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Abstrakt

V této práci jsem zkoumal možnosti kalibrace RGBD kamery. Uvád́ım novou kali-
bračńı metodu, která najednou kalibruje barevnou kameru, hloubkovou kameru,
IR kameru a jejich vzájemnou orientaci. Nová metoda je založena na předchoźıch
praćıch. Soustředil jsem se na zvýšeńı přesnosti a robustnosti v porovnáńı se
zkoumanými metodami. Součást́ı bakalářské práce je porovnáńı výsledk̊u kali-
bračńıch metod. Výsledná kalibrace splňuje očekáváńı na reálných i simulovaných
datech.

Abstract

I studied possibilities of calibrating RGBD camera in this thesis. I present new
calibration method that simultaneously calibrates a color camera, a depth camera,
a IR camera, and the relative pose between. The calibration is based on preceding
calibrations. I concentrate on making method more accurate and robust than
predecessor. Thesis also contains comparison with some of the preceding works.
New calibration performs well both on simulated data and real data.
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Chapter 1

Introduction

In this chapter brief history of Kinect and motivation for my work is presented.

1.1 History

Kinect was introduced as accessory for game console in 2011 by Microsoft, this
accessory is basically RGBD camera, i.e. camera capturing both color and depth
image. Afterward Kinect gain attention from computer vision community for its
performance and became quickly popular. Device uses structured light projected
by IR laser projector. Random speckle pattern is emitted by IR projector and
captured by IR camera. This approach improved previous approaches, both in
quality of reconstruction and decrease of processing time.

1.2 Motivation

Kinect is used for scene reconstruction. Key factor determining the quality of
reconstruction is the calibration of device. Basic value of intrinsic parameters
are precalibrated in factory and stored in the firmware. Intrinsic parameters ap-
proximate values are known [7]. But these values change notably from device to
device. There exist many approaches to calibrate Kinect. I mainly concern with
approaches which requires basic equipment. Studied approaches are [3],[4] and
[6]. Each of these papers is built on a previous one and presents new improve
calibration method. They are slight differences between camera models and sig-
nificant differences between calibration algorithms. I believe that each method
has some inconvenient feature. I decided to design a new calibration approach
that is improving the calibration quality.

3



4



Chapter 2

Background

2.1 Pinhole model of camera

The model of camera is the same for RGB and IR camera (which is same as the
depth camera with shifted principal point). Pinhole model of the perspective
camera consists of camera center C and image plane π. Pinhole camera model is
used in Smisek’s [3], Herrera’s [4] and Raposo’s [6] work. Smisek [3] uses different
formalism then Herrera’s [4] and Raposo’s [6] work that share the same formalism.
Smisek et al. [3] present model of 3D point X projected into image point u =
[u, v]T in following form:  u

v
1

 = K

 xk
yk
1

 (2.1)

where K present camera matrix :

K =

 fcx αc · fcx px
0 fcy py
0 0 1

 (2.2)

fcx, fcy present focal lengths, px, py is a principal point and αc encodes the angle
between image plane axes.
Coordinates of projection of point X w.r.t. camera reference frame is marked as
x (Figure 2.1), after normalization and distortion the product is equal to xk =
[xk, yk]. The normalization of x w.r.t. to camera coordinates:

xn =

[
xn
yn

]
=

 xx/zx
yx/zx

1

 (2.3)

now, the distortion:

xk = (1 + k1r
2 + k2r

4 + k5r
6)

[
xn
0

]
+

[
2k3xnyn + k4(r

2 + 2x2n)
2k4xnyn + k3(r

2 + 2y2n)

]
(2.4)

r2 = x2n + y2n (2.5)

the relation between X and x is:

x = R(X− t) (2.6)

5



where R, t are extrinsic parameters of the camera. The R is rotation between
world reference frame and camera reference frame. The t is translation between
same reference frames. The t in Equation 2.6 is same as camera center in world
reference frame.

The eqs. 2.1 - 2.6 provide geometric model used by Smisek [3]. Smisek [3]
also uses the same model for IR camera.

T. Pajdla. Elements of Geometry for Computer Vision 2013-4-28 (pajdla@cmp.felk.cvut.cz)

O

C

o

X

p

X

C

x

x

u

π

d1

d2

d3

b1

b1

b2

b2

b3

c1

c2

c3

Figure 6.2: Coordinate systems of perspective camera.

35

Figure 2.1: Pinhole model(Figure is taken from [1])

2.1.1 Distortion model

Distortion model used in calibrations is a model created by Brown in [14]. This
distortion model is used in all three calibration procedure. Distortion of lens
is represented by vector ~k where k1, k2, k5 represent radial distortion and k3, k4
represent tangential distortion. Meaning of each parameter is visualized in the
Figure B.1.

2.1.2 Differences between models of cameras in studied
calibration approaches

The presented camera model is the same both for Herrera and Raposo including
distortion model, the only difference is the notation.

6



3 Sensors

C À A È Ì E Ê ½ º Á Æ Ì Ê Ç D Í C Ì Á Ç Æ ¿

v

dt

dr distorted

u

ideal

Figure 3.3 Image distortions introduced by camera optics. Effects of radial (dr) and tangential
(dt) distortion are illustrated. The points marked as ideal and and distorted denote the
projected point positions without and with the effects of the distortions. Figure is taken
from [52].

3.1.4 Image Formation

Taking an image is a process that links points Xi =
�
x y z

�T
in 3D space to 2D

points xi =
�
u v

�T
on the image plane. We denote this process as projection and

define it by relation

α

�
xi
1

�
= P

�
Xi

1

�
, (3.4)

where α is a scale factor and P is a camera projection matrix formed from combination
of intrinsic and extrinsic camera parameters to be

P = KR[I | −C]. (3.5)

3.2 Stereo Vision Systems

Different principles of optical depth measurment are shown in Figure 3.4. Usually,
stereo vision systems have two cameras separated in space. They are used to obtain
different views of the scene. Correspondig points of the scene are extracted and their
mutual shift is used to calculate the point distance.

Figure 3.4 Different depth sensing principles (Based on lecture notes of Marc Pollefeys).

Example of two avalible integrated stereo camera solutions is given in Tab. 3.1.

Theorethical uncertainity associated with the stereo reconstruction is illustrated in
Fig. 3.5. Since the physical size of the pixel is greater than zero, there will always be
an uncertainity regieon with typicall diamon shape.

8

Figure 2.2: Illustration of effect of radial and tangential distortion (Figure is
taken from [2])

2.2 Smisek depth model

Depth camera consists of an IR projector and an IR camera. The IR projector
emits constant speckle pattern and the IR camera simultaneously detects a re-
flection of the pattern. Then the captured images are proceeded by the device
and a raw disparity is produced. The guess of the procedure is presented here
[12]. [12] also presents a way how to transform the raw disparity into a depth
map. This approach originates in using a camera color pair and Smisek is using
this approach. In fig. 2.3 the problem is illustrated. It’s matter of a triangle
similarities, where the triangle 4|CLCRX| is similar to the 4|ABX|:

|CLCR|
z

=
|AB|
z − f

(2.7)

CL CR

b

X(x,y,z)

XL

XR

z

f

isodisparity plane

A

Figure 2.3: Pinhole model(Figure taken from [2])

where b = |CLCR| represent a baseline, ~f = f represent the focal length and
|AB| = b− (XL−XR). After substitution ds = XL−XR, where ds is a disparity.

7



After isolation of the variable z, we get the following relation:

z =
bf

ds
(2.8)

Smisek further improves eq. 2.8 by assuming a relation between the raw dis-
parity d returned by the Kinect and the disparity in eq. 2.8:

ds = c1d+ c0 (2.9)

where c1, c0 are coefficients of a polynomial that transform the raw disparity d
into the disparity ds.

Smisek also models a residual error in a image by a spatially varying offset
Zδ. The final Smisek’s relation between the raw disparity and depth is hence in
the form:

z =
bf

c1d+ c0
+ Zδ(u, v) (2.10)

where u,v are a pixel coordinates.

2.3 Herrera depth model

Herrera uses the same model ( parameters b, f are part of the polynomial) :

z =
1

c1dk + c0
(2.11)

where dk is an undistorted raw disparity. dk is related to d by the spatially varying
offset. Herrera excepts that the offset is decaying with a distance from the depth
camera:

dk = d+Dδ(u, v)exp(α0 − α1d) (2.12)

this feature is supported by a experimental data in [4](corresponding Figure 2.4)
author claims these data were taken from multiple disparity images of a flat wall.
Later, in chapter 5 these data are confronted with my results.

Herrera also requires a backward model, which convert the depth into the
distorted disparity. Converting depth into the undistorted disparity is simple, we
only need to express dk from Equation 2.11:

dk =
1

c1zd
− c0
c1

(2.13)

expressing d from Equation 2.12 is more complex, because of the exponential.
Herrera [4] solve this problem using the Lambert W function:

y = exp(α0 − α1dk + α1Dδ(u, v)y) (2.14)

y =
dk − d

Dδ(u, v)
(2.15)

y = exp(α1Dδ(u, v)y)exp(α0 − α1dk) (2.16)
−ỹ

α1Dδ(u, v)
= exp(−ỹ)exp(α0 − α1dk) (2.17)

ỹexp(ỹ) = −α1Dδ(u, v)exp(α0 − α1dk) (2.18)

8
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Fig. 2. Error residuals (kdu) without distortion correc-
tion of a plane at 0.56m (left) and 1.24m (right).

300 400 500 600 700 800 900 1000
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0
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Fig. 3. Distortion magnitude with increasing disparity.

We use a spatially varying offset that decays as the
Kinect disparity increases:

dk = d+Dδ(u, v) · exp(α0 − α1d) (6)

where d is the distorted disparity as returned by the
Kinect, Dδ contains the spatial distortion pattern, and
α = [α0, α1] models the decay of the distortion effect.

Note that this models does not enforce any smooth-
ness on the spatial distortion pattern. To properly
constrain this pattern it is enough to include some
(four) images of a flat surface that spans the entire
depth image. We add images of an empty wall at
several depths. These images do not need the checker-
board pattern since they are only needed to constrain
the distortion pattern. This ensures that all pixels
in the depth image have samples to estimate their
coefficients Dδ(u, v).

Although this disparity distortion model was devel-
oped with the Kinect in mind, it bears similarities with
the model of a ToF camera. Kim et al. [11] obtained
results similar to Figure 3, except that they fit a 6th

degree polynomial instead of an exponential. Further-
more, the calibration of this ToF camera model is
simpler because they don’t use per-pixel coefficients.

Equations (4) and (6) are used when measured
disparities are transformed to metric coordinates, also
known as the backward model. The inverse of these
functions, the forward model, is also needed to com-
pute the reprojection errors. The inverse of Equation
(4) is straightforward:

dk =
1

c1zd
− c0

c1
(7)

But the inverse of Equation (6) is a bit more involved
because of the exponential. We perform two variable

substitutions to isolate the exponential product:

y =exp(α0 − α1dk + α1Dδ(u, v)y)

where y =
dk − d

Dδ(u, v)

y =exp(α1Dδ(u, v)y) exp(α0 − α1dk)

−ỹ

α1Dδ(u, v)
= exp(−ỹ) exp(α0 − α1dk)

where ỹ = −yα1Dδ(u, v)

ỹ exp(ỹ) =− α1Dδ(u, v) exp(α0 − α1dk)

The product can be solved using the Lambert W
function [19]. The Lambert W function is the solution
to the relation W (z) exp(W (z)) = z.

ỹ = W (−α1Dδ(u, v) exp(α0 − α1dk))

(d− dk)α1 = W (−α1Dδ(u, v) exp(α0 − α1dk))

d = dk +
W (−α1Dδ(u, v) exp(α0 − α1dk))

α1
(8)

Although the Lambert W function is a trascendental
function, there are many accurate approximations in
the literature [19] and modern mathematical packages
include implementations of it (e.g. Matlab).

The model for the depth camera is described by
Ld = {fd,p0d,kd, c0, c1,Dδ,α}, where the first 3
parameters come from the model described in section
2.1 and the last 4 are used to transform disparity to
depth values.

2.3 Extrinsics and relative pose

Figure 4 shows the different reference frames present
in a scene. Points from one reference frame can be
transformed to another using a rigid transformation
denoted by T = {R, t}, where R is a rotation and
t a translation. For example, the transformation of a
point xw from world coordinates {W} to color camera
coordinates {C} follows xc = WRCxw + W tC .

Reference {Vi} is anchored to the corner of the
calibration plane of image i and is only used for
initialization. The relative poses (DTC and ETC) are
constant, while each image has its own world to
camera pose WiTC . By design, the table and the
checkerboard are coplanar but the full transformation
between {V } and {W} is unknown.

3 CALIBRATION METHOD

A block diagram of our calibration method is pre-
sented in Figure 5. The individual steps are described
in the following sections.

Figure 2.4: Relationship between the distortion magnitude and the measured
disparity(Figure taken from [4])

now using the Lambert W function(solve relation in form W(z)exp(W(z)) = z)
we solve our problem:

ỹ = W (−α1Dδ(u, v)exp(α0 − α1dk)) (2.19)

(d− dk)α1 = W (−α1Dδ(u, v)exp(α0 − α1dk)) (2.20)

d = dk +
W (−α1Dδ(u, v)exp(α0 − α1dk))

α1

(2.21)

The Lambert W function is transcendental. Therefore, an analytic solution
does not exist. The Solution is implemented in Matlab[15] and other mathemat-
ical packages, using an approximation(e.g. Newton’s method).

2.4 Raposo depth model

Raposo uses basically the same model as Herrera, due to different calibration
approach, there is the following difference:

dk = d+W (u, v)exp(−α1d) (2.22)

where W (u, v) = Dδ(u, v)exp(α0) (do not confuse with the Lambert W function):

d = dk +
W (−α1W(u, v)exp(−α1dk))

α1

(2.23)

Raposo also does not require the backward model.
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Chapter 3

State of the art

3.1 Related work

In this chapter are presented calibrations from Smisek [3], Herrera [3] and Raposo
[6]. The Smisek’s method precedes both Herrera’s and Raposo’s calibration.
Probably the most innovative way to calibrate the Kinect is present in [6]. Where
author calibrates both cameras at once, hence getting more information from each
of them. Raposo’s design is strongly influenced by Herrera and improves mainly
time complexity.

3.2 Smisek calibration

The process of calibration suggested by Smisek in [3] is the first method that takes
in account specification of RGBD camera. The approach requires additional IR
source. Hence both external IR source and the IR projector interfere with each
other. Therefore, it is better to switch between them. While other methods of
calibration remove this inconvenience, they simultaneously present other. This
method is fully automatic after the data are taken, provided that automatic
corner detector is at disposal. Smisek calibrates the depth camera and the RGB
camera separately.

3.2.1 Required data

Smisek [3] requires triples of disparity image, color image, and IR image of a
calibration pattern. For each triple, following informations are needed:

1. 3D coordinates of corners in calibration pattern and their reprojection into
RGB image plane.

2. 3D coordinates of corners in calibration pattern and their reprojection into
IR image plane.

visualization of corners in RGB image is in Figure 3.2.

11



3.2.2 RGB/IR camera calibration

Smisek calibrates each camera separately. Calibration uses Bouget’s calibration
toolbox [13] on each set of triples . Because Smisek uses external IR source, he is
capable of obtaining corners position from plane in IR image, making Bouget’s
calibration possible for IR images. Given model of the IR camera is treated as the
depth camera model with constant pixel shift. Smisek estimates the pixel shift
to be approximately 3 pixels in each dimension, giving following relation between
pixel in depth and IR image:

Xd = XIR +

[
−3

−3

]}
offset between IR and depth image (3.1)

Smisek obtained this relation using Sobel’s edge detector on a circular target
projection. Projectins of fitted circles in th IR image and the disparity image are
compared. The shift is then determined as a difference between centers in the IR
image and the depth image (Figure 3.1).

3D with Kinect 9

(a) IR image of a calibration checkerboard
illuminated by the IR pattern.

(b) IR image of the calibration checkerboard
illuminated by a halogen lamp with the IR
projection blocked.

(c) Calibration points extracted in the RGB
image.

(d) Calibration points in the Depth image.

Fig. 7 The calibration board in the IR, RGB and Depth images.
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(a) IR image with Depth data
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(b) Fitted Depth and IR image targets

Fig. 8 Illustration of the IR to Depth image shift.

Figure 3.1: Shift of IR image against depth image (figure is taken from [3])

3.2.3 Depth camera calibration

Smisek [3] reconstructs the 3D coordination of every IR corner, using the model
of the IR camera and Equation 3.1. Smisek obtains multiple mapping (zIR, d)
between the disparity and the depth. Parameters c0, c1 of the model mentioned
in section 2.2 are estimated using (zIR, d). Suggested approach is to minimize
the least square error between zIR and zd, where zd is the depth computed from
disparity and estimated parameters c0, c1 according to Equation 2.10.
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3.2.4 Disparity distortion estimation

Smisek’s solution [3] consists of capturing multiple depth images of a flat wall
perpendicular to axis z of the camera at known depth z∗, hence all disparity
values should be the same. After a plane is fitted and the disparity measured,
the difference between the fitted plane depths z∗ and the depths from disparity
(Equation 2.10) zd still exhibits complex residual error.

zerr(u, v) = z∗ − zd(u, v) (3.2)

Smisek’s solution consists of adding offset to each pixel separately, using mean
error from fitted planes and later uses this offset to adjust further measurements:

Zδ(u, v) =

∑
N

(z∗ − zd(u, v))

N
(3.3)

Which completes calibration of Smisek’s model and gives whole relation be-
tween depth and disparity Equation 2.10.

3.3 Herrera calibration

Herrera calibrates his model, which is described in chapter 2. The calibration
consists of several steps:

1. Initialization:

(a) RGB camera initialization.

(b) Depth camera initialization (or using preset depth model).

(c) Relative pose initialization (or using preset depth model).

2. Nonlinear optimization of every parameter except disparity distortion.

3. Disparity distortion estimation.

4. Repeating 2. and 3. until maxim number of steps is exhausted or the model
of the RGBD camera is not improving.

The corners w.r.t. the depth camera reference frame {D} are unknown. The
information can not be simply extracted, because the projected speckle pattern
from the IR projector creates a high noise in IR image. The position of corners
w.r.t. the image reference frame and w.r.t. the world reference frame {W} is
known only for the RGB image.

3.3.1 Required data

Herrera [4] requires pairs of disparity and color images of the calibration pattern,
where for each pair following informations are needed:

1. 3D points of corners and their reprojection in the 2D camera plane.

2. A polygon covering the calibration plane in each disparity image.

Visualization of additional information is in Figure 3.2

13



 

 
calibration plane boundary
corners

Figure 3.2: Visualization of data required for Herrera’s calibration (The figure
is taken from Herrera’s toolbox [4]), notice that calibration plane boundary is
actually corresponding to disparity image while this figure is color image.

3.3.2 Initialization

Corners based calibration of color camera

The initial guess is obtained through the method [10]. The procedure is very
similar to initialization in Bouget’s calibration and requires only pairs of corners
in both {W} coordinates and image coordinates. Herrera also uses improvement
of Zhang’s method [10] by data normalization as suggested by Zhang himself.

Calibration of depth camera

Herrera suggests a method similar to initialization of the color camera. The
checkerboard pattern is not visible in disparity image, hence initialization uses
only four extreme corners in calibration plane. These four points are picked
manually and the initial guess is very inaccurate. This is the reason why in the
Herrera’s toolbox itself this method is replaced by fixed initial values.

Relative pose estimation

Relative pose between the color camera and the depth camera is challenging to
obtain. Mainly because the data for the depth camera describing the position
of the calibration pattern in the calibration plane are unknown. Herrera uses
coplanarity of {V} and {W}, hence both planes have the same equation nTx−δ =
0, where n = [0, 0, 1]T and δ = 0 in both {V} and {W}. Now using the relative
pose between {W} and {C} WTC = {WRC ,

W tC} and dividing WRC into its
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columns WRC = [rc1, rc2, rc3], we can transform the plane into the color camera
reference frame:

nc = rc3 and δc = rTc3
W tC (3.4)

with similar procedure, plane equation in the depth camera reference frame
{D} is obtained.

nd = rd3 and δd = rTd3
V tD (3.5)

Herrera is collecting plane equations for each images pair, thus getting follow-
ing matrices:

MC = [~nc1, ~nc2, ..., ~ncn] (3.6)

MD = [~nd1, ~nd2, ..., ~ndn] (3.7)

bC = [δc1, δc2, ..., δcn] (3.8)

bD = [δd1, δd2, ..., δdn] (3.9)

The problem is therefore an overdetermined system and the solution is in
form:

CR
′

D = MDMT
C (3.10)

CtD = (MCMT
C)−1MC(bC − bD)T (3.11)

where CR
′

D tends not to be orthonormal. Valid rotation matrix can be ob-
tained through SVD: CR

′

D = UV T , where USV T is the SVD of CR
′

D.

3.3.3 Non-linear optimization

Herrera uses non-linear optimization to improve both intrinsic and extrinsic pa-
rameters of both color and depth model. Only parameters that are optimized
separately is the disparity distortion, due to waste amount of variables in the
disparity distortion model. A non-linear cost function which is minimized is in
form:

c =

∑
|p̂c − pc|

2

σ2
c

+

∑∣∣∣d̂k − dk∣∣∣2
σ2
d

(3.12)

where p̂c present the reprojected corner position from {W} to image plane and
d̂k is the undistorted disparity estimation from the fitted plane for the calibration
pattern and pc, dk present measured values using the Kinect model. The task can
be reformulate to following equation:

LC , LD,
Wi TC ,

DTC = arg min
LC ,LD,

WiTC ,DTC

∑
|p̂c − pc|

2

σ2
c

+

∑∣∣∣d̂− d∣∣∣2
σ2
d

(3.13)
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The optimization is carry on by Levenberg-Marquardt algorithm using a func-
tion dedicated for non-linear optimization lsqnonlin from [15].

3.3.4 Disparity distortion estimation

Herrera calibrates the distortion of the depth model described in chapter 2 sep-
arately from the main non-linear minimization. However the disparity distortion
estimation remain part of the same close-loop as the main non-linear minimiza-
tion procedure. The target cost function, which Herrera tries to minimize [4]:

cd =
∑
image

∑
u,v

(d̂+ Dδ(u, v)exp(α0 − α1d̂)− dk)2 (3.14)

where d̂ presents the raw distortion captured by the Kinect and dk is the pre-
dicted undistorted disparity. Following two steps are repeated until the disparity
distortion model stop improving or the improvement is negligible.

Dδ optimization

With fixed α, Herrera computes for each valid pixel(i.e. for each pixel which
lay in the calibration plane) error for every measured and predicted pair (d̂, dk)i
laying, in this particular pixel:

d̂i − dk,i = Dδ,i(u, v)exp(α0 − α1d̂) (3.15)

since α is fixed, we get following expression:

Dδ,i(u, v) =
d̂i − dk,i

exp(α0 − α1d̂)
(3.16)

Such Dδ,i(u, v) is chosen, that least-square error for every measured pair in Equa-
tion 3.15 is minimized.

α optimization

Second step consists of selecting a subset from all disparity data and perform
nonlinear minimization using levenberg-marquardt algorithm with every modeled
parameter fixed, except α.

3.4 Raposo calibration

Raposo [6] calibrates modified Herrera’s model. Small difference between dispar-
ity distortion models is described in chapter 2. The calibration consists of several
steps:

1. Initialization:

(a) RGB camera initialization.

(b) Preset Depth model.

(c) Plane registration in dual space (relative pose initialization).
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2. Nonlinear optimization of every parameter except the disparity distortion.

3. Disparity distortion estimation.

The corners w.r.t. the depth camera reference frame {D} are unknown. The
information can not be simply extracted, because the projected speckle pattern
from IR projector creates high noise in IR image. The position of corner points
w.r.t. the image reference frame {C} and w.r.t. the world reference frame {W}
is known only for the RGB image.

3.4.1 Required data

Raposo requires the same data as Herrera. Since he uses preset depth model,
Raposo doesn’t need four corners of the calibration plane in the disparity image.

3.4.2 Initialization

Corners based calibration of color camera

An initial guess is obtained with Bouguet’s toolbox [13].

Calibration of depth camera

Initialization of the depth camera intrinsic is omitted. Raposo instead uses preset
values. Similar to approach used in Herrera’s toolbox.

Relative pose estimation

Raposo is seeking the transformation between {D} and {C} with another ap-
proach that he claims is robust. Briefly:

1. Select each triple of calibration planes w.r.t. the {D} and the {C} reference

frame(Π
(i)
D ,Π

(i)
C , i = {1, 2, 3})

2. For every triples of planes pair and corresponding transformation DTC , se-
lect the one that minimize Euclidean distance in dual space between the
reprojected plane ΠC into {D} and the corresponding plane ΠD.

3.4.3 Non-linear optimization

Raposo’s non-linear optimization is based on Herrera non-linear optimization.
Raposo’s approach is removing the error that he notice under poor initialization.
According to Raposo [6], the Herrera’s method face with a depth drift. Illustration
of the problem is in Figure 3.3. Raposo solves this problem by adding another
member into the cost function(Equation 3.12).

c =

∑
|p̂c − pc|

2

σ2
c

+

∑∣∣∣d̂k − dk∣∣∣2
σ2
d

+ β
∣∣∣λ̂− λ∣∣∣2 (3.17)

The parameters have the same meaning as in Equation 3.12. Additional
parameters β, λ, λ̂ are meant to prevent the depth drift. λ represent Euclidean
distances between points of an object and λ̂ their corresponding projection. β is
only weighting factor, allowing to change importance of additional term.
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Figure 4. The problem of occurring a drift in scale. The pose of grid
in the color camera reference frame is fixed, while the depth camera may
observe the calibration plane at different depths.

2) From equation 8 we can write

n
T

dindin
T

ciR
T
t− n

T

dindi + n
T

diRnci = 0. (9)

Each pair Π
(i)
c , Π

(i)
d gives rise to a linear constraint

in the entries of the translation vector t, which can be

computed by t = A
−1

b with

A =

⎡

⎢

⎣

n
T

d1nd1n
T

c1

n
T

d2nd2n
T

c2

n
T

d3nd3n
T

c3

⎤

⎥

⎦
R
T,b =

⎡

⎢

⎣

n
T

d1nd1 − n
T

d1Rnc1

n
T

d2nd2 − n
T

d2Rnc2

n
T

d3nd3 − n
T

d3Rnc3

⎤

⎥

⎦
.

(10)

This plane registration algorithm provides the extrinsic cali-

bration of a camera and a depth sensor in the case of N = 3
correspondences. For N > 3 pairs of planes, each triplet of

plane-plane correspondences gives rise to one solution, and

the best estimation can be found using an hypothesize-and-

test framework:

1) For each possible triplet of pairs of planes Π
(i)
c , Π

(i)
d ,

find transformation T.

2) For each solution T, compute the depth camera coor-

dinates Πdj for all Π
(i)
c using (6), and determine the

euclidean distance lj in the dual space between the

computed Πdj and Π
(i)
d .

3) Each T is ranked by rank(T) =


j max(t, lj), where
t is a predefined threshold. The correspondences for

which lj < t are considered as inliers and T for which

rank(T) is minimum is the pose estimation.

Only the inlier correspondences are used for optimization.

C. Non-linear minimization

We observed experimentally that under poor initialization

and a small number of images, Herrera’s method tends to

drift in depth. After careful analysis, we came up with

an hypothesis for this observation. Figure 4 depicts the

problem. From equation 3, it can be seen that if c0 and

c1 are affected by a scale component, this will reveal in

a depth scaling, which consequently originates a shift in

the z component of td. Note that the rotation component

is not affected, i.e., R

d = Rd in Figure 4. This does not

change the reprojection error in a given pixel because the

expected disparity in that pixel is the same. Since Tc remains

unchanged, the translation between the two sensors t is also

shifted, originating an error in the extrinsic calibration.

Thus, we change the cost function 7 by adding a term that

accounts for the difference between the Euclidean distances

between points of an object λ and the measured distances

between those points λ̂. Our objective function is, then,

min
Ic,I



d
,T,Tci

e =



||x̂c − xc||
2

σ2
c

+



(d̂− d)2

σ2
d

+ β|λ̂− λ|2,

(11)

where β is a weighting factor which should be sufficiently

high. This information could be included as a hard con-

straint. However, since we do not know how accurate the

measurements are, we decided to include it as a penalty

term. This means that our algorithm requires at least one

image of an object with known dimensions, for avoiding

the calibration to drift in scale.

D. Depth distortion model estimation

The optimized intrinsic and extrinsic calibrations can be

used for estimating the depth distortion model of equation

4. Note that it can be rewritten as

du = d+W(xd, yd)e
−α1d, (12)

where W(xd, yd) = D(xd, yd)e
α0 .

For a pair of disparity maps where a given pixel xd belongs

to the calibration plane in both maps, there are two corre-

spondences (d̃1, d1) and (d̃2, d2), where d is the measured

disparity and d̃ is the expected disparity computed by

knowing the plane equation. Using the two correspondences,

we can write the system of equations



d̃1 − d1 = W(xd, yd)e
−α1d1

d̃2 − d2 = W(xd, yd)e
−α1d2

(13)

and find α1 by

α1 =
ln d̃1−d1

d̃2−d2

d2 − d1
. (14)

For every possible pair of correspondences, we compute an

estimate for α1 and consider their average as the final result.

Knowing α1, W can directly be estimated for the pixels

which belong to a known plane. For pixel (xd, yd), if

more than one value is found, the average of all values is

considered. Although it is not possible to find individual

estimates for α0 and D, this method allows to recover the

whole depth distortion function. Like Smisek et. al [12], we

perform the estimation in open-loop. However, since we use

Herrera’s model, we obtained better accuracy.

346

Figure 3.3: Visualization of the depth drift (transformation DtC is correcting the
misfitted depth model).

3.4.4 Disparity distortion estimation

Raposo’s slightly different model is calibrated noticeably easier and faster. Mainly
by eliminating the need of non-linear calibration. The model parameters are
collected in two step in open loop(i.e. parameters are not use in main non-linear
calibration procedure).

α1 optimization

Given two measurements at the same pixel we get multiple pairs (d̂, dk)i that
satisfies the following equation:

dk,i − d̂i = Wδ(u, v)exp(−α1d̂i) (3.18)

for each pixel where we have two or more measurement, we take every subset
of cardinality two and by substituting these value into Equation 3.21, we obtain
system of equations:

dk,1 − d̂1 = Wδ(u, v)exp(−α1d̂1)

dk,2 − d̂2 = Wδ(u, v)exp(−α1d̂2)

}
equation system (3.19)

from which is easy to compute α1 by eliminating Wδ(u, v) in Equation 3.19:

α1 =
ln

dk,1−d̂1
dk,2−d̂2

d̂2 − d̂1
(3.20)

As estimation of α1 Raposo [6] suggest average of all α1 computed by Equa-
tion 3.20.
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Wδ optimization

With estimated α1, we can easily compute Wδ from Equation 2.12:

Wδ(u, v) = (dk,i − d̂i)/exp(−α1d̂i) (3.21)
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Chapter 4

Contribution

According to goal of my work, Smisek’s method was extend/changed by some of
the Herrera’s and Raposo’s ideas. The results are available in chapter 5. Brief
list of suggested changes:

1. Initialization using Bouget’s calibration toolbox (basically Smisek’s calibra-
tion).

2. Nonlinear optimization (modified Herrera).

3. Disparity distortion estimation (modified Raposo).

4.1 Required data

My method requires the same data as Smisek’s method in chapter 3. TheOnly
additional information is the plane mask (list of valid disparity points in each
image).

4.2 Data collecting

I altered program Record (program for capturing RGB and depth image pair
from library freenect) to better suit my purpose (capturing IR e.c.) and further
improved by wrapping the modified program into the Matlab and equipping it
with GUI. Short description of the capturing tool is in the Appendix A.

4.2.1 Artificial data

I also created an artificial data generator. The generator creates triples of images,
expected extrinsic parameters for selected intrinsic parameters, and desired error.
Artificial data can be used to measure robustness of calibration algorithm as well
as it’s precision. The result are available in chapter 5

Artificial data generating

The purpose of the artificial data generator is to convert intrinsic parameters into
the calibration data (disparity and IR/RGB corners) and extrinsic parameters.
Algorithm consist of following steps:
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1. An input consists of intrinsic of both IR and RGB camera and depth model
(without model of disparity distortion).

2. Generate rotation of image plane around axis x,y called R.

3. Generate random distance d of camera (0.5-4 m) with uniform distribution.

4. Compute transition t such, that center of chessboard pattern will have
coordinates [0, 0, d, 1]T = WTCsW , where WTC is transformation given by
R, t with same meaning as in chapter 2. The parameter sW denotes center
of calibration pattern.

5. Generate pairs of corners in image plane and in world reference frame using
intrinsic model and obtain extrinsic parameters.

6. The same pair is obtained for the IR camera, using the relative pose between
the IR camera and the RGB camera, and the IR camera intrinsic.

7. A plane spanning all corners is generated and by using IR camera param-
eters, offset between IR/depth camera, and relation between disparity and
depth the disparity image is generated.

8. Apply noise on result. Each corner is randomly shift (vector with normal
distribution of magnitude and uniform rotation). To each disparity value
is added normaly distributed scalar.

4.3 Corner extraction

I combined some features of Bouget’s toolbox [13] with Rufli toolbox [11], which
makes corners selection fully automatic (i.e. user doesn’t have to select four
extreme corners). Selecting four extreme corners is needed only if automatic
corner finder is unable to process images. There is no need to distinguish between
IR and RGB image during corner extraction. An example of corners selected in
image captured by previously noted capturing tool is in Figure 4.1.

4.4 Plane selection

I further enhanced plane selection using additional information from IR image.
The approach consists of two steps:

1. Select initial plane by finding convex hull of corners extracted from IR
image.

2. Do Smisek’s calibration to obtain estimation of IR camera parameters.

3. Find initial plane in IR camera frame from parameters in step 2.

4. Find mean error and standard deviation for initial plane.

5. Initialize BFS (bread-first search) with convex hull.
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Image 24−48 / 48 corner have been found. Red: initial detection. Blue: enhanced

 1  2  3  4  5  6  7  8

 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

Figure 4.1: Sample output of corner detection program [11].

6. Search image using BFS and include those points whose error is reasonable
close to plane (I used three times standard deviation of error for starting
plane).

7. Return set of points found by BFS and set of points laying on initial plane
as final plane incident with calibration pattern.

My approach allows to get more information from captured data while keeping
procedure automatic and BFS assures continuos plane. Resulting plane mask
does not have to be a polygon anymore. The roblem is that approach is not
robust (can include/exclude wrong points forming wrong plane) and is computer
time consuming.

4.5 Initialization

The initialization consists of calibrating using Smisek’s method. Using both RGB
and IR data in initialization step offers certain improvement over Herrera initial-
ization. Such approach does not require static initialization model or does not
rely on unstable depth image corners. Hence whole calibration is applicable on
devices which differ noticeably from Kinect and also reduces chance of getting
stuck in local optimum by bringing the initialized model close to final model
(Especially useful for devices which differ from preset model of Depth camera).
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4.5.1 Difference from Smisek’s method

Obtaining transformation between color and depth camera

Both Raposo’s [6] and Herrera’s [4] way to get relative pose is obsolete, hence we
obtained IR images which offer much simpler and accurate procedure to derive
relative pose. Smisek’s [3] calibration of RGBD camera is lacking approach to
obtain relative pose between color and depth camera. I suggest following method
to obtain relative pose between depth and color pair of cameras: The initialization
step provide pair of transformation WTC ,

W TD, for each pose:

WTC · xplane,w = xplane,c (4.1)

WTD · xplane,w = xplane,d (4.2)

our goal is transformation DTC for which should:

DTC · xplane,d = xplane,c (4.3)

by unfolding transformation DTC

WTC ·D TW · xplane,d = xplane,c (4.4)

hence transformation we seek is in form:

DTC = WTC ·W T−1
D (4.5)

Such transformation is produced for each scene. Since the relative pose be-
tween depth camera coordinates {D} and {C} is constant for every scene, the
one minimizing reprojection error is chosen:

DT∗
C = arg min

DTC

∑
|p̂c − pc|

2

σ2
c

+

∑∣∣∣d̂− d∣∣∣2
σ2
d

(4.6)

this can be done by simply trying all obtained transformation.

4.6 Non-linear minimization

Next step consists of choosing non-linear minimization. In this step I experienced
problems with Herrera calibration model. Non-linear minimization allows depth
model to significantly shift from optimal model while improving model perfor-
mance, even for waste amount of image (∼ 24). I inspired by Raposo’s solution
and removed this error by adding additional term to cost function. New cost
function is in form:

c =

∑
|p̂c − pc|

2

σ2
c

+

∑∣∣∣d̂k − dk∣∣∣2
σ2
d

+

∑
|p̂ir − pir|

2

σ2
ir

(4.7)

where last term express IR camera reprojection error. Compare to Raposo’s
approach this additional term is more accurate, remains dimensionless, and does
not require additional information about plane. Performance of whole non-linear
minimization is thus improved.
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4.7 Disparity distortion estimation

Final step consists of calibrating disparity distortion estimation. I decided to
choose Raposo’s approach. Description is provided in chapter 3.
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Chapter 5

Results

In this chapter are published results for three calibration methods discussed be-
fore.

5.1 Data set description

I captured two data sets and generate two artificial data sets.

5.2 Real data sets

Real data sets were taken using planar checkerboard pattern of size A4 on a
wall. Sample image is in Figure 5.1. First data set consist of 18 images triples
(RGB,IR,disparity), where each triple were taken in different position(either dis-
tance or orientation differ). First data set is noted data set I. Second data set
consists of 25 image triple, where each triple were taken according to Herrera’s
toolbox documentation [5]. Herrera advice to obtain four types of images(frontal
plane,plane rotated around the X axis,plane rotated around the Y axis, and full
planar surface for distortion correction). Since Herrera claims that minimum
number of images of each kind is five and I don’t need the last type(most of the
images contain flat wall), I capture the other types more than five times. The
second data set is called data set II. I captured similar data set with better light
condition called data set III. And finally I also added data set IV identical with
data set used by Smisek in [2].

5.3 Artificial data sets

Artificial data sets generator is described in chapter 4, I captured two data sets,
one of total 25 images pair and second of total 5 images pair. These image triples
are used mainly for determining ability of calibrations to obtain original intrinsic.

5.4 Cross-validation

In one round a random training subset is obtained from whole data set and is
used to calibrate RGBD camera model. Rest of data is used for validation (a
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Figure 5.1: Sample of RGB image used for calibration procedure.

testing subset). In next rounds the exactly same procedure is repeated to reduce
the variability in resulting errors evaluation.

5.5 Results structure

Results for each calibration(Smisek’s [3], Herrera’s [4], and my calibration), are
in following format:

1. RGB camera model error

2. IR camera model error

3. Depth camera model error

4. RGB camera error box plot

5. Depth camera error box plot

6. Disparity distortion effect

For step 1-3, I expected the errors to follow normal distribution, and therefore
present mean value µ and standard deviation σ.

5.5.1 RGB camera model error

RGB camera model error is Euclidean distance between measured corners and
its reprojected position. Example with enhanced error scale(error is usually sub-
pixel), can be seen in Figure 5.2. The resulting mean value and standard deviation
is shown for each data set.
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Figure 5.2: Sample of reprojected corners from {W} to image plane using RGB
camera model.

5.5.2 IR camera model error

IR camera model error is evaluate in the same manner as RGB camera model
error.

5.5.3 Depth camera model error

Depth camera model error is absolute distance between measured and expected
disparity value. The results are present in similar way as IR/RGB camera model
error. Only difference is in box plot and disparity distortion effect. I decided to
omit absolute value to show orientation of error.

5.5.4 Camera error via box plot

Box plot from [15], allow to represent statistic information related to given image.
The edge of the box are the 25th and 75th percentiles, the black line represent
the most extreme data not considered outliers. The red crosses represent outliers.

5.5.5 Disparity distortion effect

Final statistic compare the error disparity-wise with and without disparity dis-
tortion correction. The resulting median for each disparity value is plotted.

5.6 Smisek’s calibration results

The result of Smisek calibration are collected in following table:
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Table 5.1: Smisek calibration results
Camera: Color[px] IR[px] Depth[kdu]
parameter: µ σ µ σ µ σ
data set I 0.175 0.086 1.084 0.713 2.446 1.798
data set II 0.238 0.172 1.171 0.839 5.568 3.578
data set III 0.180 0.106 0.394 0.374 1.539 1.117
data set IV 0.118 0.068 0.195 0.104 0.747 0.762

Intrinsic for data set III:

Table 5.2: Color camera intrinsic (Smisek calibration)
focal length[px] principal point[px]

524.453 524.488 305.704 245.834
k1 k2 k3 k4 k5
-0.062 0.576 -0.005 -0.006 0.000

Table 5.3: Depth camera intrinsic (Smisek calibration)
focal length[px] principal point[px]

588.372 588.082 307.321 229.502
k1 k2 k3 k4 k5
-0.245 1.562 -0.005 -0.008 0.000

Table 5.4: Depth camera intrinsic (Smisek calibration)
c0 c1
3.15856 -0.00291

Table 5.5: Smisek time complexity (Data set III)
µ [s] σ [s]

13.311 0.691
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Figure 5.3: Box plot from [15], description of figure is in subsection 5.5.4
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Figure 5.4: Box plot from [15], description of figure is in subsection 5.5.4
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Figure 5.5: The dependency of disparity error on measured disparity, both with
and without disparity distortion correction. Error for each disparity value is
median from errors on this particular disparity value.

5.7 Herrera’s calibration results

The result of Smisek calibration are collected in following table:

Table 5.6: Herrera calibration results
Camera: Color[px] IR[px] Depth[kdu]
parameter: µ σ µ σ µ σ
data set I 0.178 0.088 75.590 97.268 0.731 0.590
data set II 0.248 0.192 2.250 1.167 0.962 1.986
data set III 0.181 0.107 1.631 1.132 0.652 0.511
data set IV 0.118 0.067 2.556 1.853 0.525 0.408

Intrinsic for data set III:

Table 5.7: Color camera intrinsic (Herrera calibration)
focal length[px] principal point[px]

522.233 521.977 306.908 247.344
k1 k2 k3 k4 k5
-0.029 0.265 -0.002 -0.006 -3.547
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Table 5.8: Depth camera intrinsic (Herrera calibration)
focal length[px] principal point[px]

562.229 584.050 334.965 239.949
k1 k2 k3 k4 k5
0.000 0.000 0.000 0.000 0.000

Table 5.9: Depth camera intrinsic (Herrera calibration)
c0 c1
3.17800 -0.00293

Table 5.10: Herrera time complexity (Data set III)
µ [s] σ [s]

94.379 11.337
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Figure 5.6: Box plot from [15], description of figure is in subsection 5.5.4
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Figure 5.7: Box plot from [15], description of figure is in subsection 5.5.4
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Figure 5.8: The dependency of disparity error on measured disparity, both with
and without disparity distortion correction. Error for each disparity value is
median from errors on this particular disparity value.

5.8 My calibration results

The result of Smisek calibration are collected in following table:
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Table 5.11: My calibration results
Camera: Color[px] IR[px] Depth[kdu]
parameter: µ σ µ σ µ σ
data first set 0.182 0.095 0.659 0.523 0.794 0.567
data big 1 0.253 0.223 0.389 0.316 1.187 1.403
data big 2 0.197 0.116 0.315 0.359 0.726 0.529
Smisek data set 0.121 0.067 0.196 0.114 0.553 0.417

Intrinsic for data set III:

Table 5.12: Color camera intrinsic (My calibration)
focal length[px] principal point[px]

510.850 507.605 303.564 253.058
k1 k2 k3 k4 k5
0.108 1.544 0.002 -0.023 -14.390

Table 5.13: Depth camera intrinsic (My calibration)
focal length[px] principal point[px]

574.610 574.164 328.351 232.072
k1 k2 k3 k4 k5
-0.251 1.659 -0.005 -0.007 0.000

Table 5.14: Depth camera intrinsic (My calibration)
c0 c1
3.19066 -0.00293

Table 5.15: My calibration time complexity (Data set III)
µ [s] σ [s]

89.191 9.464
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Figure 5.9: Box plot from [15], description of figure is in subsection 5.5.4
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Figure 5.10: Box plot from [15], description of figure is in subsection 5.5.4
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Figure 5.11: The dependency of disparity error on measured disparity, both with
and without disparity distortion correction. Error for each disparity value is
median from errors on this particular disparity value.

5.9 Tests aiming at comparing Herrera’s and

my approach

I performed multiple test with artificial data and data set III. First is presented
visualization of cost function progression during calibration process in each cal-
ibration step. Later, I am going to show how does Herrera’s and my modified
calibration deal with artificial data. Artificial data input intrinsic are similar to
ground truth and present good basis for such validation.
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5.9.1 Cost function
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Figure 5.12: Graphs of improvement of cost in each step. My calibration for same
data, take only one step to get similar result. Graph obtained using data from
data set III.

5.9.2 Artificial data

Next test consist of calibrating data constructed artificially, as described previ-
ously. The input intrinsic are:

Table 5.16: Color camera intrinsic (generating intrinsic)
focal length[px] principal point[px]

500 500 310 240
k1 k2 k3 k4 k5
-0.008 -0.029 0 -0.002 0.000

Table 5.17: Depth camera intrinsic (generating intrinsic)
focal length[px] principal point[px]

580 580 320 240
k1 k2 k3 k4 k5
-0.103 0.434 0.005 0.003 0.000
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Table 5.18: Depth camera intrinsic (generating intrinsic)
c0 c1
3.12000 -0.00286

The noise standard deviation is σrgb = 0.2[px], σir = 0.2[px], σir = 0.7[kdu].
The noise mean value is 0.

My calibration resulting intrinsic

Table 5.19: Herrera’s calibration results
Camera: Color[px] IR[px] Depth[kdu]
parameter: µ σ µ σ µ σ
small data set 0.163 0.107 0.201 0.134 0.585 0.458
big data set 0.000 0.000 0.000 0.001 0.243 0.146

Table 5.20: Color camera intrinsic-results of calibrating small data set
focal length[px] principal point[px]

499.769 499.203 317.815 233.722
k1 k2 k3 k4 k5
-0.316 11.293 -0.004 0.004 -120.754

Table 5.21: Depth camera intrinsic-results of calibrating small data set
focal length[px] principal point[px]

580.103 579.559 315.418 238.142
k1 k2 k3 k4 k5
-0.071 -0.233 0.001 0.010 0.000

Table 5.22: Depth camera intrinsic-results of calibrating small data set
c0 c1
3.11299 -0.00285

Table 5.23: Color camera intrinsic-results of calibrating big data set
focal length[px] principal point[px]

500.002 500.002 309.999 240.000
k1 k2 k3 k4 k5
-0.008 -0.031 -0.000 -0.002 -0.000
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Table 5.24: Depth camera intrinsic-results of calibrating big data set
focal length[px] principal point[px]

580.000 580.000 317.000 237.000
k1 k2 k3 k4 k5
-0.103 0.434 0.005 0.003 0.000

Table 5.25: Depth camera intrinsic-results of calibrating big data set
c0 c1
3.12002 -0.00286

Herrera resulting intrinsic

Test consist of calibrating data constructed artificially, as described previously.
The input intrinsic are:

Table 5.26: Herrera’s calibration results
Camera: Color[px] IR[px] Depth[kdu]
parameter: µ σ µ σ µ σ
small data set 0.174 0.110 108.336 203.170 0.532 0.424
big data set 0.000 0.000 0.087 0.055 0.244 0.146

Table 5.27: Color camera intrinsic-results of calibrating small data set
focal length[px] principal point[px]

499.023 499.182 310.889 232.310
k1 k2 k3 k4 k5
-0.035 0.538 -0.005 -0.001 -0.070

Table 5.28: Depth camera intrinsic-results of calibrating small data set
focal length[px] principal point[px]

583.495 587.161 308.449 237.279
k1 k2 k3 k4 k5
0.000 0.000 0.000 0.000 0.000

Table 5.29: Depth camera intrinsic-results of calibrating small data set
c0 c1
3.16712 -0.00290

Table 5.30: Color camera intrinsic-results of calibrating big data set
focal length[px] principal point[px]

499.962 499.976 309.919 240.020
k1 k2 k3 k4 k5
-0.003 -0.191 -0.000 -0.002 1.400
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Table 5.31: Depth camera intrinsic-results of calibrating big data set
focal length[px] principal point[px]

580.451 580.719 317.642 237.151
k1 k2 k3 k4 k5
0.000 0.000 0.000 0.000 0.000

Table 5.32: Depth camera intrinsic-results of calibrating big data set
c0 c1
3.11936 -0.00285
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Chapter 6

Discussion

This chapter summarizes chapter 5.

6.1 Summary

I compared both approach and rewrite following advantages/disadvantages of my
calibration compare with Herrera’s calibration:

6.1.1 Calibration improvement

Designed calibration brings following improvements:

1. The resulting difference between fx , fy in depth model is smaller. The
difference is noticeable (check Table 5.13 and Table 5.9). I notice similar
pattern in each tested data set. Herrera’s method is more vulnerable to
over-fitting.

2. The time complexity of non-linear minimization is improved greatly. But
overall time complexity is improved only slightly. The reason is disparity
distortion correction. Improvement of non-linear minimization is direct
consequence of better initial calibration.

3. The final calibration done on measurements shows much better calibration
of IR camera. This is valid for every tested data set. I anticipate this
behavioral, since my calibration takes in account IR data.

4. The results on artificial data show that even small data set allows good
calibration of depth camera. Herrera’s calibration struggles with local op-
timum.

5. Eventually Herrera’s calibration may not work with calibration parameters
far from optimum (preset depth model), Smisek’s calibration used for ini-
tialization does not suffer such problem. Therefore, my calibration is better
suited for different RGBD cameras.
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6.1.2 My calibration disadvantage

1. The method does not improve depth camera performance. Results are bet-
ter than Smisek’s calibration, but not better than Herrera’s calibration.
The reason is probably combined calibration of depth camera with IR and
depth data. Such approach creates more constrains for non-linear optimiza-
tion algorithm. On the other hand, mean values and especially standard
deviations are similar.

2. On small artificial data set, method has problem with color camera distor-
tion.

3. Method needs data triples instead pairs. Additional data are also difficult
to obtain ( process requires external source of IR light).

4. Offset between IR and depth camera remains constant. This doesn’t allow
calibration to optimally calibrate on device with different offset.

6.2 Recommendation

I transformed some of the disadvantages and other problem I occurred into fol-
lowing recommendation for improvement:

1. The IR camera non-linear term in Equation 4.7 could be removed and strat-
egy similar to the Neyman-Pearson task could be used (i.e. minimize orig-
inal Equation 4.7 under condition that the IR term will not exceed some
predefined value).

2. Alternative could be variable offset, so far, I was using the constant shift
between the IR and the depth camera. Adding other two parameters (shift
vector) into the non-linear minimization could achieve two improvements.
First, even wrongly given offset could reach its optimum. Second, the IR
and the depth camera model would obtain 2 degree of independence that
would likely improve the calibration results. On the other hand, this feature
may reduce the ability of the IR term to prevent the depth model from shift
towards locale optimum.

3. Raposo’s disparity distortion model is achieving slightly better result then
Herrera’s (at least in open loop). However the selection of dumping parame-
ter α1 in subsection 3.4.4 is inconvenient. After careful analyse, I found that
the result vary significantly on selected disparity points subsets. I believe
that with correct data preproccesing, the method could be more stable. I
tried rejecting extreme values and median without success (i.e. stabilise
result no matter the selected subset). I abandon this matter without any
improvements.

4. After analyzing captured data, I came to conclusion that parameters α1 is
related to rounding error in relation Equation 2.11. It follows that error in
greater distance is more likely to be rounded (i.e. the more far the error is, it
is more likely it will be neglected because of quantization). This explain the

44



dumping tendencies of residual depth error and could be used to compute
dumping parameters directly or at least obtain guess.

5. The Smisek data offers better calibration quality! A3 calibration plane is
possibly better.
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Chapter 7

Conclusions

I compared three calibration concepts and created new calibration method. My
calibration improves its predecessor in accuracy (Smisek’s calibration) and ro-
bustness (Herrera’s calibration). The calibration uses Smisek’s calibration in
initialization step and takes into account the overall performance (i.e. minimiz-
ing the error for IR, depth and color data simultaneously). I also automized plane
selection, hence make preprocessing of calibration data simpler.The algorithm re-
quires a simple planar checkerboard pattern on a flat surface and an external IR
source.

I applied the disparity distortion model of Raposo and achieved slightly better
results then Herrera’s model. The final calibration was tested on artificial data
and proved ability to better fit model that differ from preset depth camera model
used by Herrera. I believe that suggested calibration is better suited for RGBD
cameras with unknown intrinsic estimation.

All three calibrations, automatic corner finder, visualization methods, statistic
computation, exporting tools, and artificial data generator are part of electronic
attachment of this thesis. I also included the capturing tool. Basic information
are in appendix. I concluded that requirements of my thesis were met.
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Appendix A

Capturing tool

Figure A.1: capturing tool GUI screenshot

Capturing tool allows to capture IR and RGB+disparity image, change num-
bering, delete captured image, and previewing images before capturing.
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Appendix B

Calibration toolbox

Figure B.1: calibration toolbox GUI screenshot

Calibration GUI was designed to help me with my work. GUI allows to quickly
change data folder, and cross-validation options. It has some options to visualize
results (plotting position of camera, reprojection image, etc.) and computing
error. Exporting options are meant to simplify table writing in LATEX.
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