
master’s thesis

Network Service Anomaly Detection

Ivan Nikolaev

June 2014

Martin Grill

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Control

Engineering

Acknowledgement
I would like to thank my advisor Ing. Martin Grill for dedicating a lot of his time and
patience to help me write this thesis. I would also like to thank Ing. Tomáš Pevný, Ph.D.
for his supervision on work on service modelling. I would like to thank Mgr. Jan Kohout
for his collaboration on service modelling research.

Declaration
I declare that I worked out the presented thesis independently and I quoted all used
sources of information in accord with Methodical instructions about ethical principles
for writing academic thesis.

iii

Abstract
Tato diplomová práce studuje detekci a modelování běžně používaných síťových služeb.
Informace o komunikaci na síti se získává v podobě statistických agregací ve formě
NetFlow a proxy logů. První část této práce popisuje matematické modely použité k
detekci síťových služeb. Druhá část se zabývá modelováním chování jednotlivých uživa-
telů těchto služeb a detekcí anomálních uživatelů. V poslední části jsou prezentované
matematické modely experimentalně ověřené na datech z realných počítačových sítí.

Klíčová slova
NetFlow; Síťová služba; Detekce anomálií

iv

Abstract
This thesis conducts a thorough study on detection and modelling of commonly used
network services. Information about network communication is provided as statistical
aggregates in the form of NetFlows and proxy logs. Mathematical models are used in
order to detect network services as described in the first part of the thesis and then
model the behaviour of service users and detect anomalous ones, described in the second
part. In the last part we analyse the effectiveness of the mathematical models presented
in the thesis using experiments on real network data.

Keywords
NetFlow; Network service; Anomaly detection

v

Contents

1 Introduction 1

2 Data Sources 3
2.1 NetFlows . 4
2.2 Proxy Logs . 4
2.3 Networks . 5

3 Service Detection 7
3.1 Related work . 7
3.2 Request-response matching . 8
3.3 Parallel request-response matching . 9
3.4 Request-response anomaly detector . 9
3.5 Timestamp errors and service detection 10
3.6 Feature selection . 11
3.7 Threshold setting using EM algorithm 12

4 Service Modelling and Anomaly Detection 17
4.1 Framework overview . 18
4.2 Feature extraction . 19
4.3 Individual user–service models . 20

4.3.1 Holt–Winters prediction model 20
4.3.2 Autoregressive model . 21

Autoregressive model without a cycle 22
Autoregressive model with a cycle 22
Autoregressive model with two cycles 23
Autoregressive model with aggregated memory 23

4.3.3 Quantile Regression Model . 24
Quantile regression model without a cycle 24
Quantile regression model with one cycle 25
Quantile regression model with two cycles 25
Quantile regression model - linear programming 25

4.3.4 Anomaly values from predictor models 25
4.3.5 Parzen window cumulative distribution model 26

4.4 Global service models . 27
4.4.1 Global median model . 27
4.4.2 Global Parzen window cumulative distribution model 28

5 Experiments 29
5.1 Request-response pair matching . 29
5.2 Request-response anomaly detector . 29
5.3 Service detection . 31
5.4 Service modelling . 32

5.4.1 Predictor errors . 32
5.4.2 Mixed attacks . 35

6 Applications and Discussion 39
6.1 Request–response pair matching . 39
6.2 Request–response detector . 39

vi

6.3 Service detection . 39
6.4 Service modelling - aggregation . 40
6.5 Service modelling - potential applications 40

7 Future work 41
7.1 Service detection . 41
7.2 Service classification . 41
7.3 Service modelling . 42

8 Conclusion 43

Bibliography 44

vii

Abbreviations
In this thesis several abbreviations are used. Their meaning is explained below.

AUC Area Under the Curve
C&C Command and Control
CPU Central Processing Unit
CTU Czech Technical University
DGA Domain Generation Algorithm
DoS Denial of Service
DDoS Distributed Denial of Service
EM Expectation-Maximisation (algorithm)
FIN Finish (TCP flag)
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IDS Intrusion Detection System
IP Internet Protocol
RST Reset (TCP flag)
TCP Transmission Control Protocol
URL Uniform Resource Locator
VPN Virtual Private Network

viii

1 Introduction

In today’s world the internet and IP networks have become an integral part of our
society. Everything from basic social interactions to complex multinational operations
has come to rely on computer networks. It is estimated that there are currently more
mobile devices than human beings in the world [1].

The reliance on modern technology gives us a lot of advantages and opportunities
but also creates new risks. Confidential data of individuals and corporations is more
exposed to unauthorised access than ever before in history. A person skilled in network
penetration can gain access to a corporate network and steal valuable information within
days or even hours without leaving his home or even getting off his chair. Intellectual
property theft is an ever-growing threat [2]. Worldwide costs due to cybercrime are
estimated to be in the region of one hundred billion dollars every year [3]. This level
of importance combined with a severe lack of security experts [4] makes this a very
attractive field for research.

Traditional approach to network security is based on pattern matching — firewall
rules, security policies, etc. As networks grow larger the amount of traffic increases.
New types of services require new types of network protocols. The increase in network
size, service and protocol types results in a huge number of new possible attack vectors.
Threat detection methods based on deep packet inspection and fingerprinting are be-
coming infeasible due to their high computational demand and the constantly changing
behaviour of malware and the attackers.

Increasingly, methods based on machine learning that leverage behaviour analysis
principle and use aggregated information about network traffic are employed. These
methods build statistical models of the network traffic and report deviations from the
models. The advantage of these methods is their ability to detect new threats, their
adaptability to specific networks and their use of aggregated data which lowers compu-
tational costs.

Motivation

This thesis is a thorough study of network services and their users inside large corporate
networks which is part of a much larger field of network security. In the recent years
there has been a constant increase in availability, variety, functionality and reliability of
cloud services. Examples are many: Dropbox, Google Drive, Twitter, Facebook, Box,
Salesforce, Microsoft Online and many others. More and more users come to rely on
these services in their work on a daily basis. The network perimeter is increasingly
becoming harder to define and protect, with a lot of users using cloud services outside
the network, connecting to the network through VPN and constantly bringing in and
out different devices like laptops, tablets and mobile phones. As the result, there is
more and more opportunities for sensitive information to leave the network by means
of upload to an outside cloud service, either through carelessness or ill–intent.

Another aspect of service usage are the internal services. These are usually abundant
on the network and many of them may contain sensitive information such as customer

1

1 Introduction

records, development code, company mail, financial records and so on. All this informa-
tion can be of great value in espionage. It is clear that network services are of interest
to network intruders.

The task of monitoring service usage is currently in high demand. There are differ-
ent startup companies around the world, the best of them founded and led by PhD
graduates in machine learning, statistics and mathematics, that specialise in monitor-
ing cloud services. Skyhigh Networks [5], Elastica [6] and Netskope [7] are the three
examples that come to mind.

The motivation for this thesis is to perform a deep study of network services be-
haviour, for both cloud and internal services. From being able to find them on the
network, to monitoring their usage by the users and reporting abnormal behaviour.
This thesis consists of three main parts: detection of services explained in Chapter 3,
modelling of users’ behaviour on those services in Chapter 4 and Chapter 5 which
presents the experimental results.

2

2 Data Sources

Traditional approach to network security is deep packet inspection. This means that
individual packets are captured. Every packet is opened and matched against different
signatures to look for malicious behaviour. This approach has several disadvantages.
The most obvious one is extensive computational complexity. The requirement to
inspect every packet going through the network creates very high CPU load and makes
this type of monitoring infeasible on large scale networks.

Another disadvantage concerns privacy. Many consider it unethical to inspect other
people’s communication by opening individual packets, akin to steam-opening other
people’s letters. Also, many modern protocols use encryption which prevents a third
party from reading the transferred data. It is possible to circumvent encryption by
doing a man-in-the-middle attack and serving the communication endpoints with fake
encryption certificates [8, 9, 10], however this raises privacy concerns even higher. It
also potentially weakens security and is illegal in some countries, e.g. Germany. There
have also been reports of deep packet inspection devices themselves being vulnerable
to specially crafted packets [11].

An example of an HTTP packet, as seen inside a popular network monitoring and
packet inspection tool Wireshark is shown in Figure 1.

Figure 1 A screenshot of an HTTP packet displayed in a network monitoring tool Wireshark

An alternative to deep packet inspection is using statistical aggregates about the
transferred packets. These aggregates only store the meta-data about communication,
erasing a lot of the privacy concerns and easing computational load. The main advan-
tage of the aggregates is also their main disadvantage — very limited information. It is
possible to create behavioural models and learn statistical patterns using this informa-
tion, but when an anomaly is found it is often hard to explain its cause in detail. But
despite that, the advantages provided by this type of data sources are great enough for
them to be used more and more by modern IDSs.

3

2 Data Sources

Table 1 NetFlow sample
Date flow start Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows

2013-02-07 02:33:26.226 26.439 TCP 192.168.10.79:6667 -> 66.166.77.146:37772 .A.RS. 0 16 704 1
2013-02-07 02:33:49.961 0.188 TCP 192.168.10.79:6667 -> 66.166.77.146:39763 .A.RS. 0 4 176 1
2013-02-07 02:33:50.459 1.116 TCP 50.63.180.209:37244 -> 192.168.10.79:6668 .AP.SF 0 10 654 1
2013-02-07 02:33:50.137 0.000 TCP 192.168.10.79:57180 -> 50.63.180.209:113S. 0 2 120 1
2013-02-07 02:33:35.577 14.567 TCP 66.166.77.146:38587 -> 192.168.10.79:6667 .A.RS. 0 12 512 1
2013-02-07 02:33:32.860 19.297 TCP 192.168.10.79:6667 -> 66.166.77.146:38337 .A.RS. 0 12 528 1
2013-02-07 02:33:53.142 0.000 UDP 168.95.1.14:53 -> 192.168.10.9:57368 0 2 400 1
2013-02-07 02:33:41.713 12.261 TCP 192.168.10.79:6667 -> 66.166.77.146:39114 .A.RS. 0 8 352 1
2013-02-07 02:33:52.276 0.190 TCP 66.166.77.146:39951 -> 192.168.10.79:6667 .A.RS. 0 6 256 1

In this thesis two types of data sources are used: NetFlows and proxy logs. Both of
them are a form of statistical aggregates.

2.1 NetFlows

A NetFlow [12, 13] is an aggregate of packets with the same source port, source IP,
destination port, destination IP and protocol. The aggregate contains information
about the number of packets transferred, the sum of bytes transferred by all packets, a
logical OR of all the TCP flags, the starting time of communication and the duration
of communication.

NetFlow collection is conducted by NetFlow probes. A NetFlow probe monitors all
packets going through it. It has a cache where it aggregates information about the
packets going through it. When a packet with a RST or FIN flag appears it purges the
corresponding entry from the cache and creates a NetFlow with the aggregated values.
It also purges the entry from the cache if no new packet arrives within a timeout window.
Many common routers and switches are capable of generating NetFlows.

In this thesis the NetFlows used are processed in five-minute batches. The choice
of the interval is based on related works [14, 15] which show that this interval gives
optimal performance for detection. Table 1 shows a sample from a NetFlow batch.
Each line represents a single NetFlow.

2.2 Proxy Logs

Proxy logs provide information about web communication. They are created by web
proxy servers that the users of the monitored network are made to use, either explicitly
or latently through network configuration. An example of a proxy server capable of
producing this type of logs is Squid [16].

Each line of a proxy log represents a request made by a user to a web service. It
contains the IP address and identity of the user, the IP address and domain name of
the server. For HTTP it contains the URL of the request, but not for HTTPS. It also
contains the User-Agent information provided by the user during the request and the
Referrer field which contains the information about who referred the user to make a
request to that particular server with that particular URL. It then contains information
about bytes uploaded/downloaded, starting time of communication and duration of
communication. There can be additional fields depending on the configuration of the
proxy server. These are not considered in this thesis. Proxy logs do not show any data
sent by the user or returned by the server, only the volumes transferred.

In the following chapters we will use the term flow which can mean either NetFlow
or proxy log. As the information extracted from NetFlows and proxy logs is the same,

4

2.3 Networks

apart from the feature extraction process, NetFlows and proxy logs can be viewed as
equal.

2.3 Networks
Datasets with data from four different networks were used in this thesis. The four
networks are of different sizes, have different IP ranges, amount of users and services.
The first network is the CTU university network. From this network we have NetFlow
data generated from the traffic inside the subnet of Czech Technical University in Prague
with approximately 1000 users. The other three networks are large corporate networks
with over ten thousand users in each network.

5

3 Service Detection

In this and later chapters we will often use the terms endpoint and service. We define
an endpoint as an IP–port–protocol triple. Service is an endpoint that passively waits
for other endpoints to start communication with it and only responds to communication
initiated by other endpoints (clients). A service never initiates communication itself. It
is common for a service to have more than one client.

An important challenge in network security is detecting services in use on the net-
work. This is important for several reasons. The first reason is simple network analytics.
Server–client model is the classic communication model used for the majority of net-
work communication, main exception being peer–to–peer communication. Therefore,
by finding the services that are actively used in a network, we can find out what kind
of communication is going on inside that network, what kind of communication the
network is capable of and what kind of communication the users utilise the most.

Detecting services is also very important from security perspective. Each service is a
potential vulnerability. Given that it is possible to run a service on any computer in the
network (unless prevented by a very strict firewall set up), unexpected vulnerabilities
can present themselves anywhere in the network at any time. Also, running some
services on some endpoints can be against company policy. It is therefore necessary for
a network administrator to have an overview of actively used services on the monitored
network.

Another reason for service detection is the possibility of doing detection of anomalous
usage of those services. An IDS can detect active services on the network, then monitor
the usage of those services by different users over a period of time. It can then establish
models of each service’s usage and report users that deviate from those models as
anomalous.

It is important to note that for this thesis service detection only makes sense in the
context of NetFlows which give low-level information about communication on IP level.
For proxy logs, the service is always clearly given by the nature of proxy log creation.
Also, proxy logs only provide information about web communication and not other
types of services.

3.1 Related work

Previous work on service detection using NetFlows has been done by Berthier et al. [17]
and Vaarandi [18]. Berthier et al. [17] performs service detection using NetFlows by
creating several heuristics based on flow timings, port numbers, port numbers greater
than 1024, port numbers that are well-known, number of distinct ports related to a
given endpoint, number of distinct IP addresses related to a given endpoint and so on.
The heuristics are then combined using a Bayesian network which gives the probability
of an endpoint being a service. The biggest problem with that is assuming that services
will use low ports and well-known ports. This simply does not have to be so. A service
can run on any port whatsoever and it would be easy to trick this algorithm by using
a high unknown port number in order to avoid discovery.

7

3 Service Detection

Vaarandi [18] does a somewhat simplified version of what is done by Berthier et al. [17].
They use privileged and unprivileged ports and timestamps in order to establish whether
an endpoint is a service. This suffers from the same problems as Berthier et al. [17].

Our service detection algorithm focuses on behaviour of endpoints and does not
use any prior knowledge of which ports the services should run on. This makes it more
general and also more useful in the field of anomaly detection as it is behaviour-oriented
and not signature-oriented.

3.2 Request-response matching

As was mentioned previously, services use server-client communication paradigm. This
means that a service waits for a client to contact it. When a client contacts the server
(sends a request) the server reacts to it (sends a response). This is the basis of server-
client communication, therefore the first step in detecting services is finding request-
response pairs.

A request-response pair of flows is a pair of such flows where one flow is the reaction
to the other one. Such flows will have the same protocol and their IP-port source and
destination pairs will be reversed. When we find such a pair we call it a request-response
pair. The flow with the smaller starting timestamp is assumed to be the request. Flows
that do not have a request-response pair are said to be requests without responses. An
extensive study of requests without responses as well as request-response pair matching
was done by [19].

Algorithm 1 presents a simple algorithm for matching request-response pairs. It
iterates over flows sorted by starting time, putting new flows in the request list. Each
new flow is matched against the flows in the request list. When a match is found it is
said to be a request-response pair and the request is removed from the list. In case no
match is found the new flow is put in the request list. At the end of the run the leftover
flows in the request list are said to be requests without responses.

Algorithm 1 Simple Request-Response Matching Algorithm
𝐹 ← a list of all flows sorted by starting time
𝑅← an empty set of requests
𝑃 ← an empty set of request-response pairs
for all 𝑓 ∈ 𝐹 sequentially do

if reverse flow to 𝑓 (rev𝑓) is in 𝑅 then
rev𝑓 is request
𝑓 is response
remove rev𝑓 from 𝑅
put pair 𝑓 and rev𝑓 in 𝑃

else
put 𝑓 in 𝑅

end if
end for
𝑃 contains request-response pairs
𝑅 contains requests without responses

8

3.3 Parallel request-response matching

3.3 Parallel request-response matching

The problem with the simple request-response matching algorithm is slow performance
for large volumes of NetFlows. Parallel request-response matching algorithm was de-
signed in order to address performance issues of Algorithm 1.

The algorithm works by splitting the NetFlows into smaller chunks and working on
those in parallel. This is possible because the sum of source and destination port will be
the same for both NetFlows in a request-response pair, since reverse flows have reverse
source and destination IP-port pairs. Parallel request-response matching is described
in Algorithm 2.

Algorithm 2 Parallel Request-Response Matching Algorithm
ℎ(𝑓) sum of source and destination ports and starting time of a flow
𝐹 ← a list of all flows sorted by ℎ. Parallel sort is used.
split 𝐹 into 𝑐 chunks 𝐹𝑛. 𝑐 depends on configuration.
boundaries of chunks 𝐹𝑛 are chosen so that any port sum is only found in one chunk
apply Algorithm 1 to each chunk 𝐹𝑛, get 𝑃𝑛 and 𝑅𝑛

𝑅 ≡ 𝑅1 ∪ · · · ∪𝑅𝑐

𝑃 ≡ 𝑃1 ∪ · · · ∪ 𝑃𝑐

The outputs of Algorithm 1 and Algorithm 2 are equivalent. Algorithm 2 is signif-
icantly faster for large batches of NetFlows. A comparison of the performance of the
two algorithms is provided in Section 5.1. It is important to note that due to a large
number of possible combinations of source and destination ports, the batch can be split
into an arbitrarily large number of chunks, allowing for fast processing of giant NetFlow
batches, if hardware permits.

It is therefore beneficial to use parallel request-response matching where large num-
bers of NetFlows are processed and performance is important.

3.4 Request-response anomaly detector

Using just the request-response pair matching algorithm, it is already possible to build
a simple anomaly detector that performs surprisingly well for several types of malicious
behaviour.

Request response anomaly detector is a detector of anomalous behaviour in the net-
work. It is based on a simple principle. It calculates the amount of requests without
responses that each endpoint makes. The endpoints that have a high amount of requests
without responses are considered anomalous.

The detector uses request-response pair matching in order to identify requests with-
out responses. It then calculates the amount of requests without responses for each
endpoint. It uses those values to create a model of the network by calculating their
mean and standard deviation. The anomaly values are based on the distance from the
mean measured in standard deviations.

We create the network model by calculating the amount of requests without responses
for each endpoint and then calculating the mean and standard deviation of those values
for all the endpoints. The model is calculated over all the endpoints over all the five-
minute batches.

9

3 Service Detection

Anomaly values are obtained using a fuzzy function given by

𝑓(𝑥) =

⎧⎪⎨⎪⎩
0 if 𝑥 ≤ 𝜇 + 𝑡1𝜎
𝑥−(𝜇+𝑡1𝜎)

(𝑡2−𝑡1)𝜎 if 𝜇 + 𝑡1𝜎 < 𝑥 < 𝜇 + 𝑡2𝜎

1 if 𝑥 ≥ 𝜇 + 𝑡2𝜎

,

where 𝑥 is the value of the ratio for a given endpoint, 𝜇 and 𝜎 are the current model
values and 𝑡1 and 𝑡2 are thresholds.

Thresholds 𝑡1 and 𝑡2 are important parameters. They are set manually and essentially
determine the sensitivity of the detector. Based on our experiments, the thresholds
were set to 𝑡1 = 1 and 𝑡2 = 2, selecting only the samples with probability smaller than
0.12099 and 0.026995 respectively.

The detector is able to detect C&C search for types of malware that perform the
search using raw IPs. In our experiments we detect command and control search by
Sirefef malware [20]. It is also possible to detect DoS and DDoS type of attacks as well
as port scans using this approach.

3.5 Timestamp errors and service detection

In a perfect word, all that we would need to do in order to detect services would be to
perform request-response pair matching and then calculate the number of requests and
responses for each endpoint. A service would have a lot of responses and no requests,
a client would have all requests and no responses. Unfortunately, things are not that
simple.

The main problem with using timestamps for labelling requests and responses is that
timestamps are not always accurate. Timestamp accuracy depends on the NetFlow
probe. If the timestamps were accurate then most of endpoints with few exceptions
such as NTP and peer-to-peer would either have only requests or only responses, which
is not the case. This means that the accuracy of service detection is highly dependant
on the accuracy of timestamp information produced by the NetFlow probe and requires
sophisticated modelling in order to correct for timestamp errors.

Unfortunately, the accuracy varies quite a lot between different NetFlow probes and
networks. Figure 2 shows the distribution of timestamp differences for two different
networks. The timestamp difference is response timestamp minus request timestamp.
The figure shows communication of different clients accessing HTTP servers on port
80. The requests and responses are determined using ports and the difference in their
timestamps is calculated. The flow pairs whose timestamp difference is zero are not
included. The plot on the left shows the results for the CTU network and the plot on
the right a different, larger network where the NetFlows are collected by several probes
around the network and then merged.

The distribution for the CTU network looks good, with only a small portion of flows
having negative difference. The distribution of the other network looks much worse,
with the distribution of the differences being almost symmetrical around zero, meaning
that the feature values are essentially random and unusable for service detection in this
network. This is the main limitation of the service detection model. It is necessary to
make sure that the NetFlow probe is capable of producing reliable timestamps before
running the model, otherwise accuracy of the results cannot be guaranteed.

10

3.6 Feature selection

−8 −6 −4 −2 0 2 4 6
0

1000

2000

3000

4000

5000

6000
university

req−res timestamp difference for port 80 destination, log10 scale

nu
m

be
r

of
 fl

ow
s

−8 −6 −4 −2 0 2 4 6 8
0

2000

4000

6000

8000

10000

12000

14000

16000
different network

req−res timestamp difference for port 80 destination, log10 scale

nu
m

be
r

of
 fl

ow
s

Figure 2 Distribution of res-req times for req-res pairs on two different networks.

3.6 Feature selection
When looking for services, it is important to realise that it is common for an IP address
to act both as a client and as a service, e.g. a web server can download updates. We
look for specific network services which can be tied to an endpoint — a service running
on a specific IP address, using a specific port and protocol, as defined in the beginning
of the chapter.

The first feature for service detection is the number of peers that an endpoint com-
municates with. An active service is likely to have more than one user, which means
several endpoints. Even when there is only one user, the number of endpoints that
connect to the service is going to be greater, because for most protocols, a random
client port is chosen for a new connection, meaning that a single client can act as sev-
eral endpoints. Active clients create many endpoints which are discarded after every
connection resulting in a low number of peers for client endpoints.

The distribution of the number of peers for different endpoints is very wide and
heavy-tailed, given by differently used services. This means that setting a threshold for
this feature beyond which the endpoint is a service and below which it is a client is very
hard. We therefore only use this feature as an initial filter, taking all the endpoints
which have more than one peer and ignoring the rest.

The second feature used in service detection is the requests to requests with responses
ratio given by:

𝑟𝑒𝑝 =
requests𝑒𝑝

requests𝑒𝑝 + responses𝑒𝑝

,

where 𝑟𝑒𝑝 is the ratio for endpoint 𝑒𝑝, requests𝑒𝑝 is the number of requests for endpoint
𝑒𝑝 and responses𝑒𝑝 is the number of responses for endpoint 𝑒𝑝. The values of that
feature can range from 0 to 1. The services are likely to have lower values, while clients
higher ones.

Figure 3 shows the distribution of that feature for the CTU network. This figure
shows only endpoints that were associated with at least five flows. It is important to
note that the labelling of endpoints is done based on their port numbers. Lower ports
are said to be services and higher ports are said to be clients. While generally true, this

11

3 Service Detection

is not a very reliable indicator as many services run on high ports (such as 8080, 3368)
and many protocols use lower ports for the clients (like 123 for NTP). This explains
the mixed colours in the graph. Manual inspection of the endpoints with low 𝑟𝑒𝑝 ratio
and high port numbers has shown them to be services running on high ports. Also, a
lot of the endpoints with low port numbers and high 𝑟𝑒𝑝 ratio is clients using low port
numbers. The labelling is more of a guidance and cannot be taken as ground truth.
Manual inspection is required in order to establish whether an endpoint is a client or a
service. This is also the reason that port numbers are not used as a feature in service
detection.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

#req/(#req+#res)

pd
f

server ports
client ports

Figure 3 Distribution of 𝑟𝑒𝑝 for endpoints in CTU network (only endpoints with at least five
flows shown)

3.7 Threshold setting using EM algorithm

The last step in service detection model is setting the threshold for 𝑟𝑒𝑝 that separates
services from clients. Given the fact that the timestamp error distributions are different
for different networks and also the behaviour of the users of the networks can vary, the
distributions of 𝑟𝑒𝑝 is also different for different features. This makes it necessary to set
the treshold online, based on the 𝑟𝑒𝑝 distribution of that specific network.

We assume that the distribution of 𝑟𝑒𝑝 comes from two different sources: services and
clients. We assume that 𝑟 distributions for both services and clients are exponential.
The distribution 𝑟𝑝𝑑𝑓 of 𝑟𝑒𝑝 can be described using the following equation:

𝑟𝑝𝑑𝑓 (𝑥) = (1− 𝜋)𝜆1𝑒−𝜆1𝑥 + 𝜋𝜆2𝑒𝜆2(𝑥−1),

where 𝑥 is the ratio value, 𝜋 is the mixture coefficient, 𝜆1 is the parameter of the service
distribution and 𝜆2 is the parameter of the client distribution.

12

3.7 Threshold setting using EM algorithm

We use expectation–maximisation algorithm in order to estimate the parameters of
the mixture distribution. Expectation–maximisation algorithm works in two steps. In
the expectation step it estimates the probabilities of belonging to a certain distribution
for each data point. In the maximisation step it uses maximum likelihood estimation
weighted by the calculated probabilities to estimate the parameters of each distribution.
The two steps are repeated until the parameters converge to a stable value. A derivation
of the expectation–maximisation algorithm is provided below, based on the derivation
for a Gaussian mixture model in [21, p. 423].

𝑝(𝑥) =
∑︁

z
𝑝(𝑧)𝑝(𝑥|𝑧) = (1− 𝜋)𝜆1𝑒−𝜆1𝑥 + 𝜋𝜆2𝑒𝜆2(𝑥−1),

where 𝑧 is the latent state and 𝑝(𝑥|𝑧) is the conditional distribution of 𝑥 given state 𝑧.
The conditional probability of 𝑧 given by 𝑥 is defined as follows:

𝛾(𝑧𝑘) ≡ 𝑝(𝑧𝑘 = 1|𝑥) = 𝑝(𝑧𝑘 = 1)𝑝(𝑥|𝑧𝑘 = 1)∑︀𝐾
𝑗=1 𝑝(𝑧𝑗 = 1)𝑝(𝑥|𝑧𝑗 = 1)

In our case there are two possible latent states: 𝑧1 when the endpoint is service and 𝑧2
when the endpoint is client. Therefore, the conditional probabilities of 𝑧 are given by:

𝛾(𝑧1) = (1− 𝜋)𝜆1𝑒−𝜆1𝑥

(1− 𝜋)𝜆1𝑒−𝜆1𝑥 + 𝜋𝜆2𝑒𝜆2(𝑥−1)

𝛾(𝑧2) = 𝜋𝜆2𝑒𝜆2(𝑥−1)

(1− 𝜋)𝜆1𝑒−𝜆1𝑥 + 𝜋𝜆2𝑒𝜆2(𝑥−1)

Log-likelihood function is given by:

𝑁∑︁
𝑖=1

ln{(1− 𝜋)𝜆1𝑒−𝜆1𝑥𝑖 + 𝜋𝜆2𝑒𝜆2(𝑥𝑖−1)}

Maximum-likelihood estimates of distribution parameters are given by:
For 𝜆1:

𝛿

𝛿𝜆1

𝑁∑︁
𝑖=1

ln{(1− 𝜋)𝜆1𝑒−𝜆1𝑥𝑖 + 𝜋𝜆2𝑒𝜆2(𝑥𝑖−1)} =

=
𝑁∑︁

𝑖=1

(1− 𝜋)
(︁
𝑒−𝜆1𝑥𝑖 − 𝑥𝑖𝜆1𝑒−𝜆1𝑥𝑖

)︁
(1− 𝜋)𝜆1𝑒−𝜆1𝑥𝑖 + 𝜋𝜆2𝑒𝜆2(𝑥𝑖−1) =

=
𝑁∑︁

𝑖=1

(1− 𝜋)𝑒−𝜆1𝑥𝑖

(1− 𝜋)𝜆1𝑒−𝜆1𝑥𝑖 + 𝜋𝜆2𝑒𝜆2(𝑥𝑖−1) −
𝑁∑︁

𝑖=1

(1− 𝜋)𝑥𝑖𝜆1𝑒−𝜆1𝑥𝑖

(1− 𝜋)𝜆1𝑒−𝜆1𝑥𝑖 + 𝜋𝜆2𝑒𝜆2(𝑥𝑖−1) =

=
𝑁∑︁

𝑖=1

𝛾(𝑧𝑖1)
𝜆1

−
𝑁∑︁

𝑖=1
𝑥𝑖𝛾(𝑧𝑖1) = 0 =⇒ 𝜆1 =

∑︀𝑁
𝑖=1 𝛾(𝑧𝑖1)∑︀𝑁

𝑖=1 𝑥𝑖𝛾(𝑧𝑖1)

For 𝜆2:
𝛿

𝛿𝜆2

𝑁∑︁
𝑖=1

ln{(1− 𝜋)𝜆1𝑒−𝜆1𝑥𝑖 + 𝜋𝜆2𝑒𝜆2(𝑥𝑖−1)} =

=
𝑁∑︁

𝑖=1

𝜋𝑒𝜆2(𝑥𝑖−1) + 𝜋𝜆2(𝑥𝑖 − 1)𝑒𝜆2(𝑥𝑖−1)

(1− 𝜋)𝜆1𝑒−𝜆1𝑥𝑖 + 𝜋𝜆2𝑒𝜆2(𝑥𝑖−1) =

13

3 Service Detection

=
𝑁∑︁

𝑖=1

𝛾(𝑧𝑖2)
𝜆2

+
𝑁∑︁

𝑖=1
𝑥𝑖𝛾(𝑧𝑖2)−

𝑁∑︁
𝑖=1

𝛾(𝑧𝑖2) = 0

=⇒ 𝜆2 =
∑︀𝑁

𝑖=1 𝛾(𝑧𝑖2)∑︀𝑁
𝑖=1 𝛾(𝑧𝑖2)−

∑︀𝑁
𝑖=1 𝑥𝑖𝛾(𝑧𝑖2)

Applied to our problem the expectation-maximisation steps are as follows:
Expectation:

𝛾(𝑧1) = (1− 𝜋)𝜆1𝑒−𝜆1𝑥

(1− 𝜋)𝜆1𝑒−𝜆1𝑥 + 𝜋𝜆2𝑒𝜆2(𝑥−1)

𝛾(𝑧2) = 𝜋𝜆2𝑒𝜆2(𝑥−1)

(1− 𝜋)𝜆1𝑒−𝜆1𝑥 + 𝜋𝜆2𝑒𝜆2(𝑥−1)

Maximisation:
𝜆new

1 =
∑︀𝑁

𝑖=1 𝛾(𝑧𝑖1)∑︀𝑁
𝑖=1 𝑥𝑖𝛾(𝑧𝑖1)

𝜆new
2 =

∑︀𝑁
𝑖=1 𝛾(𝑧𝑖2)∑︀𝑁

𝑖=1 𝛾(𝑧𝑖2)−
∑︀𝑁

𝑖=1 𝑥𝑖𝛾(𝑧𝑖2)

𝜋new =
∑︀𝑁

𝑖=1 𝛾(𝑧𝑖2)
𝑁

The initial parameters are set to 𝜆1 = 𝜆2 = 7, 𝜋 = 0.5. In order to avoid the
distributions growing out of bounds, the 𝜆1 and 𝜆2 parameters are bounded by 10.
Figure 4 shows the distribution from Figure 3 fit with the EM algorithm. The threshold
is set at the intersection of the two curves.

The expectation–maximisation does not use a convergence criterion. It is run con-
tinuously, a new expectation–maximisation cycle run for every NetFlows batch. This
is done because we want the model to be able to continuously adapt to the chang-
ing network parameters. The behaviour of the endpoints in the network is constantly
changing. It is different during the day and at night, during weekday or weekend. We
therefore need to always be able find the best threshold parameter, according to the
current behaviour of the network. That is why no convergence criterion is used.

14

3.7 Threshold setting using EM algorithm

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

#req/(#req+#res)

pd
f

server ports
client ports

Figure 4 Distribution of 𝑟𝑒𝑝 for endpoints in CTU network fit with EM algorithm

15

4 Service Modelling and Anomaly
Detection

Often, the real malicious behaviour does not come from botnets or malware. It comes
from ordinary users with malicious intent or from somebody who has acquired remote
access to a user’s machine and is using it for malicious purposes. This can be a corrupt
employee or a hacker who has conducted a successful spear phishing [22] attack and
managed to install a backdoor inside the computer of one of the regular users inside
the network. This user can have access rights to some protected information inside
the network. In case of corrupt employee, he may want to download the information
and then propagate it somewhere outside the network. In case of a hacker he may
need to look for the information first, before he can send it to a safeplace outside the
network. The process of finding information is called reconnaissance and the process of
propagating it outside the network is called exfiltration.

Another type of service misuse can come from malware. It is incrasingly more com-
mon for malware to use cloud services like Google Drive, Twitter, Flickr and others
as command and control servers. This is done for several reasons. First reason is the
ease of use. There is no need to set up a server, have a publicly available IP address or
DNS name. Cloud services are available to anyone, from anywhere. Another reason is
increased difficulty of detection. If done right, the command and control channel will
look like a normal user using a cloud service to a system administrator. There is no
need to perform complex and detectable operations to search for command and control,
like DGA [23] or fast flux [24], which can set off alarms. Also, using cloud services is
attractive to malware designers, because using these services is free which makes for
cheaper malware.

17

4 Service Modelling and Anomaly Detection

An interesting challenge for an IDS is to learn the behaviour of the users of dif-
ferent services and then report unexpected changes and deviations from the normal
behaviour. This type of anomaly detection is increasingly more and more in demand.
There are three startup companies that focus on solving this exact challenge: Skyhigh
Networks [5], Elastica [6] and Netskope [7]. These companies provide an overview of the
services used on the network, detect and report excessive usage by specific users, create
risk estimates based on service usage and the qualities of those services and also offer
functionality such as cost optimisation for various paid services based on the service
usage within the company and the offered contract options.

The focus of this chapter is on service modelling for the purpose of detecting anoma-
lous usage and misuse. In this chapter we look at different ways of modelling users’
behaviour on different network services. We also look at ways of reporting anomalies
which may often indicate the types of activities such as reconnaissance and exfiltration.

4.1 Framework overview

The service modelling and anomaly detection system consists of several cascading layers.
The overview of the layers is illustrated in Figure 5. The first layer is the data source
layer. The system currently uses two sources of data: Netflows and Proxy logs both
of which are described in detail in Chapter 2. Due to the nature of the features and
the models, the system is easily extensible by other sources of data. The second layer
extracts the features from the data sources. The features and the extraction process is
explained in greater detail in Section 4.2.

This chapter focuses on the third layer. This is the layer where behavioural models
of different users are created. Deviations from those models are reported as anomalous
and are propagated further to the fourth layer. The fourth layer aggregates the outputs
of the behavioural models, across the individual models as well as in time and provides
a final system output, which reports anomalous service users. The aggregation is dis-
cussed in a different chapter in Section 6.4. The rest of this chapter deals with the
service usage models.

NetFlows

Proxy logs

Other
sources

Feature
extraction

Aggregation

Individual
user-service models

Output

Global
service models

Figure 5 Service modelling framework overview

18

4.2 Feature extraction

4.2 Feature extraction
In this layer the features are extracted from the data sources and provided to the models.
The features used by the models are very simple, allowing for easy extensibility of the
framework by other data sources. The three features that are currently used are: the
number of requests, bytes uploaded and bytes downloaded.

The features are provided in the form of time series. A time series is a sequence of data
points representing measurements over successive uniformly distributed time periods.
The time series are collected for the behaviour of an individual user on an individual
service and provided to the model. The model can then make different combinations of
the time series or work on separate time series, depending on the type of the model.

The time series can be created with a different time step. The optimal time step
depends on many factors, such as model type, service type and activity of users. The
smaller the time step, the greater the level of detail provided, but also the greater the
noise. A bigger time step filters out a lot of noise, but also filters out the fine details of
users’ activities.

The three monitored features are calculated by aggregating all of the feature values
occurring over all the flows in the specified time frame. As an example, the function
for calculating the bytes uploaded feature from proxy logs is as follows:

𝑣𝑏𝑢𝑝(𝑡, 𝑢, 𝑠) =
∑︁

𝑝∈𝑃𝑡,𝑢,𝑠

𝑝𝑏𝑢𝑝,

where 𝑣𝑏𝑢𝑝(𝑡, 𝑢, 𝑠) is the function for calculating the value of time series, 𝑡 is the time
step for which the value is calculated, 𝑢 is the user, 𝑠 is the service, 𝑃𝑡,𝑢,𝑠 is the set of
proxy logs with timestamps in the time period (𝑡, 𝑡 + 𝑡𝑙), 𝑡𝑙 being the length of one time
step, 𝑢 being the user and 𝑠 the service. 𝑝𝑏𝑢𝑝 is the amount of bytes uploaded recorded
by proxy log 𝑝.

The function for calculating the same feature from NetFlows is slightly different, due
to the fact that NetFlows show communication in both directions, while proxy logs only
in one. The function for calculating the bytes uploaded from NetFlows is:

𝜈𝑏𝑢𝑝(𝑡, 𝑢, 𝑠) =
∑︁

𝑓∈𝐹𝑡,𝑢,𝑠

𝑓𝑡𝑟,

where 𝜈𝑏𝑢𝑝(𝑡, 𝑢, 𝑠) is the function for calculating the value of time series, 𝑡 is the time
step for which the value is calculated, 𝑢 is the user, 𝑠 is the service, 𝐹𝑡,𝑢,𝑠 is the set of
flows with timestamps in time period (𝑡, 𝑡 + 𝑡𝑙), 𝑡𝑙 being the length of one time step, 𝑢
being the user and 𝑠 the service. The 𝑢 must correspond to the source endpoint and 𝑠
to the destination endpoint of the flow. 𝑓𝑡𝑟 is the amount of bytes transferred by flow
𝑓 .

The amount of request is calculated by counting the number of corresponding flows
in the specified time period. The function for calculating the number of requests from
proxy logs is defined as:

𝑣𝑟𝑒𝑞(𝑡, 𝑢, 𝑠) = |𝑃𝑡,𝑢,𝑠|,

with all the variables and parameters being the same as those defined for calculating
𝑣𝑏𝑢𝑝.

Finally, all the values are logaritmized in order to provide more stable time series.
The logaritmized values have the following relationship with the original:

𝑣𝑙 = ln(𝑣 + 1),

19

4 Service Modelling and Anomaly Detection

where 𝑣𝑙 is the logaritmized value and 𝑣 is the original. 𝑣 is in the interval [0,∞]. A zero
is added to it to allow for one-to-one mapping to the same interval in the logaritmized
time series. The values for other features and sources are calculated correspondingly.

An illustration of timeseries of a number of requests is shown in Figure 6. The
time series is of one user of a DNS server, his number of requests monitored over the
period of three weeks, with time step of five minutes. This is an active user, and his
behaviour clearly shows the different days, which are represented by regular peaks of
activity. Also, weekends can be easily distinguished from the work days, where the
activity peaks are absent. This is a very active user, unfortunately most users do not
exhibit such periodic and predictable behaviour.

0 1000 2000 3000 4000 5000 6000 7000
0

1

2

3

4

5

6

7

8

9

time step(length = 5m)

nu
m

be
r

of
 r

eq
ue

st
s

Figure 6 Time series example for a DNS server user, y–axis is on a logarithmic scale

4.3 Individual user–service models

Individual user–service models create a model of a single user using a single service. It
is a one-to-one relationship. The idea is that a user will have an established pattern
for using a specific service. When the user significantly deviates from his long-term
behavioural pattern, it is reported as an anomaly.

The disadvantage of this model is that it only works for users who actively use a
service. If the user doesn’t use a service, then there is no way to establish a pattern of
his interaction with the service and therefore an individual model cannot be applied.
The downside is that for many services the majority of users do not use the service
consistently. However, for those who do, this type of model can be used.

Below we present different mathematical representations of a user–service individual
model. Later on, their performance is compared in Chapter 5.

4.3.1 Holt–Winters prediction model

The Holt–Winters Forecasting algorithm is an algorithm that builds upon normal ex-
ponential smoothing. The method is described in [25] and a more sophisticated version

20

4.3 Individual user–service models

with two seasonal trends is described in [26]. A very thorough analysis of Holt–Winters
and other exponential smoothing methods is done in [27].

The Holt–Winters algorithm breaks down the prediction of the time series into three
components, each of which is updated via exponential smoothing by a linear combi-
nation of the other components and the currently measured value. The Holt–Winters
prediction is given by the sum of the three components:

𝑦𝑡+1 = 𝑎𝑡 + 𝑏𝑡 + 𝑐𝑡+1−𝑚.

The components are updated using the following equations:
Baseline:

𝑎𝑡 = 𝛼(𝑦𝑡 − 𝑐𝑡−𝑚) + (1− 𝛼)(𝑎𝑡−1 + 𝑏𝑡−1).

Linear trend:
𝑏𝑡 = 𝛽(𝑎𝑡 − 𝑎𝑡−1) + (1− 𝛽)𝑏𝑡−1).

Seasonal trend:
𝑐𝑡 = 𝛾(𝑦𝑡 − 𝑎𝑡) + (1− 𝛾)𝑐𝑡−𝑚,

where 𝑦𝑡 is the measured value at step 𝑡, 𝑎𝑡, 𝑏𝑡 and 𝑐𝑡 are the three components of
the prediction, 𝛼, 𝛽 and 𝛾 are the exponential smoothing update parameters and 𝑚 is
the length of the season cycle.

The baseline is adjusted by the difference between the seasonal trend and the current
value. The linear trend represents the growth of the baseline between observations.
The seasonal trend is adjusted based on the difference between the measured value and
the baseline.

Szmit[26] presents a slightly more complex Holt–Winters algorithm with two seasonal
trends. The algorithm is described by the following equations:

𝑦𝑡 = 𝐿𝑡−1 + 𝑇𝑡−1 + 𝐷𝑡−𝑟1 + 𝑊𝑡−𝑟2

𝐿𝑡 = 𝛼(𝑦𝑡 −𝐷𝑡−𝑟1 −𝑊𝑡−𝑟2) + (1− 𝛼)(𝐿𝑡−1 + 𝑇𝑡−1)

𝑇𝑡 = 𝛽(𝐿𝑡 − 𝐿𝑡−1) + (1− 𝛽)𝑇𝑡−1

𝐷𝑡 = 𝛾(𝑦𝑡 − 𝐿𝑡 −𝑊𝑡−𝑟2) + (1− 𝛾)𝐷𝑡−𝑟1

𝑊𝑡 = 𝛿(𝑦𝑡 − 𝐿𝑡 −𝐷𝑡−𝑟1) + (1− 𝛿)𝑊𝑡−𝑟2

Which is very similar to the one-seasonal model. 𝑦𝑡 is the predicted value for step 𝑡,
𝑦𝑡 is the measured value at step 𝑡. 𝐿𝑡 is the baseline component, 𝑇𝑡 is the linear trend
and 𝐷𝑡 and 𝑊𝑡 are the two cycles, their lengths given by 𝑟1 and 𝑟2 respectively.

4.3.2 Autoregressive model

The autoregressive model uses classical autoregression in order to learn and predict the
values of a time series. Autoregressive model assumes that a measurement at time 𝑡 is a
linear combination of 𝑘 previous measurements. In order to find the linear coefficients
for the combination we solve a linear squares problem. We use three different types of
autoregressive models: without a cycle, with a single cycle and with two cycles.

21

4 Service Modelling and Anomaly Detection

Autoregressive model without a cycle

The autoregressive model without a cycle is the simplest of the three. It uses a linear
combination of the 𝑘 last time series values in order to predict the next value. The
coefficients of the linear combination are found by solving least squares problem.

The value 𝑦𝑡 at time 𝑡 can be represented as:

𝑦𝑡 = 𝛼1𝑦𝑡−1 + ... + 𝛼𝑘𝑦𝑡−𝑘 + 𝜖𝑡

where 𝑘 is the number of parameters, 𝑦𝑡 is the value at time 𝑡, 𝛼𝑝, 𝑝 ∈ 1..𝑘 are the
linear combination coefficients and 𝜖𝑡 is the error at time 𝑡. The least square problem
attempts to minimise the error sum

∑︀
𝑖∈(𝑘,𝑡) 𝜖2

𝑖 . It is solved by writing out the linear
combinations of the values at different times in matrix format and then finding the
inverse as shown below:

𝑦 =

⎡⎢⎢⎢⎢⎣
𝑦𝑘+1
𝑦𝑘+2

...
𝑦𝑛

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎣ 𝛼1𝑦𝑘 + ... + 𝛼𝑘𝑦1
...

𝛼1𝑦𝑛−1 + ... + 𝛼𝑘𝑦𝑛−𝑘

⎤⎥⎦ =

=

⎡⎢⎢⎢⎢⎣
𝑦𝑘 𝑦𝑘−1 · · · 𝑦1

𝑦𝑘+1 𝑦𝑘 · · · 𝑦2
...

𝑦𝑛−1 𝑦𝑛−2 · · · 𝑦𝑛−𝑘

⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎣

𝛼1
𝛼2
...

𝛼𝑘

⎤⎥⎥⎥⎥⎦ = 𝑌 ·𝐴

In our specific case of modelling user behaviour we are only interested in time steps
where the user was active, therefore we prune the 𝑦 vector and 𝑌 matrix by removing
rows of 𝑦 which are zero and removing the corresponding rows of 𝑌 . 𝑦𝑛𝑧 and 𝑌𝑛𝑧 are
selected rows of 𝑦 and 𝑌 where all elements of 𝑦𝑛𝑧 are non-zero. The model parameters
are calculated by solving:

𝐴 = 𝑌𝑛𝑧∖𝑦𝑛𝑧

The prediction 𝑦𝑡 at time 𝑡 is given by:

𝑦𝑡 = 𝛼1𝑦𝑡−1 + ... + 𝛼𝑘𝑦𝑡−𝑘

The advantage of the autoregressive model without a cycle is the small memory length
needed to make a prediction. Only 𝑘 last values are required. The disadvantage is that
it does not consider long-term behaviour, which makes it less precise for long-term
users, compared to models with a cycle.

Autoregressive model with a cycle

The autoregressive model with a cycle extends the previous model with a cycle that
looks back in history and uses the values that correspond to some period in history.
This predictor is based on the idea that a lot of users’ behaviour is periodic — someone
who used a service on Monday is likely to use it again on Tuesday. This model can be
represented by the following equation:

𝑦𝑡 = 𝛼1𝑦𝑡−1 + ... + 𝛼𝑘𝑦𝑡−𝑘 + 𝛽1𝑦𝑡−𝑟+ 𝑘
2 −1 + · · ·+ 𝛽𝑘𝑦𝑡−𝑟− 𝑘

2
+ 𝜖𝑡

where 𝑟 is the length of the cycle and 𝛽𝑖, 𝑖 ∈ 1..𝑘 are the parameters for the cycle values.
Once again, this is a least squares problem where we want to minimise

∑︀
𝑖∈(𝑘,𝑟+ 𝑘

2) |𝜖𝑖|.

22

4.3 Individual user–service models

This is done by constructing the following matrices and solving them in the same way
as before.

𝑦 =

⎡⎢⎢⎣
𝑦𝑟+ 𝑘

2 +1
...

𝑦𝑛

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑦𝑟+ 𝑘

2
𝑦𝑟+ 𝑘

2 −1 · · · 𝑦𝑟− 𝑘
2 +1 𝑦𝑘 · · · 𝑦1

...
𝑦𝑛−1 𝑦𝑛−2 · · · 𝑦𝑛−𝑘 𝑦𝑛−𝑟+ 𝑘

2 −1 · · · 𝑦𝑛−𝑟− 𝑘
2

⎤⎥⎥⎦·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼1
...

𝛼𝑘

𝛽1
...

𝛽𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

= 𝑌 ·𝐴

Once again, we select rows of 𝑦 and 𝑌 which are non-zero for 𝑦 and use

𝐴 = 𝑌𝑛𝑧∖𝑦𝑛𝑧

as parameter estimate. The prediction is then given by:

𝑦𝑡 = 𝛼1𝑦𝑡−1 + ... + 𝛼𝑘𝑦𝑡−𝑘 + 𝛽1𝑦𝑡−𝑟+ 𝑘
2 −1 + · · ·+ 𝛽𝑘𝑦𝑡−𝑟− 𝑘

2

The advantage of using a cycle is the ability to look back further in history and be
able to learn from long-term usage. The disadvantage is that more values need to be
retained in memory, increasing hardware demands.

Autoregressive model with two cycles

Autoregressive model with two cycles is done by extending the autoregressive model
with one cycle with another cycle of greater length 𝑟2 and then solving the problem in
the same way. The two cycle model can be an improvement on one cycle if we consider
that user’s behaviour can have two periods: daily and weekly. A common pattern is
for activity to repeat from day to day and then stop over the weekend. This can be
accounted for by using the second cycle. The prediction of the two-cycle autoregressive
model is then given by:

𝑦𝑡 = 𝛼1𝑦𝑡−1+· · ·+𝛼𝑘𝑦𝑡−𝑘+𝛽1𝑦𝑡−𝑟1+ 𝑘
2 −1+· · ·+𝛽𝑘𝑦𝑡−𝑟1− 𝑘

2
+𝛾1𝑦𝑡−𝑟2+ 𝑘

2 −1+· · ·+𝛾𝑘𝑦𝑡−𝑟2− 𝑘
2
,

where 𝑟1 is the length of the first cycle and 𝑟2 is the length of the second cycle and
𝛾𝑖, 𝑖 ∈ 1..𝑘 are the parameters for the second cycle values.

The advantage is increased ability to learn from long-term history. The disadvantage
is increase in memory demands.

Autoregressive model with aggregated memory

One of the problems of predictive models with cycles is that they need to retain a lot of
values in memory (longest cycle length) in order to make a prediction. A way around
it is to aggregate values that are far in memory into values with a greater time step.
This way less memory is needed to store the time series and similar performance results
can be achieved by the predictor. A description of an autoregressive predictor with one
cycle with aggregated memory is given below:

𝑦𝑡 = 𝛼1𝑦𝑡−1 + ... + 𝛼𝑘𝑦𝑡−𝑘 + 𝛽1𝑦𝑓(𝑡−𝑟)+ 𝑙
2 −1 + · · ·+ 𝛽𝑘𝑦𝑓(𝑡−𝑟)− 𝑙

2
+ 𝜖𝑡,

23

4 Service Modelling and Anomaly Detection

where 𝑟 is the length of the cycle and 𝛽𝑖, 𝑖 ∈ 1..𝑘 are the parameters for the cycle
values, 𝑦𝑡 is the aggregate of values for time 𝑡 defined as

𝑦𝑡 = 1
𝑤

𝑤−1∑︁
𝑖=0

𝑦𝑓(𝑡)+𝑖,

where 𝑤 is the width of aggregation for past values. The corresponding time transfor-
mations defined as follows:

𝑡 = 𝑓(𝑡) = 𝑤 · (𝑡− 1) + 1

𝑡 = 𝑓(𝑡) = ⌊ 𝑡

𝑤
⌋

The matrices for the least square problem are formulated similarly to the autoregres-
sive model with one cycle and are solved in the same way. The prediction value is given
by:

𝑦𝑡 = 𝛼1𝑦𝑡−1 + ... + 𝛼𝑘𝑦𝑡−𝑘 + 𝛽1𝑦𝑓(𝑡−𝑟)+ 𝑙
2 −1 + · · ·+ 𝛽𝑘𝑦𝑓(𝑡−𝑟)− 𝑙

2

This model can be easily extended to a model with two cycles.

4.3.3 Quantile Regression Model

Quantile regression model is similar to normal autoregressive model. The difference is in
the minimization function. Quantile regression is described more thoroughly in [28, p.
18]. Quantile regression is achieved through solving the following minimisation problem:

arg min
𝛽

𝑛∑︁
𝑖=1

𝜌𝜏 (𝑦𝑖 − 𝜉(𝑥𝑖, 𝛽))

𝜌𝜏 (𝑥) =
{︃

𝜏 * 𝑥 if 𝑥 ≥ 0
(𝜏 − 1) * 𝑥 if 𝑥 < 0

where 𝜏 is the quantile desired, 𝜉 is the projection function, 𝑥𝑖 is the input variable, 𝑦𝑖

is the output variable, 𝛽 is the set of parameters for 𝜉 to be optimised and 𝑖 is the step.
Quantile regression works by minimising an absolute error function. Quantile regres-

sion can fit a function into different quantiles of the 𝑦 distribution. This is achieved by
giving different weight to errors of different sign through parameter 𝜏 , allowing to set
the quantile into which the function is to be fit. The parameters 𝛽 that minimise the
error function are found by solving a linear programming problem.

Quantile regression model without a cycle

A predictor without a cycle similar to the one in autoregressive model can be created
if we take 𝜉 to be a linear combination of the 𝑘 values preceding 𝑦𝑖. The quantile
regression model is then formulated as follows:

arg min
𝛽∈ℜ𝑘

𝑛∑︁
𝑡=𝑘+1

𝜌𝜏 (𝑦𝑡 − 𝜉(𝑦𝑡−1, · · · , 𝑦𝑡−𝑘, 𝛽))

𝜉(𝑦𝑡−1, · · · , 𝑦𝑡−𝑘, 𝛽) = 𝛽1𝑦𝑡−1 + · · ·+ 𝛽𝑘𝑦𝑡−𝑘,

24

4.3 Individual user–service models

where 𝑦𝑡 is the value at time 𝑡, 𝛽 is the set model parameters and 𝑘 is the number of
model parameters. The prediction is given by

𝑦𝑡 = 𝛽1𝑦𝑡−1 + · · ·+ 𝛽𝑘𝑦𝑡−𝑘

This model is somewhat similar to the autoregressive model without a cycle. The
advantage is the ability to choose the quantile into which to fit the function, which
in turn could allow to control the amount of alerts generated by the model. The
disadvantage is very high computational complexity, compared to other models.

Quantile regression model with one cycle

A quantile regression model with one cycle can be created analogously to the autore-
gressive model. The quantile regression model with one cycle is formulated as follows:

arg min
𝛽∈ℜ𝑘

𝑛∑︁
𝑡=𝑟+𝑘/4+1

𝜌𝜏 (𝑦𝑡 − 𝜉(𝑦𝑡−1, · · · , 𝑦𝑡−𝑘/2, 𝑦𝑡−𝑟−𝑘/4, · · · , 𝑦𝑡−𝑟+𝑘/4−1, 𝛽))

𝜉(𝑦𝑡−1, · · · , 𝑦𝑡−𝑘, 𝛽) = 𝛽1𝑦𝑡−1 + · · ·+ 𝛽𝑘/2𝑦𝑡−𝑘/2 + 𝛽𝑘/2+1𝑦𝑡−𝑟−𝑘/4 + · · ·+ 𝛽𝑘𝑦𝑡−𝑟+𝑘/4−1,

where 𝑟 is the length of the cycle. The model prediction is given by:

𝑦𝑡 = 𝛽1𝑦𝑡−1 + · · ·+ 𝛽𝑘/2𝑦𝑡−𝑘/2 + 𝛽𝑘/2+1𝑦𝑡−𝑟−𝑘/4 + · · ·+ 𝛽𝑘𝑦𝑡−𝑟+𝑘/4−1

Quantile regression model with two cycles

The quantile regression model with two cycles is created by adding a second cycle to
the single cycle model. Its output is given in an analogous manner.

Quantile regression model - linear programming

The task of learning the parameters of the quantile regression model is non-trivial. We
can reformulate the problem by creating an additional optimisation variable 𝑡 ∈ ℜ𝑙.
The optimisation problem is then:

min
𝑙∑︁

𝑖=1
𝑡𝑖

[︃
−𝜏𝑌 −𝐼

−(𝜏 − 1)𝑌 −𝐼

]︃
·
[︃

𝑃
𝑡

]︃
≤

[︃
−𝜏𝑦

−(𝜏 − 1)𝑦

]︃
,

where 𝑌 and 𝑦 are the matrix and vector defined in Section 4.3.2. 𝑌 ∈ R𝑙×𝑘 and 𝑃
are the model parameters to be found. This is a form that can be solved by standard
linear programming solvers.

4.3.4 Anomaly values from predictor models
Since the predictor models described above give only an estimate of what the time
series value should be at a specific time step, we need a way to calculate anomaly values
from these predictions. In order to calculate the anomaly values we first calculate the
deviations of the measured value 𝑦𝑡 from the predicted value 𝑦𝑡 at time step 𝑡. As we
are only interested in excessive usage, we only take deviations that are greater than 𝑦𝑡.
Deviation for time step 𝑡 is given by:

25

4 Service Modelling and Anomaly Detection

𝛿𝑡 =
{︃

0 if 𝑦𝑡 − 𝑦𝑡 ≤ 0
𝑦𝑡 − 𝑦𝑡 if 𝑦𝑡 − 𝑦𝑡 > 0

Anomaly value is then given as a CDF of the exponential distribution of non zero
deviations 𝛿. The distribution parameter is calculated as follows:

𝜆 = 1
|Δ𝑝|

∑︁
𝛿∈Δ𝑝

𝛿,

where Δ𝑝 is the set of positive 𝛿𝑡. The anomaly value for measurement 𝑦𝑡 for time step
𝑡 is then given by:

anomaly (𝑦𝑡) =
{︃

0 if 𝑦𝑡 − 𝑦𝑡 ≤ 0
1− exp{𝜆(𝑦𝑡 − 𝑦𝑡)} if 𝑦𝑡 − 𝑦𝑡 > 0

4.3.5 Parzen window cumulative distribution model

The Parzen window cumulative distribution model is different from the previous models
in that it does not take the time order into account. The idea is simple: in order to
detect excessive usage we report usage that is higher than what was seen previously,
regardless of when it had happened before.

The Parzen window cumulative distribution model uses the Parzen window method
to estimate the probability density function of the values from the time series and
then uses it to numerically calculate the cumulative distribution function. The Parzen
window estimation of the probability density is defined below, as given in [21, p. 123]

𝑝(𝑥) = 1
𝑁

𝑁∑︁
𝑛=1

1
ℎ

𝑘

(︂
𝑥− 𝑥𝑛

ℎ

)︂
,

where 𝑥𝑛, 𝑛 ∈ 1..𝑁 are the samples from which the probability density function is
estimated, ℎ is the bandwidth and 𝑘 is the Parzen window function, sometimes referred
to as kernel function. The Parzen window (kernel) function is subject to the following
two conditions:

𝑘(𝑢) ≥ 0∫︁ ∞

−∞
𝑘(𝑢) = 1

The cumulative density function can be estimated numerically using

𝑐𝑑𝑓(𝑥) =
𝑚∑︁

𝑖=1
𝑏 · 𝑝(𝑥𝑖+1)− 𝑝(𝑥𝑖)

2 ,

where 𝑏 is the length of the integration step, 𝑝(𝑥) is the Parzen window estimation
function and 𝑥𝑖, 𝑖 ∈ 1..𝑚 are samples with distance 𝑏 between two consecutive sample,
sample 𝑥𝑚 = 𝑥 and 𝑝(𝑥1) < 𝜖, where 𝜖 is a tolerance value.

Parzen window cumulative distribution model uses the time series as the samples
for estimating the probability density function and gives the numerically estimated
cumulative density function 𝑐𝑑𝑓(𝑥) as its output. Figure 7 show an example of a Parzen
window cumulative distribution model for a single user. Anomaly value is given by the
cdf.

26

4.4 Global service models

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

feature value

pr
ob

ab
ili

ty

pdf
cdf

Figure 7 Parzen window cumulative distribution model

4.4 Global service models
A global service model considers the behaviour of all the users of the modelled service. It
then reports those users who have different behaviour from the majority as anomalous.
Its main advantage over the individual user–service models is that this type of model
does not require user history, it works just as well for the users who use the service
sporadically or even those who use it for the first time ever.

4.4.1 Global median model
The global median model works by taking the values for all the active users in a specific
time step. It then calculates the median of those values.

𝑚 = median 𝑣, 𝑣 ∈ 𝑉𝑎𝑡,

where 𝑣 is the value of the modelled feature for a specific user and 𝑉𝑎𝑡 is the set of
values of this feature for all users active at time 𝑡. The next step is finding deviations
from the median. As we are only interested in excessive usage, we only take deviations
that are greater than 𝑚. Deviation for user 𝑢 is given by:

𝛿𝑢 =
{︃

0 if 𝑣𝑢 −𝑚 ≤ 0
𝑣𝑢 −𝑚 if 𝑣𝑢 −𝑚 > 0 ,

Anomaly value is given as a CDF of the exponential distribution of non zero deviations
𝛿. The distribution parameter is calculated as follows:

𝜆 = 1
|Δ𝑝|

∑︁
𝛿∈Δ𝑝

𝛿,

where Δ𝑝 is the set of positive 𝛿𝑢. The anomaly value for measurement 𝑣𝑢 for user 𝑢 is
then given by:

anomaly (𝑣𝑢) =
{︃

0 if 𝑣𝑢 −𝑚 ≤ 0
1− exp{𝜆(𝑚− 𝑣𝑢)} if 𝑣𝑢 −𝑚 > 0

27

4 Service Modelling and Anomaly Detection

4.4.2 Global Parzen window cumulative distribution model
The global parzen window model works on the same principle as the individual user–
service Parzen window cumulative model described in Section 4.3.5. The difference is
that instead of taking the distribution of values of an individual user over time, the
global model takes the distribution of values of all active users in current time step.
The rest is exactly the same. The anomalies are given by the numerically calculated
cumulative density function over the active user values distribution.

28

5 Experiments

In this chapter we present the results of experimenting with the mathematical models
and algorithms described in the previous chapters. First, in Section 5.1 we compare
the performance of the simple and parallel request-response pair matching algorithms,
as were described in Sections 3.2 and 3.3. Then, in Section 5.2 the experiments and
detection results for the request-response detector (see Section 3.4) are described. In
Section 5.3 we evaluate the service detection algorithm as described in Sections 3.5, 3.6
and 3.7. Section 5.4 does a comparison of the service models presented in Chapter 4.
Subsection 5.4.1 does an error comparison for different predictors on multiple datasets.
Finally, Subsection 5.4.2 evaluates the performance of detectors on mixed attacks.

5.1 Request-response pair matching

The performance of the two versions of request-response pair matching algorithms,
described in Sections 3.2 and 3.3 was compared. The performance was compared on
several different NetFlow batches, each containing a different amount of NetFlows. The
NetFlow batches of different sizes were generated from an existing dataset by merging a
required amount of NetFlows into a single batch. Five batches were created altogether,
each successive batch containing roughly twice the amount of NetFlows as the previous
batch.

Each algorithm was run on the NetFlows batch twenty times and the time was mea-
sured. The average time was given as the run time for each algorithm. Parallel algo-
rithm was allowed to use four threads. Both algorithms were run on the same machine
with a dual-core CPU. Figure 8 shows the comparisons of performance of the two al-
gorithms. Parallel version is significantly faster than the normal version for all batch
sizes.

5.2 Request-response anomaly detector

The request-response anomaly detector was run on several different datasets captured
on the CTU network. Different types of malicious and legitimate activities were labelled
in the datasets. AUC values were calculated from the outputs of the detectors using
the dataset labels as ground truth.

Table 2 shows the AUC values for different datasets that contain different types of
malicious behaviour: malware C&C search, port scans and DoS attacks. The AUC
values show high detection quality for all three types of malicious behaviour. The scan
detection quality depends on how successful and extensive the scan is.

Successful scans get lower AUC values, because the request-response detector only
reports flows that are requests without responses as anomalous. In the dataset, all
the flows belonging to the scan are labelled as anomalous, including those that got a
response. This means, that even though request-response is successful at detecting a
scan, it will only label a subset of the flows belonging to the scan as anomalous, which
results in a lower AUC value.

29

5 Experiments

10
6

10
7

1

2

3

4

5

6

7

8

9

10

Number of flows

S
pe

ed
 [s

]

Normal
Parallel

Figure 8 Request-response pair matching algorithm comparison

Sirefef and Pushdo are different malware families that perform C&C search by going
to lot of different IP addresses. Most of those addresses are not active, which results in
a large number of requests without responses generated by the malware and aids in its
detection.

Horizontal scan is a scan of certain port across many different IP addresses in the
network. This type of scan is more likely to be successful, as the ports chosen are
usually of commonly used services that the intruder wants to discover and which are
more likely to respond to a request. SSH scan and SQL scan are examples of horizontal
scan for a specific service type.

A vertical scan is a scan of a single IP address across a large set of ports, in order to
discover what services are run on that IP address. Normally, this type of scan is less
likely to be successful as there is a very large number of ports, while it is unusual to run
more than a couple of services on a single IP address, therefore only a small portion of
requests is likely to get a response.

ICMP and SYN flood are types of DoS attacks, where the attacker sends a huge
amount ICMP or SYN packets to a certain service. The ideas is to consume enough
server resources by these packets to make it unresponsive. This means that a successful
ICMP or SYN flood attack will also have a large number of requests without responses.

From the experiments we can conclude that the detector is successful at detecting
C&C search by two different families of malware, horizontal and vertical port scans, as
well as denial of service attacks. High AUC values show high detection quality.

30

5.3 Service detection

Dataset Label AUC value

Malware C&C search

ctu_sirefef_november(15_11) Sirefef 0.9606
ctu_sirefef_november(19_11) Sirefef 0.9648

ctu_pushdo_november Pushdo 0.8481

Port scans

ctu-dataWithout0-firstDay SQL scan 0.8873
ctu-dataWithout0-firstDay Horizontal scan 0.8541
ctu-dataWithout0-firstDay Vertical scan 0.9893

ctu-sshScan-bruteforce_large SSH scan 0.8996
ctu-sshScan-bruteforce_small SSH scan 0.8959

ctu_scanMsssql Vertical scan 0.9055
felk-probing _attack Vertical scan 0.9078

DoS

ctu_icmp_attack_november ICMP attack 0.9534
ctu_synFlood_attack_november SYN flood 0.9533
ctu_synFlood_attack_november ICMP attack 0.9196

Table 2 Results of request response anomaly detector. AUC values are shown for datasets that
contain different types of malicious behaviour.

5.3 Service detection

Evaluating the results of service detection is somewhat difficult due to the lack of ground
truth labels for services. The only way to confirm if a detected service is a service is by
manual inspection of NetFlows or by obtaining additional information, e.g. asking the
administrator of the network or contacting the service. This has its own problems, as
the administrator might not know about the service and contacting it may not work, as
a service that was active at the time when NetFlows were captured may not be active
when you attempt to contact it.

In our evaluation of service detection we chose a simple if somewhat manual approach.
We did an analysis of common network services such as DNS and HTTP. As the first
step we found all the endpoints inside the network that seemed to be running one of
these common services. This was done by iterating over all the flows in the dataset
and taking those flows whose source port was a port of one of the common services and
whose TCP flags were not R or AR in order to filter out scans. These flows represented
responses from common services, and their source endpoints were taken as potentially
running one of the common services in the network. Service detection algorithm was
then run on the same dataset and its output was compared to the estimate of the
services using port numbers. Table 3 shows the results of the evaluation. The service
type and port number columns represent the information about the service types, the
detected services column is the number of services detected by the service detector and
all endpoints column is the number of endpoints counted using that port. The last
column represents the ratio between the number of detected services and all endpoints
using that port.

From looking at the Table 3, it seems that the service detection quality is not great.
However, if we list all the endpoints for a specific service type and go through them
manually the picture is different: there are five endpoints that are confirmed DNS
servers, all of which are detected by the service detector. The other one detected is also

31

5 Experiments

Table 3 Service detection results

Service type Port number Detected services All endpoints Detected/all

HTTPS 443 30 218 0.14
RDP 3389 28 90 0.31

HTTP 80 62 232 0.27
DNS 53 6 12 0.5
SSH 22 109 315 0.35

HTTP 8080 9 48 0.19
SMTP 25 4 23 0.17
MySQL 3306 18 72 0.25

a service, however it is a form of service misuse through DNS tunnelling. The rest of
the endpoints are clients who use DNS port as their source port and two of which have
only one flow in the whole dataset. This shows that the detector has good recall and
precision. Manual inspection for other services reveals similar resuts. The clients who
use DNS port as the source port is an example of why using the port numbers is a bad
feature in detecting services, as done by [17] and [18] and it is better to model services
using the behavioural approach.

5.4 Service modelling
In this section we compare different predictors and anomaly models from Chapter 4.

5.4.1 Predictor errors
In this section we compare the errors of the user-service individual model predictors.
We define two types of errors for the purposes of this comparison. The first type is
normalised root mean squared error for non-zero values, defined as:

rmse =

⎯⎸⎸⎷ 1
|𝑇𝑛𝑧|

∑︁
𝑡∈𝑇𝑛𝑧

(︂
𝑦𝑡 − 𝑦𝑡

𝑦𝑡

)︂2
,

where 𝑦𝑡 is the measurement at time 𝑡, 𝑦𝑡 is the predicted value for time 𝑡 and 𝑇𝑛𝑧 is
the set of times for which 𝑦𝑡 is non-zero. We take only non-zero values of 𝑦𝑡, because in
the service modelling anomaly detection a zero value of 𝑦𝑡 means inactivity of the user
at time 𝑡. As we are interested in detecting excessive usage, we disregard those periods
when the user was inactive. The normalisation is done in order to make the influence
of less intensive and more intensive users equal in the mean predictor error.

The second error is the mean normalised heaviside error and it is defined as follows:

mhe =
∑︀

𝑡∈𝑇𝑛𝑧

(︁
𝑦𝑡−𝑦𝑡

𝑦𝑡

)︁
·H (𝑦𝑡 − 𝑦𝑡)∑︀

𝑡∈𝑇𝑛𝑧
H (𝑦𝑡 − 𝑦𝑡)

,

where H(𝑥) is an indicator function defined as:

H(𝑥) =
{︃

0 if 𝑥 ≤ 0
1 if 𝑥 > 0

The mean normalised heaviside error captures how much a predictor undershoots
the measured values on average. This is an important error measure when detecting

32

5.4 Service modelling

Table 4 Predictor errors for Dropbox, different time aggregation windows, active users

rmse mhe sum rmse mhe sum
Dropbox (5m) Dropbox (30m)

Holt-winters 0.057 0.042 0.099 0.101 0.053 0.153
AR no mem 0.083 0.053 0.135 0.138 0.045 0.184
AR day mem 0.081 0.051 0.133 0.126 0.050 0.176
AR day week mem 0.079 0.050 0.129 0.116 0.048 0.163
AR agg day mem 0.082 0.052 0.133 0.131 0.050 0.182
AR agg day week mem 0.080 0.050 0.130 0.124 0.048 0.171
Quan day 0.5 0.103 0.034 0.137 0.139 0.041 0.180
Quan day 0.75 0.102 0.065 0.167 0.138 0.065 0.203
Quan day week 0.5 0.102 0.033 0.135 0.134 0.039 0.173
Quan day week 0.75 0.101 0.064 0.164 0.134 0.060 0.193

Dropbox (1h) Dropbox (2h)

Holt-winters 0.153 0.114 0.267 0.213 0.185 0.398
AR no mem 0.200 0.092 0.291 0.238 0.140 0.378
AR day mem 0.177 0.092 0.269 0.225 0.130 0.354
AR day week mem 0.153 0.073 0.226 0.179 0.093 0.271
AR agg day mem 0.184 0.101 0.285 0.178 0.110 0.287
AR agg day week mem 0.168 0.080 0.248 0.166 0.072 0.237
Quan day 0.5 0.194 0.074 0.268 0.245 0.107 0.352
Quan day 0.75 0.207 0.108 0.315 0.269 0.156 0.425
Quan day week 0.5 0.180 0.062 0.242 0.206 0.079 0.286
Quan day week 0.75 0.194 0.083 0.278 0.255 0.094 0.349

excessive usage, because it reflects how much a predictor is able to distinguish natural
increase in usage from anomalous excessive usage.

The two errors measure different criteria of predictor quality. If we choose a predictor
based on one error, it is possible that it will perform badly in the other. It is therefore
necessary to create a measure that will reflect both aspects of predictor quality. Root
mean square error and mean heaviside error measure error in the same units so we can
take their sum and then take that as the unified measure that reflects both criteria.

Evaluation was performed by running evaluated predictor on a set of users in a
dataset, measuring their error, then taking the average across the users and reporting
it as the error for the predictor. The users on which the predictor was evaluated were
chosen based on their activity level using the following ratio:

ar = |𝑇𝑛𝑧|
|𝑇 |

,

where 𝑇𝑛𝑧 is the set of time steps where the user was active and 𝑇 is the set of time
steps in which user’s activity was measured. Active users were defined as those whose
𝑎𝑟 is greater than 0.25 and highly active users as those whose 𝑎𝑟 is greater than 0.5.

Experiments were run for different predictors with different configurations. Holt-
winters predictor was run using the two-cycle version, with parameters set to

𝛼 = 𝑓(0.75, 3)

𝛽 = 𝑓(0.2, 288 · 2/𝑎)

33

5 Experiments

Table 5 Predictor errors for Dropbox, different time aggregation windows, highly active users

rmse mhe sum rmse mhe sum
Dropbox (5m) Dropbox (30m)

Holt-winters 0.368 0.201 0.569 0.185 0.133 0.318
AR no mem 0.445 0.253 0.698 0.187 0.088 0.275
AR day mem 0.422 0.241 0.662 0.165 0.079 0.244
AR day week mem 0.375 0.199 0.574 0.103 0.054 0.156
AR agg day mem 0.422 0.229 0.651 0.156 0.075 0.231
AR agg day week mem 0.403 0.177 0.580 0.124 0.059 0.183
Quan day 0.5 0.420 0.228 0.648 0.179 0.077 0.256
Quan day 0.75 0.574 0.239 0.813 0.217 0.083 0.300
Quan day week 0.5 0.381 0.183 0.565 0.120 0.041 0.161
Quan day week 0.75 0.535 0.174 0.709 0.187 0.038 0.225

Dropbox (1h) Dropbox (2h)

Holt-winters 0.082 0.049 0.132 0.124 0.081 0.205
AR no mem 0.099 0.031 0.130 0.128 0.079 0.207
AR day mem 0.093 0.042 0.135 0.121 0.073 0.194
AR day week mem 0.084 0.040 0.124 0.108 0.054 0.162
AR agg day mem 0.096 0.042 0.138 0.106 0.084 0.191
AR agg day week mem 0.087 0.037 0.124 0.101 0.047 0.149
Quan day 0.5 0.101 0.022 0.123 0.134 0.041 0.174
Quan day 0.75 0.102 0.040 0.142 0.138 0.068 0.206
Quan day week 0.5 0.097 0.021 0.118 0.122 0.035 0.157
Quan day week 0.75 0.098 0.038 0.136 0.142 0.052 0.194

𝛾 = 𝑓(0.5, 288/𝑎)

𝛿 = 𝑓(0.5, 288 · 7/𝑎)

𝑓(𝑤, 𝑝) = 1− exp
{︂ log(1− 𝑤)

𝑝

}︂
,

𝑓 is a function that sets the parameters in such a way so that the last 𝑝 time points
account for 𝑤 · 100% of the prediction. 𝑤 ∈ (0, 1), 𝑝 ∈ {1, 2, 3, ...}. 𝑎 is the number
of five-minutes aggregated into one time step. The procedure for setting Holt-winter
model parameters was taken from [25].

Autoregressive model parameters were set to 𝑘 = 10. For autoregressive model with
aggregated memory 𝑙 = 2 and 𝑤 = 12 for the two-cycle version 𝑙1 = 2, 𝑤2 = 12, 𝑙2 = 2
and 𝑤2 = 36. Mosek [29] linear programming solver was used to solve the LP problem
for the quantile regression model. The cycles for all the models, where appropriate,
were set to 𝑟1 = 288/𝑎 and 𝑟2 = 288 · 7/𝑎, which is a one day and one week cycles,
respectively.

Experiments were run for several different datasets with different network services
and different aggregation steps and the results were compared. Tables 4, 5, 6 and 7
show the results of the evaluation.

Table 4 shows the results of evaluation run with different time step length on the
same service Dropbox. Dropbox was chosen because it is a popular data storage cloud
service and can be easily used for data exfiltration. It is also used by a lot of users
in the dataset which allows for more reliable evaluation. For the shorter time step the

34

5.4 Service modelling

Table 6 Predictor errors for various services, 2 hour aggregation, active users

rmse mhe sum rmse mhe sum
Twitter Salesforce

Holt-winters 0.399 0.329 0.728 0.302 0.249 0.551
AR no mem 0.563 0.351 0.913 0.430 0.266 0.696
AR day mem 0.531 0.318 0.848 0.403 0.246 0.649
AR day week mem 0.460 0.249 0.709 0.307 0.223 0.530
AR agg day mem 0.471 0.248 0.718 0.308 0.172 0.480
AR agg day week mem 0.457 0.198 0.656 0.284 0.164 0.447
Quan day 0.5 0.551 0.308 0.858 0.424 0.233 0.658
Quan day 0.75 0.773 0.311 1.084 0.533 0.266 0.799
Quan day week 0.5 0.503 0.234 0.736 0.304 0.223 0.527
Quan day week 0.75 0.751 0.192 0.943 0.512 0.130 0.642

Live Dropbox (Smurf network)

Holt-winters 0.403 0.256 0.660 0.262 0.216 0.478
AR no mem 0.504 0.301 0.805 0.296 0.175 0.472
AR day mem 0.470 0.281 0.751 0.260 0.153 0.414
AR day week mem 0.408 0.231 0.638 0.114 0.072 0.186
AR agg day mem 0.456 0.230 0.687 0.242 0.133 0.375
AR agg day week mem 0.420 0.182 0.602 0.117 0.058 0.175
Quan day 0.5 0.479 0.269 0.748 0.286 0.141 0.427
Quan day 0.75 0.665 0.275 0.940 0.352 0.148 0.501
Quan day week 0.5 0.419 0.217 0.635 0.130 0.082 0.212
Quan day week 0.75 0.617 0.193 0.810 0.188 0.055 0.243

smallest error is attained by Holt-winters predictor, while for the greater time steps the
error is lowest for the autoregressive model with day week cycles. Table 5 shows the
results of the same evaluation for highly active users. Here the results are always the
best for autoregressive models with aggregated memory and day week cycles.

Tables 6 and 7 show the results of the same evaluation run for different services with
two hours time step length. For the active users the most successful predictor is the
autoregressive with aggregated memory and day week cycle. For the highly active users
the most successful is Holt–Winters for Twitter and Salesforce and Live and Dropbox
it is quantile and autoregressive predictors with day week cycles respectively.

Autoregressive predictors with day week cycles and autoregressive predictor with
aggregated memory and day week cycle often have the lowest error values. In those cases
where their values are not the lowest, they are among the top three lowest values. From
this we can conclude that from the point of view of prediction error the autoregressive
predictors with day week cycles and autoregressive predictor with aggregated memory
and day week cycles are the best ones.

5.4.2 Mixed attacks

In this section we describe mixing of attacks into normal user traffic in order to test
performance of the detectors. The mixing process is relatively simple, due to the addi-
tive nature of the features used. An attack is said to be an excessive usage of a service
during some period of time, for example a one gigabyte upload to Dropbox during an

35

5 Experiments

Table 7 Predictor errors for various services, 2 hour aggregation, highly active users

rmse mhe sum rmse mhe sum
Twitter Salesforce

Holt-winters 0.277 0.149 0.427 0.221 0.184 0.405
AR no mem 0.371 0.154 0.525 0.289 0.217 0.506
AR day mem 0.355 0.153 0.508 0.261 0.203 0.464
AR day week mem 0.323 0.135 0.458 0.254 0.199 0.452
AR agg day mem 0.334 0.146 0.480 0.231 0.192 0.423
AR agg day week mem 0.335 0.127 0.463 0.236 0.185 0.420
Quan day 0.5 0.358 0.154 0.512 0.247 0.200 0.448
Quan day 0.75 0.446 0.165 0.611 0.363 0.176 0.539
Quan day week 0.5 0.339 0.122 0.461 0.243 0.198 0.441
Quan day week 0.75 0.421 0.132 0.554 0.360 0.158 0.519

Live Dropbox (Smurf network)

Holt-winters 0.368 0.201 0.569 0.185 0.133 0.318
AR no mem 0.445 0.253 0.698 0.187 0.088 0.275
AR day mem 0.422 0.241 0.662 0.165 0.079 0.244
AR day week mem 0.375 0.199 0.574 0.103 0.054 0.156
AR agg day mem 0.422 0.229 0.651 0.156 0.075 0.231
AR agg day week mem 0.403 0.177 0.580 0.124 0.059 0.183
Quan day 0.5 0.420 0.228 0.648 0.179 0.077 0.256
Quan day 0.75 0.574 0.239 0.813 0.217 0.083 0.300
Quan day week 0.5 0.381 0.183 0.565 0.120 0.041 0.161
Quan day week 0.75 0.535 0.174 0.709 0.187 0.038 0.225

Table 8 Twitter mixed attack, mean rank out of 46 users

Attack size (#req/h) AR day week mem Global median
5 9.83 10.41
50 5.044 7.59
500 2 2.96
5000 1.28 2.85
50000 1.18 2.02

hour. Any usage can only be described as excessive within some context, so a small up-
load to one service can be absolutely normal, while the exact same upload to a different
service, or even to the same service by a different user can be considered excessive.

The evaluation is done using the following procedure. For the evaluated service, we
select a group of users that we want to evaluate the detector on. We usually choose
active or highly active users, as the detectors based on individual user-service models
are only effective for them. We mix the attack into each user one by one. The time
series of the user with the mixed attack are given by

mixed time series = {𝑣1, 𝑣2, ..., 𝑣𝑠𝑡𝑎𝑟𝑡 + 𝑎1, ..., 𝑣𝑒𝑛𝑑 + 𝑎𝑚, ..., 𝑣𝑛},

where 𝑣𝑘, 𝑘 ∈ 1..𝑛 are the non-logarithmic values of the user time series and 𝑎𝑘, 𝑘 ∈ 1..𝑚
are the non-logarithmic values of the attack time series. 𝑠𝑡𝑎𝑟𝑡 is the first time step into

36

5.4 Service modelling

Table 9 DNS enumeration attack, mean rank out of 548 users, detector comparison, attack at
night

Detector Full[rank] Full[prob] Half[rank] Half[Prob]
Holt-winters 16.98 0.97 26.00 0.95
AR no mem 6.85 0.97 8.33 0.96
AR day mem 5.94 0.98 7.19 0.97
AR day week mem 15.07 0.96 13.75 0.95
AR agg day mem 6.77 0.98 8.93 0.97
AR agg day week mem 13.86 0.95 15.17 0.95
Quan day 0.5 15.46 0.96 15.10 0.95
Quan day 0.75 19.41 0.96 19.96 0.94
Quan day week 0.5 22.73 0.95 25.79 0.94
Quan day week 0.75 30.20 0.94 27.89 0.93
Individual Parzen model 1.31 0.99 1.90 0.98

Global median model 9.98 1 9.98 1
Global Parzen model 2.00 1 6.88 1

which the attack is to be mixed and 𝑒𝑛𝑑 is the last. We take one user from the set
of evaluated users, mix the attack into his time series and run the evaluation process,
which calculates anomaly scores for all the users at the time of the attack. The users
are then sorted by their anomaly scores, in descending order. The position of the user
with the mixed in attack in that list is said to be his rank. We repeat the procedure for
all the users, calculating their ranks. The the average rank and probability of detection
can then be calculated from the ranks.

Table 8 gives the ranks for an attack that was mixed into the users of Twitter. Twitter
is a popular service among malware creators who like to use it as C&C for their botnets.
The feature that the attack was mixed into is the number of requests. The length of
time step is one hour and the length of the attack is five time steps. As can be seen
from the table, the mean rank decreases as the attack size increases.

Table 9 shows the results of mixing DNS enumeration attack into active users of
the DNS service. DNS enumeration [30] is listing of all the available DNS information
by repeatedly querying a DNS server. This can be used to gather a lot of crucial
information about the network, such as available services and network infrastructure
without setting off security alerts. Here we report the outputs of the detectors for two
different attack configurations: full intensity and half intensity. We report the mean
rank of the attacker, as well as probability that the attacker is within the top ten
anomalous users.

Results in Table 9 show good detection quality. It is interesting to note that the
results of the detection evaluation are not very correlated with the predictor model
error measurements. The two predictors with the lowest error sum as measured in
Section 5.4.1 were autoregressive predictor with day week cycle and autoregressive pre-
dictor with day week cycle and aggregated memory. In the detection evaluation their
performance is average and the best results are achieved by autoregressive predictor
with day memory, autoregressive predictor with aggregated day memory and autore-
gressive predictor with no memory. Another interesting result is the performance of the
Parzen models. Both individual and global Parzen models outperformed all the other
models by a large margin, achieving very small mean ranks for both full and half sized

37

5 Experiments

attacks.
Having tested all the service usage models against a simulated attack we can conclude

that all of them work well, being able to detect the attack. The performance of the
models is not correlated with the errors of the predictors. The best results for both
individual and global models are achieved by the Parzen window cumulative distribution
models.

38

6 Applications and Discussion

In this chapter we discuss current and potential applications of the methods presented
in the thesis.

6.1 Request–response pair matching

Request-response pair matching is a task commonly performed by IDSes that use Net-
Flows as their data source. In this thesis we presented an efficient algorithm for
matching request–response pairs that is easily parallelisable. The request–response
pair matching algorithm can provide valuable information about communication rela-
tionships in the network.

6.2 Request–response detector

On top of request-response pair matching algorithm we have built a request–response
detector which models the amount of requests without responses and reports abnormally
high amounts. It is able to detect different types of malicious activity such as command
and control search by different malware families, vertical and horizontal scans and denial
of service attacks. It is used as a part anomaly detection layer in Camnep [31]. Camnep
is a network intrusion detection system that uses an ensemble of detectors and other
layers in order to detect anomalies in network traffic.

6.3 Service detection

In this thesis we presented an algorithm that is able to detect actively used network
services using NetFlow data. This algorithm is able to actively adapt to different
networks and changing conditions in those networks. Service detection can have many
potential applications. It can be used by network administrators in order to monitor
their networks and have a better of overview of available services and their usage. The
service detection algorithm can reveal possible policy violations or misconfigurations of
servers which may often lead to undesirable results and monetary losses.

Another aspect of service detection algorithm is malware detection. It is common for
malware to use infected servers as command and control channels, often creating new
services by opening new ports. The service detection algorithm can be used to detect
this type of activity.

It can also be generally useful as part of intrusion detection system, as it can not
only be used for detecting command and control channels, but also for creating a more
sophisticated model of the network which can be used for creating more advanced
anomaly detection algorithms.

39

6 Applications and Discussion

6.4 Service modelling - aggregation
As was explained in Section 4.1, the outputs of the service detectors are fed to the
aggregation layer which provides a unified output of anomaly values. The aggregation
layer was designed by Mgr. Jan Kohout. The aggregation is done in time, taking last
𝑘 anomaly outputs, as well as across models. The anomaly values are aggregated using
different aggregation strategies, ranging from mean to max. The aggregation strategy
is chosen for every aggregation time step using game theory which calculates a Nash
equilibrium from a pay–off matrix with different attacker and defender strategies. Using
game theory in aggregation maximises the chances of discovering the attacker.

6.5 Service modelling - potential applications
Service modelling has very many potential uses. As was mentioned before, there are
several companies that specialise in service monitoring and modelling.

It is common for network administrators to set alarm policies based on fixed thresh-
olds. For example, report an upload larger than 100MB. This has the problem of de-
ciding what is the right threshold. Too high means poor detection and too low means
an endless flood of alerts. The service modelling algorithms can be used in order to
adaptively set the administrator alert thresholds in order to report abnormal service
usage. This can be used to detect security breaches and help prevent service misuse
which can result in intellectual property theft.

The output of the service modelling framework can also be used together with other
intrusion detection systems and their outputs can be correlated in order to lower the
false positive rates. For example, a sign of malware activity followed by a large upload
to a service outside the network is something that network security response teams will
definitely take an interest in. Service modelling can also be used to detect certain policy
violations, which can be defined by the network administrator.

40

7 Future work

There is always room for improvement. Here we discuss future work which can build
on existing methods or improve their weaknesses.

7.1 Service detection

In the future it would be useful to improve the service detection algorithm in order
to make it more robust to errors in timestamps. Currently it only works on networks
where the NetFlows are gathered with relatively small timestamp errors and breaks
when the errors get worse.

7.2 Service classification

As part of future work it would be interesting to design a service classification algorithm.
This algorithm would cluster different services together, based on their behaviour. The
same service types would fall in the same cluster. This could also be used as an anomaly
detector. It would detect when a service of a certain type (determined by port number)
falls far away from the cluster of same service types. This could be a sign of a malicious
service pretending to be a service of different type in order to avoid firewall rules.
This detector would be able to detect various types of malicious activity such as DNS
tunnelling.

Figure 9 Distribution of individual user-service communications in feature space

Some preliminary work has already been done in this area. Figure 9 shows a dis-
tribution of individual user-service communications in feature space. Different colours

41

7 Future work

represent different service types (determined by port number). It is clear that different
service types form clusters. Using more features and different clustering techniques it
should be possible to separate different service with high accuracy.

7.3 Service modelling
Future work on service modelling will involve creating more advanced models of service
usage by users. It would be interesting to try a third type of user-service relationship
and model the usage of several service by one user as one model. It is normal for a user
to have a long-term established pattern of services that he uses on a daily basis and
only deviate by a small amount. This type of model could monitor this pattern and
report deviations, which could mean reconnaissance activity by an infected host.

Different features can be used in service modelling, such as periodicity, persistence
and potentially many others in order to create more sophisticated models of user be-
haviour.

Correlations between different service and service usage in different networks can be
studied and used to create different models which will allow to monitor more aspects
of user behaviour and service misuse.

An alert system can be created that will adapt based on network administrator
priorities and network policies. Services can be categorised in order to create different
monitoring policies and alert levels for them. Similarities between services can be used
in order to automatically apply policies to uncategorised services based on categorised
services with similar behaviour and usage patterns.

42

8 Conclusion

In this thesis we performed a thorough study of network services. In Chapter 3 we
described a request-response pair matching algorithm and an anomaly detector based
on it. This detector is able to detect several types of malicious behaviour including
various types of scans, ongoing DoS attacks and C&C search as was shown in the
experiments (see Chapter 5).

We then proposed a service detection algorithm which uses expectation-maximisation
for adaptive learning. Using this approach we were able to correctly discover network
services within the observed network. This method relies heavily on the accuracy of
timestamp information included in the NetFlow. We have shown that there are network
probes that are not able to produce accurate timestamps and we need to check the
timestamp accuracy before applying the service detection algorithm.

In Chapter 4 we described several service models that monitor service usage by the
users and report anomalous usage. Majority of the models is based on the time series
prediction that can be used to detect anomalies with respect to previous user behaviours.
We have also introduced Parzen window model that is able to detect anomalies based
on feature distributions. Aggregated value of all presented models is used as a final
anomaly of specific service user.

In Chapter 5 we experimentally evaluated the proposed algorithms on real network
data. We showed that the proposed service models are able reliably detect attacks that
were mixed into the real network data.

43

Bibliography

[1] More mobiles than humans in 2012, says Cisco. Feb. 2012. url: http://www.
bbc.com/news/technology-17047406.

[2] Intellectual Property Theft. url: http://www.fbi.gov/about-us/investigate/
white_collar/ipr/ipr.

[3] Norton Study Calculates Cost of Global Cybercrime: $114 Billion Annually. Sept.
2011. url: http://www.symantec.com/about/news/release/article.jsp?
prid=20110907_02.

[4] Danny Palmer. World needs 21 million cyber security professionals - but there’s
only 3,000 now, warns expert. Oct. 2013. url: http://www.computing.co.uk/
ctg/news/2301230/world-needs-21-million-cyber-security-professionals-
but-theres-only-3-000-now-warns-expert.

[5] Skyhigh Networks. url: http://www.skyhighnetworks.com/.
[6] Elastica. url: http://elastica.net/.
[7] Netskope. url: http://www.netskope.com/.
[8] Peter Burkholder. SSL Man-in-the-Middle Attacks. Feb. 2002. url: https://

www . sans . org / reading - room / whitepapers / threats / ssl - man - in - the -
middle-attacks-480.

[9] Steven J. Vaughan-Nichols. How the NSA, and your boss, can intercept and break
SSL. June 2013. url: http://www.zdnet.com/how-the-nsa-and-your-boss-
can-intercept-and-break-ssl-7000016573/.

[10] SSL Visibility Appliance. url: http://www.bluecoat.com/products/ssl-
visibility-appliance.

[11] Dr. Thomas Porter. The Perils of Deep Packet Inspection. Oct. 2010. url: http:
//www.symantec.com/connect/articles/perils-deep-packet-inspection.

[12] B. RFC 3954 - Cisco Systems NetFlow Services Export Version 9. Oct. 2004. url:
http://www.rfc-editor.org/rfc/rfc3954.txt.

[13] Benoit Claise, Brian Trammell, and Paul Aitken. RFC 7011: Specification of the
IPFIX Protocol for the Exchange of Flow Information. Sept. 2013.

[14] Fernando Silveira et al. “ASTUTE: detecting a different class of traffic anomalies.”
In: SIGCOMM. Ed. by Shivkumar Kalyanaraman et al. ACM, 2010, pp. 267–278.
isbn: 978-1-4503-0201-2. url: http://dblp.uni-trier.de/db/conf/sigcomm/
sigcomm2010.html#SilveiraDTG10.

[15] Y. Zhang et al. “Network anomography”. In: Proceedings of the 5th ACM SIG-
COMM conference on Internet Measurement. IMC ’05. Berkeley, CA, USA: USENIX
Association, 2005, p. 30.

[16] Squid proxy server. url: http://www.squid-cache.org/.
[17] Robin Berthier et al. “Nfsight: netflow-based network awareness tool”. In: Pro-

ceedings of the 24th USENIX LISA (2010).

45

http://www.bbc.com/news/technology-17047406
http://www.bbc.com/news/technology-17047406
http://www.fbi.gov/about-us/investigate/white_collar/ipr/ipr
http://www.fbi.gov/about-us/investigate/white_collar/ipr/ipr
http://www.symantec.com/about/news/release/article.jsp?prid=20110907_02
http://www.symantec.com/about/news/release/article.jsp?prid=20110907_02
http://www.computing.co.uk/ctg/news/2301230/world-needs-21-million-cyber-security-professionals-but-theres-only-3-000-now-warns-expert
http://www.computing.co.uk/ctg/news/2301230/world-needs-21-million-cyber-security-professionals-but-theres-only-3-000-now-warns-expert
http://www.computing.co.uk/ctg/news/2301230/world-needs-21-million-cyber-security-professionals-but-theres-only-3-000-now-warns-expert
http://www.skyhighnetworks.com/
http://elastica.net/
http://www.netskope.com/
https://www.sans.org/reading-room/whitepapers/threats/ssl-man-in-the-middle-attacks-480
https://www.sans.org/reading-room/whitepapers/threats/ssl-man-in-the-middle-attacks-480
https://www.sans.org/reading-room/whitepapers/threats/ssl-man-in-the-middle-attacks-480
http://www.zdnet.com/how-the-nsa-and-your-boss-can-intercept-and-break-ssl-7000016573/
http://www.zdnet.com/how-the-nsa-and-your-boss-can-intercept-and-break-ssl-7000016573/
http://www.bluecoat.com/products/ssl-visibility-appliance
http://www.bluecoat.com/products/ssl-visibility-appliance
http://www.symantec.com/connect/articles/perils-deep-packet-inspection
http://www.symantec.com/connect/articles/perils-deep-packet-inspection
http://www.rfc-editor.org/rfc/rfc3954.txt
http://dblp.uni-trier.de/db/conf/sigcomm/sigcomm2010.html#SilveiraDTG10
http://dblp.uni-trier.de/db/conf/sigcomm/sigcomm2010.html#SilveiraDTG10
http://www.squid-cache.org/

Bibliography

[18] Risto Vaarandi. “Detecting Anomalous Network Traffic in Organizational Private
Networks”. In: 2013 IEEE CogSIMA Conference. IEEE. 2013, pp. 285–292.

[19] Eduard Glatz and Xenofontas Dimitropoulos. “Classifying internet one-way traf-
fic”. In: Proceedings of the 2012 ACM conference on Internet measurement con-
ference. ACM. 2012, pp. 37–50.

[20] K McNamee. Malware Analysis Report: ZeroAccess. Tech. rep. Sirefef, 2012. Tech-
nical Report by Kindsight Security Labs.

[21] C.M. Bishop. Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, 2006. isbn: 9780387310732. url: http://books.google.
co.uk/books?id=kTNoQgAACAAJ.

[22] Norton. Spear Phishing: Scam, Not Sport. url: http://us.norton.com/spear-
phishing-scam-not-sport/article.

[23] P Amini and C Pierce. Kraken botnet infiltration. 2008.
[24] Thorsten Holz et al. “Measuring and Detecting Fast-Flux Service Networks”. In:

NDSS. 2008.
[25] Jake D Brutlag. “Aberrant Behavior Detection in Time Series for Network Mon-

itoring.” In: LISA. 2000, pp. 139–146.
[26] Maciej Szmit and Anna Szmit. “Usage of modified Holt-Winters method in the

anomaly detection of network traffic: Case studies”. In: Journal of Computer
Networks and Communications 2012 (2012).

[27] Everette S Gardner. “Exponential smoothing: The state of the art”. In: Journal
of forecasting 4.1 (1985), pp. 1–28.

[28] W. Härdle, Z. Hlavka, and S. Klinke. XploRe R○ - Application Guide: Application
Guide. Springer Berlin Heidelberg, 2000. isbn: 9783540675457. url: http://
books.google.com.ua/books?id=92Z1YW-IP84C.

[29] Mosek. url: http://mosek.com/.
[30] DNS enumeration. url: https : / / pentestlab . wordpress . com / tag / dns -

enumeration/.
[31] Martin Rehak et al. “CAMNEP: An intrusion detection system for high-speed

networks”. In: (2008).

46

http://books.google.co.uk/books?id=kTNoQgAACAAJ
http://books.google.co.uk/books?id=kTNoQgAACAAJ
http://us.norton.com/spear-phishing-scam-not-sport/article
http://us.norton.com/spear-phishing-scam-not-sport/article
http://books.google.com.ua/books?id=92Z1YW-IP84C
http://books.google.com.ua/books?id=92Z1YW-IP84C
http://mosek.com/
https://pentestlab.wordpress.com/tag/dns-enumeration/
https://pentestlab.wordpress.com/tag/dns-enumeration/

	Introduction
	Data Sources
	NetFlows
	Proxy Logs
	Networks

	Service Detection
	Related work
	Request-response matching
	Parallel request-response matching
	Request-response anomaly detector
	Timestamp errors and service detection
	Feature selection
	Threshold setting using EM algorithm

	Service Modelling and Anomaly Detection
	Framework overview
	Feature extraction
	Individual user–service models
	Holt–Winters prediction model
	Autoregressive model
	Autoregressive model without a cycle
	Autoregressive model with a cycle
	Autoregressive model with two cycles
	Autoregressive model with aggregated memory

	Quantile Regression Model
	Quantile regression model without a cycle
	Quantile regression model with one cycle
	Quantile regression model with two cycles
	Quantile regression model - linear programming

	Anomaly values from predictor models
	Parzen window cumulative distribution model

	Global service models
	Global median model
	Global Parzen window cumulative distribution model

	Experiments
	Request-response pair matching
	Request-response anomaly detector
	Service detection
	Service modelling
	Predictor errors
	Mixed attacks

	Applications and Discussion
	Request–response pair matching
	Request–response detector
	Service detection
	Service modelling - aggregation
	Service modelling - potential applications

	Future work
	Service detection
	Service classification
	Service modelling

	Conclusion
	Bibliography

