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May 11, 2014



.



Declaration of Authorship

I hereby declare that I have completed this thesis independently and that I have listed

all the literature and publications used.

I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000

Sb. (copyright law), and with the rights connected with the copyright act including the

changes in the act.

Signed:

Date:

iii



.
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Pecháček for helping me to get the view on CG industry from artistic perspective. My

family for supporting me whatever I decide to do and of course to all my friends who

survived me writing this thesis and are still my friends. Thank you.”

Josef Kortan



.



Abstract

The main topic of this thesis is an architectural visualization in distributed VR systems.

It is focused on Cave automatic virtual environments. The final output is a visual-

izer prototype using real-time raytracing techniques with use of the NVIDIA R© Optix

framework. This thesis also dicsusses 3D rasterization techniques, because they are still

indispensable parts of a real-time architectural visualization, according to a research

made at the beginning.

Czech Translation

Hlavńım tématem této diplomové práce je vizualizace architektury v distribuovaných

VR systémech se zaměřeńım na CAVE. Výsledkem této práce je vizualizačńı protopyp

založený na technologii NVIDIA R© Optix využ́ıvaj́ıćı metody vrháńı paprsk̊u v reálném

čase. Práce se ovšem také zabývá resterizačńımi technikami vizualizace, které jsou podle

poznatk̊u źıskaných během tvorby této práce stále nepostradatelnou součást́ı architek-

tonické vizualizace.
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Chapter 1

Architecture Visualization

The topic of AV is in most cases based on modeling and rendering architecture in order

to create lifelike images (or videos). The final visualization of an architecture project

depends on its purpose. It is obviously a different situation when you try to sell a project

or to experiment with it for educational purposes.

The architects typically have a different approach how to present their work. Some of

them produce images on their own using a mixture of 3D modeling software, mostly

Figure 1.1: Example of AV from Treevillas series. Source [1]
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with postproduction software, such as Photoshop (this case mostly concerns students).

Big studios have a different approach; for them it can be more productive to hire a com-

pany providing visualization solutions. When I asked Jan Tůma (architect collaborator

on this project) about the rules for a good AV, the answer was quick:

“There are no rules.”

As an example I have chosen the visualization presented in figure 1.1, which was created

by Jacinto Monteiro (METRO CÚBICO DIGITAL1). To an untrained eye, it is difficult

to see that the picture was completely made as a 3D visualization. A few years ago it

would have taken hours to render an image like that, but thanks to GPGPU computing

we are able to produce images like this one in seconds 2.

We can divide AV into the following categories:

• still renderings

• walk-through and fly-by animations (movies)

• virtual tours

• realtime 3D renderings

• panoramic renderings

• light and shadow (sciography) study renderings

• renovation renderings (photomontage)

This thesis is mostly concentrated on realtime 3D renderings for CAVE.

1.1 AV in CAVE

CAVE is an immersive virtual reality system for visualization. In the world there are

many variations of this environment with projectors (or LCD panels) usually directed

1METRO CÚBICO DIGITAL is one of the companies providing full 3D AV solutions for clients all
over the world. You can see more of their work at http://metrocubicodigital.com/.

2For example see renderer OTOY’s Octane renderer, Blender’s Cycles, AAA Studio’s Furry Ball, etc.
which are the new generation of GPU renderers for real production.
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at different faces of a cube. The viewer stands in a cube and is able to move in a virtual

world by using a controller device, usually with a head tracking system. Among other

disciplines, CAVE occupies an essential place in an architectural visualization. When it

is used reasonably, it can help the society to create a better place to live in. For exam-

ple, it could be used to help young architects to obtain skills needed for well-designed

architecture in a real environment.

1.2 Commercial Solutions

There exist many commercial solutions which are, to a greater or lesser extent, associated

with visualization of any type of data, including AV. As the first one has been chosen

TwinMotion which is a commercial solution used for architectural visualization by French

company KA-RA. The next one is a popular game engine Unity from Danish company

Unity Technologies. The last chosen one is the Brigade Engine which is a completely

ray-traced solution for a game development and has its origins in Jacco Bikker’s project

Aurauna [2].

1.2.1 TwinMotion 2

TwinMotion (figure 1.2) is an AV software originally developed in 2005 by French com-

pany KA-RA (founded by architects Raphael Pierrat and Laurent Vidal). Its engine is

developed in DirectX and it is designated for Windows desktop platforms. This engine

uses real-time techniques such as SSAO, depth of field, HDR environment mapping, sup-

port for realtime shadows and many post-production effects, such as color correction,

god rays, etc. The engine works on a click-and-drop basis and an user can interact with

the whole scene graph of a project. TwinMotion also supports standard 3D file formats

(.obj, .dae, etc.) and collaborates with Autodesk Revit. Twinmotion R©2 also offers

a large library of vegetation, different landscapes, indoor/outdoor furniture and cars.

Twinmotion R©2 also includes a sound library, because its creators believe that sound is

one of the main factors influencing the complete perception of the AV [3],[4], [5], [6].
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Figure 1.2: Twinmotion R©2 screen. Source [4]

1.2.1.1 Licensing

KA-RA offers a student edition for a non-commercial academic use for 49 EUR. A net-

work and a single user license cost 2,420 EUR.

1.2.1.2 CAVE Support

I have sent an email to the company enquiring whether they have any unannounced

plans for CAVE environment support, but I have not received any response yet.

1.2.2 Unity Engine

Unity (figure 1.3) is a multi-cross-platform game engine with built-in platform for CG

developed by Danish Copenhagen based company Unity Technologies. It is mainly used

for developing games for desktop platforms, consoles and mobile devices. However, it is

also increasingly used for different kinds of visualization, including architectural visual-

ization. Unity engine supports bump mapping, reflection mapping, parallax mapping,

screen space ambient occlusion (SSAO), dynamic shadows using shadow maps, render-

to-texture and full-screen post-processing effects.
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Figure 1.3: Unity 3 development environment. Source [8]

Unity uses Direct3D (Window, Xbox 360), OpenGL (Mac, Window, Linux, PS3), OpenGL

ES (Android, iOS) and proprietary APIs (Wii). Unity supports many file formats for

3D modeling softwares: 3ds MAX, Maya, Softimage, Blender, modo, ZBrush, Cinema

4D, Cheetah3D. The engine is originally written in C/C++ language and supports

UnityScript (a derivation of JavaScript), C# and Boo (a Python-based language) for

scripting. The shaders can be written in ShaderLab which is a special language sup-

porting GLSL, Cg shaders or the old fixed-function pipeline. Since August 3rd, 2013,

Unity allows indie developers (using Unity Free) to use realtime shadows, but only for

directional lights.

Examples of an architecture visualization can be found at [7].

1.2.2.1 Licensing

Unity is provided in two versions, Unity Free (free for indie developers) and Unity Pro

(commercial purposes). Unity Pro costs 1500 USD, compared to the Unity Free version

(which is available for educational, academic, non-profit and commercial organizations

with the total annual budget for the entire entity not in excess of 100,000 USD [10]).
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Figure 1.4: Example of Unity getReal3D addon developed by Mechdyne. Source [9]

Unity Pro supports features like render-to-texture, occlusion culling, global illumination

and special post-production effects.

1.2.2.2 CAVE support

There exist many 3rd party Unity plugins for CAVE. One of them is getReal3D (Figure

1.4) for Unity [11], developed by Mechdyne3.

MiddleVR for Unity is another 3rd party Unity plugin, developed by Sébastien Kuntz’s

company “i’m in VR”. This addon supports only Windows platform. [12]

1.2.3 Brigade Engine

Brigade engine (Figure 1.5) is an engine which currently connects many people from the

CG world. The core of the engine is most influenced by the work of Jacco Bikker and

collaborators from Delft University [13], [14].

Brigade is now owned by the Los Angeles company OTOY which has bought New

Zealand based company Refracting Software (popular for their Octane GPU unbiased

path-tracing renderer developed in Optix framework) and in the second half of 2014

3Producer of CAVELib; C library currently used in IIM for managing CAVE projections.



Chapter 1. Architecture visualization 7

Figure 1.5: Screenshot from Brigade 2. Source: OTOY

they are planning to release a cloud computing game technology based on the new 3rd

generation of Brigade engine within Amazon Cloud technology [15], [16].

Compared to the two previous engines, Brigade is unique in the way that it is not

using a standard GPU rasterization, but it uses a real-time path tracing algorithm to

achieve the photorealistic result. Brigade collaborates with many 2D and 3D file formats,

for e.g. .obj, .dae, .blend, .3ds, .png, .targa, etc. Brigade also offers a flexible system

of physically-based materials that can produce glossy, diffuse, specular (transparent or

mirror) and emissive results with normal maps support.

1.2.3.1 CAVE Support

There is no known information about CAVE support. The company is currently focused

on the online web cloud technologies for real-time path-tracing visualization.





Chapter 2

Background Information and

Theory

In this chapter are presented different topics characterizing basic principles connected to

AV. There is provived point of view from rasterization and physically based perspective.

2.1 Rendering Methods

According to my research of the current situation in real-time VA environment, there

exist two basic methods that developers use for rendering. The engines are mainly based

on GPU rasterization using APIs, such as OpenGL or Microsoft DirectX. On the other

hand, GPGPU computing is taking more and more space in real-time visualizations with

the use of computationally intensive physically based rendering methods using APIs,

such as CUDA and OpenGL. These techniques are often combined to take advantages

of both methods.

In the following paragraph are described the basics of path tracing algorithms. A stan-

dard 3D rasterization will not be described here. For more information about 3D ras-

terization, I recommend you the following resources [17], [18], [19].

9
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Figure 2.1: Comparison between GI and local illumination. Source [20]

2.1.1 Global Illumination Techniques

According to [20], GI is expression for a group of algorithms used to produce more real-

istic lighting in 3D rendering. These algorithms take into account light coming directly

from a light source (direct illumination), but also add computation for computing rays

reflected by other surfaces in a scene (indirect illumination). See the comparison in

figure 2.1.

The images rendered using these techniques often appear more realistic than those using

only direct illumination. However, the computation of such algorithms is computation-

ally more expensive. Thanks to the new era of GPGPU devices, the situation is getting

better and the game developers and other users are everyday closer to producing more

realistic sceneries at frame-rates sufficient for real-time visualization.

There has been a large amount of research into GI algorithms. For an introduction

I would personally recommend Shirley and Keith Morley’s book [21], which is rather

old but gives a good basics in GI. For more advanced algorithms, Physically Based

Rendering [22] by Pharr, Humphreys and Hanrahan is great; it received an Academy

Award (Oscar) for Technical Achievement in January 2014 [23] (and it is the first book

ever that received Oscar recognition).

Last year a work by Robin Hub investigating GI algorithms [24] was also published.

We also should not overlook Dietger van Antwerpen’s thesis ”Unbiased physically based

rendering on the GPU”, in which he proved that it is possible to implement algo-

rithms such as Bi Directional Path Tracing (BDPT), Energy Redistribution Ray Tracing

(ERPT) and Metropolis Light Transport (MLT) in CUDA.
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Figure 2.2: Example of an interior produced by path tracing method. Source: OTOY

2.1.1.1 Path Tracing

Samuel Lapere [25] 1 gives a simple explanation like this: ”Path tracing is a global

illumination extension to the ray tracing (original Whitted ray tracing is unable to

compute caustics; indirect illumination (color bleeding, ambient lighting) and produces

soft shadows) algorithm for achieving photorealistic image results. It traces many rays

(samples) per pixel in different directions and then takes the average value to calculate

final color of each pixel. The amount of rays per pixel and their spatial distribution

in a pixel sample are important to minimize noise and aliasing. When a ray hits a

surface, a new ray is traced from that hitpoint in a random direction until the max

depth is reached (or until a Russian roulette-like mechanism stops shooting the ray).”

It can basically simulate almost every known material (see figure 2.2), including par-

ticipating media like fog, clouds, sub-surface scattering, etc. PT has also problems

with caustics generation and there exist better methods to generate them, for example

a progressive photon mapping.

1Brigade Engine developer and real-time photorealistic rendering enthusiast having a popular blog:
http://raytracey.blogspot.cz/.
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2.2 Materials

One of the most important aspects of the architecture visualization is the need of a ma-

terial library. In real world, the architects use a “limited” amount of materials for their

buildings. In the virtual environment the situation is different, because they can do with

the virtual architecture’s appearance basically whatever they want. Of course, material

libraries for 3D modeling systems are also limited and architects should gain some basic

knowledge to create their own unique materials (shaders).

This is a citation from CG architectural visualization artist Ronen Bekerman [26]:

“The real world is a highly reflective place! Pure diffuse is pretty hard to come by ac-

tually, whereas in the CG world it is very easy to diffuse your scenes to the death.”

Basic principles used for material simulation are well-known techniques, such as Phong

and Blinn shading accompanied by added textures. Lately the CG community started

using additional techniques, such as bump mapping, normal mapping, parallax mapping

or displacement mapping to achieve more realistic look.

Phong and Blinn are the simplified shading models derived from the more complex light-

ing models, such as bidirectional reflectance distribution function (BRDF) (see examples

in figure 2.3) originally proposed in Kajiya’s The Rendering Equation paper from 1986

[27] describing the basic principles of light ray interaction within space and materials.

David Immel and his collaborators also produced very similar work in the same year

[28].

The rendering equation is in most cases good enough for VA, but it is important to

note that there are more complex techniques (functions) describing the light interaction

with the material, such as bidirectional scattering distribution function, more known as

a sub surface scattering (SSS). The Brigade engine is supporting SSS, but it is still a

matter of an experiment.

I also came across an interesting article about real material library (Figure 2.4) in New

York [30]. Over the time they have collected over 7000 different materials of material

designs. Something similar also works in a virtual space, but companies do not want to

create one global database and the materials (shaders) are provided within the renderer

solution. This increases the troubles with material compatibility in our system, because
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Figure 2.3: Example of BRDF materials with HDR lighting. Source [29]

Figure 2.4: Material Library in New York. Source [31]

every architect has a different aproach (3D software, renderer, ...) to achieve the final

AV.

2.2.1 Shading Languages

To define the materials in OpenGL (DirectX), shading languages, such as HLSL (Cg)

or GLSL, are used. In physically based renderers there is a different situation and it

depends on an implementation of a particular renderer and a BRDF material function

is often used.
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Nowadays, OSL (Open Shading Language) is playing an important role for the material

definitions. OSL has originally been developed by Sony Pictures Imageworks for their

in-house movie renderers. We cannot say that it is a competitor to the GPU based

shading languages, but it is still used more and more for describing materials, lights and

pattern generation.

See [32] for more information. OSL is currently supported in Arnold Renderer, Blender,

Cycles, Autodesk Beast and one of the most popular commercial renderers for architects,

V-Ray (Chaos Group has announced its support in upcoming V-Ray 3.0 [33]).

2.3 Lighting

Without lights, there would be nothing to see. The basic lights used in computer graphics

are directional lights, point lights, spot lights, etc. More information about them can be

found in any good CG book [18]. It is also good to remember that these light models

are far away from the reality where basically every light could be seen as an area light.

In our context, the light is one of the aspects which can rapidly change the mood of the

AV and can also have a negative impact on the client side.

2.3.1 Image Based Lighting

One of the standard methods to simulate environment in real-time graphics is to use

cube maps. This technique is not popular in AV nowadays. IBL with HDR images is

often used instead. As Paul Debevec writes: IBL is the process of illumination scenes

and objects (real or synthetic) with images of light from the real world. It evolved from

the reflection-mapping technique. IBL requires to have omnidirectional photographs

recorded in high dynamic range. There are more references and free HDR domes textures

available in [34]. IBL method is the one which can produce AV images without any

additional light system from the architects and can reduce the additional pre-production

of architectural models. See Figure 2.5.
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Figure 2.5: Example of IBL technique with diferent HDR sky dome panoramas.
Source [35]

2.3.2 Shadows

Shadows are a large topic in the real-time computer graphics. In a physically based

rendering there is basically no effort to create them due to the principle of the ray

tracing algorithms, but in 3D rasterization the shadows are created by many evolved

techniques.

2.3.2.1 Shadow Mapping

SM (projective shadowing) was introduced by Lance Williams (inventor of mip-mapping)

in 1978 (article Casting curved shadows on curved surfaces). Shadow mapping involves

projecting a shadow map on a geometry and comparing the shadow map values with the

light-view depth of each pixel [36] (see figure 2.6). The final result highly depends on the

shadow map resolution. A frequent problem of shadow mapping is an aliasing or shadow

continuity glitches in its simple implementation. Many techniques have evolved to fix

these problems. See [37] where is an overview of different shadow mapping techniques.

For large architecture scenes there is one obvious problem with rendering the whole

scene geometry into the shadow maps and sometimes the resolution is not large enough

[38].



Chapter 2. Background Information and Theory 16

Figure 2.6: Illustration of anti-aliasing techniques. 1, 4, 16 samples per pixel. Source
[36]

2.3.2.2 Shadow Volumes

The concept of SV was introduced by Frank Crow in 1977. It uses an accurate geometry

model describing the region occluded from the light source. A shadow volumes technique

often uses a stencil buffer for implementation and the geometry from light is computed

on CPU. SV is more accurate and computationally expensive compared to SM. This

method became popular for its usage in the video game Doom 3 [39].

I would like to refer to Daniel Šimek’s master thesis [38]. He made a research of differ-

ent shadow techniques and he has implemented defferred shading method into VRUT

system.

2.3.3 Scenegraph

A scenegraph is a hierarchical graph data structure which is often used in 3D computer

world to store entities: lights, geometry objects, materials, etc. SG is a structure that

arranges a logical and often (but not necessarily) a spatial representation of a scene.

The definition of a scenegraph is fuzzy, because every implementation of scene graphs

is unique for a particular application. This means that there is no consensus as to what

a scene graph should be [40].

As an example I have chosen Open Scene Graph (competitor to OpenSG) as a repre-

sentant for the 3D rasterization engines and for demonstration of acceleration methods

for faster rendering used by OSG.
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OSG is probably the most popular open-source scene graph API. It is designed to run

under different operating systems and even on mobile platforms using CMake build

system.

Modern GPUs are able to proceed millions of vertices per second. Some applications

have such a large amount of geometry that standard methods used in GPU pipeline

(hidden-surface removal) are not able to render at a sufficient frame rate and we must

use additional culling techniques [41].

OSG is using two main techniques: Occlusion Culling and Level of Detail.

2.3.3.1 Occlusion Culling

OC is a technique that eliminates objects invisible from the viewer, because they are

blocked by other objects (before they are loaded into the GPU pipeline). OpenGL or

DirectX would render the scene correctly thanks to the Z-buffer algorithm, but it is not

able to recognize an occlusion, since it is processing every object (triangle) separately.

OSG remembers the position of the viewer and support different algorithms. [41] There

are several techniques for this scene management using quadtree, octrees, bvh structors

or bsp trees. These techniques help to sort the geometry in the visibility order according

to camera (viewer) position and we can determine whether the geometry belongs to the

scene or not. Before such techniques can be used, there is an additional step which is

called view frustum culling. This process removes the geometry if it does not belong to

the current camera’s view frustum. The calculation of the viewing frustum is carried

out on the CPU, based on the camera projection parameters [42].

View frustum culling only disables the renderers for objects that are outside the camera’s

viewing area, but does not disable anything hidden from view by overdraw [43]. See

figures below 2.7 and 2.8.

2.3.3.2 Level of Detail (LOD)

OSG has a level of detail node whose children have different geometry complexity. Ac-

cording to a rendered area of a geometry object on the screen, OSG can dynamically

change the level of detail of an object on the screen and save GPU computation. This,
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Figure 2.7: Scene from Unity Pro with occlusion culling technique. Source [43]

Figure 2.8: Scene from Unity with occlusion culling technique. Source [43]

of course, needs additional work of preparing 3D models in different geometry complex-

ities [41].

2.3.4 Acceleration Data Structures

One of the main problems in a physically based rendering world is to achieve fast com-

puting of the intersection with the geometry. I have chosen two basic data structures

used in different varieties in nowadays rendering software. We can not exactly say which
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one is the best and it is highly dependent on the geometry distribution in a rendered

scene.

In the work [44] a reference to [45] is provided where three different acceleration data

structures (uniform grids, kd-trees and BVHs) were compared and analyzed for GPU ray-

tracing. The authors reported that the uniform grids were only superior for uniformly

populated scenes which is not the case for VA, since we cannot standardize the inputs

from architects. They concluded that BVHs were better for coherent rays, such as

primary rays and shadow rays, while kd-trees could be more efficient on average for

incoherent rays. Kd-tree needs much more memory than BVHs also.

2.3.4.1 Bounding Volume Hierarchy

In our context BVH is a tree based data structure used for geometric objects encapsu-

lation. All these objects (triangles) are wrapped in bounding volumes (often spheres,

axis-aligned bounding boxes, oriented bounding boxes, ...) and stored as leafs of the data

structure. In a leaf there is usually approximately 5-10 geometric objects in a group.

The number of objects depends on the particular implementation. BVH is also used for

collision detection computation in physics engines [46], [47].

2.3.4.2 K-d Tree

K-d tree is a spatial data structure and can be seen as a generalization of octrees and

quadtrees data structures. K represents the number of subdivided dimensions (usually

3). Instead of simultaneously dividing space in two (quadtree) or three (octree) dimen-

sions, the k-d tree divides space along one dimension at a time (usually along x, then y,

then z) [47], [48].





Chapter 3

Design and Implementation

At first, the history and situation of the CAVE visualization in IIM is described, before

any improvements of the current visualizer are demonstrated. Also, in this introduction

part a discussion which has led us to the current design and improvements in the Dark

Bulb is presented.

3.1 History of AV in IIM

Since 2007, when the CAVE was built, there were a few projects, more or less related

to AV in the CAVE placed in IIM. These projects were usually created by students in

a short time during one semester period using standard OpenGL API (mostly old version

OpenGL style). Almost in every case they were based on a simple shading model using

Phong/Blinn shading with the addition of diffuse textures accompanied by pre-baked

shadows in a texture.

These projects are not suitable for our needs, because they were made usually just as

a DEMO without any plan for the updates in the future (Snowman, Physical Balls, FEL

Model based on Quake engine).

Because of the need to have a proper visualizer used for different purposes (point cloud

visualisation, VRML models, Wave Front Obj models), a basic CAVE Framework was

developed. CAVE Framework (CF) was originally made for OpenGL API and has been

constantly developed and improved. Since 2011 CF is based on the C++11 syntax and

21
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Figure 3.1: Phong shading vs. diffuse model in CE cinegrid02 model.

uses new OpenGL 3.3 (and higher) style with fallback for older versions. In a version

approximately a year old there was a support for .vrml, .obj and .ply formats with

a basic emission shader and the texture support.

Since the August 2013 we have been mostly improving CF based on the need of Faculty

of Architecture which is planning to use the CAVE for educational purposes and I have

become a member of a research team.

3.2 Beginning of a Dark Bulb Project

At the beginning we have started to think about the future of the CAVE framework,

making research and simultaneously improving current visualizer in order to follow the

needs of architects collaborating with IIM.

One of the first improvement was made in a logical way how the CAVE framework

works. The old version was tightly dependent on the OpenGL renderer and there was

no elegant way how to add any new type of a renderer (DirectX, Optix Renderer, ...).

Thanks to the visitor pattern a solution was created. It is modular and it is able to

create a new type of renderer without any modification of the core functionality.

After this step, the aim of this work was concentrated on visual aspect of the OpenGL

renderer and on improvement of the shader collaboration with the framework. The most

significant difference brought the implementation of Phong shading model for directional

and spot lights which where missing. See the difference at figure 3.1
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Figure 3.2: Basic implementation of shadow mapping technique.

Until January 2014 we had been also learning and testing an algorithm for creating

more realistic shadows than the pre-baked shadows in textures. A basic 2-pass shadow

maps model was implemented, but the result was not such as elegant solution as it was

expected, since there were different 3D models provided and it was necessary to adapt

the resolution of the light map to achieve the sufficient results 3.2.

In January the following road map (see figure 3.3) was prepared. It includes possible

improvements based on the techiques from Chapter 1 and Chapter 2.

Basically, two options how to continue was considered.

The first considered solution was to build the whole pipeline for the architects on a com-

mercial software based on the rasterization rendering techniques. For example to use

Unity Engine with one of the plugins used for CAVE environments. Also, Twinmotion

developers was contacted about the CAVE support problematic, but no respond have

not come yet.

The second solution was to continue in the development of the current CAVE framework

based more or less on the roadmap already presented. The problem was to decide

which way to go (rasterisation vs. physically based rendering), since we were just two



Chapter 3. Design and Implementation 24

Figure 3.3: Draft made in January 2014 for possible improvements.

developers. After a few discussions with Jaroslav Sloup (supervisor of A4M39GPU), it

was decided to experiment and to try to build a solution on the real-time ray tracing

computations with the use of CUDA and NVIDIA R© Optix framework. Because we

think that currently this is the way to go and after seeing proofs delivered from Brigade

we would like to have similar results on the multiprojections environments as well as at

one screen.

3.3 Data Formats Compatibility

One of the key features which had to be solved for the AV was to support many data

formats from different 3D modelling softwares. We have also decided to concentrate on

the 3D formats used for a static representation of the models without any information

for the animation.

After the research we decided to add a support for an Open Asset Import Library

which is well-known in a 3D developer community for its compatibility with the most
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Figure 3.4: Improvement in a texture compatibility. On the top there is a result with
the original .obj loader and on the bottom there is an Assimp obj. loader result. The

author of the model is Jan Tůma.

of the mainstream 3D data formats. Assimpt does not support .vrml format which was

sometimes also used for visualization in the CAVE. For that case there is a VRML loader

from the previous version.

During the time of the DB development, we were mostly concentrating on the tests of

WaveFront .obj formats produced from 3Ds Studio Max and Blender exporters.

One of the features which saved a lot of time was a better texture interpretation and

compatibility with .obj (respectively mtl format) data format. In the figure 3.4 there is

illustrated the difference between the original .obj loader and the assimp .obj loader.

3.4 Dark Bulb Framework

In this section we are going to introduce the important improvements which has been

done to the original CAVE framework. First of all, the NVIDIA R© Optix is introduced

with the short description how the current Optix Renderer works. Than we are going to
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take a closer look at the problematics of a perspective off-axis projection and to explain

the sampling process and creating the final image.

But at first we should have a look at a general structure of a current DB Framework

version in figure 3.5.

3.4.1 NVIDIA R© Optix

OptiX is a programmable ray tracing framework for software developers to rapidly build

the ray tracing applications that yield extremely fast results across NVIDIA R© GPUs

with a conventional C programming. Unlike a renderer with a prescribed look, or being

constrained to certain data structures or a language limited to rendering, the OptiX

engine is extremely general - enabling software developers to quickly accelerate whatever

ray tracing task they wish and execute it on widely available hardware - all license free

[49]. This is the original description provided by NVIDIA R© for the Optix on the official

webpage. Since the time we have decided to use this framework for our development I

can personally say that it is no marketing joke and everything written is true (at least

for me and the version 3.1).

Since the version 3.5, which has been released on the 6th of March 2014, there is an up-

grade for the licence and NVIDIA R© has special rules for the commercial products using

Optix Framework.

3.4.2 Optix Renderer

Current version of the Optix renderer is based on the Whitted ray-tracer style. It

supports a diffuse reflection, specular reflection and a refraction with the combination

of a color get from the diffuse texture.

The renderer has also implemented HDRI IBL using .exr format (HDRI maps can be

mostly seen on the examples in the Testing section) with the combination of a directional

light. This was sufficent for a proof of concept but we are planning to add more types

of light (spot light,point light, area light, day and night system).

We are also ready to a add bump mapping support, but we have skipped this feature

for the current tests.
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Figure 3.5: Simplified schema of Dark Bulb framework
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Figure 3.6: Scene Graph structure in Optix Renderer

Because of the structure of the NVIDIA R© Optix, there is a need to re-map our internal

scene graph into the form suitable for the NVIDIA R© Optix renderer, since it is using

its own special structures for data and accelerations. The current scene graph used for

the Optix renderer can be seen in figure 3.6. As an acceleration structure Sbvh is used

which is according to NVIDIA R© a most sufficent structure for static scenes.

3.4.3 Perspective Off-Axis Projection

A standard situation for computing image in a ray-tracer is using some kind of the simpli-

fied model of the perspective camera projection (on-axes perspective camera projection).

According to [50], these projections assume the viewer to be positioned perpendiculary

in front of the view plane and looking at its center. For illustration see Figure 3.7.

In virtual reality environments, however, the virtual camera often follows the tracked

position of the user’s head in order to create parallax effects and thus a more compelling

illusion of a three-dimensional world. Since the tracked head position is not limited to

the symmetry axis of the view plane, on-axis projection is not sufficient for most virtual

reality environments.
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Figure 3.7: On-Axis projection on left. Off-Axis on the right. Pe is the position of
the viewer’s eye. Source [50]

Figure 3.8: Off-axis projection in CAVE for front wall. User’s head position is de-
faultly set to [0,0,0] and the left eye and right eye position is readed from CaveLib
as a transformation matrix. This schema is showing the situation when the user’s
head position is moving from the center (notice the frustum for every eye, FOV is not

symmetrical).

The difference in the CAVE (and other virtual reality environments) is that we have to

take in account the viewer position of a head to achieve a 3D illusion of a space with

the combination of a stereoscopic projection for every projection plane. This is also

computationally expensive since we have to produce two renderered images for every

projection plane.
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Usually, the viewer’s head position is tracked (head tracking) and the perspective pro-

jection 1 for each display is computed for a camera at the tracked position such that

the viewer experiences the illusion of looking through a window into a three-dimensional

world instead of looking at a flat display [51].

Currently there is no support for head tracking in our CAVE, so we suppose that the

viewer’s eye position is in a center of the CAVE. The illustration is in Figure 3.8.

3.4.4 Progressive Refinement and Stratified Sampling

According to [52], progresive refinement is a technique which enables to compete with

GPU accelerated ray tracers and to display the results much faster than with the ”tra-

ditional” CPU rendering methods. Its boom was in a 80s and nowadays this method

has come back 2.

Because of the need of making the GPU computation as fast as possible, especially

when the user moves in a scene, there is a simple version of this method implemented

on GPU. The image is iteratively changing its resolution grid according to the current

frame number and a detected movement in the application. It is also possible to change

the grid size operatively.

When the renderer achieves the resolution which is equal to the resolution of an output

buffer, there is usually the need to sample more rays withing one pixel (standard non-

real-time renderer) to prevent the result from aliasing. At this moment the renderer is

not sampling more than one ray in a pixel per one frame, but rays are incrementally shot

in a different pixel position over the time and doing a weighted avarage. The standard

non-real-time method is called stratified sampling (sometimes jittered sampling), but in

DB it is done over the time period with just one primary ray in a pixel per frame.

Illustration of this method can be seen in figure 3.9. The simplified schema of ray-

tracer.cu producing a final render is a figure 3.10.

1Nice example of this method can be seen at one of the Johnny Lees’s You Tube videos released 6
years ago: http://youtu.be/Jd3-eiid-Uw.

2It has been implemented in Pixar Render Man solution according to his developers which are also
writing popular webpage scratchapixel.com [52].
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Figure 3.9: Demonstration of progresive refinement. Screen on the bottom-right is
demonstrating stratified sampling per one frame.
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Figure 3.10: Simplified schema of raytracer structure.



Chapter 4

Testing

The tests have been executed during the whole development stage. We have an access for

all the computing resources in IIM, but currently the development part is done mostly

on the following hardware and software configurations:

• Intel R© CoreTM i5-3570K CPU @ 3.40GHz × 4

• eVGA GTX 580 3GB

• Kingston DDR3 8GB 1600MHz CL9 XMP

• Crucial M4 SSD 120GB

• Ubuntu 13.10 (CUDA 5.0 - nvcc V0.2.1221; Optix 3.0; g++ 4.8)

• Nsight Eclipse Edition 5.0 IDE

• Nvidia Drivers 319.60

4.1 Performance Testing

We have perfomed one final test on a CE cinegrid02 scene which has been used for many

years in CAVE and consists of 150220 triangles (usually we have worked with the models

from Jan Tůma having 20 000 - 40 000 triangles.).

The test has been perfomed with the different resolution grids of the output buffer

(32x32, 64x64, 128x128,256x256, 512x512, 1024x1024, 2048x2048, 4096x4096) which is

33
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read from the GPU memory and displayed through the texture being interpolated on

the full screen resolution (currently we are using a default bilinear texture interpolation

provided by OpenGL API). Every test of a graphics card took 1 minute. We are using

an average of 10 second periods and in the table 4.1 there is presented an avarage from

these 6 periods. We had also decided to skip the first 10 second period because of the

additional compilation time of the shader used for the displaying of the output pixel

buffer. The graphics visualization of this test can be seen at figure 4.1 page 35 .

Resolution GTX Titan GTX 580 GTX 690 Quadro FX 5800 Quadro 4000

32x32 84.485400 108.385200 63.629540 31.378820 52.299220

64x64 86.876520 111.579800 63.927640 29.912520 48.765560

128x128 78.509420 74.636740 48.364740 26.691020 25.715960

256x256 38.571000 28.527860 20.072100 17.808140 8.016898

512x512 10.489180 8.565752 10.602480 5.580534 2.310494

1024x1024 2.878948 2.374864 3.244628 1.371030 0.630411

2048x2048 0.850356 0.628194 0.880581 0.274134 0.165258

4096x4096 0.157429 0.162548 0.171412 error 0.000000

Table 4.1: Results showing performance in average FPS for various graphics cards
and grid resolutions. 1 Test has been done with a CE cinegrid02 model which has 150

220 triangles.

There has been another test made for GTX Titan 6GB and GTX 580 for Sponza model

with 66 450 triangles. This was the original model from Dabrovic. The results of the

measurment are shown in table 4.2 and in figure 4.5. Notice the increase of the FPS for

this scene. An example of the scene render at 512x512 can be seen in figure 4.4.

Resolution GTX Titan GTX 580

32x32 305.951200 372.599400

64x64 294.474000 343.811400

128x128 224.831600 201.114600

256x256 88.716860 76.615160

512x512 30.758420 25.232060

1024x1024 9.647878 7.658178

2048x2048 3.029762 2.178698

4096x4096 0.756884 0.597849

Table 4.2: Results showing performance in average FPS for various grid sizes mea-
sured for GTX Titan and GTX 580 with the use of Sponza model (66 450 triangles).
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Figure 4.1: Results showing performance in average FPS for various graphics cards
and grid resolutions in a graph.

Figure 4.2: Illustration of different image grid resolutions (32x32 - 128x128).

Figure 4.3: Illustration of different image grid resolutions (256x256 - 1024x1024).
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Figure 4.4: Sponza model renderered in resolution 512x512. FPS is approximately
25 FPS with GTX Titan.

4.1.1 Hardware Issues

The most important factor for a sufficient FPS is the performance of graphics cards.

Dark Bulb is developing on the system with NVIDIA R© GTX 580 graphics card sup-

porting CUDA Compute capability 2.0 with 512 CUDA cores and there we have proved

that we are able to achieve sufficent results for one screen without any loss of real-time

feeling (this of course depends on a resolution and model). For the CAVE the situation is

not so feasible. Right now in IIM there is a hardware from 2007. That means 2x Nvidia

Quadro FX 5800 which are not suitable for having 4 stereo (8 image buffers) screens

in realtime. We can also see that for the resolutions 256x256 and higher, these cards

produce the lowest perfomance in the table 4.1. This means that we have to innovate

the current HW configuration to be able to produce the sufficient results at least for two

screens in CAVE.

In the following figures 4.6 and 4.7 there are screenshots from the CAVELib testing and
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Figure 4.5: Graph showing performance in average FPS for GTX Titan and GTX
580 with the use of Sponza model (66 450 triangles).

CAVE tests. Figure 4.6 shows the CAVELib simulation for 3 walls in stereo projections.

Figure 4.7 is photo taken during the CAVE tests with the city model (notice that black

color is not black because of the age of the projector).
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Figure 4.6: Testing of a Optix Renderer in a CAVELib for 3 screens.

Figure 4.7: Photo of projection in a CAVE with CE cinegrid02 model.



Chapter 5

Conclusion and Future Thoughts

From the analytical part of this work, many requirements on the Architecture Visual-

ization systems were formed, especially in association with visualization environments

like CAVE. The AV types and methods were in detail analyzed. Another part of the

analysis brought a summary of the existing visualization methods and systems.

From these information the implementation was made and documented in Chapter 3.

As a main result of this thesis, we have changed the structure of the original CAVE

framework to be more modular in order to have a variability over different rendering

types (OpenGL, Optix). We improved the model loaders in order to respect the needs

of architects collaborating with IIM.

Also, a ray-tracer with basic material types was implemented to achieve more realistic

quality in comparision to the previous solutions. It supporst HDRI IBL, textures (in-

cludes bumb mapping), uses scene graph and it is made in a way which is extensible in

the future.

We have also proved that with newer GPUs in a current CAVE HW configuration it

is not impossible to have fully ray-traced solution for AV visualisation. Right now,

limitation for us is the HW (it should be eliminated soon), developer resources and

money.

For the future and the following stages we also have to concentrate on an optimization

of our code and to experiment with the different path tracer algorithms. All the tests we

have made are using the Whitted solution of raytracer with combination of progressive
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refinment and the stratified sampling for anti-aliasing which is still better than the

previous solution (it supports hard shadows, transparency and specularity), but the

integration of real path-tracing with monte carlo would be a better option (at least it

seems to be right now).

There is still some space for a better material library support and the compatibility

with other 3D modelling softwares (maybe based on a OSL). The lighting system with

Day and Night simulations, area lights support (this can be simulated with an emission

material) and spot light support. There is also a problem how to import the light

positions from the architecture models, because in a standard WaveFront .obj format

there is no support for the light information. We basically want to continue with the

road map provided in Chapter 3 and to concentrate on a ray-traced solution (maybe a

hybrid solutions with OpenGL since we do not have a proper HW right now).

We would like also to make a better generalized controlling mechanism of a CAVE,

since there is no standard solution like a computer with a mouse and keyboard con-

trolling mechanism in combination with the graphical user interface to control diferent

parameters in a real-time.



Appendix A

User Manual

In this user manual we are going to show how to export models from 3ds Studio Max

which has been chosen as a reference software used by Jan Tůma and for now it is the

most important one for architects using CAVE in IIM. In the future we would like to

extend this manual for other software for better compatibility.

A.1 Export models from 3D Studio Max

For exporting the models from 3D Studio Max we have to take these steps if the scene is

ready. Manual was made with 3D Studio Max 2014 (the manual is similar for the older

versions).

For exporting WaveFront .obj format you have to ensure that your scene is ready and

then follow these steps:

1. Select the Application menu and choose Export.

2. Write the desired file name and open the Save As Type drop-down list and choose

gw:OBJ Exporter((*.OBJ). See figure A.1.

3. Click Save. The exporter dialog window will open. For the best results set the

options to same values as in the figure A.2.

41
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Figure A.1: Exporting .obj format.

The setting of Scale value depends on a unit system you are working in. Leave it

at 1.0 (if you set 0.1; 1 meter high object in 3ds Max will aproximatelly correspond

to the height of CAVE wall in IIM).

If you have textures, do not forget to set the map-path option (Map-Export button)

to enable. It will create ./map folder in your export path with textures. You can

leave the other options at default.

4. Click on Export. During export a dialog window showing progress and the names

of exported objects opens. When the export is ready, confirm DONE and you can

use your model in the DB Framework.

Tips:

1. If you are modelling in 3ds Max, try to follow the center point in [0,0,0] and build

your architecture around it. This approach will save us time to find the imported

scene in the engine before we build a more robust solution.

2. Remember that not everyone has a V-Ray renderer, so there will be troubles with

the special materials you set in your settings. We will do our best to fix this

compatibility soon.
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Figure A.2: Recommended setting for OBJExporter.





Appendix B

DVD Content

There is a directory with latex files (including figures) and exported pdf file included in

DVD.
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