
Na tomto míst¥ bude o�ciální zadání

va²í práce

� Toto zadání je podepsané d¥kanem a vedoucím katedry,

� musíte si ho vyzvednout na studiijním odd¥lení Katedry po£íta£· na Karlov¥ nám¥stí,

� v jedné odevzdané práci bude originál tohoto zadání (originál z·stává po obhajob¥ na
kated°e),

� ve druhé bude na stejném míst¥ neov¥°ená kopie tohoto dokumentu (tato se vám vrátí
po obhajob¥).

i

ii

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science and Engineering

Bachelor's Project

Tool for production processes operational monitoring

Luis Moreno

Supervisor: Martin Klíma Ing., Ph.D.

Study Programme: Softwarové technologie a management, Bakalá°ský

Field of Study: Softwarové inºenýrství

May 23, 2014

iv

v

Acknowledgements

I would like to express my gratitude to my thesis supervisor Martin Klíma Ing., Ph.D.
for his patient guidance, enthusiastic encouragement and constructive criticism. I would also
like to thank my colleague Ond°ej Harcuba for his advices and close cooperation during the
development.
Finally, I wish to thank my mother and my girlfriend for their support and encouragement
throughout my study.

vi

vii

Declaration

I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act �60 Zákon £. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on May 22, 2014 .

viii

Abstract

This thesis describes the development of the Scenario designer: a software tool developed
within the European project ARUM.

The tool aims to provide a graphical user interface that allows its user to set up, visualize
and monitor ramp-up productions. The thesis contains the functional requirements analysis,
architecture, design and the partial implementation of the Scenario designer(SD) graphical
interface. The SD has been developed as a part of the Factory network&Scenario designer
tool (FNSD)[6]. E�ort was made to follow user-centered design processes during the devel-
opment of both tools and a sub-set of the FNSD interface design was tested with end users.
The obtained feedback resulted in the design adjustment according to the user's needs and
preferences.

The result of this work is the design of a managerial tool to support ramp-up productions,
developed according to gathered requirements from earlier ARUM project phases.

Abstrakt

Tato práce se zabývá vývojem softwarového nástroje Scenario designer: aplikace vyvíjená
v rámci b¥ºícího evropského projektu ARUM. Cílem práce je vyvinout manaºerský nástroj
pro kon�guraci, monitorování, vizualizaci a rozvrhování výroby v ramp-up prost°edí.

Tento dokument obsahuje analýzu funk£ních poºadavk·, návrh architektury, návrh uºi-
vatelkého rozhraní a popis jeho dosavadní implementace. Scenario designer je vyvíjen jako
sou£ást aplikace Factory network&Scenario designer (FNSD)[6]. Od po£átku vývoje bylo
snahou dodrºet principy tzv. "user-centered" designu. �ást navrºeného uºivatelského rozhraní
FNSD byla testována s koncovými uºivateli a získaná zp¥tná vazba vedla k úprav¥ a p°izp·-
sobení nástroje jejich reálným pot°ebám.
Výsledkem práce je návrh uºivatelského rozhraní, vyvinuté v souladu s poºadavky projektu
ARUM za ú£elem podpory výroby v ramp-up prost°edí.

ix

x

Contents

. ix

1 Introduction 1
1.1 ARUM project . 1
1.2 Objective of the thesis . 2

. 2
1.2.1 Former task . 2
1.2.2 Latest work . 3

. 3

. 3
1.3 Document outline . 3

2 Analysis 5
2.1 Sources of information . 5

. 5

. 5
2.2 Domain description . 5

. 6
2.2.1 Ramp-up . 6

. 6

. 6
2.2.2 Needs in production management . 6
2.2.3 ARUM solution . 7

. 7

. 7

. 7
2.3 Re�nement of requirements . 7

2.3.1 Speci�cation of user roles . 8
2.3.2 Functional requirements . 8

2.3.2.1 Functional requirement 1.1 9
2.3.2.2 Functional requirement 1.2 9
2.3.2.3 Functional requirement 1.3 9
2.3.2.4 Functional requirement 1.4 10
2.3.2.5 Functional requirement 1.5 10
2.3.2.6 Functional requirement 1.6 10
2.3.2.7 Functional requirement 1.7 11

xi

xii CONTENTS

2.3.2.8 Functional requirement 1.8 11
2.3.2.9 Functional requirement 1.9 11

2.4 Functional speci�cation . 13
2.4.1 Scene life cycle . 13

. 14
2.4.2 Load/create scene . 15
2.4.3 Load scene(s) . 16
2.4.4 Edit scene . 16
2.4.5 Add station . 17
2.4.6 Edit scene properties . 18
2.4.7 Setup events . 18
2.4.8 Add event . 19
2.4.9 Set up station . 20
2.4.10 Schedule . 21
2.4.11 Result analysis . 21

3 Design and Implementation 23
3.1 Application description . 23
3.2 Architecture of the FNSD . 25

3.2.1 ARUM system architecture diagram 25
3.2.2 System architecture components . 26
3.2.3 Communication within the ESB . 27

. 27

. 27
3.2.3.1 Errors handling . 27

3.2.4 Load scene . 28
3.2.5 Create scene . 29
3.2.6 Update scene . 30
3.2.7 Delete scene . 31
3.2.8 Scheduling . 32
3.2.9 Scheduling involving MIDAS . 34

3.3 Scenario designer graphical interface . 36
. 36

3.3.1 FNSD components and layout . 36
3.3.1.1 Login window . 36
3.3.1.2 Main window . 37

. 38

. 38
3.3.1.3 Sub windows . 38
3.3.1.4 Quick access tool-bar . 39

. 39
3.3.1.5 Ribbon . 40

. 40

. 40

. 40

. 41

CONTENTS xiii

3.3.1.6 Main content panel . 41
. 42

3.3.1.7 Browser panel . 43
. 43
. 43
. 43

3.3.1.8 Properties panel . 44
. 44
. 45

3.3.1.9 Navigation panel . 45
. 45
. 45

3.3.1.10 Search component . 46
. 46
. 46
. 46

3.3.1.11 Tables . 46
. 47
. 47

3.3.1.12 File chooser . 47
. 48

3.3.2 Scenario designer components . 48
3.3.2.1 Scene management . 48

. 48

. 48
3.3.2.2 Scenario designer ribbon . 49

. 49

. 50
3.3.2.3 Scenes and simulations browser 51
3.3.2.4 Scenario designer properties and navigation panel 52

. 52
3.3.2.5 Station overview . 53
3.3.2.6 Add stations from multiple scenes 54

. 54
3.3.2.7 Add events . 55

. 55

. 55

. 55
3.3.2.8 New scene . 56
3.3.2.9 Station setup wizard - general properties 56
3.3.2.10 Station setup wizard - assembly plans assignment 57
3.3.2.11 Station setup wizard � human resources setup 58

. 58

. 58

. 58

. 58

xiv CONTENTS

3.3.2.12 Station setup wizard - tools setup 59
3.3.2.13 Station setup wizard - tool catalogue 61
3.3.2.14 Scheduling properties setup 61
3.3.2.15 KPIs comparison . 63

. 63
3.3.2.16 Schedules graphical comparison 64

. 64
3.3.3 Production mode . 64

3.3.3.1 Running production monitoring - stations overview 65
3.3.3.2 Running production monitoring - dashboard 65

. 65
3.4 Technology used for the implementation . 67

. 67
3.4.1 JavaFX . 67

3.5 High �delity prototypes implementation . 68
. 68
. 68

3.5.1 Scene management . 68
3.5.2 New scene . 69
3.5.3 Station setup wizard - human resources setup 69

4 Usability testing 73

4.1 Usability testing . 73
4.1.1 Purpose of the usability testing and expected output 73

. 74
4.1.2 Scheduling properties . 74

4.1.2.1 Issue: Redundant setup � preferred optimization 74
4.1.2.2 Issue: Scheduling time range � current cycle as default 74
4.1.2.3 Issue: Scheduling properties � swapped areas 75

4.1.3 Results comparison . 75
4.1.3.1 Issue: Erroneous industrial minutes abbreviation 75
4.1.3.2 Issue: Add new KPI � amount of travelling work 75
4.1.3.3 Issue: Change throughput unit 76

5 Conclusion 77

5.1 Thesis summary . 77
. 77

5.1.1 Further work . 77

A Glossary 81

A Content of attached CD 85

CONTENTS xv

A Usability testing scenarios 87
A.1 Rescheduling scenario . 87

. 87

. 87

. 88

. 88

. 88

xvi CONTENTS

List of Figures

2.1 Scene life cycle sequence diagram . 14
2.2 Scene lifecycle process . 15
2.3 Load/create scene process . 15
2.4 Load scene(s) process . 16
2.5 Edit scene sub-process . 17
2.6 Add station sub-process . 17
2.7 Edit scene properties sub-process . 18
2.8 Setup events sub-process . 19
2.9 Add event sub-process . 19
2.10 Set up station sub-process . 20
2.11 Schedule sub-process . 21
2.12 Result analysis sub process . 21

3.1 ARUM system architecture . 25
3.2 Load scene . 28
3.3 Create scene . 29
3.4 Update scene . 30
3.5 Delete scene . 31
3.6 Scheduling . 32
3.7 Scheduling involving MIDAS . 34
3.8 FNSD login window . 37
3.9 FNSD main application window . 38
3.10 FNSD modal window . 39
3.11 FNSD quick access tool-bar . 40
3.12 FNSD ribbon - mode switch . 41
3.13 FNSD Main content panel . 43
3.14 FNSD Browser panel . 44
3.15 FNSD Properties panel . 44
3.16 FNSD Navigation panel . 45
3.17 FNSD Search component . 46
3.18 FNSD Table example . 47
3.19 FNSD File chooser example . 48
3.20 Scene management - AIB . 49
3.21 Scenario designer ribbon . 50
3.22 Scenario designer browser panel - scenes tab 51

xvii

xviii LIST OF FIGURES

3.23 Scenario designer browser panel - simulations tab 52
3.24 Scenario designer properties panel . 52
3.25 Scenario designer navigation panel . 53
3.26 Station overview . 53
3.27 Add stations from multiple scenes . 54
3.28 Add events . 55
3.29 Scenario designer - new scene setup . 56
3.30 Station setup wizard - general properties . 57
3.31 Station setup wizard - assembly plans assignment 57
3.32 Station setup wizard � Human resources setup 59
3.33 Station setup wizard - tools setup . 60
3.34 Station setup wizard - tool catalogue . 61
3.35 Scheduling properties setup . 62
3.36 Scenario designer - KPIs comparison . 63
3.37 Scenario designer - KPIs comparison . 64
3.38 Production mode - stations overview . 65
3.39 Production mode - dashboard . 66
3.40 SD high �delity prototype - scene management 69
3.41 SD high �delity prototype - scene management 70
3.42 SD high �delity prototype - scene management 71

4.1 Rescheduling - reported issues . 74
4.2 Results comparison - reported issues . 75

List of Tables

2.1 User roles mapping . 8

3.1 Load scene data �ow methods . 28
3.2 Create scene data �ow methods . 29
3.3 Delete scene data �ow methods . 31
3.4 Update scene data �ow methods . 32
3.5 Scheduling data �ow methods . 33
3.6 Scheduling involving MIDAS data �ow methods 35
3.7 User roles to application modes mapping . 37

A.1 Glossary . 83

xix

xx LIST OF TABLES

Chapter 1

Introduction

1.1 ARUM project

ARUM (Adaptive production management) is a collaborative project within the European

Commission (EC) �Factory of the Future� initiative and is funded under the 7th Framework

Program.[3]

The project main goal is to develop an Information Communication Technology (ICT) solu-
tion to manage complex small lot and ramp-up productions. The management of ramp-up
productions is a complex task that requires monitoring and analysis of large amounts of data
and their interrelationships.

Ramp-up production could be described as the phase between the product prototype release
and the smooth production of the �nal product line. Ramp-up is the period, where a new
product is being manufactured and it is often characterized by process experimentations,
improvements and design changes. The production in ramp-up has often a lower output
rate than the targeted "standard" production due to numerous unexpected disturbances
(defective material design, ine�cient processes, etc.). This rate is increased as the tested
production processes are proven or modi�ed accordingly[1].

Two companies were selected according to top level requirements and objectives set by the
project: Airbus (ramp-up in aircraft industry - use case #1), and Iacobucci (small lot pro-
duction, use case #2). The project outcome should be an ICT product that supports end
users (decision makers) in production planning, monitoring and management.

ARUM focuses on establishing strategies to manage unexpected events in ramp-up and the
mitigation of their negative impact on the running production.

The following top level objectives were de�ned for the project [3]:

� ARUM focuses on production ramp-ups and small lot productions to reduce costs and
lead times.

1

2 CHAPTER 1. INTRODUCTION

� ARUM improves production systems by means of increased �exibility, autonomy, ro-
bustness and energy e�ciency.

� ARUM delivers novel business strategies.

� ARUM delivers novel ICT systems for integrated control and dynamic optimization
with scalable architecture.

� ARUM delivers novel tools for automation control.

� End-to-end integration the ARUM solution with legacy systems and information ag-
gregation across existing legacy systems.

� ARUM demonstrates operational and economic bene�ts against today's process au-
tomation and control solutions.

� ARUM uses multiagent system approach.

� ARUM o�ers means for production planning and control in a predictive and real-time
mode.

1.2 Objective of the thesis

The aim of the thesis was to develop the Scenario designer - a managerial tool within the
ARUM project (initially, the tool focuses only on use case #1 - Airbus), that supports
monitoring, con�guration, visualization and scheduling of aircraft production in ramp-up.

The tool focuses on the following functionality:

� Arrangement of pre-production environment (assembly line layout de�nition)

� Assembly line con�guration (setup of assembly stations - human and non-human re-
sources assignment, station cycle time setup, etc.)

� current production monitoring

� integration with Factory network designer(FND)[6]

1.2.1 Former task

The original task was to analyse (requirements re�nement), design and implement a graph-
ical user interface that would ful�l the pre-requirements from early project phases, focusing
on use case #1 - Airbus aircraft ramp-up production. However, after the requirements re-
�nement, the project revealed a signi�cant amount of additional functionality that had to
be taken into account. Therefore, the decision of implementing only high �delity prototypes
(a sub-set of the functionality) for this thesis was made.

1.3. DOCUMENT OUTLINE 3

The Scenario designer(SD), in its �nal stages, will be integrated with other ARUM tools
developed in parallel within the project. Nowadays, many of the tools are not yet �nished
and cannot be connected to or used by the Scenario designer. One of the tools to be used (its
sub-functionality) by the SD is the Factory network designer [6], which is being developed
by my colleague Ond°ej Harcuba, within his master's degree thesis.

1.2.2 Latest work

At the date of this thesis submission, the requirements de�nition, the architecture and inter-
face design of the Scenario designer and the Factory network designer (together refered as
FNSD) have been developed into such stage, that allowed us to start with the implementa-
tion phase. After the requirements re�nement, we were able to develop mockup prototypes
of the graphical user interfaces(FNSD).

A sub-set of the FNSD design (so far as a mockup prototype) has been tested with end
users at Airbus facilities(March and April 2014). A signi�cant amount of valuable feedback
was retrieved from both usability tests, which will be taken into account during the following
implementation phases.

As previously mentioned, low �delity and high �delity prototypes (a sub-set of the overall
functionality) could have been implemented so far. Nevertheless, the ARUM project nat-
urally continues and after the submission of this thesis, the development of the Scenario
designer will be �nished.

1.3 Document outline

The �rst chapter contains a brief introduction into the ARUM project(1.1) and provides an
overview of the main task of this thesis(1.2).
The second chapter provides a deeper view into the problem domain(ramp-up produc-
tion, 2.2) and the solution that ARUM proposes(2.2.3). It also describes the sources of
information(2.1) from which requirements for the SD tool were gathered. Finally, the chap-
ter contains the functional requirements(2.3) and the functional speci�cation(2.4) of the
Scenario designer.
The third chapter contains the system architecture design(3.2), the graphical interface design
(mock-ups (3.3)), a brief analysis of the technology used for the implementation(3.4) and a
short sample of the high �delity prototypes (3.5).
A brief description of the usability testing held in Airbus is presented in the fourth chapter(??)
along with its output results.
The �nal chapter contains the conclusion of the thesis(5). It describes in brief the goals
ful�lment.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Analysis

2.1 Sources of information

The requirements analysis for this thesis was based on documents from previous phases of the
ARUM project and from information provided by my thesis supervisor - Ing. Martin Klíma,
Ph.D., who has been providing technical leadership to the project from the beginning.

An important source of information regarding the project is the documentation delivered
by project partners. The document Description of work [10] contains a full list od docu-
ments that will be delivered along the project life cycle. From this list, two of the delivered
documents were particularly important for the development of the Scenario designer:

� D2.1.1: Use-case De�nition (use-cases #1 & #2)[3]

� D2.2.1: Use-case detailing and KPI setting [8]

Another source of information were multiple discussions with di�erent project partners.
ARUM is an international project in which several European companies and universities get
involved. Therefore, some discussions were held remotely - through teleconferences. Some
of the discussions also took place in personal meetings - visits from project partners.

The most valued source of information in later graphical interface design stages was the
feedback received from end users. Graphical interface usability testing with real end users was
held in Airbus facilities in two occasions - March and April of 2014. We were able to obtain a
signi�cant amount of valuable feedback and new information from these meetings/usability
tests.

2.2 Domain description

Unlike large quantity serial production (cars, computers), the aircraft manufacturing is highly
customized and the delivery of one product type (with the same con�guration) often consists
of only batches of 3 to 5 pieces. Small-lot productions (like air crafts or ships) invest much

5

6 CHAPTER 2. ANALYSIS

more money than large quantity manufacturers in the design and the product ramp-up,
considering the amount of products that are eventually sold. This is the reason why small
lot manufacturers opt for ICT tools that support production management and monitoring.
The main purpose is to speed up the learning phase and to reduce the time gap between the
ramp-up and the standard production[1].

The developed tools should be able to handle/solve the most crucial issues that appear in
the ramp-up/learning phase. Among the most important issues are:

� last-minute engineering changes

� immature high technology

� unexpected/disruptive events (e.g. nonconformities [A.1])

� changing requests from customers

� delayed delivery of parts, etc . . .

2.2.1 Ramp-up

Ramp-up production in the aircraft industry is characterized by a combination of a new

product with a new production technology, both developed in parallel. This results in a high

level of uncertainty at planning, which needs an appropriate level of mutability in the entire

industrial system to react on.[5].

The main market leaders in aircraft production - Boeing and Airbus often experience
problems with delayed or even failed product ramp-ups. As they produce complex and
highly customized products, they face many risks during the ramp-up. These risks are the
source of a signi�cant reduction of the planned production rate, which leads to a signi�cant
increase in the production costs. Due to the growing competition and the shorter amount of
time that the manufacturers are able to invest into innovation, the number of ramp-ups is
growing[1].

The ARUM solution should provide tools that will smooth the transition from single to
series production in order to reach high production rates.

2.2.2 Needs in production management

The solution that is being developed by ARUM is primarily targeted to the decision makers in
ramp-up productions. The developed system should solve the main issues that the production
management have to face. Among the most important problems are:

� slow response to disruptive events

� unsupported response to changes of resources availability (changes in resources alloca-
tion is currently done "manualy" without ICT tools support)

2.3. REFINEMENT OF REQUIREMENTS 7

� missing or unsatisfactory evaluation of the running production

� unsatisfactory task/job scheduling (tasks scheduling should be improved in terms of
calculation time and optimalization of the scheduling results)

� unsatisfactory production planning (ARUM should provide tools to simulate the pro-
duction in order to support decision making)

2.2.3 ARUM solution

The solution that ARUM o�ers, is to develop an intelligent Enterprise Service-Based platform(i-
ESB), which will integrate a service-oriented architecture with a knowledge-based multi-agent
system.

The ESB platform will collect and process information from multiple sources, such as
sensors and management systems in order to provide the production managers an improved
insight into the running ramp-up production. Information provided to the decision mak-
ers(production management) will be enriched by results of calculations performed by the
system in order to evaluate the running production. Time, cost and risk values are some
examples of the key performance indicators (KPIs) that will be analysed in order to provide
the end users an objective production performance evaluation.

One of the tools that will be integrated within the i-ESB is the Scenario designer. Its main
purpose will be the creation and modi�cation of scenes(see section 2.4.1scene de�nition) and
the monitoring of running production.
The "scene" concept was introduced in order to describe the production state and its con-
�guration. The scenes (con�gured by the SD) will be used as pre-production settings that
will be forwarded to the computational core, in order to obtain scheduled tasks in time(the
scheduling result). The scenes will also be used to plan future production, or to play so
called "what-if games". The what-if games are simulations based on the "live scene" (the
scene re�ecting the current production state) which simulate the occurrence of unexpected
changes in the production (e.g. missing resources, nonconformities, etc.).

The Scenario designer will be part of a top-level application(FNSD) which will be used
by di�erent production executive roles (ARUM user roles). The FNSD will be divided into
multiple modes. Every mode has been designed to ful�l di�erent requirements and targets
di�erent user roles. The FNSD is described with more detail in section 3.

2.3 Re�nement of requirements

This section contains a list of the functional requirements and the mapping between ARUM
user roles and the functionality provided by the Scenario designer.
The functional requirements were taken from pre-requirements de�ned in early project
phases. A more detailed analysis has been performed and the pre-requirements were ex-
tended, speci�ed in more detail and formalized.

8 CHAPTER 2. ANALYSIS

2.3.1 Speci�cation of user roles

Several user roles were identi�ed in AIB and IHF use cases[3] and formalized as ARUM user
roles. The mapping between AIB and IHF roles and ARUM roles is described in the ARUM
document - Deliverable 4.1.1.[9]. The following table provides mapping between ARUM user
roles and the Scenario designer functionality.

ARUM role Functionality

Production/Planning
Manager

1. Create a schedule for the workshop.

2. Receive and display up-to-date information on the
current production state.

3. Setup conditions for calculation of what-if scenarios.

4. Call ARUM computational core.

5. View and analyse results obtained from ARUM
computational core.

Team Leader
1. Monitor task execution.

2. Assign tasks (WOs, jobs) to workers.

Station Manager

1. Create a schedule for the production line (one or
multiple stations).

2. Receive and display up-to-date information on the
current production state (production monitoring).

3. Adjust the schedule according to incoming events
(create travelling work, modify WOs execution, add
resources, etc.).

4. Setup and modify the scene properties (add/remove
stations, modify resources, etc. See SCENE LIFE-
CYCLE for scene de�nition).

5. Call ARUM computational core.
Table 2.1: User roles mapping

2.3.2 Functional requirements

This section contains a formal analysis of the functional requirements for the Scenario de-
signer mode and the production mode.

2.3. REFINEMENT OF REQUIREMENTS 9

2.3.2.1 Functional requirement 1.1

ID: FR01
TITLE: Log-in to the top-level application
MODE: All
DESC: All users allowed to use the SD are able to log-in via a login form after the ap-
plication starts. The system should automatically load the user information and set the
permissions according to the current user role.
RAT: In order for a user to use the SD.
DEP: None

2.3.2.2 Functional requirement 1.2

ID: FR02
TITLE: Load/create scene
MODE: Scenario designer mode
DESC: The user is able to load, duplicate or create a new scene (see section 2.4.1scene
de�nition). The scene can be loaded from local storage or from the core ontology. The user
is able to display the scene properties in the Scenario designer.
RAT: In order to create a new scene, to modify an existing scene, and to generate a schedule
based on the given conditions (the scene setup).
DEP: FR01 [2.3.2.1]

2.3.2.3 Functional requirement 1.3

ID: FR03
TITLE: Edit scene
MODE: Scenario designer mode
DESC: The user is able to edit a scene in the Scenario designer. The user is able to modify
all the scene properties:

1. Modify the number of stations in the scene

2. Modify the station properties (assigned resources, assembly plans)

3. Modify the production line �ow

4. Setup the scene default time interval (cycle time)

RAT: In order to modify the scene properties and to generate a schedule based on the given
conditions (scene setup). In order to play what if games.
DEP: FR01 [2.3.2.1], FR02 [2.3.2.2]

10 CHAPTER 2. ANALYSIS

2.3.2.4 Functional requirement 1.4

ID: FR04
TITLE: Setup events
MODE: Scenario designer mode
DESC: The user is able to add/modify/remove events in a scene (MR, I, NC, D, etc.). This
can be done by adjusting the scene schedule interactively (if exists) or through an event
setup graphical component.
RAT: In order to generate a schedule based on the given conditions � a scene with a de�ned
set of events. In order to play what if games.
DEP: FR01 [2.3.2.1], FR02 [2.3.2.2]

2.3.2.5 Functional requirement 1.5

ID: FR05
TITLE: Save scene
MODE: Scenario designer mode
DESC: The user is able to store a scene that has been previously created or modi�ed. The
scene can be saved/stored locally or in the core ontology.
RAT: In order to store a previously created or modi�ed scene. In case the scene is stored
locally, only the creator of the scene is able to open/load it. In case the scene is stored in the
core ontology, all users that are allowed to read from the core ontology are able to open/load
the scene.
DEP: FR01 [2.3.2.1], FR02 [2.3.2.2]

2.3.2.6 Functional requirement 1.6

ID: FR06
TITLE: Generate a schedule
MODE: Scenario designer mode, Production mode
DESC: The user is able to call the ARUM computational core (scheduler) with given condi-
tions (scene setup). The user is able to de�ne the scheduling time range (schedule for a shift,
day, week, etc.) of the results. The user is able to de�ne KPI priorities and the strategy for
solution.
RAT: In order to obtain the scheduling results � multiple schedules. The best result/sched-
ule (the one selected by the user) can be applied to the current production or can be stored
for later use.
DEP: FR01 [2.3.2.1], FR02 [2.3.2.2]

2.3. REFINEMENT OF REQUIREMENTS 11

2.3.2.7 Functional requirement 1.7

ID: FR07
TITLE: Display scheduling results
MODE: Scenario designer mode, Production mode
DESC: The user is able view the scheduling results obtained from the scheduler.
RAT: In order to analyze the scheduling results. In order to select the best result (which
can be applied to the running production, or stored for later use).
DEP: FR01 [2.3.2.1], FR02 [2.3.2.2], FR06 [2.3.2.6]

2.3.2.8 Functional requirement 1.8

ID: FR08
TITLE: Compare multiple scheduling results
MODE: Scenario designer mode, Production mode
DESC: The user is able to compare multiple results by their KPI values or by comparing
the schedules graphically. The user is able to display the critical path in the schedule (Gantt
chart).The user is also able to modify again the scene properties (former input) and to recall
the scheduler for new results. The best result/schedule (selected by the user) can be applied
to the current production or stored for later use.
RAT: In order to allow the user to compare and analyze multiple scheduling results. In
order to select the best result based on the KPIs comparison and the analysis of the Gantt
chart.
DEP: FR01 [2.3.2.1], FR02 [2.3.2.2], FR05 [2.3.2.5]

2.3.2.9 Functional requirement 1.9

ID: FR09
TITLE: Visualization of running production
MODE: Production mode
DESC: The Production/Planning or Station Managers should be able to view up-to-date
information on the current production progress (current state, performance). This includes:.

� A customizable dashboard start screen with the most crucial and relevant information.
The displayed information might vary for each user role:

� Status of Work orders (WOs)

� Live schedule (Gantt chart)

� Jobs to be executed the current day

� Availability of resources

� List of events (NCs, missing resources, start of jobs, etc.)

� Shifts information

12 CHAPTER 2. ANALYSIS

� Present management sta�

� Production performance indicators (KPIs)

� Di�erent views of the current production progress

� Progress of Work visualized per station (perspective of a station manager)

� Progress of Work visualized per product (perspective of a production/planning
manager)

� List of events per product

� Gantt charts of all the production line (across all stations)

� Human resources availability and their workload

� Other resources availability and their workload (e.g. tools)

� Production performance information

� Evaluation of critical path in Gantt chart

� Evaluation of critical station (station with the longest lead time)

� Evaluation of critical resources

� KPIs for each station, product, and the entire production

� Minimum of tardiness (per shift, station, entire line) without additional costs

� Minimum of tardiness (per shift, station, entire line) with minimal additional
costs

� Minimum of tardiness (per shift, station, entire line)

RAT: In order to allow the user to monitor and objectively evaluate the current production
progress and performance.
DEP: FR01 [2.3.2.1]

2.4. FUNCTIONAL SPECIFICATION 13

2.4 Functional speci�cation

The following section captures the scenario designer processes. Rather than describing which
requirements will be covered by the Scenario designer mode (see functional requirements 2.3),
this section describes how these requirements will be ful�lled.
This section extends information provided by ARUM project document:deliverable D4.1.1
[9].

2.4.1 Scene life cycle

The Scene concept has been introduced in order to gather and describe entities taking part
in the production system. The scene is an abstract entity consisting of:

� Local scenes, which consists of:

� Station(s) � a self-contained workspace equipped with workers, tools and other
resources. Products are assembled in stations.

� Product - fuselage in AIB use case, cofee maker or other product in IHF use
case. Products are shifted from station to station - every product has a set of
work orders to be performed in the given station.

� Work orders � list of work orders and jobs to be done in the local scene (station
and product).

� Production events - changes in the production state are represented by production
events. Some examples of production events follow:

� Human resource(HR) related (missing worker, worker availability change, etc.)

� Missing resource (MR) related

� Nonconformity(NC) - a nonconformity is in general any critical deviation from
the design/process speci�cation.

� Other events. . .

� Station �ow setup - de�nition of how the products will be shifted from station to
station

� Initial human resource pool

� Human resources can have preferred station assignment

� Each human resource has de�ned availability

14 CHAPTER 2. ANALYSIS

The diagram in �gure 2.1 shows the communication �ow during the scene life cycle.

Figure 2.1: Scene life cycle sequence diagram

Scene life cycle consists of the following steps:

� Load/create scene

� load existing scene

� duplicate scene

� new scene

� Edit scene

� add/delete station

� setup station

� modify station �ow

� edit scene properties

� Schedule � set scheduling properties and call the scheduler

� Result analysis � scheduling results analysis and comparison

� Apply schedules to live scene � the user applies the best scheduling results to the
live scene (current production)

2.4. FUNCTIONAL SPECIFICATION 15

The diagram in �gure 2.2 shows the main scenario designer process �ow. A more detailed
description of each sub process is provided later in this document.

Figure 2.2: Scene lifecycle process

2.4.2 Load/create scene

Scene load/create (�gure 2.3) consists of the following steps:

� Create new scene � creates a new scene from scratch

� Load scene(s) � loads an existing scene, or multiple scenes

� Duplicate scene � makes a copy of an existing scene

Figure 2.3: Load/create scene process

16 CHAPTER 2. ANALYSIS

2.4.3 Load scene(s)

Load scene(s)(�gure 2.4) consists of the following steps:

� List existing scenes � provides an overview of all the currently existing scenes to
the user

� Select scene(s) � the user can select one or multiple scenes

Figure 2.4: Load scene(s) process

2.4.4 Edit scene

Edit scene (�gure 2.5) consists of the following steps:

� Add station � load an existing station or create a new station from scratch

� Delete station � remove a station from the scene

� Edit scene properties � edit the scene resource pool, time interval

� Set up station � set up the station properties (required human resources, assembly
plans)

� Set up �ow � de�nition of how the products will pass through stations

2.4. FUNCTIONAL SPECIFICATION 17

Figure 2.5: Edit scene sub-process

2.4.5 Add station

Add station (�gure 2.6) consists of the following steps:

� Copy from loaded scenes � �copy paste� to duplicate a previously added station in
any of the opened scenes

� Create new station � creates a new station from scratch

Figure 2.6: Add station sub-process

18 CHAPTER 2. ANALYSIS

2.4.6 Edit scene properties

Edit scene properties (�gure 2.7) consists of the following steps:

� Setup time interval � set the scene time interval

� Setup initial human resource pool � set the �default� human resource pool for the
whole scene (later will be modi�ed according to real human resource availability)

Figure 2.7: Edit scene properties sub-process

2.4.7 Setup events

Setup events (�gure 2.8) consists of the following steps:

� Add event � add a new event and set its properties

� Edit event � edit an existing event

� Remove event(s) � remove one or multiple events

2.4. FUNCTIONAL SPECIFICATION 19

Figure 2.8: Setup events sub-process

2.4.8 Add event

Add event (�gure 2.9) consists of the following steps:

� New event � insert a new event

� Select event type � the user selects an event type, or event category

� Set additional parameters � set the required parameters (event source, duration
time, etc.)

Figure 2.9: Add event sub-process

20 CHAPTER 2. ANALYSIS

2.4.9 Set up station

Set up station (�gure 2.10) consists of the following steps:

� Set properties � properties setup (planned cycle time, resources, etc.)

� Set required human resources � set the required set of skills

� Set resources � includes the setup of tools and other resources

� Assign operations � assign the assembly plans to the corresponding stations

� Assign product � assign a product to the station, or edit the currently assigned

Figure 2.10: Set up station sub-process

2.4. FUNCTIONAL SPECIFICATION 21

2.4.10 Schedule

Schedule (�gure 2.11) consists of the following steps:

� Set scheduling properties � sets the scheduling mode (e.g. automatic event inser-
tion) and other properties

� Call scheduler � the scheduler is called in order to obtain the scheduling results

Figure 2.11: Schedule sub-process

2.4.11 Result analysis

Result analysis (�gure 2.12) consists of the following steps:

� Compare results by KPI � the user can compare the schedules by their KPIs

� Select results � according to the KPI comparisons, the user selects one/multiple
schedules for the graphical comparison

� Schedules graphical comparison � the user can graphically compare multiple re-
sults (display one or two Gantt diagrams)

� Select best result � the user selects one best result which is then applied to jobs in
the current scene (assignment of start and end times to jobs)

Figure 2.12: Result analysis sub process

22 CHAPTER 2. ANALYSIS

Chapter 3

Design and Implementation

The following sections contains the SD graphical interface design (so far as mock-up low and
high �delity prototypes) and its description. The chapter also describes in more detail the
context in which the tool is being developed (SD as a part of the FNSD top-level application,
the communication �ow between the tool and other ARUM components, etc.). At the end
of this chapter, the analysis of technologies used for the implementation and the partial
implementation of the Scenario designer itself is described.

3.1 Application description

At the beginning of the requirements de�nition (October 2013), the Factory network designer
(FND) and the Scenario designer(SD) were supposed to be developed as separate applica-
tions. The FND tool development was assigned to my colleague Ondrej Harcuba within his
diploma work[6], and the development of the SD was assigned to me as my bachelor's thesis.
Both ARUM components\graphical interfaces were targeted to di�erent user roles and for
di�erent purposes:

� Factory network designer

� functionality: assembly plans management (display, create, modify assembly
plans[A.1])

� target user roles: process managers and production/planning managers

� Scenario designer

� functionality: pre-production environment con�guration (assembly line compo-
sition, ramp up production simulations)

� target user roles: production/planning managers and station managers

However, the fact that both applications would be used by production managers and that
some functionality would be shared by both tools (production monitoring), lead to the
decision of connecting these two tools through a top-level application - the FNSD.

23

24 CHAPTER 3. DESIGN AND IMPLEMENTATION

The FNSD will contain multiple modes, which will cover the requirements for both, the SD
and the FND:

� Scenario mode: SD functionality (scenes and simulations management)

� Design mode: FND functionality (assembly plans management)

� Production mode: FND and SD functionality (running production monitoring)

Switching between these modes will be possible through the FNSD ribbon (mode tab 3.3.1.5),
which will be shared by components "inside" the FNSD. Each ARUM user will be allowed
to use modes according to his permissions. All the tools/components inside the top-level
application will also share the same basic layout and will follow similar interface design prin-
ciples.
The decision of sheltering both tools through a common interface gives us multiple advan-
tages:

1. The application will be easily scalable - other modes can be added without the need
of changing the existing tools.

2. The FND and the SD tools are kept logically divided, but at the same time the user (if
his permissions allows it) is able to switch between modes and use both functionality.

3. Permissions can be easily set - every ARUM user role will have a de�ned set of ap-
plication modes which will be able to use (for some user roles, only application mode
sub-functionality will be available).

4. All FNSD modes will share the same layout and design principles - this will make the
learning phase easier for end users using multiple application modes.

Although both tools are united as the FNSD, the assigned tasks remained separated and the
main topic of this thesis is the Scenario designer development.

3.2. ARCHITECTURE OF THE FNSD 25

3.2 Architecture of the FNSD

The following section contains the design of the FNSD system architecture. The section
contains a descrip-tion of components/entities being developed within the ARUM project
and describes the interaction between them (data �ow in time). In the following chapters,
the SD client (Scenario designer) represents any manage-rial tool (any other managerial tool
within the FNSD could be depicted instead � FND, planner, etc.).

3.2.1 ARUM system architecture diagram

Below is shown a general overview of the ARUM system architecture. Only relevant entities
(with respect to the SD communication with other services) and communication canals are
illustrated.

Figure 3.1: ARUM system architecture

26 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.2.2 System architecture components

� FNSD � represents the top-level application that contains multiple modes/tools (De-
sign mode, Sce-nario mode, Production mode). It is a thin client using the Client
Service for handling user requests.

� Other ARUM application clients � represents any other ARUM user console that
will communicate within the ESB (worker console, warehouse console, etc.)

� Client Service � a service for the purpose of handling requests coming in and out from
the FNSD or any other ARUM console. The data interchange between this component
and other ARUM entities is provided via the Enterprise Service Bus (ESB).

� Security service � a service handling the client authentication.

� Operational scheduler � the ARUM computational core. A component for task
scheduling/planning.

� Event generator service � a service used by the FNSD tool for the purpose of obtain-
ing generated hypothetical production events on request (e.g. to perform simulations).

� Ontology Service � a service providing data in the �ARUM ontology format�. The
data will be load-ed from the triple store or retrieved from the �Data transformation
service�.

� Data transformation service � a service providing the transformation of data from
legacy systems into the RDF format.

� TIE semantic integrator � a component providing mapping of �les. These �les are
provided to the �Data transformation service� in order to transform data from legacy
systems to the RDF format.

� MIDAS � a component with the purpose of providing analysis of disruptive production
events. The component will provide data to facilitate the troubleshoot process. Specif-
ically, in the case of the FNSD, the component will be able to provide the estimated
troubleshoot time for given production event.

� Publish service � a service handling upcoming messages from ARUM components.
After a mes-sage is received, it is forwarded it to the corresponding message �queue�.
Every queue has a unique identi�er.

� Production events queue � A component of the �publish-subscribe� messaging
model. It repre-sents a queue � like data structure receiving production event mes-
sages. In this case, the source of a production event can be an ARUM console, or
legacy systems.

� Midas queue � A component of the �publish-subscribe� messaging model. It repre-
sents a queue � like data structure receiving messages from Midas.

� Relational database � In case of AIB, the relational database is a temporary solution
to store data (temporarily replaces data from legacy systems).

3.2. ARCHITECTURE OF THE FNSD 27

3.2.3 Communication within the ESB

There are two message delivery modes available when communicating within the ESB:

� synchronous

� asynchronous

When using the synchronous messaging, the service invoker waits for the response as op-
posed to the asynchronous messaging where the response (if sent) is delivered as a new
message to the action processing pipeline.

The responses (and fault messages) can be routed to other services, di�erent from the
original sender using the ReplyTo (and FaultTo) message headers. If there is a speci�ed
(other than the sender) ReplyTo header while using synchronous messaging, the service
invoker will throw a responseTimeoutException since the response message will be routed
elsewhere and no response will be sent to the original sender. The same applies to the
FaultTo header in case of errors[4].

If a service sends a message (regardless whether the message is a request or a response),
it should always include its Logical EPR (end point reference � addresses an entity commu-
nicating within the ESB) in the From header.

Because the recommended interaction pattern within ESB is based on one-way message
exchange (asyn-chronous communication), responses to messages are not necessarily auto-
matic: it is application depend-ent as to whether or not a sender expects a response. As
such, a reply address (EPR) is an optional part of the header routing information and ap-
plications should be setting this value if necessary. However, in the case where a response
is required and the reply EPR (ReplyTo EPR) has not been set, the ESB supports default
values for each type of transport[4].

3.2.3.1 Errors handling

It is possible that an error occurs during the transmission/reception or processing of messages
send within the ESB. If an error occurs, the ESB will route any faults to the EPR mentioned
in the FaultTo �eld of the incoming message. If this is not set, then it will use the ReplyTo
�eld or, failing that, the From �eld[4].

Sequence diagrams in the following chapters depict how ARUM components interact
(communicate) with one another and in what order.

28 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.2.4 Load scene

The diagram in �gure 3.2 shows the communication between the SD client and the ontology
service during the �Load scene� process.

Figure 3.2: Load scene

Method Parameters Returns
Sync
async

getSceneList() n\a
A list of URIs referencing
all existing scenes (topmost

scenes).

sync

getScene(
scene_URI)

scene_URI � URI
address of the required

scene

A scene object de�ned by
the given scene_URI

(topmost scene) with basic
properties: timeInterval,
attribute, localScenes.
Every localScene has
product, station and
cycleTime properties.

sync

Table 3.1: Load scene data �ow methods

3.2. ARCHITECTURE OF THE FNSD 29

3.2.5 Create scene

The diagram in �gure 3.3 shows the communication between the SD client and the ontology
service during the �create scene� process.

Figure 3.3: Create scene

Method Parameters Returns
Sync
async

saveScene(scene)

scene � a scene object
(top most scene) in the
RDF format. The scene

object contains local scenes
(every local scene has a

station with cycle time and
a product), list of resource
pools and time interval.

URI of the stored scene if
the scene was successfully
stored, failure message
with the reason (String)

otherwise.

sync

Table 3.2: Create scene data �ow methods

30 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.2.6 Update scene

The diagram in �gure 3.4 shows the communication between the SD client and the ontology
service during the �update scene� process.

Figure 3.4: Update scene

Method Parameters Returns
Sync
async

getResourcePool(
resPool_URI)

resPool_URI � URI of
the required resource pool

Resource pool (human and
non-human) object with all

the corre-sponding
resource properties

(availability, HR-skills).

sync

getWorkOrders(
subscene_URI)

subscene_URI � URI of
the subscene linked to the
required work orders.

A list of all work orders
linked to the given
sub-scene URI.

sync

3.2. ARCHITECTURE OF THE FNSD 31

saveScene(scene)

scene � a scene object in
the RDF format. The
scene object contains a
local scene de�nition

(station with cycle time
and prod-uct), list of

resource pools and time
inter-val.

URI of the stored scene if
the scene was successfully
stored, failure message
with the reason (String)

otherwise.

sync

Table 3.3: Delete scene data �ow methods

3.2.7 Delete scene

The diagram in �gure 3.5 shows the communication between the SD client and the ontology
service during the �delete scene� process.

Figure 3.5: Delete scene

32 CHAPTER 3. DESIGN AND IMPLEMENTATION

Method Parameters Returns
Sync
async

deleteScene(
scene_URI)

scene_URI � URI of the
scene to be deleted from

the core ontology

Con�rmation message in
case of successful scene
removal, error message
with the reason (String)
otherwise. The ontology
service deletes the scene
and its properties (cycle
time, time interval, and

re-source pools references)
and the sub-scenes and

their properties
(hasProduct, hasStation,

hasWorkOrder).

sync

Table 3.4: Update scene data �ow methods

3.2.8 Scheduling

The diagram in �gure 3.6 shows the communication between the SD client and the ontology
service during the �scheduling� process.

Figure 3.6: Scheduling

3.2. ARCHITECTURE OF THE FNSD 33

Method Parameters Returns
Sync
async

getEvents(
scene_URI,
params)

scene_URI - the scene
URI for which events will

be generated
params - additional

parameters to specify the
required events

message � con�rmation
message informing that
events have been inserted

into the scene, error
message with the reason

(String) otherwise

async

getScene(
scene_URI)

scene_URI � URI
address of the required

scene
A scene object de�ned by
the given scene_URI

sync

addEvents (
scene_URI,
events)

scene_URI � URI
address of the scene, for

which events were
generated

events � a list of events to
be stored in the core

ontology (and linked to the
scene de�ned by the given

scene_URI

message � con�rmation
message informing that
events have been inserted

into the scene, error
message with the reason

(String) otherwise

sync

schedule (
scene_URI,
params)

scene_URI - the scene
for which schedules will be

generated
params - additional

parameters required for the
scheduler

resultSet_URI � URI of
the generated result set
(scheduling results)

async

saveResultSet(
resultSet)

resultSet � the result set
to be stored in the core

ontology

resultSet_URI � URI of
the generated result set
(scheduling results)

sync

getResults(
resultSet_URI)

resultSet � URI of the
required result set

Result set object
containing the scheduling

results
sync

Table 3.5: Scheduling data �ow methods

34 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.2.9 Scheduling involving MIDAS

The diagram below (3.7) shows the communication �ow between the SD client, the ontology
service, MIDAS and the scheduler during the rescheduling. In this particular case, MIDAS
provides the approximate troubleshoot time of a given disruptive event.

Figure 3.7: Scheduling involving MIDAS

Method Parameters Returns
Sync
async

reschedule (
scene_URI,
params)

scene_URI - the scene
for which a new schedule

will be calculated
params - additional

parameters required for the
scheduler

resultSet_URI � URI of
the generated result set
(scheduling results)

async

getApproxTime(
scene_URI)

scene_URI - the scene
for which the approximate
troubleshoot time should

be calculated

approxTime � the
approximate troubleshoot
time for a given scene (e.g.
blocked by a disruptive

event)

sync

3.2. ARCHITECTURE OF THE FNSD 35

updateScene(
scene_URI

scene_URI � the scene
that will be updated
(according to the

approximate troubleshoot
time)

message � con�rmation
message informing that the
scene has been updated,
error message with the

reason (String) otherwise

sync

schedule (
scene_URI,
params)

scene_URI - the scene
for which schedules will be

generated
params - additional

parameters required for the
scheduler

resultSet_URI � URI of
the generated result set
(scheduling results)

async

saveResultSet(
resultSet)

resultSet � the result set
to be stored in the core

ontology

resultSet_URI � URI of
the generated result set
(scheduling results)

sync

getResults(
resultSet_URI)

resultSet � URI of the
required result set

Result set object
containing the scheduling

results
sync

Table 3.6: Scheduling involving MIDAS data �ow methods

36 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.3 Scenario designer graphical interface

The following sections contain the design and description of the Scenario designer(SD) graph-
ical user interface (GUI) design.
From the beginning of the development, e�ort was made to follow processes of a user-centered
design. The SD and the FND GUI (FNSD) were �rst developed as mock-up prototypes, in
order to facilitate the adjustments required by end users. The FNSD mock-up prototypes
have been �nished and the most crucial functionality of the production mode has been tested
in two occasions with end users at Airbus facilities. Feedback obtained from both usability
tests will be applied in further implementation phases.

The following sections contain mock-up versions (low �delity) of the SD GUI design. The
mock-ups were developed using the prototyping software "Balsamiq mockups".

Common (FNSD) components and layout are described in section 3.3.1. The Scenario
designer mode components are described in section3.3.2. A brief description of the production
mode is provided in section 3.3.3.

3.3.1 FNSD components and layout

This section describes components that are used in all application modes within the FNSD.
Common components have the same functionality and behaviour, but contain di�erent in-
formation/data depending on the application context(current mode).

3.3.1.1 Login window

The login window (�gure 3.8) is the �rst view displayed to the user after starting the appli-
cation. It consists of a panel with login and password input �elds, Login button, Exit button
and the company or application logo. By pressing the Login button the application veri�es
the user's login and password (user authentication). Depending on whether the application
can authenticate the user, two options are possible:

� If the authentication is successful, the applications starts and the main window is
displayed.

� If the veri�cation is not successful, the application will display an error message under
the input �elds and the user will be asked to re-entry his login credentials.

3.3. SCENARIO DESIGNER GRAPHICAL INTERFACE 37

Figure 3.8: FNSD login window

3.3.1.2 Main window

After the user successfully logs in, the system starts in the application mode that corre-
sponds to the user (his ARUM user role [9]). The application also loads the users last saved
preferences (components layout, data displayed in components, etc.). Di�erent modes and
initial views correspond to di�erent ARUM user roles. The following table provides mapping
between modes, user roles and views:

ARUM user role Application mode Initial view

Station manager Production mode Dashboard[6]

Process manager Design mode Assembly plan designer[6]

Production\planning
manager

Scenario designer mode
(see section 3.3.2)

Scene management
(see 3.3.2.1)

Table 3.7: User roles to application modes mapping

Regardless the starting mode and view, the main window (�gure 3.9) is always displayed
as the uppermost component and it can also contain other components\panels. Some compo-
nents in the main window are common to all application modes and some are mode-speci�c.

38 CHAPTER 3. DESIGN AND IMPLEMENTATION

Components that are common to all modes are described in the following sections: Quick
access tool bar (3.3.1.4), Ribbon (3.3.1.5), Main content panel (3.3.1.6), Properties panel
(3.3.1.8), Navigation panel (3.3.1.9), Search Component (3.3.1.10), Tables (3.3.1.11).

The layout of the components inside the main window can be modi�ed (a component
can be resized, collapsed, relocated, docked, etc.) in order to adjust the view to the user
preferences. Further description of the layout modi�cation is provided in the corresponding
component sections.

Figure 3.9: FNSD main application window

3.3.1.3 Sub windows

The main window can have multiple sub-windows, which are called dialog windows. Dialog
windows are in-dependent sub-windows meant to display information or components apart
from the main application window. Most dialog windows present warning, error, or noti�ca-
tion messages but can also contain other components like setup wizards (e.g. Station setup
wizard 3.3.2.9). Every dialog window has a title bar and can contain the following control
buttons:

� minimize button � hides the dialogue window (not always supported)

� maximize button � the dialogue is enlarged to �t the entire screen (not always sup-
ported)

3.3. SCENARIO DESIGNER GRAPHICAL INTERFACE 39

� close close button � closes the dialog window (always supported)

A dialog window can be modal, which means that when is visible, it blocks user input to
all other windows in the application, except for any windows created with the dialog window
as their owner. The modal dialog captures the window focus until it is closed, usually in
response to a button press. An example of a modal dialog window is shown in �gure 3.10.

Figure 3.10: FNSD modal window

3.3.1.4 Quick access tool-bar

The quick access tool-bar (�gure 3.11) is located in the upper left corner of the main window
(see 3.3.1.2). The quick access tool-bar can be customized in order to display di�erent
number of buttons. This can be done by clicking the tool-bar settings button. The quick
access tool-bar is present in all application modes and therefore, the tool-bar buttons have
di�erent functionality depending on the current mode.

Description of the quick access tool-bar follows (buttons are described from left to right):

� New - creates a new assembly plan in Design mode, or a new scene in the Scenario
designer mode. This button is disabled in the Production mode.

� Save � saves data displayed in the main content panel (3.3.1.6). The following out-
comes are possible:

� The tab with the focus in the main content panel (3.3.1.6) contains modi�ed data,
but it has been saved in the past � saves the data to its original location.

� The tab with the focus in the main content panel contains modi�ed data and
it has not been saved before (e.g. contains a new scene) � opens a �le chooser
(3.3.1.12) which allows the user to select the target location and save the �le.

40 CHAPTER 3. DESIGN AND IMPLEMENTATION

� Open - Opens a �le chooser (3.3.1.12) allowing the user to open a �le and display it in
the main content panel (3.3.1.6). Depending on the current application mode, the user
can open assembly plans � design mode, scenes and simulations � scenario designer
mode, etc.

� Undo � the application provides tracking of up to 100 changes. The undo button
allows the user to undo his previous action related to data modi�cation.

� Redo � allows the user to redo an action that he previously undid.

� Print � opens a print dialog. The dialog allows the user to print data currently
displayed in the main content pane (3.3.1.6).

� Tool-bar settings � displays a small panel where the user can modify the tool-bar
preferences � i.e. he is allowed to choose buttons that will be displayed in the quick
access tool-bar.

Figure 3.11: FNSD quick access tool-bar

3.3.1.5 Ribbon

The ribbon (�gure 3.12) is designed to help the user to quickly �nd the control buttons
required to complete a task. The buttons are organized in logical groups, which are collected
together under tabs.

The ribbon content (displayed buttons) varies according to the current tab and application
mode. It can also display or hide buttons according to the current application context.
Disabled buttons in the ribbon indicate that their functionality is not supported in the
current context. If two modes contain the same buttons (same functionality) they must have
the same location in the ribbon, regardless the mode.

The ribbon is locked to the upper part of the main window(3.3.1.2) and it cannot be
repositioned. The ribbon is collapsible by pressing the �hide ribbon� button (). When the
user presses this button the ribbon is hidden and the space previously covered by it is newly
populated by the components below (e.g. main content panel, browse panel, etc.).

The username of the currently signed-in user is displayed in the upper right corner of the
ribbon. The username serves also as a link allowing the user to log out from the application.
There are 2 possible actions after clicking on the username link:

� If the user has saved all his previous work he is safely logged out from the application
and the login window is displayed (see �gure 3.8).

3.3. SCENARIO DESIGNER GRAPHICAL INTERFACE 41

� If some tab in the main content panel (3.3.1.6) contains unsaved data, the application
will display a warning dialog asking the user to save the unsaved data.

Button sections in the ribbon are divided into the following tabs:

� File tab � general application options

� Home tab � buttons to control the most utilized tools in the current mode. The
buttons in this tab are only applicable to the current mode.

� View � control buttons related to window/panel view modes.

� Mode tab � contains switching mode buttons (see �gure 3.12)

The mode switch tab allows the user to switch between several application modes. Before
switching the mode, the user will be asked to save all his unsaved work. After switching the
mode, the interface is readjusted according to the selected mode. The application should
remember the last used application mode for every user.

The user is allowed to switch to modes that he has permissions for. Description of the
application modes follows:

� Design mode - used by process managers for creating and editing assembly plans[6].

� Production mode - used by production/planning managers and station managers
for monitoring the current production status and progress.

� Scenario designer mode � used by production/planning managers for creating and
editing scenes and performing production simulations.

� Other modes - the development of the "strategic planner" is currently running and
the tool will be integrated into the FNSD in the future.

Figure 3.12: FNSD ribbon - mode switch

3.3.1.6 Main content panel

The main content panel (�gure 3.13) is located by default in the middle of the main window
and serves as the main working area. The panel can display data or other components in
multiple tabs. The user is allowed to open, close or swap tabs.

42 CHAPTER 3. DESIGN AND IMPLEMENTATION

Every tab has the following properties:

� is labeled with the name of the �le or the component it contains

� has a close button next to the tab name that allows the user to close the tab � if the
user attempts to close a tab with unsaved work, a warning dialog is displayed

� if the tab contains unsaved work/data � an asterisk is displayed next to the name of
the tab

� can be active (its content is visible), inactive (all not active tabs) or disabled (is locked
and cannot become visible)

� the close tab button is active only on active tabs, to prevent an accidental close of a
tab while clicking a tab or switching their position

Content in the main content panel can be loaded in the following ways:

� Through the ribbon (3.12) � by pressing a button that opens a �le or displays a
component

� Through the quick access tool-bar(3.11):

� By clicking on the �new� button � creates a new �le (assembly plan, scene, etc.)

� By clicking on the �open� button � displays a �le chooser (3.19) dialog allowing
the user to open a �le in a new tab.

� Through the new tab button in the main content panel(�gure 3.13) � opens a new
tab

� Through the browser panel (3.14) � any �le displayed in the browser panel can be
opened in a new tab by double-clicking on the �le.

3.3. SCENARIO DESIGNER GRAPHICAL INTERFACE 43

Figure 3.13: FNSD Main content panel

3.3.1.7 Browser panel

The browser panel is located by default on the middle left side of the main window (3.9),
above navigation panel.

The browser panel component displays hierarchical data in a tree form. The panel is
organized into several tabs, each containing di�erent type of data (scenes, simulations, etc.).
Di�erent tabs are displayed in di�erent modes (e.g. SD � scenes and simulations, FND �
Assembly plans and scenes, etc.). A detailed description of the displayed data in the SD
mode is provided in the corresponding section (3.3.2).

The tree inside the browsing panel displays data vertically. Each row displayed by the
tree contains exactly one item of data, which is called a node. Every tree has a root node
from which all nodes (children) descend.

A node can either have children or not. Nodes that can have children are called branch
nodes. Nodes that cannot have children (atomic data that has no successors � e.g. a a
result-item in simulations tab) are called leaf nodes.
Branch nodes can have any number of children. The user can expand and collapse branch
nodes by double clicking on them � making their children visible or invisible.
The browsing panel provide horizontal and vertical scroll bars, in order to display large
amount of data (the width and depth of the tree can exceed the visible section of the
browsing panel).
The browsing panel can also display noti�cations � e.g. noti�cation for the user about a new
result returned by the scheduler. After the user logs in to the application, the last view/state
of the trees in the browsing panel is displayed.

44 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.14: FNSD Browser panel

3.3.1.8 Properties panel

The properties panel (�gure 3.15) is located by default on the bottom left side of the main
window (3.9), below the browser panel.

Figure 3.15: FNSD Properties panel

The properties panel will be, by default, folded together with the navigation panel, creating
a single component. The user can switch between tabs in order to view the properties panel
or the navigation panel. Both, the properties and the navigation panel can be resized and
relocated and they can be unfolded apart. The user is also able to close a single panel, or

3.3. SCENARIO DESIGNER GRAPHICAL INTERFACE 45

both of them. The user will be able to restore their view through control buttons in the
ribbon ("view" tab).

The properties panel will display detailed information about objects (assembly plans,
jobs, scenes, stations, etc.) currently visible in the main content panel (3.3.1.6). In case the
objects in the main content panel consists of other objects, the user will be able to display
their properties in the properties panel by clicking on them (giving them focus).

3.3.1.9 Navigation panel

The navigation panel (�gure 3.16) is located by default on the bottom left side of the main
window (3.9), below the browser panel.

The navigation panel will be, by default, folded together with the properties panel
(3.3.1.8) creating a single component. The user can switch between tabs in order to view
the navigation or the properties panel. Both, the properties and the navigation panel can be
resized and relocated and they can be unfolded apart. The user is also able to close a single
panel, or both of them. The user will be able to restore their view through control buttons
in the ribbon ("view" tab).

The properties panel will display (if supported) a content thumbnail of the tab currently
holding the focus in the main content panel (3.3.1.6).
The visible section box (see �gure 3.16) indicates the section is currently visible in the main
content panel.

Figure 3.16: FNSD Navigation panel

The navigation panel supports the following navigation:

� Assembly plans � navigation through large amount of work orders by moving the
visible section box.

� Scenes � navigation through scenes with large amount of stations by moving the visible
section box.

46 CHAPTER 3. DESIGN AND IMPLEMENTATION

The thumbnail displayed in the navigation panel displays a complete preview of a given
object (the whole scene, i.e all stations of a scene). The user is allowed to navigate across
the object by moving the visible section box � the view in the main content panel will change
accordingly.

3.3.1.10 Search component

The search component (�gure 3.17) forms part of other components containing large amounts
of data � typically tables. It allows the user to �nd speci�c data inside other components.

The search component is located (if the component supports search) on the right top side
of the given component. The user inserts a string into the search input �eld and by pressing
enter, the �rst matching data item is high-lighted (the view is adjusted accordingly). If
no items are found, an information dialog is displayed. The user is allowed to move to
the next/previous matching item by clicking on the �nd next\�nd previous buttons (see
�gure 3.17).

Description of the search component follows:

� Search options () � opens a small panel allowing the user to set the search preferences
(e.g. case-sensitive search, whole words only, etc.).

� Find previous () � �nds the previous occurrence and highlights the matching item.

� Find next () � �nds the next occurrence and highlights the matching item.

Figure 3.17: FNSD Search component

3.3.1.11 Tables

Tables (�gure 3.18) are typically used to display large amount of serial data. Data in a table
can be �ltered, searched and sorted.
In addition to data, tables can contain other components like check boxes, drop down lists,
editable �elds, icons, links, control buttons etc.

3.3. SCENARIO DESIGNER GRAPHICAL INTERFACE 47

Tables can provide the following functionality:

� Filtering � data in a table can be �ltered by several criteria, which are �xed and
de�ned for every table. The �ltering can be done by selecting one of the options in
the �ltering drop down list � e.g. �gure 3.18 shows an example of the work orders
assignment component[6], in which the user can �lter the displayed work orders. The
user is able to display unassigned work orders only, work orders to be assigned, etc.

� Sorting � columns in the data table can sorted by clicking on the column sort button
(), if sup-ported. The column sort button is displayed on the right top corner of
every column that supports column sorting.

� Simple sorting � columns that support column sorting can be sorted in ascending
or de-scending order by clicking on the column sort button. When the user clicks
on the column sort button, the column is sorted in ascending order and the buttons
appearance is changed (). Another click sorts the column in descending order ().

� Multi-column sorting � allows the user to sort the table by multiple columns at
the same time. The user can activate multi-column sorting by �shift� clicking on the
column he wants to add to the sort.

� Searching � if a table supports data searching, the search component (3.3.1.10) is
displayed on the upper right corner of the table (see �gure 3.18).

Figure 3.18: FNSD Table example

3.3.1.12 File chooser

The �le chooser (�gure 3.19) component is displayed in a dialog (see sub-windows 3.3.1.3) and
allows the user to �nd and choose a �le from the local or remote (core ontology) storage. The
�le can be a scene, station, simulation, etc., depending on the current context (application
mode and view).

The �le chooser contains the following sections:

� The �le path bar allows the user to select the storage path of �les that will be
displayed in the �les table � there are two root options: remote storage (core ontology)
or local storage.

48 CHAPTER 3. DESIGN AND IMPLEMENTATION

� Some �le choosers might provide a station �ow preview, or other additional info on
the right side of the �les table. The �le chooser example in �gure 3.19 displays the
station �ow of selected scene.

� General additional information is provided below the �les table. The visible informa-
tion belongs to the currently selected scene (scene 1 in the mock-up).

� Open button � opens the selected content (scene1 in the mock-up) in a new tab in
the main content panel (3.3.1.6).

� Cancel button � closes the �le chooser dialog and returns to the previously opened
panel. No changes are applied.

Figure 3.19: FNSD File chooser example

3.3.2 Scenario designer components

The following GUI mock-ups illustrates the functionality provided by the Scenario Designer.
All screens are described and explained in detail below the mock-ups.

3.3.2.1 Scene management

The scene management view (�gure) is the �rst view provided to the user after switching
from other modes to the SD mode (see ribbon mode tab 3.3.1.5).

This view contains all necessary tools for managing scenes and its properties, stations and
its properties (resources), events, simulations. The description of each component displayed
in the scene management view follows.

3.3. SCENARIO DESIGNER GRAPHICAL INTERFACE 49

Figure 3.20: Scene management - AIB

3.3.2.2 Scenario designer ribbon

The ribbon general description is provided in section 3.12.

Description of the scenario designer ribbon(�gure 3.21) groups follows:

� Scene group

� New scene button () - creates a new scene from scratch. The new scene is
opened in the main content panel (3.3.1.6).

� Open scene button () � opens a �le chooser dialogue (3.3.1.12). The �le chooser
allows the user to select and open a scene stored locally or in the core ontology.
The scene will be opened in the main content panel.

� Scene settings button () � opens the scene settings dialog. The scene settings
dialog allows the user to view and modify the opened scene properties.

� Duplicate scene button () � opens a �le chooser dialog. The �le chooser allows
the user to select and duplicate a scene stored locally or in the core ontology. The
duplicated scene will be opened in the main content panel.

� Save scene button () � opens a save �le dialog. The save �le dialog allows the
user to save the opened scene locally or in the core ontology

50 CHAPTER 3. DESIGN AND IMPLEMENTATION

� Station group

� Add new station button () � adds a new station from scratch to the currently
opened scene.

� Duplicate stations button () - opens a �le chooser dialog. The �le chooser
allows the user to select and duplicate a station stored locally or in the core
ontology. The duplicated station will be added to the opened scene in the main
content panel.

� Station settings button () � opens the station settings/properties view.

� Delete station button () � removes the selected stations from the opened scene.

� Events group

� Add new events button () � adds a new event (see add events dialogue).

� View list of events button () � opens a list of all events of the opened scene.

� Scheduling group

� Scheduling button () � calls the scheduler, after the scene has been set up.

� Default scheduling properties button () � opens the default scheduling prop-
erties win-dow - the user can set the preferred scheduling properties (automatic
insertion of events, preferred scheduling strategy)

� Flow section

� Hand button () � provides a tool to adjust the placement of the stations in
the scene. The hand tool also allows the user to select one or multiple stations.

� Connector button () � the connector tool provides a connection between sta-
tions in order to de�ne their �ow.

� Decision point () � inserts a decision point. This element is required for the
IHF case, in or-der to dynamically decide the product �ow (e.g. de�ning the
product �ow in case of parallel stations).

� Parking point () � inserts a parking point. This element is required for the
IHF case � it rep-resents a location where products can be temporarily placed.

Figure 3.21: Scenario designer ribbon

3.3. SCENARIO DESIGNER GRAPHICAL INTERFACE 51

3.3.2.3 Scenes and simulations browser

The scene/simulations browser provides an overview of the currently existing scenes and
simulations. A double click on a scene/simulation opens the scene/simulation in a new tab
in the main content panel 3.3.1.6.

The browser panel contains the following sections:

� Scenes tab (�gure 3.22)

� Every scene can contain one or multiple stations. The stations can be viewed
in the scenes browser by expanding the scenes ("+" button left to the scene
name). Every scene is marked with an icon, informing the user about their current
storage location: Remote () icon indicates that the scene is stored in the core
ontology.Local () icon indicates that the scene is stored locally.

Figure 3.22: Scenario designer browser panel - scenes tab

� Scenes tab (�gure 3.23)

� Every simulation contains a scene and a result set belonging to that scene. The
icons left to the simulation name indicates whether the simulation is stored in the
core ontology, or locally (as in the scenes tab).

� The �scheduling in progress� () icon next to a simulation (simulation 3) indicates,
that the result set of the simulation is not yet ready to be displayed � the scheduler
is still computing the results.

� The �info icon� () in the Simulations tab indicates that a new result set has been
returned by the scheduler. The result set is ready to be displayed by the user.
Once the user opens and views the result set � the �info icon� disappears from the
simulations tab.

� The info icon () next to the Simulation name indicates that the result of that
simulation is ready to be displayed. Once the user opens and views the result set
� the �info icon� disappears (simulation1 in the mock-up).

52 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.23: Scenario designer browser panel - simulations tab

3.3.2.4 Scenario designer properties and navigation panel

The properties/navigation panel (�gure 3.24) provides additional information about objects
being displayed in the main content panel. It is located on the lower left corner of the main
window (3.9).

Figure 3.24: Scenario designer properties panel

The navigation tab (�gure 3.25) provides an overview of the scene �ow. The purpose of
this tool is to provide a top view of the scene �ow and facilitate the navigation through the
opened scene.

The rectangle indicates the currently visible scene section. This section can be moved in
any direction in order to navigate across the scene (the opened scene in the main conten panel
will move accordingly) Note: the Navigation tab above, displays a scene with 7 stations, 2
of which are parallel (does not correspond to the screen in section main content panel)

3.3. SCENARIO DESIGNER GRAPHICAL INTERFACE 53

Figure 3.25: Scenario designer navigation panel

3.3.2.5 Station overview

The station main view displays in brief the station properties. The station view has 2
sections:

� Left section contains(from left to right):

� Settings button � opens a setup wizard to setup the station properties (planned
cycle time, human resources, tools, plans assignment)

� Delete button � deletes the station from the scene

� ST 90 � ID of the displayed station

� Righ section contains (from lef to to right):

� Cycle time label � indicates the planned cycle time (150 Industrial minutes)

� Human resources label � indicates the number of assigned workers to the station
(18 workers)

� Assigned assembly plans label � indicates the assigned assembly plans and displays
the number of work orders assigned to the station (610 work orders out of 3000)

� Selection checkbox � allows the selection of multiple stations (multiple delete,
copy).

Figure 3.26: Station overview

54 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.3.2.6 Add stations from multiple scenes

The dialog below (�gure 3.27) allows the user to add stations(s) from one or multiple scenes
into the scene opened in the main content panel.

The user opens a new scene by clicking on the �new tab� button � this opens a dialog and
the user can select and open existing scenes (stored in the core ontology, stored locally or
the live scene).
Once the user has opened the scenes, he can collect the stations by clicking on the collect
station button () left to the station name. The collected stations will be displayed in the
bottom table (Collected stations table).
The right tabbed panel contains additional scene information in order to provide a more
detailed view of the opened scene:

� The �ow tab preview displays the scenes station �ow � here, the stations are highlighted
according to the selection in the Opened scenes table. (Station 2 is highlighted both,
in the opened scenes table and in the �ow preview)

� The details tab displays the scene properties (scene properties tab and �ow preview).

The () button in the collected stations table opens a dialog displaying the assigned
resources .

Figure 3.27: Add stations from multiple scenes

3.3. SCENARIO DESIGNER GRAPHICAL INTERFACE 55

3.3.2.7 Add events

After pressing the add events button in the SD ribbon, the SD interface displays a dialogue
(see �gure 3.28) that allows the user to add events to a scene . The �add events dialog� is
divided into three sections:

Left section � events catalogue: the event catalogue allows the user to browse through
event categories and to add new events into the scene (the user is allowed to add multiple
events � displayed in the �added events� table). The text box below the event catalogue
contains text describing the selected event (Process nonconformity in the mock-up). The
"add" button adds the selected event to the right table (added events).

Middle section � �added events� table. Contains all events inserted by the user.

Right section � Event setup � components inside this section are dynamically rendered,
according to the selected event type in the �added events� table (the required parameters to
be set up will di�er depending on the event type).

Figure 3.28: Add events

56 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.3.2.8 New scene

The �new scene� component (see �gure 3.29) allows the user to setup general scene properties.
It is opened in a new tab in the main content panel after pressing the �new scene� button in
the scenario designer ribbon.

Figure 3.29: Scenario designer - new scene setup

The following section describes the Station setup wizard which is a setup assistant that
lead the user through a series of steps (dialogue windows) in order to set up a station. The
following mock-ups illustrate the station setup wizard functionality.

3.3.2.9 Station setup wizard - general properties

The �rst step in the Station setup wizard is the general properties setup (�gure 3.30), where
the user can set the station name and the planned cycle time (both, days and Industrial
minutes are supported)If the default scene cycle time is set, the editable cycle time �numeric
stepper� is pre-populated.

� The �next button� takes the user to the plans assignment dialog.

� The �cancel button� closes the wizard and no changes are applied to the station setup.
Note: the general station properties dialog is opened only if the scene has not yet been
set up through the "new scene" component.

3.3. SCENARIO DESIGNER GRAPHICAL INTERFACE 57

Figure 3.30: Station setup wizard - general properties

3.3.2.10 Station setup wizard - assembly plans assignment

The assembly plans assignment dialogue (�gure 3.31) displays the work orders assignment
component from design mode. The component allows the user to assign a sub-set of the
assembly plans to the stations. This component is a part of the FND[6] and therefore, is not
described in this document (for further description, see Ondrej Harcuba master thesis[6]).

Figure 3.31: Station setup wizard - assembly plans assignment

58 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.3.2.11 Station setup wizard � human resources setup

The next step in the station setup wizard is the human resources setup (see �gure 3.32). Here,
only generic workers (placeholders) are assigned to a station. The real workers availability
is not taken into account. The dialogue description follows:

Displayed skills are static � loaded at the start of the application and the dialog always
displays the complete set of existing skills (regardless of the required skills de�ned in the
assigned assembly plans).

Workers are displayed in the �rst table row � header row.
Displayed workers are not static � a worker can be added by pressing the add worker ("+")
button right to the last added worker. The add worker button is always visible � pressing
the button adds a worker (column) to the human resources table.

The user adds a skill-worker mapping by clicking in the corresponding cell.
The warning icon right to skills MAH, MAL, MAP indicates, that according to the assigned
as-sembly plans, these skills are required but are not yet assigned.

There is a �view �lter� on the right top corner of the human resources table � this com-
ponent allows the user to �lter the displayed data. The following options are available:

� All � displays the entire table data � all skills and workers

� Assigned � displays only the assigned skills

� Unassigned � displays the unassigned skills

A collapsible component with general information is displayed below the human resources
setup table. It contains information about the total number of assigned workers, number of
required skills, number of assigned skills, number of skills that have to be assigned.
If the user decides to collapse the general info component, the human resources table is
enlarged.

2 kinds of tooltips are available:

� After hovering the cursor over a skill � displays the skill type and its description.

� After hovering the cursor over a worker � displays the workers competence (sum of all
as-signed skills).

The back button leads to the previous setup step � work orders assignment. The next
button leads to the next setup step � tools setup. The cancel button closes the wizard and
no changes are applied.

3.3. SCENARIO DESIGNER GRAPHICAL INTERFACE 59

Figure 3.32: Station setup wizard � Human resources setup

3.3.2.12 Station setup wizard - tools setup

The last step of the station setup wizard is the tools setup (�gure 3.33). The user can view
the tools currently assigned to the station and modify their amount, optionally he can add
new tools from the tools catalog.
The tools table description follows (columns from left to right):

� The Delete column contains the delete buttons � deletes the tool assignment to the
station.

� The Modify column contains the amount modi�cation buttons � pressing the �plus�
button increments the tool amount assigned to the station by one, pressing the �minus�
button decrements the amount by one.

� Name column (not editable) � contains the name of the tool

� Model column (not editable) � contains the tool model

� Available in stock column (not editable) � displays the amount of currently available
tools in the stock/warehouse

� Amount column (editable) � contains the number of tools that are assigned to the
station (station 88 in this case).

� The user can modify the amount via the modi�cation buttons or manually, typing a
number into the amount column)

60 CHAPTER 3. DESIGN AND IMPLEMENTATION

Below the tools table, two buttons and a text area is displayed:

� Add tools button � opens the tool catalogue.

� Remove selected tools button � the user is able to select multiple tools and remove
them from the tools table.

� Tool details information � text area containing detailed information about the selected
tool (High low torque air screwdriver tool in the mock-up)

Figure 3.33: Station setup wizard - tools setup

3.3. SCENARIO DESIGNER GRAPHICAL INTERFACE 61

3.3.2.13 Station setup wizard - tool catalogue

The tools catalog (�gure 3.34) can be invoked from the tools setup dialog in order to assign
new tools to a station.
The tool catalog description follows (columns from left to right):

� Select column � contains a checkbox that allows the user to select several tools. If
the amount of available tools of a kind is 0, a warning icon is displayed before the
checkbox, the checkbox is disabled.

� Name, Model and Available in stock columns are described in section tool setup - (
3.34).

� Tool details information below the tools catalog table � is described in section tools
setup - (3.34).

� Add selected tools button � adds the selected tools to the tools setup table (�gure
3.34).

� Cancel button � returns the user to the tools setup dialog and no changes are applied.

Figure 3.34: Station setup wizard - tool catalogue

62 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.3.2.14 Scheduling properties setup

The scheduling properties setup (�gure 3.35) is divided into two sections:

� Left section: allows the user to select the scheduling time range

� Right section: contains general information about the last scheduling

The scheduling properties setup has been simpli�ed (in the �gure below is the updated
version) in order to facilitate its use to end users.

Figure 3.35: Scheduling properties setup

3.3. SCENARIO DESIGNER GRAPHICAL INTERFACE 63

3.3.2.15 KPIs comparison

Once the result set is available the user is allowed to open the result set and make the KPIs
comparison in a new tab (see 3.36).

The KPIs comparison table description follows:

� Delete column � contains a delete button � deletes the result from the simulation.

� Selection column � contains a check box that allows the user to select a result. The
selected results can be displayed as a Gantt chart (see �gure 3.37). The user can select
one, or two results in order to display them in the Gantt chart view.

� Result ID column � displays the result identi�er.

� KPIs (Throughput, Corner date, Resource utilization) � displays the results KPIs
values. The table can be ordered by a KPI (ascending or descending) by clicking on
any of the KPI headers.

The Gantt button below the KPIs comparison table opens the selected results (the schedules)
in a new tab (see �gure 3.37).

Figure 3.36: Scenario designer - KPIs comparison

64 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.3.2.16 Schedules graphical comparison

After the KPIs comparison (see �gure 3.36), the user selects one or two results in order to
compare the Gantt charts (�gure 3.37).

The Gantt charts comparison is performed through the Gantt chart visualizer, which has
been developed by my colleague Peter Mathia within his bachelor's thesis[7].

Figure 3.37: Scenario designer - KPIs comparison

3.3.3 Production mode

This section provides a brief description of the FNSD production monitoring component -
the production mode. A bigger part of this component has been developed by my colleague
Ondrej Harcuba[6]. However, in order to ful�ll the thesis requirements, I have contributed
aswell with some components for this mode (e.g. rescheduling properties setup, event inser-
tion, etc.).

3.3. SCENARIO DESIGNER GRAPHICAL INTERFACE 65

3.3.3.1 Running production monitoring - stations overview

The production mode stations overview provides the most crucial information regarding the
current production state.
Every station is highlighted according to the production manager that is currently viewing
the component (e.g. stations 90 and 88 are highlighted to the current station manager, since
he is in charge of these 2).
Every station displays the name of the responsible manager, the station name, the current
production status (e.g. in progress, blocked state, etc.) and a brief view of the current
production progress (tasks done, planned, blocked, etc.)
Every station contains a link (on the right side) to zoom-in into a deeper view of the station
status.

Figure 3.38: Production mode - stations overview

3.3.3.2 Running production monitoring - dashboard

The production mode dashboard is the �rst view provided to the production manager after
he logs-in into the FNSD - production mode. The dashboard contains the most important
information and provides a quick overview of the current production state.

The production dashboard displays multiple customizable widgets, which allow the user
to adapt the user interface to his needs and preferences. Every widget serves also as a link

66 CHAPTER 3. DESIGN AND IMPLEMENTATION

to a more detailed view of the corresponding type of information (e.g. Gantt chart widget
leads to a full view of the Gantt chart visualizer).
In the picture below (�gure 3.39), the dashboard contains daily, cycle and performance
reports. The Gantt chart widget is displayed on the right side of the production dashboard.
The Gantt chart visualizer provides a view of the scheduled tasks in time.

Figure 3.39: Production mode - dashboard

3.4. TECHNOLOGY USED FOR THE IMPLEMENTATION 67

3.4 Technology used for the implementation

This section contains a brief description of the technologies used for the implementation of
the FNSD.

The FNSD GUI is being implemented as a rich-client component using the JavaFX frame-
work and the Netbeans platform.
The decision of implementing the FNSD interface using this technology was made by ARUM
technical leaders. The main reason is the necessity of high levels of responsiveness and sta-
bility while processing and displaying large amounts of data, which cannot be achieved by
using web-based technologies. Using a rich client application will also allow the user to save
data locally and the risk of data loss will be minimized.
Currently, the SD high �delity prototype is being developed as a standalone application us-
ing the JavaFX framework. However, it will be integrated with the FND[6], which is being
developed on the netbeans platform. Other ARUM components (e.g. Gantt chart visual-
izer [7]) are already implemented using the JavaFX framework and the integration with the
FNSD will therefore be facilitated.

3.4.1 JavaFX

"Since the JavaFX library is written as a Java API, JavaFX application code can reference
APIs from any Java library. For example, JavaFX applications can use Java API libraries
to access native system capabilities and connect to server-based middleware applications.
The look and feel of JavaFX applications can be customized. Cascading Style Sheets (CSS)
separate appearance and style from implementation so that developers can concentrate on
coding. Graphic designers can easily customize the appearance and style of the application
through the CSS "[2].

Some of the JavaFX key features, that have been utilized during the development of the
high �delity prototypes are:

� FXML and Scene Builder. FXML is an XML-based declarative markup language for
constructing a JavaFX application user interface. A designer can code in FXML or use
JavaFX Scene Builder to interactively design the graphical user interface (GUI). Scene
Builder generates FXML markup that can be ported to an IDE where a developer can
add the business logic.

� Built-in UI controls and CSS. JavaFX provides all the major UI controls that are
required to develop a full-featured application. Components can be skinned with stan-
dard Web technologies such as CSS. The DatePicker and TreeTableView UI controls
are now available with the JavaFX 8 release.

� Canvas API. The Canvas API enables drawing directly within an area of the JavaFX
scene that consists of one graphical element (node).[2]

68 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.5 High �delity prototypes implementation

This chapter provides the description of the high �delity prototype of the Scenario designer.
The prototype has been implemented using the JavaFX framework, in order to facilitate the
integration with the FNSD and other ARUM components being developed in parallel.

The SD high �delity prototypes (as well as the FND) will allow us to continue with
further usability testing. So far, low �delity prototypes have been tested with end users.
The usability tests provided us a good insight into the production processes, and how they
are (in reality) being implemented. The obtained feedback revealed a signi�cant amount
of unknown information and required changes that will be taken into account in the next
implementation phases.

The high �delity(Hi-�) prototypes will simulate the FNSD functionality in order to test
the GUI design usability in detail. Unlike the low �delity prototypes, the hi-� prototypes will
simulate the complete functionality de�ned by the FNSD requirements. However, commu-
nication with other ARUM components (e.g. event simulator, FNSD service, MIDAS, etc.)
will not be supported yet. The integration with other ARUM components will be performed
in later project phases. Many of these components are still being speci�ed and developed.

A brief overview of the SD hi-� prototypes is provided in the following sections.

3.5.1 Scene management

The Scenario designer main view - scene management (�gure 3.40) - has been implemented
according to the low �delity design. For further description of the component's functionality,
see section 3.3.2.1.

3.5. HIGH FIDELITY PROTOTYPES IMPLEMENTATION 69

Figure 3.40: SD high �delity prototype - scene management

3.5.2 New scene

The new scene form (�gure 3.41) - has been implemented according to the low �delity design.
For further description of the component's functionality, see section 3.3.2.8.

3.5.3 Station setup wizard - human resources setup

The human resources setup dialogue (�gure 3.42) - has been implemented according to the
low �delity design. For further description of the component's functionality, see section
3.3.2.11.

70 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.41: SD high �delity prototype - scene management

3.5. HIGH FIDELITY PROTOTYPES IMPLEMENTATION 71

Figure 3.42: SD high �delity prototype - scene management

72 CHAPTER 3. DESIGN AND IMPLEMENTATION

Chapter 4

Usability testing

This chapter describes the FNSD usability tests, which were held at Airbus facilities in
Hamburg, Germany. The �rst usability test was held in March 2014 and its main purpose
was to eliminate major errors in the GUI design. The second testing took place in April
2014. We were able to adapt the low �delity prototype to the end users from the �rst testing,
and the second revealed more subtle errors.
The following section contain a short sample from the usability testing report.

4.1 Usability testing

This section contains a report from the FNSD usability testing held in Hamburg, Germany
- April 2014.

4.1.1 Purpose of the usability testing and expected output

The purpose of the user interface usability testing at 16th of April in Hamburg was to
obtain user feedback on the FNSD graphical interface (so far as an interactive prototype).
The feedback was obtained from several potential users / experts who represent primarily
people working and organizing work at the assembly stations (Station managers, Production
steering).

The experts were asked about their daily jobs and major problems they face. A scenario
was introduced (appendix A) and they were asked to go through the interactive prototype
and to answer questions like:

� Is the information presented easy to understand?

� Do you know what individual items represent and what do you expect the controls
would do?

� Did the controls do what you expected?

� Does the tool cover your needs?

� Is the accessibility of the user interface satisfactory?

73

74 CHAPTER 4. USABILITY TESTING

The following section contains a short sample of the report from the usability tests.

4.1.2 Scheduling properties

Figure 4.1: Rescheduling - reported issues

4.1.2.1 Issue: Redundant setup � preferred optimization

The user suggested to simplify the scheduling properties setup. Moreover, setting up the
preferred optimization prior to the scheduling is erroneous.

Recommendation Remove the �preferred optimization� option.

4.1.2.2 Issue: Scheduling time range � current cycle as default

The user would prefer to have the �current cycle� time range as default. He also mentioned
that �current day� and �current shift� could be useful as well.
The user asked about whether it would be possible to obtain a �recommended time range�
from the application for every rescheduling. This issue will be further discussed.

Recommendation Set the �current cycle� scheduling time range as default. Consider
the possibility of providing the user a �recommended time range� for every rescheduling
(based on the current situation).

4.1. USABILITY TESTING 75

4.1.2.3 Issue: Scheduling properties � swapped areas

Area �last scheduling properties� should be swapped with area �re-scheduling properties�.
Most important information should be displayed on the left side on the screen.

Recommendation Swap area �last scheduling properties� with area �re-scheduling prop-
erties�.

4.1.3 Results comparison

Figure 4.2: Results comparison - reported issues

4.1.3.1 Issue: Erroneous industrial minutes abbreviation

The user could not recognise the abbreviation used for �industrial minutes � IMS� in the
prototype.

Recommendation Change IMS to IM in order to match the currently used abbreviation.

4.1.3.2 Issue: Add new KPI � amount of travelling work

The conversation with the user revealed the requirement of adding a new KPI � �amount of
travelling work�.

76 CHAPTER 4. USABILITY TESTING

Recommendation Add a new column in the �scheduling results� table with the new
KPI � amount of travelling work.

4.1.3.3 Issue: Change throughput unit

The current throughput unit (MSN/week) represents a relatively short time range (the cycle
time under ramp up is about 8 days).

Recommendation Change the throughput unit to MSN/month.

Chapter 5

Conclusion

5.1 Thesis summary

The main goal of this thesis was to develop the Scenario designer: a managerial tool within
the ARUM project to support monitoring, visualization and scheduling of aircraft production
in ramp-up.

This thesis contains the functional requirements, functional speci�cation, the architec-
ture design, the graphical user interface design and the implementation (as a high �delity
prototype) of the Scenario designer.

At the date of this thesis submission, the architecture design and the mock-up prototypes
of the Scenario designer and the Factory network designer (together refered as FNSD) have
been developed into such stage, that allowed us to start with the implementation phase.

A sub-set of the FNSD design has been tested with end users at Airbus facilities(March
and April 2014). A signi�cant amount of valuable feedback was retrieved from both usability
tests, which will be taken into account during the following implementation phases.

5.1.1 Further work

The Scenario designer, in its �nal stages, will be integrated with other ARUM tools developed
in parallel within the project. Nowadays, many of the tools are not yet �nished and cannot
be connected to or used by the SD. One of the tools to be used (its sub-functionality) by
the SD is the Factory network designer [6], which is being developed by my colleague Ond°ej
Harcuba, within his master's degree thesis.

As previously mentioned, only low �delity and high �delity prototypes (a sub-set of the
overall functionality) could have been implemented so far. Nevertheless, the ARUM project
naturally continues and after the submission of this thesis, the development of the Scenario
designer will be �nished.

77

78 CHAPTER 5. CONCLUSION

Bibliography

[1] ARUM: Adaptive Production Management [online]. Dostupné z: <http://
arum-project.eu/index.php/en/overview>.

[2] JavaFX Overview [online]. Dostupné z: <http://docs.oracle.com/javase/8/
javafx/>.

[3] BIELE, A. D2.1.1 - Use-case De�nition (use-cases 1&2). Status: con�dential, 2013.

[4] BUDIN, T. ARUM Development guidelines. Status: con�dential, 2013.

[5] GLEICH, C. F. � SCHÜTT, A. � ISENBERG, R. SMART ramp-up: methods to
secure production ramp-up in the aircraft industry. CEAS Aeronautical Journal. 2012,
3, s. 125�134. doi: 10.1007/s13272-012-0047-7.

[6] HARCUBA, O. Tool for operational monitoring of production processes. Czech Tech-
nical University in Prague, 2014.

[7] MATHIA, P. Tool for decision support in production planning and scheduling. Czech
Technical University in Prague, 2014.

[8] MüLLER, D. � ANHALT, A. D2.2.1 - use case detailing and KPI setting. Status:
con�dential, 2013.

[9] PARTNERS, A. D4.1.1 System architecture and platform speci�cations. Status: con�-
dential, 2013.

[10] PARTNERS, A. Description of work. Status: public, 2012.

79

80 BIBLIOGRAPHY

Appendix A

Glossary

Name De�nition

Application mode
Graphical interface unit designed to ful�l a speci�c use

case. This document contains description of the
Scenario designer mode.

ARUM Adaptive production management

ARUM
computational core

Computing unit designed to perform the WOs/jobs
scheduling (also called scheduler). Transforms an

input (scene) into one or multiple outputs (schedules).

Assembly plan
Graphical representation of all work orders

(operations) of a product and their technological
interrelations.

AIB Airbus

DESC Description

DEP Dependency

ESB

Enterprise service bus: software architecture that
allows the communication between multiple

application modules in a service-oriented architecture.

FND

Factory network designer: a graphical user
interface developed within the ARUM project.

Functionality: management of assembly plans and
current production monitoring.

FNSD

The top-level application that contains multiple modes
developed within the ARUM project. The modes are:

Design mode, Production mode, Scenario mode.

81

82 APPENDIX A. GLOSSARY

Graphical interface
component

An independent graphical interface sub-unit designed
to provide speci�c functionality. A graphical

component provides always the same functionality
regardless the current application mode or the current

view (might display di�erent type of data).

ICT Information communication technology

KPI Key performance indicator

Live scene
The scene that represents the running production

state.

MR Missing resource event

NC

Non-conformity: a defect in an item that
substantially prevents the item or service from

operating or functioning as designed or according to
its speci�cations. A nonconformity is a severe

deviation from a speci�cation. A nonconformity has to
be approved by a station manager, after it has been

reported by a worker.

Production line

An organized factory system. Components of the end
product are assembled in a number of di�erent

stations at each of which a manual and/or machine
operation is performed. The production line consists
of stations. A product might (AIB case) pass through
all stations, or might remain in one station (IHF case)

the whole production lifecycle.

SD

Scenario designer: a graphical user interface
developed within the ARUM project. Functionality:

management of scenes and current production
monitoring.

Scene
An abstract entity representing the factory properties

and state. See scene de�nition in scene lifecycle.

Station

A self-contained workspace equipped with workers,
tools, kittings. A station has de�ned cycle time,
assigned product(s) and �ow in context of other

stations. A station is part of the scene(see SCENE
LIFECYCLE).

User Every person that interacts with the application.

What-if games
Simulations performed through ARUM tools in order

to analyse possible production progress.

What-if scenario An instance of the what-if games.

83

Work order (WO)
Assembly/net plans consists of work orders. Each

work order consists of jobs.

Table A.1: Glossary

84 APPENDIX A. GLOSSARY

Appendix A

Content of attached CD

� text - pdf and "tex" source �les of this thesis

� source - source codes of the prototypes

85

86 APPENDIX A. CONTENT OF ATTACHED CD

Appendix A

Usability testing scenarios

A.1 Rescheduling scenario

A station manager (you) comes to the morning shift and wants to review the performance
of the currently running production at his/her station(s).

Dashboard:

� Identify the KPIs of the production

� What is the percentage of �nished/remaining work orders/processes?

� Is the production delayed?

� What is the current situation at your stations?

� What is the current progress of each station?

� Which station is blocked? Why?

� How many blocking events there are? How many of them are new?

� What is the current situation regarding the shifts?

� How many workers are available at ST 90 for shift 1?

� How many workers are required at ST 88 for shift 2?

Assembly plan/Gantt chart:

� Which work orders / processes are now running?

� Which work orders / processes are now �nished?

� Which work orders / processes are in trouble?

� Which processes (work orders) are being done at my station that did belong to other
sta-tions?

87

88 APPENDIX A. USABILITY TESTING SCENARIOS

� Which processes (work orders) originally planned to be done at my station are delayed
and transferred to other stations?

� Display the critical path

Resources

� What workers should be in the current shift for ST 90?

� What work orders / processes are assigned to worker Jackson Whitledge?

� What workers are currently working?

� What workers are available?

Events

A new event occurs � reported by one of the workers.

� Identify what happened � what type of event occurred

� Filter the events � display only the blocking events

� Browse details of a blocking event

� Who reported the event?

� On which station the event occurred?

� When was the event reported?

� Who is currently responsible for solving the event?

Rescheduling

You have decided to create a new schedule, based on the current situation.

� Run the rescheduling

� Setup the scheduling parameters

� Setup the scheduling strategy: traveling work

� Setup the preferred optimization: corner date

� Setup the scheduling time range: current day

� Display the results

� How would you compare the KPIs of the results?

� What is the best result regarding the maximal throughput?

� Compare two Gantt charts

� Apply your selected schedule to the current production

