, source/source?,

newReference?/reference?, fk1/fk !]>>
addForeignKeyDB [fk1/fk?]>>
changeReferenceValueInForeignKeyValueDB [fk/old?, fk1/new?]>>
dropForeignKeyDB [fk/fk?]

A.4.7 changeReferenceInDB

The transformation changes the reference in the database if the association changes.

APPENDIX A. QUERIES USED IN THE MODEL 128

changeReferenceInDB
ΞENTITIES
∆DATABASE
a? : ASSOCIATION
target? : CLASS
map? : MAPPING
label : LABEL
primKey : PRIMARYKEY
atts : PATTRIBUTE
schemas , schemas ′, tables : PTABLESCHEMA
foreignKeys , foreignKeys ′ : PFOREIGNKEY
values , values ′ : PDATAVALUES
sequence, sequence ′ : SEQUENCE
columns : PCOLUMN
col : COLUMN
tso, ts , ts !, targetSchema, sourceSchema, table : TABLESCHEMA
l , name : LABEL
constraints : PCONSTRAINT
fk , fk1, fk2 : FOREIGNKEY
c, d , sourceCLASS , targetCLASS : CLASS

entityToTableORM [target?/c?, targetSchema/ts !]
a?.upper = One ⇒ assocToFkORM>>

changeFKreferenceDB [targetSchema/targetSchema?]
a?.upper = Many ⇒ ∃ c == a?.source • assocToTableORM>>

changeReferenceTableDB [target?/newTarget?, c/oldTarget?]

A.4.8 changeReferenceTableDB

The transformation changes the foreign key in a mapping table in a way it references a

new table.

APPENDIX A. QUERIES USED IN THE MODEL 129

changeReferenceTableDB
ΞENTITIES
∆DATABASE
ts? : TABLESCHEMA
newTarget?, oldTarget? : CLASS
map? : MAPPING
label : LABEL
primKey : PRIMARYKEY
atts : PATTRIBUTE
schemas , schemas ′, tables : PTABLESCHEMA
foreignKeys , foreignKeys ′ : PFOREIGNKEY
values , values ′ : PDATAVALUES
sequence, sequence ′ : SEQUENCE
columns : PCOLUMN
col : COLUMN
tso, ts , ts ! : TABLESCHEMA
l : LABEL
constraints : PCONSTRAINT
fk : FOREIGNKEY

entityToTableORM [newTarget?/c?, ts/ts !]
entityToTableORM [oldTarget?/c?, tso/ts !]
∀ fk : FOREIGNKEY •

fk .source = ts? ∧ fk .reference = tso
changeFKreferenceDB [fk/fk?, ts/targetSchema?]

A.4.9 changeReferenceValueInForeignKeyValueDB

Changes the table referenced by the given foreign key, according to the given mapping.

changeReferenceValueInForeignKeyValueDB
∆DATABASE
old?, new? : FOREIGNKEY
fkv , fkv ′ : FOREIGNKEYVALUE

∀ dv , dv ′ : DATAVALUES ; fkv : FOREIGNKEYVALUE •
dv ∈ values ∧ fkv .definition = old?⇒
fkv ′.definition = new? ∧
fkv ′.value = fkv .value ∧
dv ′.foreignkeyValues = dv .foreignkeyValues \ {fkv} ∪ {fkv ′} ∧
values ′ = values \ {dv} ∪ {dv ′}

APPENDIX A. QUERIES USED IN THE MODEL 130

A.4.10 copyColumnDB

The transformations copies structure of the column from one table schema to another.

Data are copied from the source to the target table according to the given mapping.

The transformation can be used for creating a structural copy of a column as well, if the

empty mapping me is used.

copyColumnDB
∆DATABASE
∆TABLESCHEMA
col? : COLUMN
sourceSchema? : TABLESCHEMA
targetSchema? : TABLESCHEMA
map? : MAPPING
targetSchema ′ : TABLESCHEMA

targetSchema? = θTABLESCHEMA
targetSchema ′ = θ(TABLESCHEMA)′

col? ∈ sourceSchema?.columns
sourceSchema? ∈ schemas
targetSchema? ∈ schemas
targetSchema ′.columns = targetSchema?.columns ∪ {col?}
∀m : MAPPINGPAIR; cval , dval : DATAVALUES ;

colval : COLUMNVALUE •
m.source.definition = sourceSchema? ∧ m.target .definition = targetSchema? ∧
cval = m.source ∧ dval = m.target ∧ colval .definition = col?⇒
values ′ = values \ {dval} ∪ {dval ′ : DATAVALUES |

dval ′.colValues = dval .colValues ∪ {colval} ∧
dval ′.key = dval .key ∧ dval ′.definition = dval .definition ∧
dval ′.foreignkeyValues = dval .foreignkeyValues}

A.4.11 copyTableDB

The transformation creates a copy of the given table with a new name.

APPENDIX A. QUERIES USED IN THE MODEL 131

copyTableDB
∆DATABASE
ts? : TABLESCHEMA
l? : LABEL
ts : TABLESCHEMA

copyTableStructureDB ∧
∀ dv : DATAVALUES •

dv ∈ values ∧ dv .definition = ts?⇒
values ′ = values ∪ {dv ′ : DATAVALUES |

dv ′.definition = dv .definition ∧ dv ′.colValues = dv .colValues ∧
dv ′.key = dv ′.key ∧ dv ′.foreignkeyValues = dv .foreignkeyValues}

A.4.12 copyTableStructureDB

The transformations creates a copy of the given table. The new table (copy) has a new

name defined by label. The data are copied as well.

copyTableStructureDB
∆DATABASE
ts? : TABLESCHEMA
l? : LABEL
ts : TABLESCHEMA

ts? ∈ schemas
∀ t : TABLESCHEMA •

t ∈ schemas ⇒ t .label 6= l?
ts .label = l?
ts .columns = ts?.columns
ts .primKey = ts?.primKey
schemas ′ = schemas ∪ {ts}
∀ fk : FOREIGNKEY •

fk ∈ foreignKeys ∧ fk .source = ts?⇒
foreignKeys ′ = foreignKeys ∪ {fk ′ : FOREIGNKEY |

fk ′.source = ts ∧ fk ′.reference = fk .reference ∧
fk ′.constraints = fk .constraints ∧ fk ′.label = fk .label}

A.4.13 dropColumnDB

Removes a column from the table schema as well as all data stored in the column.

APPENDIX A. QUERIES USED IN THE MODEL 132

dropColumnDB
∆DATABASE
∆TABLESCHEMA
col? : COLUMN

col? ∈ columns
columns ′ = columns \ {col?}
∀ dv , dv ′ : DATAVALUES ; cv : COLUMNVALUE •

dv .definition = θTABLESCHEMA ∧ cv .definition = col? ∧
cv ∈ dv .colValues ⇒

dv ′.definition = dv .definition ∧ dv ′.key = dv .key ∧
dv ′.foreignkeyValues = dv .foreignkeyValues ∧
dv ′.colValues = dv .colValues \ {cv} ∧
values ′ = (values \ {dv}) ∪ {dv ′}

A.4.14 dropEmptyForeignKeyDB

Removes a foreign key from the table schema only if there are no data stored.

dropEmptyForeignKeyDB
∆DATABASE
fk? : FOREIGNKEY

{fkv : FOREIGNKEYVALUE | fkv .definition = fk?} = ∅
dropForeignKeyDB

A.4.15 dropEmptyTableDB

Removes a table schema from the database only if there are no stored data.

dropEmptyTableDB
∆DATABASE
ts? : TABLESCHEMA

{d : DATAVALUES | d ∈ values ∧ d .definition = ts?} = ∅
dropTableDB

A.4.16 dropEmptyColumnDB

Removes a column from the table schema only if there are no data stored in the given

column.

APPENDIX A. QUERIES USED IN THE MODEL 133

dropEmptyColumnDB
∆DATABASE
∆TABLESCHEMA
col? : COLUMN

{cv : COLUMNVALUE | cv .definition = col?} = ∅
dropColumnDB

A.4.17 dropForeignKeyDB

Removes a foreign key from the table schema.

dropForeignKeyDB
∆DATABASE
fk? : FOREIGNKEY

fk? ∈ foreignKeys
∀ dv , dv ′ : DATAVALUES ; fv : FOREIGNKEYVALUE •

dv .definition = fk?.source ∧ fv .definition = fk? ∧
fv ∈ dv .foreignkeyValues ⇒

dv ′.definition = dv .definition ∧ dv ′.key = dv .key ∧
dv ′.colValues = dv .colValues ∧
dv ′.foreignkeyValues = dv .foreignkeyValues \ {fv} ∧
values ′ = (values \ {dv}) ∪ {dv ′}

foreignKeys ′ = foreignKeys \ {fk?}

A.4.18 dropTableDB

Removes a table from the database and removes all data stored in the given table.

dropTableDB
∆DATABASE
ts? : TABLESCHEMA

ts? ∈ schemas
referringSchemas(ts?, θDATABASE) = ∅
schemas ′ = schemas \ {ts?}
values ′ = values \ {val : DATAVALUES |

val ∈ values ∧ val .definition = ts?}

A.4.19 insertDataToFKDB

The schema inserts data into a foreign key according to the given mapping.

APPENDIX A. QUERIES USED IN THE MODEL 134

insertDataToFKDB
∆DATABASE
fk? : FOREIGNKEY
map? : MAPPING

∀ dv , dv ′ : DATAVALUES ; p : MAPPINGPAIR;
fkv : FOREIGNKEYVALUE • p ∈ map?.pairs ∧ dv = p.target ∧

fkv .value = p.source.key .value ∧ fkv .definition = fk?⇒
dv ′.foreignkeyValues = dv .foreignkeyValues ∪ {fkv}

A.4.20 insertDataToMapTableDB

The schema inserts data into a mapping table according to the given mapping.

insertDataToMapTableDB
∆DATABASE
ts? : TABLESCHEMA
map? : MAPPING

∀ dv1, dv2, dv ′ : DATAVALUES ; p : MAPPINGPAIR;
fkv , fkv2 : FOREIGNKEYVALUE ; fk , fk2 : FOREIGNKEY •
p ∈ map?.pairs ∧ dv1 = p.target ∧ dv2 = p.source ∧ fk .source = ts? ∧
fk .reference = dv1.definition ∧ fk2.source = ts? ∧
fk2.reference = dv2.definition ∧ fkv .definition = fk ∧
fkv2.definition = fk2⇒
fkv .value = dv1.key .value ∧ fkv2.value = dv2.key .value

A.4.21 next

The function generates a new primary key’s value according the SEQUENCE.

next : SEQUENCE → N

A.5 initSoftware

Creates a new software with initialized application and database.

initSoftware
SOFTWARE

newDatabase[database/d?]
newEntities [entities/e?]

APPENDIX A. QUERIES USED IN THE MODEL 135

A.6 Transformation Helpers

The section contains queries, transformations and predicates, which are often repeated

in the transformations or which are so long that they can obfuscate the meaning of the

transformation in which they are used..

A.6.1 initMappingForExtractParent

The schema initialize mapping in the extract parent transformation.

initMappingForExtractParent
ΞENTITIES
map! : MAPPING
parent?, child? : CLASS
tsc, tsp : TABLESCHEMA
label : LABEL
primKey : PRIMARYKEY
atts : PATTRIBUTE
schemas , schemas ′, tables : PTABLESCHEMA
foreignKeys , foreignKeys ′ : PFOREIGNKEY
values , values ′ : PDATAVALUES
sequence, sequence ′ : SEQUENCE
columns : PCOLUMN
col : COLUMN
ts , ts ! : TABLESCHEMA
l : LABEL
constraints : PCONSTRAINT

entityToTableORM [child?/c?, tsc/ts !]
entityToTableORM [parent?/c?, tsp/ts !]
MappingIsSimple[map!/map?] ∧ MappingFullComplete[map!/map?]
∀ dvc : DATAVALUES ; m : MAPPINGPAIR •

dvc.definition = tsc ∧ m ∈ map!.pairs ⇔
m.source = dvc ∧ ∃ dvp : DATAVALUES • dvp.key = dvc.key
∧ dvp.definition = tsp ∧ m.target = dvp

A.6.2 initMappingForRemoveParent

The schema initialize mapping in the transformation, which removes a parent from a

class.

APPENDIX A. QUERIES USED IN THE MODEL 136

initMappingForRemoveParent
ΞENTITIES
ΞDATABASE
map? : MAPPING
cts? : TABLESCHEMA
c? : CLASS
name, l , label : LABEL
c, d : CLASS
ts , sourceSchema, targetSchema : TABLESCHEMA
constraints : PCONSTRAINT
primKey : PRIMARYKEY
columns : PCOLUMN
tables : PTABLESCHEMA
col : COLUMN
atts : PATTRIBUTE

∀mp : MAPPINGPAIR; dv : DATAVALUES • mp ∈ map?.pairs ⇔
mp.source.definition = dv .definition ∧ mp.target .key = mp.source.key ∧
∀ cv : COLUMNVALUE ; fkv : FOREIGNKEYVALUE •

cv ∈ mp.target .colValues ⇔ cv .definition ∈ cts?.columns ∧
fkv ∈ mp.target .foreignkeyValues ⇔
∃ a : ASSOCIATION ; fk : FOREIGNKEY •

a ∈ associationsOf (c?, θENTITIES) ∧ assocToFkORM [a/a?, fk/fk !] ∧
fk = fkv .definition

A.6.3 initMappingForSplit

The schema initialize mapping in the split class transformation.

APPENDIX A. QUERIES USED IN THE MODEL 137

initMappingForSplit
ΞENTITIES
ΞDATABASE
map! : MAPPING
old?, new? : CLASS
label : LABEL
primKey : PRIMARYKEY
atts : PATTRIBUTE
schemas , schemas ′, tables : PTABLESCHEMA
foreignKeys , foreignKeys ′ : PFOREIGNKEY
values , values ′ : PDATAVALUES
sequence, sequence ′ : SEQUENCE
columns : PCOLUMN
col : COLUMN
ts , ts !, oldSchema, newSchema : TABLESCHEMA
l : LABEL
constraints : PCONSTRAINT

entityToTableORM [old?/c?, oldSchema/ts !]
entityToTableORM [old?/c?, newSchema/ts !]
∀m : MAPPINGPAIR •

m ∈ map!.pairs ⇒
m.source ∈ selectAllData(oldSchema, θ(DATABASE))⇔
m.target .definition = newSchema ∧
m.target .key = m.source.key ∧
∀ cv : COLUMNVALUE ; c : COLUMN •

cv ∈ m.target .colValues ⇔
cv .definition = c ∧ c ∈ newSchema.columns

A.6.4 isInstanceOf

The function verifies if a value is an instance of a class.

isInstanceOf : DATAVALUES × CLASS → BOOL

∀ dv : DATAVALUES ; c : CLASS •
(isInstanceOf (dv , c) = True ⇔ ∃ cv : COLUMNVALUE •

cv .definition.label = INSTANCEDEF ∧ cv .value = c.label) ∨
(isInstanceOf (dv , c) = False ⇔ ∀ cv : COLUMNVALUE •

cv .definition.label = INSTANCEDEF ∧ cv .value 6= c.label)

APPENDIX A. QUERIES USED IN THE MODEL 138

A.6.5 moveAttributes

The transformation moves multiple attributes from a class to its parent.

moveAttributes
c? : CLASS
∆SOFTWARE
∆ENTITIES
∆DATABASE
d : CLASS
map : MAPPING
poc : ATTRIBUTEOfCLASS
to, pts : TABLESCHEMA
atts : PATTRIBUTE

d = parentOf (c?, entities)
entityToTableORM [d/c?, pts/ts !]
∀ p : MAPPINGPAIR •

p ∈ map.pairs ⇔ p.source = p.target ∧ p.source.definition = pts
∀ p : ATTRIBUTE •

p ∈ attributesOf (c?, entities)⇒ moveAttribute[d/d?, p/p?,map/map?]

Appendix B

Queries for VCS Manipulation

B.1 initOPERATIONBASEDVCS

The transformation initialize a new operation-based VCS.

initOPVCSWITHBRANCHES
OPVCSWITHBRANCHES
ovcs : OPERATIONBASEDVCS

ovcs .transformations = 〈〉
branches = {ovcs}

139

Appendix C

Object-Relational Mapping

C.1 assocToFkORM

The schema maps an association to a foreign key.

assocToFkORM
ΞENTITIES
ΞDATABASE
a? : ASSOCIATION
fk ! : FOREIGNKEY
name, l , label : LABEL
c, d : CLASS
sourceSchema, targetSchema, ts : TABLESCHEMA
constraints : PCONSTRAINT
primKey : PRIMARYKEY
columns : PCOLUMN
tables : PTABLESCHEMA
col : COLUMN
atts : PATTRIBUTE

name = a?.label
a?.optional = True ⇒ constraints = {NOTNULL}
a?.optional = False ⇒ constraints = ∅
c = a?.source
entityToTableORM [c/c?, sourceSchema/ts !]
d = a?.target
entityToTableORM [d/c?, targetSchema/ts !]
initForeignKey [name/l?, constraints/constraints?, sourceSchema/source?,

targetSchema/reference?]

140

APPENDIX C. OBJECT-RELATIONAL MAPPING 141

C.2 assocToTableORM

The association maps a a table.

assocToTableORM
ΞDATABASE
ΞENTITIES
a? : ASSOCIATION
ts ! : TABLESCHEMA
fk1, fk2 : FOREIGNKEY
l : LABEL
primKey : PRIMARYKEY
constraints : PCONSTRAINT
columns : PCOLUMN
sourceCLASS , targetCLASS : CLASS
sourceSchema, targetSchema : TABLESCHEMA
label : LABEL
ts , table : TABLESCHEMA
tables : PTABLESCHEMA
col : COLUMN
atts : PATTRIBUTE

l = a?.label
initPrimaryKey [l/l?, primKey/primKey !]
a?.optional = True ⇒ constraints = {NOTNULL}
a?.optional = False ⇒ constraints = ∅
columns = ∅
initTableSchema[l/label?, primKey/primKey?,
columns/columns?, table/ts !]
sourceCLASS = a?.source
targetCLASS = a?.target
entityToTableORM [sourceCLASS/c?, sourceSchema/ts !]
entityToTableORM [targetCLASS/c?, targetSchema/ts !]
initForeignKey [table/source?, sourceSchema/reference?,

constraints/constraints?, label/l?, fk1/fk !]
initForeignKey [table/source?, targetSchema/reference?,

constraints/constraints?, label/l?, fk2/fk !]

C.3 attributeToColumnORM

The schema maps an attribute to column.

APPENDIX C. OBJECT-RELATIONAL MAPPING 142

attributeToColumnORM
p? : ATTRIBUTE
col ! : COLUMN

col !.label = p?.label
col !.type ∈ DTYPE
p?.optional = True ⇒ NOTNULL ∈ col !.constraints

C.4 attributesToDbORM

The schema maps an attribute to a database.

attributesToDbORM
ΞDATABASE
columns ! : PCOLUMN
tables ! : PTABLESCHEMA
attributes? : PATTRIBUTE
col : COLUMN
ts : TABLESCHEMA
l , label : LABEL
primKey : PRIMARYKEY
constraints : PCONSTRAINT
columns : PCOLUMN

∀ p : ATTRIBUTE • (p ∈ attributes? ∧ p.upper = One ⇒
attributeToColumnORM [p/p?, col/col !] ∧ col ∈ columns !) ∨

(p ∈ attributes? ∧ p.upper = Many ⇒ attributeToTableORM [p/p?, ts/ts !] ∧
ts ∈ tables !)

C.5 attributeToTableORM

The schema maps an attribute to a table in the database.

APPENDIX C. OBJECT-RELATIONAL MAPPING 143

attributeToTableORM
ΞDATABASE
p? : ATTRIBUTE
ts ! : TABLESCHEMA
label : LABEL
primKey : PRIMARYKEY
constraints : PCONSTRAINT
col : COLUMN
columns : PCOLUMN

label = p?.label
initPrimaryKey [label/l?, primKey/primKey !]
p?.optional = True ⇒ constraints = {NOTNULL}
p?.optional = False ⇒ constraints = ∅
initColumn[col/col !, constraints/constraints?, label/l?]
columns = {col}
initTableSchema[label/label?, primKey/primKey?, columns/columns?]

C.6 dbNameORM

For each name on the level of entities the functions creates a unique name on the level

of database.

dbNameORM : LABEL→ LABEL

C.7 entityToTableNoAttributesORM

The schema maps an entity to a table with no attribute.

entityToTableNoAttributesORM
ΞENTITIES
c? : CLASS
ts ! : TABLESCHEMA
label : LABEL
columns : PCOLUMN
primKey : PRIMARYKEY

label = c?.label
columns = ∅
initPrimaryKey [label/l?, primKey/primKey !]
initTableSchema[label/label?, primKey/primKey?, columns/columns?]

APPENDIX C. OBJECT-RELATIONAL MAPPING 144

C.8 entityOutsideHierarchyToTableORM

The schema maps a class which is not in an inheritance hierarchy into a table.

entityOutsideHierarchyToTableORM
ΞENTITIES
c? : CLASS
ts ! : TABLESCHEMA
label : LABEL
atts : PATTRIBUTE
primKey : PRIMARYKEY
schemas , schemas ′, tables : PTABLESCHEMA
foreignKeys , foreignKeys ′ : PFOREIGNKEY
values , values ′ : PDATAVALUES
sequence, sequence ′ : SEQUENCE
columns : PCOLUMN
col : COLUMN
ts , ts ! : TABLESCHEMA
l : LABEL
constraints : PCONSTRAINT

(parentOf (c?, θ(ENTITIES)) = NULLCLASS ∧
children(c?, θ(ENTITIES)) = ∅)⇒

label = c?.label ∧
atts = attributesOf (c?, θ(ENTITIES)) ∧
initPrimaryKey [label/l?, primKey/primKey !] ∧
attributesToDbORM [columns/columns !, attributes/attributes?,
tables/tables !] ∧
initTableSchema[label/label?, primKey/primKey?, columns/columns?]

C.9 entityToTableORM

The schema maps an entity to a database table.

APPENDIX C. OBJECT-RELATIONAL MAPPING 145

entityToTableORM
ΞENTITIES
c? : CLASS
ts ! : TABLESCHEMA
label : LABEL
primKey : PRIMARYKEY
atts : PATTRIBUTE
schemas , schemas ′, tables : PTABLESCHEMA
foreignKeys , foreignKeys ′ : PFOREIGNKEY
values , values ′ : PDATAVALUES
sequence, sequence ′ : SEQUENCE
columns : PCOLUMN
col : COLUMN
ts , ts ! : TABLESCHEMA
l : LABEL
constraints : PCONSTRAINT

parentEntityToTableORM ∨
entityOutsideHierarchyToTableORM

C.10 ORM

The schema defines how entities are mapped into a database.

APPENDIX C. OBJECT-RELATIONAL MAPPING 146

ORM
ΞENTITIES
ΞDATABASE
e? : ENTITIES
d? : DATABASE
label , l , name : LABEL
primKey : PRIMARYKEY
columns : PCOLUMN
tables : PTABLESCHEMA
col : COLUMN
sourceSchema, targetSchema, table, ts : TABLESCHEMA
constraints : PCONSTRAINT
c, d , sourceCLASS , targetCLASS : CLASS
fk1, fk2 : FOREIGNKEY
atts : PATTRIBUTE

∀ c : CLASS •
c ∈ e?.classes ⇔
∃ td , td2 : TABLESCHEMA •

td ∈ d?.schemas ∧ entityToTableORM [c/c?, td2/ts !] ∧ td2 = td
∀ a : ASSOCIATION •

a ∈ e?.associations ∧ a.upper = Many ⇔
∃ fk , fk2 : FOREIGNKEY •

fk ∈ d?.foreignKeys ∧ assocToFkORM [a/a?, fk2/fk !] ∧ fk2 = fk
∀ a : ASSOCIATION •

a ∈ e?.associations ∧ a.upper = One ⇔
∃ td , td2 : TABLESCHEMA •

td ∈ d?.schemas ∧ assocToTableORM [a/a?, td2/ts !] ∧ td2 = td

C.11 parentEntityToTableORM

The schema maps a top class in an inheritance hierarchy to a table. The child classes are

mapped into database as well.

APPENDIX C. OBJECT-RELATIONAL MAPPING 147

parentEntityToTableORM
ΞENTITIES
c? : CLASS
ts ! : TABLESCHEMA
label : LABEL
primKey : PRIMARYKEY
atts : PATTRIBUTE
schemas , schemas ′, tables : PTABLESCHEMA
foreignKeys , foreignKeys ′ : PFOREIGNKEY
values , values ′ : PDATAVALUES
sequence, sequence ′ : SEQUENCE
columns : PCOLUMN
col , col2 : COLUMN
ts , ts ! : TABLESCHEMA
l : LABEL
constraints : PCONSTRAINT
type : DTYPE

parentOf (c?, θ(ENTITIES)) = NULLCLASS
children(c?, θ(ENTITIES)) 6= ∅
classes = {c : CLASS | c ∈ dom(childParentRelation(c?, θ(ENTITIES))+)}
label = dbNameORM (c?.label)
initPrimaryKey [label/l?, primKey/primKey !]
∀ a : ATTRIBUTE •

a ∈ atts ⇔ ∃ c : CLASS • c ∈ classes ∧ a ∈ attributesOf (c, θ(ENTITIES))
attributesToDbORM [columns/columns !, atts/attributes?, tables/tables !]>>
[| constraints = {NOTNULL} ∧

initColumn[INSTANCEDEF/l?, constraints/constraints?, col2/col !] ∧
columns ∪ {col2}]>>

initTableSchema[label/label?, primKey/primKey?, columns/columns?]

Appendix D

SQL Generated by the MigDb

Framework

1 CREATE SEQUENCE pub l i c . s e q g l o b a l START 1 ;

2 CREATE TABLE pub l i c . country () ;

3 ALTER TABLE pub l i c . country

4 ADD COLUMN id count ry i n t ;

5 CREATE INDEX IX count ry id count ry

6 ON pub l i c . country (id count ry) ;

7 ALTER TABLE pub l i c . country

8 ADD CONSTRAINT PK country

9 PRIMARY KEY (id count ry) ;

10 ALTER TABLE pub l i c . country

11 ADD COLUMN name charac t e r (30) ;

12 CREATE TABLE pub l i c . l e g a l p e r s o n () ;

13 ALTER TABLE pub l i c . l e g a l p e r s o n

14 ADD COLUMN i d l e g a l p e r s o n i n t ;

15 CREATE INDEX I X l e g a l p e r s o n i d l e g a l p e r s o n

16 ON pub l i c . l e g a l p e r s o n (i d l e g a l p e r s o n) ;

17 ALTER TABLE pub l i c . l e g a l p e r s o n

18 ADD CONSTRAINT PK lega lperson

19 PRIMARY KEY (i d l e g a l p e r s o n) ;

20 ALTER TABLE pub l i c . l e g a l p e r s o n

21 ADD COLUMN regno i n t ;

22 ALTER TABLE pub l i c . l e g a l p e r s o n

23 ADD COLUMN bizname charac t e r (30) ;

148

APPENDIX D. SQL GENERATED BY THE MIGDB FRAMEWORK 149

24 ALTER TABLE pub l i c . l e g a l p e r s o n

25 ADD COLUMN s t r e e t cha rac t e r (30) ;

26 ALTER TABLE pub l i c . l e g a l p e r s o n

27 ADD COLUMN c i t y charac t e r (30) ;

28 ALTER TABLE pub l i c . l e g a l p e r s o n

29 ADD COLUMN zip charac t e r (30) ;

30 ALTER TABLE pub l i c . l e g a l p e r s o n

31 ADD COLUMN country i n t ;

32 ALTER TABLE pub l i c . l e g a l p e r s o n

33 ADD CONSTRAINT FK country id country

34 FOREIGN KEY (country) REFERENCES pub l i c . country (id count ry) ;

35 CREATE TABLE pub l i c . natura lpe r son () ;

36 ALTER TABLE pub l i c . natura lpe r son

37 ADD COLUMN i d n a t u r a l p e r s o n i n t ;

38 CREATE INDEX I X n a t u r a l p e r s o n i d n a t u r a l p e r s o n

39 ON pub l i c . natura lpe r son (i d n a t u r a l p e r s o n) ;

40 ALTER TABLE pub l i c . natura lpe r son

41 ADD CONSTRAINT PK naturalperson

42 PRIMARY KEY (i d n a t u r a l p e r s o n) ;

43 ALTER TABLE pub l i c . natura lpe r son

44 ADD COLUMN name charac t e r (30) ;

45 ALTER TABLE pub l i c . natura lpe r son

46 ADD COLUMN surname charac t e r (30) ;

47 ALTER TABLE pub l i c . natura lpe r son

48 ADD COLUMN s t r e e t cha rac t e r (30) ;

49 ALTER TABLE pub l i c . natura lpe r son

50 ADD COLUMN c i t y charac t e r (30) ;

51 ALTER TABLE pub l i c . natura lpe r son

52 ADD COLUMN zip charac t e r (30) ;

53 ALTER TABLE pub l i c . natura lpe r son

54 ADD COLUMN country i n t ;

55 ALTER TABLE pub l i c . natura lpe r son

56 ADD CONSTRAINT FK country id country

57 FOREIGN KEY (country) REFERENCES pub l i c . country (id count ry) ;

58 CREATE TABLE pub l i c . party () ;

59 ALTER TABLE pub l i c . party

60 ADD COLUMN id pa r ty i n t ;

61 CREATE INDEX IX par ty id pa r ty

APPENDIX D. SQL GENERATED BY THE MIGDB FRAMEWORK 150

62 ON pub l i c . party (i d pa r ty) ;

63 ALTER TABLE pub l i c . party

64 ADD CONSTRAINT PK party

65 PRIMARY KEY (id pa r ty) ;

66 ALTER TABLE pub l i c . party

67 ADD COLUMN s t r e e t cha rac t e r (30) ;

68 ALTER TABLE pub l i c . party

69 ADD COLUMN c i t y charac t e r (30) ;

70 ALTER TABLE pub l i c . party

71 ADD COLUMN zip charac t e r (30) ;

72 ALTER TABLE pub l i c . party

73 ADD COLUMN country i n t ;

74 ALTER TABLE pub l i c . party

75 ADD CONSTRAINT FK country id country

76 FOREIGN KEY (country) REFERENCES pub l i c . country (id count ry) ;

77 INSERT INTO pub l i c . party (id party , s t r e e t , c i ty , z ip , country)

78 SELECT i d l e g a l p e r s o n , s t r e e t , c i ty , z ip , country

79 FROM l e g a l p e r s o n ;

80 ALTER TABLE pub l i c . l e g a l p e r s o n

81 DROP COLUMN s t r e e t ;

82 ALTER TABLE pub l i c . l e g a l p e r s o n

83 DROP COLUMN c i t y ;

84 ALTER TABLE pub l i c . l e g a l p e r s o n

85 DROP COLUMN zip ;

86 ALTER TABLE pub l i c . l e g a l p e r s o n

87 DROP COLUMN country ;

88 ALTER TABLE pub l i c . l e g a l p e r s o n

89 RENAME COLUMN i d l e g a l p e r s o n TO i d pa r ty ;

90 INSERT INTO pub l i c . party (id party , s t r e e t , c i ty , z ip , country)

91 SELECT id natura lpe r son , s t r e e t , c i ty , z ip , country

92 FROM natura lpe r son ;

93 ALTER TABLE pub l i c . natura lpe r son

94 DROP COLUMN s t r e e t ;

95 ALTER TABLE pub l i c . natura lpe r son

96 DROP COLUMN c i t y ;

97 ALTER TABLE pub l i c . natura lpe r son

98 DROP COLUMN zip ;

99 ALTER TABLE pub l i c . natura lpe r son

APPENDIX D. SQL GENERATED BY THE MIGDB FRAMEWORK 151

100 DROP COLUMN country ;

101 ALTER TABLE pub l i c . natura lpe r son

102 RENAME COLUMN i d n a t u r a l p e r s o n TO id pa r ty ;

103 CREATE TABLE pub l i c . address () ;

104 ALTER TABLE pub l i c . address

105 ADD COLUMN i d a d d r e s s i n t ;

106 CREATE INDEX I X a d d r e s s i d a d d r e s s

107 ON pub l i c . address (i d a d d r e s s) ;

108 ALTER TABLE pub l i c . address

109 ADD CONSTRAINT PK address

110 PRIMARY KEY (i d a d d r e s s) ;

111 ALTER TABLE pub l i c . party

112 ADD COLUMN address i n t ;

113 UPDATE pub l i c . party SET address = nextva l (’ s e q g l o ba l ’) ;

114 ALTER TABLE pub l i c . address

115 ADD COLUMN s t r e e t cha rac t e r (30) ;

116 ALTER TABLE pub l i c . address

117 ADD COLUMN c i t y charac t e r (30) ;

118 ALTER TABLE pub l i c . address

119 ADD COLUMN zip charac t e r (30) ;

120 ALTER TABLE pub l i c . address

121 ADD COLUMN country i n t ;

122 ALTER TABLE pub l i c . address

123 ADD CONSTRAINT FK country id country

124 FOREIGN KEY (country) REFERENCES pub l i c . country (id count ry) ;

125 INSERT INTO pub l i c . address (id addre s s , s t r e e t , c i ty , z ip , country)

126 SELECT address , s t r e e t , c i ty , z ip , country

127 FROM party ;

128 ALTER TABLE pub l i c . party

129 DROP COLUMN s t r e e t ;

130 ALTER TABLE pub l i c . party

131 DROP COLUMN c i t y ;

132 ALTER TABLE pub l i c . party

133 DROP COLUMN zip ;

134 ALTER TABLE pub l i c . party

135 DROP COLUMN country ;

136 ALTER TABLE pub l i c . party

137 ADD CONSTRAINT FK addres s id addres s

APPENDIX D. SQL GENERATED BY THE MIGDB FRAMEWORK 152

138 FOREIGN KEY (address) REFERENCES pub l i c . address (i d a d d r e s s) ;

139 ALTER TABLE pub l i c . party

140 RENAME COLUMN address TO r e s i d e n t i a l a d d r e s s ;

141 ALTER TABLE pub l i c . party

142 ADD COLUMN contac taddre s s i n t ;

143 ALTER TABLE pub l i c . party

144 ADD CONSTRAINT FK contactaddres s id country

145 FOREIGN KEY (contac taddre s s)

146 REFERENCES pub l i c . country (id count ry) ;

Appendix E

Case Study in the Java Framework

The case study presented in Sect. 8.2 solved by the implemented Java prototype:

1 migrate new c l a s s ˜ . model . Country −−t a b l e country

2 migrate new c l a s s ˜ . model . NaturalPerson −−t a b l e na tu ra l pe r son

3 migrate new c l a s s ˜ . model . LegalPerson −−t a b l e l e g a l p e r s o n

4

5 // Create Country p r o p e r t i e s

6 migrate add id −−c l a s s ˜ . model . Country

7 migrate new property name −−propertyType java . lang . S t r ing

8 −−c l a s s ˜ . model . Country −−column name

9 −−columnType varchar2 (255)

10

11 // Create NaturalPerson p r o p e r t i e s

12 migrate add id −−c l a s s ˜ . model . NaturalPerson

13 migrate new property name −−propertyType java . lang . S t r ing

14 −−c l a s s ˜ . model . NaturalPerson −−column name

15 −−columnType varchar2 (255)

16 migrate new property surname −−propertyType java . lang . S t r ing

17 −−c l a s s ˜ . model . NaturalPerson −−column surname

18 −−columnType varchar2 (255)

19 migrate new property s t r e e t −−propertyType java . lang . S t r ing −
20 −c l a s s ˜ . model . NaturalPerson −−column s t r e e t

21 −−columnType varchar2 (255)

22 migrate new property c i t y −−propertyType java . lang . S t r ing

23 −−c l a s s ˜ . model . NaturalPerson −−column c i t y

24 −−columnType varchar2 (255)

25 migrate new property z ip −−propertyType java . lang . S t r ing

153

APPENDIX E. CASE STUDY IN THE JAVA FRAMEWORK 154

26 −−c l a s s ˜ . model . NaturalPerson −−column z ip

27 −−columnType varchar2 (255)

28

29 // Create LegalPerson p r o p e r t i e s

30 migrate add id −−c l a s s ˜ . model . LegalPerson

31 migrate new property regNo −−propertyType java . lang . I n t e g e r

32 −−c l a s s ˜ . model . LegalPerson −−column reg no

33 −−columnType i n t e g e r

34 migrate new property bisName −−propertyType java . lang . S t r ing

35 −−c l a s s ˜ . model . LegalPerson −−column bis name

36 −−columnType varchar2 (255)

37 migrate new property s t r e e t −−propertyType java . lang . S t r ing

38 −−c l a s s ˜ . model . LegalPerson −−column s t r e e t

39 −−columnType varchar2 (255)

40 migrate new property c i t y −−propertyType java . lang . S t r ing

41 −−c l a s s ˜ . model . LegalPerson −−column c i t y

42 −−columnType varchar2 (255)

43 migrate new property z ip −−propertyType java . lang . S t r ing

44 −−c l a s s ˜ . model . LegalPerson −−column z ip

45 −−columnType varchar2 (255)

46

47 // S p l i t LegalPerson in to AddressLegalPerson and LegalPersonParty

48 migrate s p l i t c l a s s −−c l a s s ˜ . model . LegalPerson

49 −−c lassA ˜ . model . LegalPersonParty −−tableA l e g a l p e r s o n p a r t y

50 −−proper t i e sA id , regNo , bisName

51 −−c la s sB ˜ . model . AddressLegalPerson

52 −−tableB a d d r e s s l e g a l p e r s o n

53 −−proper t i e sB id , s t r e e t , c i ty , z ip , country

54 −−queryA ”1 = 1” −−queryB ”1 = 1”

55

56 // Extract AddressNaturalPerson from NaturalPerson

57 migrate s p l i t c l a s s −−c l a s s ˜ . model . NaturalPerson

58 −−c lassA ˜ . model . NaturalPersonParty −−tableA na tu r a l p e r s o n pa r ty

59 −−proper t i e sA id , name , surname

60 −−c la s sB ˜ . model . AddressNaturalPerson

61 −−tableB a d d r e s s n a t u r a l p e r s o n

62 −−proper t i e sB id , s t r e e t , c i ty , z ip , country

63 −−queryA ”1 = 1” −−queryB ”1 = 1”

APPENDIX E. CASE STUDY IN THE JAVA FRAMEWORK 155

64

65 // Merge AddressLegalPerson and AddressNaturalPerson in to Address

66 migrate merge c l a s s −−c l a s s ˜ . model . Address −−t a b l e address

67 −−c lassA ˜ . model . AddressNaturalPerson

68 −−c la s sB ˜ . model . AddressLegalPerson

69 −−query ”1 = 1”

70 migrate make pk −−c l a s s ˜ . model . Address −−property id

71

72 // Introduce parent Party to LegalPerson an NuturalPerson

73 migrate in t roduce parent −−c l a s s ˜ . model . NaturalPersonParty

74 −−parent ˜ . model . Party −−parentTable parent

75 migrate in t roduce parent −−c l a s s ˜ . model . LegalPersonParty

76 −−parent ˜ . model . Party

77

78 // Pul l up common p r o p e r t i e s o f LegalPersonParty

79 migrate p u l l up −−c l a s s ˜ . model . LegalPersonParty

80 −−property id −−query ”1 = 1” −−skipDrop

81

82 // Pul l up common p r o p e r t i e s o f NaturalPersonParty

83 migrate p u l l up −−c l a s s ˜ . model . NaturalPersonParty

84 −−property id −−query ”1 = 1” −−skipDrop

85

86 // Add address f i e l d s

87 migrate new property r e s i d e n t i a l A d d r e s s

88 −−propertyType ˜ . model . Address

89 −−c l a s s ˜ . model . Party −−column r e s i d e n t i a l a d d r e s s

90 −−columnType b i g i n t −−oneToOne −−refColumn id

91 migrate new property contactAddress

92 −−propertyType ˜ . model . Address

93 −−c l a s s ˜ . model . Party −−column contac t addr e s s

94 −−columnType b i g i n t −−oneToOne −−refColumn id

95

96 // Add new f i e l d s

97 migrate new property phone −−propertyType java . lang . S t r ing

98 −−c l a s s ˜ . model . Party −−column phone −−columnType varchar2 (255)

99 migrate new property emai l −−propertyType java . lang . S t r ing

100 −−c l a s s ˜ . model . Party −−column emai l −−columnType varchar2 (255)

	Introduction
	Goals of the thesis
	Organization of the thesis

	Problem Statement
	Data Evolution Process
	Evolution and Versioning
	Problems of Co-Evolution and Co-Versioning
	Summary

	State of the Art
	Database Evolution
	Tools for Database Evolution
	Formal and Informal Models
	Model Driven Frameworks
	Data Evolution of Non-relational Databases

	Version Management
	State-based VCS
	Opertation-based VCS
	Model Versioning

	Related Work Summary

	Model of Software Evolution
	The Architecture of a MDD Framework for Data Evolution
	Note on Notation
	Types
	Declaration
	Schemas
	Predicates
	States
	Axioms
	Name Conventions

	Meta-Models of Entites and Database
	Meta-Model of Entities
	Cardinality
	Types in Application
	Class
	Attribute
	Association
	Layer of Entities
	Invariants Constraining Entites
	Consistency of Entities
	Transformations for Entities Manipulation

	Meta-Model of Database
	Data Types
	Values
	Constraints
	Column
	Primary key
	Table Schema
	Foreign key
	Data Values
	Sequence
	Database
	Database Invariants
	Database Consistency
	Transformations for Database Manipulation

	Mapping between Data
	Inverse Mapping
	Mapping Invariants
	Mapping Features

	Entites - Database Mapping
	Software

	Transformations for Co-Evolution
	Transformation Definition
	Composition of Transformations
	Catalogue of Transformations
	Add Class
	Remove Class
	Add Attribute
	Remove Attribute
	Remove Attribute with no Data
	Add Association
	Remove Association
	Remove Association with no Data
	Move Attribute
	Inline Class
	Split Class
	Extract Class
	Add Parent
	Remove Parent
	Push Down
	Push Attribute Down to a Class
	Pull Up
	Pull Common Attribute Up
	Extract Parent
	Merge Classes

	Transformation Set Completness

	Model of Software Versioning
	The Model of Operation-Based VCS
	Revert a Transformation
	Missing Inverse Transformation
	Change of the Data

	Branches
	Merge of Branches
	Structural Adaptation
	Data Adaptation

	The Extension of Transformations for VCS
	Software Versioning Summary

	Implementation of Prototypes
	Transformations Implemented in the MigDb Framework
	Case Study
	Description of the Case
	First Iteration
	Second Iteration
	Third Iteration

	Case Study Summary
	Lessons Learned from the MigDb Implementation

	Conclusion
	Results and Contribution

	Bibliography
	Publications by Ondrej Macek
	Appendix Queries Used in the Model
	Queries for Entites Layer
	associationsOf
	associationsTargeting
	attributesOf
	children
	childParentRelation
	initAssociation
	initAttribute
	initAttributeOfClass
	initEntity
	initEntitites
	initInheritance
	isInheritanceCyclical
	isReferenced
	parentOf
	parentChildRelation

	Transformations for Entites Manipulation
	addAssociationEL
	addAttributeEL
	addEntityEL
	addEntityParentEL
	changeAssociationDirectionEL
	pushAttributeDownEL
	pushAttributeDownToClassEL
	pullAttributeUpEL
	pullCommonAttributeUpEL
	removeAssociationEL
	removeAttributeEL
	removeEntityEL
	removeEntityParentEL

	Queries for Database Layer
	initColumn
	initDatabase
	initForeignKey
	initPrimaryKey
	initTableSchema
	referringSchemas
	selectAllData
	valueOfColumn

	Transformations for Database Manipulation
	addColumnDB
	addForeignKeyDB
	addTableDB
	changeAllReferencesInTable
	changeFKreferenceDB
	changeForeignKeyReferenceDB
	changeReferenceInDB
	changeReferenceTableDB
	changeReferenceValueInForeignKeyValueDB
	copyColumnDB
	copyTableDB
	copyTableStructureDB
	dropColumnDB
	dropEmptyForeignKeyDB
	dropEmptyTableDB
	dropEmptyColumnDB
	dropForeignKeyDB
	dropTableDB
	insertDataToFKDB
	insertDataToMapTableDB
	next

	initSoftware
	Transformation Helpers
	initMappingForExtractParent
	initMappingForRemoveParent
	initMappingForSplit
	isInstanceOf
	moveAttributes

	Appendix Queries for VCS Manipulation
	initOPERATIONBASEDVCS

	Appendix Object-Relational Mapping
	assocToFkORM
	assocToTableORM
	attributeToColumnORM
	attributesToDbORM
	attributeToTableORM
	dbNameORM
	entityToTableNoAttributesORM
	entityOutsideHierarchyToTableORM
	entityToTableORM
	ORM
	parentEntityToTableORM

	Appendix SQL Generated by the MigDb Framework
	Appendix Case Study in the Java Framework

