

Master’s thesis

Data-oriented conversational system

Bc. Jakub Stejskal

May 2014

Ing. Jan Šedivý, CSc.

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Computer

Science and Engineering

Acknowledgement
First of all I would like to thank my supervisor, Ing. Jan Šedivý, CSc., for his patient
and constructive guidance. I am indebted to Ing. Jakub Jirůtka for providing insight
into KOSapi and to my colleagues who contributed to data collection. My thanks also
go to my family and friends for their continued support.

Declaration
I declare that I worked out the presented thesis independently and I quoted all used
sources of information in accord with Methodical instructions about ethical principles
for writing academic thesis.

iii

Abstrakt
Databázová rozhraní v přirozeném jazyce (NLIDB) jsou systémy schopné překladu uži-
vatelských dotazů, napsaných v přirozeném jazyce, do formálních databázových dotazů
za účelem získat požadované informace z databáze.

Tato diplomová práce zkoumá možnost využití RESTových webových služeb jakožto
báze znalostí pro NLIDB systém, namísto běžně používaných relačních databází. Práce
sleduje návrh a implementaci systému NaLIDa, což je NLIDB poskytující rozhraní
univerzitního informačního systému prostřednictvím RESTful služby zvané KOSapi.

Systém anotuje vstup v přirozeném jazyce za pomoci nástroje Standford CoreNLP
a výsledné anotace využívá ke generování a filtrování hypotéz sémantické interpretace
vstupu. Po následné disambiguaci se interpretace mapuje na entity v grafové reprezen-
taci databáze, ve které je algoritmem pro hledání nejkratších cest nalezeno optimální
spojení entit interpretace. Tato cesta je nakonec tranformována do posloupnosti poža-
davků do RESTového API.

Na testovacích datech posbíraných od členů cílové skupiny byly provedeny experi-
menty, které ukázaly, že pro platné vstupy systém vykazuje přesnost 96.8 %, úplnost
85.9 %, vůli 88.7 % a průměrnou dobu odezvy 1.6 vteřiny. V porovnání s výsledky
ostatních systémů se tyto hodnoty jeví jako uspokojivé. Nicméně experimenty také od-
halily příležitosti pro potenciální zlepšení přesnosti, stejně jako pro rozšíření okruhu
platných vstupů.

Klíčová slova
přirozený jazyk; zodpovídání otázek; NLIDB; RESTful API

iv

Abstract
Natural language interfaces to databases (NLIDB) are systems that are able to translate
natural language queries supplied by users into formal database queries in order to
retrieve the requested information from a database.

This thesis explores the possibility to use the RESTful Web services as the underlying
knowledge base for a NLIDB system instead of prevalent relational databases. It follows
the design and implementation of NaLIDa, a NLIDB that provides an interface to the
university information system via intermediate RESTful API service called KOSapi.

The system annotates the natural language input with the help of Standford CoreNLP
toolkit and uses the annotations to generate and filter semantic interpretation hypothe-
ses. After a disambiguation, the interpretation is mapped to entities in a graph repre-
sentation of the underlying database and the shortest path search algorithm finds an
optimal join path connecting these entities. In the end, the path is transformed into a
sequence of requests to the API.

The experiments performed on the data collected from members of the target audi-
ence show that for the valid inputs, the systems exhibits precision 96.8 %, recall 85.9 %,
willingness 88.7 % and average response time 1.6 s. These results are considered satis-
factory in the comparison with those reported by other systems, but the experiments
also revealed opportunities for prospective accuracy improvements and extensions of
the valid input range.

Keywords
natural language; question answering; NLIDB; RESTful API

v

Contents

1. Preface 1
1.1. Structure . 1
1.2. Typographical note . 1

2. Problem definition 2
2.1. Information retrieval . 2
2.2. Natural language interfaces to databases 3
2.3. Natural language interfaces to RESTful Web services 3
2.4. KOSapi . 3
2.5. NaLIDa . 3

3. Related work 5
3.1. Natural language interfaces to database 5

3.1.1. Evaluation . 5
3.2. RESTful Web services . 6

3.2.1. API . 6
3.2.2. Web service . 6
3.2.3. Representational state transfer 7

3.3. KOSapi . 7
3.3.1. RESTful Service Query Language (RSQL) 8
3.3.2. XPartial . 9

4. Design 10
4.1. Scope . 10

4.1.1. Natural language . 10
4.1.2. Knowledge domain . 11
4.1.3. Query utterance types . 11
4.1.4. Query constraints . 12
4.1.5. Extragrammatical utterances . 12
4.1.6. Input modality . 13
4.1.7. Output modality . 13

4.2. Architecture . 13
4.3. Knowledge domain . 14

4.3.1. Schema . 14
4.3.2. Lexicon . 15

4.4. Syntactic analysis . 15
4.4.1. Extension of supported expressions 16

4.5. Semantic analysis . 17
4.6. Query generation . 19

4.6.1. Projections, constraints and path 19
4.6.2. Entity-relationship graph . 20
4.6.3. Shortest path search . 20
4.6.4. Query plan . 21
4.6.5. SQL query generation . 21
4.6.6. REST query generation . 22

4.7. REST API . 26
4.7.1. KOSapi response . 26

vi

4.7.2. SQL query . 27
4.7.3. Detailed intermediate outputs . 27

5. Implementation 28
5.1. Schema . 28

5.1.1. Schema element tree . 28
5.1.2. Entity-relationship graph . 29
5.1.3. Schema description format . 29
5.1.4. Value tokens . 31

5.2. Lexicon . 31
5.3. Syntactic analysis . 31
5.4. Interpreter . 32
5.5. Query generator . 32
5.6. Command line interface . 34
5.7. Web service . 34

5.7.1. Home page . 35
5.7.2. REST resources . 36

6. Evaluation 38
6.1. Data collection . 38
6.2. Evaluation methodology . 39
6.3. Results . 40

7. Conclusion 45
7.1. Future work . 45

Appendices

A. Contents of the enclosed CD 46

B. Dependencies 47
B.1. NaLIDa Core dependencies . 47
B.2. NaLIDa Web dependencies . 47

C. Entity-relationship model of KOSapi 48

Bibliography 49

vii

List of Figures

1. Integration diagram . 4

2. Architecture of NaLIDa components 14
3. An example of an element tree . 15
4. Types of connections on the join path 23

5. Class diagram of nalida.schema package 29
6. Class diagram of nalida.interpretation package 32
7. Class diagram of nalida.query package 33
8. NaLIDa RESTful API Home page . 35

9. Evaluation measurements for valid inputs 43

10. KOSapi entity-relationship model . 48

List of Tables

1. Number and percentage of inputs by validity and correctness of results . 40
2. Precision, recall and willingness for all inputs and the valid ones 41
3. Number and percentage of invalid inputs by violated constraint 42

List of Algorithms

1. Generation of REST query plan . 25

viii

Listings

3.1. Snippet of KOSapi resource representation 8
3.2. RSQL grammar in EBNF [1] . 9
3.3. XPartial grammar in EBNF [1] . 9

5.1. Snippet of the schema description file 30
5.2. Default output of NaLIDa command line interface 34
5.3. XML serialization of KOSapi response 36
5.4. XML serialization of SQL response . 36
5.5. XML serialization of interpretations . 36
5.6. XML serialization of error message . 37

ix

Abbreviations
Throughout the text, following abbreviations are used in the respective meaning.

AI artificial intelligence
AJAX Asynchronous JavaScript and XML
API application programming interface
ASR automatic speech recognition
DBMS database management system
DOM Document Object Model
EBNF Extended Backus–Naur Form
ERG entity-relationship graph
GUI graphical user interface
HTTP Hypertext Transfer Protocol
KOS Komponenta Studium
NL natural language
NLIDB natural language interface to database
NLP natural language processing
NP noun phrase
REST representational state transfer
RSQL RESTful Service Query Language
SQL Structured Query Language
URI uniform resource identifier
XML Extensible Markup Language

x

1. Preface

The topic of this thesis is the development of a natural language interface that allows
an untrained user to retrieve structured data from a database without the knowledge
of any artificial query language, just by asking a question in a natural language such as
English.

The idea of creating NLI for the university information system was conceived by the
supervisor of this thesis, as it could represent a natural extension to a mobile application
for the information system, that is being developed by other colleagues.

1.1. Structure
The work consists of seven chapters. This chapter introduces the thesis and describes
its structure and formal aspects. The solved problem is described and placed into
perspective in chapter 2. Chapter 3 presents an overview of the state of the art in
the area and of the previous work that provides foundation to this thesis. Chapter 4
concerns the design of the developed system, its scope and its individual architectural
components, while chapter 5 describes its implementation details and how it is used.
The methodology and the results of evaluation experiments are presented in chapter 6.
And finally, the thesis is summarized and concluded by chapter 7.

1.2. Typographical note
Typefaces are used to distinguish symbols of different domains throughout the text:

∙ Names of projects and technologies are set in SmallCaps.
∙ Code samples and snippets are set in teletype.
∙ Variable placeholders in code samples are set in italics teletype.
∙ Mathematical formulas and important newly defined concepts are set in italics.
∙ Natural language utterances are set in “quoted italics teletype ”.

1

2. Problem definition

The assignment of this thesis defines its objectives to be a design and an implementation
of a dialog system capable of answering questions from the domain of the university
information system. The implemented system is required to provide an application
programming interface in the form of RESTful Web service. An experimental evaluation
of the solution is also demanded in order to assess its quality.

The research revealed that the assignment lies on the boundary of two related but
distinct fields, dialog systems and question answering. After consultation with the
supervisor, the thesis focuses on the question answering aspect of the problem and it
limits the dialog to disambiguation of the questions.

In the context of the evaluation, the assignment mentions usability and comparison
with the classic web user interface. However, because the system provides an applica-
tion programming interface rather than user interface, the criterion of usability is not
applicable for its evaluation. A testing data set collected from users is instead employed
to evaluate the system by means of methods standard in the question answering field.

The rest of this chapter places the problem at hand into perspective and it further
explains it in more detail.

2.1. Information retrieval

We are said to live in an information society. Indeed, an increasing importance of
the ability to effectively distribute and manipulate information is a long-term trend.
While the recent years show a rising interest in processing and analysis of Internet’s
unstructured data, a large portion of the useful information is nonetheless stored in
a form of a structured databases. In order to extract information from a database,
a query must be formulated in such a language that can be directly interpreted and
evaluated by a machine.

As computers, and more notably mobile devices such as smartphones and tablets,
are growing more accessible and affordable, the information technologies are becoming
a domain of the general public. Most people working with these technologies today
therefore do not possess a computer background nor training to master an artificial
query language.

To reflect this fact, research and development of information systems in last decades
has largely focused on design of graphical interfaces and their usability. However, no
matter how elaborate these graphical user interfaces (GUI) are, they usually cannot
match flexibility and expressiveness of a database query languages.

The most straightforward way for people to inquire and communicate is of course
their natural language (NL). A natural language user interface (NLI) has thus the
potential to achieve expressiveness comparable to the artificial query languages while
exceeding the graphical interfaces in intuitiveness and ease of use.

2

2.2. Natural language interfaces to databases

2.2. Natural language interfaces to databases

Natural language interface to database (NLIDB) is a system that allows user to access
(and in some cases manipulate) information stored in a database by providing textual or
spoken requests expressed in a natural language. The core functionality of such system
is the translation of natural language questions or commands into machine-readable
queries executable on the database. However, a full-fledged NLI often has to deal with
various other tasks described in chapter 3.1, such as dialog management and response
representation.

According to [2], NLIDB has been an open problem since 1960’s. Despite 50 years of
research and great advancements in fields such as natural language processing (NLP)
or automatic speech recognition (ASR) as well as computing in general, there has been
no wide spread use and only a limited commercial success of NLIDB systems. This is
due to persisting deficiencies and limitations of the existing solutions that are mostly
caused by the inherent complexity of natural languages.

2.3. Natural language interfaces to RESTful Web services

It has become a commonplace that technological companies build application program-
ming interfaces (API) to their products and data in form of a Web Service. Service-
oriented architecture is used both internally in order to decouple components of a large
system and externally to provide a public interface for others to develop applications
on.

ProgrammableWeb, a catalog tracking web mash-ups and APIs, currently lists
more than 11,000 public APIs and this number is steadily growing [3]. The most preva-
lent API architecture on ProgrammableWeb is the REST architectural style.

In this setup, it may often be the case that developers of a NLIDB system do not have
direct access to the database and they are dependent on a web service that encapsulates
the concerned database.

The NLP components of such system does not necessarily differ from those used in
the systems backed by a relation database, but the same is not always true for the other
components. The components responsible for knowledge-domain configuration, query
generation and result processing may work with very different querying mechanisms
and data representations.

2.4. KOSapi

KOSapi is an instance of a service described in the previous section. It is a REST-
ful Web service API to the database of KOS, the study information system of Czech
Technical University in Prague. KOSapi serves as a developer-friendly and easy-to-use
interface for client applications aiming to utilize the data from KOS.

2.5. NaLIDa

The primary practically-oriented target of this thesis is to implement a RESTful Web
service that provides the backend to a natural language interface for KOS. This is
achieved by building a NLIDB system using KOSapi as a mediator to the KOS
database. On the implementation side, the focus of this thesis is thus divided between

3

2. Problem definition

∙ developing a natural language processing engine exhibiting good performance and
accuracy for the KOS knowledge domain,

∙ wiring this engine to the underlying database via communication principles and
technologies used by KOSapi, namely REST, RSQL and XPartial,

∙ and creating a web application that provides a RESTful API to the engine.
The relations of these components are depicted in Figure 1. Development of a client
applications is not aim of this thesis and it is left to others. While the web application
includes a simple graphical interface, it’s purpose is to be a developer-friendly entry
point to the service, rather than an application used by end users.

Figure 1. Integration diagram

Successful completion of this task is verified by experimental evaluation.
A secondary, broader goal is to design a versatile NLIDB system that allows for

easy extensibility and portability in terms of different knowledge-domains, different
database management systems (DBMS) or even different natural language. This is
achieved by dividing the system into several components, where each dependency, be
it to a domain, a database or a language, is encapsulated in a single extensible and
replaceable component.

For easier referencing, the resulting system is call NaLIDa, which is simply short for
“Natural Language Interface to Database”.

4

3. Related work

Section 3.1 of this chapter provides an overview of the research in the field of natural
language interfaces to databases and section 3.2 defines the important concepts from
the areas RESTful Web services. The last section, 3.3, describes KOSapi and the
related technologies.

3.1. Natural language interfaces to database
The discipline of natural language interfaces to databases is a subfield of question
answering, information retrieval and natural language processing. NLIDB distinguishes
itself from the general question answering in the fact that it focuses on a restricted
knowledge domain represented in terms of structured database.

During the fifty years of research in the area, the focus has moved from the imple-
mentation of single-purpose systems tied to one database and knowledge domain [4] to
the development of universal frameworks that can be easily adapted to a new domain
with minimal effort [5]. Portability of the NLIDB systems has been studied on differ-
ent axes as well, such as independence on the natural language, or on the underlying
DBMS. Apart from the actual processing and translation phase, the portable NLIDBs
must also focus on the configuration of the system to the given domain or platform.
Ideally, this phase should be performed automatically without high demands on the
administrator’s expertise in database systems, programming or linguistics.

Generally speaking, the main concern of the field is the mapping of the input natural
language words to their meaning in the context of the database entities and operations.
This task revolves around the concept of ambiguity. According to [6], inputs are consid-
ered ambiguous if there are multiple alternative structures that can be built for them.
In order to provide answer, the system must first unambiguously determine the single
meaning of the input query. That requires analysis of the input on multiple linguistic
levels including morphology, syntax and semantics [2]. Some of the research overlap into
fields such as dialog systems by studying the conversational discourse [7].

Because the understanding to the natural languages in their entirety is considered to
be a AI-complete problem (in sense that it is equal in complexity to the central problem
of artificial intelligence - to create computers as intelligent as people) NLIDB system
typically limits the supported input utterances to a subset of NL defined for example
in terms of syntactic constraints or a limited vocabulary.

3.1.1. Evaluation
The authors of [2] report that there are no standard benchmarks for the evaluation of
NLIDB, because it is very complicated to formulate general quantitative measures of a
system as complex as NLIDBs. However, in order to have some objectively measurable
conclusions, most of the literature on the field presents an experimental evaluation in
one form or another.

The most used criterion to determine the quality of a NLIDB system is the translation
success, that is, the semantic equivalence between the natural language input and the

5

3. Related work

resulting database query. To provide an estimation on the success rate of the translation,
one typically needs a testing corpus of natural language queries and a method to decide
whether the output of the system is the correct translation and provides a relevant
answer. Individual publications about NLIDB systems vary in both testing data and
the objective function.

Most of the domain-dependent NLIDBs use the database they were build for and an
ad-hoc testing corpus either written by the system creators or by independent respon-
dents [8]. The portable NLIDB systems are usually evaluated on multiple benchmark
databases such as ATIS [9], Geoquery [5, 10, 9] or Northwind [11, 12]. Because most
of the systems consider only relational databases, the benchmark databases are also
usually relational (with some exceptions such as Geoquery which is represented as Pro-
log assertions). Some benchmark databases, such as ATIS or Geoquery are distributed
with a corpus of related natural language questions manually annotated with the cor-
responding translations to database queries. The size of these corpora varies from tens
to several hundreds of questions.

The accuracy of a NLIDB system is usually determined by the analysis of the database
query produced by the system. In the case of annotated corpora, the system can
automatically compare the annotations with the outputs of the translation. However, a
single natural language query can be in many cases translated into multiple semantically
equivalent database queries. Some systems address this issue by a component that
recognizes semantic equivalence of two database queries [5]. The systems whose corpora
are not annotated must rely on manual comparison of the input and the output.

3.2. RESTful Web services

3.2.1. API

An application programming interface (API) specifies how different components of a
software system interact with each other. Similarly to the way the user interfaces
facilitate interaction between humans and computers, API provides the means of com-
munication between different software programs.

3.2.2. Web service

World Wide Web Consortium (W3C) defines Web service as follows:
A Web service is a software system designed to support interoperable machine-

to-machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web service in
a manner prescribed by its description using SOAP-messages, typically conveyed using
HTTP with an XML serialization in conjunction with other Web-related standards. [13]

Nowadays, the term is however often understood in a broader sense, which does not
require a Web service to be defined in terms of WSDL nor to use XML-based SOAP as a
communication protocol. A wide range of description formats and several serialization
formats (most notably JSON) have been introduced instead and are used along with
REST principles.

A new branch of research that combines study of Web services with NLI has emerged
in recent years. However, it focuses on the automatic service discovery and composition
of Semantic Web services based on ontologies [14, 15]. Even though these studies are
somewhat relative to our topic, their orientation on a higher level of composition and
on the ontologies render their methods inapplicable for our problem.

6

3.3. KOSapi

3.2.3. Representational state transfer

Representational state transfer (REST) is a software architectural style based on the
original notion of the World Wide Web. It is a set of high-level architectural constraints
applied the components of a distributed system. These constraints include client-server
model, statelessness, cacheability, uniform interface and layered architecture. REST
was introduced in 2000 by Roy Fielding in his doctoral dissertation [16]. It is closely
related to web standards such as HTTP and Uniform Resource Identifiers (URI).

Although it is widely recognized as a key concept in the area of web services, because
of its abstract nature, the term is clouded in misconception and ambiguity. To avoid
confusion, we take the definitions of REST terminology from [1].

RESTful services are defined in terms of resources. A resources is an arbitrary in-
formation or concept that can be named by a unique identifier. A resource is a time-
dependent mapping from such identifier to a set of values, where value may be either
a resource representation or a resource identifier. While the mapping resource may
change in time, it must preserve its semantics.

A resource identifier uniquely identifies a resource. The identifiers are represented
by Uniform Resource Identifiers, a standard defined in RFC 3986 [17]. A resource rep-
resentation captures an actual state of a resource in a given time in terms of its data
and also metadata that describe the data.

3.3. KOSapi
Komponenta studia (KOS) is a component of the information system at the Czech Tech-
nical University in Prague. Since its inception at the Faculty of Electrical Engineering
in 1992 it has gone through a massive development without any major redesign or
modernization and it is thus built upon obsolete technologies and outdated approaches.
The symptoms it exhibits are typical: incapability to scale up to the growing user base,
to meet new requirements and increasing expectations or even to reliably maintain the
system.

Arguably the most pressing deficiency was the absence of an open and standardized
communication protocol for accessing its data. This fact represented a major difficulty
for development of applications built on top of the KOS platform, be it by the uni-
versity departments or its students, and effectively stifled innovation and growth of an
informational ecosystem.

With these issues in mind, the KOSapi was designed and implemented in 2010 by
Jakub Jirůtka as a part of his Bachelor’s thesis [18]. Its goal was to create a modern
and robust application that would provide an accessible and well-documented API to
KOS database. It is a Web service based on the REST architecture, Java Enterprise
Edition platform and Spring framework. Jirůtka continued to develop of KOSapi in
his Master’s thesis [1], where he introduced two features that are crucial for building a
NLIDB system for KOSapi, RSQL query language and XPartial projection language.

The API consists of several resources, each providing collection of representations
of respective database entity, such as Student, Course or Division. Each resource has
element subresources, that provide representation of one concrete entry. Some element
subresources have other subresources of their own that represent entities related to the
given entry.

The resources in KOSapi are represented in XML format. As the example in Listing
3.1 shows, the actual KOS data are in the atom:content element and they are wrapped
in Atom metadata elements. The listing contains a snippet of the collection resource

7

3. Related work

representation of Division entities. It is an excerpt from a list of 10 entries, with only
single entry actually shown. The entry metadata include the Atom element <atom:link
rel="self" /> that provides URI of the corresponding element resource.

Listing 3.1 Snippet of KOSapi resource representation

<atom:feed xmlns="http://kosapi.feld.cvut.cz/schema/3" ... >
<atom:id>https://kosapi.feld.cvut.cz/api/divisions</atom:id>
<atom:updated>2014-05-11T23:57:44.191</atom:updated>
<atom:link rel="next" href="divisions?offset=10&limit=10"/>

<atom:entry>
<atom:title>Faculty of Electrical Engineering</atom:title>
<atom:link rel="self" href="divisions/13000/"/>
<atom:content atom:type="xml" xsi:type="division">

<abbrev xml:lang="en">F3</abbrev>
<code>13000</code>
<divisionType>FACULTY</divisionType>
<name xml:lang="en">Faculty of Electrical Engineering</name>
<parent xlink:href="divisions/0/"/>

</atom:content>
</atom:entry>
<atom:entry>

...
</atom:entry>
...

<osearch:startIndex>0</osearch:startIndex>
<osearch:itemsPerPage>10</osearch:itemsPerPage>
</atom:feed>

3.3.1. RESTful Service Query Language (RSQL)

While the support of complex search queries is a fundamental part of most database
engines, the majority of REST web services has only minimal query capabilities, such
as fulltext search or query string parameters. Because the author of KOSapi was not
able to find any relevant solution for complex queries on REST services, he decided to
design his own, RESTful Service Query Language (RSQL).

A syntax of RSQL is a superset of FIQL [19], a filtering language for Atom format.
It consists of two semanticaly equal sets of operators: those of the original FIQL and
their RSQL counterparts added to provide more intuitive notation. The grammar of
RSQL is expressed in Listing 3.2 by means of Extended Backus–Naur Form notation.
Several examples are presented and explained in section 4.6.6. Following paragraph
briefly describes the syntax and semantics of the RSQL variant.

RSQL query is a boolean expression consisting of one or more criteria connected by
logical operators (and, or). A criterion comprises a selector and an argument separated
by a equality operator (=, !=). A selector is name of an element that serves as a
search parameter. Complex entity attributes may be dereferenced using dot notation
An argument is a sequence of characters optionally enclosed in parentheses. String
arguments support wildcards that represent arbitrary characters in a value: _ for a
single character and * for multiple characters. The criteria of numerical attributes by
use comparison operators (>=, <, etc.) in addition to the equality operators.

8

3.3. KOSapi

Listing 3.2 RSQL grammar in EBNF [1]
expression = ["("],

(constraint | expression),
[logical-op, (constraint | expression)],
[")"];

constraint = selector, comparison-op, argument;
logical-op = ";" | " and " | "," | " or ";
comparison-op = "==" | "=" | "!=" | "=lt=" | "<" | "=le=" | "<=" |

"=gt=" | ">" | "=ge=" | ">=";
selector = identifier, { ("/" | "."), identifier };
identifier = ? ["a"-"z", "A"-"Z", "_", "0"-"9", "-"]+ ?
argument = arg_ws | arg_sq | arg_dq;
argument-ws = ? (~["(", ")", ";", ",", " "])+ ?;
argument-sq = ? "’" ~["’"]+ "’" ?;
argument-dq = ? "\"" ~["\""]+ "\"" ?;

3.3.2. XPartial
In many cases, a consumer of a REST resource does not need its whole representation.
The ability to specify what data parts the server should send allows for significant
reduction in the required network, memory and processing resources.

To address this issue, a concept of Partial response in the context of Google Data
Protocol [20]. It is a mechanism of specifying a restrictive projection on a resource
representation. The required subset of the representation elements is defined by listing
their paths into the field query string parameter.

The format designed for use in KOSapi, XPartial, is an implementation of a subset
of the GDP partial response format. As the name suggests, it is primarily intended for
projecting XML representation.

Its grammar in EBNF is shown in Listing 3.3. An XPartial expression is a comma-
separated sequence of element paths relative to a root element, e.g. title,id,content.
A path to a nested element consists of its predecessor hierarchy separated by a slash, e.g.
entry/content/code. Elements with a common parent can be grouped by parentheses
for conciseness, e.g. entry(title,content(code,range). A filtering of elements based
on their XML attribute values is denoted in the form element [@attribute =’value ’],
such as name[@lang=’en’].

Listing 3.3 XPartial grammar in EBNF [1]
expression = path,

{ ",", path };
path = node,

({ "/", node } | subselect);
subselect = "(", expression, ")"
node = name,

["[", attributes, "]"];
attributes = attribute,

{ ",", attribute };
attribute = "@", att-name, "=", ’"’, att-value, ’"’;
att-name = "a"-"z" | "A"-"Z" | "0"-"9" | "-" | "_" | ":";
att-value = ? ~["\""]+ ?;

9

4. Design

This chapter describes in detail the approaches and algorithms chosen to fulfill the goals
outlined in the chapter 2. The designed system aims to provide a NLIDB system for
KOSapi in form of RESTful Web service, while taking into account the perspective
of extensibility and portability (in the sense described in section 3.1). The high level
design of the system thus emphasizes generality, while the concrete implementation
focuses on the context of KOSapi.

The section 4.1 presents the scope of the solved tasks as well as the aspects of the
problem, which this thesis does not address. The section 4.2 provides the overall picture
of the system architecture and its components. The sections 4.3 to 4.7 then describe
each component in detail.

Throughout the chapter, examples and figures are used to demonstrate the discussed
topics. For the sake of brevity the examples use only a subset of knowledge domain
consisting of three entities and their relations: teachers, divisions and courses. In reality,
the system is able to answer queries regarding much larger domain (see appendices A
and C).

4.1. Scope
As stated in 3.1, it is not within the power of a contemporary NLIDB system to be
able to process a natural language in its entirety. It is therefore an important part of
the design process to define a subset of the language that the system will focus on. In
short, NaLIDa accepts grammatically correct English non-polar questions and noun
phrases in textual form and produces corresponding data in XML format.

This section further describes constraints that were put on a accepted input and
provided output and it explains the rationale behind these decisions. Other important
non-functional requirements and goals are also outlined here.

4.1.1. Natural language
Data provided by KOSapi come in two parallel language variants - Czech and English.
The most reasonable choice for a natural language to which the NLIDB understands
is therefore one of these languages. Although the selection of Czech would make more
sense from the user perspective, because the vast majority of the CTU students and
employees (and hence the users of KOS) are Czech native speakers, English is chosen
as the supported natural language for practical reasons.

Firstly, most of the research on NLP and NLIDB, as well as majority of available tools
for NLP, focuses on English language. That does not really pose a problem with respect
to the research, because its findings are largely transferable to arbitrary language, but
the tools such as POS taggers and lexical parser are based on a statistical training from
extensive corpora and are therefore language-dependent.

Secondly, if we disregard the concrete use case of KOSapi and consider the portability
to other knowledge domains, the English speaking users obviously constitute a much
larger potential audience.

10

4.1. Scope

4.1.2. Knowledge domain

To acquire the information to produce a response for a submitted query, NaLIDa relies
purely on the data provided by the underlying DBMS and the metadata stored in its
schema description (see 4.3.1). The system does not possess any external knowledge
and it does not perform any post-processing on the extracted data.

That obviously means that it answers only questions regarding the database know-
ledge domain. In order to produce useful and up-to-date answers, the knowledge base
is further limited only to data concerning the current and next semester.

There is however also a number of less obvious implications. In the first place,
NaLIDa uses only the current query to determine what data the user requests. It does
not keep track of dialog history and it does not use precedent queries and responses to
determine the context of the current query. For example, if user asks two consecutive
questions “Who is the lecturer of the KO course? ” and “What other courses
does he teach? ”, the system is not able to correctly answer the second question,
because it does not connect the anaphoric reference “he ” to its meaning in context of
previous question, “the lecturer of KO course ”, and the respective response data,
the concrete Teacher entity.

Secondly, it does not use other potentially available context information, such as the
identity of the user or the time of the request. The questions referring to its sender (e.g.
“my schedule ”, “What exams do I take? ”) or a relative time (e.g. “tomorrow’s
TAL parallels ”) are therefore out of scope.

Lastly, the system is limited by the KOSapi query mechanisms. It is fairly common
for NLIDB systems to support aggregate functions, such as average, count, maximum,
minimum or sum. However KOSapi does not have such a capability and NaLIDa is
thus not able to correctly answer questions such as “How many students attend PAL
course? ” or “the course with the most credits ”.

Many NLIDBs also support joining data from multiple entities into a single result via
JOIN operations [11]. The query parameters and the results of a a request to KOSapi is
however bound to a single resource. NaLIDa is able to decompose a submitted query
into multiple consecutive KOSapi requests so as to allow query criteria on multiple
entities. The final results of the query are nonetheless data of a single entity type.

4.1.3. Query utterance types

The types of the supported input utterances are limited to non-polar questions and
noun phrases. Non-polar questions (or wh-questions) are interrogative sentences that
use an interrogative word such as “when ”, “which ”, “who ” or “how ”, to indicate the
information that the user desires. A noun phrase is a phrase which has a noun as its
head word, or which performs the same grammatical function as such a phrase.

Other types of utterances, such as polar questions (i.e. yes-no questions) or declara-
tive and imperative sentences usually do not produce sensible results or any results at
all. The main causes for this limitation are that for such sentences

∙ the answer is not directly extractable from KOSapi without a further reasoning
(e.g. yes-no answer for the polar questions),

∙ it is complicated to tell what information does such a sentence ask for (e.g. for
declarative sentence) or

∙ the syntactic parser is not able to reliably process such a sentence (e.g. for imper-
ative sentence, as explained in section 5.3).

11

4. Design

Some possible ways to overcome these issues and extend the range of supported inputs
are outlined in section 4.4.1. The examples 1 and 2 show the types of the supported
and the unsupported utterances respectively.

(1) Examples of supported utterances
a. “What is the capacity of the BDT tutorial? ” wh-question
b. “the name of the PAH course ” noun phrase

(2) Examples of unsupported utterances
a. “I want to know who teaches BDT course. ” declarative s.
b. “Give me the emails of machine learning teachers. ” imperative s.
c. “Are there any exam terms for AU course? ” yes-no question

4.1.4. Query constraints

Query constraints in KOSapi are realized by RSQL expressions. As shown in section
3.3.1, RSQL is quite an expressive language that allows connecting a variety of compar-
ison criteria into complex logical structure. For sake of simplicity, NaLIDa uses only
subset of this expressivity.

The constructed constraints have a form of a conjunction of attribute-value equality
criteria:

𝑎𝑡𝑡1 = 𝑣𝑎𝑙1 ∧ 𝑎𝑡𝑡2 = 𝑣𝑎𝑙2 ∧ · · · ∧ 𝑎𝑡𝑡𝑛 = 𝑣𝑎𝑙𝑛

This limitation allows for wide range of useful queries while significantly reducing the
complexity of the syntactic and semantic analysis as well as the query generation. The
limitation was establish based on the assumption that only a small fraction of input
queries does not comply with it in practice. The assumption was confirmed by the
results of the evaluation experiments presented in section 6.3.

Another limitation is that date and time criteria are not supported, because although
they are possible in KOSapi, their value must be in format yyyy-MM-dd-Thh:mm:ss,
such as 2014-01-01T12:00:00. As the wildcards are not supported for date attributes,
their criteria must always specify exact second of an exact date. Such constraints do
not have much practical use, even if we consider preprocessing of time phrases (such as
“noon on the first of January 2014”) into the given format. The date attributes
are therefore regarded as string attributes without any recognized values.

4.1.5. Extragrammatical utterances

The system does not actively attempt to detect or correct erroneous inputs.
It is nonetheless tolerant to a wide range of syntactic errors in practice, such as

dropped articles or prepositions, subject-object disagreement, capitalization errors and
punctuation errors shown in the Example 3. This is possible due to fact that the
semantic analysis uses only a small portion of the syntactic information contained in
the utterance (see the sections 4.4 and 4.5) and some changes in the information thus
do not affect its outcome.

Missing diacritics and spelling errors such as those in the Example 4, on the other
hand, cause utterance interpretation to fail in many cases, because they prevent a suc-
cessful lemmatization. The misspelled words are then ignored by the semantic analysis,
which may not matter for entity or attribute words, but is almost always fatal for value
words.

12

4.2. Architecture

(3) Examples of supported extragrammatical utterances
a. “courses Department Cybernetics ” dropped articles/prepositions
b. “What do Jan Šedivý teach? ” subject-object disagreement
c. “STUDENTS of bdt course ” capitalization errors
d. “What courses are taught at the 13133 deptment? ” misspelling

(4) Examples of unsupported extragrammatical utterances
a. “What does Jan Sedivy teach? ” misspelling
b. “cuorses at the Department of Cybernetics ” misspelling

4.1.6. Input modality

Although the ability to process a spoken input is considered a prerequisite for a practical
success of NLIDBs, majority of research in the field is limited to textual requests [2].
Historically, this was probably caused by the poor performance of ASR system at the
time, but also by relative separability of the tasks - output of an ASR can be simply
used as input of a NLIDB.

In any case, this thesis honors the tradition of text-based NLIDBs and leaves the
handling of other modalities to client applications. There are general-purpose ASR tools
available on most of the thinkable platforms, but it is possible that these recognizers
would not perform sufficiently well for some specialized knowledge domains and that it
would be necessary to train a domain-specific language models.

4.1.7. Output modality

The output of the system is also textual. As already mentioned, the data are provided
in the format in which they are retrieved from KOSapi. That means that they have a
form of XML documents. For consistency, other responses, such as error messages and
disambiguation messages, are also returned in XML.

4.2. Architecture

The system architecture as well as terminology used in this chapter is inspired by
Precise system described in [10, 9]. In taxonomy of [2], it falls into the category
of Intermediate representation languages. with the interpretations in the role of the
intermediate representation.

NaLIDa is divided into several components depicted in Figure 2. The components
are chained together to interpret and evaluate the natural language input. The schema
and lexicon components hold metadata about the underlying database and the know-
ledge domain data. The syntactic analysis component accepts the text of the user
input and performs its parsing and annotation using the information in Lexicon. The
interpreter uses the annotations to semantically interpret the input. If the interpreter
finds multiple valid interpretation, the user is asked to disambiguate them. The query
generator then translates the interpretation into a database query that is executed
to produce the final results. This functionality can be used directly or via the last
component of the system, the REST API.

13

4. Design

Figure 2. Architecture of NaLIDa components

4.3. Knowledge domain

The schema and lexicon components encapsulate the data specific for the underlying
database and its knowledge domain. The other components use them to acquire infor-
mation about the structure of the database elements and their mapping to the natural
language words.

4.3.1. Schema

A schema is a structure representing the mutual relationships between elements 𝐸.
The schema contains three types of elements: entities 𝐸𝑒, attributes 𝐸𝑎 and values
𝐸𝑣. The attribute elements are further divided into primitive attributes 𝐸𝑎𝑝, reference
attributes 𝐸𝑎𝑟 and subresources 𝐸𝑎𝑠. A special singleton wh-word element 𝑒𝑤 denoting
an interrogative word is also present in the schema. Figure 3 shows a structure of a
reduced schema.

An entity element (also called “relation” or “table” in the context of the relational
databases) represents a knowledge base domain concept (such as Teacher, Course or
Division).

An attribute element (also called “column” in the relational databases) belongs to
a unique entity element and it represents a property of its entity (such as code, name
or subdivisions). Because the name of an attribute can be ambiguous (e.g. code of
Course and code of Division), attributes are identified also by their entity name (e.g.
Course.code, Division.code). Each attribute of an entity may or may not be assigned a
value or a collection of values.

A primitive attribute is an attribute whose value is of a primitive type, i.e. numerical
(“integer”), textual (“string”) or enumerative (“enum”). For each primitive attribute
there is a corresponding value element.

On the other hand, a value of a reference attribute or a subresource is a reference to
an entity. References are realized by foreign keys in relational databases and by URIs
in REST services. Subresource is a concept specific to REST APIs. From the schema
point of view, it is simply a different type of reference attribute with a collection of

14

4.4. Syntactic analysis

values.
Two elements that are semantically related to each other are said to be compatible. A

value elements are compatible with a corresponding attribute elements and also with the
entity element that the attribute is assigned to. An attribute element is compatible with
the its entity element. A reference attribute or a subresource is furthermore compatible
with the entity element that it refers to. The wh-word element is compatible with every
element.

Figure 3. An example of an element tree

4.3.2. Lexicon
A lexicon is a structure that provides possible meanings for a given natural language
word. It is a dictionary that maps word lemmata to tokens and tokens to elements.

A lemma is a canonical form of a lexeme, i.e. of a set of words forms with the same
meaning. For instance, words teach, teaches, taught are forms of the same lexeme
with lemma teach.

A token is a set of lemmata that matches an element. That means that words whose
lemmatization correspond to the token may together represent the matching element.
Multiple tokens may match the same element, and conversely, a token may match
several different elements. For example, a token {division} matches entity element
Division as well as attribute element Teacher.division and both tokens {last, name}
and {surname} match a single attribute token Teacher.lastName.

More formally, given a set of all lemmata 𝐿, a set of all tokens 𝑇 ⊂ 𝒫(𝐿) 1 and a set
of elements 𝐸, a lexicon provides two functions: 2

𝑡𝑜𝑘𝑒𝑛𝑠(𝑙) : 𝐿 → 𝒫(𝑇)
𝑡𝑜𝑘𝑒𝑛𝑠(𝑙) = {𝑡 ∈ 𝑇 : 𝑙 ∈ 𝑡}

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝑡) : 𝑇 → 𝒫(𝐸)
𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝑡) = {𝑒 : 𝑡 matches 𝑒}

4.4. Syntactic analysis
The syntactic analysis component takes the natural language input, and assuming that
the input conforms to the constraints described in section 4.1, it annotates the input

1𝒫(𝑋) denotes the power set of a set 𝑋
2𝑓 : 𝐼 → 𝑂 denotes that 𝑓 is a function of 𝑙 with domain 𝐼 and codomain 𝑂

15

4. Design

with the syntactic information required for the semantic analysis, namely a parse tree
and word token sets.

The first steps of the syntactic analysis are word segmentation, lemmatization and
part-of-speech tagging. These annotations are not directly used by the other compo-
nents, but they are prerequisites for the following parsing and tokenization. An example
of the results of the individual steps of the analysis is shown in Example 5.

The word segmentation breaks the input stream of text into words using word de-
limiters such as whitespaces and punctuation, so that the individual words may be
analyzed separately. Note that this process is also called tokenization in literature, but
the term is used with a slightly different meaning in the context of this thesis. The
lemmatizer then assigns a lemma 𝑙𝑒𝑚𝑚𝑎(𝑤𝑖) to each word 𝑤𝑖 of the 𝑛-tuple 𝑤 produced
by word segmentation. A lemmatization of a word 𝑛-tuple 𝑤 is therefore a 𝑛-tuple of
lemmata of individual words: 𝑙𝑒𝑚𝑚𝑎(𝑤) = (𝑙𝑒𝑚𝑚𝑎(𝑤1), . . . , 𝑙𝑒𝑚𝑚𝑎(𝑤𝑛))

The tokenizer uses the lemmata and the lexicon to annotate each word with tokens
that it might represent. Because tokens may consist of multiple lemmata, only those
that are completely covered by the input utterance 𝑤 are assigned to the words. The
token set 𝑇 (𝑤𝑖) of each word 𝑤𝑖 is thus constructed as follows:

𝑇 (𝑤𝑖) =

⎧⎨⎩𝑡 ∈ 𝑇 : 𝑡 ∈ 𝑡𝑜𝑘𝑒𝑛𝑠(𝑙𝑒𝑚𝑚𝑎(𝑤𝑖)) ∧ 𝑡 ⊂
𝑛⋃︁

𝑗=1
𝑙𝑒𝑚𝑚𝑎(𝑤𝑗)

⎫⎬⎭
The part-of-speech tagger assigns a parts of speech to each word, such as noun,

verb, adjective, etc. These tags are used by the parser to create a parse tree that
represents syntactic structure of the input utterance and provides the grammatical
relations between its words.

The parser represents the parse tree by means of the Standard Stanford dependencies,
which are collapsed dependencies with propagation of conjunct dependencies [21]. In
the collapsed representation, dependencies involving prepositions, conjuncts, as well as
information about the referent of relative clauses are collapsed to get direct dependencies
between content words.

(5) Example of the syntactic analysis
a. “What courses are taught by Šedivý? ” input
b. “What ”, “courses ”, “are ”, “taught ”, “by ”, “Šedivý ” segmentation
c. “what ”, “course ”, “is ”, “teach ”, “by ”, “Šedivý ” lemmatization
d. “what ”/𝑊ℎ𝑊𝑜𝑟𝑑, “courses ”/𝐸𝑛𝑡𝑖𝑡𝑦:Course, “are ”/∅,

“taught ”/𝑆𝑢𝑏𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒:Teacher.courses, 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒:Course.department, . . . ,
“by ”/∅, “Šedivý ”/𝑉 𝑎𝑙𝑢𝑒:Teacher.lastName tokenization

e. “What ”/WDT, “courses ”/NNS, “are ”/VBP, “taught ”/VBN, “by ”/IN,
“Šedivý ”/NNP POS tagging

f. “What ” “courses ”
��

“taught ”
�� ��

“Šedivý ” parse tree

4.4.1. Extension of supported expressions

While the parsing of imperative sentences is usually not successful in the current config-
uration, there is an easily implementable workaround that would allow the translation
of both imperative and declarative sentences. It lies in the detection of the imperative
or the declarative part of the sentence using a rule-based pattern-matching. As shown

16

4.5. Semantic analysis

in the examples 6 and 7, removal of the detected part (in bold) produces a noun phrase
or a wh-question that can be processed by the current system.

(6) Declarative sentences (DS) to noun phrases (NP) and wh-questions (WQ)
a. I need the emails of the machine learning teachers. DS → NP
b. I want to know who teaches the BDT course. DS → WQ

(7) Imperative sentences (IS) to noun phrases (NP) and wh-questions (WQ)
a. Give me the emails of the machine learning teachers. IS → NP
b. Show me who teaches the BDT course. IS → WQ

4.5. Semantic analysis
The purpose of the semantic analysis component called interpreter is to assign a mean-
ing to the annotated input produced by the syntactic analysis. A valid interpretation
of the input is found by producing all complete tokenizations of input words, then
producing all interpretations hypotheses of these tokenizations and finally using the
attachment function to filter the meaningless hypotheses out.

A complete tokenization is a set of tokens such that every word lemma of input
appears in exactly one token. In another words, a complete tokenization is an exact
cover of word lemmatization by tokens. The exact cover problem is known to be NP-
complete [22], but the average size of our instances is so small that they can be solved
by exhaustive search in a practically imperceivable time.

The construction of the interpretations and their filtering is performed in several
stages. Firstly, only the tokenizable words, the words whose lemmata correspond to
some token (i.e. 𝑡𝑜𝑘𝑒𝑛𝑠(𝑙𝑒𝑚𝑚𝑎(𝑤𝑖)) ̸= ∅), are considered in this phase. This filters
out the words to which the system is not able to assign a meaning, leaving 𝑚-tuple 𝑤′

of tokenizable words. If no tokenizable words are left after this step (i.e. 𝑚 = 0), the
computation ends and a failure is reported to the user.

Tokenization hypotheses set 𝑇 𝐻 is a set of 𝑚-tuples of tokens constructed as 𝑚-ary
Cartesian product of the token sets of the tokenizable words:

𝑇 𝐻 : 𝒫(𝑇 𝑚)

𝑇 𝐻 = 𝑇 (𝑤′
1) × · · · × 𝑇 (𝑤′

𝑚)

An element of this set is a tokenization hypothesis 𝑡:

𝑡 : 𝑇 𝑚

𝑡 = (𝑡1, . . . , 𝑡𝑚) ∈ 𝑇 𝐻

However, a tokenization hypothesis 𝑡 created in this way is not guaranteed to repre-
sent a complete tokenization of 𝑤′. A set of unique tokens {𝑡1, . . . , 𝑡𝑚} is thus created
from the interpretation hypothesis and if this set does not exactly cover 𝑤′, the corre-
sponding hypothesis is rejected. A set of all valid tokenization hypotheses 𝑇 𝑉 contains
all tokenization hypotheses that represent a complete tokenization and are thus not
rejected.

Next stage is the construction of interpretation hypotheses and their filtering by an
attachment function. The attachment function 𝐴 is a binary relation on the set of
tokens derived from the parse tree as follows: (𝑡𝑖, 𝑡𝑗) ∈ 𝐴 if and only if a corresponding

17

4. Design

word 𝑤′
𝑖 is dependent on 𝑤′

𝑗 or vice versa, i.e. there is at least one of edges (𝑤′
𝑖, 𝑤′

𝑗)
and (𝑤′

𝑗 , 𝑤′
𝑖) in the parse tree.

An interpretation hypothesis is a possible assignment of a single element to each
token in a valid tokenization hypothesis. It represents a way how to interpret an input
utterance in terms of database elements. The set 𝐼 of all interpretation hypotheses
consists of all possible combinations of token-element matches of each valid tokenization
hypothesis:

𝐼 : 𝒫((𝑇 × 𝐸)𝑚)

𝐼 =
⋃︁

𝑡∈𝑇 𝑉

({𝑡1} × 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝑡1)) × · · · × ({𝑡𝑚} × 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝑡𝑚))

The intuition behind the filtering of interpretation hypotheses by the attachment
function is that the words that are syntactically dependent are also related semantically
and their semantic interpretations (i.e. their assigned elements) should therefore be
compatible (in terms of compatibility defined in section 4.3.1).

An interpretation hypothesis ((𝑡1, 𝑒1), . . . , (𝑡𝑚, 𝑒𝑚)) ∈ 𝐼 complies with a semantic
constraint (𝑡𝑖, 𝑡𝑗) ∈ 𝐴 if elements 𝑒𝑖 and 𝑒𝑗 are compatible. An interpretation hypothesis
is a valid interpretation if it complies with all semantic constraints in 𝐴.

The last phase of the hypotheses filtering is the most discriminative one. It discards
all hypotheses that have higher than minimal interpretation size. The interpretation
size is a number of unique entity elements featured in the hypothesis including those
that are represented by its attribute or value elements and those that are referenced
by attributes. This step can be regarded as an application of Occam’s razor principle,
the simplest interpretations are considered to be the best ones. The power of this
rule is demonstrated in the Example 8. When more tokens matching multiple elements
occur in an utterance, the hypotheses generation is affected by combinatorial explosion.
While some of these hypotheses may be filtered out in previous phases, it often up to
interpretation size filtering to do most of the work.

(8) Example of interpretation hypotheses filtering by interpretation size.
Interpretation hypotheses for tokens “username ”, “Jakub ”, “Stejskal ”
a. Student.username, Student.firstName, Student.lastName 1 entity, 3

b. Student.username, Student.firstName, Person.lastName 2 entities, 7

c. Student.username, Teacher.firstName, Student.lastName 2 entities, 7

d. Teacher.username, Student.firstName, Student.lastName 2 entities, 7

e. Teacher.username, Teacher.firstName, Student.lastName 2 entities, 7

f. Person.username, Person.firstName, Person.lastName 1 entity, 3

g. Person.username, Teacher.firstName, Person.lastName 2 entities, 7

...

The output of the interpreter is a set of the valid interpretations. If this set is empty,
it means that the system was not able to interpret the input and a failure is reported
to the user. If the set contains a single interpretation, the system proceeds to the
query generation. If the set contains multiple valid interpretations, the user is asked to
disambiguate them manually by choosing the correct one. The selected interpretation
is then passed to the query generator.

18

4.6. Query generation

4.6. Query generation
The query generator is a component that takes a single valid interpretation and trans-
lates it into a database query plan. The translation consists of two main phases. The
first one is identifying the shortest path in a ER graph that connects the relevant en-
tities. The second is a generation of a query plan using the identified path. While
the first is general and independent on type of the underlying database, the second is
DBMS-specific.

Two implementations of the query generators are presented in this section. The focus
is primarily on the RSQL query generator described in section 4.6.6. A RSQL query
plan devised by the generator can be executed against KOSapi to retrieve queried data.
The SQL generator described in section 4.6.5 generates a plan comprising a single SQL
SELECT statement. Because the system does not have means to directly access the
relational database of KOS, a SQL query plan cannot be executed and it serves only
as a demonstration of portability of NaLIDa to relational databases.

4.6.1. Projections, constraints and path
A query that corresponds to a valid interpretation 𝑞 = ((𝑡1, 𝑒1), . . . , (𝑡𝑚, 𝑒𝑚)) ∈ 𝐼 can be
described by a triple (𝑝𝑟𝑜𝑗𝑞, 𝑐𝑜𝑛𝑠𝑡𝑟𝑞, 𝑝𝑎𝑡ℎ𝑞), where the elements of the triple represent
the projections, the constraints and the join path of the query.

The 𝑝𝑟𝑜𝑗𝑞 is a set of entity or attribute elements 𝑒𝑖 whose corresponding tokens 𝑡𝑖

are attached to a token 𝑡𝑤 corresponding to the wh-word element 𝑒𝑤:

𝑝𝑟𝑜𝑗𝑞 = {𝑒𝑖 ∈ 𝐸𝑒 ∪ 𝐸𝑎 : (𝑡𝑖, 𝑒𝑖), (𝑡𝑤, 𝑒𝑤) ∈ 𝑞 ∧ (𝑡𝑖, 𝑡𝑤) ∈ 𝐴}

If 𝑞 does not contain a token corresponding to the wh-word element, i.e. input
utterance is a noun phrase, 𝑝𝑟𝑜𝑗𝑞 is set to the element corresponding to the root of
the parse tree instead. The 𝑝𝑟𝑜𝑗𝑞 must contain a single entity 𝑒𝑝𝑟𝑜𝑗 (called projection
entity) or attributes belonging to a single entity 𝑒𝑝𝑟𝑜𝑗 . The projection entity element
represents the database entity whose data (or their subset specified by the attributes
in 𝑝𝑟𝑜𝑗𝑞) is extracted from database as the final result of the query. The elements in
𝑒𝑝𝑟𝑜𝑗 are translated into the SELECT clause in the SQL generator or into XPartial
parameter in the RSQL generator.

The 𝑐𝑜𝑛𝑠𝑡𝑟𝑞 is a set of all token-value element pairs in 𝑞:

𝑐𝑜𝑛𝑠𝑡𝑟𝑞 = {(𝑡𝑖, 𝑒𝑖) ∈ 𝑞 : 𝑒𝑖 ∈ 𝐸𝑣}

They represent conditions that each database record must fulfill in order to be included
in the results. They are translated into the WHERE clause in the SQL generator or
into RSQL parameter in the RSQL generator.

And finally, 𝑝𝑎𝑡ℎ𝑞 is the shortest path in the entity-relationship graph that connects
all entity elements belonging to the value elements in 𝑐𝑜𝑛𝑠𝑡𝑟𝑞 (called constraint entities)
and that ends in the projection entity element. The path describes how the individual
entities of the query are connected with each other. In the SQL generator, the path
is translated into the JOIN constraints in WHERE clause. In the RSQL generator, it
is a basis for decomposition of the constraints into a query plan comprising individual
consecutive REST requests.

(9) Example of an input, its interpretation and (𝑝𝑟𝑜𝑗𝑞, 𝑐𝑜𝑛𝑠𝑡𝑟𝑞, 𝑝𝑎𝑡ℎ𝑞) triple
a. “What are the surnames and phones of the teachers lecturing KO

course? ” input query

19

4. Design

b. “what ”/𝑊ℎ𝑊𝑜𝑟𝑑, “name ”/𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒:Teacher.lastName,
“phone ”/𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒:Teacher.phone, “teacher ”/𝐸𝑛𝑡𝑖𝑡𝑦:Teacher,
“lecture ”/𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒:Course.lecturers, “ko ”/𝑉 𝑎𝑙𝑢𝑒:Course.code,
“course ”/𝐸𝑛𝑡𝑖𝑡𝑦:Course interpretation

c. 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒:Teacher.lastName, 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒:Teacher.phone 𝑝𝑟𝑜𝑗𝑞

d. “ko ”/𝑉 𝑎𝑙𝑢𝑒:Course.code 𝑐𝑜𝑛𝑠𝑡𝑟𝑞

e. 𝐸𝑛𝑡𝑖𝑡𝑦:Course → 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒:Course.lecturers → 𝐸𝑛𝑡𝑖𝑡𝑦:Teacher 𝑝𝑎𝑡ℎ𝑞

4.6.2. Entity-relationship graph

The entity-relationship graph (ERG) is a weighted directed graph representing mutual
interconnectivity of the database entities through their reference attributes and subre-
sources. The ERG is used in the query generation phase for finding an optimal path
connecting the constraint elements and ending in the projection entity.

The ERG vertices 𝑉 (𝐸𝑅𝐺) are all entity, reference attribute and subresource ele-
ments of the schema. There are two types of ERG edges 𝐴(𝐸𝑅𝐺) with different weights.
A direct edge with weight 𝑤𝐷 connects an entity and an attribute if a constraint on
these elements can be realized within a single REST request. This includes connec-
tions between entity and its attribute, but also connections from a referred entity to a
referring non-collection attribute (thanks to the dereferencing).

On the other hand, an indirect edge with weight 𝑤𝐼 connects an entity and an at-
tribute if a constraint on these elements requires two consecutive REST request to be
performed. Such connections are between a collection reference attributes (including
all subresources) and the referred entity.

The weights 𝑤𝑈 , 𝑤𝐼 ∈ R+ where 𝑤𝑈 is slightly less than 𝑤𝐼 to ensure that when two
paths with equal number of edges are found, the one that can be realized in less REST
request is considered to be shorter.

Given that:
∙ 𝑒𝑛𝑡(𝑒𝑎) is the entity element to which an attribute element 𝑒𝑎 belongs,
∙ 𝑟𝑒𝑓(𝑒𝑎) is the entity element to which an attribute element 𝑒𝑎 refers,
∙ 𝑐𝑜𝑙(𝑒𝑎) denotes that the attribute element 𝑒𝑎 refers to a collection.

the vertices 𝑉 (𝐸𝑅𝐺) and the weighted edges 𝐴(𝐸𝑅𝐺) are defined as follows:

𝑉 (𝐸𝑅𝐺) = 𝐸𝑒 ∪ 𝐸𝑎𝑟 ∪ 𝐸𝑎𝑠

For ∀𝑒𝑎 ∈ 𝐸𝑎𝑟 ∪ 𝐸𝑎𝑠:

(𝑒𝑛𝑡(𝑒𝑎), 𝑒𝑎, 𝑤𝐷)
(𝑒𝑎, 𝑟𝑒𝑓(𝑒𝑎), 𝑤𝐼)

}︃
∈ 𝐴(𝐸𝑅𝐺)

(𝑒𝑎, 𝑒𝑛𝑡(𝑒𝑎), 𝑤𝐷)
(𝑟𝑒𝑓(𝑒𝑎), 𝑒𝑎, 𝑤𝐷)

}︃
∈ 𝐴(𝐸𝑅𝐺) unless 𝑐𝑜𝑙(𝑒𝑎)

4.6.3. Shortest path search

To find the 𝑝𝑎𝑡ℎ𝑞, a search is performed for the shortest path in the ERG that connects
all constraint entities and end in the projection entity. Note that the path may contain
entities that are neither constraint entities nor projection entity. For instance, the ut-
terance “teachers of Jakub Stejskal ” asks for teachers that teach courses attended
by Jakub Stejskal. Even though that the entity Course is not explicitly mentioned in

20

4.6. Query generation

the utterance, it must appear in the join path, as it connects the constraint entity
Student with the projection entity Teacher.

Firstly, the ERG is reweighted is such way that an edge has weight 0 if it connects
two elements present in the interpretation. This ensures that the paths covering the
interpretation are preferred.

The Floyd–Warshall algorithm for finding all shortest paths in a weighted directed
graph [23] is then used on the reweighted ERG to determine the shortest pairwise
distance of the elements.

All possible orderings of the query entities are constructed by appending the projec-
tion entity to each permutation of the constraint entities. A cost of each ordering is
computed by summing up the pairwise distances of its consecutive elements. The or-
dering with the minimal cost is then used to construct the join path 𝑝𝑎𝑡ℎ𝑞 by appending
pairwise shortest paths between consecutive elements of the ordering.

Given the nature of the ERG edges, it holds that the vertices along the path 𝑝𝑎𝑡ℎ𝑞 are
an alternating sequence of entity elements and attribute elements beginning with some
constraint entity and ending with the projection entity, and that for each attribute
element 𝑒𝑎 on the path its neighboring elements are its 𝑒𝑛𝑡(𝑒𝑎) and 𝑟𝑒𝑓(𝑒𝑎) (in any
order).

4.6.4. Query plan

A query plan is a sequence of consecutive queries, each taking the results of the previous
one as an argument. The first query is executed without any argument and the output
of the last query is the final result of the query plan. In this way, the system can handle
a natural language query that cannot be carried out as a single database query.

Moreover, a query plan is agnostic to implementation of its individual queries, which
means that queries of different types (e.g. using a different database or even DBMS)
could be combined within one query plan. Such queries would only need to be com-
patible in terms of their inputs and outputs, which are represented as a collection of
strings.

4.6.5. SQL query generation

The translation of a triple (𝑝𝑟𝑜𝑗𝑞, 𝑐𝑜𝑛𝑠𝑡𝑟𝑞, 𝑝𝑎𝑡ℎ𝑞) to a SQL query plan is rather straight-
forward. The query plan comprise a single query that represents a simple SELECT
statement. A select statement consists of three clauses:

SELECT <SELECT clause> FROM <FROM clause> WHERE <WHERE clause>

The SELECT clause contains comma separated identifiers of the projections attribute
elements from 𝑝𝑟𝑜𝑗𝑞. If a projection is an entity element, a wildcard .* is appended to
its identifier to denote that all its attributes are to be returned.

The FROM clause lists all tables that the query uses. It contains a comma separated
list of all entity elements in 𝑝𝑎𝑡ℎ𝑞.

The WHERE clause lists of equality query constraints separated by conjunction lit-
eral AND. Apart from the constraints specified in 𝑐𝑜𝑛𝑠𝑡𝑟𝑞, it also contains the constraints
representing the join path 𝑝𝑎𝑡ℎ𝑞.

For each token-value pair (𝑡, 𝑒) ∈ 𝑐𝑜𝑛𝑠𝑡𝑟𝑞 an equality constraint is constructed that
assigns the value of token 𝑡 to the attribute identifier of the value element 𝑒. The form
of the constraint depends on a type of value of the element. The constraints of string
type use the pattern matching operator LIKE:

21

4. Design

<name of e> LIKE ’%<words of t separated by %>%’

The constraints of other types, i.e. integer or enum, use equality operator:

<name of e>=<word if t>

For each edge (𝑒𝑖, 𝑒𝑗) ∈ 𝑝𝑎𝑡ℎ𝑞 where 𝑒𝑛𝑡(𝑒𝑖) ̸= 𝑒𝑛𝑡(𝑒𝑗) a join constraint is constructed
as follows, while appending a primary key identifier .id to the entity element names:

<name of e𝑖>=<name of e𝑗>

(10) Example of SQL query corresponding to interpretation in Example 9
SELECT Teacher.lastName, Teacher.phone
FROM Teacher, Course
WHERE Course.code LIKE ’%ko%’
AND Course.lecturers=Teacher.id; SQL query - SELECT statement

4.6.6. REST query generation

The generation of a REST query plan is more complicated due to fact that a request to
a REST API is always bound to a single resource. A resource provides a representation
of a single entity or a collection of entities of the same type and it can only be constraint
by attributes of this entity or by attributes of the entities that are referenced by an
attribute of this entity. If the join path includes multiple entities that are not directly
connected, the corresponding query plan consists of multiple queries, each representing
a requests to different resource of the underlying REST API. An intermediate query
yields a set of result URIs that are used by subsequent query to produce its requests.

This section first demonstrates the translation of the different types of join paths
segments to queries on concrete examples, then it describes the structure of the query
objects and how they are derived from a triple (𝑝𝑟𝑜𝑗𝑞, 𝑐𝑜𝑛𝑠𝑡𝑟𝑞, 𝑝𝑎𝑡ℎ𝑞) and finally it
explains how the actual REST requests are constructed from the query and how the
query plan is executed.

Join path connection types

The Figure 4 depicts different types of connections on four input utterances and their
interpretations. Each graph in the figure represents the triple (𝑝𝑟𝑜𝑗𝑞, 𝑐𝑜𝑛𝑠𝑡𝑟𝑞, 𝑝𝑎𝑡ℎ𝑞) of
the respective utterance. The vertices of the graphs are the entity and attribute ele-
ments from 𝑝𝑎𝑡ℎ𝑞 and the value elements from 𝑐𝑜𝑛𝑠𝑡𝑟𝑞. The vertices that are adjacent
to special vertex 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 are the elements from 𝑝𝑟𝑜𝑗𝑞. The edges represent connec-
tions - solid lines for the direct connections and dashed lines for the indirect ones. The
vertical dashed lines delimit the elements belonging to the different entities.

The first case is the simplest one, occurring when the constraints are on the projection
entity. The utterance illustrated in 4a translates to single request looking essentially
like this:
/teachers?query=lastName==Šedivý;lastName==Šedivý&fields=content/phone

The case in 4b shows an instance of a query that uses dereferencing to perform
constraints on an entity different from the projection entity. This utterence is therefore
also translated into a single query: /courses?query=department.code=13133. The
figure also shows a grayed out alternative path. Even though this path would produce
the same results, it contains indirect connection and thus needs two queries to be
executed. That’s why the first path is chosen by the shortest path algorithm instead.

22

4.6. Query generation

a) Single entity: “phone of Jan Šedivý ”

b) Dereference: “courses taught at 13133”

c) Reference attribute: “What is the department code and name of BDT course? ”

d) Subresource: “What does Šedivý teach? ”

Figure 4. Types of connections on the join path

23

4. Design

The graph in 4c is an example of query plan containing an indirect reference attribute
connection and also multiple projection attributes. Note that even though the connec-
tion comprises the very same elements as the 4b (Division, Course.department and
Course) the connection is indirect in this case, because it has the opposite orientation
((𝑒𝑎, 𝑟𝑒𝑓(𝑒𝑎), 𝑤𝐼) rather than (𝑒𝑛𝑡(𝑒𝑎), 𝑒𝑎, 𝑤𝐷)).

All query plans containing indirect connections are realized by multiple queries, in
this case two of them:

1. /courses?query=code==BDT&fields=content/department

2. <id>?fields=content/code, content/name)
The last graph in 4d is very similar to the previous one, but it is realized by different

pair of queries, because it is a subresource connection. The first query extracts URIs of
the Teacher records and the second one uses them to construct requests to subresource
of the Teacher resource, Teacher.courses:

1. /teacher?query=lastName==Šedivý;lastName==Šedivý

2. <id>/courses

Query objects generation

A query is an object with four fields:
∙ 𝑞𝑢𝑒𝑟𝑦.𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 is either an entity element or a subresource element and it identifies

the requested resource.
∙ 𝑞𝑢𝑒𝑟𝑦.𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 holds a set of attribute elements that defines what subset of

entity representation should be projected to the query result.
∙ 𝑞𝑢𝑒𝑟𝑦.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 holds a set of triples (𝑒𝑎𝑟, 𝑒𝑐, 𝑡𝑐) ∈ 𝐸𝑎𝑟 × 𝐸𝑝 × 𝑇 that defines

query constraint criteria.
∙ 𝑞𝑢𝑒𝑟𝑦.𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 is a boolean value that denotes whether the resource represents

collection or a single entity. It is true by default.
Each query is constructed from a subpath of 𝑝𝑎𝑡ℎ𝑞 delimited by edges representing

an indirect connections (i.e. the edges of form (𝑒𝑎, 𝑟𝑒𝑓(𝑒𝑎), 𝑤𝐼)).
The 𝑞𝑢𝑒𝑟𝑦.𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 field is set according to the first vertex of the subpath. If the

first vertex is a subresource element 𝑒𝑠, 𝑞𝑢𝑒𝑟𝑦.𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 is set to 𝑒𝑠, if it is a reference
attribute element, 𝑞𝑢𝑒𝑟𝑦.𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 is set to empty value ∅, otherwise (that is for the
first query of the plan) the entity element of the subpath is assigned to 𝑞𝑢𝑒𝑟𝑦.𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒.

For the intermediate queries, the 𝑞𝑢𝑒𝑟𝑦.𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 field points to the references that
are to be passed to the subsequent query. In subresource queries the 𝑞𝑢𝑒𝑟𝑦.𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠
are not set, because the URIs of the subresource itself are the result. Similarly, the
attribute elements are assigned to 𝑞𝑢𝑒𝑟𝑦.𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 of a reference attribute queries.
For the final query on the projection entity, the 𝑞𝑢𝑒𝑟𝑦.𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 is set to 𝑝𝑟𝑜𝑗𝑒.

The triples (𝑒𝑎𝑟, 𝑒𝑐, 𝑡𝑐) in 𝑞𝑢𝑒𝑟𝑦.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 corresponds to all (𝑡𝑐, 𝑒𝑐) ∈ 𝑐𝑜𝑛𝑠𝑡𝑟𝑞 with
𝑒𝑐 equal to the entities in the subpath. The first element of the triple, 𝑒𝑎𝑟, is ∅ if 𝑒𝑐

belongs to the query entity. If it does not belong to the query entity, it means that the
entity of 𝑒𝑐 is connected to the query entity via dereferencing of its reference attribute.
The 𝑒𝑎𝑟 is the the reference attribute that connects query entity to 𝑒𝑐.

Rather then from the description of the assignments to each field, the process is prob-
ably more comprehensible from the point of traversing the query path and progressive
construction of the individual queries. This process is illustrated in form of pseudocode
in the Algorithm 1.

24

4.6. Query generation

Algorithm 1 Generation of REST query plan
Require: 𝑝𝑟𝑜𝑗𝑞, 𝑐𝑜𝑛𝑠𝑡𝑟𝑞, 𝑝𝑎𝑡ℎ𝑞

Ensure: 𝑝𝑙𝑎𝑛
initialize empty 𝑝𝑙𝑎𝑛, initialize new 𝑞𝑢𝑒𝑟𝑦
for all (𝑒𝑖, 𝑒𝑗 , 𝑤) in 𝑝𝑎𝑡ℎ𝑞 do

if 𝑒𝑖 is entity then
if 𝑒𝑗 is reference attribute then

if 𝑒𝑗 belongs to 𝑒𝑖 then
set 𝑞𝑢𝑒𝑟𝑦.𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 to 𝑒𝑖 if not already set
set 𝑞𝑢𝑒𝑟𝑦.𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 to 𝑒𝑗

add all (∅, 𝑒𝑐, 𝑡𝑐) where (𝑡𝑐, 𝑒𝑐) ∈ 𝑐𝑜𝑛𝑠𝑡𝑟𝑞 : 𝑒𝑛𝑡(𝑒𝑐) = 𝑒𝑖 to 𝑞𝑢𝑒𝑟𝑦.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠
add 𝑞𝑢𝑒𝑟𝑦 to 𝑝𝑙𝑎𝑛, initialize new 𝑞𝑢𝑒𝑟𝑦

else
add all (𝑒𝑗 , 𝑒𝑐, 𝑡𝑐) where (𝑡𝑐, 𝑒𝑐) ∈ 𝑐𝑜𝑛𝑠𝑡𝑟𝑞 : 𝑒𝑛𝑡(𝑒𝑐) = 𝑒𝑖 to 𝑞𝑢𝑒𝑟𝑦.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

end if
else if 𝑒𝑗 is subresource then

set 𝑞𝑢𝑒𝑟𝑦.𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 to 𝑒𝑖 if not already set
add all (∅, 𝑒𝑐, 𝑡𝑐) where (𝑡𝑐, 𝑒𝑐) ∈ 𝑐𝑜𝑛𝑠𝑡𝑟𝑞 : 𝑒𝑛𝑡(𝑒𝑐) = 𝑒𝑖 to 𝑞𝑢𝑒𝑟𝑦.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠
add 𝑞𝑢𝑒𝑟𝑦 to 𝑝𝑙𝑎𝑛, initialize new 𝑞𝑢𝑒𝑟𝑦
set 𝑞𝑢𝑒𝑟𝑦.𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 to 𝑒𝑗

end if
else if 𝑒𝑖 is reference attribute and 𝑒𝑗 is entity and 𝑒𝑖 doesn’t belong to 𝑒𝑗 then

set 𝑞𝑢𝑒𝑟𝑦.𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 to ∅ if not already set
set 𝑞𝑢𝑒𝑟𝑦.𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 to false

end if
end for
set 𝑞𝑢𝑒𝑟𝑦.𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 to 𝑒𝑝𝑟𝑜𝑗 if not already set
add all (∅, 𝑒𝑐, 𝑡𝑐) where (𝑡𝑐, 𝑒𝑐) ∈ 𝑐𝑜𝑛𝑠𝑡𝑟𝑞 : 𝑒𝑛𝑡(𝑒𝑐) = 𝑒𝑝𝑟𝑜𝑗 to 𝑞𝑢𝑒𝑟𝑦.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠
set 𝑞𝑢𝑒𝑟𝑦.𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 to 𝑝𝑟𝑜𝑗𝑞

add 𝑞𝑢𝑒𝑟𝑦 to 𝑝𝑙𝑎𝑛
return 𝑝𝑙𝑎𝑛

REST requests generation

Each query is realized by a set of requests to the underlying REST API. The fields of
a query are compiled into a URI template with 𝑖𝑑 parameter. In query plan execution
time, the template parameter is supplied with a resource identifiers set from results of
the precedent query to produce one concrete complete URI for each identifier. The URI
templates have the following form:

⟨𝑏𝑎𝑠𝑒𝑈𝑟𝑖⟩⟨𝑖𝑑⟩⟨𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒⟩?fields=⟨𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠⟩&query=⟨𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠⟩&⟨𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠⟩

The 𝑏𝑎𝑠𝑒𝑈𝑟𝑖 part is the URI of the REST API. It is static and same for all queries.
For KOSapi, 𝑏𝑎𝑠𝑒𝑈𝑟𝑖 is https://kosapi.feld.cvut.cz/api/3/.

The 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 part corresponds to the elements in 𝑞𝑢𝑒𝑟𝑦.𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 field. Each entity
element keeps a resource name for this purpose, the element name is used for the
subresource elements.

The 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 part is a XPartial expression corresponding to attributes in the
field 𝑞𝑢𝑒𝑟𝑦.𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠. Apart from these attributes, it also contains title (a short
description of the records) and link (references to related resources). In the case of

25

4. Design

queries on the collection resources (i.e. those with 𝑞𝑢𝑒𝑟𝑦.𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 equal to true) the
list of the projections is wrapped in id,link,entry(...).

The 𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑡𝑠 part contains a RSQL expression built from the content of the field
𝑞𝑢𝑒𝑟𝑦.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠. It is semicolon separated list of criteria constructed from respective
(𝑒𝑎𝑟, 𝑒𝑐, 𝑡𝑐) triples. If 𝑒𝑎𝑟 ̸= ∅, a criterion starts with 𝑒𝑎𝑟 followed by a dot. The name
of 𝑒𝑐 separated by == from the value constructed from 𝑡𝑐 then follows. For integer or
enumerative attributes, the value is simply the 𝑡𝑐 token as is. For string attributes, the
words of 𝑡𝑐 are wrapped and separated by wildcard *.

The 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠 part comprises other &-separated query string parameters ensuring that
only relevant data are returned:

∙ lang=en and multilang=false - returns only English variant of multilingual data
∙ limit=100 and offset=0 - returns only first 100 results
∙ sem=current,next - returns only results relevant for the current and the next

semesters
∙ detail=1 - return the optional attributes (typically long texts)

(11) Example of REST query plan corresponding to interpretation in Example 9
https://kosapi.feld.cvut.cz/api/3/<id> courses/
?query=code==*bdt*
&fields=id,link,entry(title,link,content/lecturers)
&limit=100&offset=0&sem=current,next&lang=en&multilang=false&...

https://kosapi.feld.cvut.cz/api/3/<id>
?fields=content/lastName,title,content/phone,link
&limit=100&offset=0&sem=current,next&lang=en&multilang=false&...

REST query plan - URI templates

4.7. REST API
NaLIDa provides a RESTful application programming interface to the system func-
tionality for client applications to use. The translation of natural language queries is
provided in three variants, each having a separate resource: KOSapi response, SQL
query and detailed intermediate outputs.

This section describes the HTTP requests that each resource accepts as well as the
responses it produces. For details on response formats see section 5.7.2.

4.7.1. KOSapi response

The KOSapi response resource retrieves the result data corresponding to the submitted
query by generating and executing a RSQL query plan.
resource URI: GET /api/kos?q=<query> &t=<interpretationId>
query parameters:

query (q) - required parameter, contains the natural language query to be translated.
interpretationId (t) - optional parameter, identifies the selected interpretation in the

case that the query is ambiguous. Value -1 means that the ambiguity should be
resolved automatically.

produces: application/xml, text/html
responses:

200 OK - query was successfully translated. The response contains either the result
data or a list of possible interpretations in the case of ambiguity.

26

4.7. REST API

400 Bad request - no query was submitted or it was not translatable.
500 Internal server error - communication with KOSapi failed.

4.7.2. SQL query
The SQL query resource translates the submitted query into a SQL query plan.
resource URI: GET /api/kos/sql?q=<query> &t=<interpretationId>
query parameters: same as for KOSapi response
produces: application/xml, text/html
responses: same as for KOSapi response. The response contains a translation to SQL

statement instead of the result data.

4.7.3. Detailed intermediate outputs
The detailed intermediate outputs resource provides a textual debugging log concerning
RSQL and SQL query plan generation, along with intermediate results and the final
XML result.
resource URI: GET /api/kos/debug?q=<query> &t=<interpretationId>
query parameters: same as for KOSapi response
produces: text/plain, text/html
responses: same as for KOSapi response. The response contains a text document with

debug information including the submitted query, the selected interpretation, the
translation to both RSQL and SQL query plans and the result data.

27

5. Implementation

The design introduced in the previous chapters has been implemented into a functional
NLIDB system. This chapter covers the used technologies and its sections 5.1 to 5.7
describe the implementation details of each system component.

NaLIDa is divided into two modules, Core and Web. Both are written in Java
programming language and use Apache Maven 2 to manage the project’s build as
well as its dependencies.

The project depends on a number of open source libraries to facilitate various sub-
tasks. The Appendix B presents their detailed enumeration. Apache Common CLI
validates and parses command line arguments, SnakeYAML parses database schema
description, JGraphT builds a graph representation of the database schema and anal-
yses it using graph algorithms, Stanford CoreNLP performs a syntactic analysis of
the NL input, Google Guava is used throughout the application to ease the manipu-
lation with collections and Jersey handles communication by means of RESTful Web
services.

The Core module is a Java Standard Edition 7 project which can be used either
directly as a standalone command line tool (taking as an argument a NL query or a path
to file containing list of such queries) or as a library used by another Java application.
This module consists of several components each handling a specific subtask from the
schema configuration, NLP and interpretation to the query generation and result data
retrieval.

The Web module is a Java Enterprise Edition 7 project providing an interface to
Core module in form of RESTful Web service. Deployment of the application was
tested on Apache Tomcat 7 web server, but it is expected to run seamlessly on most
standard JEE application servers.

5.1. Schema
Schema consists of two data structures representing a layout of the underlying database,
a schema element tree and an entity-relationship graph. Both are constructed upon
the application initialization from the schema description, whose format is specified in
section 5.1.3).

The classes comprising the schema are bundled in the nalida.schema package. This
includes the Schema class and the Element class as well as all its subclasses.

5.1.1. Schema element tree
The element tree is a three-level tree structure with vertices of Element class. Abstract
Element class has 5 subclasses: Entity, Attribute, Subresource, Value and WhWord.
Their type and composition hierarchy is depicted in Figure 5. Apart from the references
to its parent and a collection of its children, each element object has a list of tokens,
that represent it in NL queries, and a unique name.

Each level of the tree consists of specific types of elements as follows:
1. Root of the tree is the Schema itself with Entity objects as children.

28

5.1. Schema

Figure 5. Class diagram of nalida.schema package

2. Each Entity has children of two classes: Attribute and Subresource. An object
of Attribute class is either primitive (with string, integer or enumeration type)
or a reference to an Entity, a Subresource is always a reference.

3. Each primitive Attribute has a single Value child.
Singleton object of WhWord type represents an interrogative word, not a database ele-
ment, and is therefore not present in the element tree.

5.1.2. Entity-relationship graph

The entity-relationship graph is an object stored in a field of Schema object and
it has type DirectedWeightedMultigraph<Element, DefaultWeightedEdge>, where
DirectedWeightedMultigraph and DefaultWeightedEdge are classes provided by the
JGraphT library. It is created from the element tree by a procedure described in
section 4.6.2. The values of weights 𝑤𝐷 and 𝑤𝐼 are set to 1 and 1.1, respectively.

5.1.3. Schema description format

The schema description is a file in YAML format that completely defines the structure
of the schema. YAML is a human-readable data serialization format. It relies on
outline indentation for structure which makes it clutterless and comfortably readable
and editable by a human.

The definition of the schema description is the first step in the system configuration,
prior to the execution or deployment of the system. For REST APIs that are not defined
in terms of machine-readable specification, such as KOSapi, the schema description
must be defined manually by the system administrator, which makes the YAML format
particularly suitable for this task.

There are many machine-readable formats for definition of REST APIs, such as
WADL, RAML, or RSDL. Should the underlying REST API be defined in terms of
such definition format, the schema description could be defined semi-automatically.
However, because the target REST API of this thesis, KOSapi, does not have such

29

5. Implementation

definition, the task of the automatic schema description generation is not addressed in
this thesis.

The YAML schema description is a nested structure of associative arrays and lists. In
the root of the hierarchy, there is an array of the of the records, baseUri and entities.
Under baseUri key, there is the address of underlying REST API. In entities, there
is a list of arrays defining the individual entities.

Each entity array contains these keys: name, resource, tokens, attributes and
subresources. The values of name and resource are strings that specify the name
and the resource URI of the entity. The list in the tokens enumerates token strings that
can represent the entity in a natural language query. In attributes and subresources,
there are lists of arrays specifying individual attributes of the respective type.

Each attribute is defined in terms of three keys: name and tokens, which are similar
to the same records of entity, and type. Type of the attribute is denoted by a string
in type. For primitive attributes, it contains either string, integer or enum. For
reference attributes and subresources, it contains the name of the references entity,
with * appended in the case of collection attributes.

Listing 5.1 Snippet of the schema description file

baseUri: https://kosapi.feld.cvut.cz/api/3/
entities:

- name: Teacher
resource: teachers/
tokens: [teacher]
attributes:

- name: email
type: string
tokens: [email]

- name: division
type: Division
tokens: [division, department, work, employ]

- name: supervisionPhDStudents
type: enum
tokens: [supervision]

subresources:
- name: courses

type: Course
tokens: [teach]

- name: Course
resource: courses/
tokens: [course]
attributes:

- name: credits
type: integer
tokens: [credit]

- name: instance/lecturers/teacher
type: Teacher*
tokens: [lecturer, lecture]

- name: Division
...

30

5.2. Lexicon

A snippets of the schema description file is shown in Listing 5.1. Note that the
schema does not describe the KOSapi in its entirety, because some parts that does not
contain information realistically queryable by natural language queries, such as entities
Pathway or CoursesGroup, were omitted. Full entity-relationship model of KOSapi is
depicted in Appendix C.

5.1.4. Value tokens

The schema description specifies tokens that can represent the given entity element or
attribute element in the natural language queries. However, in order to successfully
interpret an input, the tokens of value elements must be correctly interpreted as well.

Because there is often a great number of possible values for a given attribute, the
value tokens are not stored directly in the schema description, but in separate files, one
file listing all possible values for each primitive attribute.

For the very same reason, it is infeasible to create the value tokens files by hand. The
system therefore includes ValueExtractor, a simple utility for automatic extraction
of the value tokens from the underlying REST API. It takes the Schema object as an
input, it constructs and executes a series of queries for each entity and then it saves the
values of the results attributes to the respective files.

The resources exposed by KOSapi usually contain hundreds or thousands of records.
The maximal number of results for one request is limited to 1000 records, but the
requests with great number of results sometimes take very long or even cause time out.
The records are therefore retrieved in batches of 100 using the limit and offset query
parameters.

5.2. Lexicon

The single purpose of the Lexicon component is to provide mapping from a lemma to
all the tokens it appears in. This is implemented by a simple lookup in a structure of
type Map<String, Set<Token».

During its initialization, the Lexicon traverses the schema element tree and creates
a Token object for each token of each entity, attribute and value. Each lemma of the
Token objects created in this way are then inserted into the map as a key pointing to
the set of all corresponding tokens.

While the components described in following sections perform their tasks on per-
request basis, the schema and the lexicon are loaded only once in the execution lifecycle
of the application.

5.3. Syntactic analysis

Because the implementation of syntactic analysis tools such as tokenizer, POS tagger
or parser is a complex task on its own and it typically requires a large training corpus
of annotated data, an of-the-shelf general-purpose solution is used instead of creating
a new one specifically for purposes of this project.

After considering several available NLP toolkits, Stanford CoreNLP was selected
as it best meets the requirements of the system. Firstly, it performs all required syntac-
tic analysis tasks out of the box and provides great accuracy and performance without a
need of any configuration and customization. Secondly, it is well documented, designed
to be usable with minimal effort and also implemented in Java, which means that

31

5. Implementation

its incorporation into NaLIDa was a matter of five lines of code. CoreNLP is also
highly extensible, which means that the NaLIDa-specific part of the syntactic analysis,
namely matching the word lemmata to the tokens, could be easily integrated into its
workflow so that all the results of the syntactic analysis can be accessed by Interpreter
component in a uniform way.

The class nalida.syntax.stanford.SyntacticAnalysis encapsulates a pipeline of
five annotators from CoreNLP toolkit: tokenizer, sentence splitter, POS tagger, lem-
matizer and parser [24]. The pipeline also includes SemanticAnnotator, a custom anno-
tator (called tokenizer in section 4.4), that uses Lexicon to assign a set of corresponding
tokens to each lemma produces by CoreNLP lemmatizer.

5.4. Interpreter
The Interpreter, along with other related classes bundled together in the pack-
age nalida.interpretation (shown in Figure 6), implements the semantic analy-
sis. Interpreter is an interface declaring a single method Set<Interpretation>
interpret(T annotatedLine), which takes an annotated line created by a syntac-
tic analysis component and produces a set of valid interpretations. The interface is
implemented by CoreNLP-specific class StanfordInterpreter, possibly the most in-
volved class of the system, that uses the Stanford parse tree and annotations created
by SemanticAnnotator to produce the interpretations, as described in section 4.5.

Figure 6. Class diagram of nalida.interpretation package

5.5. Query generator
Because there is practically no standardization in the field of REST API query lan-
guages, a NLIDB system that aims to be portable to various REST API must allow

32

5.5. Query generator

for customization of the query generation module to every new REST API. NaLIDa
furthermore considers the relational databases as a its potential DBMS platform.

These issues are addressed by concentrating as much of the query generator func-
tionality (bundled in the nalida.query package) as possible into general purpose
classes QueryGenerator, QueryPlan and Query, and extending them by concrete classes
in packages nalida.query.rest and nalida.query.sql that implement the DBMS-
specific parts.

Figure 7. Class diagram of nalida.query package

As stated in section 4.6.5, the algorithm of SqlQueryGenerator is quite simple. It
creates a QueryPlan with a single SqlQuery whose execution produces a SQL SELECT
statement.

On the other hand, RestQueryGenerator implements the Algorithm 1 to build a
QueryPlan consisting of a sequence of chained RestQuery objects. Because the Query
objects are immutable, the generator uses RestQueryBuilder to progressively construct
the queries. When a query plan is executed, the queries use Jersey Client API library
to perform the HTTP requests to the underlying REST API. Successful HTTP requests
return a set of XML documents, which are combined into a single result with the help
of utility class for XML processing called nalida.util.XmlParser. In order to retrieve
URIs that are to be passed to the subsequent query, the same utility class constructs
an XPath expression from 𝑞𝑢𝑒𝑟𝑦.𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 field and evaluates it on the XML result
document.

33

5. Implementation

5.6. Command line interface
Even though the main objective of this thesis is to provide interface to the system in
the form of RESTful Web service, the ability to use the system via a command line is
very useful for a number of use cases, such as testing and experimentation.

The NaLIDa CLI supports several options to be passed as input arguments as well as
multiple ways to submit the input data. All the CLI capabilities are implemented in the
nalida.Main class, which handles everything from the input parsing, NLP components
orchestration, dialog management and the results retrieval and presentation.

For the arguments parsing, it uses the Apache Common Cli library, which provides
easy, flexible and robust way to specify command line options. If the application is
executed without any parameters, a default output shown in Listins 5.2 is printed that
describes the purpose of the application and its supported options.

Listing 5.2 Default output of NaLIDa command line interface
Missing required option: [-f process and answer each query from file,
-e show example queries and their processing,
-q process and answer the query from argument]

usage: -example | -file <queriesListFileName> | -query <query>
-d,--dry-run translate a query without executing it
-e,--example show example queries and their processing
-f,--file <arg> process and answer each query from file
-g,--graph visualize entity-relationship graph
-q,--query <arg> process and answer the query from argument
-s,--sql translate a query into SQL instead of REST request
-v,--verbose prints out detailed information about what is being

done

A user can input a single natural language query into the query option or multiple
queries by providing a path into the file option. The path must point to a plain text
file with one query per line. The lines starting with # character are considered to be
comments and they are not evaluated. To showcase its functionality without the need
of providing a custom input, the application contains a list of sample queries, that can
be executed by example option.

The remaining options can be set to modify the output of the application. By default,
a RSQL query plan is executed and only its results are printed to the standard output
stream. The dry-run option only prints out the query plan instead of executing it,
the sql option translates the input into SQL command, the graph option visualizes
the ERM graph (works only in graphical environments) and the verbose option prints
the progress of the translation and several intermediate results instead of just the final
result.

5.7. Web service
While all the components described in the previous sections are parts of NaLIDa
Core module, the Web service that provides RESTful API to the formerly described
functionality resides in a separate module called NaLIDa Web. Besides the resources
described in section 4.7 the module also provides a HTML home page that serves as a
user-friendly introduction to the NaLIDa project and API.

34

5.7. Web service

5.7.1. Home page

The home page resides on the root URI of the application (in the development environ-
ment, for example http://localhost:8080/nalida-web/). It is a single HTML page
build with Twitter Bootstrap front-end framework that allows fast and effortless
development of sleek and responsive web design. It also uses JQuery JavaScript library
for AJAX calls and DOM manipulation

The appearance of the home page is shown in Figure 8. From top to bottom, it
consists of navigation bar, introduction text, query forms and API description.

Welcome to NaLIDa a Natural Language Interface for Database

Ask a question from the domain of KOS, information system of CTU in Prague. NaLIDa knows

stuff about students, teachers, divisions, courses, parallels and exams.

Check the enumeration of supported entities, attributes and their natural language tokens in XML

format for inspiration. Click on the examples or submit your own natural language question in

English. Use either a wh-question or a noun phrase.

KOSapi response

 auto-disambiguate

Examples

Submit

What is phone of Jan Šedivý?

Which teachers are from division

13133?

SQL query

 auto-disambiguate

Examples

Submit

What is phone of Jan Šedivý?

Which teachers are from division

13133?

Detailed log

 auto-disambiguate

Examples

Submit

What is phone of Jan Šedivý?

Which teachers are from division

13133?

NaLIDa Home About GitHub

Generated with www.html-to-pdf.net Page 1 / 1

Figure 8. NaLIDa RESTful API Home page

The navigation bar provides anchors to individual page components as well as the
link to the project repository. The introduction text briefly describes the purpose of
the system, the available actions and supported inputs. The API description lists the
provided resources and describes their properties similarly to how they are described
in section 4.7.

The most important part of the page are the query forms. For each of the three re-
sources, there is a form consisting of an text input field, auto-disambiguation checkbox,
submit button and list of examples.

A user can write his natural language query into the textbox and send it for trans-
lation by pressing the submit button. The auto-disambiguation checkbox alters the
behavior of the system in the case that the input is ambiguous and multiple valid
interpretations are available. By checking the auto-disambiguation, the user sets the
parameter t=-1 and leaves it up to the system to decide which interpretation to evalu-
ate. If the checkbox is unchecked, the XML representations of all valid interpretations
are returned instead and the user can select the correct one to obtain the results. The

35

5. Implementation

list of the examples consists of predefined input sentences that can be submitted by
clicking on them.

The submitted requests are sent asynchronously to the REST API resources and
their results are displayed in a modal window without the need of reloading the page.

5.7.2. REST resources

The RESTful API of NaLIDa is exposed at URI /api relative to the root of the
application, for instance http://localhost:8080/nalida-web/api.

The implementation of the three resources is bundled in nalida.webapp package.
Apart from the classes implementing each resource, ResponseResource, SqlResource
and DebugResource, and their common abstract superclass AbstractResource, the
package also includes classes for error handling and serialization. The resources are
implemented in terms of Java API for RESTful Web Services (JAX-RS), a standard
for defining REST resources by annotating plain Java classes, implemented by Jersey
library.

Each resource provides response in its default format (XML or plain text) and also in
HTML by wrapping the default format in HTML code. Examples of the XML response
from ResponseResource and SqlResource are provided in Listings 5.3 and 5.4. The
HTML representation is used by the asynchronous calls from home page.

Listing 5.3 XML serialization of KOSapi response
<?xml version="1.0" encoding="UTF-8"?>
<results>

<atom:feed xml:base="https://kosapi.feld.cvut.cz/api/3" ... >
...

</atom:feed>
</results>

Listing 5.4 XML serialization of SQL response
<?xml version="1.0" encoding="UTF-8"?>
<sql>

SELECT ... FROM ... WHERE ...;
</sql>

Listing 5.5 XML serialization of interpretations
<?xml version="1.0" encoding="UTF-8"?>
<query>What is the username of Jakub Stejskal?</query>
<interpretations>
<interpretation>

<link href="/kos?q=What+is+the+username+of+Jakub+Stejskal%3F&t=0" />
<tokens>

[WH_WORD, ATTRIBUTE/Student.username,
VALUE/Student.firstName, VALUE/Student.lastName]

</tokens>
</interpretation>
<interpretation>

<link href="/kos?q=What+is+the+username+of+Jakub+Stejskal%3F&t=1" />
<tokens>

36

5.7. Web service

[WH_WORD, ATTRIBUTE/Teacher.username,
VALUE/Student.firstName, VALUE/Student.lastName]

</tokens>
</interpretation>
</interpretations>

The class AbstractResource contains methods for the HTML wrapping as well as
for the disambiguation of interpretations and their serialization. An example of a
disambiguation response with interpretations serialized to XML is presented in Listing
5.5 Each interpretation in the XML is accompanied by the URI that identifies the
resource representing the evaluation of the respective interpretation. The URIs differ
from each other only in the values of the parameter t.

Several error states may occur in the system, such as invalid input or unavailable
KOSapi. In order to propagate information about their origin to the client of the API,
the system must be able to serialize the resulting exceptions into the format requested
by the client. This is solved by wrapping the exception into custom NalidaException
which encapsulates its information into a serializable ErrorBean object.

Listing 5.6 XML serialization of error message
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<error>

<errorCode>400</errorCode>
<errorMsg>Failed to translate query ’example of invalid input’.

Try to reformulate it.</errorMsg>
</error>

37

6. Evaluation

Based on the research of the evaluation methods used by other NLIDB systems pre-
sented in section 3.1.1, a set of experiments was performed to measure the quality and
performance of NaLIDa as well as to identify its shortcomings.

As this thesis focuses on development of an interface to REST APIs and KOSapi in
particular, the system was evaluated on the configuration for the KOSapi knowledge
domain. The testing corpus was collected from the university students and it concerns
the data in the study information system.

Section 6.1 describes the testing data and how they were acquired, section 6.2 cov-
ers how the data were classified and evaluated as well as what was measured during
the experiments and how, section 6.3 presents the measured results and discusses the
findings.

6.1. Data collection

Because a part of the assignment of this thesis is to perform a testing with users, the
corpus for evaluation of NaLIDa was collected from members of the potential user
base, rather than being created by the author of the system.

Six student of the Czech Technical University were asked to provide a list of natural
language queries. They were briefly introduced to the purpose of the evaluated system
and they were provided with a document with instructions regarding the limitations
described in 4.1. The document included following information:

∙ the supported entities with a link to the KOSapi documentation
∙ the supported utterance types
∙ the limitation of the knowledge base to the data in KOSapi

The respondents were also asked to try to cover the knowledge domain as much as
possible. They submitted their queries “offline”, i.e. without directly interacting with
the system.

Some of the students did not read the whole instructions thoroughly and they sub-
mitted many questions that do not comply to the defined constraints. While these
utterances are inherently untranslatable by the current systems and thus provide no
information in terms of translation accuracy, they are still utilized in this evaluation
for a different purpose.

Invalid inputs are useful in the sense of modeling the behavior of a typical user.
The experience says that many users simple do not read any documentation or in-
structions. By examining the input utterances provided by such users, we can learn
important lessons about what the users expect from the system and how to deal with
this discrepancy of the expected and the actually supported functionality.

The total number of natural language queries collected from the students was 100.
This number is sufficiently large to be comparable with results of other NLIDBs and
sufficiently small to allow manual evaluation.

38

6.2. Evaluation methodology

6.2. Evaluation methodology

Before running the actual experiments, the collected corpus was divided into two groups
based on whether the utterance represented a valid input to the system or not.

The invalid inputs were further classified based on what constraints, from those de-
fined in 4.1, they violated:

∙ knowledge domain – queried information is not available in KOSapi
∙ time criteria – utterance contains date attribute constraint
∙ comparison criteria – utterance contains comparison operator criteria such as

“less than ” or “greater than ”
∙ aggregate functions – utterance requires aggregate functions keywords such as

“smallest ”, “biggest ” or “average ”
∙ utterance type – utterance was neither wh-question nor noun phrase
∙ spelling mistakes – utterances contains misspelled or incorrectly written keywords

The grammatical errors described in section 4.1.5, such as missing articles or incorrect
verb forms were not considered as invalidating.

Both the valid and the invalid inputs were evaluated using the command line interface
of NaLIDa. The program was set to produce and execute the REST query plans so
that the well-formedness of the REST requests and the relevance of their answers could
be validated. For the very same reason, the SQL query generator was not evaluated,
as there was no simple way to empirically verify its results. If the interpreter returned
multiple interpretations for disambiguation, the best one was selected manually. The
correctness of the generated query plan and its results was also checked manually. In
the case of the successful queries, various additional features were observed for each
utterance:

∙ how many interpretations were returned for disambiguation
∙ how complex the selected interpretations were, i.e. how many entities were in-

volved in each interpretation
∙ length of the query plan, i.e. number of its queries
∙ computation time of the translation and the execution
In the field of information retrieval with binary classification, the relevance of the

results is expressed in terms of precision (the fraction of answers that are correct) and
recall (the fraction of correct answers from all asked questions). In the case of ambiguity,
a query is considered as correctly answered if it can be answered by one of the offered
interpretations. However, a NLIDB system has three possibilities: to answer correctly,
to answer incorrectly, or not to answer at all. An additional metric, called willingness,
has been introduced to represent tendency of the system to actually provide answers
to queries [5]. The definitions of all three terms follow.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑢𝑛𝑎𝑛𝑠𝑤𝑒𝑟𝑒𝑑

𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑢𝑛𝑎𝑛𝑠𝑤𝑒𝑟𝑒𝑑

39

6. Evaluation

6.3. Results

The results of the evaluation are presented in Table 1. Most importantly, the experi-
ments have shown that the translation succeeds in 85.9 % of cases for the valid inputs
and in 61.0 % for the whole test set including the invalid inputs. The invalid inputs
constituted 29.0 % of the test set.

absolute number percentage [%]
valid invalid total valid invalid total

unanswered 8 12 20 11.3 41.4 20.0
incorrectly answered 2 9 11 2.8 31.0 11.0

partially answered 0 8 8 0.0 27.6 8.0
correctly answered 61 0 61 85.9 0.0 61.0

Σ 71 29 100

Table 1. Number and percentage of inputs by validity and correctness of results

The translation of a valid input did not lead to the correct query plan and its answer
in 10 cases. In principle, there are 3 points of the process where the translation may fail:
the syntactic analysis, the interpretation and the join path finding in query generator.

The examination of the translation process of the concerned inputs revealed that
only a single input failed in the query generation phase. The input “teachers of
parallels in room T2:A4-202a ” was correctly parsed and interpreted, but it failed
to find a link between the entities Room and Parallel, because there simply is none.
KOSapi does include reference attribute link from Parallel to Room, but it is part of
its inner entity TimetableSlot and therefore does not allow dereferencing. In another
words, the said query cannot be answered with current capabilities of KOSapi (this
could however change soon, see section 7.1).

The other 9 inputs failed in the syntactic analysis phase. For instance, the input
“What is the number of occupied seats of Y01ALG course? ” was not correctly
translated, because the phrase “the number of occupied seats ” was not recognized
as a token matching element Parallel.occupied. Every such concrete case can be eas-
ily solved by extending token set of corresponding element, but that is not a viable
approach in principle, because it would require a continuous monitoring and manual
editing of the schema description by the system administrator. This issue should be
therefore addressed in the future research.

Another category of failures can be represented by the query “Where is the test
for KO? ”. While it is evident to a person that the word “Where ” refers to the room
and that the question implicitly asks for Exam.room attribute, NaLIDa does not as-
signs this level of semantics to interrogative words. Another NLIDB system, Precise,
addresses this issue by storing a list of interrogative words compatible with each at-
tribute. Wh-words are then regarded as special kind of value elements belonging to all
compatible attributes.

The last and the most prevalent cause of valid input translation failure is the incor-
rect parse tree. Consider the sentence “Where are the parallels visited by Adam
Lenger? ”. The correct parse tree of this sentence is following:

Where are
�� ��

the parallels
��

visited
��

by Adam Lenger

40

6.3. Results

However, the parser misinterprets the sentence and it provides following tree:

Where are the parallels visited
�� �� �� ��

by Adam Lenger

To explain the difference, the second interpretation can be paraphrased as “Where
does Adam Lenger visit the parallels?” rather than “Where are the parallels that are
visited by Adam Lenger?” Technically speaking, this is not a mistake on the parser
side, because the second interpretation is also grammatically correct and even makes
perfect sense. However, this prevents the correct projection token “parallels ” to be
identified and it makes the translation fail. To parse this type of questions correctly,
the parser must be reconfigured, retrained or even replaced with a different parser, that
prefers the correct interpretation.

The incorrectly answered inputs were divided into those whose answers were plainly
wrong and those that produced answers that were close enough to the correct interpre-
tation to be practically useful to the questioner. While these cases did not occur for the
valid inputs, almost half of the incorrectly answered invalid inputs fell to this category.

One of such queries was “Who’s the reviewer of thesis with type B and with
student rychtluk? ”. In KOS, “B ” stands for bachelor study programme type. How-
ever, in KOSapi this flag is mapped to enumeration value BACHELOR, and because the
enumeration attributes criteria do not support wildcards, the question would have to
contain the exact value “bachelor ” or “BACHELOR ” to be recognized. That being said,
the rest of the input query was interpreted correctly and its answer consisted of two
records: the Bachelor’s thesis and the Master’s thesis of the student in question.

valid inputs [%] all inputs [%]
precision 96.8 77.2

recall 85.9 61.0
willingness 88.7 79.0

Table 2. Precision, recall and willingness for all inputs and the valid ones

From Table 2 that shows precision, recall and willingness, it stands out that the
system is quite conservative in terms of providing a wrong answer to valid input. Indeed,
its answer is incorrect in only 2.8 % of cases. The same is not true for the whole test
set, because the invalid inputs produce an incorrect answer more often than no answer
at all.

Figure 9 summarizes the other features of the translation measured for the valid
inputs. Graph 9a shows that in more than 75 % of cases the disambiguation did not
take place, because a single interpretation was selected automatically.

As for the rest, the only two cases where the experimenter had to choose between
more than two options were really short utterances containing the word “teach ”, e.g.
“Who teaches Programming 1? ”. Given the concerned domain, the word can describe
various relations between many different entities. Furthermore, the small number of
other tokens caused that the interpreter lacked the context to decide what entities were
relevant.

Graphs 9b and 9c confirm that although, in theory, NaLIDa is able to construct
and answer complex queries traversing many entities and chaining several requests to
KOSapi, realistic inputs do not concern more than 3 entities and they are realizable in
two consecutive queries or less.

41

6. Evaluation

The distribution of time that it takes to perform the syntactic analysis, interpretation
and query generation is depicted on graph 9d. It shows that the vast majority of the
valid inputs is translated in less than 150 ms, while taking 92 ms in average, which is
fast enough to be perceived as an instant reaction by a user [25]. However, graph 9e
shows that translation time is not that much of a concern, because the response time
of a query plan execution against KOSapi ranges in units of seconds. This is partly
caused by the fact that some queries comprise several HTTP requests, but even for
a single request the response time varies wildly between different KOSapi resources.
Still, the average time of the whole process, including the query processing and the
answer retrieval, is 1624 ms for the valid input test set. Such performance is considered
acceptable for the web-based applications.

Let us now focus on the input utterances that somehow violated the conditions for
validity. Table 3 shows the distribution of invalid inputs to groups based on the violated
constraints. Note that the numbers do not add up to the total number of invalid inputs,
because the groups overlap and some inputs are thus in multiple groups.

violated constraint number percentage [%]
knowledge domain 10 31.0

aggregate functions 10 34.5
utterance type 6 20.7

spelling mistakes 6 20.7
time criteria 2 6.9

comparison criteria 1 3.5
Σ 29

Table 3. Number and percentage of invalid inputs by violated constraint

The prevalent groups are the queries regarding information that is out of the knowl-
edge domain and the queries using aggregate functions. The first group includes ques-
tions about domain information that is not available in KOSapi such as student’s age or
phone number, teacher’s consultation hours and study department opening hours and
personnel. While some the requested information is either irrelevant or confidential, the
rest is just not included in the KOSapi interface. The knowledge domain would have
to be extended to resolve these queries. This could be done on the NaLIDa level by
using multiple databases in parallel, but given the nature of the missing information, a
solution on the KOSapi level seems to be more reasonable, because such information
may be useful for its other consumers as well.

The second group comprise the queries about the largest capacity, smallest depart-
ment, total number of students with given name etc. Similarly to the first group, this
issue can be resolved on both NaLIDa and KOSapi side, but again, the solution on
the other side is more reasonable, in this case for the performance reasons. Execut-
ing a single SELECT count statement against the KOS database can be performed
much faster than retrieving all relevant records to NaLIDa and post-processing them
to compute the same result.

The nature of remaining groups was already discussed in previous chapters, namely
sections 4.1.3, 4.1.4 and 4.1.5.

To conclude, we must stress that it is very tricky to compare the results of our
experiments with others that were performed not only under different assumptions, on
different knowledge domains and on different test sets, but also on a different DBMS
architecture. That being said, we dare to say that the success rate of NaLIDa is well

42

6.3. Results

0 1 2 3 4
0

10

20

30

40

50

60

Interpretation count

F
re

qu
en

cy

a) Numbers of valid interpretations returned
for disambiguation

1 2 3
0

10

20

30

40

Interpretation size

F
re

qu
en

cy

b) Numbers of entities in selected interpre-
tations

1 2
0

10

20

30

40

50

Query plan length

F
re

qu
en

cy

c) Numbers of queries in the query plans

0 100 200 300 400
0

5

10

15

20

25

Translation time [ms]

F
re

qu
en

cy

d) Time of query translation

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

Query execution time [ms]

F
re

qu
en

cy

e) Time of query plan execution

Figure 9. Evaluation measurements for valid inputs

43

6. Evaluation

within the interval that is common for NLIDB systems. Roughly speaking, the success
rate of other systems, usually reported in terms of recall, ranges between 80 % to 100 %
[12, 11, 9].

More importantly, the experiments have provided a valuable insight to the nature of
both the successful and unsuccessful queries. This knowledge may serve to determine
the directions of the future research and development, but it may also serve to the
developers of client applications to help them communicate the limitations of the system
to the end users.

44

7. Conclusion

In this work, a natural language interface to database of the university information
system KOS was proposed, implemented and evaluated. The resulting system is able
to translate a natural language query into a set of requests to a RESTful Web service
that encapsulates the KOS database.

The design of the system builds on the previous research in the field, but because
the existing solutions predominantly assume direct access to the underlying relational
database, their methods had to be adapted to cope with the granularity and limitations
of the intermediate layer.

The exploration of the NLIDB methods and approaches for use in the context of
RESTful application programming interfaces is thus the main contribution of this thesis.

The quality of the solution was assessed by experiments with a test set collected from
the potential users. We may conclude that the system exhibits a good performance
and accuracy for the queries from the targeted subset of the natural language. The
unsuccessful translations of both the valid and invalid inputs were analyzed in order to
determine the importance of the individual possible future research directions.

7.1. Future work
Several constraints were defined for the supported input utterances. While some of
them were introduced simply to provide a realistic scope for this thesis, others were
based on the technical limitations of KOSapi. During the writing of this text, these
limitations were discussed with the author of KOSapi and he went so far as to initiate
work on the removal of some of them. For instance, the dereferencing of collection
attributes should be supported in near future. These changes will have to be addressed
accordingly in NaLIDa.

The experimental evaluation revealed the most pressing shortcomings of the cur-
rent solution as well as the most promising opportunities for the future improvements.
Again, some of them are a matter of coordinated effort on both NaLIDa and KOSapi
side, but others, such as spelling correction or comparison criteria, are solely in the
scope of NaLIDa.

While this thesis focused primarily on the university domain and communication
with KOSapi, the system was designed with the portability to different domains and
database managements systems in mind. The success of this objective could be assessed
by using the NaLIDa framework to create a NLIDB for a different domain.

Finally, in order for the system to be actually useful to end users, it must be integrated
into an existing client application or a dedicated client must be developed.

45

Appendix A.

Contents of the enclosed CD

The CD-ROM enclosed to this thesis contains various data including this document
in PDF format, source files of this document and of the implemented system, a guide
describing the compilation, installation and execution of the system, and the data
necessary to run the application.

The schema directory includes the schema description and the primitive attribute
value files. The example.txt contains input utterances used when CLI application
is executed with -e option. The evaluation.txt contains input utterances used for
the experimental evaluation. Note that only the attribute values necessary to run the
example.txt are included. For full-fledged NaLIDa experience, the value data must
be extracted as described in installation.txt.

/
stejskal-msc.pdf .. this document
installation.txt installation and usage guide of the system
readme.txtdescription of the structure of the distribution
src

nalida-coresource files of the NaLIDa Core module
data data files of the NaLIDa Core

schemadirectory containing schema description
examples.txtqueries used when CLI is executed with -e option
evaluation.txtqueries used for evaluation

nalida-websource files of the NaLIDa Web module
texLaTeX source files of this document

46

Appendix B.

Dependencies

B.1. NaLIDa Core dependencies
groupId artifactId version
commons-cli commons-cli 1.3-SNAPSHOT
org.yaml snakeyaml 1.13
edu.stanford.nlp stanford-corenlp 3.3.1
com.google.guava guava 16.0.1
org.jgrapht jgrapht-core 0.9.0
org.jgrapht jgrapht-ext 0.9.0
com.sun.jersey jersey-client 1.18

B.2. NaLIDa Web dependencies
groupId artifactId version
cz.cvut.fel.nalida nalida-core 0.0.1-SNAPSHOT
com.sun.jersey jersey-server 1.18
com.sun.jersey jersey-servlet 1.18
com.sun.jersey jersey-json 1.18
org.webjars bootstrap 3.1.1
org.webjars jquery 1.11.0

47

Appendix C.

Entity-relationship model of KOSapi

Figure 10. KOSapi entity-relationship model

Taken form https://kosapi.fit.cvut.cz/projects/kosapi/wiki/Er_model.

48

https://kosapi.fit.cvut.cz/projects/kosapi/wiki/Er_model

Bibliography

[1] Jakub Jirůtka. “KOSapi – third version”. czech. Master’s Thesis. FEE CTU in
Prague, 2013.

[2] L. Androutsopoulos. “Natural Language Interfaces to Databases - An Introduc-
tion”. In: Journal of Natural Language Engineering 1 (1995), pp. 29–81.

[3] ProgrammableWeb. Apr. 2014. url: http://www.programmableweb.com/.
[4] William A. Woods, Ronald M. Kaplan, and Bonnie Nash-Webber. The Lunar

Sciences Natural Language Information System: Final report. Tech. rep. 2378.
Cambridge, MA: Bolt, Beranek, and Newman, Inc., 1972.

[5] Michael Minock. “C-Phrase: A system for building robust natural language inter-
faces to databases.” In: Data Knowl. Eng. 69.3 (Mar. 9, 2010), pp. 290–302.

[6] Daniel Jurafsky and James H. Martin. Speech and Language Processing. Prentice
Hall, 2000.

[7] A Novel Approach Towards Incorporating Context Processing Capabilities in NLIDB
System. Proceedings of the Sixth International Joint Conference on Natural Lan-
guage Processing. Nagoya, Japan: Asian Federation of Natural Language Process-
ing, 2013, pp. 1216–1222.

[8] Safwan Shatnawi and Rajeh Khamis. “An Approach for Developing Natural Lan-
guage Interface to Databases Using Data Synonyms Tree and Syntax State Table.”
In: SCSS. Springer, 2009, pp. 509–514. isbn: 978-90-481-9111-6.

[9] Ana-Maria Popescu et al. “Modern natural language interfaces to databases: Com-
posing statistical parsing with semantic tractability”. In: In Proceedings of the
Twentieth International Conference on Computational Linguistics (COLING-04).
2004.

[10] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. Towards a Theory of Natural
Language Interfaces to Databases. 2003.

[11] Neelu Nihalani et al. “An Intelligent Interface for relational databases”. In: IJSSST
11 (2000).

[12] Rodolfo A. Pazos Rangel et al. “A Domain Independent Natural Language Inter-
face to Databases Capable of Processing Complex Queries.” In: MICAI. Vol. 3789.
Lecture Notes in Computer Science. Springer, May 2, 2006, pp. 833–842. isbn:
3-540-29896-7.

[13] Web Services Glossary. Tech. rep. http://www.w3.org/TR/2004/NOTE-ws-gloss-
20040211. W3C, Feb. 2004.

[14] Jong Hyun Lim and Kyong-Ho Lee. “Constructing Composite Web Services from
Natural Language Requests”. In: Web Semantics 8.1 (2010), pp. 1–13. issn: 1570-
8268. doi: 10.1016/j.websem.2009.09.007.

[15] Alessio Bosca et al. “Composing Web Services on the Basis of Natural Language
Requests.” In: ICWS. IEEE Computer Society, Jan. 12, 2006, pp. 817–818. isbn:
0-7695-2409-5.

49

http://www.programmableweb.com/
http://dx.doi.org/10.1016/j.websem.2009.09.007

Bibliography

[16] Roy Thomas Fielding. “REST: Architectural Styles and the Design of Network-
based Software Architectures”. Doctoral dissertation. University of California,
Irvine, 2000.

[17] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986, Uniform Resource Iden-
tifier (URI): Generic Syntax. Ed. by Internet Engineering Task Force (IETF). Re-
quest For Comments (RFC). 2005. url: http://www.ietf.org/rfc/rfc3986.
txt.

[18] Jakub Jirůtka. “KOS API as a web service”. czech. Bachelor’s Thesis. FEE CTU
in Prague, 2010.

[19] Mark Nottingham. FIQL: The Feed Item Query Language. Internet Draft draft-
nottingham-atompub-fiql-00. Dec. 2007.

[20] Google. Google Data APIs. 2012. url: https : / / developers . google . com /
gdata/docs/2.0/reference.

[21] Marie-Catherine de Marneffe and Christopher D. Manning. Stanford typed de-
pendencies manual. Sept. 2008. url: http://nlp.stanford.edu/software/
dependencies_manual.pdf.

[22] Richard M. Karp. Reducibility among combinatorial problems. Springer, 1972.
[23] Robert W. Floyd. “Algorithm 97: shortest path”. In: Communications of the ACM

5.6 (1962), p. 345.
[24] Dan Klein and Christopher D. Manning. “Accurate Unlexicalized Parsing”. In:

Proceedings of the 41st Meeting of the Association for Computational Linguistics.
2003.

[25] Jakob Nielsen. Usability engineering. Academic Press, 1993, pp. I–XIV, 1–358.
isbn: 978-0-12-518405-2.

50

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
https://developers.google.com/gdata/docs/2.0/reference
https://developers.google.com/gdata/docs/2.0/reference
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/dependencies_manual.pdf

	Preface
	Structure
	Typographical note

	Problem definition
	Information retrieval
	Natural language interfaces to databases
	Natural language interfaces to RESTful Web services
	KOSapi
	NaLIDa

	Related work
	Natural language interfaces to database
	Evaluation

	RESTful Web services
	API
	Web service
	Representational state transfer

	KOSapi
	RESTful Service Query Language (RSQL)
	XPartial

	Design
	Scope
	Natural language
	Knowledge domain
	Query utterance types
	Query constraints
	Extragrammatical utterances
	Input modality
	Output modality

	Architecture
	Knowledge domain
	Schema
	Lexicon

	Syntactic analysis
	Extension of supported expressions

	Semantic analysis
	Query generation
	Projections, constraints and path
	Entity-relationship graph
	Shortest path search
	Query plan
	SQL query generation
	REST query generation

	REST API
	KOSapi response
	SQL query
	Detailed intermediate outputs

	Implementation
	Schema
	Schema element tree
	Entity-relationship graph
	Schema description format
	Value tokens

	Lexicon
	Syntactic analysis
	Interpreter
	Query generator
	Command line interface
	Web service
	Home page
	REST resources

	Evaluation
	Data collection
	Evaluation methodology
	Results

	Conclusion
	Future work

	Contents of the enclosed CD
	Dependencies
	NaLIDa Core dependencies
	NaLIDa Web dependencies

	Entity-relationship model of KOSapi
	Bibliography

