
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

DIPLOMA THESIS

Jǐŕı Mosinger

A geometric approach to exploration of an unknown 3D
environment

Department of Cybernetics

Thesis supervisor: RNDr. Miroslav Kulich, Ph.D.

Prohlášeńı autora práce

Prohlašuji, že jsem p̌redloženou práci vypracoval samostatně a že jsem uvedl veškeré použité
informačńı zdroje v souladu s Metodickým pokynem o dodržováńı etických principů p̌ri p̌ŕıpravě
vysokoškolských závěrečných praćı.

V Praze dne

Acknowledgements

I would like to express my thanks to the thesis supervisor RNDr. Miroslav Kulich, Ph.D. for
his professional guidance, countless advices and overall support. I would also like to thank my
girlfriend and family for their love and support.

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ DIPLOMOVÉ PRÁCE

Student: Bc. Jiří M o s i n g e r

Studijní program: Kybernetika a robotika (magisterský)

Obor: Robotika

Název tématu: Geometrický přístup k prohledávání neznámého 3D prostředí

Pokyny pro vypracování:

Prohledávání neznámého prostoru je komplexní úloha vyžadující řešení základních robotických úloh: od
plánování trajektorií, řízení, stavby mapy, lokalizaci, až po generování cílů, kam v dalším kroku jet. Cílem
práce bude vyvinout softwarové prostředí pro realizaci prohledávání ve 3D. Hlavní důraz přitom bude
kladen na reprezentaci prozkoumávaného prostoru a plánování v této reprezentaci.

1. Seznamte se s knihovnami Robot Operating System (http://ros.org), Point Cloud Library
 (http://pointclouds.org/) a Carve (http://carve-csg.com/) a s metodami prohledávání neznámého 3D
 prostředí.
2. Implementujte metodu pro reprezentaci 3D scanu (získaného např. Senzorem MS Kinect)
 mnohostěnem s přidanou informací o typu každé stěny.
3. Implementujte skládání mnohostěnů získaných v předchozím kroku do geometrické 3D mapy a
 plánování v této mapě.
4. S použitím implementovaných metod vytvořte rámec pro prohledávání neznámého 3D prostředí.
5. Funkčnost implementovaných algoritmů ověřte experimenty. Experimentální výsledky popište se
 zaměřením na rychlost, robustnost a možné využití zkoumaného algoritmu.

Seznam odborné literatury:

[1] L. J. Latecki, R. Lakämper: Convexity rule for shape decomposition based on discrete contour
 evolution. Comput. Vis. Image Underst. 73, 3 (March 1999), 441-454.
[2] T. Juchelka: Exploration algorithms in a polygonal domain, diploma thesis, Dept. of Cybernetics, FEE,
 CTU in Prague, 2013.
[3] R.B. Rusu, S. Cousins: 3D is here: Point Cloud Library (PCL), IEEE International Conference on
 Robotics and Automation (ICRA), pp.1-4, 9-13 May 2011.
[4] W.J. Schroeder, K. Martin, W. Lorensen: The Visualization Toolkit: An Object-Oriented Approach to
 3D Graphics, Third Edition. Kitware, Inc. 2006.

Vedoucí diplomové práce: RNDr. Miroslav Kulich, Ph.D.

Platnost zadání: do konce letního semestru 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 10. 1. 2014

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS ASSIGNMENT

Student: Bc. Jiří M o s i n g e r

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Diploma Thesis: A Geometric Approach to Exploration of an Unknown 3D
 Environment

Guidelines:

Exploration of an unknown environment is a complex task requiring solution of fundamental robotic
problems: trajectory planning, control, map building, localization, and generation of next goals. The
thesis aims to develop a software framework for exploration of an unknown 3D environment. Special
emphasis will be put on the environment representation and planning on it.

1. Get acquinted with Robot Operating System (http://ros.org), Point Cloud Library
 (http://pointclouds.org/), and Carve (http://carve-csg.com/) libraries and with methods for exploration of
 a 3D environment.
2. Implement a method for 3D scan (gathered with e.g. MS Kinect sensor) representation with a
 polyhedron with added information about its faces' types.
3. Implement composition of polyhedra built in the previous step into a geometric 3D map and planning
 on this map.
4. Use the implemented methods to create a framework for exploration of an unknown 3D environment
 by a mobile robot.
5. Verify functionality of the implemented algorithms experimentally. Describe the obtained results with
 respect to the algorithms' speed, robustness, and possible application.

Bibliography/Sources:

[1] L. J. Latecki, R. Lakämper: Convexity rule for shape decomposition based on discrete contour
 evolution. Comput. Vis. Image Underst. 73, 3 (March 1999), 441-454.
[2] T. Juchelka: Exploration algorithms in a polygonal domain, diploma thesis, Dept. of Cybernetics, FEE,
 CTU in Prague, 2013.
[3] R.B. Rusu, S. Cousins: 3D is here: Point Cloud Library (PCL), IEEE International Conference on
 Robotics and Automation (ICRA), pp.1-4, 9-13 May 2011.
[4] W.J. Schroeder, K. Martin, W. Lorensen: The Visualization Toolkit: An Object-Oriented Approach to
 3D Graphics, Third Edition. Kitware, Inc. 2006.

Diploma Thesis Supervisor: RNDr. Miroslav Kulich, Ph.D.

Valid until: the end of the summer semester of academic year 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 10, 2014

Abstrakt

Tato diplomová práce se zabývá exploraćı neznámého 3D prosťred́ı mo-
bilńım robotem. Robot postupně zkoumá své okoĺı a na základě źıskaných
informaćı vytvá̌ŕı mapu prozkoumaného prosťred́ı. Tento problém je ve 2D
prosťred́ı tradičně řešen pomoćı mř́ıžky obsazenosti, zat́ımco nové p̌ŕıstupy
jsou založeny na použit́ı polygonálńı domény. Tato práce voĺı druhý p̌ŕıstup
a upravuje ho pro 3D prosťred́ı použit́ım polyhedrálńı domény. Tento p̌ŕıstup
s sebou p̌rináš́ı jak výhody, tak některé problémy. Typickými p̌ŕıklady použit́ı
explorace jsou vojenské a záchranné operace. Hlavńım ćılem této práce je vyv-
inut́ı framewoku v ROSu, který bude poskytovat prosťredky k exploraci 3D
prosťred́ı založeného na polyhedrálńı doméně. Źıskané výsledky jsou disku-
továny na konci této diplomové práce.

Abstract

This thesis deals with an exploration of an unknown 3D environment by
a mobile robot. The robot continuously explores its surroundings and it
creates a map of the explored environment based on received information.
This problem is traditionally solved in 2-dimensional environment by using
an occupancy grid while more novel approach is based on polygonal domain.
This work takes the latter option and modifies it for 3D environment by
using polyhedral domain. This approach brings advantages along with some
caveats. Typical applications of exploration are military or rescue operations.
The main goal of this thesis is to develop a framework in ROS that provides
means of exploring 3D environment based on polyhedral domain. Obtained
results are discussed at the end of this paper.

CONTENTS Geometric approach to exploration in 3D

Contents

1 Introduction 1

2 Exploration 2

3 From point cloud to polyhedron 4

3.1 Chapter outline . 4

3.2 Polyhedron . 5

3.3 Point cloud . 5

3.4 Point triangulation . 6

3.4.1 Delaunay triangulation . 6

3.4.2 2D grid method . 7

3.4.3 Neighbor selection . 7

3.5 Polygon reduction . 8

3.5.1 Reduction outline . 9

3.5.2 Centroid method . 10

3.5.3 LSQ method . 11

3.5.4 Shape decomposition . 11

3.5.5 vtkDecimation . 12

3.5.6 Summary . 12

3.6 Re-triangulation . 12

3.6.1 Ear Clipping . 12

3.6.2 Triangulation of monotone polygons 12

3.6.3 Trapezoidalization . 14

3.6.4 Constrained Delaunay triangulation 15

3.6.5 Summary . 16

i

CONTENTS Geometric approach to exploration in 3D

3.7 Line reduction . 16

3.7.1 Contribution value . 16

3.8 Creation of a polyhedron . 17

3.9 Frames transformation . 17

4 From polyhedron to path 19

4.1 Chapter outline . 19

4.2 Frontiers . 20

4.2.1 Frontiers in occupancy grid . 20

4.2.2 Frontiers in polygonal domain . 21

4.2.3 Frontiers in polyhedral domain . 21

4.3 Dual graph . 21

4.3.1 Polygonal domain . 22

4.3.2 Polyhedral domain . 23

4.4 Frontiers in a dual graph . 25

4.4.1 Polygonal domain . 25

4.4.2 Polyhedral domain . 25

4.5 Path planning . 26

4.5.1 Shortest path . 26

4.5.2 Breadth-first search . 27

4.5.3 Depth-first search . 27

4.5.4 Dijkstra search algorithm . 27

4.5.5 A* search algorithm . 29

4.5.6 Planning to multiple frontiers (goals) 29

5 Framework 31

5.1 ROS . 31

5.2 Used 3rd party libraries . 32

5.3 Binary heap . 33

5.4 Point triangulation . 33

5.4.1 Duplicate data . 33

5.4.2 Missing data . 34

5.5 Polygon reduction . 35

ii

CONTENTS Geometric approach to exploration in 3D

5.5.1 Binary heap . 35

5.5.2 Re-triangulation . 35

5.6 Polyhedral operations . 35

5.6.1 Polyhedron transformations between frames 36

5.6.2 Union of polyhedrons . 36

5.7 Planner . 37

5.7.1 Frontier identification in polyhedron 37

5.7.2 Path planning . 37

5.7.3 Tetrahedralization . 38

6 Experiments 39

6.1 Quality of reduction . 39

6.1.1 Scenes . 39

6.2 Time of polygon reduction . 44

6.3 Quality of map creation . 44

6.4 Discussion . 44

7 Conclusion 48

Appendices 52

A CD Content 53

B Command line switches 54

iii

LIST OF FIGURES Geometric approach to exploration in 3D

List of Figures

3.1 Example of a polyhedron . 5

3.2 Delaunay triangulation . 6

3.3 Triangulation . 8

3.4 Process of re-triangulation . 9

3.5 Triangulation of a monotone polygon . 13

3.6 Trapezoidalization of a polygon . 15

3.7 Constrained Delaunay triangulation . 15

3.8 Line reduction . 16

3.9 Polyhedron . 18

4.1 Occupancy grid . 20

4.2 Polygonal domain . 21

4.3 Voronoi diagram and its connection to Delaunay triangulation 22

4.4 Dual graph without frontiers . 23

4.5 Dual graph with frontiers . 26

6.1 Scene 01 . 40

6.2 Comparison of two polygonal reduction methods on Scene 01 41

6.3 Scene 02 . 42

6.4 Comparison of two polygonal reduction methods on Scene 02 43

6.5 Scenes . 45

6.6 World map creation . 46

iv

LIST OF TABLES Geometric approach to exploration in 3D

List of Tables

4.1 Comparison between constrained Delaunay triangulation and tetrahedralization 24

5.1 Time complexity of a binary heap . 33

5.2 Summary of triangulation methods provided by PolyPartition 36

6.1 Execution times . 44

A.1 CD Content . 53

B.1 Command line switches . 54

v

LIST OF SCENARIOS Geometric approach to exploration in 3D

List of Scenarios

1 Pseudocode of the whole process . 3

2 Pseudocode of makePolyhedron process . 5

3 Pseudocode of point cloud triangulation . 7

4 Pseudocode of getNextNeighbor process . 8

5 Pseudocode of a polygon reduction . 10

6 Triangulation of a monotone polygon . 14

7 Creation of a polyhedron . 17

8 Pseudocode of path planning . 19

9 Pseudocode of Dijkstra search algorithm . 28

10 Pseudocode of path reconstruction . 28

11 Pseudocode of A* search algorithm . 30

vi

Geometric approach to exploration in 3D

Chapter 1

Introduction

Exploration is an important problem in mobile robotics. There is sometimes need to de-
ploy a mobile robot into an unknown environment and let it explore and build a map of this
environment. Yamauchi introduced a solution to the exploration problem which is based on
identification of boundaries between known and unknown environment. These boundaries are
called frontiers in his work and they function as points of interest to which robots plan their
paths. When they get to them, they look around and pick another frontier once again [1].

Juchelka [2] built upon this idea when working on exploration of an unknown environment
using multiple robots. This topic was solved several times before on a map called occupancy
grid. Juchelka, however, took a different approach when he considered a map made of polygons.
This so called polygonal domain brings advantages along with some caveats. Disadvantages are,
that methods once working on an occupancy grid need to be adjusted for a polygonal domain.
Among advantages belongs potentially more detailed map with lower memory usage when
compared to occupancy grid.

This paper takes Juchalka’s work into account and tries to extend it from polygonal domain
to polyhedral domain or, when talking about space dimensions, from 2-dimensional space to
the 3rd dimension.

The thesis is divided into several chapters. Chapter 2 serves as an introduction to exploration
in 3D environment using polyhedral domain. Chapter 3 describes the process of converting
a point cloud to a polyhedron. Path planning is described in Chapter 4. Inside look into imple-
mentation details is given in Chapter 5 and Chapter 6 presents results of made experiments.
Summary and evaluation of this paper are presented in Chapter 7.

1/54

Geometric approach to exploration in 3D

Chapter 2

Exploration

As was said in previous chapter, exploration is an important problem in mobile robotics. It
deals with procedural map construction during the exploration of an unknown environment. This
paper focuses on exploration of 3D environment and map construction on polyhedral domain
which is done by converting a sequence of point clouds to a polyhedron.

Scenario 1 presents the algorithm of acquiring a map of 3D scene through processing point
clouds taken by a stereo camera. The algorithm assumes input in form of a continuous sequence
of point clouds. After the sequence ends, the algorithm outputs a map of 3D scene. Line 1 of
the scenario is a flag indicating that the first point cloud is being processed.

The while cycle on lines 2 through 11 takes care of incoming point clouds while the stereo
camera is recording. A polyhedron is created from a point cloud on line 3. The process of
creation of the polyhedron from the point cloud is thoroughly described in Chapter 3.

Line 4 checks whether the first point cloud is being processed. If the condition is met, then
the created polyhedron from line 3 is copied to a global variable polyhedra on line 6. If the
condition on line 4 is not met, then there are two polyhedrons - one from previous run(s) and
one from the current point cloud. Line 8 makes a union of these two polyhedrons. A C++
library Carve was used in this paper to perform this boolean operation. Carve is described in
Section 5.2.

Line 10 deals with planning on a polyhedral domain. The process of planning is explained in
Chapter 4. Finally, line 13 returns the constructed map of the 3D scene made of sequence of
point clouds created by the stereo camera.

2/54

Geometric approach to exploration in 3D

Input: pointCloudStream
Output: map
1. firstCloud← true
2. while isCameraStreaming do
3. polyhedron← makePolyhedron(pointCloudStream)
4. if firstCloud then
5. firstCloud← false
6. polyhedra← polyhedron
7. else
8. polyhedra← makeUnion(polyhedron, polyhedra)
9. end if
10. plan(polyhedra)
11. end while
12. map← polyhedra
13. return map

Scenario 1: Pseudocode of the whole process.

3/54

Geometric approach to exploration in 3D

Chapter 3

From point cloud to polyhedron

This chapter describes the process of converting a point cloud acquired by a 3D sensor
(e.g. Kinect) to a polyhedron. This is done by point cloud triangulation, followed by polygon
reduction to minimize memory and computational requirements. Then, the polyhedron can be
finally created.

The whole process of converting the point cloud to a polyhedron is useful for 3D scene
reconstruction upon which a map is created containing points of interest (frontiers) that serve
as indicators to the next desirable location to be explored by the robot.

3.1 Chapter outline

Scenario 2 presents the pseudocode that converts a point cloud into a polyhedron. Basic
definition of a point cloud is found in Section 3.3. The algorithm assumes the input in form of
a continuous sequence of point clouds, from which it selects the latest one. The algorithm then
outputs a polyhedron.

The latest point cloud is selected on line 1. Line 2 handles acquiring of transformation
matrix used on line 8 for transforming polyhedron’s points from camera coordinates to world
coordinates. This process is described in Section 3.9.

Intrinsic parameters of the stereo camera are acquired on line 3 and are used for filling any
missing data in the point cloud on line 4. Lines 1 to 4 are further described in Chapter 5 that
deals with implementation details.

Triangulation of the point cloud takes place on line 5 and the accompanying process is
explained in Section 3.4. Line 6 represents a polygon reduction of triangulated point cloud
which is described in Section 3.5 and Section 3.6.

Finally, the polyhedron is created on line 7 and Section 3.8 focuses on this topic. Simple
definition of polyhedron is given in Section 3.2.

4/54

3.2. POLYHEDRON Geometric approach to exploration in 3D

Input: pointCloudStream
Output: polyhedron
1. cloud← getNextPointCloud(pointCloudStream)
2. tf ← getNextTF (pointCloudStream)
3. intrinsicPar ← getNextInstrinsicPar(pointCloudStream)
4. cloud← fillMissingData(cloud, intrinsicPar)
5. tria← triangulatePointCloud(cloud)
6. reducePolygons(tria)
7. polyhedron← createPolyhedron(tria)
8. tranformPolyhedron(polyhedron, tf)
9. return polyhedron

Scenario 2: Pseudocode of makePolyhedron process.

3.2 Polyhedron

A polyhedron is defined by a set of vertices in 3-dimensional space and a set of faces which
define the connections between the vertices. The face may contain more than three vertices.
In that case, all vertices of the face have to lie on the same plane. A polyhedron can be also
viewed as a 3D polygonal mesh 1.

An example of a simple polyhedron is a cube on Figure 3.1.

Figure 3.1: An example of a polyhedron.

3.3 Point cloud

Let S be a set of points in a coordinate system. In 3D space the coordinates would take
form of x, y, z. This set of points is called a point cloud and it is created by devices such as
stereo cameras or laser scanners by scanning some object or scene. Point clouds are useful e.g.
for surface or scene reconstruction.

1A polygonal mesh is a set of vertices, edges and faces that represent the shape of an object in 3D.

5/54

3.4. POINT TRIANGULATION Geometric approach to exploration in 3D

(a) Point set before Delaunay
triangulation.

(b) Example of right (black)
and bad (red) triangulation.

(c) Point set after Delaunay
triangulation.

Figure 3.2: Delaunay triangulation.

This paper uses point clouds generated by MS Kinect which stores the data as an image
represented by 2D matrix. Each element of the matrix represents distance from particular point
of scanned scene to the position of the sensor. This image is called a depth map.

Elements in the depth map can be later converted to represent points with coordinates xP ,
yP , zP with respect to the camera frame. After conversion, points are still stored in 2D matrix
but each its element contains said coordinates. By this conversion, a form of a point cloud is
created.

3.4 Point triangulation

MS Kinect creates a depth map that is converted to a point cloud of 3D points with
coordinates xP , yP , zP stored in a 2D matrix (grid). Every element of this 2D grid therefore
represents a unique 3D point in space. The next step is to create a polygonal domain based
upon these points. One way of achieving this would be to use Delaunay triangulation. The other
possibility is to use advantage of the 2D grid where points are stored. In this paper, the latter
option was selected.

3.4.1 Delaunay triangulation

Delaunay triangulation is a form of triangulation with some interesting properties e.g. it
is dual to Voronoi graph and it maximizes the minimal angle in triangles. Simple description
of Delaunay triangulation would be: Triangulation of a set of points in the plane is called
Delaunay if and only if the circumcircle of any triangle of triangulation doesn’t contain a point
in its interior [3]. Figure 3.2 an example of Delaunay triangulation.

6/54

3.4. POINT TRIANGULATION Geometric approach to exploration in 3D

3.4.2 2D grid method

This approach takes an advantage of points in a point cloud being stored in a 2D grid.
Scenario 3 presents the pseudocode of this process. The algorithm assumes input in form of
a point cloud. The point cloud is then triangulated and the algorithm outputs this triangulation.

While point cloud is a 2D matrix consisting of points with coordinates xP , yP , zP , the
triangulated point cloud on top of that also contains edges connecting neighboring points.
Points from point cloud are copied to a new variable triangulatedCloud on line 1. In a for
cycle, every point u is taken from the point cloud and is further processed between lines 2 and 11.
On line 3 a neighbor v of point u is selected. Next neighboring point w of v from perspective
of point u is selected on line 4. Selection of these neighbors is described in Subsection 3.4.3.

The while cycle between lines 5 and 10 runs until w is the last neighbor of u that has to
be processed. Points u, v, w are connected to each other by edges on line 6. Then, point v
becomes point w on line 7. Point w is temporarily saved to a variable temp on line 8 and next
neighbor of temp is assigned to w on line 9.

Finally, line 12 returns the triangulated point cloud.

Input: point cloud cloud
Output: triangulated point cloud triangulatedCloud
1. setPoints(triangulatedCloud, cloud)
2. for all points u ∈ cloud do
3. v ← downNeighbor(u)
4. w ← getNextNeighbor(u, v)
5. while w isn’t last neighbor of u do
6. connectPoints(u, v, w)
7. v ← w
8. temp← w
9. w ← getNextNeighbor(u, temp)
10. end while
11. end for
12. return triangulatedCloud

Scenario 3: Pseudocode of point cloud triangulation.

3.4.3 Neighbor selection

Every point in a 2D grid has 8 neighboring points but only 3 neighbors are needed for
triangulation purposes. These points are located down, right-down and right from the original
point (see Figure 3.3). So, the method downNeighbor(u) on line 3 in Scenario 3 assigns the
neighbor located down from point u to variable v.

7/54

3.5. POLYGON REDUCTION Geometric approach to exploration in 3D

(a) Selection of neighbors. (b) Triangulated 2D grid.

Figure 3.3: Triangulation of a 2D grid where the red dot represents the original point and the
blue dots represent its neighbors during neighbor selection.

Scenario 4 presents the pseudocode of getting a next neighbor of point u with regard to
previously selected neighbor v. It is basically just if-else command. When v is a neighbor located
down from the original point u on line 1 then the neighbor located right-down from u is assigned
to w on line 2. Otherwise, the neighbor located right from u is assigned to w on line 4. Finally
w is returned on line 6.

Input: current point u, neighboring point v
Output: neighboring point w
1. if v is down neighbor of u then
2. w ← rightDownNeighbor(u)
3. else
4. w ← rightNeighbor(u)
5. end if
6. return w

Scenario 4: Pseudocode of getNextNeighbor process.

3.5 Polygon reduction

A polygonal domain is created after point triangulation described in the previous section.
The domain consists of the same points as the original point cloud and polygons made of
these points. The polygonal domain can contain hundreds of thousands of points and polygons
which has large impact on computational complexity of any further operations. Therefore it is
wise to reduce the number of points and polygons. One way of achieving this is to give some
meaningful value to every point representing how much a certain point contributes to the shape
of the whole polygonal domain. The point with the lowest contribution value is removed along
with every polygon this point participated in.

However, removal of this point causes creation of an undesired hole which must be addressed.
Therefore points on the boundary of this hole are re-triangulated and the hole is sealed (Figure
3.4). Contribution value of re-triangulated points has changed by sealing the hole, so their

8/54

3.5. POLYGON REDUCTION Geometric approach to exploration in 3D

(a) Point with the lowest contribu-
tion value and its topological neigh-
bors.

(b) Hole created by point removal.
Neighbors of original point lie on
the hole’s boundary.

(c) Re-triangulated hole.

Figure 3.4: Process of re-triangulation.

contribution values need to be reevaluated. Re-triangulation is again based on 2D grid as
described in previous section and uses triangulation of monotone polygons. This process is
repeated many times until only the most relevant points remain.

A couple of methods were developed to evaluate the contribution value of these points.
These methods are described in Subsections 3.5.2, 3.5.3, 3.5.4 and 3.5.5.

3.5.1 Reduction outline

Scenario 5 presents the pseudocode that reduces the number of polygons in a polygonal
domain. The algorithm assumes the input in form of a triangulated point cloud and outputs
reduced version of this triangulation.

Contribution values are computed from triangulated point cloud tria on line 1 and are
inserted to some kind of priority queue Q. In this paper, binary heap was used for its compu-
tational efficiency. More about binary heaps can be found in Section 5.3. How to compute the
contribution value of points is described below this section.

The reduction process itself takes place in a while cycle between lines 2 and 10. Point u with
the lowest contribution value is recovered and deleted from Q on line 3. Topological neighbors
of u are identified on line 7 and are assigned to a set of points P . On line 8, P is then used
to re-triangulate the hole created by removal of point u. On the same line, edge connections
between points of P and u are updated in tria. Process of re-triangulation of polygons is

9/54

3.5. POLYGON REDUCTION Geometric approach to exploration in 3D

described in Section 3.6. After re-triangulation, contribution values of points in P has changed,
so on line 9 their contribution values are computed once again and Q is accordingly updated.

The while cycle between lines 2 and 10 terminates if Q doesn’t contain any more points or
when contribution value of u is so great that removal of this point would drastically degrade the
shape of the whole polygonal domain. The second condition is located between lines 4 and 6.

When reducing the number of polygons, the contribution value of points on the boundary of
the polygonal domain would possibly be the lowest. So, when polygons are reduced, only points
inside the 2D grid are evaluated. Points on the boundary of the 2D grid are reduced on line 11
and this process is described in Section 3.7.

Finally, on lines 5 and 12 the triangulation with reduced polygons is returned.

Input: triangulated point cloud tria
Output: triangulated point cloud with reduced number of polygons tria
1. Q← initializeContV alues(tria)
2. while count(Q) > 0 do
3. u← getPointWithLowestContV alue(Q)
4. if contV alue(u) > limit then
5. return tria
6. end if
7. P ← getNeighbors(u)
8. retriangulate(P, u, tria)
9. Q← updateContV alues(P)
10. end while
11. reduceLines(tria)
12. return tria

Scenario 5: Pseudocode of a polygon reduction.

3.5.2 Centroid method

This method measures the distance between evaluated point and a centroid which is com-
puted from topologically neighboring points of the evaluated point. The distance is used directly
as the contribution value.

First, sums have to be computed:

xc =
k∑

i=1

xni
, yc =

k∑
i=1

yni
, zc =

k∑
i=1

zni
(3.1)

where xc, yc, zc are coordinates of the centroid C, xni
, yni

, zni
are coordinates of i-th neighboring

point and k is the number of neighboring points.

10/54

3.5. POLYGON REDUCTION Geometric approach to exploration in 3D

contV alue = ‖P − C‖ (3.2)

where P is the evaluated point with coordinates xP , yP , zP . The symbol ‖.‖ represents the
Euclidean norm.

3.5.3 LSQ method

This method is slightly similar to the previous method. Again, distance is directly used as
the contribution value of evaluated point. A plane is approximated by neighboring points using
the least squares approach. Distance is then measured between the evaluated point and the
approximated plane.

First, write the matrix equation A x = b , where

A =

k∑
i=1

x2ni

k∑
i=1

xni
yni

k∑
i=1

xni

k∑
i=1

xni
yni

k∑
i=1

y2ni

k∑
i=1

yni

k∑
i=1

xni

k∑
i=1

yni
n

, b =

k∑
i=1

xni
zni

k∑
i=1

yni
zni

k∑
i=1

zni

(3.3)

Next, solve for x which represents coefficients of least square fit plane z = ax+ by + d:

x =
[
a b d

]T
(3.4)

Now, a concrete value of z is got by substituting a given point P to parametric plane equation
z = ax+ by + d:

z = axP + byP + d (3.5)

Usually, there would be an absolute value in Equation 3.5, but used stereo camera (MS
Kinect) always generates non-negative z values.

Finally, the contribution value of point P is computed:

contV alue = |zP − z| (3.6)

3.5.4 Shape decomposition

Another method comes from [4]. The article deals with shape decomposition based on
discrete contour convolution in 2-dimensional space. The idea is to take two consecutive line
segments and determine whether their common endpoint can be removed. How is the decision
made is explained in Section 3.7 which deals with line reduction.

11/54

3.6. RE-TRIANGULATION Geometric approach to exploration in 3D

It could be possible to use this method in 3D environment where the common endpoint of all
possible participating polygons should be considered for removal. However, this method wasn’t
implemented in this thesis.

3.5.5 vtkDecimation

The VTK library provides several methods of point/polygon reduction. These methods differ
in the way the point reduction is done. For example method vtkQuadricClustering uses clustering
of vertices to bins and computing quadric error. Their main disadvantage, however, is that they
don’t guarantee preserving the topology and position of input points [5].

Another point against using VTK algorithms is that they are more general and don’t respect
the 2D grid representation of points which makes them relatively slow compared to centroid or
LSQ methods.

3.5.6 Summary

The LSQ method and the centroid method are used in this thesis. Their advantage lies in
respecting the 2D grid representation and their simplicity.

3.6 Re-triangulation

As was said in Section 3.5, point removal generates a hole as can be seen in Figure 3.4.
In 3D, re-triangulation of this hole could be problematic, but in 2D this process becomes a lot
easier. Points on the boundary of the hole are still stored in 2D grid and one can take advantage
of this additional information as in Section 3.5. In 2D, these points form a single polygons which
needs to be re-triangulated. There are several methods of doing so.

3.6.1 Ear Clipping

One of the most basic methods of polygon triangulation is ear clipping. A diagonal is found
between two vertices which divides the polygon in two. Another diagonal is found by recursion
and polygon is divided once again. This goes on and on until there are no more diagonals which
divide the polygon [6].

3.6.2 Triangulation of monotone polygons

Monotone polygons are one of the easiest polygons to triangulate and the decomposition of
more complicated polygons to monotone ones is the basis of many fast triangulation methods.
Here are some definitions.

12/54

3.6. RE-TRIANGULATION Geometric approach to exploration in 3D

0

1

2
34

6

7

8

9

10

5

Figure 3.5: Triangulation of a monotone polygon.

Definition 1 A polygonal chain (or curve) C is called monotone polygonal chain with
respect to L′ if every line L orthogonal to L′ intersects C in at most one point [6].

Definition 2 A polygon P is called monotone polygon with respect to a line L if P can be
split into two monotone polygonal chains A and B with respect to L [6].

For example, a polygon on Figure 3.5 is monotone with respect to the vertical line (such
polygon is sometimes also called y-monotone).

Triangulation

Scenario 6 presents the pseudocode of triangulation of monotone polygons. The algorithm
assumes the input in form of a monotone polygon poly and outputs diagonals diag between
points from which the triangulation of polygon consists. The algorithm can be easily modified
to return a set of triangles if needed.

First, on line 1, the vertices of the monotone pologon poly are sorted by their x or y
coordinate (according to the monotonicity of the polygon) and are assigned to a set of vertices
Q. In a for cycle between lines 2 and 10, each point u of Q is assigned to a traversed set of
points P .

In a for cycle between lines 3 and 8, each point v of P is tested for visibility between vertices
u and v on line 4. If the vertex v is visible from u then, on line 5, a diagonal is created between
u and v and now unnecessary vertex v is removed from P on line 6. Finally, a set of diagonals
diag is removed on line 11.

13/54

3.6. RE-TRIANGULATION Geometric approach to exploration in 3D

Input: polygon poly
Output: diagonals diag
1. Q← sortV ertices(poly)
2. for all points u ∈ Q do
3. for all points v ∈ P do
4. if visible(u, v) then
5. diag ← makeDiag(u, v)
6. P ← P \ {v}
7. end if
8. end for
9. P ← u
10. end for
11. return diag

Scenario 6: Triangulation of a monotone polygon.

Example

To present a concrete example, assume that the algorithm is currently processing vertex no.
6 in Figure 3.5. The set of points P contains vertices 5, 4, 3, 2. Altough vertex 5 is technically
visible from 6 a diagonal is not considered to be added as they both lie on the same line segment.
However, vertices 4, 3 and 2 are visible from 6 and diagonals are added to diag.

Simplification

The Scenario 6 can be simplified in the sense, that no visibility check is required. If one can
identify monotone chains A and B then it can be seen, that vertices of A are connected to
B and vice versa. Vertices on one chain are never connected to any vertex on the same chain.
Therefore, visibility test on line 4 can be replaced by condition testing whether the vertices lie
on the opposite chains.

In example on Figure 3.5, one chain is made from vertices 5, 6, 7, 8, 9, 10, 0 and the other is
made from vertices 5, 4, 3, 2, 1, 0.

3.6.3 Trapezoidalization

A technique called trapezoidalization is used to decompose general polygons into monotone
ones so they can be easier triangulated. Trapezoidalization is done by using a sweep line running
across the polygon which stops at its vertices. The vertices represent events which are evaluated.
If a vertex has a clear line of sight on both sides of a polygon, then the vertex is called an interior
cusp. Cusps are further divided to upward cusps and downward cusps. Upward cusp is connected
to opposing vertex in the upper trapezoid. Downward cusp is connected to opposing vertex in

14/54

3.6. RE-TRIANGULATION Geometric approach to exploration in 3D

the lower trapezoid. For more information on trapezoidalization see [6]. Figure 3.6 represents
decomposition of a polygon to monotone polygons by trapezoidalization.

The decomposition of polygons to monotone polygons by doing trapezoidalization is used in
this thesis.

Figure 3.6: Trapezoidalization of a polygon.

3.6.4 Constrained Delaunay triangulation

Constrained Delaunay triangulation is a type of triangulation which takes into account edges
between input vertices and preserves them. At the same time, it is trying to be as similar as
possible to the classic Delaunay triangulation described in Subsection3.4.1 but often fails to do
so [7]. Example of this triangulation can be seen on Figure 3.7.

(a) Point set with defined edges. (b) Triangulated point set by CDT.

Figure 3.7: Constrained Delaunay triangulation or CDT.

15/54

3.7. LINE REDUCTION Geometric approach to exploration in 3D

β

F
A

E=B

(a) Before reduction.

ss1
2

E=B

F
A

(b) After reduction.

Figure 3.8: Line reduction.

3.6.5 Summary

The method of trapezoidalization of polygons into monotone polygons and their following
triangulation is used in this thesis. Although the constrained Delaunay triangulation might give
visually better triangulation of polygons, its disadvantage lies in higher computational complexity
compared to trapezoidalization/triangulation of monotone polygons.

3.7 Line reduction

As was said in Subsection 3.5.1, the contribution value of points on the boundary of the
polygonal domain would be the lowest among all points. Therefore, the reduction of the bound-
ary points takes place in a separate process.

The algorithm of line reduction is very similar to Scenario 5 with two exceptions. There is no
need for step on line 11 anymore and a different method of computing the contribution value
of points is used on lines 1 and 9. This method is described right below in Subsection 3.7.1.

3.7.1 Contribution value

Calculation of the contribution value for reduction of boundary points is based on article [4].
Two topological neighbors of point P lying on the boundary of topological domain are selected.
The contribution value is than calculated like:

contV alue =
β(s1, s2)l(s1)l(s2)

l(s1) + l(s2)
(3.7)

where s1 = AB and s2 = EF are two consecutive line segments of curve C and B = E is their
common endpoint (see Figure 3.8). β(s1, s2) is the turn angle, i.e. β(s1, s2) = angle(EF) −
angle(AB). l(s1) andl(s2) represents the length of line segments s1 and s2.

For more information about the reasoning behind this calculation, the reader is encouraged
to read article [4].

16/54

3.8. CREATION OF A POLYHEDRON Geometric approach to exploration in 3D

3.8 Creation of a polyhedron

After reducing the number of polygons the process of creating the polyhedron can begin.
Scenario 7 presents the pseudocode of creation of the polyhedron. The algorithm assumes the
input in form of a triangulated point cloud tria and outputs a polyhedron poly.

Polygons from tria are transferd to poly on line 1. Then, on line 2, the origin O is added to
the polyhedron, without connecting it by edges to any other point. Coordinates of the origin in
3D space usually take form of O = (0, 0, 0). Boundary points P are identified on line 3. First
point of P is assigned to firstP and prevP on lines 4 and 5, so it is known what point was
first taken into account. Boundary neighbor of firstP is assigned to variable v on line 6.

In a while cycle between lines 7 and 12 every two neighboring boundary points prevP and
v are connected to origin O, thus creating a new polygon in poly on line 8. On line 10 a new
boundary neighbor is found and the process repeats until v takes form of the first point of P .

On line 13, the final polygon is created and the algorithm returns the polyhedron poly on
line 14.

Figure 3.9 shows an example of a triangulated point cloud being converted into a polyhedron.

Input: triangulated point cloud tria
Output: polyhedron poly
1. poly ← getPointsAndPolygons(tria)
2. O ← addOrigin(poly)
3. P ← getBoundaryPoints(tria)
4. firstP ← getPoint(P)
5. prevP ← firstP
6. v ← getOneOfBoundaryNeighbor(firstP)
7. while v 6= firstP do
8. createPolygon(prevP, v, O, poly)
9. temp← v
10. v ← getOneOfBoundaryNeighbor(v, prevP)
11. prevP ← temp
12. end while
13. connectToOrigin(prevP, v, poly)
14. return poly

Scenario 7: Creation of a polyhedron.

3.9 Frames transformation

This section deals with the transformation of coordinates of a point in polyhedron from
camera’s coordinate system (or frame) to world’s coordinate system. This is necessary for further

17/54

3.9. FRAMES TRANSFORMATION Geometric approach to exploration in 3D

(a) Triangulated point cloud in
which red dots represent boundary
points.

(b) Created polyhedron. Image is
slightly rotated to allow polygons
connecting boundary points to O to
be better visible.

Figure 3.9: Polyhedron.

work with polyhedrons which includes union of multiple polyhedrons described in Section 5.6
and path planning described in Chapter 4.

As was said earlier, the coordinates of points in the point cloud and the polyhedron are
relative to a coordinate system of the stereo camera which recorded the scene. To pass these
coordinates from one frame to another, rotation matrix and translation vector are needed. Let
C be a camera frame and W be a world frame. To express location of point P captured by the
camera (frame C) in world frame W , translation from W ’s origin to the C’s origin needs to be
applied first. Then, a rotation of C’s coordinate axis in W is applied. Equation 3.8 represents
this transformation:

PW = TCW
+RCW

PC (3.8)

where PW is a point P in world’s coordinate system, PC is a point P in camera’s coordinate
system, TCW

is a translation vector of C in world’s coordinate system and RCW
is a rotation

matrix of C in world’s coordinate system.

How to transform points between different frames in ROS environment is described in Chap-
ter 5.

18/54

Geometric approach to exploration in 3D

Chapter 4

From polyhedron to path

This chapter deals with path planning on a polyhedron. This is useful for exploring an
unknown 3-dimensional environment which requires navigation through explored parts of the
world to frontiers lying between known and unknown areas.

4.1 Chapter outline

Scenario 8 presents the pseudocode that constructs a path from some starting point to one
of goals called frontiers. The algorithm assumes the input in form of a polyhedron and outputs
a path to the frontier.

Frontiers are identified on line 1. For more about frontiers see Section 4.2. On line 2, a dual
graph of polyhedron is constructed to allow easier path construction. The process of constructing
the dual graph is described in Section 4.3. Line 3 presents an incorporation of frontiers into dual
graph of the polyhedron, this process is described in Section 4.4. On line 4, the path is planned
from starting position (e.g. position of the exploring robot) to one of the frontiers. Section 4.5
contains more information about path planning.

Input: polyhedron poly
Output: path
1. frontiers← getFrontiers(poly)
2. dualGraph← createDualGraph(poly)
3. addFrontiers(dualGraph, frontiers)
4. path← planPath(dualGraph)
5. return path

Scenario 8: Pseudocode of path planning.

19/54

4.2. FRONTIERS Geometric approach to exploration in 3D

(a) Occupancy grid. (b) Occupancy grid with frontiers.

Figure 4.1: Occupancy grid where black elements represent obstacles, white elements represent
free space and gray elements represent unknown environment.

4.2 Frontiers

During the exploration of an unknown environment the exploring robot should know which
place would be best to explore next. The robot chooses this location from a collection of places
called frontiers, plans a path to it and goes exploring it.

For better understanding, frontiers in 2D are described first, then follows a description of
frontiers in 3D.

4.2.1 Frontiers in occupancy grid

Occupancy grid is a form of world representation; every element of the grid indicates, with
certain probability, that the corresponding space is either an obstacle or a free space. There is
also a third state which is associated with an unknown space. An example of the occupancy
grid can be seen on Figure 4.1.

Frontiers are elements separating unknown space from free space. They also indicate that
beyond these elements lies something more worth investigating. In exploration, frontiers are
regarded as points of interest. So, these are the points to where the path is planned [1].

20/54

4.3. DUAL GRAPH Geometric approach to exploration in 3D

(a) Polygonal map with triangulation. (b) Frontiers.

Figure 4.2: Polygonal domain where black segments represent triangulation of explored envi-
ronment with obstacles, red segments represent frontiers.

4.2.2 Frontiers in polygonal domain

The concept of frontiers was outlined in the previous subsection. Now, this concept is ex-
tended to work on polygonal domain which is constructed by doing triangulation of points. The
process of triangulation was described in Chapter 3.

One can view a polygonal domain as a map consisting of a set of polygons (Figure 4.2).
Free space is represented by inner space of polygons, obstacles are represented by ”holes” in
polygons and unknown space is anything else. If a union of these polygons was computed, one
big polygon would be acquired and its outer edges would represent the frontiers.

4.2.3 Frontiers in polyhedral domain

The only difference between frontiers in 2D with regard to polygonal domain and frontiers
in 3D with regard to polyhedral domain is that in 2D they are represented by polygon’s edges
while in 3D they are represented by the faces of a polyhedron.

4.3 Dual graph

Planning a path on an occupancy grid is relatively easy. Every element of the grid represents
a vertex which is connected to its neighbors. However, on polygonal or polyhedral domain,
things are a bit different.

The inner side of polygons contains an infinite number of points, therefore the path cannot
be planned across them. The solution is to pick one point of the polygon that represents it.
Dual graphs can serve well for this type of conversion.

21/54

4.3. DUAL GRAPH Geometric approach to exploration in 3D

Dual graphs are first described on a polygonal domain, before changing focus to the poly-
hedral case.

4.3.1 Polygonal domain

Voronoi diagram

Voronoi diagram is a dual graph to Delaunay triangulation. To better describe the Voronoi
diagram one can imagine solving a problem known as the post office problem.

Let S be a set of n points representing n post offices. When an arbitrary new point (e.g.
a residence) is picked it is desirable to known which post office is closest to the new point.
Voronoi diagram determines the locus of points for each point n called Voronoi region V (p)
that are closer to n than any other point (Figure 4.3).

(a) Set S of n points. (b) Voronoi diagram V or(S). (c) DT (S).

Figure 4.3: Voronoi diagram and its connection to Delaunay triangulation.

The following properties are stated to show that the Voronoi diagram is indeed dual to
Delaunay triangulation (DT (s)):

• If p is the nearest neighbor of q than Voronoi regions V (p) and V (q) are adjacent. This
implicates that p and q are connected by edge in DT (s)

• It was already said in Chapter 3, that points p, q, r form a triangle in DT (s) iff the circle
through p, q, r has no points in its interior

For better description of Voronoi diagram and its connection to Delaunay triangulation see
[8] or [6].

22/54

4.3. DUAL GRAPH Geometric approach to exploration in 3D

(a) Polygons with their cen-
ters of gravity.

(b) Edges connecting centers
of gravity represent the dual
graph.

Figure 4.4: Dual graph without frontiers where black segments represent triangulation of ex-
plored environment with obstacles, blue dots represent centers of gravity of polygons and blue
lines represent connections between adjacent polygons in dual graph.

Dual graph to other forms of triangulation

Now to the case, when a set of points S isn’t triangulated by Delaunay triangulation. It can
be instead triangulated e.g. by a method described in Subsection 3.4.2. Luckily, some kind of
dual graph to this type of triangulation still exists.

In this paper, the center of gravity of polygons (created by triangulation) is computed as
a mean to construct the dual graph. In case that polygon has the form of a triangle it can be
computed like this:

xc =
xp1 + xp2 + xp3

3
, yc =

yp1 + yp2 + yp3
3

(4.1)

where C = (xc, yc) is the center of gravity of the polygon, P1 = (xp1 , yp1), P2 = (xp2 , yp2) and
P3 = (xp3 , yp3) are the points forming the polygon.

Next, the adjacency of the polygons is identified so edges could be created in the dual graph.
When two polygons share an edge, a new edge in dual graph is created by connecting centers
of gravity of these two polygons. By doing so for every polygon, the dual graph of triangulation
is constructed (see Figure 4.4).

4.3.2 Polyhedral domain

Back to a 3-dimensional space and a polyhedron. A polyhedron was constructed from initial
set of points in Chapter 3. As in 2D case on polygonal domain, it is necessary to plan a path
from some starting position to one of several frontiers to properly explore the environment.

23/54

4.3. DUAL GRAPH Geometric approach to exploration in 3D

The problem is, that the interior of the polyhedron is empty, therefore many vertices are
potentially missing to plan the shortest path and construction of the dual graph directly from
polyhedron is impossible. One way of filling the interior is to use a method called constrained
Delaunay tetrahedralization. Then, the dual graph can be finally constructed.

Constrained Delaunay tetrahedralization

In Subsection 3.6.4, a basic description of constrained Delaunay triangulation was provided.
The method called constrained Delaunay tetrahedralization is similar, except it deals with 3D
objects. This method is used to generate a mesh. The mesh is later converted to a dual graph
upon which the planning algorithm is used.

To briefly outline formal aspects of constrained Delaunay tetrahedralization, let X be a poly-
hedron with vertices and faces. A tetrahedralization T is called constrained tetrahedralization of
X if T and X have the same vertices and the tetrahedra in T cover the triangulation domain.
Triangulation domain is the region of space being tetrahedralized. For more information about
constrained Delaunay tetrahedralization see [9].

CD triangulation
CD

tetrahedralization
Preserves (constrains) edges faces
Creates triangle/tetrahe-
dron if no vertex lies in a

circumcircle circumsphere

Table 4.1: Quick comparison between constrained Delaunay (CD) triangulation and CD tetrahe-
dralization. Constrained versions of Delaunay triangulation/tetrahedralization sometimes break
the second property in favor of the first property.

Dual graph in a polyhedral domain

After obtaining a tetrahedralization of a polyhedron, a dual graph in a polyhedral domain can
be constructed. Similarly to 2-dimensional case, centers of gravity of tetrahedrons are computed.

xc =
xp1 + xp2 + xp3 + xp4

4
, yc =

yp1 + yp2 + yp3 + yp4
4

, zc =
zp1 + zp2 + zp3 + zp4

4
(4.2)

where C = (xc, yc, zc) is the center of gravity of the tetrahedron, P1 = (xp1 , yp1 , zp1), P2 =
(xp2 , yp2 , zp2), P3 = (xp3 , yp3 , zp3) and P4 = (xp4 , yp4 , zp4) are the points forming the tetrahe-
dron.

After identifying the adjacency of tetrahedrons, the dual graph can be constructed by con-
necting the centers of gravity of all adjacent tetrahedrons.

24/54

4.4. FRONTIERS IN A DUAL GRAPH Geometric approach to exploration in 3D

4.4 Frontiers in a dual graph

Previous section described the process of converting the polygons in a polygonal domain
and polyhedrons in a polyhedral domain to a dual graph. Unfortunately, there is no information
about frontiers in the dual graph after this conversion. This section describes the process of
adding the frontiers to the dual graph, which are regarded as goals in path planning.

This section is, again, explained first on the polygonal case for easier description. Then, the
process of adding the frontiers to the dual graph on a polyhedral domain is explained.

4.4.1 Polygonal domain

Frontiers in a polygonal domain are represented by lines bounded by two points. To add
frontiers to the dual graph, the polygon in which the particular frontier is contained needs to
be identified first. Then, the frontier’s center is computed:

xf =
xp1 + xp2

2
, yf =

yp1 + yp2
2

(4.3)

where F = (xf , yf) are coordinates of frontier’s center, P1 = (xp1 , yp1) and P2 = (xp2 , yp2) are
the points defining the frontier.

Next, frontier’s line center F is connected to the center of gravity C of the particular polygon.
It is desirable to also connect F with neighboring frontiers. This can be easily accomplished
since it is known which points are used in which frontiers. The whole conversion can be seen
on Figure 4.5.

4.4.2 Polyhedral domain

The process of adding frontiers to the dual graph in a polyhedral domain is, again, very
similar to the polygonal case. The exception is that in this case, frontiers are represented by
faces of a polyhedron. To proceed, the centers of gravity of frontiers (i.e. triangle faces) are
computed:

xf =
xp1 + xp2 + xp3

3
, yf =

yp1 + yp2 + yp3
3

, zf =
zp1 + zp2 + zp3

3
(4.4)

where F = (xf , yf , zf) is the center of gravity of the frontier, P1 = (xp1 , yp1 , zp1), P2 =
(xp2 , yp2 , zp2) and P3 = (xp3 , yp3 , zp3) are the points defining the frontier.

Then, the frontiers center’s F are connected to center’s C of tetrahedrons where did the
frontiers previously belong to. Next, the adjacency of frontiers to other frontiers is determined
and their F ’s are connected.

25/54

4.5. PATH PLANNING Geometric approach to exploration in 3D

(a) Centers of frontiers con-
nected to centers of gravity
of relevant polygons.

(b) The resulting dual graph
containing frontiers.

Figure 4.5: Dual graph with frontiers where black segments represent triangulation of explored
environment with obstacles, blue dots represent centers of gravity of polygons, blue lines rep-
resent connections between adjacent polygons in dual graph, red lines represent frontiers and
red dots represent center of gravity of frontiers.

Although this approach may seem sufficient for every polygon, it may not hold true for
very large ones. It is better to represent such big polygons by multiple points spread across its
surface. This work, however, doesn’t focus on this particular topic.

4.5 Path planning

Path planning is one of the fundamental problems in robotics. A 2D map can be seen as
a graph made of vertices that are connected by edges. The path planning problem deals with
finding the shortest path from a start vertex to a goal vertex.

Some of path planning method are described in following paragraphs.

4.5.1 Shortest path

The term shortest or optimal path should be defined before describing various methods of
graph planning.

Let G be a graph with a set of vertices V and set of weighted edges E. The shortest path
is such path that connects two vertices in a way which minimizes the sum of weights of edges
needed to connect these two vertices.

26/54

4.5. PATH PLANNING Geometric approach to exploration in 3D

4.5.2 Breadth-first search

This method uses FIFO (first-in first-out) queue to select vertices to be processed. First,
only neighboring vertices of start are added to the queue, other vetices follow when the FIFO
queue starts to be traversed. This causes the graph to be searched uniformly or to the breadth
first, hence the name of the algorithm.

The algorithm ensures it delivers the path from a start to a goal using the least number of
steps. On the other hand it is not guaranteed that the path will be optimal [10].

4.5.3 Depth-first search

In comparison to breadth-first search, this method uses LIFO (last-in, first-out) queue to
select vertices to be processed. This is quite aggressive method, as it dives quickly into the
graph and prefers to traverse longer routes first.

Although this algorithm may find the path from a start to a goal very quickly it is also not
guaranteed to find the optimal path.

4.5.4 Dijkstra search algorithm

Dijkstra designed a graph search algorithm for solving the shortest path problem for a graph
with nonnegative edge weights.

Let G be a graph with a set of vertices V and a set of weighted edges E. First step is to
assign∞ to g(v) of every vertex. The cost value g(v) represents the lowest cost of getting from
vertex start to vertex v. Therefore the value g(start) is then set to 0. Next, a set of vertices
V is assigned to set Q. In a while, vertex v with the lowest value g(v) is taken from set Q.
Simultaneously v is removed from set Q to mark v as a visited vertex.

The while loop continues until every vertex in Q is traversed. In a for cycle every neighbor u
of vertex v is processed. If the cost value g(v) is greater than the summed value g(u) and the
distance between vertices u and v, then the summed value is assigned to g(u).

As mentioned, the algorithm stops when every vertex is processed (which implies that the
path to the goal has not been found) or when currently processed vertex is the goal. When
this happens, it is desirable to reconstruct the shortest path from start to goal consisting only
of necessary vertices. Previous vertex is assigned to every processed vertex for this purpose. By
doing this, every vertex ”knows” which way to go when heading to the start [11].

The pseudocode of Dijkstra search algorithm can be seen in Scenario 9.

Path reconstruction

The shortest path can be reconstructed by recursion, as can be seen in Scenario 10. In the
beginning, there is a set of vertices path containing only vertex goal. In a while loop, previous

27/54

4.5. PATH PLANNING Geometric approach to exploration in 3D

Input: start, goal, set of nodes V
Output: path
1. for all v ∈ V do
2. g(v)←∞
3. prev(v)← undefined
4. end for
5. g(start)← 0
6. Q← V
7. while Q 6= ∅ do
8. u← min (g(∀v ∈ Q))
9. if u = goal then
10. path← getPath(u)
11. return path
12. end if
13. for all v ∈ neighbors(u) do
14. if g(v) > g(u) + dist between(u, v) then
15. g(v)← g(u) + dist between(u, v)
16. prev(v)← u
17. end if
18. end for
19. end while

Scenario 9: Pseudocode of Dijkstra search algorithm.

vertex of goal is added to path. Simultaneously, this previous vertex is set as a currently
processed one. The while loop continues until the vertex start is reached (which has undefined
previous vertex). After this, the algorithm ends.

Input: goal
Output: path
1. u← goal
2. path← u
3. while prev(u) 6= undefined do
4. path← path ∪ prev(u)
5. u← prev(u)
6. end while
7. return path

Scenario 10: Pseudocode of path reconstruction.

28/54

4.5. PATH PLANNING Geometric approach to exploration in 3D

4.5.5 A* search algorithm

The A* search algorithm is a search algorithm that relies on heuristic estimate h representing
the cost of getting from vertex v to goal. The heuristic estimate is used to lower the number
of visited nodes.

As the word ”estimate” suggests, the true value of getting from vertex v to goal is not
known but it can be easily approximated. For example, if graph vertices have coordinates (x, y),
Manhattan or Euclidean distances between vertices and goal can be computed. These types
of heuristics underestimate the true cost of getting from v to goal. Otherwise the algorithm
couldn’t guarantee to find the shortest possible path.

The difference between A* search algorithm and Dijkstra search algorithm is in the compu-
tation of the cost value f . In Dijkstra, the cost function g represented the cost of getting from
vertex v to start. In A*, the cost function f consists of the same value g plus heuristic estimate
h. If heuristics is set to zero h = 0 in A* then it would imitate the function of Dijkstra search
algorithm. The pseudocode of A* can be seen in Scenario 11.

As in Dijkstra search algorithm, the A* terminates when every vertex has been processed
(traversed) or when goal has been found. The shortest path is obtained by the algorithm
described in Section 4.5.4 [10].

4.5.6 Planning to multiple frontiers (goals)

As might be noticed, the start vertex represents e.g. a position of the robot and frontiers
represent goal vertices.

In this paper, when a path is planned by an algorithm described in Section 4.5 it is planned
from start vertex to the nearest or best accessible frontier. In other words e.g. in A* search
algorithm it is not checked whether the currently processed vertex u is a goal, but it is checked
whether it is a frontier. By doing so, the world is explored step by step as the robot move from
one frontier to another.

29/54

4.5. PATH PLANNING Geometric approach to exploration in 3D

Input: start, goal, set of nodes V
Output: path
1. for all v ∈ V do
2. prev(v)← undefined
3. end for
4. closedset← ∅
5. openset← start
6. g(start)← 0
7. f(start)← g(start) + h(start, goal)
8. while openset 6= ∅ do
9. u← min (f(∀v ∈ openset))
10. if u = goal then
11. path← getPath(u)
12. return path
13. end if
14. for all v ∈ neighbors(u) do
15. gnew ← g(u) + dist between(u, v)
16. fnew ← gnew + h(v, goal)
17. if v 6∈ closedset ∧ v 6∈ openset then
18. g(v) = gnew
19. f(v) = fnew
20. prev(v) = u
21. openset← openset ∪ v
22. else if fnew < f(v) then
23. g(v) = gnew
24. f(v) = fnew
25. prev(v) = u
26. end if
27. end for
28. closedset← openset ∪ u
29. openset← openset \ {u}
30. end while

Scenario 11: Pseudocode of A* search algorithm.

30/54

Geometric approach to exploration in 3D

Chapter 5

Framework

This chapter describes the implementation details of the created framework. The framework
was written in C++ language and it uses ROS environment [12] to provide additional function-
alities, such as convenient data manipulation and communication between various framework
parts.

ROS environment is described in Section 5.1. Section 5.2 talks about used 3rd party libraries
which were utilized. Before moving to deeper details of the implementation, a binary heap data
structure is described in Section 5.3 as it is used in many parts of the framework. Details of
point triangulation are described in Section 5.4. A look inside of polygon reduction is provided
by Section 5.5. Section 5.6 describes the implementation details of polyhedral operations, such
as union of two polyhedrons and their transformation between coordinate systems.

5.1 ROS

The Robot Operating System or ROS is an open-source collection of tools and libraries. It
aims to simplify creation and usage of robot oriented software. ROS supports various languages
like C++, Python and others. Processes in ROS are represented by nodes and they serve as
basic elements in ROS.

Communication between nodes in ROS is done by sending and receiving messages. Node
can send messages under topics (in ROS called rostopics) that serve as broadcasters so other
nodes listening to this topic can receive sent message. This behavior is used in this paper to
receive messages from a sensor containing actual point cloud data, transformation matrix and
several others [12].

31/54

5.2. USED 3RD PARTY LIBRARIES Geometric approach to exploration in 3D

5.2 Used 3rd party libraries

This section introduces various 3rd party libraries used for easier development of the whole
framework. Some of these libraries were slightly altered and reasons for this are given at appro-
priate sections.

VTK

Visualization Toolkit (VTK) is an open-source library with focus on scientific data visual-
ization, computer graphics and image processing. Among other languages it supports C++
and python. It provides capabilities such as Delaunay triangulation or polygon reduction which
were used in this work for comparison with similar methods. VTK was also used as the main
visualization interface [5].

Polypartition

Polypartition is a C++ library for polygon triangulation which consists of several methods
of triangulation. It requires input polygons not to be self-intersecting and in counter-clockwise
order [13].

PolyPartition library is heavily used for hole re-triangulation after point removal which occurs
during process of polygon reduction. This is described in Chapter 3 and here in Section 5.5.

Carve

Carve is a C++ library for boolean operations on polygonal meshes including polyhedrons.
Carve uses a modeling technique called CSG or Constructive Solid Geometry which is a technique
by which complex objects can be created. In this paper, Carve’s CSG is used to create a world
map by computing a union of two polyhedrons.

As said, Carve implements boolean operations such as union, intersection and symmetric
and asymmetric difference. It also retains object’s properties like texture during the CSG oper-
ations. Carve’s ability to retain object’s properties is used to easily preserve information about
frontiers [14].

Carve is used during union of polyhedrons which is described in Section 5.6.

TetGen

TetGen is a C++ library for generating tetrahedral meshes on polyhedral domain. It is used
in this work for constrained Delaunay tetrahedralization which is useful for path planning algo-
rithms in 3D. Same as Carve, TetGen also retains object’s properties during tetrahedralization
by interpolation and therefore the information about frontiers isn’t lost [15].

32/54

5.3. BINARY HEAP Geometric approach to exploration in 3D

Insert Delete Update 2

Average O(1) O (log n) O(1)
Worst case O (log n) O (log n) O (log n)

Table 5.1: Time complexity of a binary heap.

Deeper insight into usage of TetGen is provided by Section 5.7.3.

5.3 Binary heap

Several methods used in this work rely on fast extraction of nodes ordered by their value
(e.g. extraction of points with the lowest contribution value for polygon reduction). Binary heap
is a form of a tree data structure which provides just that functionality.

Two types of binary heap exist: max-heap or min-heap. Every node has two children, with
the exception of the lowest nodes, and every node has one parent, again with exception of the
top most node. When talking about max-heap, every parent has greater or equal value than
its children and every child has lower or equal value than its parent. This is called the heap
property and it ensures that a node with the greatest value is always on top of the heap.

By maintaining the heap property one can achieve very fast node manipulation [16].

For time complexity of operation on binary heap see Figure 5.1.

5.4 Point triangulation

When working with point clouds in this paper, the 3D points are stored in 2D grid. Every
element of this a 2D grid represents a unique 3D point in space. These points are triangulated
in a way described in Section 3.4. There are several problems which need to be taken care of,
such as missing data or duplicate points.

5.4.1 Duplicate data

Some point clouds acquired by a stereo camera may contain points with duplicate values.
For example 500 points can have the same x, y and z coordinates. Such point clouds are
discarded as unusable in this thesis. The other option would be to identify their position in the
2D grid and treat them like points with missing values. This procedure is described in following
subsection.

2The general algorithm of binary heap is slightly altered to support quick search for particular node. This
ability is useful for updating the node’s value. After updating it must be ensured that the heap property is
maintained by doing similar operations as in insertion or deletion of a node.

33/54

5.4. POINT TRIANGULATION Geometric approach to exploration in 3D

5.4.2 Missing data

Point clouds can also contain points with missing values. These points may represent either
a point lying far beyond sensor range or it is a sign of an object with surface of unusual
reflectance.

In both cases missing data are treated the same as being faraway points. With knowledge of
intrinsic parameters of used stereo camera the position of this point can be recalculated. This
procedure has only one caveat and that is it has to be given the desired distance of this point:

xP =
x− cx
fx

d, yP =
y − cy
fy

d, zP = d (5.1)

where xP , yP , zP are desired coordinates of the missing point, x, y are coordinates of point
stored in 2D grid, d is the desired distance from the camera, cx, cy is the optical center of the
camera and fx, fy are the focal lengths of the camera.

The default value of the parameter d is set to be 8 meters but it can be set to any other
value as a command line parameter. Values of parameters cx, cy and fx, fy are loaded from
rostopic /CameraInfo.

Cropping

Some point clouds have large amount of missing data on the boundaries of the grid. Ap-
proximate coordinates of these elements can be computed by using procedure described above
in this subsection or the point cloud can just be cropped and unnecessary data can be thrown
away. Cropping of the point cloud brings one advantage – saving some of the computational
time without losing any relevant information.

How many elements of the grid are to be cropped can be set as a command line parameter
(see Appendix B for a list of command line switches).

Ordered vertices

Every point is contained in several polygons after triangulation. When a point is removed
during polygon reduction, a hole is created. This hole is represented by a new polygon that
consists of points to which was connected the original point. To quickly retrieve this polygonal
hole it is useful to have neighbors of the original point ordered in clockwise or counter-clockwise
fashion.

For this purpose, a binary heap data structure is used for every 3D point. The heap contains
neighboring points ordered by an angle which is calculated between every neighbor and the
original point.

As in Chapter 3, things can be simplified by taking advantage of the 2D grid and calculate
the angle in 2D space. Sorting takes place during triangulation and it is used during other
phases of the algorithm, such as the re-triangulation part.

34/54

5.5. POLYGON REDUCTION Geometric approach to exploration in 3D

5.5 Polygon reduction

Polygon reduction is used to lower the number of polygons in a polygonal mesh. The process
of reduction is explained in Section 3.5 and some of its more important implementation details
are listed below.

5.5.1 Binary heap

The process of polygon reduction after point cloud triangulation consists of removing a point
which has the least impact on the shape of the whole polygonal domain. This impact is repre-
sented by contribution value which assigns a number to every point of the cloud that represents
how much does certain point influence the polygonal shape. Means to calculating the contri-
bution value are given in Section 3.5.

It is desirable to remove points with the lowest contribution value first, therefore a binary
heap data structure is used to quickly retrieve stored contribution values of points.

5.5.2 Re-triangulation

Re-triangulation is used to triangulate ”leftover” points after point removal. For this purpose
the PolyPartition library is used. It provides means to triangulate points using several different
methods. Summary of these methods is listed in Table 5.2.

Method called ”Triangulation by partition into monotone polygons” is used to re-triangulate
created hole after point removal. Although PolyPartition library provides visually better looking
methods of polygon triangulation than the used one, the method ”Triangulation by partition
into monotone polygons” has the lowest time complexity among other methods. This is its huge
advantage because there is a need to re-triangulate polygon hundred thousands times during
processing of one point cloud which is very time consuming.

5.6 Polyhedral operations

Polyhedron is created after polygon reduction and it serves as a 3D representation of an
explored part of the world. How to create a polyhedron from a point cloud is described in
Section 3.8.

Polyhedrons are created to allow construction of a world map. To do so, the union of several
polyhedrons has to take place alongside with transformation of points in point clouds from
sensor’s coordinate system to world’s coordinate system.

35/54

5.6. POLYHEDRAL OPERATIONS Geometric approach to exploration in 3D

Time
complexity

Space
complexity

Example
Image

Triangulation by ear clipping O(n2) O(n)

Optimal triangulation in terms
of edge length using dynamic
programming algorithm

O(n3) O(n2)

Triangulation by partition into
monotone polygons

O(n · log(n)) O(n)

Table 5.2: Summary of triangulation methods provided by PolyPartition library (taken from [13]).

5.6.1 Polyhedron transformations between frames

Transformation between frames is required to allow points to be transformed from sensor’s
coordinates to world’s coordinates which is needed to properly create a world map.

Transformation in ROS environment is done by using rostopic /tf which contains information
about various coordinate frames. It also provides means to easily transform points from one
coordinate system to another.

5.6.2 Union of polyhedrons

The union of polyhedrons (or any object, in that matter) is done by using Constructive Solid
Geometry (CSG) which was briefly described in Subsection 5.2. Union, intersection and others
are boolean operations that allow modeling of complex objects.

In this paper, union of polyhedrons was accomplished by using a C++ library called Carve.
Carve is designed to perform boolean operations between polygonal meshes. It is also great in
a sense that it allows polygons in meshes to keep their original ”color property”. This is useful
for further processing as frontier and non-frontier polygons can still be easily distinguished.

36/54

5.7. PLANNER Geometric approach to exploration in 3D

5.7 Planner

This section provides an insight into programmatic part of path planning on polyhedral map.
Theoretical part can be found in Chapter 4.

5.7.1 Frontier identification in polyhedron

Frontiers are an important part of path planning in robotics. They represent locations in the
world map that the robot should explore. More about frontiers can be found in Section 4.2.
The identification of frontiers in a polyhedron can be divided into two parts.

Frontiers in point cloud

Frontiers in point cloud are points which coordinates are initially missing. Their coordinates
are later computed as is shown in Section 5.4.2. These points are marked as frontiers before the
computation of their coordinates. After point triangulation in Section 5.4 and polygon reduction
in Section 5.5, every polygon that contains any of the frontier points is also regarded as frontier.

The frontier points are no longer important, so in the end only frontiers in form of polygons
are further considered.

Frontiers during polyhedron creation

Identification of frontiers created during construction of a polyhedron is easy. Every new
polygon that is created during construction of polyhedron is regarded as a frontier.

5.7.2 Path planning

The A* path planning algorithm was used to plan a path on a dual graph of tetrahedralized
polyhedron. The A* algorithm is described in Subsection 4.5.5.

In the early development phases, only one goal vertex was considered, so the heuristics
parameter h was set to represent Euclidean distance to goal from every vertex. After considering
multiple goals by adding the concept of frontiers, h was set to 0, otherwise there would be
a problem of determining the closest frontier to each vertex.

Although it might make sense to use Dijkstra’s path planning algorithm instead of the A*
algorithm, the latter was kept for possibility of future its extension to plan a path to any location
on the acquired map. This can be useful e.g. for collision avoidance.

37/54

5.7. PLANNER Geometric approach to exploration in 3D

5.7.3 Tetrahedralization

A polyhedron has to be tetrahedralized before proceeding to planning a path to frontier as
described in Subsection 4.3.2. For this purpose, C++ library TetGen was used. The behavior of
TetGen can be adjusted by using several of console-like switches. In this paper, switch ”pznnfY”
was used. Feel free to read TetGen documentation for a description of these switches [15].

38/54

Geometric approach to exploration in 3D

Chapter 6

Experiments

This chapter aims to provide an insight into how efficiently the implemented algorithms
work and how does the created world map look like. Section 6.1 deals with quality of polygon
reduction while Section 6.2 presents execution times of polygon reduction. Section 6.3 deals
with creation of a world map of an unknown environment. Discussion on accomplished results
is provided in Section 6.4

6.1 Quality of polygon reduction

Two experiments have been realized to test the quality of polygonal domain after performing
polygon reduction. ROS bag files usable in the ROS environment containing sequence of point
clouds upon which is the polygon reduction executed come from [17].

6.1.1 Scenes

Point cloud from dataset ”freiburg3 structure notexture near” provided by [17] was used
for the first experiment. Figure 6.1 represents a triangulated scene on which was the polygon
reduction executed. Comparison of both implemented methods of polygon reduction (LSQ and
centroid method) can be seen on Figure 6.2 during various stages of reduction. The experiment
was set up with following parameters: the image was cropped by 50 px and missing data were
recomputed so they would lie in the distance of 8 meters.

Point cloud from dataset ”freiburg3 long office household” provided by [17] was used for
the second experiment. Figure 6.3 again represents a triangulated scene on which was the
polygon reduction executed. Comparison of both implemented methods of polygon reduction
can be seen on Figure 6.4 during various stages of reduction. The experiment was set up with
following parameters: the image was cropped by 100 px and missing data were recomputed so
they would lie in the distance of 3 meters

39/54

6.1. QUALITY OF REDUCTION Geometric approach to exploration in 3D

Figure 6.1: Scene 01 with 410400 polygons and 206121 points.

40/54

6.1. QUALITY OF REDUCTION Geometric approach to exploration in 3D

(a) Centroid Method (20518/10306). (b) LSQ Method (20518/10306).

(c) Centroid Method (4100/2060). (d) LSQ Method (4100/2060).

(e) Centroid Method (222/113). (f) LSQ Method (222/113).

Figure 6.2: Comparison of two polygonal reduction methods on Scene 01. Numbers in brackets
represents number of polygons/points contained in the scene.

41/54

6.1. QUALITY OF REDUCTION Geometric approach to exploration in 3D

Figure 6.3: Scene 02 with 246400 polygons and 123921 points.

42/54

6.1. QUALITY OF REDUCTION Geometric approach to exploration in 3D

(a) Centroid Method (12318/6196). (b) LSQ Method (12318/6196).

(c) Centroid Method (2457/1238). (d) LSQ Method (2457/1238).

(e) Centroid Method (129/71). (f) LSQ Method (129/71).

Figure 6.4: Comparison of two polygonal reduction methods on Scene 02. Numbers in brackets
represents number of polygons/points contained in the scene.

43/54

6.2. TIME OF POLYGON REDUCTION Geometric approach to exploration in 3D

Centroid method LSQ method
Time [s] 1.458 · 101 1.445 · 101

Table 6.1: Execution times of polygon reduction methods.

6.2 Execution time of polygon reduction

Execution times were measured for both implemented polygon reduction methods – LSQ
and centroid. Measurements are represented by Table 6.1.

The experiment was made on a hardware with an Inter(R) Core(TM) i7-3630QM processor
at 2.40GHz x4, 4GB RAM running 64-bit Linux Ubuntu 13.04, ROS version Groovy. Each
experiment was run 10 times and the average was computed from all runs. Point cloud from
dataset ”freiburg3 structure notexture near” was used without any initial cropping and missing
data were recomputed so they would lie in the distance of 8 meters. Initial point cloud contained
307200 points and 6112162 polygons. Reduced point cloud contained 10 points and 8 polygons.

6.3 Quality of map creation

Point clouds used for map creation of an unknown environment again come from dataset
”freiburg3 long office household”. The LSQ method of polygon reduction was applied on ev-
ery point cloud before making a union of them. Every triangulated point cloud after polygon
reduction contains 1294 polygons and 684 points.

Figure 6.5 represents used scenes after polygon reduction. Figure 6.6 contains front and back
views of created world map with frontiers after incorporating particular scene to the world map.

6.4 Discussion

Quality of implemented polygon reduction methods was tested on two point clouds. Although
it might seem that the LSQ method dominates above the centroid method, it can be noticed
that the LSQ method compared to centroid method degrades the quality during the early phases
of polygon reduction. This is especially visible along sharp edges. This behavior is a result of
the nature of the least square methods.

There is not clear winner between these two reduction methods. When it is desired to obtain
a triangulated point cloud with low amount of polygon reduction, it is wise to choose the
centroid method for the reduction. When it is desired to obtain only a contour of a scene using
high amount of polygon reduction, then the LSQ method should be used.

Execution times were measured for both implemented polygon reduction methods – LSQ
and centroid. Both methods behave almost the same when comparing their execution times.

44/54

6.4. DISCUSSION Geometric approach to exploration in 3D

(a) Scene 01.

(a) Scene 02.

(a) Scene 03.

Figure 6.5: Scenes used for map creation after polygon reduction using LSQ method. Each
scene contain contains 1294 polygons and 684 points.

45/54

6.4. DISCUSSION Geometric approach to exploration in 3D

(a) Front view of world map with Scene 01. (b) Back view of world map with Scene 01.

(c) Front view of world map with Scene 02. (d) Back view of world map with Scene 02.

(e) Front view of world map with Scene 03. (f) Back view of world map with Scene 03.

Figure 6.6: Procedural world map creation of an unknown environment where red polygons
represent frontiers and white polygons represent obstacles.

46/54

6.4. DISCUSSION Geometric approach to exploration in 3D

The main ”bottleneck” seems to be in the part that deals with re-triangulation although one of
the fastest polygon triangulation algorithms was used. The execution time of re-triangulation
process is more than 1/3 of the whole execution time. On the other hand, when reducing the
number of polygons from several thousands to 10, one may expect longer execution times.
Cropping the point cloud which is described in Section 5.4 can be considered to speed up the
algorithm.

After making union of multiple point clouds for the purpose of creating a world map of an
unknown environment, there exist a large number of points and polygons in a polyhedron which
represents the map. This isn’t a big problem when working with a small number of point clouds.
It can be a problem, however, when working with hundreds or thousands of point clouds. Big
number of points and polygons in a map could lead to slow computational speed. The solution
is to use high amount of polygon reduction on original point clouds. The other way could be to
make a polygon reduction on a polyhedron. Either way, both solutions can potentially degrade
the quality of a world map.

47/54

Geometric approach to exploration in 3D

Chapter 7

Conclusion

This thesis took Yamauchi’s and Juchelka’s approach of exploring an unknown environment
in a polygonal domain using frontiers described in [1, 2] and took it to a polyhedral domain.
Chapter 2 outlined the problem of exploration in 3-dimensional environment. The process of
converting a point cloud to a polyhedron was described in Chapter 3. Chapter 4 dealt with
path planning on a polyhedral domain while Chapter 5 gave implementation details on created
framework which was written in ROS environment using C++ language. Finally, Chapter 6
presents made experiments.

The development in the ROS environment was chosen to ensure the possibility of future
extension of this thesis to incorporate functionality of working with real robots. Several 3rd
party libraries were used for the framework to properly function. The libraries took care of union
of polyhedrons for the purpose of map creation and tetrahedralization which was used to plan
a path on the polyhedral map.

There’s no way to tell which of the implemented reduction methods is better. They all
depend on trade off between quality of a reduced polygonal domain and a desired number of
polygons in the domain.

The map creation of an unknown 3D environment using polyhedrons proved to be a viable
solution to 3D exploration problem. It can for example represent large room using very few
points and polygons as well as table with books and cups. The main drawback of this method is
in its dependency on accuracy of points in the provided point cloud and the quality of polygon
reduction.

In the future, this thesis can be improved by development of a polygon reduction method that
does better job in preservation of the shape of the polygonal domain. Another issue that should
be addressed is time complexity of the polygon reduction method. The quality and usability of
the framework could get better by improving said features.

The implemented components of the exploration framework have not been currently inte-
grated into the exploration framework and tested with a real robot or in a simulator. This
integration and testing were not possible mainly due to time needed to get acquainted with

48/54

Geometric approach to exploration in 3D

functionalities of a robotic simulator like Gazebo or V-Rep. However, the exploration capabili-
ties were successfully tested on a real world dataset. These tests showed that the implemented
modules of the exploration framework are ready to be integrated into the overall exploration
framework. This integration is a subject of a further work.

49/54

BIBLIOGRAPHY Geometric approach to exploration in 3D

Bibliography

[1] B. Yamauchi. A frontier-based approach for autonomous exploration. In Proceedings of the
IEEE International Symposium on Computational Intelligence, Robotics and Automation,
pages 146–151, 1997.

[2] T. Juchelka. Exploration algorithms in a polygonal domain. Master’s thesis, Czech Tech-
nical University in Prague, 2013.

[3] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer, 2008.

[4] L. J. Latecki and R. Lakämper. Convexity rule for shape decomposition based on discrete
contour evolution. Computer Vision and Image Understanding, 73(3):441–454, 1999.

[5] Inc. Kitware. Visualization toolkit (vtk). http://www.vtk.org/, April 2014.

[6] J. O’Rourke. Computational geometry in C - 2nd ed. Cambridge University Press, 1998.

[7] L. Paul Chew. Constrained Delaunay triangulations. Algorithmica, 4(1):97–108, 1989.

[8] R. Graham and F. Yao. A whirlwind tour of computational geometry. American Mathe-
matical Monthly, 97(8):687–701, 1990.

[9] J. R. Shewchuk. Constrained delaunay tetrahedralizations and provably good boundary
recovery. In Eleventh International Meshing Roundtable (Ithaca, New York), pages 193–
204, September 2002.

[10] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[11] D. Joyner, M. V. Nguyen, and N. Cohen. Algorithmic Graph Theory. 0.7-r1843 edition,
May 2011.

[12] Robot operating system. http://www.ros.org/, April 2014.

[13] I. Fratric. Polypartition. https://code.google.com/p/polypartition/, April 2014.

[14] T. Sargeant. Polypartition. https://code.google.com/p/carve/, April 2014.

50/54

BIBLIOGRAPHY Geometric approach to exploration in 3D

[15] Weierstrass Institute for Applied Analysis and Stochastics. Tetgen. http://wias-
berlin.de/software/tetgen/, April 2014.

[16] S. S. Sane, N. A. Deshpande, and A. A. Puntambekar. Data Structures And Algorithms.
Technical Publications, 2006.

[17] Technische Universität München. Computer vision group. http://vision.in.tum.de/, April
2014.

51/54

Geometric approach to exploration in 3D

Appendices

52/54

Geometric approach to exploration in 3D

Appendix A

CD Content

The names of all root directories on CD are listed in Table A.1.

Directory name Description
pdf Directory containing a digital copy of this thesis
source Source files of the framework

Table A.1: CD Content.

53/54

Geometric approach to exploration in 3D

Appendix B

Command line switches

Command line switches of the framework are listed in Table B.1.

Switch Description
-t Use TetGen for path planning
-c Crop image by x pixels
-o Don’t connect points to origin; don’t create a polyhedron
-f Set distance of frontiers to x mm
-m Set method of polygon reduction – 0 for LSQ method or 1 for Centroid method

Table B.1: Command line switches.

54/54

	Introduction
	Exploration
	From point cloud to polyhedron
	Chapter outline
	Polyhedron
	Point cloud
	Point triangulation
	Delaunay triangulation
	2D grid method
	Neighbor selection

	Polygon reduction
	Reduction outline
	Centroid method
	LSQ method
	Shape decomposition
	vtkDecimation
	Summary

	Re-triangulation
	Ear Clipping
	Triangulation of monotone polygons
	Trapezoidalization
	Constrained Delaunay triangulation
	Summary

	Line reduction
	Contribution value

	Creation of a polyhedron
	Frames transformation

	From polyhedron to path
	Chapter outline
	Frontiers
	Frontiers in occupancy grid
	Frontiers in polygonal domain
	Frontiers in polyhedral domain

	Dual graph
	Polygonal domain
	Polyhedral domain

	Frontiers in a dual graph
	Polygonal domain
	Polyhedral domain

	Path planning
	Shortest path
	Breadth-first search
	Depth-first search
	Dijkstra search algorithm
	A* search algorithm
	Planning to multiple frontiers (goals)

	Framework
	ROS
	Used 3rd party libraries
	Binary heap
	Point triangulation
	Duplicate data
	Missing data

	Polygon reduction
	Binary heap
	Re-triangulation

	Polyhedral operations
	Polyhedron transformations between frames
	Union of polyhedrons

	Planner
	Frontier identification in polyhedron
	Path planning
	Tetrahedralization

	Experiments
	Quality of reduction
	Scenes

	Time of polygon reduction
	Quality of map creation
	Discussion

	Conclusion
	Appendices
	CD Content
	Command line switches

