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Abstract 

The goal of this thesis was to propose in algorithm suitable for planning of initial 

trajectory for formations of Micro Aerial Vehicles (MAV). To find a feasible trajectory, 

Rapidly exploring Random Trees (RRT) are used. The advantage of RRT is that during 

creating of a tree, kinematic constraints are respected. Generated trajectory is needed to be 

reduced. This is achieved by Sequential Quadratic Programming (SQP) optimizing method. 

Simplified trajectory is passed to system of formation control. Created solution enables to find 

trajectory in complex environments and reduce computational time. 

 

 

 

 

 

 

 

 

 

Abstrakt 

Cílem této práce je navržení algoritmu pro plánování iniciální trajektorie bezpilotních 

mikro kvadrokoptér. K nalezení proveditelné trajektorie se využívají „Rychle náhodně 

rostoucí stromy“ (Rapidly exploring Random Trees - RRT). Výhodou RRT je, že při 

vytváření stromu jsou zahrnuty kinematické podmínky kvadrokoptéry. Výslednou trajektorii 

je třeba zjednodušit. To se řeší pomocí metody optimalizace Sekvenčního kvadratického 

Programování (Sequential quadratic Programming – SQP). Zjednodušená trajektorie se předá 

systému řízení formace. Vytvořené řešení umožňuje najít trajektorii ve složitějších prostředích 

a zkrátit čas potřebný k výpočtu řízení. 
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1 Introduction 

  

The formation of autonomous robots is getting more interesting these days. Thanks to 

smaller, cheaper and more powerful components such as motors and computational units, 

which can be used in many ways. For example, search and rescue missions, cargo delivery, 

surveillance etc. The Unmanned Aerial Vehicles (UAVs) we use are called quadrotors. They 

can be also referred as Micro Aerial Vehicles (MAV). The size of a quadrotor can vary, 

depending on which task it should perform. There are both, indoor and outdoor quadrotors. 

 

Figure 1.1: Formation of UAVs .     Source: Wikimedia Commons 

         

 This thesis is focused on initial trajectory planning for formations of quadrotors. The 

quadrotors are popular today because of their simple construction and also because they can 

be very small. It has four counter-rotating blades.  

The Goal of the thesis is to implement a path planning algorithm, RRT [1] and reduce 

a complex trajectory found by RRT to an acceptable form for a formation solver. Simplified 

trajectory is passed to the formation control system, introduced in paper [3].  
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 The thesis is organized as follows: in the next chapter, used tools, a formation 

description and a quadrotor model are described. In chapter 3, used path planning algorithms 

are explained. In chapter 4, path reduction with hierarchical approach is presented. In the last 

chapter 5, experimental verification is presented. 
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2 Preliminaries 

 

 In this chapter, an explanation of used methods is presented. In section 2.1, a leader-

follower formation system is introduced. In section 2.2, a model of a quadrotor is described. 

In section 2.3, Model Predictive control is described. In section 2.4, Sequential Quadratic 

Programming is introduced. 

 

2.1 Formation keeping 

 There are various ways of controlling a formation. This thesis is built on a thesis [3] in 

which is a leader – follower approach and one of the robots is a leader. Another approach is a 

swarm approach based on the behavior of flocks or herds of animals. 

The leader is usually best equipped robot, because the leader needs to carry a device to 

determine its position in global space. Followers keep position relative to the leader, so only a 

tracking device could be mounted, reducing cost of followers. This approach also enables use 

of heterogeneous formations – for example, one quadrotor leader and ground units as 

followers. This is further expanded in [9]. 

The position of a follower is represented relative to the leader. The position is denoted 

by free parameters:  ,    and   . Meaning of these parameters is shown on figure 2.1. 
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Figure 2.1: Representation of MAV formation. 

 

 

2.2 Model Predictive Control 

 Model Predictive Control (MPC) is an approach widely used in the industry, but it also 

finds its usage in other fields. In this thesis, it is used to control a movement of a formation. 

The whole trajectory is coded into vector, with N+M control elements, where N is the length 

of the horizon and M is the length of the trajectory behind the horizon. The control input 

consists of four variables: horizontal speed   , vertical speed   , curvature c and duration   .  

 The MPC control loop goes as follows: from robot’s current position, optimal 

trajectory is computed. Next, the first trajectory element is applied and the robot moves to a 

new position. The whole process is repeated until the goal region is reached. 

 Instead of coding only the length of the horizon, the whole trajectory is coded into an 

optimization vector. The advantage of this approach is ability to react to dynamical changes of 

environment, such as moving obstacles or other robots in the formation. 

 

Figure 2.2: Trajectory representation. 
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2.3 Model of a Quadrotor 

 The motion model of a quadrotor is needed for path planning algorithms to find a 

feasible solution. Its kinematic movement is described by equations: 

                    ,       (2.1) 

                    ,       (2.2) 

           ,         (2.3) 

               .        (2.4) 

Input variables are horizontal speed  , vertical speed  , curvature  .  

From these equations, position and yaw angle is as follows: 

             ,        (2.5) 

   
                                                             
 

    
                                       

 ,  (2.6) 

   
                                                               
 

    
                                       

 ,  (2.7) 

         .         (2.8) 

 

Duration of applied input is   . This model is used for initial trajectory planning, 

however, for MPC dynamic model is needed, to reflect real-life properties of MAV. 

Equations are as proposed in paper [10]: 

              (2.9) 

                     (2.10) 

               (2.11) 

                   (2.12) 
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In the equations: 

      is the total mass of the quadrotor, 

              is the gravitational acceleration, 

        is the inertia matrix with respect to body fixed frame, 

         is the rotation matrix from the body fixed frame to the inertial 

frame, 

      is the angular velocity with respect to the body fixed frame, 

     is the position of the center of the mass the quadrotor in the 

inertial frame, 

     is the velocity of the center of the mass of the qadrotor in the 

inertial frame, 

      is the total thrust of quadrotor’s propellers, 

      is the total moment in the body fixed frame. 

Vectors            are columns of identity matrix.          is a skew-symmetric matrix 

such that                     

In this framework, weight of quadrotor           and the inertia matrix 

   
        

        
        

        

 For more information about how to compute thrust of each propeller and how to 

control quadrotor please see the paper [10]. 
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2.4 Sequential Quadratic Programming 

 Sequential quadratic programming is a method for solving nonlinear constrained 

optimization problems. Its disadvantage lies in inability to overcome local extremes. 

 In this thesis, CFSQP library is used. It is used for the reduction of initial trajectory 

planed by Rapidly explored Random Trees (RRT) [1] and for optimizing formation control. 

More information about the library can be found in manual[2]. 

CFSQP uses two user defined functions for trajectory evaluation: Objective and Constraint.  

 The objective function provides an evaluation of a user-defined cost function. CFSQP 

solver can determine whether the trajectory is better or worse in iteration step using this 

function. Because of this, it is important to choose good evaluation. Not only the quality of 

the solution depends on it, also stability and efficiency is dependent on the function. In this 

thesis, it is needed to define two cost functions: one for trajectory reduction and other for 

formation control. The formation control cost function is defined in [3]. 

 

 

 The purpose of constraint function is to add motion constraints. For usage in trajectory 

reduction and formation control, two inequality constraints are proposed. Constraint function 

consists of two components: obstacle distance and distance to goal. This ensures that 

formation during movement keeps sufficient distance from obstacles and will converge to the 

proposed goal. The return value for each inequality constraint has to be less than zero, 

otherwise trajectory is considered unfeasible. Constraint function is the same for trajectory 

reduction and formation control.  
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3 Motion planning 

 

 To drive the formation of MAVs, initial trajectory planning is needed, because 

formation trajectory optimization needs initial guess. This thesis aims to implement two 

methods – Rapidly exploring Random Trees (RRT)[1] and extension Transition based 

Rapidly exploring Random Trees (T-RRT)[4]. Each of those two methods will be described in 

sections 3.1 and 3.2 respectively. Initial path planning must find a feasible solution from the 

initial position of leader to the desired goal. However, these trajectories are often complex and 

low quality. The trajectory is proposed as low quality if it is much longer than optimal 

trajectory and is curvy. Reduction and optimization of the trajectory are needed. This is 

utilized by CFSQP library, which is described in chapter 4. RRT and T-RRT takes into 

account a kinematic model of a robot, more information can be found in [5,8].  

 Another method of finding an initial path could be geometric methods, for example 

visibility graph. Their disadvantage does not contain a kinematic model of robot. This means 

solution found can be unfeasible, when kinematic constraints are considered. The advantage 

of RRT is that it finds a solution, which is feasible. 

 

3.1 RRT 

 RRT path planning method was found in 1998 [1]. The RRT path planning algorithm 

uses random approach to find a feasible solution. During path planning a kinematic model of 

a robot is considered. It is useful because any solution found is feasible. Another advantage is 

that it returns a control vector directly. However, it cannot guarantee the quality of the found 

solution when the found path is unnecessarily long. Too complex trajectories takes large 

amount time to optimize when compared to simpler ones. Because of this, trajectory reduction 

must be used. 
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 We have a configuration space C. C contains obstacle space Cobs, Cobs⊂C and Cfree, 

Cfree=C\Cobs 

RRT algorithm proceeds as follows: 

 1. Add start node qinit to the tree T 

 2. Then, generate random node qrand   Cfree 

 3. Find nearest node qnear in tree T 

4. Compute new state qnew   Cfree, qnew lies in the direction of node qrand, and add 

this node to the tree T. Trajectory connecting qnear and qnew nodes must respect the 

constraints of the robot’s model. 

 5. Repeat from step two, until stopping condition is reached. Stopping condition is 

when qnew lies within goal region. 

 

 To use RRT, we need to determine how to compute new state qnew. Geometric 

approach is used to find trajectory to get qnew. After that, only constant duration time interval 

is added to tree T. 

 Node qnew is determined as follows. First, we need to find the normal vector of qnear 

heading. Then, point between qnear and q new is found and normal vector of line intersecting 

qnear and qnew is created. Next, the intersection of those vectors is found. That point is 

centre of circle.  

Horizontal speed    is constant during all simulations. Vertical speed   depends if 

qnew is higher or lower than qnear. Curvature c can be computed as   
 

 
 , where r is a 

distance between the intersection point and qrand. 
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Figure 3.1: Computing control input. 

 During experiments with all subsystems together, it seemed that instead of constant 

time interval, scaling according to computed length is added. Time is added to the basic time 

interval, proportional to the length of the computed arc from qnear to qnew shown in figure 

3.1 in red.  

 Also, to avoid unnecessary exploring in the wrong direction, a bias towards a goal is 

included. There is a probability that instead of generating random point, goal point is selected 

as new qrand. This improves performance of RRT slightly. However, in case which is shown 

in figure 3.2 will stuck at the border, if probability is too high.  
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Figure 3.2: Bias to goal problem. 

 

3.2 T-RRT 

Transition based RRT is an extension of basic RRT. It was found in 2010 [4]. 

Addition to RRT is transition test and minimal expand control. Transition test evaluates if the 

newly generated edge should be accepted or not. 

Advantage of Transition based RRT over RRT is that T-RRT includes cost function so 

trajectory will converge to goal area faster and is narrower. 

T-RRT algorithm in steps: 

1. Firstly, add initial point qinit to tree T. 

2. Generate new point qrand. 

3. Find nearest neighbor from tree T. 

4. Then start transition test and Min Expand Control to test if new point qnew will be 

added to tree T or not. 

5. Extend tree T to new point qnew. 
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3.2.1 Transition test 

 Firstly, trajectory with cost more than maximum cost cmax is filtered. If cost of new 

state is lower than its parent state, new trajectory is accepted. Otherwise, there is probability 

to accept new trajectory even if the cost is higher. This probability is represented: 

         
    

  
                  (3.1) 

                                            

 

                   is the slope of cost.  

K is a constant value that is based on magnitude of cost.  

T is a parameter named temperature. It controls a difficulty of transition test. Higher 

temperatures enables to climb steeper slopes, in contrast, lower enables to climb only slight 

slopes. T is tuned dynamically to reflect progress during exploring. Initial T is set to low 

value. If it fails to climb the slope before the maximum number of allowed fails         , is 

reached, temperature is multiplied by factor  , to enable climb steeper slopes. If a solution is 

found before          is reached, temperature is divided by     

 

3.2.2 Min Expand Control 

Minimal expand function controls rate of exploring. Side effect of transition test could 

result in refining already explored area. To improve this behavior, Min Expand controls tries 

to ensure the rate of exploring. This is useful in complex environment, where we are easily 

trapped in one region. In simpler environment, it is not as important, because we are slowly 

proceeding to the goal without being confronted by obstacle. 
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It proceeds as follows: 

 1. If distance between qnear and qrand is greater than d, qnew is considered as 

 exploring point and is added to tree 

 2. Otherwise, qnew is considered as tree refinement. 

3. The point is not inserted into the tree if the ratio between refining points and all 

points is greater than threshold p. 

 

 As it will be shown in chapter 5, properties of T-RRT showed promising results in 

combination with reduction algorithm.  
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4 Trajectory reduction 

 In this chapter, reduction algorithm is described. Path obtained from RRT, or T-RRT 

is too complex to be used in the formation solver. Due to the high number of trajectory 

segments solver cannot find a solution. Thus, reduction algorithm must be applied, to reduce 

complexity of trajectory. Maximal number of trajectory segments depends on the complexity 

of trajectory and environment complexity. One approach is to take first S control inputs and 

try to reduce it to T, where T is number of control inputs in first segment. Then, move 

formation to point where reduced control inputs leads. Then, restart whole process of 

trajectory planning and reducing from new point. Another approach is to try reducing whole 

trajectory at once, and then moving formation. This is called hierarchical approach and is 

explained further. 

 In this hierarchical approach, we try to reduce the trajectory by removing trajectory 

segments. To do this, we use SQP optimizer. The goal is to minimize time of flight in this 

segment below threshold so we can remove it completely. This threshold is influenced by the 

length of trajectory and speed of MAV. Trajectory segment can be removed if time of flight 

of this segment compared to time of flight through the whole trajectory can be neglected.  

During creation of algorithm, several approaches were tried. One of them was to 

divide trajectory to segments, and each of them will be reduced to fixed smaller amount. 

However, problem arose when we connected reduced segments together. Goal of trajectory 

did not lie in the goal area, so reduced trajectory was infeasible for MPC. When we tried cost 

function that takes in account distance to goal, optimizer failed to find next iteration step. For 

this reason, when reduction of first segment is done, remaining trajectory is replanned. 

Reducing algorithm is as follows: 

 1. Take first S control segments from initial trajectory. 

 2. Start reducing on the first segment, until the segment is reduced to T.  

 3. From the point where the first segment ended, starts new planning using RRT. 

 4. The new trajectory consists of reduced segments and newly planned trajectory. 

 5. If the number of control inputs is greater than threshold, repeat from step one.  
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 Experiments with formation control showed that around four trajectory elements will 

be handled. With more elements it can find solution, but it is dependent on initial trajectory 

and will consume much more time. During experiments good results was provided if S = 8 

and T=3. The loop terminates when the trajectory is reduced to four elements. 

 A problem is to determine good cost function. If we consider a lot of parameters, such 

as curvature penalty, time of flight, etc., SQP optimizer will fail to find a solution. So, the 

simplified cost function is implemented, containing two basic parameters. That parameter is a 

minimal value and distance to current goal.  

 

From control vector, time interval with shortest duration is taken. The optimizer tries 

to minimize this value. If it is lower than the threshold, control input could be completely 

removed, thus reducing the number of control inputs. It can be removed because of its short 

duration, it has very little effect on resulting trajectory. 

 

Figure 4.1: Flow of trajectory processing. 
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5 Experimental results 

 In this section, experimental result of initial trajectory planning and reduction are 

shown. Results of RRT and T-RRT initial trajectory planning in space without obstacles and 

with obstacles are presented. After planning, trajectory reduction and formation keeping is 

presented.  

In all cases, as a goal region is chosen point (9, 6.5, 2) and initial position is (-3, -2, -

1). These points are marked on figures as black dots. Red crosses are points where quadrotor 

moves after applying one control element. Leader’s trajectory is shown in blue. 

5.1 RRT with no obstacles 

 In figure 5.1, Tree generated by RRT is shown. Note how RRT explores and expand in 

whole space. This means we cannot guarantee quality of the path. This view focuses only on 

X-Y plane for better visibility. 

 In figure 5.2, 5.3, 5.4, trajectory is shown in space and how it is affected in each step. 

Red crosses are points, where new control input begins. Trajectory generated by RRT in 

figure 5.2 has a lot of control inputs, and in this way it cannot be handled by formation solver. 

In figure 5.3, we can see the trajectory after reduction process. Note, that trajectory is much 

narrower and has only few control inputs. 
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Figure 5.1: Example of generated RRT tree, after 300 iterations. 

 

 

Figure 5.2: Trajectory generated by RRT. Trajectory is cluttered and crooked. 
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Figure 5.3: Reduced trajectory. Without obstacles, reduction result is adequate even for RRT. 

 

Figure 5.4: Final trajectory, blue – leader 
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5.2 T-RRT empty space 

 In this case, instead of using RRT, Transition based RRT was used. In picture 5.5 is 

visible that searching is strongly biased towards goal. Areas that lie away from goal lead only 

to more complex and long trajectories. Resulting trajectories have better quality than RRT, 

and leads to better results. 

 

Figure 5.5: Exploration tree of T-RRT. In this case, T-RRT finds solution quickly without 

exploring other ideas, which is good behavior for next processing. 
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Figure 5.6: Trajectory generated by T-RRT. Too many control inputs denoted by red crosses. 

 

Figure 5.7: Reduced trajectory. Note in this step that trajectory has good quality. 
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Figure 5.8: Movement of formation. Without obstacles, movement is almost straight. 

5.3 RRT with obstacles 

In environment with some obstacles, RRT is used. In figure 5.12 can be seen how formation 

turns away from obstacles. It can also be seen on 5.11, during reduction.  

 

Figure 5.9: RRT tree tries to explore the whole area, which results in longer trajectories. 
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Figure 5.10: Initial trajectory 

 

Figure 5.11: Reduced trajectory 
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Figure 5.12: Formation keeping. 

5.4 T-RRT with obstacles  

In last experiment, T-RRT approach is chosen again, but with obstacles in place. In figure 

5.13 tree is shown. Quality is better than if we used only RRT. 

 

Figure 5.13: T-RRT Tree. Path that is crossing obstacles is going under them. 
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Figure 5.14: Initial trajectory. Initial trajectory leads under the obstacles. 

 

Figure 5.15 Reduced trajectory. Number of control inputs is reduced and trajectory is diverted 

around the obstacles. 
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Figure 5.16: Formation keeping. From initial path plan, which has many control inputs, 

resulting formation movement is clean and smooth. 
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Figure 5.17: Visualization of a formation flying around obstacles. The blue quadrotor is leader 

and followers are green.  
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5.5 Summary 

During experiments, some of properties and limitation occurred. T-RRT is more 

suitable for this problem than classic RRT thanks to its informed exploration. Classic RRT 

explores whole space, which is unnecessary and leads to longer trajectories.  

Experiments showed that the initial trajectory plan has a lot of trajectory elements. In 

this form, formation control optimization takes a large amount of time. With reduced 

trajectory time needed is shorter. One of approaches used here tries to reduce whole trajectory 

at once. This approach was tested in experiments. Experiments showed that framework is able 

to plan the trajectory in environment with obstacles and reduce the trajectory to reduce time 

needed to drive formation. 
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6 Conclusion 

 The goal was to design algorithm for initial trajectory planning of MAV formations. 

Rapidly exploring Random Trees (RRT)[1] and Transition based RRT (T-RRT)[4] has been 

implemented. Description of algorithms is described in section 4. This approach was chosen 

because it respects kinematic constraints of MAV and generated trajectory is represented 

directly by control input. Model predictive control uses control input to move MAV. Because 

of nature of randomly generated paths, trajectory reduction is needed to be suitable for 

formation control that. To reduce trajectory, Sequential Quadratic Programming (SQP) [2] 

optimizer was used. 

Results of simulations are presented in chapter 5. Created algorithm was tested in 

environment without obstacles and with obstacles. Each of the methods, RRT and T-RRT is 

shown. It can be seen here, even if initial trajectory is complex and is long, a reduction step 

creates a trajectory which is shorter and has less control inputs. The result is moving 

formation from the start to the goal. Proposed contribution of this work is reducing the time 

needed for optimization and trajectory planning through complex environment. 

Another approach to trajectory reduction is to take interval, reduce it and move the 

whole formation to a new position, instead of trying to reduce the whole trajectory. One of the 

problems with testing is that better environment representation needed to reflect real-life 

conditions. For simulations, sphere obstacles were used. 

 Possible extension is to find a better metric for choosing nearest neighbor in RRT and 

T-RRT. A simple Euclidian metric works for non constrained models. Quadrocopter has 

kinematic model and its movement is constrained. A better metric could be implemented, as 

proposed in [6] and [7]. 
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