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Abstract

In this work the problems of specific object and image retrieval including the more
challenging sub-image are studied. Given a query image of a specific object a retrieval
engine returns relevant images of the same object from a database. The thesis focuses on
the bag-of-words approach which is one of the most effective content-based approach
especially when the specific object covers only a part of the picture, can be occluded
or only partially visible. The thesis improves a number of components of the standard
bag-of-words retrieval approach.

A novel similarity measure for bag-of-words type large scale image retrieval is pre-
sented. The similarity function is learned in an unsupervised manner, requires no extra
space over the standard bag-of-words method and is more discriminative than both L2-
based soft assignment and Hamming embedding. The novel similarity function achieves
mean average precision that is superior to any result published in the literature on the
standard datasets and protocols.

We study the effect of a fine quantization and very large vocabularies (up to 64 mil-
lion words) and show that the performance of specific object retrieval increases with the
size of the vocabulary. This observation is in contradiction with previously published
results. We further demonstrate that the large vocabularies increase the speed of the
tf-idf scoring step.

All state-of-the-art image retrieval results in the literature have been achieved by
methods that include a query expansion which brings a significant boost in performance.
We introduce three modifications to automatic query expansion: (i) a method capable
of preventing query expansion failure caused by the presence of confusers, (ii) an im-
proved spatial verification and re-ranking step that incrementally builds a statistical
model of the query object and (iii) we learn relevant spatial context to boost retrieval
performance.

All three improvements of query expansion were evaluated on standard Paris and
Oxford datasets and state-of-the-art results were achieved.

Finally, novel problems for image retrieval are formulated. It is shown that the clas-
sical ranking of images based on similarity addresses only one of possible user require-
ments. Instead of searching for the most similar images, the novel retrieval methods
zoom-in and zoom-out answer the “What is this?” and “Where is this?” questions.

In addition, two other task are formulated: (i) given a query and a large image
dataset, for every pixel location in the query, find an image with maximum resolution
and (ii) return the frequency with which a pixel appears in the dataset.

The zoom-in and zoom-out required the development of two novel techniques: the
hierarchical query expansion method and a geometric consistency verification step that
is sufficiently robust to prevent a topic drift within a zooming search. Experiments show
that the proposed methods find surprisingly fine details on the tested landmarks, even
those that are hardly noticeable for humans.
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Chapter 1

Introduction

In the early days of the Internet the vast majority of information available on the network
was textual in the form of plain html web-pages. As the Internet became more popu-
lar, the amount of information stored on-line grew rapidly and the need of automated
web search service became obvious. With over 11 billion web-sites currently on-line1,
querying with the search engines became a natural way of browsing the Internet. It is a
common entry point.

Facilitated by the Web 2.0 concepts, the number of images stored on the Inter-
net grew enormously in the last decade. Photo-sharing through various services like
Panoramio [pan], Flickr [fli], Picasa [pic] and through social networks like Facebook
[fac], Instagram [ins], Google+ [gooa] became very popular. The digital camera be-
came a common equipment of every tourist, mobile phones without a camera have
almost vanished. Posting a new image on a social network takes only few seconds. For
instance, Facebook reported 350 millions of photos uploaded every day and the total
number reached 250 billions in July 2013. And this alone is an order of magnitude
bigger then the number of web-pages.

Besides social networks, other huge sets of digital images became publicly available
due to commercial efforts like Google Street View [gooc], San Francisco Landmark
[nok] or are being created for specific private reasons (surveillance, hospitals, etc.)

The datasets differ in several properties. Some sets covering views from a car
evenly from whole cities, others contain densely sampled well known touristic land-
marks, landscapes or various social events. The statistics of the image sets differ in
resolutions and image quality – from low resolution images taken by cell phones and
uploaded on social networks through mid-resolution images taken by specialized omni-
directional cameras for street views up to high-resolution artistic images taken with
DSLR cameras that can be found in datasets like Panoramio.

It is a challenging task to process, index and enable the search in a huge amount of
data. The conventional search using tags, annotations or surrounding texts from a web-
page is limited. Many images do not have any kind of annotation and the information
is present only in the content. This motivated Sivic and Zisserman [SZ03] to create an
content-based analogy of text retrieval methods for the image and video domain, which
attracted a significant attention of the computer vision community. Several commercial
systems already exist, but the problem remains open.

1Estimated in May 2012 by [www] using indexed page totals from several major search engines.
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The goals of this work are twofold: to improve the existing state-of-the-art retrieval
methods and to define and add new functionality – type of queries, which are useful to
the users despite of having no analogy in text retrieval.

1.1 Motivation

There are many applications based on exploration of large image datasets: creating
maps and 3D models of landmarks or whole cities [ASS+09], localization based on
the photos taken with mobile phone [SBS07], browsing collections [SSS06, CM10a],
discovering canonical views [WL11], searching different image of the object or scene,
searching for information about the object taken by camera [CBK+11, goob], Internet-
based in-painting [OJA09], and many others.

Applications based on these collections have to be able to process, index, categorize
or search the data. Due to the vast amount of images, methods suitable for querying
large datasets must not only have sub-linear running time that grows slowly with the
size of the collection, but must be very efficient in the use of memory. As soon as
the representation of the complete collection fails to fit into operation memory, running
time for a single search jumps by orders of magnitude – from a fraction of a second to
15-35 seconds per query on single computer as reported in [CPS+07]. For web-scale
datasets parallelization of the whole process must be possible.

A rapid increase in the size and ubiquity of these photo collections has motivated
significant developments in image and specific-object recognition and retrieval but still
current state-of-the-art search engines have good results only in some domains. The best
results are achieved on rigid and well structured objects with good texture. This includes
man-made objects as buildings, streets, landmarks, paintings, etc... However many
other domains remain a challenging open problem - searching for individual persons,
animals, threes or flowers, objects with lack of texture as chairs or keys, wire-ish objects
like fences, nets, or transparent or glossy objects.

Another type of challenges in image retrieval are visual properties like large differ-
ences in point of view, scale, colors, differences between day and night or presence of
blur. The effort is put to widen the variety of conditions in which the system performs
well.

The core problem addressed in this work is to retrieve as many relevant images as
possible while avoiding false positives.

1.2 Large Sub-Scale Image Search – Classical Problem
Definition

Large scale image search is the problem of specific object retrieval from a web-scale,
unordered set of images. The user provides a query - an image or an image with a
region of interest covering a specific object selected. The retrieval engine searches the
database and ranks images according to relevance. The ranking expected by the user
depends on the application. The majority of retrieval systems in the literature define
relevance as a similarity with the query image. In this work (Chapter 6) we show that
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different metrics can be used to better serve different type of user questions: ”What it
is?”, ”Where it is?”, ”What is interested here?”, ...

In this work we are interested in sub-image retrieval. This is a more difficult problem
than a whole-image retrieval, since the searched object can appear only in a small part
of the retrieved image (see Figure 1.1 - Nike logo). Moreover search engine should be
able to retrieve partially occluded objects, taken from a different viewpoint or under
different lighting conditions.

In the literature the term near duplicate image is often used in connection with im-
age search. The definition of a near duplicate varies depending on which photometric
and geometric variations are deemed acceptable. The application ranges from exact du-
plicate detection where no changes are allowed or only small change of scale, different
compression or border removal to a more general definition that requires the images to
be of the same scene, but with possibly slightly different viewpoints and illumination.
The specific object retrieval problem is more general. The same scene is not required
and different conditions of images acquiring are expected.

Large scale, in this work, means databases with about 107 images. While being two
or three order of magnitude smaller than in web-scale databases or collections stored
on social networks, our experimental retrieval system is running in real time on a single
conventional machine. Moreover, all parts of the system are designed in a way that
parallel computation is possible and time complexity of the online phase is sub-linear.

1.3 Performance of a Retrieval System

One of the goals of this work is to broaden the conditions under which the retrieval
system performs well – to increase the precision and the recall. These two properties
are measured to evaluate the performance of the system. Loosely defined, to increase
the recall means to find and return more images from the database relevant to the query
image without increasing the size of the output, while to increase the precision means

Query

Figure 1.1: An examples of a query and ranked results from the image retrieval system.
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Figure 1.2: A toy example of average precision (AP) calculation for image a retrieval
query. True positive results are highlighted with green color, false positives with red.

to avoid false positives among the relevant results. Defined accurately [Zhu04]:

precision =
|{relevant images}

⋂
{retrieved images}|

|{retrieved images}|

recall =
|{relevant images}

⋂
{retrieved images}|

|{relevant images}|
These two metrics are based on the whole result set returned by the system. The

quality of the retrieval however, as perceived by the user, depends mainly on the ranking
of the result set. For systems returning a ranked result set, the Average Precision (AP)
is defined:

AP =
1

2

n∑
k=1

(p(k) + p(k − 1))(r(k)− r(k − 1)),

where n is number of retrieved images, p(k) resp. r(k) is precision resp. recall of the
set of images ranked from 1 to k. (p(0) = 1 by definition). A toy example of average
precision is shown in Figure 1.2.

A common measure for evaluating performance of the information retrieval sys-
tems is mean Average Precision (mAP). The mAP is a mean of the average precision
scores for each query defined by a protocol over a given dataset. To enable compar-
ison between research groups several dataset became standard. We describe them in
Section 1.4.

We are using measure and standard datasets with protocols for evaluations in Chap-
ters 3, 4 and 5. However, in Chapter 6 different metrics than similarity are discussed for
retrieving and ranking images. While different metrics can be more error prone or have
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Figure 1.3: Example query images of eleven landmarks from the Oxford Buildings
dataset.

lower recall, they still can be far more useful to the user. We show that the mAP is not
a good estimator of the retrieval performance in this case and the standard datasets are
not sufficient enough to demonstrate the quality of response to the novel query types.
Some qualitative experiments are therefore carried out and results are shown on much
bigger non-standard dataset as well.

1.4 Standard Datasets

During the last few years, several datasets and protocols become standard for com-
parison of the image retrieval systems. In this work the mAP of the developed im-
age retrieval system is evaluated on the Oxford Buildings dataset [PCI+07] (Oxford-
5k), the Paris Buildings dataset [PCI+08] (Paris-6k) and the INRIA Holidays dataset
[JDS08, hol] and their extensions.

Oxford-5k is a dataset containing 5062 images downloaded from Flickr. Eleven dif-
ferent Oxford landmarks were identified and 5 queries (image and bounding box) were
set for every landmark. Images were manually annotated and ground truth for all 55
queries was created. One query example of each landmark is shown in Figure 1.3.

Paris-6k is a dataset containing 6412 images collected in the same way as Oxford-
5k. The same protocol is used and 11 landmarks with the ground truth were manually
picked and annotated. Landmarks and their query examples are shown in Figure 1.4.

INRIA Holidays is a dataset containing 1491 images from personal holidays pho-
tos of INRIA researchers with a few images added to exploit robustness to rotations,
viewpoints, illumination changes and blurring. Unlike the previous datasets, INRIA
Holidays contains a large number of scenes difficult for retrieval approach chosen in
this work – nature sceneries, water and fire effects and similar images lacking rigid and
textured structures or spatial consistency. The images were manually grouped into 500
groups and the protocol with a ground truth created. The first image of each group is

6



Figure 1.4: Example query images of eleven landmarks from the Paris Buildings
dataset.

Figure 1.5: Example images from the INRIA Holidays dataset.

the query image and the other images of the group are the expected true positive results.
Examples of images from the dataset are shown in Figure 1.5.

Datasets Oxford-5k and Paris-6k have been often augmented with 100.000 unrelated
images downloaded from Flicker. The augmented sets are referred to as Oxford-105k
and Paris-106k datasets. The results have been reported for many methods on these
datasets which is important for performance comparison. They are available for down-
load from creator’s web pages.

1.5 Baseline Bag-of-Words Image Retrieval
In this work we are interested in large scale image search systems based on the state-
of-the-art bag-of-words (BoW) approach. The approach was inspired by text search
engines and applied to visual domain by Sivic et al. [SZ03]. This section briefly de-
scribes the retrieval pipeline based on bag-of-words. A more detailed description and
other approaches with their modifications are presented in Chapter 2.
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The process of the image search consist of two phases, which can be roughly divided
into several parts common to most of the search systems.

First phase, which runs off-line, consists of parts for preparation of the system –
building the database index of given images for the fast image search. (Alg. 1, Fig. 2.1):

Algorithm 1 Overview of the off-line phase – preparation of the bag-of-words retrieval
system.

Input: a dataset of images
Output: a visual vocabulary, the index for fast image retrieval -
inverted file
Main parameters: selection of feature detector, selection of de-
scriptor, size of the vocabulary, vocabulary learning method

1. Feature detection and description, the process of reduction of
image data that allows to speed-up the search by keeping only
relevant and discriminative information from the image.

2. Vocabulary learning is a quantization of the descriptor space
into clusters called visual words. The visual words are used in-
stead of descriptors in the index file. The use of the visual words
(their integer IDs) instead of the full descriptors in the index file
leads to significant data reduction, which allows to index large
collections of images and search them in real-time.

3. Visual word assignment is the process of assignment of one or
more visual words to a feature descriptor. In the off-line phase
all descriptors of all images in the dataset need to be assigned to
visual words.

4. An inverted file construction. The inverted file is an index file
used in the retrieval that stores for every visual word a list of
documents containing the word.

Second phase, querying the system with given image, is running on-line (Alg. 2, Fig. 2.2):

8



Algorithm 2 Overview of the on-line querying phase.
Input: query image, visual Vocabulary, inverted file
Output: ranked result list of images from dataset
Main parameters: length of shortlist, ranking function, spatial
verification thresholds

1. Feature detection and description. The features are detected
and described in the query image using the same detector and
descriptor as in the off-line phase.

2. Word assignment. Query image descriptors are assigned to vi-
sual words of the learned vocabulary. The assignment can be
done in a different way than in the off-line phase.

3. Index look-up. Using the inverted file, images containing at least
one common visual word are ordered according to score esti-
mated according to bag-of-words weighted similarity.

4. Spatial verification. Images with the highest rank (short list)
are spatially verified by looking for geometrical transformation
between the retrieved image and the query.

5. Query expansion [optional]. To achieve a higher recall, a new
query can be formed from the visual words of top retrieved and
verified images. This is an optional step. If executed, steps 2.–4.
(an index look-up and spatial verification) are repeated for a new
expanded query.

9



1.6 Contributions
The contributions of this thesis can be divided into three categories: vocabulary con-
struction, online querying phase and a novel retrieval problems formulations. The tech-
nical contributions are related to large vocabularies, their construction and learning.

In the online querying phase, we propose a method for increasing precision by im-
proving spatial verification, increasing recall by adding context to the query expansion
and automatic recovery from failure caused by confuser features. All these improve-
ments were evaluated on standard datasets and protocols and state-of-the-art results
were achieved.

Finally, novel problems for image retrieval are formulated. The user is able to ask
new types of queries which, despite of having no analogy in text-retrieval world, might
be very useful in many situations.

Large vocabularies The size of the visual vocabulary is one of the main parameters
of bag-of-word retrieval system, which influences the precision, the recall and the speed
of the retrieval system. We build and test large vocabularies disproving the common as-
sumption which is present in community that is not worth to build vocabularies larger
than 1 million visual words. We present a method that enables to build large vocabular-
ies efficiently and without disadvantages of deep tree structures. We propose to keep the
vocabulary structure balanced by adapting branching factor and shallow tree structure
[MPCM10].

Learning a fine vocabulary We propose a novel similarity measure that is learned
in an unsupervised manner, requires no extra space (only O(1)) in comparison with the
standard systems using a bag-of-words. It is more discriminative than both 0–∞ and
L2-based soft assignment and increases precision of the system [MPCM10, MPCM13].

Incremental spatial verification After querying the index file, images in the shortlist
are spatially verified. In this work we show that by extending the query model with
every spatially verified image during the process, we improve precision of the system
and decrease the number of false positives. This way, images in the shortlist are verified
against the query and the already verified images which appeared in the shortlist with a
higher rank. In the text we refer to this contribution as to incremental spatial verification
or iSP [CMPM11].

Context-based query expansion This contribution is based on the incremental spa-
tial verification approach. We show that during the spatial verification, the consistent
context of the query image can be learned and used to greatly improve the recall of the
system. In this work we refer to this approach as to context-based query expansion or
in short ctxQE [CMPM11].

Automatic failure recovery Another contribution which is based on spatial verifica-
tion. If the spatial verification fails to find the geometric transformation between the
query and retrieved images despite of the high number of matched visual words it is
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probably caused by a high number of confuser features (features breaking the assump-
tion of occurring independently). In our approach, confusers are identified, extracted
from the original query, and a new query is issued. These steps increase the chances of
retrieving true positive images from the database [CMPM11].

New retrieval problems: zoom-in, zoom-out, focus of the crowds We formulated
new retrieval problems and new types of queries. We show how to insert a new func-
tionality by replacing the ranking function, adjustment of query expansion and changes
in scoring mechanism. We demonstrate this by adding a zoom-in and zoom-out capa-
bility to the system which instead of the most similar images retrieves the most zoomed
images of the selected scene. We show how this new functionality can be used to an-
swer users questions like “What is this?”, ‘Where is this?” or using the information of
the crowds even a question “What is interesting here?” [MCM13].

1.7 Outline of the Work
The outline of this document is as follows. In the next chapter, various state-of-the-art
methods for image retrieval are described. Different image representations and their
properties, different vocabulary learning techniques and word assignment, as well as
details and different ways of query expansion – the last stage of image search.

A novel method for vocabulary learning together with achieved results is proposed
in Chapter 3. Two extensions for query expansion are proposed in Chapters 4 and 5.
Novel ranking function and their use are shown in Chapter 6. The last chapter concludes
the work.

1.8 Authorship
I hereby certify that the results presented in this thesis were achieved during my own
research in cooperation with my thesis supervisor Jiřı́ Matas and co-supervisor Ondřej
Chum.
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1.9 Used Terms and Abbreviations

Abbreviation Description
AP Average Precision – the measure of the quality indicator of the

ranked result set (defined in Section 1.3).
BoW Bag-of-words – an image representation (Sec. 2.1.1).

confusers Visual words which confuse the retrieval system and cause a
query failure – too many false positives retrieved. Confusers
are features breaking the assumptions of independent occurrence
(Sec. 5).

ctxQE context-based Query Expansion – a variant of query expansion
based on incremental spatial verification proposed in Chapter 3.

DAAT Document at a time – a method for processing the inverted file
proposed by Stewenius et al. [SGP12].

inverted file The index file of the image retrieval engine. Contains a posting
list for every visual word.

iSP incremental Spatial Verification – variant of spatial verification
proposed in Chapter 5.

mAP mean Average Precision – the metric of the image retrieval per-
formance (defined in Section 1.3).

posting list One line of inverted file – a list of all documents in the database
containing a particular visual word.

QE Query Expansion – a step in the query phase that exploits result
images to create a new expanded query (see Alg, 2).

shortlist Top ranked images in the result set. These images are further
processed – spatially verified, re-ordered and returned to the user.

SIFT Scale-Invariant Feature Transform – a widely used local feature
descriptor proposed by Lowe [Low04].

SP Spatial Verification – The verification process checking the spatial
alignment of local features in two images. It is applied between
the query and each retrieved image in a shortlist (see Alg. 2).

tf-idf term frequency - inverse document frequency – a weighting factor
used for document scoring. It is intended to reflect importance of
the visual word based on its frequency statistics [BYRN99].
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Chapter 2

State of the Art

Virtually all aspects of specific object BoW-type retrieval have been intensively stud-
ied: feature detectors and descriptors [Low04, BTVG06, WHB09, MS04, MTS+05],
vocabulary construction [SZ03, NS06, PCI+07, JDS08], spatial verification and re-
ranking [PCI+07, JDS08], document metric learning [JHS07, JDS09, CM10b] and di-
mensionality reduction [JDSP10, PLSP10].

At the beginning of this chapter we present components of image retrieval pipelines
in state-of-the-art systems. Later in the chapter we review in a greater detail recent
approaches to three sub-problems of content based image search. First, vocabulary
learning, which is one of the main and also one of the most time consuming part of
the preparation of the system running off-line, is reviewed in detail. Next, the spatial
verification and query expansion is described. These are the parts of the search system,
which we are improving in next chapters.

2.1 Standard components in large scale image retrieval

In this section we review three popular approaches that each use vector representations
for images. Additionally, we present image retrieval approaches derived from tech-
niques used in text search as well as standard methods for increasing precision and
recall after scoring in the index file.

2.1.1 The bag-of-words image representation

One of the most popular image representations is the bag-of-words (BoW). Images are
represented as collections of local features. A local feature has its visual appearance
represented by a visual word and its spatial extent defined by a point and an ellipse.
Histogram of visual words is called bag-of-words.

Features, typically affine covariant regions, are detected for each image in the dataset.
The most frequently used detectors in image retrieval engines are the Harris-affine
[MS02, SZ02], Hessian-affine [MS02] and MSER [MCUP02], which have different
detection characteristics, but collectively represent the state-of-the art. A comprehen-
sive performance survey of features detectors is given by Mikolajczyk et al. [MTS+05],
which confirms the high performance of the above listed detectors.
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Figure 2.1: Visualization of the bag-of-words image representation computation with
geometry compression. Courtesy of Michal Perd’och.

Detected interest regions are described by a feature descriptor. The SIFT descriptor
[Low04], which describes an interest region by a point in a 128-dimensional space, is
ubiquitous in state-of-the-art systems. Many modifications have been proposed in the
literature, including two effective and popular variants: rootSIFT [AZ12] and SURF
[BTVG06].

Feature descriptors are vector quantized into visual words [SZ03] creating a visual
vocabulary. Many approaches have been studied in the literature, with modifications
addressing different goals and constraints.

The canonical vocabulary construction method is the unsupervised k-means cluster-
ing. The parameter k denotes the number of visual words in the vocabulary. The choice
of k varies: from k ≈ 103, usually suitable for classification tasks, up to k ≈ 107 as
we show in chapter 3. Different approaches and modifications of unsupervised k-means
clustering is given in Section 2.2.

The process of image description is visualized in Figure 2.1.

2.1.2 Image representation with VLAD
The vector of locally aggregated descriptors (VLAD) [JDSP10] is another successful
image representation method. It combines the advantages of the bag-of-words and the
Fisher kernel [JH99]. As in the BoW representation, local features are detected and
described. The vocabulary is created with k-means, but, unlike the BoW method, only
a small number of visual words k are used. Jegou et al. [JDSP10] show that good results
are achieved for k ∈ [16, 256] visual words. Visual words are constructed by finding k
cluster centers as before, but the descriptor assigned to a cluster center is computed as a
sum of signed differences between the cluster center and its nearest feature descriptors,
resulting in a k × d dimensional vector (d is the dimension of the local descriptor, e.g.
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128 for SIFT). Product quantization [JDS11] is used to construct the final quantized
descriptor creating a compact representation that fits into 20 bytes.

2.1.3 GIST descriptor
A different approach to image representation is to create a global descriptor that cap-
tures the spatial layout and spatial relationships between regions or blobs of similar
size, and the arrangement of basic geometric forms. One example is GIST, proposed by
Oliva and Torralba [OT06a]. A single GIST descriptor is used to represent an image,
which results in a small memory footprint. The representation prevents partial matching
of the image, it is sensitive to occlusion and there are no keypoints that can be used for
spatial verification.

2.1.4 Image retrieval
The nearest neighbor (NN) search for similar images is slow for large datasets, even
if it uses sophisticated data structures avoiding exhaustively examination of the image
database. Approximate NN search offers a big improvement.

Text search engines [ALR03, BDH03] face similar scalability problems for docu-
ment retrieval, and the computer vision community has looked there for inspiration. In
particular, image database indexing by the inverted file data structure leads to a dra-
matic speedup over the nearest neighbor search [SZ03]. Inverted files map visual words
to documents containing these words. The inverted file serves as in index into the
database: upon a query, a subset of matching documents is returned, i.e., those that
contain the visual words of the query. The document ranking proceeds by calculating
the similarity between the query vector and the matching document vectors. For sparse
queries, the use of an inverted file ensures that only documents that contain query words
are examined, which leads to a substantial speedup over the alternative of examining ev-
ery document vector.

Efficient computation of the relevance of an image to a query is achieved by travers-
ing the inverted file and reading the posting lists associated with the visual words of the
query. The posting list (one row of the inverted file) associated with a visual word W
is the list of image identifiers that contain visual word W . The standard tf-idf weight-
ing scheme [BYRN99], also adopted from the document search community, is used to
weight the document’s relevance by de-emphasizing commonly occurring, less discrim-
inative words.

Application of this approach is straightforward for sparse BoW vectors. For VLAD,
similar speedup is achieved by combining the inverted file with asymmetric distance
computation (IVFADC) proposed by Jegou et al. [JDS11].

2.1.5 Spatial verification and query expansion

As shown in [PCI+07, PCM09], retrieval results are significantly improved by using
the locations of features to verify their spatial consistency with the query region. This
is achieved by a fast and robust hypothesize-and-test procedure that estimates an affine
transformation between the query region and the target image. The RANSAC algorithm
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Figure 2.2: Visualization of image retrieval with spatial verification for the bag-of-
words representation. Courtesy of Michal Perd’och.

with local optimization [CMK03] is widely used for spatial verification in state-of-the-
art retrieval systems.

A caveat is that spatial verification is significantly more time consuming than BoW
scoring. Thus it is performed only on the shortlist consisting of top scoring images.
Verified images in the shortlist are subsequently re-ranked. Chapter 4, shows that if
the model of the query (bag-of-words with feature geometries) is updated with newly
spatially verified images by adding their visual words and geometries during the spatial
verification, the probability of verifying other related images increases.

Chum et al. [CPS+07] proposed a query expansion (QE) method – another tech-
nique inspired by text retrieval [BSAS95, SB97] – to image retrieval and demonstrated
impressive gains to recall. In QE, visual words from highly ranked images are com-
posed in a new, expanded query. Unlike in text retrieval, features come with spatial
information, typically keypoints, so geometric constraints and can be checked with spa-
tial verification to ensure that the expanded query does not include visual words from a
false positive image.

In Chapter 4 we added spatial context to queries by incorporating matching fea-
tures that locally surround the initial query boundary into the query expansion. A latent
model of the context of the query object is constructed by exploiting features surround-
ing the bounding-boxes of images verified by incremental spatial verification. A consis-
tent context is learned and features belonging to the context can aid the expanded query,
thus further improving recall. The process of image retrieval for BoW representation is
summarized in Figure 2.2.
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2.2 Vocabulary Learning

As we mentioned in previous section bag-of-words was introduced to image retrieval
by Sivic et al. [SZ03]. They represented the image by a histogram of ‘visual words’,
i.e. discretized SIFT descriptors [Low04]. The BoW representation possesses many
desirable properties required in large scale retrieval. If represented as an inverted file,
it is compact and supports fast search. It is sufficiently discriminative and yet robust
to acquisition ‘nuisance parameters’ like illumination and viewpoint change as well
as occlusion. In this section we consider and compare methods that support queries
that cover only a (small) part of the test image. Global methods like GIST [OT06b]
or VLAD [JDSP10] achieve a much smaller memory footprint at the cost of allowing
whole image queries only.

The discretization of the SIFT features is necessary in large scale problems as it is
neither possible to compute distances on descriptors efficiently nor feasible to store all
the descriptors. Instead, only (the identifier of) the vector quantized prototype for visual
word is kept. After quantization, Euclidean distance in a high (128) dimensional space
is approximated by a 0–∞ metric - features represented by the same visual word are
deemed identical, else they are treated as ‘totally different’. The computational conve-
nience of such a crude approximation of the SIFT distance has a detrimental impact on
discriminative power of the representation. Recent methods like soft assignment and
in particular the Hamming embedding aim at obtaining a better space-speed-accuracy
trade off.

In this section, approaches to vocabulary construction and soft assignment suitable
for large-scale image search are reviewed and compared.

In [SZ03], the vocabulary (the number of visual words≈ 104) was constructed using
a standard k-means algorithm. Adopting methodology from text retrieval applications,
the image score is efficiently computed by traversing inverted files related to visual
words present in the query. The inverted file related to a visual word W is a list of
image ids that contain the visual word W . It follows that the time required for scoring
the documents is proportional to the number different visual words in a query and the
average length of an inverted file.

Hierarchical clustering
The hierarchical k-means and scoring of Nistér and Stewenius [NS06] is the first image
retrieval approach that scales up. The vocabulary has a hierarchical structure which
allows efficient construction of large and discriminative vocabularies. The quantization
effect are alleviated by the so called hierarchical scoring. In such a type of scoring, the
scoring visual words are not only stored in the leafs of the vocabulary tree. The non-leaf
nodes can be thought of as virtual or generic visual words. These virtual words naturally
score with lower idf weights as more features are assigned to them (all features in their
sub-tree).

The advantage of the hierarchical scoring approach is that the soft assignment is
given by the structure of the tree and no additional information needs to be stored for
each feature. On the downside, experiments in [PCI+08] show that the quantization
artefacts of the hierarchical k-means are not fully removed by hierarchical scoring, the
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(a) (b) (c)

Figure 2.3: Different approaches to the soft assignment (saturation encodes the rele-
vance): (a) hierarchical scoring [NS06] – the soft assignment is given by the hierarchi-
cal structure of the search tree; (b) soft clustering [PCI+08] assigns features to the r
nearest cluster centers; (c) Hamming embedding [JDS10] – each cell is divided into or-
thants by a number of axis-aligned hyperplanes, the distance of the orthants is measured
by the number of separating hyperplanes.

problems are only shifted up a few levels in the hierarchy. An illustrative example of
the soft assignment performed by the hierarchical clustering is shown in Fig. 2.3(a).

Lost in quantization

In [PCI+08], an approximate soft assignment is exploited. Each feature is assigned to

n = 3 (approximately) nearest visual words. Each assignment is weighted by e−
d2

2σ2

where d is the distance of the feature descriptor to the cluster center.
The soft assignment is performed on features in the database as well as the query

features. This results in n times higher memory requirements and n2 times longer
running time – the average length of the inverted file is n times longer and there are up
to n times more visual words associated with the query features. For an illustration of
the soft assignment, see Fig. 2.3(b).

Hamming embedding

Jégou et al. [JDS10] have proposed to combine k-means quantization and binary vector
signatures. First, the feature space is divided into relatively small number of Voronoi
cells (20K) using k-means. Each cell is then divided by n independent hyper-planes
into 2n subcells. Each subcell is described by a binary vector of length n. Results
reported in [JDS10] suggest that the Hamming embedding provides good quantization.
The good results are traded off with higher running time requirements and high memory
requirements.

The higher running time requirements are caused by the use of coarse quantization
in the first step. The average length of an inverted file for vocabulary of 20K words is
approximately 50 times longer than the one of 1M words. Recall that the time required
to traverse the inverted files is given by the length of the inverted file. Hence 50 times
smaller vocabulary results in 50 times longer scoring time on average. Even if two
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query features are assigned to the same visual word, the relevant inverted file has to be
processed for each of the features separately as they will have different binary signature.

While the reported bits per feature required in the search index ranges from 11
bits [PCM09] to 18 bits [PCI+08], Hamming embedding adds another 64 bits. The
additional information reduces the number of features that can be stored in the memory
by a factor of 6.8.

2.3 Spatial Verification

As shown in [PCI+07, PCM09], the results can be significantly improved using the fea-
ture layout to verify the consistency of the retrieved images with the query region. The
initially returned result list is re-ranked by estimating an affine transformation between
the query image and result image. However, the spatial verification is significantly more
time consuming than the BoW scoring, and is performed only on a shortlist of top scor-
ing images. The shortlist is subsequently re-ranked based on the number of spatially
verified inliers.

2.4 Query Expansion
In the text retrieval literature, one of the standard methods for improving performance
is query expansion. A number of the highly ranked documents from the original query
are re-issued as a new query. In this way, additional relevant terms can be added to the
query.

In [CPS+07], the authors brought query expansion into the visual domain. A strong
spatial constraint between the query image and each result enables an accurate verifi-
cation for each return, resulting in a suppression of false positives that typically ruin
text-based query expansion. These verified images can be used to learn a latent feature
model to enable controlled construction of expanded queries.

In [CPS+07], the authors proposed a number of query expansion strategies. All of
them follow a similar pattern: images in a shortlist are spatially verified against the
query features, images with sufficient numbers of matches (inliers) are back-projected
by the estimated affine transformation into the query region, and, finally, a new query is
issued. The differences in the proposed strategies are either in the number of repeated
applications of the process, or in the method of feature selection.

The simplest well performing query expansion method is called average query ex-
pansion. A new query is constructed by averaging a number of document descriptors.
This approach is the quickest from all the suggested strategies, and has been adopted in
a number of publications [PCI+08, PCM09, JDS09]. We use the average query expan-
sion as the baseline method.

2.5 Commercial solutions
In the last few years commercial image search engines became available to the public
on the Internet. The best known are Google’s Web image search and Google Goggles
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(for android phones) started in 2010, Bing image search from Microsoft launched for
public in 2012 and the TinEye started in 2008.

There are no recent publication to our knowledge describing the back-ends of these
systems or evaluating their performance on standard datasets. From the user experience
our guess is that the bag-of-words approach was used in combination with textual infor-
mation which often accompany the images – image name, anchor-text, tags or the text
in the body of the page around image. Some engines are able to detect bag-of-words
failure for a particular search and use different methods such as color histograms or a
text search if text was detected on the image.

Figures 2.4 to 2.7 display mentioned the interfaces with results of the above-mentioned
search engines as well as our demo engine called CMP::G2 (fig. 2.8) querying the
Gothic tympanum on St. Vitus Cathedral in Prague.
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Figure 2.4: The Google Images application successfully identifies the building and
offers webpages about St. Vitus Cathedral, a summary taken from Wikipedia as well as
similar images after choosing ”Visually similar images” link.
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(a)

(b) (c)

Figure 2.5: The Google Goggles application identifies the image as a poster ”Gon-
dong’s The Crucifixion, St. Vitus’s Cathedral Tympanum” (a), which is more or less
correct but then navigates the user to webpage selling posters (b), which would not
be expected in this case. Choosing the image search issues probably a textual query
according to the name of the poster not giving the best results either (c).

Figure 2.6: The Bing Images application does not allow the user to select his own
image i.e. an image not contained in Bing’s dataset. We found a similar query image
in the indexed database and run a query. The most of the results are correct (one false
positive is highlighted red). It is obvious that images are linked not only by the visual
content but various textual information is used as well – consider examples highlighted
green.
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Figure 2.7: TinEye is the first publicly available content based search engine with over
5.283 billion images indexed. Probably due to the effort of avoiding false positives only
24 images were retrieved. All of them are correct. The results support the argument of
Chapter 6 that displaying the most similar images is not always useful.

Figure 2.8: CMP::G2 Image Search is the demo application implementing the meth-
ods and algorithms described in the thesis. Displayed here for comparison.
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Chapter 3

Learning a Fine Vocabulary

Quantization of the descriptor space (construction of vocabulary) brings essential re-
trieval speed-up and lower memory footprint for the image description. Parameters of a
visual vocabulary have major impact on the performance of the retrieval engine, and are
thoughtfully studied and addressed in literature. One of the main parameter is the size
of the vocabulary – number of quantization cells (visual words). A larger vocabulary
yields more false negatives (lower recall), but higher precision and faster retrieval. The
smaller the vocabulary the slower and more prone to false positives (lower precision).

Features from the two different physical pre-images have lower probability of being
assigned into the same quantization cell (visual word) in a larger vocabulary. On the
other hand larger vocabulary have bigger problem with quantization effects – the higher
probability of two similar features from the same pre-image assigned to different visual
word. If hard-assignment (0–∞ metric) is used, such features are considered to be
completely distant. If this probability is not too high, it is not a big problem assuming
that each image is described by hundreds of visual words. Otherwise, different types of
soft-assignment are used to deal with these effects.

Other important property of the visual vocabulary influencing query speed is imbal-
ance factor [JDS10]. The balanced inverted file (i.e. posting lists of about the same
length) is essential for small variations from expected retrieval time and good user ex-
perience.

In this chapter we propose a novel vocabulary construction method for very large
vocabularies, which according to experiments achieves the state-of-the-art mAP results
while keeping imbalance factor low.

3.1 Motivation
All approaches to soft-assignment mentioned in Chapter 2 are based on the distance
(or its approximation) in the descriptor (SIFT) space. It has been observed that the
Euclidean distance is not the best performing measure. Learning a global Mahalanobis
distance [HBW07, MM07] showed that the matching is improved and/or the dimension-
ality of the descriptor is reduced. However, even in the original work on SIFT descriptor
matching [Low04] it is shown that the similarity of the descriptors is not only dependent
on the distance of the descriptors, but also on the location of the features in the feature
space. Therefore, learning a global Mahalanobis metric is sub-optimal and a local simi-
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larity measure is required. For examples of corresponding patches where SIFT distance
does not predict well the similarity see Figures 3.1, 3.6, and 3.7. This is mainly due to
the fact that SIFT distribution of the features detected on the same physical pre-image
is not ellipsoid.

In this chapter, unsupervised learning on a large set of images is exploited to im-
prove on the hartd-assignment – the 0–∞ metric. First, an efficient clustering process
with spatial verification establishes correspondences within a large (>5M) image col-
lection. Next, a fine-grained vocabulary is obtained by 2-level hierarchical approximate
nearest neighbour clustering. The automatically established correspondences are then
used to define a similarity measure on the basis of a probabilistic relationships of visual
words; we call it the PR visual word similarity.

When combined with a large vocabulary, several millions of words (one or two
orders of magnitude larger than commonly used), the PR similarity has the following
desirable properties:

(i) it is more accurate (discriminative), than both standard 0–∞metric and Hamming
embedding.

(ii) the memory footprint of the image representation for PR similarity calculation
is roughly identical to the standard method and smaller than that of Hamming
embedding.

(iii) search with the PR similarity is faster than the standard bag-of-words.

A novel similarity measure presented in this chapter is learned in an unsupervised
manner, requires no extra space regard to size of the database (only O(1)) in comparison
with the bag-of-words.

Further, we experimentally disprove the common assumption which is present in
community that is not worth to build vocabularies larger than 1M. To construct a well
performing large vocabulary, we propose to build shallow hierarchical – tree based
– vocabularies with adaptive branching to speed up the process but not to bring the
disadvantage of large imbalance factor of deeper ones.

Figure 3.1: An example of corresponding patches. A 2D PCA projection of the SIFT
descriptors (left); two most distant patches in the SIFT space and the images where
they were detected (right); a set of sample patches (bottom). The average SIFT distance
within the cluster is 278, the maximal distance is 591.
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3.2 The Probabilistic Relation Similarity Measure

Consider a feature in the query image with descriptor D ∈ D ⊂ Rd. For most accurate
matching, the query feature should be compared to all features in the database. The
contribution of the query feature to the matching score should be proportional to the
probability of matching the database feature. It is far too slow, i.e., practically not
feasible, to directly match a query feature to all features in a (large) database. Also, the
contribution of features with low probability of matching is negligible.

The success of fast retrieval approaches is based on efficient separation of (poten-
tially) matching features from those that are highly unlikely to match. The elimina-
tion is based on a simple idea – the descriptors of matching patches will be close in
some appropriate metric (L2 is often used). With appropriate data structures, enu-
meration of descriptors in proximity is possible in time sub-linear in the size of the
database. All bag-of-words based methods use partition {wi} of the descriptor space
D:
⋃
wi = D, wi ∩ wj 6=i = ∅. The cells are then used to separate features that are

close (potentially matching) from those that are far (non-matching).
In the case of hard assignment, features are associated with the visual words defined

by the closest cluster center. In the scoring that evaluates query and database image
match, only features with the same visual word as the query feature are considered.

We argue that the descriptor distance is a good indicator of patch similarity only
up to a limited distance, where the variation in the descriptors is caused mostly by the
imaging and detector noise. We abandon the assumption that the descriptor distance
provides a good similarity measure of patches observed under different viewing angles
or under different illumination conditions. Instead, we propose to estimate the proba-
bility between a feature observed in the query image and a database feature. Since our
aim is to address retrieval in web-scale databases where store requirements are critical,
we constrained our attention to solution that have a minimal overhead in comparison
with the standard inverted file representation.

The Proposed Approach
We propose to use a fine partition of the descriptor space, to minimize a probability
of false match inside a single cell. Even though the fine partition is learned in a data
dependent fashion (as in the other approaches), the fine partition unavoidable separates
matching features into a number of cells.

For each cell (visual word) we learn which other cells (called alternative visual
words) are likely to contain descriptors of matching patches with the same pre-images
(Fig 3.2). This step consist of estimating the probability of observing visual word wj in
a matching database image when visual word wq was observed in the query image

P (wj|wq). (3.1)

The probability (Eqn. 3.1) is estimated from a large number of matching patches.
A simple generative model, independent for each feature, is adopted. In the model,

image features are assumed to be (locally affine) projections of a (locally close to pla-
nar) 3D surface patches zi. Hence, matching features among different images are those
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Figure 3.2: The set of alternative words in the proposed PR similarity measure.

that have the same pre-image zi. To estimate the probability P (wj|wq) we start with
(a large number of) sets of matching features, each set being different projections of a
patch zi. Using the fine vocabulary (partition) the sets of matching features are con-
verted to sets of matching visual words. We estimate the probability P (wj|wq) as

P (wj|wq) ≈
∑
Z

P (wj|zi)P (zi|wq). (3.2)

For each visual word wq, a fixed number of alternative visual words that have the
highest conditional probability (Eqn. 3.2) is recorded.

3.3 Learning a PR similarity
The first step of our approach is to obtain a large number of matching image patches.
The links between matching patches are consequently used to infer relationship, be-
tween quantized descriptors of those patches, i.e., between visual words. As a first step
towards unsupervised collection of matching image patches, called “feature tracks”,
clusters of matching images are discovered. Within each cluster, feature tracks are
found by a wide-baseline matching method. This approach is similar to [ASS+09],
where the feature tracks are used to produce 3D reconstruction. In our case, it is impor-
tant to find larger variety of patch appearances than precise point locations. Therefore,
we adopt a slightly different approach to the choice of image pairs investigated.

3.3.1 Image Clusters
The algorithm starts with analyzing connected components of the image matching graph
(graph with images as vertices, edges connect images that can be matched) produced
by a large-scale clustering method [CM10a, LWZ+08]. Any matching technique is
suitable provided it can find clusters of matching images in a very large database. In
our case, an image retrieval system was used to produce the clusters of spatially related
images. The following structure of image clusters is created. Each cluster of spatially
related images is represented as an oriented tree structure (the skeleton of the cluster).
The children of each parental node were obtained as results of an image retrieval using
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the parent image as a query image. Retrieved images, which are already in the cluster,
are ignored. Together with the tree structure, an affine transformation (approximately)
mapping child image to its parent are recorded. These mappings are later used to guide
(speed-up) the matching.

3.3.2 Feature Tracks

To avoid any kind of bias (by quantization errors, for example), instead of using vec-
tor quantized form of the descriptors, the conventional image matching (based on the
full SIFT [Low04]) has to be used. In principle, one can go back even to the pixel
level [FTVG04, CMP08], however such an approach seems to be impractical for large
volumes of data.

It is not feasible to match all pairs of images in the image clusters, especially not
of clusters with large number of images (say more than 1000). It is also not possible to
simply follow the tree structure of image clusters because not all features are detected in
all images (in fact, only a relatively small portion of features is actually repeated). The
following procedure, that is linear in the number of images in the cluster, is adopted for
detection of feature tracks that would exhibit as large variety of patch appearances as
possible. For each parental node, a sub-tree of height two is selected. On images in the
sub-tree, a 2k-connected graph called circulant graph [GR01] is constructed. Vertices of
a graph are ordered and connected with K steps of the length random chosen between
1 and b(N − 1)/2c but always including step 1, to force connectivity. (i.e.. for chosen
step 4, the edges are created between vertices vi, vj ∈ V , where i − j mod N =
4). The algorithm for construction of minimal 2k-connected graph is summarized in
Algorithm 1.

Images connected by an edge in such a graph are then matched using standard wide-
baseline matching. Since each image in the image cluster participates in at most 3 sub-
trees (as father, son and grand-son), the number of edges is limited to 6kN , where N is
the size of the cluster. Instead of using epipolar geometry as a global model, a number of
close-to-planar (geometrically consistent) structures is estimated (using affine homog-
raphy). Unlike the epipolar constraint, such a one-to-one mapping enables to verify
the shape of the feature patch. Connected components of matching and geometrically
consistent features are called feature tracks.

Tracks that contain two different features from a single image are called inconsis-
tent [ASS+09]. These features clearly cannot have a single pre-image under perspective
projection and hence cannot be used in the process of 3D reconstruction. Such inconsis-
tent tracks are often caused by repeated patterns. Inconsistent feature tracks are (unlike
in [ASS+09]) kept as they provide further examples of patch appearance.

3.3.3 Computing the conditional probability.

To compute the conditional probability (eqn. 3.2) from the feature tracks, an inverted
file structure is used. The tracks are represented as forward files (named zi), i.e., lists of
matching SIFT descriptors. The descriptors are assigned to their visual word from the
large vocabulary. Then, for each visual word wk, a list of patches zi so that P (zi|wk) >
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Algorithm 3 Construction of the 2K connected graph with a minimal number of edges
as a union of circulants.

Input: K - requested connectivity, N - number of vertices
Output: V a set of vertices, E ⊂ V × V a set of edges of 2K connected
graph (V,E).

1. if 2K ≥ N − 1 then
return fully connected graph with N vertices.

end
2. S := {1}

⋃
a random subset of {2, . . . , bN−1

2
c},|S| = K

3. V := {v0, . . . , vN−1}
4. E := {(vi, vj) | vi, vj ∈ V, i− j mod N ∈ S}

0 (the inverted file) is constructed. The sum (eqn. 3.2) is evaluated by traversing the
relevant inverted file.

3.3.4 Statistics

Over 5 million images were processed using geometric min-hash technique [CPM09].
Almost 20,000 clusters containing 750,000 images were found. Out of those 733,000
were successfully matched in the wide-baseline matching stage. Over 111 million of
feature tracks were established, out of which 12.3 millions are composed of more than 5
features. In total, 564 million features participated in the tracks, 319.5 million features
belong to tracks of more than 5 features. Some examples of feature tracks are shown
in Figures 3.8 and 3.9. Only negligible portion of visual words were not present in any
feature track. There was 2 such words in the 1M vocabulary and 74005 (0.4%) in 16M
vocabulary. The distribution of visual words over tracks in these vocabularies are shown
in Figure 3.3.

3.3.5 Memory and time efficiency

For the alternative words storage, only constant space is required, equal to the size of the
vocabulary times the number of alternative words. The pre-processing consists of image
clustering ([CM10a] reports near linear time in the size of the database), intra-cluster
matching (linearity enforced by the 2k-connected circulant matching graph), and of the
evaluation of expression eqn. (3.2) for all visual words. The worst case complexity
of the last step is equal to the number of tracks (correspondences) times size of the
vocabulary squared. In practice, due to the sparsity of the representation, the process
took less than an hour in our settings for over 5 million images.
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Figure 3.3: The distribution of visual words in tracks in the 1M and 16M vocabularies.
Only a negligible part of the visual words were not present in any feature track.
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3.4 Large Vocabulary Generation

To efficiently generate a large visual vocabulary we employ a hybrid approach – ap-
proximate hierarchical k-means. A hierarchy tree of two levels is constructed. For
instance, for vocabulary of 16M words, each level has 4K nodes on average. In the
assignment stage of k-means, an approximate nearest neighbour, FLANN [ML09], is
used for efficiency reasons.

First, a level one approximate k-means is applied to a random sub-sample of 5 mil-
lion SIFT descriptors. Then, a two pass procedure on ≈ 11 billion SIFTs (from almost
6 million images) is performed. In the first pass, each SIFT descriptor is assigned to a
word in the level one of a vocabulary. For each visual word in the first level a list of
descriptors assigned to it is recorded. In the second pass, approximate k-means on each
list of the descriptors is applied. The whole procedure takes about one day on a cluster
of 20 computers.

3.4.1 Balancing the Tree Structure
For the average speed of the retrieval, it is important that the vocabulary is balanced,
i.e., there are approximately the same number of instances of each visual word in the
database.

We compared unbalanced and balanced vocabulary constructions (Figure 3.4). In
the balanced construction, the second level of the vocabulary uses an adaptive branching
factor, which is proportional to the weight of the branch (i.e. cluster A with 2 times
more features than cluster B will be split into two times more clusters in the second
level of hierarchy than cluster B). We also explored the balancing on the first level by
constraining the length of the mean vectors (this stems from the fact that SIFT features
live approximately on a hyper-sphere), which is similar to the method [TAJ10]. As the
latter method has not brought better results while implied higher computation costs, it
was not explored further.

In our experiments, a balanced vocabulary with adaptive branching factor at the
second level is used. With such a construction we reached an imbalance factor [JDS10]
of 1.09 for the training image set (>5M images) (compared to 1.21 in [JDS10]) and
1.26 for the testing set – Oxford 105k. Fraundorfer et al. [FSN07] report estimate of
imbalance factor 5 for hierarchical trees introduced in [NS06]. The experiment shows
that the balancing does not significantly affect mAP. The advantage is the gain in query
speed.

Comparison of the imbalance factors of our balanced and unbalanced vocabulary is
show in Table 3.1.

3.4.2 Size of the Vocabulary
There are different opinions about the number of visual words in the vocabulary for
image retrieval. Philbin et al. in [PCI+07] achieved the best mAP for object recogni-
tion with a vocabulary of 1M visual words and predict a performance drop for larger
vocabularies. We attribute the result in [PCI+07] to a too small training dataset (16.7M
descriptors). In our case the vocabularies with up to 64M words is built using 11G
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Figure 3.4: A comparison of the mean average precision (mAP) for an unbalanced and
balanced 16M vocabulary (a) with and (b) without the query expansion. The experiment
shows that the balancing does not significantly affect mAP (the advantage is the gain in
query speed). The error bars are shown where three vocabularies with different random
initialization were evaluated.
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Figure 3.5: Comparison of mAP for the balanced vocabularies with 1 to 64 millions
visual words. Solid lines show results after the query expansion (QE), dashed lines
without QE. Red lines show results using plain bag-of words (no alternative words). The
number of alternative words is proportional to the vocabulary size to compare results
of equal time complexity. In this way, approximately the same number of entries of
the inverted file is traversed, since the average length of a list of an inverted file for
16M vocabulary is 16 times smaller than for 1M vocabulary, 16 lists with alternative
words can be crawled within the same time. To clarify the plot: (a) the result of 16M
vocabulary with (L16) 16 linked words (1 original and 15 alternatives) and without
QE. (b) 32M vocabulary (L1) without alternative words with QE, and finally (c) 4M
vocabulary (L8) 8 linked words with QE.

training descriptors. Experiments show that the larger the vocabulary is, the better per-
formance is achieved, even for plain bag-of-words retrieval.

Introducing the alternative words, the situation is changed even more rapidly and,
as expected, they are more useful for larger vocabularies (Figure 3.5). We have not
built vocabularies larger than 64M because the memory footprint of the assignment tree
started to be impractical and the performance has almost converged.

3.5 Experiments

The implementation of the retrieval stage is fairly standard, using inverted files [SZ03]
for candidate image selection which is followed by fast spatial verification and query
expansion [CPS+07]. The modifications listed below are the major differences imple-
mented in our retrieval stage.
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method imbalance factor level 1 imbalance factor level 2
training set testing set training set testing set

unbalanced 1.028 1.097 1.122 1.311
balanced 1.028 1.097 1.093 1.259

Table 3.1: Comparison of the imbalance factor [JDS10] of the unbalanced and balanced
versions of the two-level hierarchical vocabulary. An adaptive branching factor was
used at the second level of the tree hierarchy to balance the vocabulary.

Figure 3.6: A 2D PCA projection of a feature track of SIFT descriptors (left); the most
distant patches and their images (right); sample of feature patches from the track. The
distance of the most distant SIFT descriptors is 542 and is caused by an enormous
change in the viewpoint.

Unique Matching

Despite being assigned to more than one visual word, each query feature is a projection
of a single physical patch. Thus it can match only at most one feature in each image in
the database. We find that applying this uniqueness constraint adds negligible compu-
tational cost and improves the results by approximately 1%. The order in which are the
alternative words traversed and matched in an inverted file is given by their probability
of being an alternative word (3.2).

Weights of Alternative Words

Contribution of each visual word is weighted by the idf weight [BYRN99]. A number
of re-weighting schemes for alternative words have been tried, none of them affecting
significantly the results of the retrieval.

Datasets

We have extensively evaluated the performance of the PR similarity on a standard re-
trieval datasets Oxford buildings, INRIA Holidays and Paris buildings. The experiments
focus on retrieval accuracy and the retrieval speed. Since our training set of 6 million
images were downloaded from FLICKR in a similar way as the testing datasets Oxford
and PARIS, we have explicitly removed all testing images (or their scaled duplicates)
from the training set.
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Figure 3.7: A 2D PCA projection of a feature track of SIFT descriptors (left); the most
distant patches and their images (right); sample of feature patches from the track. The
distance of the most distant SIFT descriptors is 593 and is caused by the viewpoint and
scale change.

3.5.1 Retrieval Quality

We follow the protocols of testing datasets defined in [PCI+07] and use the mean aver-
age precision as a measure of retrieval performance. We start by studying the properties
of the PR similarity for a visual vocabularies of 1, 4, 8, 16, 32 and 64 million words.

In the first experiment, the quality of the retrieval as a function of the number of
alternative words is measured, see Figure 3.10. The plots show that performance im-
proves for visual vocabularies of all tested sizes monotonically for plain retrieval with-
out query expansion and almost monotonically when query expansion is used.

The second experiment studies the effects of the vocabulary size (Figure 3.5), and
compares the alternative words in the PR similarity with the euclidean nearest neigh-
bours in soft assignment. The left-hand part of Table 3.2 shows results obtained with
the 16M vocabulary with three different settings ‘L1’ – standard tf-idf retrieval with
hard assignment of visual words; ‘L5’ and ‘L16’ – retrieval using alternative words (4
and 15 respectively). The righthand part presents results of reference state-of-the-art
results [PCM09] obtain with a vocabulary of 1M visual words learned on the PARIS
dataset. Two version of the reference algorithm are tested, without (‘L1’) and with the
query soft assignment to 3 nearest neighbours (‘SA 3NN’).
The experiments support the following observations:

(i) PR similarity calculation with using the learned alternative words increases sig-
nificantly the accuracy of the retrieval, both with and without query expansion.

(ii) Alternative words are more useful for larger vocabularies

(iii) The PR similarity outperforms soft SA in term of precision, yet does not share
the drawbacks of SA.

(iv) The PR similarity outperforms the Hamming embedding approach combined with
query expansion, Jegou et al. [JDS09, JDS10] report the mAP of 0.692 on this
dataset.

(v) The mAP result for 16M L16 is superior to any result published in the literature
on the Oxford 105k dataset.
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Figure 3.8: Three examples of feature tracks of size 50. Five selected images (top row)
and all 50 patches of the track. Even though the patches are similar, the SIFT distance
of some pairs is over 500.
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Figure 3.9: Three examples of feature tracks of size 20. Images (first two rows) and
corresponding patches (third row). Note the variation in the appearance of the patches.
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Figure 3.10: The quality of the retrieval, expressed as the mean average precision
(mAP), increases with the number of alternative words. The mAP after (upper curve)
and before (lower curve) query expansion is shown.

16M L1 16M L5 16M L16 PARIS 1M L1 PARIS 1M SA 3NN
plain 0.554 0.650 0.674 0.574 0.652
QE 0.695 0.786 0.795 0.728 0.772

Table 3.2: The mean average precision for the 16M vocabulary on the Oxford 105k
dataset is compared with the previous stat-of-the-art 1M vocabulary learned on Paris
dataset [PCM09]. Setups with hard assignment (L1), 4 alternative words (L5), 15 al-
ternative words (L16) and soft-assignment with 3 nearest neighbours (SA 3NN) were
considered. Results without (plain) and with query expansion (QE) are shown.

(vi) Balancing by uneven splitting of the second layer discard drawbacks of growing
imbalance factor for hierarchical vocabularies. We predict that this approach will
be even more significant for deeper vocabularies.

3.5.2 Query Times
To compare the speed of the retrieval, an average query time over the 55 queries defined
on the Oxford 105K data set was measured. Running times recorded for the same
methods and parameter settings as above are shown in Table 3.3.

The plot showing dependency of the query time on the number of alternative words
is depicted in Figure 3.11. The time for the reference PARIS 1M std method and the
16M L16 are of the same order. This is expected since the average length of inverted
files is of the same order for both methods. The proposed method is about 20% faster,
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16M L1 16M L5 16M L16 PARIS 1M L1
Oxford 105K 0.071 0.114 0.195 0.247

Table 3.3: Average execution time per query in sec for selected vocabularies on Oxford
105k dataset. Query is executed on single machine and the time is measured excluding
feature detection and description. Spatial verification was run in parallel (four concur-
rent threads) for 5000 images in shortlist. Query expansion step was not executed. The
proposed 16M vocabulary is compared with the state-of-the-art method [PCM09].

av
er

ag
e

tim
e

[s
ec

]

1 5 8 12 16 20 24 28 32
0

0.1

0.2

0.3

0.4

Figure 3.11: The dependence of the query time on the number of linked words for
Oxford 105k dataset and 16M vocabulary. The setting is the same as in Table 3.3.

but this might be just an implementation artefact.
We looked at the dependence of the speed of the proposed method as a function

of the number alternative words. The relationship shown in Fig. 3.11 is very close to
linear plus a fixed overhead. The plot demonstrates that speed-accuracy trade-off is
controllable via the number of alternative words.

Finally, the average query time for plain bag-of-words (no alternative words) as a
function of the dictionary size was evaluated. To measure directly the speed of travers-
ing the inverted file, the query time without the spatial verification is measured. Results
are shown in Figure 3.12.

3.5.3 Results on Other Datasets
The proposed approach has been tested on a number of standard datasets. These include
Oxford, INRIA holidays 1, and Paris datasets. In all cases (Table 3.4), the use of the
alternative visual words improves the results. On all datasets except the INRIA holidays
the method achieves the state-of-the-art results.

The proposed method is designed and trained to improve retrieval of specific object
by better matching of features that are projections of identical physical scene patch.
In the INRIA dataset, it is known that many queries rely on retrieving similar content

1The Holidays dataset presented in [JDS08] contains about 5%-10% of the images rotated unnaturally
for a human observer. Because the rotational variant feature descriptor was used in our experiment, we
report the performance on a version of the dataset, with corrected orientation of the images according
to EXIF, or manually (by 90◦, 180◦ or 270◦), where the EXIF information is missing and the correct
(sky-is-up) orientation is obvious.
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Dataset 16M L1 16M L16 16M QE 16M L16 QE
Oxford 5k 0.618 0.742 0.740 0.849

Oxford 105K 0.554 0.674 0.695 0.795
Paris 6k 0.625 0.749 0.736 0.824

Paris 106k 0.533 0.675 0.659 0.773
INRIA Holidays rot 0.742 0.749 0.755 0.758

Table 3.4: Results of the proposed method on a number of publicly available datasets
for a vocabulary with 16 millions visual words. Four setups are compared: (L16) with
15 alternative words, (L1) without alternative words, with and without (QE) query ex-
pansion. (The result for the Oxford 105K is duplicated for completeness.)

rather than on exact feature matching. We consider this property of the dataset to be the
reason for relatively small increase in the performance by our method.

3.6 Conclusions
We presented a novel similarity measure for bag-of-words type large scale image re-
trieval. The similarity function is learned in an unsupervised manner using geometri-
cally verified correspondences obtained with an efficient clustering method on a large
image collection.

The similarity measure requires only negligible extra space in comparison with the
standard bag-of-words method. Experimentally we show that the novel similarity func-
tion achieves mean average precision that is superior to any result published in the lit-
erature on the standard Oxford and Paris datasets/protocols. At the same time, retrieval
with the proposed similarity function is faster than the reference method.

We showed that using 2 layer hierarchical approach enables to build a large vocabu-
lary, which performs better and faster and proposes the simple balancing method, which
helps to keep imbalance factor low.

As a secondary contribution we make available the database of matching SIFT fea-
tures, together with the source code of the feature detector (Hessian affine) and descrip-
tor used to extract and describe the features [ijc12].
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Chapter 4

Query Expansion with Context
Learning

In this chapter, we focus on the query expansion (QE) step. Automatic query expan-
sion [CPS+07] has been shown to bring a significant boost in performance [CPS+07,
PCI+08, JDS09, PCM09], and all state-of-the-art retrieval results have been achieved
by methods that include a QE step. Published QE methods focus on enriching the query
model by adding spatially verified features. Retrieval with the “expanded” query fol-
lows. It has been observed that if the shortlist has enough true positives, the spatial
verification re-ranking almost always correctly identifies relevant images, and, conse-
quently, results for the expanded query are significantly better than the original single
image query.

As a first contribution, we improve spatial verification and re-ranking by taking
account of already evaluated results. The incremental spatial re-ranking (iSP) allows
verification and subsequent use of images for query expansion that do not have a signif-
icant match against the original query, but do match a statistical model gradually built
from the query and previously verified images.

As a second contribution, we propose a method that exploits spatial context by in-
corporating matching features outside the initial query boundary into the query expan-
sion. Since the content outside the query region is not known at query time, the method
requires efficient spatial verification of the retrieved images (Fig. 4.1).

In the next section, the novel incremental spatial verification is proposed. The query
expansion with context growing is described in Section 4.3. Finally, the performance is
evaluated in the last section of this chapter.

4.1 Improving Blind Relevance Feedback in QE
In QE, spatial verification and re-ranking plays the role of blind relevance feedback.
Spatially consistent images retrieved with the original query are deemed “relevant”,
similarly to the images chosen by the user in manual relevance feedback. The selected
parts of “relevant” images then contribute to the new, expanded query. The quality of
the decision on relevance significantly influences the success of query expansion.

In this section, two improvements of spatial re-ranking are presented. First, we in-
troduce incremental spatial re-ranking (iSP), where the verification accounts for not

42



Query Verified results Learned context

Top results
c l o s e  u p c l o s e  u p

Difficult images with occlusion

Figure 4.1: Context expansion: Consistent context is learned from retrieved images.
The context enables successful retrieval (before the first false positive image) and local-
ization of heavily occluded objects.

just spatial agreement with the initial query, but also agreement with all previously
verified images. Second, we show that it is beneficial to “grow” the model of the ob-
ject beyond the boundaries of the initial query, and to examine the spatially consistent
neighbourhood of the query.

4.2 Incremental Spatial Re-ranking

In this section, an improvement of the spatial re-ranking (SP) phase of the baseline
method (see Section 2.3) is proposed. As in the baseline method, the novel incremental
spatial re-ranking (iSP) starts with the shortlist S of images ordered by the BoW score.
The objective of iSP is to form a statistical model of the query object.

Initially, the statistical model M0 includes only features from the query. Next, im-
ages in the shortlist are considered in the order given by BoW scoring. Each image
X ∈ S is geometrically matched against the current model M i. If the image match-
ing quality IM i(X) is greater than θ, the query object model is updated, and M i+1 is
formed.

The quality function IM i(.) is defined as the number of geometrically consistent
features with the same visual word in image X and model M i. The threshold θ was set
to 15 after extensive preliminary experiments. The updated model M i+1 is the union of
features in model M i and features in image X , back-projected using function f(.) onto
the query image, clipped by the query bounding box. The final ranking of a shortlisted
image is defined by the quality function. The method is described in Algorithm 4.

Since the simplest quality measure described above performed well, no alternatives,
e.g. accounting for inlier ratio, geometric overlap, or weights of matching features,
were evaluated.
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Algorithm 4 Incremental spatial re-ranking

Input: query image Xq, shortlist S of images
Output: ranking R : S ↔ {1.. |S|}, expanded model Mn of the object

M0 := Xq

Q := [], i := 0
for k := 1 to |S| do
X := S[k]
Q[k] := IM i(X)
if Q[k] > θ then
M i+1 :=M i ∪ f(X)
i := i+ 1

end if
end for
R := ranking of the images according toQ[k].

4.3 Outside the Query Boundaries: Incorporating Con-
text

The content outside the query region is not known at the query time. It is clear that
learning the query context must be done by the “matching results to results” approach.
The process of the context learning takes place either after spatial re-ranking, or, in the
case of iSP, after each update of the query object model. The latter has the advantage
that an image may be verified with the help of the context. In this case, implementation
of context growing is trivial. As in iSP, features are back-projected to query image
and are added to the model regardless of whether they are inside or outside the query
bounding-box. The extension of the object model beyond the boundary of the original
query only requires relaxing this constraint.

At the beginning of the learning phase, the context is identified with the area inside
the query boundary. A feature added into the model that is not inside the context is
inactive until confirmed by feature(s) from another image with the same visual word
and similar geometry. Once a feature is confirmed, it adds the neighbourhood around
its center to the context. All the confirmed features in the context are treated as active.
The active features are considered the same as those inside the bounding box, and are
used in spatial verifications, and, finally, in the query expansion. This is efficiently
implemented by spatial binning. The process is summarized in Fig. 4.1.

The progress of context growth for two queries is visualized in Fig. 4.2. The learned
model of the query is shown as the mean of elliptic patches associated with its features
back-projected to the query. The query bounding box is drawn as an orange rectangle.
To save space, the area not covered by the model, or equivalently, the area not covered
by a single feature, is cropped. Experiment 2, summarized in Tab. 4.2, shows that
including the context improves performance.
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Figure 4.2: The process of context learning. Left column: the original query. Other
columns: feature patches back-projected into the context from 2, 5, 10 and 20 spatially
verified images.

4.4 Experiments

Datasets and Evaluated Methods

The image retrieval methods proposed in Sections 4.2 and 4.3 were evaluated according
to the standard protocol on the Oxford and Paris datasets described in Section 1.4. The
performance of all retrieval experiments is measured using the mean average precision
(Section 1.3).

The proposed incremental spatial re-ranking and context growing methods are com-
pared with the state-of-the-art image retrieval approaches, see the list in Tab. 4.1. All
methods use, in experiments on the Oxford dataset, a 1M visual word vocabulary trained
on the Paris dataset and vice versa.

Experiment 1. Evaluation of Incremental Spatial Re-ranking

The experiment compares all image retrieval methods listed in Tab. 4.1 on the Oxford
and Paris datasets. We observe that iSP outperforms SP in all cases; compare the left
and right columns of sections I, II and III of Tab. 4.2. The iSP improves performance
by approximately one half of the query expansion effect; compare columns I right, and
II left. Since only the shortlist is accessed, the performance improvement is obtained
at a negligible cost compared to issuing a second query. This encourages the use of
iSP instead of the standard SP re-ranking. Additionally, the benefits of iSP and query
expansion are additive; compare columns I right and II right. Finally, adding context has
negligible effect on the Oxford dataset and improves performance on the Paris dataset.
This is due to the fact that on the Oxford protocol, queries include entire objects, and
there is little gained by growing the context.
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SP BoW scoring, spatial re-ranking, no query expan-
sion, see Sections 2.3 and 2.4

iSP BoW scoring, incremental spatial re-ranking, no
query expansion

SP + avg QE BoW scoring, spatial re-ranking, average query ex-
pansion, see Sections 2.3 and 2.4

iSP + avg QE BoW scoring, incremental spatial re-ranking, aver-
age query expansion

SP + ctx QE BoW scoring, spatial re-ranking, context query ex-
pansion, see Section 4.3

iSP + ctx QE
BoW scoring, spatial re-ranking, incremental spa-
tial re-ranking with context and context query ex-
pansion.

Table 4.1: Description of the state-of-the-art (rows 1 and 3) and the proposed methods
(rows 2,4,5 and 6).

I. w/o QE II. avg QE III. ctx QE
SP iSP SP iSP SP iSP

Oxford 5k 0.616 0.741 0.785 0.825 0.781 0.827
Oxford 105k 0.553 0.649 0.725 0.761 0.731 0.767
Paris 6k 0.617 0.679 0.720 0.772 0.753 0.805
Paris 106k 0.508 0.556 0.627 0.687 0.653 0.710

Table 4.2: Comparison of image retrieval methods with standard (SP) and incremental
spatial re-ranking (iSP).
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Experiment 2. Evaluation of Context Expansion

Next we study the influence of incorporating the context of the query i.e. extending the
model of the query outside its bounding box. The behaviour is demonstrated on the
same datasets by using a novel protocol.

As shown in experiment 1, the effect of context learning is not significant in the case
of the Oxford dataset. To model a situation where only a detailed or partial view of the
object is available, the following protocol was devised: The query bounding boxes were
symmetrically reduced to 10% of their area in nine steps, see Fig. 4.3. The maximum
spatial extent of the context was limited to an area 25× larger than the reduced query
bounding box.

The results (see Fig. 4.4) show that the performance of the retrieval method using
both context and incremental spatial re-ranking (iSP + ctx QE) drops below the state-
of-the-art (black dashed line in Fig. 4.4) method only after reducing the bounding box
area to 40%, (Fig. 4.4b,d), or even to 20% (Fig. 4.4a,c) of the full query bounding box.
One of the reasons for the drop in performance is that to keep the number of features in
the model, and thus the speed of spatial re-ranking reasonable, we limit the number of
images added to the model to ten, which is insufficient to reconstruct the model to the
quality of the original query. Also, the results of initial queries on the standard datasets
already contain many of true positives, and even the standard query expansion manages
to retain a sufficient model of the object.

Some examples of contexts learned for some of the Oxford protocol queries are
shown in Figure 4.3.

4.5 Conclusions
The spatial verification and re-ranking step was improved by incrementally building
a statistical model of the query object. We show that using this incremental spatial
verification the spatial context of the query object can be learned and used in query
expansion to improve retrieval performance.

The proposed improvements of query expansion were evaluated on established Paris
and Oxford datasets. Experiments show that very similar results are achieved with only
part of the original query. According to the standard protocol state-of-the-art results
were achieved.

47



Figure 4.3: Left column: Examples of the full (100%) bounding box of some Oxford
protocol queries (outer rectangle) and the query bounding boxes reduced to 50% and
10%. Columns 2, 3 and 4 depict the context learned from the full, 50% and 10%
bounding boxes respectively (the orange rectangles). The yellow rectangle shows the
original bounding box. Note the ability of the iSP + ctx QE to learn the context even
from the smallest query. The method failed on the CORNMARKET 10% (right column,
middle) due to the insufficient number of spatially verified images.
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Figure 4.4: The influence of decreasing the query bounding box size on image retrieval
methods. The black dashed line is the performance of the state-of-the-art [CPS+07]
method with the original bounding box. The performance of the proposed iSP + ctx
QE is superior to the state-of-the-art method, if the query covers more than 20% of the
bounding box on the Paris datasets, and more than 40% of the bounding box on the
Oxford datasets. The compared methods are listed in Tab. 4.1.
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Chapter 5

Automatic Failure Recovery in Query
Expansion

One of the key issue in an image retrieval system based on bag-of-words is the defi-
nition of image similarity. The most common approach is to define visual similarity
as a normalized sum, over all visual words, using the tf-idf weighting scheme [SZ03].
The weight of the word increases proportionally to the number of times it appears in a
document, but is offset by the frequency of the word in the corpus. This helps to handle
the fact that not every visual word is equally important – has the same discriminability.
The tf-idf is commonly used no matter which type of vocabulary is used (Section 2.2).

In the image retrieval systems, the use of a similarity measure is typically justified
by its probabilistic interpretation. Any similarity measure employing summing over all
visual words implicitly assumes that visual words occur independently on each other.
This assumption is made because of computational convenience and it is intuitively
obvious that it does not hold. Groups of correlated features typically occur on the water
surface, on vegetation, images of text, faces, net-like structures, repetitive patterns, and
statistical textures [CN08]. If such group is visible on the image query, and is not related
to the object of interest, the BoW retrieval, without any special treatment, fails to select

Query Top results (due to the confusers)

Confuser Object Automatic failure detection results

Figure 5.1: Automatic Failure Recovery: Initial retrieval results corrupted by confus-
ing water features. The confuser model is learned dynamically. Successful subsequent
query using the confuser model.
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Dragon Wall

St. Ignazio

Barcelona

Figure 5.2: Examples of queries (leftmost images) where standard image retrieval fails
to return images of the query object (upper rows of results). The results of the method
[CM10b] with removed cooc-sets, which were discovered during the off-line stage.
Courtesy of Ondrej Chum [CM10b].

relevant images into the shortlist. This is a consequence of correlated voting for images
that contain the same type of ‘confusers’, which suppresses the relative contribution of
the specific object. (see Fig. 5.2)

Moreover if BoW fails to the extent that there are no, or very few, correctly retrieved
images in the shortlist, standard QE is no help. Such situations, which arise in the
presence of structures with multiple correlated features, have been referenced in the
literature as cooc-sets [CM10b] or confusers [KSP10].

In this chapter we show how to detect and recover from the failing query expansion
situation. Unlike other approaches, the proposed method handles the presence of con-
fusers in the query region on-the-fly, with no prior learning step required. We achieve
performance that is comparable to the state-of-the-art without the need for off-line and
potentially time-consuming processing that is difficult to execute in a continuously up-
dated database.

5.1 Query Model

We model the query (visual) words as a mixture of words generated by three processes
(topics): the object wordsO, the confuser words C, and the random wordsR. The three
types of words, and their properties, are described in the following paragraph.

We address the retrieval of specific objects, defined as a collection of features that
preserves appearance and spatial layout over a range of imagining conditions such as
viewpoint change, and scale change.
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The object words w ∈ WO are likely to be observed in images containing the object
of interest, i.e. P (w|O) is high, P (w|O) � P (w). Moreover, the features associated
with words, w ∈ WO, appear at fixed coordinates with respect to the canonical frame
of the object, and thus allow for the geometric consistency check. The confuser words
w ∈ WC are defined as sets of correlated words, satisfying P (w|C)� P (w). However,
confuser words are not significantly spatially consistent1. Randomly occurring words,
w ∈ WR, generated from spurious features, and corrupted descriptors form the most
frequently occurring class. As reported in [TL09], object features cover as few as 4%
of the total features.

Algorithm 5 Automatic failure recovery

Input: query features Q0

Output: 〈 query features, query results, feature mask 〉

Execute query Q0 including spatial verification
if ρ(Q0) > ρ0 then

return 〈 Q0, results (Q0), empty 〉
end if
Learn a set of confuser words WC (eqn. 5.1)
QN = Q0 \WC
Execute query QN including spatial verification
if ρ(Q0) > ρ(QN) then

return 〈 return Q0, results (Q0), empty 〉
else

return 〈 return QN , results (QN ), mask(WC) 〉
end if

5.2 Recovery

We propose a modification, called automatic failure recovery, to the retrieval scheme.
First, standard BoW retrieval with spatial verification is performed. The BoW scoring
is used to produce a shortlist of documents. The images in the shortlist are checked for
spatial consistency with the query features. The shortlist is significantly shorter than the
size of the database2. If relevant images are included in the shortlist, these are identified
by spatial re-ranking. Once relevant documents are retrieved, automatic query expan-
sion techniques are used to improve the object model O. When a significant number
of confuser words C is present in the query, the whole shortlist can be populated by
images containing features generated from C, and hence the spatial re-ranking cannot
improve the search results. We call this situation a retrieval failure. Even though the

1We do not aim to solve a philosophical question regarding whether recurring objects, such as phone
booths, are objects or confusers. According to our model, appearance and spatially consistent features
form objects.

2In our experiments, a shortlist of 1000 documents is used.
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shortlist does not contain relevant images, it still conveys valuable information. A sta-
tistical model of the confusers C present in the query can be learned from the images in
the shortlist, since a vast majority in the shortlist score higher than the relevant images.
Once the confuser model C is known, its influence on the query is suppressed. There
are three issues that need to be addressed: (i) efficiently estimate the confuser model C,
(ii) down-weight the effect of the confusers to the query result, and (iii) decide if the
retrieval failure has arisen. The algorithm is summarized in algorithm 5

Ad (i) The distribution P (w|S) of visual words in the shortlist S is learned at virtually
no cost during the tentative correspondence construction in the spatial re-ranking phase.
Features whose visual words appear significantly more frequently than in the database
are deemed to be part to the confuser model C:

WC = {w|P (w|S)/P (w) > r0} . (5.1)

The likelihood ratio threshold was r0 = 10 in our experiments.

Ad (ii) There are many options to reduce the influence of the estimated confusers
C. We choose to simply remove the confuser features from the query. This approach,
while seeming naive, has been shown to be effective and efficient [CM10b]. If a query
expansion, average or any other type, is used after the failure recovery, features that
back-project to regions occupied by the confusers are also removed. This prevents back-
projected confuser features from entering the expanded query from the result images.

Ad (iii) To check whether a retrieval failure has arisen, we compare the estimated
quality ρ(Q) of results of two queries: the original query, Q0, and the query after the
recovery, QR. We estimate the quality of the results by the inlier ratios in the top
matching results. First, the acceptable result images that each have an absolute and
relative non-random number of inliers are selected. The score of the retrieval is then
defined as the sum of inlier ratios over the acceptable results. Formally, let SQ be a
BoW shortlist of query Q, TQ(X) be a number of tentative correspondences between
queryQ and imageX , and let IQ(X) be the number of geometrically consistent features
between Q and X . The acceptable result of Q is a set of images

AQ =

{
X|X∈SQ & IQ(X)>I0 &

IQ(X)

TQ(X)
>ε0

}
.

The quality of the shortlist result of query Q is defined as

ρ(Q) =
∑

X∈AQ

IQ(X)

TQ(X)
. (5.2)

To avoid wasted computation when improvement is unlikely, the estimated quality of
the original query Q0 is thresholded. If ρ(Q0) > ρ0, then the hypothesis of the query
failure is directly rejected. In the experiments, the following parameters were used:
minimal acceptable number of inliers I0 = 5, minimal acceptable inlier ratio ε0 = 0.2,
and the failure rejection threshold ρ0 = 5.
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AFR Cooc [CM10b] Baseline
AP FP AP FP AP FP

Stockholm 0.659 16 0.569 15 0.032 1
Dragon Wall 0.797 56 0.726 52 0.065 5
St Ignazio 0.945 17 0.737 14 0.105 2
Colloseum 0.762 514 0.136 85 0.018 13
Barcelona 0.895 17 0.789 15 0.053 1
St Mary 0.943 57 0.895 51 0.020 1
Vatican 0.957 22 0.870 20 0.130 3
Bridge 0.583 4 0.716 5 0.143 1

Table 5.1: Quantitative comparison of the proposed method with [CM10b] and the
baseline method on the Q8 dataset: Estimated average precision AP and the rank of the
first false positive FP. Queries and their confuser models are displayed in Figure 5.3

5.3 Efficiency
The proposed method introduces no extra cost for queries that return reasonable number
of matching results (this is the case for almost all images in the standard Oxford and
Paris datasets, where the query bounding box is tightly around the query building). For
such queries the result is also unaffected because the original query is accepted. For
other queries, one extra BoW scoring and spatial re-ranking step is executed. Since the
new query is a subset of the original query, this additional step is faster than the original
query.

5.4 Experimental Results
In this section, we compare the results of the confuser model learned in the proposed
automatic failure recovery step with results obtained by cooc-sets [CM10b]. The quan-
titative results on the Q8 dataset [CM10b] embedded in a database of over 5 million
images are shown in Tab. 5.1. It is not feasible to obtain all true positives, so the aver-
age precision is only an upper bound estimate. New positive results have been discov-
ered by the proposed method, and the AP values are not directly comparable to values
in [CM10b]. Queries of the Q8 dataset, their confuser models and subsequent queries
using the confuser models are displayed on Figure 5.3.

Table 5.1 shows, that for most cases, the two methods give comparable results. For
the ‘Colloseum’ query, the proposed approach gives significantly better results than
results obtained by the cooc-sets approach. This is because the cooc-sets approach
excludes object-relevant cooc-set features as well as the confuser features, as opposed
to the proposed approach which correctly learns the confuser model.

5.5 Conclusion
A method capable of preventing query expansion failure caused by the presence of
confusers was introduced. In the comparison to the existing off-line method [CM10b]
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Stockholm Dragon Wall

St IgnazioSt Mary

Colloseum Vatican

Barcelona Bridge

Figure 5.3: Queries of the Q8 database. Each query is displayed with the dynamically
learned confuser model and a subsequent query of an object. Quantitative results are
displayed in Table 5.1.
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it has these pros and cons:

Pros: No pre-learning step is required, so the method is applicable to any dataset and
any vocabulary, and additionally, it does not require good training sets that generalize
well, or retraining for different vocabularies. The method is specific to the current
database and to the current query, so features for some queries that are confusers can be
useful for other queries.

Cons: The proposed method requires the execution of the original query, while the
cooc-set approach can filter confuser features beforehand. In some queries, the confuser
features may represent significant proportion of the features and thus the full query takes
longer to execute.
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Chapter 6

Novel ranking functions – zooming

Novel problem formulations for large scale image retrieval are proposed in this chapter,
showing that the classical ranking of images based on similarity addresses only one of
possible user requirements. The novel retrieval methods add zoom-in and zoom-out
capabilities and answer the “What is this?” and “Where is this?” questions.

The functionality is obtained by modifying the scoring and ranking functions of a
standard bag-of-words image retrieval pipeline. We show the importance of the query
expansion for recall of zoomed images. The proposed methods are tested on a standard
Oxford-105k dataset augmented with images of Sagrada Familia.

Later in this chapter, we further generalize the approach. Instead of starting with a
user selected region of interest in the query image, the system is searching simultane-
ously for all interesting parts within the spatial extent of the query.

6.1 Motivation

Most object-retrieval methods take into account the requirements for efficient content-
based navigation and browsing of large-scale image collections.

We show, however, that a similarity or relevance ranking of image-query results is
not always suitable for browsing an image collection. This is demonstrated in Fig. 6.1
rows denoted “nn”, which depict the output of a query in a large-scale image-retrieval
system. All the results are similar to the original image in scale and viewpoint, provid-
ing little additional information. The phenomenon is an inherent problem of ranking
by approaches using similarity. The problem becomes more pronounced as the size
of the collection increases, since more images from similar viewpoints and of similar
scales are present in the dataset. On the other hand, the rows of Fig. 6.1 denoted “zoom-
in” show regions of interest in the highest detected resolution. We advocate that “the
most detailed view” or, in, short “zoom-in”, is very probably the user intention after
bounding-box selection.

A possible interface to such functionality is as follows. The user issues a query by
selecting a bounding box from an image or simply moving a pointer over an image and
forward-scrolling the mouse wheel the expected result is a detailed image of the scene
selected by the bounding box or of the local region centered around the pointer. In this
case the desired result is “zoom-in” – the answer to “What is this?” question.
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zoom in

nn

zoom in

nn

Figure 6.1: Comparison of outputs of the standard and zoom-in approaches. Two
queries differing only by bounding-box were issued on the image in the leftmost col-
umn. The standard “most similar image” approach (nn, top rows) retrieves nearest
neighbor matches, which provide no detailed images local to the bounding box and
produce nearly identical results. The novel “most detailed view” approach or, zoom-
in, maximizes the number of pixels inside the bounding box resulting in very different
results (zoom-in, bottom rows).
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zoom out

nn

Figure 6.2: Comparison of outputs of the standard and the proposed approach. The stan-
dard “most similar image” approach (nn, top rows) retrieves nearest neighbor matches,
while the “context view” approach answers the question “Where is this?” by maximiz-
ing the scene content surrounding the bounding box, in this case, the whole query image
(zoom-out, bottom rows).

On the other hand, the user might be interested in a broader contextual query –
zoom-out, to answer the “Where is this?” question (see Figure 6.2).

Building on top of these methods with additional result grouping and spatial ver-
ification prior to query expansion, we can solve another task: Find all ”interesting”
parts within the spatial extent of the given query. Two definitions of ”interesting” lead
to different tasks. The first is to find, for all pixels in the query, the highest resolution
images depicting it, Figure 6.3 (left) and Figure 6.4 we call this function “Highest res-
olution transform”. The second is to find regions of interest that are the most often
photographed, Figure 6.3 (right). For more examples and comparison of the two task,
see also Figures 6.8 to 6.10.

88

225

430

700

1020

1420

query image 26× zoom example detail frequency

Figure 6.3: An example of a detail (middle) corresponding to the red bounding box
in the query image (right). The red bounding box and the close-up are displayed for
visualization purposes only and not supplied by the user. The number of images with
zoom at least 3× for each pixel of the query image, denoted detail frequency, is shown
on the right. The result, calculated from 2630 retrieved images, was obtained by a single
application of hierarchical query expansion in less than 25 seconds. The processes
required 20150 spatial verifications.

In principle there are many tasks that might be of user interest: “What is to the left
or right of this?”; “On which backgrounds can this object be seen?”; “Which objects
can be seen on this background?”; “How does this object look like in the dark?”. These
tasks, despite of having no analogy in the text retrieval can be often more useful to the
user than standard search for most similar images.
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7×

11×

15×

19×

23×

28×

Figure 6.4: The “Highest resolution transform” (right, central part) color-codes the
available zoom-in factor at each pixel. For the query (left), the maximum scaling factor
is about 30; scaling factors are expressed as ratio of lengths. The retrieved detailed im-
ages are shown around the border together with links to the pixels they correspond to.
Hovering with the mouse above the query image in the retrieval system interface the im-
ages with the highest resolutions could be shown. A dataset-supported superresolution-
like functionality could be easily implemented.

6.2 Overview of the zooming algorithm

The zooming algorithm, which implements the novel “What is this?” and “Where is
this?” functionalities, is based on the standard bag-of-words image retrieval method.
The difference is in the choice of ranking function. Instead of ordering images ac-
cording to similarity, it is designed to address new goals: maximizing the detail or
maximizing the context.

To encourage scale change, the ranking function requires knowledge of the geomet-
ric transformation between the query and the shortlisted images. The transformation
is estimated by the RANSAC algorithm. The ranking function re-orders only verified
images, i.e., the images for which a geometric transformation was found, preferring
zoomed-in or zoomed-out images respectively.

To increase recall, scoring with the inverted file is weighted to account for scale
change. To achieve this, compressed geometric information of the features is stored
with their visual words and the document at a time (DAAT) scoring [SGP12] is used to
process the posting lists. Using DAAT, the geometry of the features is examined con-
currently with computation of image scores, and the standard tf-idf score is re-weighted
according to the scale change of features and user intention.

Query expansion plays an important role in the method, and the incremental spatial
verification and context learning as proposed in [CMPM11] is used. In our experiments,
good results were achieved when images selected for query expansion were chosen with
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the same ranking function as used for final ranking. Optionally, the query expansion
step can be repeatedly issued until the requested zoom is found or the system fails to
retrieve new, zoomed-in images. The method is summarized in Algorithm 6.

Algorithm 6 Overview of the zooming algorithm. Note that step 5 represents a trade-off
between the query time and output quality.

Input: Bag-of-words of the query image
Output: Ranked list of images

1. Fetch posting lists for query visual words and score in DAAT order for
each scale band separately.

2. Re-weight scores in scale bands to prefer desired change in scale and
create a shortlist.

3. Spatially verify images in the shortlist, incrementally building an ex-
panded query.

4. Rank images according to the desired goal (zoom-in/zoom-out)
5. Return the result or form the expanded query with context learning and

goto 1

6.2.1 Ranking functions
Different tasks might be addressed with specific ranking functions. There are several
options for zooming which can be useful for different tasks.

Zoom-in. The simple option of ordering images according to the determinant of the
geometric transformation (represented by a linear function – in our case affinity) be-
tween the query and the database image returns maximally zoomed images first. How-
ever, the top ranked images often cover only a small part of the scene selected by the
bounding box. This ranking can be still useful if the images are going to be further
processed, i.e., compiled to a super-resolution image, used in a new expanded query,
etc..

We expect that a user who browses the database expects to see the whole scene
in the retrieved image. However, simply restricting the results to images that contain
the whole bounding box often rejects significantly zoomed images with only a small
fraction of the scene missing. Such images might be easily accepted by the user who
usually does not want to be very precise while specifying the query bounding box.

A good trade-off between the zoom-in and a bounding box coverage was observed
for the following ranking function:

zin =

√
Ar

Aq

,

where Ar is the area inside the bounding box within the retrieved image and Aq is the
area inside the query bounding box. The square root plays no role in the raking. It
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allows interpreting zin as an estimate of the scaling of lengths (not the areas), which is
consistent with zoom factor specification. The largest zin comes first.

Zoom-out. In this case, the naive “determinant of transformation” solution retrieves
just images with similar scene content at lower resolution, providing no additional in-
formation.

To achieve the “where is this” or zoom-out goal, the user intuitively expects to see
a large context of the query image. For this purpose, we propose the ranking function

zout =

√
Ar

Aw

,

whereAr is the area inside the bounding box in the retrieved image andAw is the area of
the whole retrieved image. In this case, we add the constraint that the whole bounding
box must be visible in the result. Smallest zout comes first.

6.3 Efficient Image Detail Mining
This section describes the method for finding the finest details for every locations in the
image and to find regions that are commonly photographed by the crowds. Two things
prevent a simple solution of applying the method described in the previous section to
every location in the image: computational efficiency and the risk of high false positive
rate.

In order to solve those tasks efficiently in a large, unordered image collection, a
number of issues has to be tackled. Namely, an efficient retrieval of matching sub-
images with significantly different resolution has to be addressed, together with an ef-
fective rejection of false matches to prevent topic drifts. Towards this end, we introduce
a novel concept of detail mining called hierarchical query expansion.

The results of the method are illustrated in Figures 6.3 and 6.4, which show the
query image, a sample of the images of details discovered in the dataset and two vi-
sualizations of localized interesting parts of the query image. The color in Figure 6.4a
codes the maximal resolution found in the dataset. In Figure 6.3 (right) the color codes
the number of images found and back-projected into the query image.

The outputs show what the most interesting details are for the crowds photographing
the landmark and which details are worth seeing (taking a picture of). It helps the user
to concentrate on interesting details or suggests additional queries. Annotations (such
as Flickr tags) of the discovered images can be used for describing parts of the image
as in [CM10a]. The output of the proposed detail mining can be also used as a initial
step for finding iconic view of the details [WL13].

6.3.1 Hierarchical query expansion
It has been demonstrated many times that the query expansion technique [CPS+07,
AZ12] significantly improves on the quality of retrieval performance, especially in the
recall. We introduce a novel concept of detail mining called hierarchical query expan-
sion. After the initial query, the image is divided into sub-regions and a new, expanded,
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query is issued for each of the sub-regions. The partitioning of the image is naturally
driven by the density of the photographed details – the focus of the crowds. Since peo-
ple tend to take pictures of individual and well aligned objects, regions defined by a
number of overlapping images are good candidates for detail mining. There are three
issues that need to be addressed in order to efficiently deliver qualitatively appealing
results: image coverage, low redundancy, and consistency.

Image coverage and low redundancy. Typically, on well-known landmarks, certain
details are photographed significantly more often than others. Considering only the
top results without considering their spatial layout, as most of the query expansion ap-
proaches do, would result in neglecting details that are available in the image collection,
but are depicted in a lower number of photographs. In order to obtain details in all parts
of the image, lower ranked images that are not overlapping with higher ranked images
are considered.

For efficiency, the retrieved images are spatially clustered and large clusters are
sub-sampled. Each such cluster provides a simple generative model of a certain part
of the image on a higher resolution level than the original query. The clusters are used
to issue an expanded zoom-in query, to obtain further details. The procedure can be
iterated. However, our experiments suggest that a single application of hierarchical
query expansion is sufficient to obtain most of the details present in the database.

Consistency. Since in our approach, the user does not provide the region of interest,
a number of seemingly “harmless” and uninteresting regions, such as railings in the
corner of the image, can expand into enormous number of false positive images. To
eliminate such topic drift, we introduce a novel mechanism to detect and eliminate
inconsistencies in the retrieved results. A test is performed as an additional spatial
verification between result images to ensure that no false positive will be introduced
into any expanded query. In the test, an affine transformation Aj,i mapping features
from result image j to result image i. In addition, the mappings Aq,i and Aq,j to the
query image q estimated in the initial retrieval phase are used. For a consistent pair of
result images i and j, it holdsAq,i ≈ Aq,jAj,i. However, for false positive results caused
by repeated patterns or bursty features, the three mappings are typically inconsistent,
see Figure 6.5.

6.3.2 Expansion regions selection
Images obtained by the zoom-in query (with a minimal scale change of 2) are first
filtered by geometric verification against the query image. Only images with at least t1
inliers are considered. The estimated mapping of the result images to the query is then
used to back-project the images. Consequently, the result images are grouped based on
location and scale in the query image. Finally, for each group a geometric consistency
test is performed, before the expanded queries are issued.

Choice of the t1 parameter. The number of matching features as a level of confidence
of match correctness has been previously used in query expansion techniques [CPS+07].
In our case, when a significant change of scale is required, the parameter t1 can be set
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query result i result j

Figure 6.5: Geometric consistency test. The solid parallelogram in the query image
denotes projected image border of result j through transformation estimated between
the query and the result j. The dashed parallelogram in the query image is again the
border of result j, now transformed by composition of transformations through result
image i. The dashed parallelogram in result i is transformed image boundary from
result j.

much lower than in standard query expansion. It stems from the fact that the number
of features density drops quadratically with the scale of the feature – this is caused by
the scale dependent non-maxima suppression in the feature detectors. Therefore, the
probability of random geometric match is substantially decreased by the requirement of
zooming-in. Experimentally, we have found that as little as two consistent features with
a query image (t1 = 2) provides acceptable results. Note that this result is in combina-
tion with large vocabulary (16M visual words) and the novel geometric consistency test
among the result images. In our experiments, we set t1 = 4.

Result grouping. A simple greedy algorithm is used to group the result images for
the hierarchical query expansion. First, a place (a pixel) in the query image covered
by the largest number of images is found. The image with the highest estimated scale
change covering that pixel is selected as a cluster seed. Images with at least 50% overlap
with the seed images are included in the cluster. The cluster is removed and the whole
procedure is repeated.

Note that unlike in [WL13], the goal is not to produce an iconic view of the detail,
but to group images relevant to certain detail for the purpose of query expansion.

Each cluster is subject to a geometric consistency test. If the size of the cluster
is large than 6 images, the 6 images with the largest scale change are used for the
query expansion for efficiency reasons. If a cluster contains only a single image, it is
discarded, unless it has at least t2 geometrically consistent features with the query image
and thus small probability of being a false match. In the presented experiments t2 = 10.
An example of clusters of geometrically consistent images are shown in Figure 6.6.
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Figure 6.6: Groups of images selected for expanded queries. The query is shown in
the top-left corner with a blue border. Groups selected for expanded queries have red
borders.

Figure 6.7: A common issue for image clustering methods. Totally unrelated sites
linked through an artificial tag superimposed over the images.

6.3.3 Discussion
The proposed method can be seen as a special type of image clustering. In image clus-
tering, false links (i.e. links not related to the scene photographed) can be introduced
by users inserting visual tags into their images, as depicted in Figure 6.7. These links
are difficult to detect and complex heuristic are often used. Our approach naturally
eliminates such issue, as a large scale change is required, while the tags, no matter how
complex, typically have a fixed scale.

6.4 Experiments

To our knowledge there is no standard dataset with an evaluation protocol suitable for
testing zooming capabilities. A search engine was built for Oxford-105k dataset (see
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Sacre Cœur
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52.7× 31.4× 24.7× 22.9× 21.8×
St. Vitus Cathedral
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26×
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41×

48×

30

77

147

239

354

490

51.7× 34.2× 33.4× 29.3× 25.8×

Figure 6.8: Top rows left to right: the original image, the largest scale change for each
pixel, and the frequency of the details with zoom larger than 3. Bottom rows show
examples (omitting duplicates) of details with the largest relative scale change.
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Sagrada Familia
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Notre Dame

14×

25×
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75.6× 58.9× 43.8× 37.7× FALSE

Figure 6.9: Top rows left to right: the original image, the highest scale change for
each pixel, and the frequency of the details with zoom larger than 3. Bottom rows
show examples of details with their relative scale change. Some false positives, marked
FALSE, were detected as details of the query image.
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Arc de Triomphe
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Figure 6.10: Top rows left to right: the original image, the highest scale change for
each pixel, and the frequency of the details with zoom larger than 3. Bottom rows
show examples of details with their relative scale change. Some false positives, marked
FALSE, were detected as details of the query image.
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Section 1.4). The Oxford dataset, as well as other standard datasets, is not very suitable
for demonstrating the zoom capabilities since it does not contain significantly zoomed-
in or zoomed-out images. For this reason we added 515,000 images downloaded from
Flickr, searching for tags of famous landmarks, European countries and cities, and ar-
chitectonic keywords.

6.4.1 Design choices.

Following the results from previous chapters, multi-scale Hessian-affine features [MTS+05]
were detected and described by the SIFT descriptor [Low04]. Two level fine vocabulary
with 16 millions visual word was used (see Chapter 3). In this case the vocabulary is
learned on all 620,000 images (nearly 1.3× 109 SIFT descriptors).

As in [PCM09], feature geometries are compressed. Four bits are allocated for
scale and 12 bits for shape compression. The compressed geometries are stored in the
inverted file along with the visual words for fast access during DAAT scoring [SGP12].

6.4.2 Zoom-in

To demonstrate the method, we chose two queries from Sagrada Familia and nine
queries from the Oxford dataset. The queries and the top results retrieved with the
zoom-in method are shown in Figure 6.11. Note that even if the Oxford dataset is
not well covered with detailed views of landmarks, the user can, for instance, use the
zoom-in to view architectural detail (Sagrada), read street names (Cornmarket), boards
(Bodleian) or virtually navigate through the scene (going through the archway at Christ
Church).

Table 6.1 shows, for 11 selected queries, the zoom-in result in top ranked image and
an average zoom-in top 5 retrieved images. The baseline nearest neighbor (nn) search
with context based query expansion (QE) is compared with three zoom-in methods.
First includes only ranking function (rank), second utilizes DAAT scoring in inverted
file (DAAT), and the last adds query expansion (DAAT+QE).

6.4.3 Scale change

This experiment shows scale change in the highest ranked images for three different
settings. The standard retrieval system, the zoom-in and the method with query expan-
sion designed for discovering as many details as possible. Figure 6.12 shows that last
method retrieve a large portion of detailed images. Figure 6.13 shows that retrieved
images with the zoom-in resp. detail mining method are more informative than images
from standard retrieval.

In the case of the astronomical clock from Figure 6.4, the displayed images – local
maxima in the resolution, are in our method ranked between first 400 (10 of them in
first 22) in comparison to ranks from 8469-392533 in standard retrieval. As the length
of the shortlist is limited because of efficiency, these images are not even considered for
verification in standard retrieval and thus are surrounded by false positives.
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Sagrada - Horse (9.54×) Sagrada - Jesus (6.63×)

All Souls (1.09×) Ashmolean (1.89×)

Balliol (2.02×) Bodleian (3.20×)

Christ Church (5.44×) Cornmarket (3.93×)

Hertford (1.65×) Pitt Rivers (1.57×)

Radcliffe Camera (3.95×)

Figure 6.11: Query images (on the left in each column) and the top results using the
zoom-in method with DAAT scoring and query expansion. The effective zoom is in
parentheses.
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top 1 top 5 average
nn zoom-in nn zoom-in

query QE rank DAAT
DAAT
+QE QE rank DAAT

DAAT
+QE

Sagrada - Horse 0.98 1.82 4.09 9.54 1.16 1.41 2.04 8.03
Sagrada - Jesus 0.86 2.75 2.75 6.63 1.22 1.22 1.87 6.00
All Souls 1.03 2.31 2.31 1.09 1.03 1.41 1.50 1.08
Ashmolean 1.43 1.43 1.43 1.89 1.28 1.28 0.77 1.45
Balliol 0.95 2.02 2.02 2.02 1.00 1.00 0.61 0.81
Bodleian 0.92 1.82 2.85 3.20 1.10 1.08 1.20 2.11
Christ Church 1.77 1.77 5.44 5.44 1.52 1.52 2.57 1.77
Cornmarket 1.57 3.93 3.93 3.93 1.39 1.97 1.97 1.97
Hertford 1.28 1.65 1.65 1.65 1.02 1.35 1.35 1.35
Pitt Rivers 1.30 1.36 1.57 1.57 1.30 1.22 1.10 1.10
Radcliffe Camera 1.29 3.95 3.95 3.95 1.23 2.03 2.04 2.35

Table 6.1: Comparison of the standard method (nn) and zoom-in. We report the zoom
of the first ranked image (top 1), and the average zoom of the top five images (top 5
average). Four methods were compared: 1. the baseline nearest neighbor search with
query expansion (nn, QE), 2. Zoom-in only by shortlist re-ranking (rank), 3. DAAT
scoring and re-rank (DAAT), 4. DAAT scoring, ranking function and query expansion
(DAAT+QE). In all four cases, incremental spatial verification was used.

0 20 40 60 80 100
0

5

10

15

20

rank
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c
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similarity
zoom
zoom + QE

Figure 6.12: Scale change the for 100 top scored images. Comparison of the standard
nn, zoom-in and zoom-in with query expansion (QE) methods. Red circles mark false
positives. The query and the first few results are shown in Figure 6.13.
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Figure 6.13: A comparison of the highest ranked images for three different settings. The
query image on the left is used in each case. The first line shows top 11 results of the
standard system optimizing average precision – (i.e. similarity). The second line shows
the top 15 images optimizing zoom-in. The last two lines show the top 23 images after
query expansion of the chosen groups of images. Note that while NN search retrieves
many very similar results, the result of our approach are more informative but also more
prone to false positives (the image marked red with rank 17 is a false positive).
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6.4.4 Maximum scale versus frequency
Figures 6.8 to 6.10 show further examples and a comparison of the two methods. The
maximum scale is typically achieved by images of some interesting detail or eventually
by a false match, as shown in Figures 6.9 and 6.10. The false matches are rare and are
caused by the query expansion. The spatial consistency test is not performed on the
final results to reduce the response time.

On the other hand, the frequency distribution is dominated by a relatively small
scale change from the query image. Most of such images show people in front of the
landmark with a part of the building in the background. The biggest difference between
the location of the details and frequently photographed spots is in the Arc de Triomphe,
where many people have their photo taken upwards with the arc above them.

6.5 Conclusions
We have formulated novel problems for large scale image retrieval demonstrated that
the classical ranking of the images based on similarity is only one of many retrieval
problems. In very large databases, the standard retrieval of the most similar images is
unlikely to be useful as in many cases it returns just near duplicates.

The novel retrieval methods were proposed adding zooming-in and out capabilities
and answering the “What is this?” and “Where is this?” questions. The functionality has
been achieved by modifying two steps of the standard bag-of-words retrieval pipeline,
namely the scoring and ranking functions.

Next, We have formulated novel problems that straddle the boundary between image
retrieval and data mining: (i) given a query image, find images for every pixel location
with maximum resolution “Highest resolution transform” and (ii) return the frequency
with which a pixel is photographed.

To solve these problems we introduced two novel methods: hierarchical query ex-
pansion method that exploits the DAAT inverted files and a new geometric consistency
verification step that is sufficiently robust to to prevent topic drift.

Experiments show that the proposed methods are able to retrieve surprisingly fine
details on the tested landmarks, even those that are hardly noticeable by inspection in
the query image.
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Chapter 7

Conclusions

The problem of large-scale content-based image retrieval has been studied. We have
contributed to number of components of the standard bag-of-words approach.

We presented a novel similarity measure for measuring image feature distances. The
similarity function is learned in an unsupervised manner using geometrically verified
correspondences obtained with an efficient clustering method on a large image collec-
tion. The similarity measure requires no extra space in comparison with the standard
bag-of-words method. Experimentally we showed that the novel similarity function
achieves mean average precision that is superior to any result published in the literature
on the standard Oxford and Paris datasets. At the same time, retrieval with the proposed
similarity function is faster than the reference method.

We showed that using two-layer hierarchical approach for construction enables to
built a larger vocabulary, which performs better and faster. We propose a simple bal-
ancing method, which helps to keep imbalance factor low.

Next, we proposed two modifications to the query expansion: First, the spatial veri-
fication and re-ranking step was improved by incrementally building a statistical model
of the query object and its spatial context. Experiments show that the relevant spatial
context significantly improves retrieval performance and achieves state-of-the-art re-
sults if it is used in the query expansion. Second, a method capable of preventing query
expansion failure caused by the presence of confusers was introduced. Unlike other
approaches, the proposed method handles the presence of confusers in the query region
on-the-fly, with no prior learning step required. We achieve performance that is compa-
rable to the state-of-the-art without the need for off-line and potentially time-consuming
processing that is difficult to execute in a continuously updated database.

Finally, we formulated novel problems of image retrieval which despite the fact of
having no analogy in text-retrieval can be often very useful to the user. We proposed
methods for answering the queries such as What is this? and Where is this?, the method
for discovering all possible details from the given picture and the method which cre-
ates a heat-map of the frequency with which is every pixel of the given query image
photographed.
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Appendix A Resumé in Czech language

Tato práce se zabývá vyhledávánı́m obrázků a specifických objektů v obrazových data-
bázı́ch. Na vstupu uživatel zadá obrázek objektu resp. scény a vyhledávacı́ stroj vrátı́
obrázky stejného objektu resp. scény z databáze. Teze se zaměřuje na bag-of-words
přı́stup, který je jednı́m z nejefektivnějšı́ch pro tento typ úlohy. Specifický objekt může
pokrývat pouze část obrázku nebo může být z části překrytý jiným objektem. Práce
vylepšuje vı́ce částı́ standardnı́ch bag-of-wors postupů.

Nová similaritnı́ funkce je definovaná pro bag-of-words vyhledávánı́ obrázků. Tato
funkce je naučená bez učitele, oproti standardnı́ metodě nevyžaduje extra pamětový
prostor a je vı́ce diskriminabilnı́ než eukleidovský L2 soft assignment nebo Hamming
embedding. Navrhovaná similaritnı́ funkce dosahuje na standardnı́ch databázı́ch vyššı́
mean average precision než všechny dosud publikované výsledky v literatuře.

Jsou studovány účinky velmi jemné kvantizace u velkých vizuálnı́ch slovnı́ků (až 64
milionů slov) a ukazuje se, že výsledky vyhledávače specifických objektů se zlepšujı́ se
zvyšujı́cı́m se množstvı́m slov. Toto pozorovánı́ je v rozporu s předešlými publiko-
vanými výsledky. Dále ukazujeme, že s velikostı́ slovnı́ku se zvyšuje rychlost tf-idf
skórovánı́.

Všechny state-of-the-art výsledky vyhledávačů publikované v literatuře byly dosa-
žené s použitı́m query expansion kroku, který zásadně vylepšuje kvalitu vyhledávánı́.
Přinášı́me tři modifikace automatické query expansion: (i) metodu předcházejı́cı́ selhánı́
query expansion kroku vzniklou přı́tomnostı́ tzv. confusers, (ii) vylepšenou geomet-
rickou verifikaci, která inkrementálně vytvářı́ statistický model objektu s přibývajı́cimi
verifikovanými obrázky a (iii) učenı́ relevantnı́ho geometrického kontextu, který zásadně
zlepšı́ výsledky, pokud je využitý v query expansion.

Všechny tři vylepšenı́ query expansion kroku byly testované na standardnı́ch data-
bázı́ch Pařı́ž a Oxford, kde dosáhly state-of-the-art výsledky.

Nakonec byly formulovány nové úlohy vyhledávánı́. Ukázali jsme, že klasické
uspořádánı́ výsledků založené na podobnosti obrázků odpovı́ pouze jeden z možných
dotazů uživatele. Mı́sto vyhledávánı́ nejvı́ce se podobajı́cı́ch obrázků navrhujeme me-
tody přibližovánı́ a oddalovánı́, které zodpovı́ otázky “Co je to?” a “Kde je to?”.

Formulujeme dalšı́ dvě úlohy: (i) pro každý pixel zadaného obrázku nalezni jeho
maximálnı́ rozlišenı́ v obrázcı́ch dané databáze a (ii) pro každý pixel zadaného obrázku
vrat’ četnost jeho výskytu v databázi. Tyto úlohy postavené na zoom-in a zoom-out
metodách vyžadujı́ dvě nové techniky: hierarchickou “query expansion” a verifikaci
geometrické konzistence na nalezených obrázcı́ch, která je dostatečně robustnı́, aby
předešla odkloněnı́ se od původnı́ho objektu v průběhu vyhledávánı́. Experimenty
ukazujı́, že navrhované metody dokážı́ najı́t překvapivě drobné detaily na testovaných
obrázcı́ch, a to i detaily jenom těžko vyditelné pouhým okem.
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