
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Master's Thesis

Agent-based Task and Resource Allocation Tool

Ond°ej Jelínek

Supervisor: Ing. Ji°í Vok°ínek, Ph.D.

Study Programme: Open Informatics (Master)

Field of Study: Arti�cial Intelligence

May 12, 2014

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

DIPLOMA THESIS ASSIGNMENT

Student: Bc. ondřej Jelínek

Study programme: Open lnformatics
Specialisation: Artificial lntelligence

Title of Diploma Thesis: Agent-based Task and Resouřce Allocation Tool

Guidelines:

1. Study the agent-based task and resource allocation methods.
2. lmplement selected allocation heuristics and algorithms using A-lite toolkit with focus to

scheduling and transportation problems.
3. Design and implement graphical tool for agent-based allocation scenarios configuration.
4. Create illustrative examples of allocation scenarios and test implemented tools.

Bi bl i og ra phy/Sou rces :

Peter Brucker: Scheduling algorithms (a. ed.). Springer 2004, ISBN 978-3-540-20524-1, pp.
l-xll,'1-367

Vokrinek, J. and Komenda , A. and Pechoucek , M.. Abstract Architecture for Task-oriented
Multi-agent Problem Solving. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on. 2011 , vol. 41, p.31 -40. ISSN 1 094-6977 .

Diploma Thesis Supervisor: lng. JiříVokřínek, Ph.D.

Valid until the end of the summer semester of academic year 201412015

-e=1 ',, ., ,
l//Z(-/'

doc' ln{. Filip Zelezný' Ph.D.
Head of Department

lL.S.

vel Ripka, CSc
Dean

Prague, March 3,2014

Aknowledgements

In this place, I would like to thank my supervisor Ing. Ji°í Vok°ínek, Ph.D. for his patient
guidance and valuable advices.

iv

Prohlá²ení autora práce

Prohla²uji, ºe jsem p°edloºenou práci vypracoval samostatn¥ a ºe jsem uvedl ve²keré
pouºité informa£ní zdroje v souladu s Metodickým pokynem o dodrºování etických prin-
cip· p°i p°íprav¥ vysoko²kolských záv¥re£ných prací.

In Prague on May 12, 2014 .

vi

Abstract

Distributed planning and scheduling plays a major role in many industrial applications
ranging from multirobotics systems, military tactical operations to manufacturing and
logistics. In this master thesis, we present and describe a multi-agent solver which uses
techniques of task sharing, delegation and allocation on locally planned resources. The
agent-based task and resource allocation tool, which we have implemented, is called TARF-
tool. Using various planning algorithms based on �rst-in �rst-out (FIFO) fashion, last-in
�rst-out (LIFO) fashion or heuristics, this tool is capable of solving both scheduling and
transportational problems.

Using the TARF-tool's graphical user interface (GUI), you can specify tasks, which
you want to schedule, available agents and resources, objective function to be optimized,
run the TARF-tool solver and thus obtain an optimized schedule. In the last part of the
thesis, two allocation scenarios demonstrate the features and functionality of the TARF-
tool. Also presented there, the stress test results tell us, how the computation time of
planners changes with increasing number of tasks.

vii

viii

Abstrakt

Distribuované plánování a rozvrhování hraje hlavní roli v mnoha pr·myslových aplikacích,
sahajících od multirobotických systém·, vojenských taktických operací aº po výrobu a
logistiku. V této diplomové práci p°edstavujeme a popisujeme multiagentní solver, který
vyuºívá technik sdílení, delegace a alokace úkol· na lokáln¥ plánovaných zdrojích. Nástroj
pro agentní alokaci úkol· a zdroj·, který jsme naimplementovali, se nazývá TARF-tool.
Vyuºívajíce r·zných plánovacích algoritm· zaloºených na stylu �rst-in �rst-out (FIFO),
last-in �rst-out (LIFO) £i na heuristikách, je tento nástroj schopný °e²it jak rozvrhovací
tak i p°epravovací problémy.

Pouºitím gra�ckého uºivatelského rozhraní nástroje TARF-tool, m·ºete speci�kovat
úkoly, které chcete naplánovat, dostupné agenty a zdroje, ú£elovou funkci, kterou chcete
zoptimalizovat, spustit TARF-tool solver a získat tak optimalizovaný rozvrh. V poslední
£ásti diplomové práce demonstrují schopnosti a funkcionalitu nástroje TARF-tool dva
aloka£ní scéná°e. Tam jsou také prezentovány výsledky zát¥ºové zkou²ky, které nám °íkají,
jak se s p°ibývajícím po£tem úkol· m¥ní doba výpo£tu plánova£·.

ix

x

Contents

1 Introduction 1

1.1 Objective . 2
1.2 Structure of the thesis . 2

2 Problem analysis and solution proposal 3

2.1 Multi-agent Planning Problem . 4
2.2 Scheduling theory . 6
2.3 Abstract Architecture . 10
2.4 Inner architecture of the allocation solver 11

2.4.1 Resource scenario . 12
2.4.2 Logistical scenario . 14

3 Implementation 17

3.1 Architecture . 17
3.2 Implemented classes . 18

3.2.1 Planner . 18
3.2.2 Logistic Planner . 19
3.2.3 Heuristic . 20
3.2.4 Evaluator . 21

3.3 Con�gurator - Graphical User Interface . 23

4 Testing and Validation 31

4.1 Build a house scenario . 31
4.2 Manufacture a plane scenario . 32
4.3 Stress scenario . 35

5 Conclusion 41

Bibliography 44

A Source codes 45

xi

xii CONTENTS

List of Figures

2.1 Abstract architecture of agent-based solver/planner from [15] 5
2.2 Task parameters and variables [8] . 8
2.3 FIPA Contract Net Interaction Protocol [14] 13

3.1 The Task queue tab of the Con�gurator GUI 24
3.2 A Gantt chart visualising found schedule . 24
3.3 The Plan base tab of Con�gurator . 25
3.4 The Agent tab of the Con�gurator . 26
3.5 The Logistic task queue tab of the Con�gurator GUI 27
3.6 The Task dependency tab of the Con�gurator GUI 27
3.7 The Compact chart for the found schedule 28
3.8 The Map Window of the Con�gurator GUI 28

4.1 The de�nition of the resource tasks in house scenario 32
4.2 Planned schedule for the house scenario . 33
4.3 The de�nition of the resource tasks in the plane scenario 34
4.4 The de�nition of the logistical tasks in the plane scenario 34
4.5 Found schedule for the plane scenario . 35
4.6 Found trajectories for the logistic plan bases for the plane scenario 36

xiii

xiv LIST OF FIGURES

List of Tables

4.1 De�nition of parameters of stress test. 36
4.2 Testing environment of the stress test. 37
4.3 The stress test result for resource planners. PS denotes the predecessors

share in percents. 37
4.4 The stress test result for logistic planners. PS denotes the predecessors share

in percents. Dash (-) means that the test run too long and was terminated. 38

xv

xvi LIST OF TABLES

Chapter 1

Introduction

The problems of distributed decision making and decentralized planning arise often in the
real-world applications. Examples of such applications can be from military operations
domain [1] [2]:

• Mission planning

• Area Surveillance

• Convoy protection

• Logistics

The most straightforward idea, how to solve such problems, is to use centralized plan-
ning algorithm. Centralized methods relies on one central planning entity, which requires
data about all decentralized entities before the planning process. Such approach has sev-
eral drawbacks. First, the centralized method assumes that all entities are able and willing
to share their private information and plans. Second, centralized methods don't work
in dynamic environment, where there is a requirement to be able to perform (real-time)
replanning of plans. There may be a case, when such properties are not desirable.

Luckily, there is a second approach to distributed problems, a multi-agent decentral-
ized approach with no central entity. The basic idea is that in cooperative environment,
every agent manages its own plan and agents communicates between themselves. Such
communication can contain for example negotiation about delegation of a task or about
resource sharing.

In this master thesis, we will use this decentralized approach, speci�cally multi-agent
planning algorithms based on task allocation and local resource planning in a cooperative
environment.

Further in this chapter, in Section 1.1 you will �nd main objectives of this diploma
thesis and the Section 1.2 shows the structure of the thesis.

1

2 CHAPTER 1. INTRODUCTION

1.1 Objective

The �rst objective of this thesis is to su�ciently describe and explain the theory needed
for understanding the thesis. The main focus should be on general scheduling, multi-agent
planning and task and resource allocation methods and algorithms.

The second task is to program a tool, which can be used to specify and solve distributed
planning problems. This tool should use various allocation heuristics and algorithms and
should be focused on scheduling and transportation problems. In order to achieve this, we
should use the Alite toolkit.

The third objective is to design and implement a graphical tool for setting up agent-
based allocation scenarios con�gurations. The tool will also be able to run the multi-agent
problem solver and display a resulting schedule.

The last objective is to verify and demonstrate functionality and correctness of the
implemented tools. This should be done �rstly by testing the program and secondly by
creating illustrative examples of allocation scenarios. There should be a scenario for both
scheduling and transportation problem.

1.2 Structure of the thesis

The thesis is structured in the following way:

1. Chapter 1 introduces the topic of distributed planning and task and resource allo-
cation problems. It describes the motivation behind, reveals objectives and shows
structure of this thesis.

2. Chapter 2 contains necessary theory for understanding the thesis and proposes an
architecture of the task allocation solver. The main topics are scheduling, task allo-
cation and multiagent solver - its architecture and components.

3. In Chapter 3, there is a description of main components of the TARF-tool, which is
the tool, that we have developed. Then it continues with description of implemented
classes, which algorithms they use and what are good for. The chapter ends with a
demonstration of the Graphical User Interface (GUI) of the TARF-tool.

4. Chapter 4 concerns validation and testing of the TARF-tool. There are two illustra-
tive scenarios to demonstrate features and capability of the TARF-tool. Later, the
chapter revolves around the stress test, its setting and results.

5. The last chapter (Chapter 5) summarizes what has been done in this thesis, what
objectives have been accomplished and what are the consequences of that.

Chapter 2

Problem analysis and solution

proposal

In this chapter, necessary theory from various science �elds is explained, so the reader
would understand the rest of the thesis.

As said in previous Chapter 1, this master thesis is about multi-agent planning and
scheduling. But before we start explaining anything else, we would like to make just a
small terminology note. The terms planning and scheduling are close, but not entirely the
same. In scheduling often the tasks, which need to be performed, are already decided and
set, and in practise tends to focus on algorithms for speci�c problem domains [10]. On the
other hand, in planning one usually has to select the tasks, he want to do. The same holds
for these terms in multiagent environment. Because of the overlap in the �elds, we will
not distinguish them and will use "planning" to refer to both planning and scheduling.

The chapter is divided in four sections: In Section 2.1, one approach of solving the
multi-agent planning problems is presented, namely the task-sharing approach. It is shown,
what types of agents are used in the solver and what is their role. Later in this section the
problem of multi-agent planning is presented and then formalized.

Section 2.2 covers the introduction into the scheduling theory. It will cover formal
description of scheduling problem, task parameters, task constraints (both general and
speci�c), scheduling problem notation and optimality criterion.

Section 2.3 contains abstract architecture of multi-agent solver using task and resource
allocation.

Section 2.4 presents the inner architecture of the allocation problem solver and its
main components. The allocation mechanism based on Contract Net Protocol (CNP) is
demonstrated later in the task allocation scenario.

3

4 CHAPTER 2. PROBLEM ANALYSIS AND SOLUTION PROPOSAL

2.1 Multi-agent Planning Problem

In this section, we will describe the task-sharing approach of solving the multiagent plan-
ning problems. It is shown, what types of agents are used in the solver and what is
their role. Later in this section the problem of multiagent planning is presented and then
formalized using the social welfare function.

The rest of this section is based on [15].

Multiagent planning solver Most of this subsection about multiagent planning solver
was taken from [15].

As analyzed by Brafman and Domshlak in [5], the multiagent planning bene�t from
problems, where the domains of agents are relatively small and the agents are not so
dependent on each other. The distributed planning and problem solving has been analyzed
by Durfee [7]. A task-sharing approach was one of the discussed strategies. The main idea
revolves around delegating tasks from busy agents to vacant agents.

The allocation problem is usually solved by contracting and negotiation techniques,
which imply problems related to the resource allocation domain, e.g., cross booking, over-
booking, backtracking, and others.

Generally, multiagent approaches show their strength in the domains, where the plan-
ning problem can be broken down into independent tasks. These tasks are usually allocated
to di�erent agents, and moreover these agents doesn't need to interact much. We will deal
only with those types of problems, which can be decomposed like this. So we assume, that
in the rest of this thesis, that tasks are independent, if we don't explicitly state otherwise.

The abstract multi-agent solver architecture based on the task-sharing approach from
[15] is composed of three types of agents (see Figure 2.1).

1. Task agent: This agent is for preprocessing of the problem. It should use a domain-
speci�c heuristic, generic ordering strategy, and randomized method.

2. Allocation agent: This agent is for problem decomposition into tasks and delegation
of the tasks to resource agents. It maintains task allocation and result synthesis.
This agent's strategies and algorithms are domain-independent.

3. Resource agent: This agent is for individual case-speci�c resource planning. In case
of further decomposition, the task is handed over to another task agent.

The multi-agent solver, which is built of this architecture, usually contains one task
agent, one allocation agent and more resource agents. These represent the distributed
nature of the multiagent problem. This architecture can be used recurrently, one agent
can has more abstract roles, or it can be parallelized (more abstract solvers operate over
possibly overlapping agents). In such systems, concurrent interactions needs to be taken
into account. The agents' communication uses interaction protocols, which are mostly
built on Smith's contract net protocol (CNP) [12].

2.1. MULTI-AGENT PLANNING PROBLEM 5

Figure 2.1: Abstract architecture of agent-based solver/planner from [15]

Multi-agent Problem The de�nition of the multi-agent planning problem cited from
[15] follows.

The multi-agent solver uses the principles of problem decomposition and delegation to
autonomous agents that solve parts of the problem individually. The overall solution is
then obtained by merging the individual agents' results. The optimization based on CNP
interactions in cooperative environments is usually described as utilitarian social welfare
maximization [4]. Therefore, the abstract algorithm objective function can be de�ned as
maximization of social welfare, which is as follows:

sw =
∑
a∈A

ua (2.1)

where A = a1, . . . , an is the population of agents and ua is the utility of agent a. In our
case, the social welfare can be computed as a sum of resource agents (R ⊂ A) utilities that
can be de�ned as follows:

ua =
∑
t∈Ta

(rew(t)− cost(t, a)) =

(∑
t∈Ta

rew(t)

)
− cost(Ta) (2.2)

where Ta is a set of tasks allocated to the agent a ∈ R, rew(t) is a reward for ful�lling
task t, cost(t, a) is the cost of agent a to perform task t, and

cost(Ta) =
∑
t∈Ta

cost(t, a) (2.3)

6 CHAPTER 2. PROBLEM ANALYSIS AND SOLUTION PROPOSAL

is the cost of the overall plan of an agent. The total reward for ful�lling a set of all tasks T
is as follows:

rew(T) =
∑
a∈R

rew(Ta) =
∑
a∈R

∑
t∈Ta

rew(t) (2.4)

so the social welfare can be expressed as follows:

sw = rew(T)−
∑
a∈R

cost(Ta) = rew(T)−
∑
t∈T

cost(t, a) (2.5)

Since we assume the same quality of task ful�lling by any agent, the reward k = rew(T)
is not in�uenced by the allocation of tasks to the agents. We can derive social welfare
as follows:

sw = k −
∑
t∈T

cost(t, a) (2.6)

As denoted earlier, the goal of CNP-based multi-agent optimization in cooperative envi-
ronments is social welfare maximization. Given by (2.6), it is the same as minimization
of solution cost, where cost(t, a) is evaluated by the resource agent a undertaking task t.
The objective function of the abstract solver is then∑

t∈T
cost(t, a) (2.7)

The task allocation stage of the solver searches for the best suitable mapping of the tasks T
to the resource agents R that minimizes the objective function given by (2.7). We can de�ne
the goal of the allocation as �nding such a partition P of the set of tasks T that

argmin
P

v∑
i=1

cost(Ti) (2.8)

where v is the number of resource agents, Ti is a subset of tasks allocated to the resource
agent ai , cost(Ti) is the cost of the overall plan of agent ai performing Ti de�ned by (2.3),
and

Ti ⊆ T,
v⋃

i=1

Ti = T (2.9)

∀i, j : Ti ∩ Tj = ∅ i� i 6= j. (2.10)

2.2 Scheduling theory

In this section, a reader will �nd short introduction into scheduling theory from [8]. It will
cover formal description of scheduling problem, task parameters, task constraints (both
general and speci�c) and optimality criterion.

2.2. SCHEDULING THEORY 7

Scheduling problem Generally, the scheduling problem is problem of assignment of
given tasks to the available resources in time. More formally, the input of the scheduling
problem is de�ned as follows:

1. Set of n tasks T = T1, T2, ..., Tn

2. Constraints on the tasks T (such as release time, due time,...)

3. Set of m types of resources (processors, machines, employees,...) with capacities Rk,
P = {P 1

1 , ..., P
R1
1 , P 1

2 , ..., P
R2
2 , ..., P 1

m, ..., P
Rk
m }

A result of the scheduling is a schedule, which determines which task is run on which
resource and when. It is often depicted as a Gantt chart.

There are two types of scheduling problems. When the set of tasks is known, when
executing the scheduling algorithm, it is called o�-line scheduling. When on the other
hand, the set of tasks is (partially) unknown and new tasks can be added to the set, it is
the instance of on-line scheduling (one example can be scheduler in a operating system).
In this thesis, we will deal only with the o�-line scheduling.

There is one similar problem called planning. The main di�erence is that in scheduling,
each task must be completed in contrast to deciding, which task will be scheduled and
processed in the planning problem. One can say that the planning precedes scheduling.

Task parameters Every task is de�ned by its parameters. Figure 2.2 shows task pa-
rameters graphically. For the task Tj :

1. Processing time pj is the amount of time needed to complete the task. This is the
only parameter, that has to be necessarily speci�ed for every task.

2. Release time rj de�nes the earliest time of the task's start. The scheduled task
cannot start before its release time. When the release time is not de�ned, it is the
same as if the release time was set to zero.

3. Due date dj is the time, in which task Tj should be completed.

4. Deadline d̃j is the time, in which task Tj has to be completed. The constraint de�ned
by deadline is stronger than when using due time. When the deadline is not de�ned,
it is the same as if the deadline was set to plus in�nity.

5. Weight wj speci�es the importance of the task. The bigger the weight, the more
important the task is (it has higher priority).

One can also de�ne more parameters, such as cost of the task (in money).

8 CHAPTER 2. PROBLEM ANALYSIS AND SOLUTION PROPOSAL

Figure 2.2: Task parameters and variables [8]

Tasks' constraints There are di�erent kinds of tasks' constraints. There are general
constraints, which must hold in every scheduling problem, and then there are speci�c
constraints, that can be di�erent for two scheduling problems.

Only two constraints belong to the general constraints:

1. Each task has to be sequential, meaning that each task is to be processed by at most
one resource at a time.

2. Each resource is capable of processing at most one task at a time.

Below follows some of speci�c constraints:

1. Task Ti has to be processed during time interval 〈ri, d̃i〉, whenever both release time
and deadline is de�ned.

2. When the precedence constraint is de�ned between Ti and Tj , i.e. Ti < Tj , then
the processing of task Tj can't start before task Ti was completed. We also call this
relationship a dependency or that the task Ti is predecessor of the task Tj .

3. If the scheduling problem is non-preemptive (preemption is not allowed), any task
cannot be interrupted and resumed later (the task has to be performed as whole).
In this thesis, we will focus only on non-preemptive scheduling.

Problem notation Classes of scheduling problems are speci�ed in terms of a three-
�eld classi�cation α|β|γ, where α speci�es the resource characteristics, β speci�es the job
characteristics, and γ denotes the optimality criterion. We will introduce only a subset of
possibilities of the notation from [6] and [8].

Resource characteristics α consists of two parts α = α1α2. When α1 = 1, there is only
one resource. If α1 = P , there are parallel identical resources, meaning they are multiple
resources of the same kind. When you see α1 = Q, there are parallel uniform resources,

2.2. SCHEDULING THEORY 9

which is similar to previous case but computation time of a task is inversely proportional to
resource speed. The notation α1 = PS means Project scheduling, which is a general case,
where there are several resource types with capacities and general precedence constraints
exist.

For α1 = ∅, there is arbitrary number of resources. If α2 = k, where k is a positive
integer 1, 2, . . . , then α2 denotes the number of resources. Notation α2 = m,R means there
are m resource types with capacities R (Project scheduling).

The task characteristics is speci�ed by set β, which contains at most eight elements
β1, β2, β3, β4, β5, β6, β7, β8. Value β1 = pmtn indicates, that preemption is allowed. Pre-
emptions means, that executing of any task can be paused and resumed later. β2 = prec
means there are precedence constraints between some tasks. If β2 = ∅, the tasks are in-
dependent. Value β3 = rj says, release dates may be speci�ed for each task. If β5 = dj ,
due-date can be de�ned for every task, i.e. task tj should end before due-date dj .

The gamma letter γ denotes the optimality criterion. If γ = ∅, the scheduling problem
is only a decision problem (we only care about existence of a valid schedule). The case
γ = Cmax means, the goal is to minimize maximal completion time (makespan). For more
optimality criteria, see paragraph Optimality Criteria later in this section.

Now a few examples: Notation 1|rj |Cmax denotes problem of �nding schedule on one
resource, for a set of tasks with given various release times rj 6= 0 such that the maximal
completion time is minimized. Earliest release time �rst is the optimal heuristic for this
problem.

P ||Cmax means problem with m identical resources and the length of schedule should
be minimal.

Optimality Criteria The scheduling problem often de�nes an optimality criterion. The
criterion, which has to be optimized (either maximized or minimized) in order to solve the
problem. Rest of this section was taken from [6].

We denote the �nishing time of task Ti by Ci, and the associated cost by fi(Ci). There
are essentially two types of total cost functions

fmax(C) := max{fi(Ci)|i = 1, ..., n}

and ∑
fi(C) :=

n∑
i=1

fi(Ci)

called bottleneck objectives and sum objectives, respectively. The scheduling problem is
to �nd a feasible schedule which minimizes the total cost function.

The most common objective functions are the makespan max{Ci|i = 1, ..., n}, total
�ow time

n∑
i=1

Ci, and weighted (total) �ow time
n∑

i=1
wiCi

10 CHAPTER 2. PROBLEM ANALYSIS AND SOLUTION PROPOSAL

Other objective functions depend on due dates di which are associated with jobs Ji.
We de�ne for each job Ji:

Li := Ci − di lateness

Ei := max{0, di − Ci} earliness

Ti := max{0, Ci − di} tardiness

Di := |Ci − di| absolute deviation

Si := (Ci − di)2 squared deviation

Ui :=

{
0 if Ci ≤ di
1 otherwise

unit penalty

2.3 Abstract Architecture

In this section, we will explain, how the multi-agent problem solver works and what parts
it is made of and what algorithms it uses. The rest of this section is based on [15].

Abstract Algorithm The abstract algorithm from [15], which is based on the presented
multi-agent solver attempting to minimize objective function de�ned by (2.7), is shown in
Algorithm 1. As one can see from the abstract architecture shown in Figure 3.4, it consist
of three phases as following.

1. Task preprocessing provided by the task agent is the �rst phase of the function solve.
To increase the solver e�ciency in the given domain, the domain-speci�c ordering
heuristic is applied on the task set T .

2. The second phase is iteration over the whole task set and allocation performed by the
allocation agent, which minimizes the insertion cost computed by resource agents (the
allocateCNP function). As part of this iteration, the dynamic improvement based on
cooperation of allocation agent and all resource agents takes place - the improvement
strategy is applied to every resource agent after allocation of each task.

3. The third phase of the solve function is the �nal improvement of the solution. After
allocation of all tasks the improvement strategy is executed by all resource agents.

The algorithm uses local optimization of a single-task insertion, which is followed by
applying improvement strategy. Each iteration of the algorithm provides a greedy (order-
dependent) task allocation with subsequent local optimization on resource agents.

For these computations, the resource agent uses a problem-dependent resource-planning
heuristic. The functions for allocation are as follows.

1. Insertion estimation costestI(t, a): The estimation of the cost of the task insertion.
It represents the increase of the agent's a cost function caused by performing the
task t.

2.4. INNER ARCHITECTURE OF THE ALLOCATION SOLVER 11

2. Insertion costinsert(t, a): The real cost of the task insertion. This value is determined
by adding a new task t to the plan of the agent a in the current state. It is the result
of the planning algorithm of the resource agent.

The opposite functions used by improvement strategies are as follows.

1. Removal estimation costestR(t, a): The estimation of the cost of the task removal. It
represents the decrease of the agent's a cost function caused by deleting the task t
from the plan.

2. Removal costremove(t, a): The real cost of the task removal. This value is determined
by removing the task t from the plan of agent a in the current state. It is the result
of the planning algorithm of the resource agent.

The allocation in the CNP part of the Algorithm 1 is based on the determination of
the winner agent. The winner of task t is a resource agent a with the lowest insertion cost;
mathematically speaking,

winner = argmin
a∈R

costestI(t, a). (2.11)

The allocation agent allocates an unallocated task t, where ∀ai ∈ R : t /∈ Tai to a winner
agent a

allocate(Ta, t)⇒ t ∈ Ta (2.12)

given that local plan of agent a exists and the agent a is able to complete this task using
the plan for the cost estimation costestI(t, a) used in (2.11).

2.4 Inner architecture of the allocation solver

In this section, we present the inner architecture of the allocation problem solver and its
main components. The allocation mechanism based on Contract Net Protocol (CNP) is
demonstrated later in the task allocation scenario. We have used the Alite toolkit [3]
mainly for the communication between the agents and the CNP protocol implementation.

The allocation agent and every resource agent has a communicator object through
which it communicates with other agents. The communicator object has an address.

Task base Each resource agent and the allocation agent has a task base. The task
base uses the communicator for negotiating the task allocation using the CNP protocol.
Speci�cally, at the beginning a resource agent registers the capability of doing a certain
task type to its task base. The agent is then noti�ed by the task base, if someone (some
other agent) wants to invoke a task of the registered type.

12 CHAPTER 2. PROBLEM ANALYSIS AND SOLUTION PROPOSAL

2.4.1 Resource scenario

Task Task is an object representing general tasks. It has following �elds:

• Task ID - automatically generated and is unique for every task

• Task type - type of the task

• Release time - earliest time of the task's start

• Duration - processing time of the task

• Due time - the time, when the task should be completed

• Priority - priority of the task

• Cost - cost of the task, can be interpreted for example as money

Resource plan base Each resource agent has control over typically one resource that
can perform one or more types of tasks. For this purpose, each resource agent has a resource
plan base, that manages planning of that resource. The plan base speci�es the planning
algorithm and an evaluation function to provide insertion and removal cost estimations.
The resource plan base is sometimes called a �general� plan base.

Contract Net Protocol The Foundation for Intelligent Physical Agents (FIPA) is an
international organization that developed the Contract Net Interaction Protocol (CNP).
The UML diagram of CNP can be seen in Figure 2.3. The original description of the CNP
from the o�cial FIPA website follows [13]:

In the contract net IP, one agent (the Initiator) takes the role of manager
which wishes to have some task performed by one or more other agents (the
Participants) and further wishes to optimise a function that characterizes the
task. This characteristic is commonly expressed as the price, in some domain
speci�c way, but could also be soonest time to completion, fair distribution
of tasks, etc. For a given task, any number of the Participants may respond
with a proposal; the rest must refuse. Negotiations then continue with the
Participants that proposed.

Task allocation scenario We will now describe a task allocation scenario. At the
beginning, resource agents register itself to their task bases and they register itself to the
task types, they have resource for.

If a new task should be planned, the allocation agent invokes the task through the
task base. The task base looks if there is a resource agent communicating on the same
communicator. If there is not one, the task cannot be allocated on any resource. But

2.4. INNER ARCHITECTURE OF THE ALLOCATION SOLVER 13

Figure 2.3: FIPA Contract Net Interaction Protocol [14]

if there is such resource agent, then the CNP protocol is started (this corresponds with
calling the allocateCNP function from Algorithm 1).

The allocation agent plays the role of CNP Initiator and resource agents are Partici-
pants. The CNP starts with the allocation agent sending a message with call-for-proposal
communicative act to all resource agents, that are registered for the task's type. All
resource agents, which obtained a call-for-proposal message, prepare a response. Every
resource agent gets from its plan base a cost estimation of inserting the task in its plan
(in its planbase to more precise). A propose act with this cost estimate will be sent back
to the allocation agent a.k.a. the Initiator. A resource agent can also send a reject act
instead of proposal, meaning the agent doesn't want to or can't allocate the task.

The allocation agent waits for all proposals (for a limited time). Then it selects a
winner, which is the resource agent with the lowest cost proposal. The allocation agents
sends an accept-proposal act to the winner and reject-proposal acts to the other resource
agents. The winning agent then has to allocate the task on its resource.

After the task is completed, the resource agent sends an inform-done act to the alloca-
tion agent to let it know, the task has been completed. If something goes wrong and the
winner fails to complete the task, it is obliged to send a failure act to the allocation agent.
Anyway, the allocation agent will know what happened with the task.

14 CHAPTER 2. PROBLEM ANALYSIS AND SOLUTION PROPOSAL

2.4.2 Logistical scenario

So far, we assumed general tasks, that are not tied to a speci�c location. But there can be
scenarios, where position of resources and transportation between them plays an important
role in the allocation problem. An examples of such domain, where the position aspect is
crucial, are logistics or supply chain.

A logistic scenario is a scenario in which we have (apart from the general tasks) a set
of transportational tasks. Each of the transportation tasks has de�ned start location, at
which the task has to begin, and end location, where the task has to �nish. One can see
this logistical tasks as a task of transporting goods from a point A to point B. Capable of
performing these logistic tasks, a special type of resource is de�ned, called transportational
resource. Such resource can model many things from a truck to an airplane. Such logistic
scenario is more complicated than a resource scenario, because beside the question �On
which resource should we allocate this task?�, there is a new question �Which path between
the start and the end location should we take?� For purpose of modelling and simulating
such scenarios, there are logistic (or transportational) variants of previously de�ned objects,
such as logistic plan bases and logistic tasks.

Logistic task Logistic task can be viewed as an extension of general task. In contrast to
a general task, logistic task has two additional parameters - start node and end node. The
node is meant as a vertex in the planning problem roadmap. The logistic task should then
be understood as a transportation task to deliver some object(s) from start node to end
node. One more thing, that is di�erent from general task, is computing of the processing
time. The processing time of the logistic task is not an unchanging constant (as it is by
general tasks), but it is dependent on the scheduled resource and on the last task on that
resource. The resulting task duration can vary depending on how fast the resource can
transport itself from the current location (or end node location of the resource's last task)
to the start node of the new task.

Logistic plan base Logistic plan base is an extension of resource plan base. Logistic
plan base is plan base for transportational resources such as truck, ship or plane. Unlike
general plan base, the logistic plan base has one additional parameter - an initial position
(initial node). This can impersonate for example a parking depot of a truck or a hangar of
a plane. The second di�erence is, as mentioned in the previous paragraph, the necessity of
allocating extra time to transport the resource to the start node in the �rst place, before
the resource can perform the core logistic task.

2.4. INNER ARCHITECTURE OF THE ALLOCATION SOLVER 15

Algorithm 1 The abstract algorithm of a multi-agent solver [15]

Input: Set of tasks T , set of resource agents R
Output: T allocated on R and local plans of resource agents exits

1: function solve(T,R)
2: apply ordering heuristic on T
3: for all t : T do

4: allocateCNP(t,R)
5: if allocation not succesful then
6: exit with failure or
7: mark t as not allocated and continue
8: end if

9: for all a : R do

10: apply dynamic improvement strategy
11: end for

12: end for

13: for all a : R do

14: apply �nal improvement strategy
15: end for

16: end function

17: function allocateCNP(t, R)
18: for all a : R do

19: �nd winner with the lowest insertion estimation of t
20: end for

21: if winner is found then
22: assign t to the winner
23: else

24: allocation not successful
25: end if

26: end function

16 CHAPTER 2. PROBLEM ANALYSIS AND SOLUTION PROPOSAL

Chapter 3

Implementation

The second objective of this thesis was to implement selected allocation heuristics and
algorithms using Alite toolkit [3] with focus to scheduling and transportation problems.
In order to complete this objective, we have developed an agent-based task and resource
allocation tool, called TARF-tool. The TARF-tool was implemented using the abstract
architecture, described in the Chapter 2. This chapter describes parts and mechanisms of
the TARF-tool.

This chapter consist of three sections. In Section 3.1, our implementation of the abstract
architecture from previous chapter is presented. The section revolves mainly around the
implementation of the three types of agent, specially the resource agent and his main
components, such as plan base, planner and evaluator.

In Section 3.2, important classes of the TARF-tool are shown. The section is composed
of implementations of planners, heuristics and evaluators. Finally Section 3.3 describes
parts of the Graphical User Interface (GUI) called the Con�gurator. It also shows how the
Con�gurator looks like, what windows and tabs it consist of and how to work with them.

3.1 Architecture

In the Chapter 2, we presented the abstract architecture of a multi-agent solver. Our
TARF-tool uses this architecture. Basic building blocks of the architecture are three types
of agents - a task agent, an allocation agent and a resource agent. We will now present a
high-level overview of our implementation of this architecture.

Agents There is one task agent in the TARF-tool. Our task agent provides only �rst-in-
�rst-out (FIFO) task sorting and then successively invokes every task using the allocation
agent. The allocation agent is present only in one instance. In the source code, the
allocation agent is in the class named TaskInvokerAgent. The allocation agent manages
delegation of the tasks to resource agents. Through its task base, it initiated the Contract
Net Protocol (CNP), to allocate a task to the most suitable resource agent. The allocation

17

18 CHAPTER 3. IMPLEMENTATION

agent controls no resource and it does no task decomposition. There are no solution
improvement strategies applied in any of the agents. The most important and most complex
type of agent is the resource agent. Every resource agent manages typically one resource,
which can perform one or more task types. As it was said in previous chapter, every
resource agent has its plan base, which takes care of the planning on the resource. This
plan base contains two important objects - a planner of the resource and an evaluator.

Planner The planner object is an implementation of a planning algorithm and holds
the resource plan itself too. Various planners exist, the most important implementations
are �rst-in-�rst-out (FIFO) planner, last-in-�rst-out (LIFO) planner and heuristic planner.
More about di�erent implementations of planners in next section.

Heuristic The heuristic planner is little more complex and has one speciality, so it
needs to be explained more here. Inside the heuristic planner is an ordered list (priority
queue), which is sorted according to a heuristic (sorting policy). This heuristic provides the
information, which tasks should be scheduled �rst and which tasks last. Some examples of
heuristics: earliest release time �rst, shortest duration �rst. More thorough description of
the heuristic awaits in next section.

Evaluator An evaluator is something, that evaluates a plan. It is a function, which
assigns a real value to the plan (which is inside a planner). The Evaluator 's plan-
evaluation method is called, when the plan base needs to compute insertion or removal cost
estimate. Some of the evaluators are maximal-completion-time (also called makespan) or
sum-of-the-waiting-times. An in-depth description of various evaluators will follow in the
next section.

3.2 Implemented classes

In this section, we will present the most important classes in the TARF-tool along with
some of their implementation details. Most of the space is devoted to implementations of
the planner, comparator and evaluator.

3.2.1 Planner

A planner object, as described in the previous section, contains the plan itself and provides
also methods to manipulate with it. A planner is represented by the TarfPlan interface in
the TARF-tool. The class java.util.TreeSet is used in all implementations to store the
plan with scheduled tasks. There are multiple implementations of the TarfPlan interface:

Every planner has inside a list of tasks called ordered list, which is used to store the
order of the tasks, to be able to reproduce the desired order TarfPlan.remove(t) method.
In every planner, the method works in the following way: �rst, the given task is removed,

3.2. IMPLEMENTED CLASSES 19

and second the whole plan is deleted and replanned using the ordered list, in order to
possibly schedule some tasks earlier than they were before the removal.

FIFOPlan Simple implementation of TarfPlan interface. FIFOPlan allocates tasks in the
�rst-in �rst-out (FIFO) fashion. This means that a new task is scheduled at the end
of the plan. It provides operation insert in O(d2) and operation remove in O(nd2),
where n is number of tasks in the plan and d is number of successors of inserted task
(which is at most all tasks minus one).

It has an advantage over LIFOPlan and HeuristicPlan that it is stable, meaning the
addition of new task, won't change current plan. If immutability of plan is needed,
the FIFO order isn't necessary and smaller completion time (Cmax) is preferred, one
can try EarliestGapFirstPlan.

LIFOPlan Simple implementation of TarfPlan interface. LIFOPlan allocates tasks in
the last-in �rst-out (LIFO) fashion. This means that a new task is scheduled at
the beginning of the plan and rest of tasks is rescheduled after that. It provides
operations insert and remove in O(nd2), where n is number of tasks in the plan and
d is number of successors of inserted task (which is at most all tasks minus one).

EarliestGapFirstPlan The implementation of TarfPlan interface, which tries to �ll
empty gaps in the scheduled plan by trying to insert new tasks there and, if not
possible, at the end of the plan. It is a variation of the FIFOPlan. As the FIFOPlan,
it has an advantage over the LIFOPlan and the HeuristicPlan that it is stable,
meaning the addition of new task, won't change current plan. But it has an advan-
tage over the FIFOPlan that in some cases it has lower completion time (makespan
- Cmax). It provides operations insert and remove in O(nd2), where n is number of
tasks in the plan and d is number of successors of inserted task (which is at most all
tasks minus one).

HeuristicsPlan The implementation of TarfPlan interface, which allocates tasks ac-
cording to a heuristics (an implementation of Comparator<TarfTask>). It provides
operations insert and remove in O(nd2), where n is number of tasks in the plan and
d is number of successors of inserted task (which is at most all tasks minus one).
Note, that the heuristic function doesn't appear in the asymptotic estimate.

3.2.2 Logistic Planner

Apart from normal resource planners, logistic variants of the planners exist. They are
usually work in the same way as their resource planner counterparts. Logistic planners has
to implement the LogisticPlan interface.

In all implementations, the insert task function goes as follows. The earliest possible
start time of the task is computed (e.g. maximum of completion time of plan and release
time of the task in the FIFOLogisticPlan). From this time the transportation resource
moves itself to the start destination (start node) of the logistic task. After its arrival to

20 CHAPTER 3. IMPLEMENTATION

the start location, it begins the logistic task to the end location (end node). For �nding
the shortest path in the roadmap, we use the A-star algorithm.

Individual description of the implementing classes follows:

FIFOLogisticPlan Simple implementation of TarfPlan interface. FIFOLogisticPlan

allocates tasks in the �rst-in �rst-out (FIFO) fashion. This means that a new task is
scheduled at the end of the plan. It provides operation insert in O(d2) and operation
remove inO(nd2), where n is number of tasks in the plan and d is number of successors
of inserted task (which is at most all tasks minus one).

LIFOLogisticPlan Simple implementation of TarfPlan interface. LIFOLogisticPlan

allocates tasks in the last-in �rst-out (LIFO) fashion. This means that a new task is
scheduled at the beginning of the plan and rest of tasks is rescheduled after that. It
provides operations insert and remove in O(nd2), where n is number of tasks in the
plan and d is number of successors of inserted task (which is at most all tasks minus
one).

HeuristicsLogisticPlan The implementation of TarfPlan interface, which allocates tasks
according to a heuristics. It provides operations insert and remove in O(nd2), where
n is number of tasks in the plan and d is number of successors of inserted task (which
is at most all tasks minus one). Note, that the heuristic function doesn't appear in
the asymptotic estimate.

3.2.3 Heuristic

The Heuristic interface is used by the HeuristicsPlan and HeuristicsLogisticPlan

as a heuristic to sort the tasks. The Heuristic implementations correspond to classical
scheduling heuristics (as appears for example in [6]). In the enclosed source codes, the
Heuristic implementations are called Comparators (because they are implemented as a
Java Comparator). There are several Heuristics implemented:

EarliestDueTimeFirstComparator The implementation of Comparator , which sched-
ules task with earliest due time �rst. This is optimal heuristic (sorting) for scheduling
problems 1|dj |Cmax, 1|dj |Lmax and recommended heuristic for the scheduling prob-
lem 1|dj |

∑
Uj .

EarliestLatestStartTimeFirstComparator The implementation of Comparator , which
schedules task with earliest latest-start time �rst. Latest start time is computed as
task's duration minus due time and represents latest start time in order not to be
late. The task, which has this value lowest, is scheduled �rst.

EarliestPossibleCompletionTimeFirstComparator The implementation
of Comparator , which schedules task with earliest possible completion time �rst.
Earliest possible completion time is computed as task's release time plus its duration
and represents completion time of the task, if it would be started on its release time.

3.2. IMPLEMENTED CLASSES 21

EarliestReleaseTimeFirstComparator The implementation of Comparator , which
schedules task with earliest release time �rst. This is optimal heuristic (sorting)
for the scheduling problem 1|rj |Cmax.

HighestCostFirstComparator The implementation of Comparator , which schedules
task with highest cost �rst.

HighestPriorityFirstComparator The implementation of Comparator , which sched-
ules task with highest priority �rst. HighestPriorityFirstComparator can be given
a second comparator, which would compare two tasks in case of equality of priorities.
Default second comparator is EarliestReleaseTimeFirstComparator.

LeastSlackTimeFirstComparator The implementation of Comparator , which sched-
ules task with least slack time �rst. Slack time is the amount of time left after a
task if the task was started at its release time. Slack time is computed as task's due
time minus its release time minus its duration. This heuristic is also known as Least
laxity �rst. This is recommended heuristic for the scheduling problem 1|dj |

∑
Dj .

LongestDurationFirstComparator The implementation of Comparator , which sched-
ules task with longest duration �rst.

LowestCostFirstComparator The implementation of Comparator , which schedules
task with lowest cost �rst.

ShortestDurationFirstComparator The implementation of Comparator , which sched-
ules task with shortest duration �rst. This is optimal heuristic (sorting) for the
scheduling problems 1||

∑
Cj and 1||

∑
Wj and recommended heuristic for the schedul-

ing problem 1|dj |
∑
Lj .

ShortestPriorityWeightedDurationFirstComparator The implementation
of Comparator , which schedules task with shortest weighted duration �rst. The
priority weighted duration is computed as task's duration multiplied by its priority.
In another words, �rst will be scheduled short high-priority tasks. This is optimal
heuristic (sorting) for problem 1||

∑
wjCj and for the sum of priority weighted wait-

ing times criteria (problem 1||
∑
wjWj).

3.2.4 Evaluator

Another important interface in the TARF-tool is the Evaluator interface. Evaluator

is an interface for evaluating a TarfPlan according to a criteria function de�ned by the
Evaluator implementation. This evaluation function is called, when a plan base needs
to compute insertion or removal cost estimate. Below is a list of all implementations of
Evaluator interface.

MaxCompletionTimeEvaluator The implementation of Evaluator interface, which
returns end time of TarfPlan's last scheduled task. The heuristic, which min-
imises this criterion (when not dealing with due times and precedence relations,

22 CHAPTER 3. IMPLEMENTATION

i.e. scheduling problem 1|rj |Cmax), is earliest release time �rst (implemented in
EarliestReleaseTimeFirstComparator).

MaxLatenessEvaluator The implementation of Evaluator interface, which returns max
of lateness of TarfPlan's scheduled tasks. Lateness is de�ned as di�erence between
scheduled end time of the task and task's due time. The heuristic, which min-
imises this criterion (when there are no release times and no precedence relations
de�ned, i.e. scheduling problem 1|dj |Lmax), is earliest due time �rst (implemented
in EarliestDueTimeFirstComparator).

MaxTardinessEvaluator The implementation of Evaluator interface, which returns
max of tardiness of TarfPlan's scheduled tasks. Tardiness is de�ned as di�erence
between scheduled end time of the task and task's due time or zero, if this di�er-
ence is smaller than zero. The heuristic, which (along with slight modi�cation of the
scheduling algorithm) minimises this criterion (when there are no release times and
no precedence relations de�ned, i.e. scheduling problem 1|dj |Tmax), is earliest due
time �rst (implemented in EarliestDueTimeFirstComparator).

NumberOfTasksEvaluator The implementation of Evaluator interface, which returns
number of scheduled tasks in the TarfPlan. The recommended planning algorithm
to minimize this criterion is FIFO (in class FIFOPlan), since it has fastest implemen-
tation of insert function and the order of the tasks have no e�ect on total number of
tasks.

NumberOfLateTasksEvaluator The implementation of Evaluator interface, which re-
turns number of late tasks in the TarfPlan, i.e. tasks, whose ends are scheduled
after their due times. It also called unit penalty criterion. The heuristic, which
(along with slight modi�cation of the scheduling algorithm) minimises this criterion
(when there are no release times and no precedence relations de�ned, i.e. scheduling
problem 1|dj |

∑
Uj), is earliest due time �rst (implemented

in EarliestDueTimeFirstComparator).

SumOfWaitingTimesEvaluator The implementation of Evaluator interface, which re-
turns sum of waiting times of TarfPlan's scheduled tasks. The optimal heuristic for
the scheduling problem 1||

∑
Wj (i.e. no release times and no precedence relations

de�ned) is called shortest processing time �rst (implemented
in ShortestDurationFirstComparator).

The implementation of Evaluator interface, which returns sum of waiting times of
TarfPlan's scheduled tasks. The heuristic, which minimises sum of waiting time
(when not dealing with release and due times), is called shortest processing time �rst
(implemented in ShortestDurationFirstComparator).

SumOfPriorityWeightedWaitingTimesEvaluator The implementation of Evaluator
interface, which returns sum of priority-weighted waiting times of TarfPlan's sched-
uled tasks. Priority weighted waiting time is computed as waiting time divided by pri-
ority. The biggest contribution in the evaluation is made by important tasks that wait

3.3. CONFIGURATOR - GRAPHICAL USER INTERFACE 23

a long time. The optimal heuristic for the scheduling problem 1||
∑
wjCj (i.e. no re-

lease times and no precedence relations de�ned) is called weighted shortest processing
time �rst (implemented in ShortestPriorityWeightedDurationFirstComparator).

SumOfEarlinessEvaluator The implementation of Evaluator interface, which returns
sum of earliness of TarfPlan's scheduled tasks. Earliness is de�ned as di�erence
between task's due time and scheduled end time.

SumOfLatenessEvaluator The implementation of Evaluator interface, which returns
sum of lateness of TarfPlan's scheduled tasks. Lateness is de�ned as di�erence
between scheduled end time of the task and task's due time. The recommended
heuristic (sub-optimal, but works well) for the scheduling problem 1||

∑
Lj (i.e. no

release times and no precedence relations de�ned) is called shortest processing time
�rst (implemented in ShortestDurationFirstComparator).

SumOfImpunctualnessEvaluator The implementation of Evaluator interface, which
returns sum of impunctualness of TarfPlan's scheduled tasks. Impunctualness is
de�ned as absolute value of di�erence between scheduled end time of the task and
task's due time. In another words, task has impunctualness of zero if (and only if) it
ends just in time of its due time. Impunctualness is also called an absolute deviation
criterion. The heuristic, which is not truly minimising this criterion, but works
pretty well in the reality (when there are no release times and no precedence relations
de�ned, i.e. scheduling problem 1|dj |

∑
Dj), is least slack time �rst (implemented in

LeastSlackTimeFirstComparator).

SumOfTaskCostsEvaluator The implementation of Evaluator interface, which returns
sum of tasks' costs in the TarfPlan. The recommended planning algorithm to min-
imize this criterion is FIFO (in class FIFOPlan), since it has fastest implementation
of insert function and the order of the tasks have no e�ect on total cost of the tasks.

SumOfTaskDurationsEvaluator The implementation of Evaluator interface, which
returns sum of tasks' durations in the TarfPlan. The recommended planning al-
gorithm to minimize this criterion is FIFO (in class FIFOPlan), since it has fastest
implementation of insert function and the order of the tasks have no e�ect on sum
of durations of the tasks.

3.3 Con�gurator - Graphical User Interface

To be able to use the TARF-tool as a tool and not only as a Java library, we had to
implement a way user can input his/her data and see the results. Because the approach
with command line commands and parameters would be too complicated, we decide to
create a Graphical User Interface (GUI). Our GUI is called Con�gurator, because via
the Con�gurator the user can con�gure every parameter of his/her scheduling problem
(scenario) and then can run the multi-agent solver on the scenario and see the found
schedule.

24 CHAPTER 3. IMPLEMENTATION

The Con�gurator GUI uses three windows: the Con�guration window (Figure 3.1), the
Schedule window (Figure 3.2) and the Map window (Figure 3.8). First, we will start with
the most important window - the Con�guration window.

Figure 3.1: The Task queue tab of the Con�gurator GUI

Figure 3.2: A Gantt chart visualising found schedule

When the Con�gurator GUI is started, the Con�guration window is shown to a user.
Main purpose of the con�guration window is to enable the user to input his/her scheduling
problem and set its parameters. In the lower part of the application window, there is a
button panel. Using these button, the user can:

• Save the current con�guration to a �le

3.3. CONFIGURATOR - GRAPHICAL USER INTERFACE 25

• Load con�guration from a �le

• Clear the con�guration to start with an empty one

• Run the con�guration and display found schedule

Both saving current con�guration to a �le and loading from a �le uses Java Object Serial-
ization, so the created con�guration �les are not readable for humans. In the upper part of
the Con�guration window, there is a panel with tabs, which contains �ve tabs - the Plan
bases tab, the Agents tab, the Task queue tab, the Logistic task queue tab and the Task
dependency tab.

Figure 3.3: The Plan base tab of Con�gurator

Plan base tab In the Plan base tab (Figure 3.3), a user can create, edit and remove
plan bases. The plan bases table has four columns:

• Plan base ID, which is automatically generated and is unique for every plan base

• Plan class, which speci�es what planner the plan base use internally

• Heuristic class, which in case of HeuristicPlan de�nes, what heuristics should be
used to sort the tasks

• Evaluator class that specify, what evaluator function should be used to evaluate
plans

Agent tab The Agent tab itself (Figure 3.4) consists of two tables, one for manipulating
with agents and the other one for displaying an associated map. The map takes types of
tasks, that can the agent do and maps them to the corresponding plan bases that are used
for scheduling the tasks. The agent table has two columns, the �rst specify number of
agents with the same properties (same map) and the second tells an ID of a map.

26 CHAPTER 3. IMPLEMENTATION

Figure 3.4: The Agent tab of the Con�gurator

Task queue tab In the Task queue tab (Figure 3.1), one can manage all tasks and their
properties. It is possible to create, edit or remove tasks. A task has following properties:

• Task ID - automatically generated and is unique for every task

• Task type - type of the task

• Future time - time when the task will arrive to the task agent for scheduling (note
that this feature has not yet been implemented)

• Release time - earliest time of the task's start

• Duration - duration of the task

• Due time - time, when the task should be completed

• Priority - priority of the task, lower number means higher importance

• Cost - cost of the task, can be interpreted e.g. as money.

Logistic task queue tab The logistic task queue tab (Figure 3.5) is similar as the
task queue tab. The di�erence is that the logistic task queue tab has two columns more
for specifying a start and end node (more precisely node's ID) and lacks a column for a
processing time of a task, since this property is computed from the scheduled path from
start to end node.

Task dependency matrix tab In the task dependency tab (Figure 3.6), there is a
table, which denotes dependencies between tasks (which are speci�ed in the task queue
tab and the logistic task queue tab). Every column and every row of the table represent a
task, in each column and row header, there is the task's unique ID. There is a check mark

3.3. CONFIGURATOR - GRAPHICAL USER INTERFACE 27

Figure 3.5: The Logistic task queue tab of the Con�gurator GUI

Figure 3.6: The Task dependency tab of the Con�gurator GUI

(a tick) in the table in the row i and column j, if the row task Ti is dependent on the
column task Tj .

The dependencies cannot be cyclic, otherwise the tasks would be unschedulable. If
there are cyclic dependencies, the Con�gurator won't let the user run the simulation and
will show an error window. Self-loops (when a task is dependent on itself), being cyclic
dependencies itself, cannot be even entered in the table.

Schedule window After specifying the con�guration and running it, there is a window
for visualisation of the found schedule. There are two tabs: First is the Gantt chart
(Figure 3.2), where each bar represents one task and every agent has its own colour of the
tasks, and second one is the Compact chart (Figure 3.7), which o�ers a di�erent, more
compact representation of the schedule. Under both tabs, there is a table with statistics

28 CHAPTER 3. IMPLEMENTATION

Figure 3.7: The Compact chart for the found schedule

for every agent using di�erent metrics (di�erent Evaluators). Moreover, the �rst column
shows statistics for all agents together. The JFreeChart library [11] was used for drawing
the Gantt chart.

Figure 3.8: The Map Window of the Con�gurator GUI

Map window The Map window shows the map of the scenario. The Map window will
show automatically if there is at least one logistic task scheduled. Yellow dots on the map
represents nodes, black edges between them represents roads. White circle with small cross
in it denotes a point of interest (start or end of a logistic task, starting location of logistic
plan base). Colorful lines represents trajectories of logistical plan bases, each having one
color.

3.3. CONFIGURATOR - GRAPHICAL USER INTERFACE 29

The map can be zoomed and panned. Zooming can be done by mouse wheel and it
magni�es area under mouse cursor. Panning can be done by drag and drop using right
mouse button. A help screen can be displayed by pressing F1.

There is known issue with the Map window, that sometimes on some computers, the
map can be drawn over another window. We don't know what is the cause of this bug,
if it has something to do with a speci�c computer speci�cation, a graphic card maybe, or
it's caused by something else, but we at least �gured out how to �x it. In case this bug
occurs, just resize the bugged window and the window will repaint itself and everything
will be back to normal.

30 CHAPTER 3. IMPLEMENTATION

Chapter 4

Testing and Validation

This chapter is devoted to testing and evaluation aspects of the TARF-tool. To ensure
correctness of programmed TARF-tool, all planners, logistical planners, heuristics and
evaluators are covered by unit tests. For this purpose, we have used Java unit testing
framework JUnit 4. Only synchronized (one-threaded) simulation was implemented and
tested.

The chapter contains three sections. Firstly, Section 4.1 presents the house scenario,
which contains only resource tasks (tasks with no relation to location). The scenario models
how to build a two �oor family house with a garage, which steps/tasks are needed and in
which order.

Section 4.2 demonstrates a plane scenario, which is more complicated than the house
scenario by taking locations and logistic into account. The objective to meet is to manu-
facture a plane from various parts which themselves can be composed of more components.
There are various factories, where the components are made and there are also small and
big trucks to transport the plane parts between factories.

Section 4.3 is dedicated to description of a stress test and its results. The stress test
serves for the purpose of verify how much tasks the TARF-tool can handle and to measure
speed of various planners.

4.1 Build a house scenario

To demonstrate the functions and features of the TARF-tool, we have created a resource
scenario, which means the scenario has no logistic tasks. As a scenario, which we want
to model, we have chosen a problem of building a family house. The main focus of this
scenario is to verify the functionality of our program, not to capture the whole complex
building process with all its details. Because of that the scenario is quite simpli�ed. The
house scenario �le can be found in the enclosed program source �les.

31

32 CHAPTER 4. TESTING AND VALIDATION

Figure 4.1: The de�nition of the resource tasks in house scenario

Setup The goal of this scenario is to build a two-�oor family house with basic interior
works �nished and with stand-alone concrete garage. There are twelve resource tasks in
this scenario. You can see full speci�cation of the tasks in Figure 4.1.

The tasks ranges from preparing the plot, laying the foundations through building
walls and �oor in both ground �oor and �rst �oor to installing water and waste pipes and
electricity. There are also two more independent tasks of building stand-alone concrete
garage. An objective function, which is to be minimized is maximal lateness time, selected
planner is heuristic plan with earliest release time �rst heuristic.

Every (resource) agent and its plan base represents a company or a person(s), which do
one type of work. There are �ve agents (in parenthesis is their associated color): general
site-workers (red), a company doing works with concrete (blue), carpenters (green), a
plumber (yellow) and company that does the electricity work (pink).

Results Found schedule with statistic numbers for the house scenario can be view in
Figure 4.2. The schedule ends at time 63 and has no late tasks.

There is an interesting part of the plan, where a lot of tasks starts at time 41. This
is because many tasks has building the walls in both �oors as predecessors (they are
dependent on it). So as soon as the all walls are �nished, the interior tasks can be started.

4.2 Manufacture a plane scenario

The plane scenario is a representative of logistic scenarios, scenarios, where logistics and
transportation between various places plays important part of the problem.

The plane scenario takes place on a big island, where multiple warehouses and factories
are located. There are also multiple trucks at various locations on the island, that can be

4.2. MANUFACTURE A PLANE SCENARIO 33

Figure 4.2: Planned schedule for the house scenario

used to transport goods. The major task is to build a plane. The model of the building
process is again quite simpli�ed, but it serves as demonstration. The island map and the
roadmap was taken from the project I-Globe [9].

Setup There are several resource tasks in the plane scenario. The resource tasks are
usually to manufacture or assembly a product.

To assemble a plane, one plane body, two wings with engines and 300 seats are required.
Moreover, this assembly can be done only in a plane factory. A wing with an engine needs
both a wing (without engine) and an engine. Both wing and wing with an engine are made
in a wing factory. An engine is made out of engine parts and has to be assembled in the
engine factory, but the engine parts themselves has to be made in an engine parts factory.
The seat factory is a place to manufacture plane seats. Detailed description of the resource
tasks can be found in Figure 4.3.

Every above mentioned factory is modelled as one agent with one plan base, which can

34 CHAPTER 4. TESTING AND VALIDATION

Figure 4.3: The de�nition of the resource tasks in the plane scenario

perform tasks of the factory type (e.g. the wing factory can perform �Make a wing� and
�Make a wing with engine� types).

Figure 4.4: The de�nition of the logistical tasks in the plane scenario

Logistic tasks As is apparent, form the previous paragraphs, there are several logistic
tasks to be made in order to produce one plane. There are tasks to transport engine parts
to engine factory, a whole engine to wing factory or a wing to plane factory. Transportation
of 100 seats from a seat factory to a plane factory is also a logistic task.

Dependency and precedence relations are done in such way that the transportation of
an object waits for the object to be manufactured. Oppositely a production of the next
product in the another factory has to wait until the transportation of the required goods
ends. More detail information is presented in Figure 4.4.

There are two kinds of logistic plan bases - a small truck and a big truck. The small

4.3. STRESS SCENARIO 35

truck is used to transport engine parts and an engine. The big truck can transport every-
thing else meaning a wing with engine, plane seats.

Objective function, which is to be minimized, is maximum completion time (makespan)
and selected planner is a heuristic planner with earliest release time �rst heuristic.

Figure 4.5: Found schedule for the plane scenario

Results Found schedule for the plane scenario can be found in Figure 4.5. The schedule
shows that the plane is manufactured at time 870 as the last task, which is logical since it
has many predecessors and no successor. There are no late tasks.

In Figure 4.6, the logistic plan with all planned trajectories is shown. The green path
belong to two identical small truck plan bases. The yellow and pink trajectories belong to
big truck plan bases.

4.3 Stress scenario

To observe how the computation time of planners changes with an increasing number of
tasks, we have constructed a stress test. We simply set up the scenario con�guration and
measured how long the TARF-tool needed to �nd the �nal schedule.

36 CHAPTER 4. TESTING AND VALIDATION

Figure 4.6: Found trajectories for the logistic plan bases for the plane scenario

Setup In Table 4.1, there is a de�nition of parameters of stress test. Most of them are
maximal values of parameters, which are used when randomly generating tasks.

Table 4.1: De�nition of parameters of stress test.
Parameter Value

Max release time 100
Max duration 100
Max due time 1100
Max node ID 100
Number of repeats 10
Number of agents 2

Every node on the island map (a yellow dot on the map, usually on crossroad) has its
ID. The parameter Max node ID is the highest node ID , that can be generated for logistic
task start or end location. That means that in the stress test, all node IDs are in range
0 - 100.

There is one parameter of the test that is not in the Table 4.1. Parameter called
Predecessor share (PS) is used when generating a random task. It says what percent from
maximal possible number of task's predecessors the task actually will get as predecessor.
The maximal number of task's predecessors is the biggest number of predecessors, such
that there is no cyclic dependency in the task set.

For predecessor share PS = 0, all tasks have no predecessor. If predecessor share
PS = 1, it means that if we would sort the tasks by increasing number of predecessors,
the �rst task would have no predecessors, the second task would have one predecessor (in

4.3. STRESS SCENARIO 37

fact the �rst task would be this predecessor) and so on up to the last task, which would
have all previous tasks as predecessors.

The stress test contains di�erent con�gurations of a task set, which are given by two
numbers - the number of tasks to be scheduled and the PS parameter. The number of tasks
has four di�erent values: 100, 200, 500 and 1000. The PS parameter takes either low or
high value, low being 10 % and high being 90 %. Both logistical and non-logistical planners
are tested. Resource (non-logistical) planners being FIFO, LIFO, Heuristic and Earliest
gap �rst planner and logistic planners are FIFO logistic, LIFO logistic and Heuristic logistic
planner. Each processing time has been measured ten times and then median was computed
and saved into the table.

The stress test was done in testing environment speci�ed by Table 4.2.

Table 4.2: Testing environment of the stress test.
Parameter Value

CPU Intel Core i3, 2x 2.53 GHz
Memory size (RAM) 4 GB

Operating system Windows 7 Professional (64-bit)
Java version JDK 1.7

Results The results are presented in two tables - Table 4.3 shows test result for resource
planners and Table 4.4 shows test result for logistical planners. In both tables the columns
represents a planning time of a planner and rows respond to one con�guration of task
set, which is given by number of tasks and the PS parameter, de�ning an amount of
predecessors. Let's have a closer look on the resource planners.

Table 4.3: The stress test result for resource planners. PS denotes the predecessors share
in percents.

Planning time [s]

tasks PS [%] FIFOPlan LIFOPlan HeuristicsPlan EarliestGapFirstPlan

100 10 % 0,071 0,043 0,032 0,042
100 90 % 0,024 0,019 0,018 0,020

200 10 % 0,030 0,075 0,045 0,028
200 90 % 0,128 0,109 0,093 0,077

500 10 % 0,204 0,999 0,325 0,194
500 90 % 1,995 1,874 1,824 1,804

1000 10 % 0,816 18,756 1,460 0,916
1000 90 % 16,094 17,850 16,440 16,108

Resource planners From the results in Table 4.3, one can see that times of the planners
are very good even for the 1000 tasks, apart from few exceptions.

38 CHAPTER 4. TESTING AND VALIDATION

First exception is the row with 1000 tasks and PS = 90 %, this row contains rather
slower times around 17 seconds. These times are not really usable for a real-time system,
but they are still quite good. This drastic growth of processing times is most likely due
to the high percentage of PS. Because after each successful task allocating, a planner has
to notify all task's successors, that this task has been allocated and provide the successors
with information about the task's scheduled end, so that the successors can update their
release times. This also explains, why the even rows have higher times than the odd ones.

Another case of high processing time is in the column of the LIFO planner in the row
with 1000 tasks with low (10%) PS value. This is caused by the implementation of the
LIFO planner. The LIFO planner uses last-in �rst-out approach, which means that a
new incoming task is scheduled in front of all scheduled tasks (as much as the precedence
relations allow it). This basically means, that in the case of no predecessors, the new tasks
is inserted at the beginning of the plan and the rest of the plan has to replanned. In this
case the procedure is called 1000 times, because the test contains 1000 tasks. That's why
we think it takes so long.

The table also tells us, the fastest planner is the FIFO planner, followed closely by
the Earliest gap �rst planner, which makes sense, since it is a modi�cation of the FIFO
planner. On third place stands the Heuristic planner, that achieves a little bit slower times,
however still usable. The last place goes to the LIFO planner.

Table 4.4: The stress test result for logistic planners. PS denotes the predecessors share
in percents. Dash (-) means that the test run too long and was terminated.

Planning time [s]

tasks PS [%] FIFOLogisticPlan LIFOLogisticPlan HeuristicsLogisticPlan

100 10 % 0,141 3,158 0,977
100 90 % 0,093 0,191 0,133

200 10 % 0,132 12,297 3,563
200 90 % 0,237 0,531 0,261

500 10 % 0,510 279,424 23,540
500 90 % 2,694 12,102 3,032

1000 10 % 1,533 - -
1000 90 % 17,693 - -

Logistic planners The Table 4.4, which displays stress test result for the logistic plan-
ners, is quite similar to the previous one in many things. As discussed above, rows with
high PS value have again higher processing times because of the notifying of task's suc-
cessors. The order of the logistic planners hasn't changed from the non-logistic ones. The
FIFO logistic planner is the fastest, then Heuristic logistic planner and slow LIFO logistic
planner sits at the tail.

One notable di�erence between the tables is the presence of dashes in the logistic
table. The dash symbol in a table cell means that the particular test run too long and

4.3. STRESS SCENARIO 39

was terminated. As you can see from the table, dashes are present only in scenarios with
1000 tasks and only in columns of LIFO logistic planner and Heuristic logistic planner.
Another interesting thing about the table is that the processing times are longer than in
the resource Table 4.3. Both observations have a common explanation.

In a logistic task, there are parameters specifying the start and end node on the map.
When scheduling a logistic task, the logistic planners have to �rst call a routine for �nding
the shortest path form the start node to end node, compute a duration of the task from
the length of the path and after that schedule the task in the plan. The path-�nding
algorithm is quite fast, however when called a thousand times, it can make di�erence from
not calling it in the non-logistic case. This e�ect is most visible in the case of LIFO logistic
planner. Since the planner replans tasks a lot, the path-�nding method is called a lot and
the path-�nding component starts to play signi�cant role in the processing time.

40 CHAPTER 4. TESTING AND VALIDATION

Chapter 5

Conclusion

In this diploma thesis, we have studied the topic of multi-agent scheduling. We have also
developed an agent-based task and resource allocation tool, which we have later tested.
We have accomplished all four tasks of this thesis, which were described in Chapter 1.

Main contributions of this thesis are:

In Chapter 2 we have presented comprehensive introduction to theory of scheduling,
multi-agent planning and scheduling. Later in the chapter, we have described an abstract
architecture of multi-agent solver. In Section 2.4 we have proposed the inner architecture of
the allocation problem solver. The allocation mechanism based on Contract Net Protocol
(CNP) is demonstrated in the task allocation scenario.

Following the architecture from Chapter 2, we have implemented the task and resource
allocation tool (TARF-tool). We have designed the program's architecture and imple-
mented it in Java using Alite toolkit. The TARF-tool is capable of solving multi-agent
scheduling and transportational problems. using selected allocation heuristics and algo-
rithms, which were also implemented. More thorough description of the implementation
of the tool is located in the Chapter 3.

For users to be able to use the TARF-tool, we have developed a Graphical User Interface
(GUI). Our GUI is called Con�gurator, because via the Con�gurator users can con�gure
every parameter of his/her scheduling problem (scenario), then run the multi-agent solver
on the scenario and see the �nal schedule. Users can also save their scenario con�guration
into a �le or load one. When the scenario is logistical, users can see a map of the schedule
(planned trajectories). Everything about the Con�gurator can be found in Chapter 3,
Section 3.3.

Another contribution is that we have tested our implemented TARF-tool to make sure,
it works as it should. First, every heuristic, planner, logistic planner and evaluator is
covered by unit tests. Second, we have built illustrative example scenarios to demonstrate
features and functionality of the TARF-tool. The house scenario uses building a family
house as a domain to demonstrate function of tasks, task dependency and agents. The plane
scenario shows on the simpli�ed example of manufacturing a plane, how to incorporate

41

42 CHAPTER 5. CONCLUSION

locations in the scenarios. Here, we have used advanced features of the TARF-tool such
as logistic tasks, logistic plan bases and showing their trajectories on a map.

Third, to observe how the computation time of planners changes with increasing number
of tasks, we have constructed a simple stress test. The results of these tests con�rmed our
expectation, that the more successors a task has, the longer time the insert task function
needs. Another conclusion made from the test is that logistical planners are slower, because
inside the insert function they have to run a path-�nding algorithm. The fastest planner
is the FIFO planner and its logistic variant. All about testing the TARF-tool is written in
Chapter 4.

At this point, the TARF-tool is capable of solving some basic scheduling and trans-
portational problems. There are of course always ways to improve it. One possible feature,
which can be implemented would be ability to solve more complicated problems, for ex-
ample a vehicle routing problem or another NP-hard problem.

Bibliography

[1] Agent Technology Center. Tactical AGENTFLY [online]. 2014. [cit. 10. 5. 2014]. Avail-
able from: <http://agents.cz/projects/agentfly/tactical>.

[2] Agent Technology Center. AgentScout [online]. 2014. [cit. 10. 5. 2014]. Available from:
<http://agents.felk.cvut.cz/projects/agentscout>.

[3] Agent Technology Center. Alite Homepage [online]. 2014. [cit. 24. 3. 2014]. Available
from: <http://jones.felk.cvut.cz/redmine/projects/alite/wiki>.

[4] ARROW, K. J. � SEN, A. K. � SUZUMURA, K. (Ed.). Handbook of Social Choice

and Welfare (Handbooks in Economics). 1. North Holland, 1. edition, August . ISBN
0444829148.

[5] BRAFMAN, R. I. � DOMSHLAK, C. From One to Many: Planning for Loosely
Coupled Multi-Agent Systems. In ICAPS, s. 28�35, 2008.

[6] BRUCKER, P. Scheduling Algorithms. Springer, 2004. ISBN 9783540205241.

[7] DURFEE, E. H. Distributed problem solving and planning. In WEISS, G. (Ed.)
Multiagent Systems: A Modern Approach to Distributed Arti�cial Intelligence, Intel-
ligent Robotics and Autonomous Agents Series. MIT Press, 1999. Available from:
<http://books.google.cz/books?id=JYcznFCN3xcC>. ISBN 9780262731317.

[8] HANZALEK, Z. � SUCHA, P. Scheduling. Combinatorial optimization - lecture slides,
2013. Available from: <https://moodle.dce.fel.cvut.cz/course/view.php?id=
21>. [cit. 17. 4. 2014].

[9] KOMENDA, A. et al. I-Globe: Distributed Planning and Coordination of Mixed-
initiative Activities. In Proceedings of Knowledge Systems for Coalition Operations

(KSCO 2009), 2009.

[10] National Aeronautics and Space Administration. Workshop on Multiagent Planning

and Scheduling [online]. 2014. [cit. 3. 4. 2014]. Available from: <http://ai.jpl.nasa.
gov/public/home/bclement/icaps05-workshop-map.html>.

[11] Object Re�nery Limited. JFreeChart [online]. 2014. [cit. 24. 3. 2014]. Available from:
<http://www.jfree.org/jfreechart/>.

43

http://agents.cz/projects/agentfly/tactical
http://agents.felk.cvut.cz/projects/agentscout
http://jones.felk.cvut.cz/redmine/projects/alite/wiki
http://books.google.cz/books?id=JYcznFCN3xcC
https://moodle.dce.fel.cvut.cz/course/view.php?id=21
https://moodle.dce.fel.cvut.cz/course/view.php?id=21
http://ai.jpl.nasa.gov/public/home/bclement/icaps05-workshop-map.html
http://ai.jpl.nasa.gov/public/home/bclement/icaps05-workshop-map.html
http://www.jfree.org/jfreechart/

44 BIBLIOGRAPHY

[12] SMITH, R. The contract net protocol: High-level communication and control in a
distributed problem solver. IEEE Transactions on computers. 1980, 29, 12, s. 1104�
1113.

[13] The Foundation for Intelligent Physical Agents. FIPA Contract Net Interaction Proto-

col Speci�cation [online]. 2014. [cit. 12. 5. 2014]. Available from: <http://www.fipa.
org/specs/fipa00029/SC00029H.html>.

[14] The Foundation for Intelligent Physical Agents. FIPA Contract Net In-

teraction Protocol image [online]. 2014. [cit. 12. 5. 2014]. Available from:
<http://robotic-and-natural-language.googlecode.com/files/contract_
net_protocol.PNG>.

[15] VOKRINEK, J. � KOMENDA, A. � PECHOUCEK, M. Abstract Architecture for
Task-oriented Multi-agent Problem Solving. Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions on. January 2011, 41, 1, s. 31 �40. ISSN
1094-6977.

http://www.fipa.org/specs/fipa00029/SC00029H.html
http://www.fipa.org/specs/fipa00029/SC00029H.html
http://robotic-and-natural-language.googlecode.com/files/contract_net_protocol.PNG
http://robotic-and-natural-language.googlecode.com/files/contract_net_protocol.PNG

Appendix A

Source codes

The source codes of our allocation tool called TARF-tool, are enclosed on the CD.

The implementations of plans, planners, heuristics and evaluators are in the directory

• tarf-tool/src/main/java/cz/agents/tarftool/communication/plan/

The Main class is located in the

• tarf-tool/src/main/java/cz/agents/tarftool/Main.java

There are two sample scenarios packed with the program. You can �nd them in folder:

• tarf-tool/sample_con�guration/

Mercurial repository The TARF-tool can be also pulled from the following mercurial
repository link, where you substitute the word �USER� with your username:

ssh://USER@smith.felk.cvut.cz//data/hg/incubator/d3cos-tarf

How do I run it? To run the TARF-tool GUI, simply run class called �Main� located
in the root of package �cz.agents.tarftool�.

45

	Introduction
	Objective
	Structure of the thesis

	Problem analysis and solution proposal
	Multi-agent Planning Problem
	Scheduling theory
	Abstract Architecture
	Inner architecture of the allocation solver
	Resource scenario
	Logistical scenario

	Implementation
	Architecture
	Implemented classes
	Planner
	Logistic Planner
	Heuristic
	Evaluator

	Configurator - Graphical User Interface

	Testing and Validation
	Build a house scenario
	Manufacture a plane scenario
	Stress scenario

	Conclusion
	Bibliography
	Source codes

