
Na tomto míst¥ bude o�ciální zadání

va²í práce

• Toto zadání je podepsané d¥kanem a vedoucím katedry,

• musíte si ho vyzvednout na studiijním odd¥lení Katedry po£íta£· na Karlov¥ nám¥stí,

• v jedné odevzdané práci bude originál tohoto zadání (originál z·stává po obhajob¥ na
kated°e),

• ve druhé bude na stejném míst¥ neov¥°ená kopie tohoto dokumentu (tato se vám vrátí
po obhajob¥).

i

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Master's Thesis

Illegal newsletter detection unit

Bc. Tomá² Gogár

Supervisor: Ing. Jan �edivý, CSc.

Study Programme: Open informatics, Master

Field of Study: Arti�cial Intelligence

May 11, 2014

iv

v

Aknowledgements

I would like to thank my supervisor, Ing. �edivý CSc., for the guidance, encouragement
and great advices, which he has given to me throughout the work. I also want to thank my
parents for their support throughout my studies and my whole life.

vi

vii

Declaration

I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act �60 Zákon £. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on May 10, 2014 .

viii

Abstract

The task of �ltering email spam (also known as Unsolicited Bulk Mail) has been an important
topic in the machine learning community during the last two decades. Although the existing
techniques are able to �lter the majority of spam, more sophisticated spammers are con-
stantly re�ning their strategy so that their messages pass the existing �lters. One example
of such behaviour is a new spamming trend observed by the largest freemail service provider
in the Czech Republic. The unsolicited bulk mail which resembles a standard newsletter is
delivered to the email addresses, which come from illegally obtained databases. We use a
term Illegal newsletters for such behavior. The problem of such emails is that we cannot use
the content �lters to detect them and that the senders mask themselves by changing IP ad-
dresses and domains. Currently the contracting email service provider is manually gathering
information about the senders of Illegal newsletters, so it can develop defence algorithms.
Because manual analysis is highly ine�cient, we propose a system which should help hu-
man operators in identifying new spammers by highlighting suspicious emails. We propose
features that should describe normal behavior of the senders and we use anomaly detection
algorithms to detect abnormal emails. The preliminary results from testing on small set
of labeled emails suggests that the majority of anomaly emails represents unsolicited bulk
mails and that such approach should help the operators in identifying a signi�cant portion
of delivered spam.

ix

x

Contents

1 Introduction 1

1.1 Bulk Emails . 1
1.2 Unsolicited Bulk Emails . 1
1.3 Grey Emails . 2
1.4 Illegal newsletters . 2

2 Our goal 3

3 Email characteristics 5

3.1 SMTP envelope . 6
3.2 Email headers . 6
3.3 Email content . 6

4 Related work 7

4.1 First �ltering methods . 7
4.2 Content-based methods . 7
4.3 Behavioral methods . 8
4.4 Email standard extensions . 9
4.5 SpamAssassin . 10

5 Data 11

6 Design of proposed solution 13

6.1 Hypothesis: Expected behavior of a sender . 13
6.2 Features . 14

6.2.1 Bulk group consistency features . 15
6.2.2 Domain Features . 15

6.2.2.1 De�nition: Suspicious domain 15
6.3 Data analysis . 16
6.4 Anomaly detection . 19

6.4.1 Parametric techniques . 20
6.4.2 Non-parametric techniques . 20

7 Implementation 23

7.1 ProbeDataProcessor . 24
7.2 Domains crawler . 28

xi

xii CONTENTS

7.3 PageRankTool . 29
7.4 DataAgregator . 29
7.5 Models . 30

8 Experiments 31
8.1 Model consistency . 31
8.2 Data splitting and labeling . 32
8.3 Unsupervised learning . 34
8.4 Model validation . 34

8.4.1 Number of bins . 34
8.4.2 Classi�cation thresholds . 37

8.5 Testing and manual analysis . 38
8.6 Computational requirements . 40
8.7 Summary . 41

9 Future work 43
9.1 Further testing . 43
9.2 Final implementation . 43
9.3 Other possible features . 44

10 Conclusions 45

A Contents of attached CD 51

B ProbeDataProcessor: con�g.xml 53

C Figures 55

List of Figures

3.1 Data within an email - example . 5

6.1 Our unit as part of the new �ltering system 14
6.2 Histograms for individual features . 17
6.3 Bulk groups within the feature space . 19
6.4 Example of 2-dimensional Probability density function with a threshold plane 21
6.5 Example of estimating Density function using Parzen windows 22

7.1 Process of feature extraction and classi�cation. 24
7.2 MapReduce example: counting emails with similar content 26
7.3 Structure of input Sequence �le . 26
7.4 Structure of input Sequence �le . 27

8.1 Unlabeled data distribution for multiple days 33
8.2 Models of normal sending behavior . 35
8.3 ROC curves for Histogram models . 36
8.4 Precision-Recall graph for Histogram models 36
8.5 ROC curves for all models . 37
8.6 Histogram of labeled Bulk groups based on scores from Histogram model . . . 39
8.7 Histogram of unlabeled Bulk groups based on scores from Histogram model . 39
8.8 Topics of anomaly emails . 41

C.1 Content of an anomaly email - name, addresses and images were hidden due
to privacy concerns . 55

xiii

xiv LIST OF FIGURES

List of Tables

5.1 Selected characteristics available in log �les 12
5.2 Data summary . 12

6.1 Selected statistics of individual features . 18
6.2 Anomaly detection methods . 22

7.1 Modules overview . 24
7.2 Example of statistics for From addresses . 28
7.3 Scripts overview . 30
7.4 Functions overview . 30
7.5 Classes overview . 30

8.1 Data usage overview . 32
8.2 Interesting thresholds for Parzen Window model 38
8.3 Performance of Parzen Window model on testing data set 40

xv

xvi LIST OF TABLES

Chapter 1

Introduction

The �rst electronic mail systems appeared before the inception of the internet and date back
to the sixties of the 20th century [34]. The email system as we use it now, was introduced
in 1982 in RFC 821 [26]. In this document the smtp protocol was de�ned and it was later
updated in 2001 and 2008 by RFC 2821 and 5321 [21] [22]. Although there appeared other
technologies for electronic communication in the recent years, the popularity of email system
is still growing. The Radicati group estimates that 182 billion emails were sent per an average
day in 2013 [18].

1.1 Bulk Emails

Since the email system provides very cheap and easy way of communication, it is very often
used for sending messages to the large audience. A message which is sent to large number
of recipients with none or only small number of changes in its body is called a Bulk email.

1.2 Unsolicited Bulk Emails

When a bulk message was not requested by the recipient, we refer to it as Unsolicited Bulk
Mail (UBE) or Email spam1.

The �rst internet spam was most probably sent in 1978 by Gary Thuerk to 600 users of
ARPANET [5]. Since that time the problem of spamming has grown signi�cantly, and
according to Kaspersky Lab it made about 70 percent of overall email tra�c in the second
quarter 2013 [20].

Nowadays, most of the spam emails contain URL to one or multiple websites, which o�er
commercial products to its visitors. Since senders of such emails try to reach as many
mailboxes and keep the price for infrastructure as low as possible, they often utilize botnets

1 It is named after Spam, which is a luncheon meat, popular in the UK during the World War II. This
name was chosen for unsolicited bulk mails because of its role in one Monty Python sketch, in which Spam
is annoyingly included in every dish (see youtu.be/anwy2MPT5RE). Although the term nowadays refers to
any kind of unsolicited message (i.e. IM spam, newsgroup spam, fax spam, letter spam etc.) in this work we
will use it for the email spam only.

1

2 CHAPTER 1. INTRODUCTION

instead of usual mail servers. On the other hand huge amount of unsolicited bulk emails
cause signi�cant costs on the recipients side (costs for the infrastructure and storage), as well
as it reduces the usability of the email system itself. Therefore the e�orts to automatically
�lter UBEs is one of the main topics within the email developers community.

1.3 Grey Emails

In addition to spam, other types of bulk emails are sent. The term grey mail is used for
emails which we have subscribed for. The problem is that many users did it accidentally or
unknowingly. In such cases, recipients consider the email as spam, although according to
the law it is a legal behavior. These bulk emails should contain links for unsubscribing the
delivery and are usually sent from sender's own mailservers. Typical examples of grey emails
are newsletters, social sites noti�cations, websites feeds, watchdogs, etc.

It is di�cult (even for a human operator) to determine, whether the grey email is delivered
only to the subscribed users, since no one has an exact history of the user's behavior. So the
grey emails are usually delivered and only if a large number of users report it as unsolicited,
the sender can be retrospectively marked as a spammer.

1.4 Illegal newsletters

Illegal newsletters is our term for a new spamming trend which was observed by the con-
tracting company which is the biggest freemail provider in the Czech Republic. Although we
have data only from one provider, we expect such trend to be widespread and global. The
provider observed that unwanted emails whose content resembles usual newsletter, are sent
to email addresses from illegally obtained databases. Emails contain html links, which direct
the victim to the promoted webpage. The sender uses such illegal newsletters to promote
various products and services and receives a small amount of money for every visit of the
page. Sometimes even the companies which are being promoted in such campaigns do not
know that it is being done in an illegal way, even though they are the ones who pay for the
marketing. These companies very often outsource their marketing campaigns and therefore
the �nal sender can be well hidden behind a long supply chain of marketing services. One
of the main problems in identifying this kind of messages is its similarity with other legal
newsletters, so it is di�cult to �lter them out with traditional antispam techniques.

Chapter 2

Our goal

During the last year the Czech email service provider (ESP) identi�ed two biggest senders
of Illegal newsletters and developed a system which is able to block these spammers. Un-
fortunately, in the training phase this approach requires a set of labeled emails from the
particular spammers. Such identi�cation is not trivial and requires work of a human oper-
ator, who manually analyzes received emails. The goal of this work is to propose a system
which will help the human operator in distinguishing Illegal Newsletters from other Grey
Emails. Our e�ort to �nd an semi-automated solution for this task is important because we
expect there is more similar senders which ESP have not identi�ed yet and manual search
is highly ine�cient.

Why is classi�cation of illegal newsletters a challenging task is summarized below:

• Emails are not sent from company mail servers as usual newsletters, therefore it is not
possible to create consistent reputation statistics for promoted companies.

• Senders are trying to hide themselves by means of changing their �ngerprints (IP
addresses, domains, etc.).

• The body of emails resembles legal newsletter, so it is di�cult to �lter them out with
content �lters.

Compared to usual spam �ltering task, we have very small amount of labeled data and huge
amount of unlabeled data. Although the sender's behavior changes in time and the content
�lters do not work, we hope we can specify features that capture their masking behavior and
we will be able to detect suspicious messages in the email tra�c.

3

4 CHAPTER 2. OUR GOAL

Chapter 3

Email characteristics

Before we dive into spam �ltering techniques, we will summarize, what sort of information is
available when an email arrives to the server, which is supposed to decide whether it is ham
or spam. We divide data from an email into three components based on its source - SMTP
envelope, Email headers, Email content.

Figure 3.1: Data within an email - example

5

6 CHAPTER 3. EMAIL CHARACTERISTICS

3.1 SMTP envelope

The process when two mail servers communicate in order to exchange an email is called
SMTP session. At the beginning of the session the sending server (often referred to as client
in this context) provides the following information:

• HELO (or EHLO) string String that identi�es the sending server - usually with
its fully quali�ed domain name (FQDN). EHLO string is used within new ESMTP
protocol.

• MAIL FROM This �eld is used to present the originator's email address. It is also
the address where noti�cations (bounces) of undelivered messages should be sent.

• RCPT TO Recipient's email address. It can be used multiple times, in case of multiple
recipients.

Since these data �elds serves to identify the recipient and the sender, it is often referred to
as an Email (or SMTP) Envelope. After successful negotiation the sending server starts to
send email data. Email data contain email headers and email content.

3.2 Email headers

The headers include all other structured information and are part of Data stream within the
SMTP session. The mandatory �elds include:

• From The �eld should include email address (and optionally name) of an author.

• Date Date and time when an email was composed.

Fields that should be included [27]:

• MessageID ID of an email.

• In-Reply-To Only reply messages include this �eld. It should be �lled with a Mes-
sageID, that the email is replying to.

And we only mention other common optional �elds: To, Subject, Bcc, Cc, Content-Type,
Precedence, References, Reply-To, Sender, Archived-At

3.3 Email content

Although email system was originally designed only for plain text messages, nowadays either
plain text or html is used to represent email content. Since html provides more options for
graphical expression and interactivity - it is usually the sender's choice for marketing emails.
Usual features found in html emails are: Formatted text, Images, Outgoing links. Emails
can also include multimedia attachments of limited size.

Chapter 4

Related work

Since spam is a very concerning issue, a lot of work on spam �ltering has been done in the
last two decades. This chapter brie�y describes history and current trends in the research
area. More detailed summary with method evaluation can be found in [2] and in [15].

4.1 First �ltering methods

One of the most straightforward technique of spam �ltering is usage of blacklists of spam
senders. Blacklisted sender is assumed to send spam and therefore all his messages are
�ltered out. Unfortunately the only relevant information to identify the sender is his IP
address. Although we have already listed other header �elds such as MAIL FROM or HELO
STRING, none of these �elds is protected against spoo�ng, and so the sender can easily
forge them. Identifying senders by their IP address can be partially e�ective, however it also
brings a whole range of problems. Spammers can change their IP addresses quickly, and so
they can avoid the �lters at the beginning of the attack. It can also result in �ltering out
good mail, when a good sender obtains already blacklisted IP address.
In order to minimize these risks, email service providers do not use only their private black-
lists, but they often shared them with each other. A DNS-based Blackhole List (DNSBL) is
a method of sharing blacklisted IPs through DNS servers [23]. This approach brings bene�ts
of DNS system to Blacklists sharing such as scalability and cacheability. Since 1997 when the
�rst DNSBL list was introduced, there have been developed many other blacklists available
through DNSBL.
Besides blacklists, there exist other related methods. Whitelists are the exact opposite and
include trusted senders. Or greylisting, which is method of temporary rejecting messages
from unknown sender and accepting messages only if the sending server tries to send the
message again after some delay. This method works because many tools for sending bulk
mail do not try to resend undelivered mail.

4.2 Content-based methods

The very �rst methods that started to use the email content were based on a hand-built
rules set, that was applied to �lter junk mail. Since spam was relatively static at that time,

7

8 CHAPTER 4. RELATED WORK

words like sex, free, viagra etc. were good indicators of spam messages. When spammers
started to adapt the �lters, a need for an automatic rule creation appeared. One of the
�rst works that applied machine learning techniques for spam �ltering were [28, 24], which
used Naive Bayes based on the bag-of-words model to classify messages. Machine learning
methods introduced the need of training data (messages labeled as spam or non-spam), and
this requirement grows ever since. With spammers quickly adapting to learning algorithms,
more and more training examples were required and the �lters needed to be trained more
often. Comparison of Naive Bayes approaches can be found in [32].
Advances in machine learning helped to improve spam �ltering as well. Methods using
Support Vector Machines (SVM) or TF-IDF, signi�cantly improved accuracy and speed of
learning [12]. Also boosting, which in general combines results of multiple weak classi�ers,
was introduced for email classi�cation [6].
The reaction of spammers to machine learning �lters usually focuses on two vulnerabilities:

Masking critical words Since content-based methods became considerably e�ective,
spammers try to obfuscate the content, so it is di�cult for machines to get the features,
while the message is still readable for humans [15].
One way of doing it, is through HTML commenting (fr<!�>whatever<!�>ee) or by using
HTML ASCII codes (frexe). Both examples will be rendered as "free" in an email
client, but for email servers it is too computationally expensive to render huge number of
emails separately.
Another way is to hide the text within an image. Optical character recognition techniques
(OCR) are too slow for the task of spam �ltering. When image matching algorithms were
introduced, in order to detect bulk messages containing the same image [36, 33, 11], spammers
responded by randomizing images and randomly splitting them. Again, the whole message
gets rendered correctly in email clients, but it is di�cult for �ltering algorithms to imitate
such behavior [15].

Confusing matching systems Matching systems are supposed to detect messages with
the same or very similar content. When the similar messages come from di�erent sources
(di�erent domains, IPs, etc.), it is the only way how to detect bulk messages. Such match-
ing is crucial for blacklisting, feature extraction, but also for reduction of computational
requirements (by making intensive computations only once for the whole cluster of similar
messages).
The problem of �nding nearly duplicate documents has already been studied in other data-
mining �elds and many approaches have already been proposed and used [9, 13, 8]. On
the other hand spammers constantly try to avoid matching by randomizing their messages.
Randomizing is usually done by adding random text to an email, and therefore the more and
more robust detection algorithms are being developed by the text-mining community [19].

4.3 Behavioral methods

Other methods, which are often used together with content-based �lters, focus on behavior of
senders as well as reactions of receivers. Some works attempt to create social networks from

4.4. EMAIL STANDARD EXTENSIONS 9

email communication graphs [4, 3]. In [3] communication graph of email users is created
and groups of good and bad senders are estimated based on the properties of connected
components of the graph.

Often ESPs use reactions of receivers to either improve �lter's learning phase (by letting
users to mark false positives and false negatives) or to create reputation database of senders.
Reputation databases capture "spamicity" of individual senders over long period of time and
the information is then used as a part of �ltering algorithm. In [31] results of automatically
created sender reputation database are presented. It shows that, if an ESP has large amount
of feedback data from users, reputation database can help to �lter messages e�ectively. In
[14] combination of social network and hand-crafted sender reputation is presented.

We have already mentioned the problem of veri�cation of email headers. However, reliable
identi�cation of a sender is crucial for building social graphs and reputation databases.
Fortunately, new standards which extend original SMTP and help in solving these issues
have been developed and are successively adopted by the email community.

4.4 Email standard extensions

The possibility to forge header �elds, facilitates spammers hiding their true identity and
it also makes phishing attacks easier. Phishing is an attempt to acquire sensitive personal
information (such as credit card information, passwords, etc.) by pretending to be some
credible authority (user's bank, mobile network operator, etc.). In order to limit possibilities
for such attacks - SPF and DKIM systems were designed and successfully deployed. All
these systems are compatible with the existing email infrastructure, and therefore we refer
to them as extensions.

Sender Policy Framework (SPF) SPF was de�ned in [35] and allows owner of a domain
to specify IP addresses, which are allowed to send emails from the domain. Lists of the
allowed IPs are then published to DNS servers using special DNS SPF records. When a
receiving server gets an SMTP connection, it checks its MAIL FROM domain against SPF
records and when the IP address of a sending SMTP server is in the lists, it assumes the
email to come truly from the domain.

DomainKeys Identi�ed Mail (DKIM) Since SPF checks only the message envelope
(MAIL FROM), DKIM was designed to validate message data (headers and content) [10].
It is based on digital signature of the message content (usually some parts - such as From,
Subject and message body). Signature and other necessary information (i.e. covered �elds,
signing algorithm, etc.) are part of a new DKIM-Signature �eld. The receiver which wants
to validate a message, gets sender's public key through DNS and veri�es the truthfulness of
the signature and the actual message content.

Due to DNS Survey from 2010, 15.9% of domains implemented SPF (only .com, .org and
.net were tracked) [30]. We hope that adoption of anti-forge techniques will continue and it
will help us in building reliable reputation databases.

10 CHAPTER 4. RELATED WORK

4.5 SpamAssassin

Email service providers either create their own implementations of all the mention techniques
or they can use and customize 3rd party solutions. One of the most popular solution, which
is currently used by the Czech ESP, is SpamAssassin.

SpamAssassin is a computer program released under Apache License 2.0, that combines mul-
tiple spam-detection techniques such as BlackLists, WhiteLists, DNSBL, Regular expression
�ltering, Bayesian �ltering, Content Matching, SPF, DKIM, etc. Examined email passes
multiple tests within SpamAssassin and each tests gives it a spamscore. The higher the
spamscore, the higher the probability that the email is spam. These individual scores are
combined to a global spamscore, which is then compared to a threshold, in order to decide,
whether the message will be labeled as spam. Usually multiple tests need to be �positive�
to reach the threshold (this condition is used, in order to decrease the probability of false
positives). SpamAssassin also provides plenty of parameters, that can be adjusted, so it can
�t the needs of a user.

Chapter 5

Data

In this chapter we describe data available for our task. The contracting ESP is the biggest
freemail provider in the Czech Republic and it receives about 120 thousand of incoming
SMTP connections per minute. Approximately half of the connections are accepted and every
accepted message undergoes a receiving process, which consists of many steps (STMP phase,
greylisting, SpamAssassin check, etc.), before it is delivered to a user. Approximately 40
million messages are persisted per day and therefore the whole process needs to be carried out
in the large cluster of computers (consisting of 1000 servers), where the individual processing
subsystems are deployed independently.
Since the current email storage space is about 1.4 petabytes and I/O operations are not fast
enough, it is di�cult to access the emails when they are already persisted on the hard drives.
Hence the ESP implemented a logging system (sometimes referred to as probe system), which
logs some important data, while the email is in the receiving phase (and still in the memory
of the servers).
These logs are stored on the machines where the processing subsystems are deployed. This
implies that di�erent logs for a single message are distributed over multiple servers and need
to be merged once in a while. At the end, these merges result in structured logs for every
single message and can be used for further analyses. These logs are stored in Protocol Bu�ers
format and take up to 100 GB per day (more about Protocol Bu�ers in [17]).
Logs contain basic email characteristics (such as envelope and content headers), timestamps,
matching system results, some IP statistics, SpamAssassin's results, user behavior, etc. Se-
lected characteristics which are crucial for our tasks are summed up in table 5.1, here we
provide only simpli�ed form of the logs, the real structure of the logging format is more
complex.
If we want to access email content itself, we need to specify it by its unique identi�er and
retrieve it from hard drives. Since we focus on the bulk messages only, we usually use data
from the matching system to gather the group of similar messages and then we retrieve only
one email as an example of the whole group. We consider an email as a bulk mail, if the
matching system marks emails with the similar content, which are delivered to more than
500 other users. Throughout this work we refer to the set of similar bulk messages as a bulk
group.
For the purpose of this work, we had logs for 5 days - 2 days from the beginning of the
February 2014 and 3 days from the �rst half of the April 2014. Since our work is focused

11

12 CHAPTER 5. DATA

on detecting new illegal senders, we use only data for emails, which passed all the existing
�lters of the ESP and ended up in inboxes of the users. The statistics of delivered messages
are summarized in table 5.2. You can see that there is considerably less bulk mails for the
�rst two days. This di�erence is caused by the way how the bulk mails were detected in
older version of the logging system.

Source: SMTP Servers
IP address of the sending machine
HELO string envelope helo string
GreyListDone whether it has passed greylists
SessionDuration duration of the smtp session
Rcpts envelope recipients of the message
MailFrom bouncing address
Spf Status whether it has passed the SPF check

Source: SCANNER (Antispam component)
Spamscores spamchecking modules and the received score
PepcaHash 1st hash from the matching system
SimcaHash 2nd hash from the matching system

Source: EBOX (The main email component)
Thrash user moved the email to thrash
Unthrash user removed the email from thrash
MarkSpam user marked the email as spam
UnmarkSpam user unmarked the email
Set folder email was moved to folder
Label set user labeled the email
Label remove user unlabeled the email

Table 5.1: Selected characteristics available in log �les

Date Total delivered messages Delivered bulk messages Bulk groups

Day 1 02/08/2014 Not available 17,922,898 1,832
Day 2 02/09/2014 Not available 17,403,976 1,906
Day 3 04/08/2014 44,700,490 25,434,898 2,241
Day 4 04/14/2014 41,334,968 21,218,346 2,479
Day 5 04/15/2014 43,434,874 23,385,524 2,788

Table 5.2: Data summary

Chapter 6

Design of proposed solution

As we have already stated in Chapter 2 our task is to create a system, which will help
human operator to distinguish illegal newsletters from grey emails. We also have mentioned
why this task is not trivial - mainly because senders change often their identity and emails
resemble usual newsletters, so we cannot the use content �lters.

The ESP is building two other systems, which will work together with SpamAssassin and
which should help in �nding bad senders. These systems are:

• Private social graph - which should provide picture which senders behave suspiciously

• Reputation database - where reactions of receivers will be recorded and used for �ltering

Both of these systems work with long-term statistics, which require enormous amount of
data and therefore it needs to be implemented directly in the infrastructure by the ESP.

On the other hand our system should work complementary to the reputation database and
should detect illegal newsletter even without the history data. Hence it becomes useful when
a bulk mail arrives from the sender, who is not in the reputation database yet (i.e. he has
never sent a bulk mail to ESP). The situation is suspicious but not illegitimate and there
are actually two possible reasons for such behavior:

• It is a new legitimate sender (This does not happen very often).

• It is a sender, who is trying to mask himself and hide behind another identity.

So we want to propose features and an algorithm, which will help to distinguish these two
possibilities. The role of our system within the whole process is depicted in �gure 6.1.

6.1 Hypothesis: Expected behavior of a sender

We don't want to create any bias by exactly describing the behavior of the senders, but since
we need to come up with distinctive features, we needed to make few assumptions, which
are summarized in this section.

13

14 CHAPTER 6. DESIGN OF PROPOSED SOLUTION

Figure 6.1: Our unit as part of the new �ltering system

Illegal senders do change their behavior and so we don't want to make any assumptions
about them. On the other, we think, we can quite accurately estimate the behavior of the
legal ones. Such behavior will be pretty consistent and so a machine can learn it and detect
anomalies.
All bulk message senders want to communicate some kind of information and so we can expect
that they will (in their own interest) make use of more internet communication channels and
not just an email system. Also it is logical to be consistent in their self-presentation, so their
subscribers always know, where to �nd contacts and additional information. From these
hypotheses we would expect that:

• Similar emails will have the same (or a least very similar) address in From �eld.

• Domain in from address provides a functional web page with relevant information.

• Majority of outgoing links point to the content-related pages.

These assumption may seem to be pretty strict, but they are based on very basic marketing
rules. Even though a lot of companies nowadays use email marketing services (such as
MailChimp), we can expect that from address will belong to the promoted company and not
to the service provider. On the other hand Mail From addresses will belong to the sending
service, but it still should be consistent.

6.2 Features

We would like to select features that describe consistency of sender's self-presentation. In
order to do this we need to compute the features across the whole set of similar messages

6.2. FEATURES 15

(and not only for single message separately). As we have already written we use a term
bulk group for a group of similar bulk messages. This approach requires reliable matching
system (and we presume that ESP's matching system is reliable), on the other hand it results
in signi�cant data reduction - instead of classifying millions of emails directly, we classify
thousands of Bulk groups.

In the following paragraphs we will describe the selected features.We divide them into two
groups:

6.2.1 Bulk group consistency features

The �rst group contains features that describe the sender's behavior consistency. The fea-
tures are:

• Number of distinct MAIL FROM domains Mail From �eld serves as an address
for bounce messages. Senders often want to make statistics of undelivered emails and
so they don't use only one address, but rather multiple structured addresses that can
look like: bounce00123@bounces.server1.example.com. Even though address may
di�er, the second level domain (here: example.com) can be expected to be the same
(in order to describe the sender). This feature computes number of distinct second level
domains, which are extracted from the domain part of the address (the part following
@).

• Number of distinct FROM addresses From is the address that is displayed to the
receiver and we have already discussed, why it should be consistent over the whole set
of message. Therefore this feature uses the whole address and not only the second level
domain.

• Number of emails sent per IP Since spammers need to change their IP addresses,
they are often forced to use them as much as possible, which can result in abnormal
number of emails sent per one IP address.

6.2.2 Domain Features

The second group focuses on the properties of domains used within an email. There are
basically two sources of domains in each message - Mail From address and From address.
Our goal is to describe whether the domains from these sources are somehow suspicious.
What does it mean suspicious in our context is described below.

6.2.2.1 De�nition: Suspicious domain

We suppose that well-known and trustful internet entities possess comprehensive websites.
Such websites are usually well structured, often very vast and known by the customers. In
order to estimate whether the domain is suspicious we focused on two properties - size of
the website (i.e. number of unique pages within the site) and it's Page Rank.

16 CHAPTER 6. DESIGN OF PROPOSED SOLUTION

Size of the website when we want to examine the size of the domain, we add www. in
front of the second level domain and we visit the resulted address with our crawler, which
computes the number of unique pages without leaving the domain. Number of pages is
limited to 10, so we do not get stuck crawling huge sites for a very long time.

Page Rank The size of the website does not provide enough information, since there is a
lot of ajax-based sites, which appear as a single page to our crawler (and javascript crawling
is out of scope of this work). Therefore we add another property which should describe the
relevance and credibility of the site. For this purpose we used Google Page Rank, which we
obtained through their public API.
Having these two properties, we have de�ned the suspicious domain as follows.

Domain is suspicious if : [Size = 0 ∨ Size = 1] ∧ [PageRank = 0] (6.1)

When the suspicious domain was de�ned we used the results for every message to compute
the statistics for the whole Bulk group. The �nal features are:

• Percentage of suspicious Mail From domains

• Percentage of suspicious From domains

As you can see, the �rst group of features makes sense only for the Bulk groups. Although,
the domain features can be computed for every single message, we also converted the results
to a percentage of the whole bulk group. This approach results in signi�cant data reduction
and helps us in the classi�cation phase.

6.3 Data analysis

In this section we will analyze individual features and discuss the possibilities for unsolicited
bulk mail classi�cation. For the purposes of analysis, we have grouped more than 16 million
emails from the �rst two days (the beginning of February, see Chapter 5) into more than 3
thousand Bulk groups, we have computed the features and plotted results in histograms (see
Figure 6.2).
As you can see all the histograms contains a bin, which represents absolute majority of email
groups. It means that majority of senders behave similarly and as expected - most of them
use one From Address, one MailFrom domain, they send similar number of messages per
IP address and often use working (unsuspected) domains in the address �elds. It is worth
to notice that we can see signi�cant number of emails, which do not use working domains
at all. We have manually analyzed such emails and discovered that there are basically two
reasons for that - either it is a spamming domain or it is domain truly owned by some trusted
sender, but it does not host any web page (often domains look like: newsletter-example.com,
info-example.com, etc.). Some more accurate statistics for each feature are summarized in
table 6.1.
The Bulk groups which falls into the minority bins presents suspicious behavior, which may
be the consequence of spammers masking strategy. In �gure 6.3 we have plotted the bulk

6.3. DATA ANALYSIS 17

F
ig
ur
e
6.
2:

H
is
to
gr
am

s
fo
r
in
di
vi
du

al
fe
at
ur
es

18 CHAPTER 6. DESIGN OF PROPOSED SOLUTION

Feature Statistics

MailFrom domains
88% of bulk groups use 1 MailFrom domain.

95% of bulk groups use less than 3 MailFrom domains.

From addresses
76% of bulk groups use 1 From address.

89% of bulk groups use less than 3 From addresses.
Mails per IP 95% of senders sends less than 14,000 emails per IP.

From address suspicion
83% of senders does not use suspicious domains at all.

5% of sender use only suspicious domains.

MailFrom suspicion
86% of senders does not use suspicious domains at all.

11% of sender use only suspicious domains.

Table 6.1: Selected statistics of individual features

groups within the 5-dimensional feature space (we have used two plots to capture all the
dimensions). The very small subspaces marked with green color represents the part of
the feature space where 85 percent of bulk groups reside. This observation corresponds to
the shape of histograms in Figure 6.2, where individual features were taken into account
separately. This supports our hypotheses from section 6.1, that usual bulk mails should
cluster near to each other. On the other hand, this result still does not suggests anything
about spamminess of the "unusual" emails. We have manually analyzed few bulk groups
that reside outside the expected cluster. An example of such group is marked in the charts
with red circles - emails with the same content were send from 18 From addresses using 53
MailFrom domains, while 98% of domains in From address and 84% of domains in MailFrom
domains were suspicious (i.e. do not host a reliable website). Such values suggest very
abnormal behavior of the sender. When we manually analyzed the content of this particular
email, we discovered that it promotes `Jackpot in an online casino' and that it is very likely
a spam (the content of the email can be found in Appendix in Figure C.1). Very similar
behavior was observed with other unusual emails from the features space.

Such manual testing suggest that nonstandard Bulk group behavior can be related to spam-
miness of emails, but it does not guarantee anything. We don't know in which parts of the
feature space the "ham" and "spam" emails reside and whether these parts are separable.
In order to divide the feature space, linear classi�ers are usually used (for example SVM).
These algorithms need su�cient number of labeled data for the training, but unfortunately
such information is not available for our task. The reasons for the lack of labeled data are:

• We are analyzing "ham"We have already mentioned in Chapter 5, that we analyze
emails which passed all the �lters and are delivered to inboxes - it means the current
�lters marked them as ham. But we know that some unsolicited bulk mail (such as
illegal newsletters) is still in the set - it means that �lters are not perfect.

• Di�cult manual classi�cation We also discussed in Chapter 1 why it is di�cult
to classify grey emails even for a human operator. There are emails which can be
manually classi�ed with su�cient degree of certainty, but the amount of such emails
is not very high.

6.4. ANOMALY DETECTION 19

Figure 6.3: Bulk groups within the feature space

Therefore, the only information we can work with is that some senders behave unusually. We
try to identify such senders and measure on the small subset of labeled emails whether such
identi�cation helps in spam recognition. Identifying unusual behavior is basically a task of
anomaly detection and in the next section we will discuss the algorithms used in this work.

6.4 Anomaly detection

In general, anomaly detection refers to the problem of �nding patterns in data that do
not conform the expected behavior [7] . Such subtask is often part of fraud detection,
intrusion detection for cyber-security or fault detection in safety critical systems. Therefore
a lot of detection techniques have already been developed and an extensive analysis of such
algorithms and their usage can be found in [7]. The algorithms can be divided by:

• Nature of input data: binary, categorical or continuous

• Availability of data labels: supervised, semi-supervised or unsupervised methods

• Type of output: anomaly score or labels

For our task we need an unsupervised algorithm which processes continuous input vector and
outputs anomaly score, which is then compared to a threshold, in order to decide whether
it is an anomaly or not. One group of techniques that �ts our needs well, are statistical
anomaly detection techniques. These approaches assume that normal data instances occur
in high probability regions while anomalies occur in the low probability regions. During the
training phase a statistical model is �tted to the given dataset and in the testing phase it is
used to test the properties of unseen instances [7]. The techniques can be used even when the
training dataset contains some anomalies, but it is necessary that large majority of training

20 CHAPTER 6. DESIGN OF PROPOSED SOLUTION

samples are normal instances. In our case, we assume that the majority of incoming mail
is legal and therefore we should be able to train the model on the unlabeled dataset. The
particular statistical techniques which we have used are divided into two groups:

6.4.1 Parametric techniques

The parametric techniques assume that the normal data were generated by some parametric
distribution with parameters Θ and probability density function(PDF) f(x,Θ), where x is
an observation vector. The problem of the parametric models is that we need to choose a
model even if we do not know the exact underlying distribution of the dataset. When we
choose the model, we �t it to our dataset by estimating its parameters Θ. The resulting
Normal behavior score of a test instance x̂ is the probability density function f(x̂,Θ).
In this work we have chosen normal distribution as our model, even though we are aware that
the true underlying distribution is probably not gaussian1. The probability density function
of one-dimensional normal distribution can be found in Equation 6.2. The parameters: mean
µ and standard deviation σ are estimated using Maximum Likelihood Estimate. When the
input is multi-dimensional vector (as it is in our case), it can be solved by either assuming
that individual features are independent and we can train �ve gaussian distributions inde-
pendently and get the resulting Normal behavior score as a product of individual probability
density functions in x̂. If the such assumption cannot be made, we can use multivariate nor-
mal distribution whose density function is in 6.3 - where µ is mean vector, k is dimension of
the vector and Σ is covariance matrix which captures the correlation of individual features.
The anomaly score is then computed by using the single function.

f(x) =
1

σ
√

2π
e

−(x−µ)2

2σ2 (6.2)

f(x) =
1√

(2π)k |Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(6.3)

When a �nal label needs to be assigned to a test instance, we check whether the Normal

behavior score is higher than certain threshold. If it is higher the instance is labeled as
normal, otherwise it is labeled as an anomaly. Example of two-dimensional probability
density function and a threshold plane is in Figure 6.4. All instances whose PDF is on the
peak above the plane would be considered as normal, those below the plane are marked as
anomalies.
In this work we have implemented both (the univariate and multivariate) versions of Gaussian
model and compared their performance in Chapter 8.

6.4.2 Non-parametric techniques

This group contains statistical non-parametric techniques that does not assume anything
about the underlying distribution in advance and the model is created directly from the

1Normal distribution is often chosen when the true distribution is not known. More about the gaus-
sian model �tting in anomaly detection problems can be found in the Coursera lecture by Andrew Ng:
http://class.coursera.org/ml-003/lecture/95

6.4. ANOMALY DETECTION 21

Figure 6.4: Example of 2-dimensional Probability density function with a threshold plane

training data. The disadvantage of these methods is that they cannot model multivariate
data, so they cannot capture the correlation among the features and we need to estimate
the �nal probability density function as a product of individual PDFs. It means we need to
assume the independence of the features, as we did for one-dimensional gaussian distribution.

The most simple nonparametric statistical technique is to use directly the histograms of
normal behavior (as they were depicted in the Section 6.3). When the histograms are used,
they need to be normalized, so that they integrate to one. A disadvantage of histogram-
based methods is a need of setting the bin width. If bins are too thin, the histogram is too
sparse and there is higher probability that an instance falls to a zero-height bin, which can
result in false positive error. On the other hand if the bins are too wide the probability of
false negative error increases. We will test the in�uence of the bin width on performance of
the classi�er in the Chapter 8.
Next nonparametric model we will discuss is Parzen Window model. It is a kernel function-
based method for estimating continuous probability density function [25]. The PDF is esti-
mated from a set of n one-dimensional samples as follows:

f(x) =
1

n

n∑
i=1

K(x− xi) (6.4)

Where K is called a kernel function - it must be a symmetric function that integrates to
one. In this work we use a Gaussian distribution with mean at 0 and the standard deviation
of the gaussian is set to properly smooth the feature histogram. In 6.5 you can see the �nal
equation for estimating PDF and in �gure 6.5 you can see an example plot of kernel functions
(blue curves) for points [1.1, 2.3, 4.7, 4.9, 8.1, 9.2] and the �nal estimation of the PDF (red
curve), which is created by summing up the individual functions. As well as in previous case

22 CHAPTER 6. DESIGN OF PROPOSED SOLUTION

Figure 6.5: Example of estimating Density function using Parzen windows

the �nal probability density function needs to be created by multiplying PDFs for individual
features. Another disadvantage of Parzen-windows is it's higher computational complexity
in the testing phase, which is O(n.m.f) while it is O(n.f) for other models (n is a number
of test instances, m number of training instances and f number of features).

f(x) =
1

n

n∑
i=1

1

σ
√

2π
e

−(x−xi)
2

2σ2 (6.5)

In Table 6.2 the characteristics of the selected models are summarized. The results of the
experiments and the performance of particular models can be found in chapter 8. But before
diving into that, we will discuss the implementation details of the whole system.

Model
Idependence
assumption

Parameters

Univariate Gaussian YES µ, σ (using MLE)
Multivariate Gaussian NO µ, Σ (using MLE)

Histograms YES Bin width
Parzen windows YES Gaussian σ

Table 6.2: Anomaly detection methods

Chapter 7

Implementation

This chapter describes implementation details of the toolkit developed throughout this work.
The whole process of classi�cation can be divided into 4 main steps :

1. Process the log �les This tasks requires handling huge amounts of logs. The bulk
messages need to be identi�ed based on the results from the matching system and
important statistics are gathered for every Bulk group.

2. Get domains suspicion When all unique domains are extracted, we need to gather
Google Page Rank and visit the websites with our crawler.

3. Merge results The results from the �rst two steps are merged into �nal Bulk group

features.

4. Build models and classify Models are built from the features and experiments are
carried out.

Our goal was to propose a solution and develop a testing prototype, therefore we could di-
vide the whole system into several `independent' modules and implement each module with
a di�erent set of technologies (since each technology suits di�erent needs). This approach
helped us to decrease the time needed for the implementation, but it is not applicable for
developing a �nal solution. The �nal system requires much more complex approach and
must be implemented directly in the ESP's infrastructure. The implemented modules are
ProbeDataProcessor, DomainsCrawler, PageRankTool, DataAgregator andMod-
elingTool. In Table 7.1 you can see the overview of the modules, the tasks they solve and
the technologies which we have used to implement them.

The �gure 7.1 depicts the roles of individual modules within the whole process. Probe-
DataProccesor �nds Bulk groups, extracts statistics for them and prepares a �le containing
unique domains (domains that have been detected either in mailFrom or in From �elds).
This list of domains is handed over to DomainsCrawler and to PageRankTool in order to
gather domains information. All resulting �les are then merged by DataAgregator which
prepares a Feature �le. The Feature �le contains a list of particular Bulk groups and their
statistics. At the end of the process it is used by the Models for classi�cation. Since di�erent
modules often need to be launched on di�erent machines (for example Map-Reduce tasks

23

24 CHAPTER 7. IMPLEMENTATION

Module Technology used Task

ProbeDataProcessor Java, Hadoop, Protocol Bu�ers Extract statistics from logs
DomainsCrawler Python, Scrapy Get size of websites
PageRankTool Java Get Google Page Rank
DataAgregator Java Merge data and prepare �nal features
ModelingTool Matlab Train models and classify

Table 7.1: Modules overview

Figure 7.1: Process of feature extraction and classi�cation.

in Hadoop cluster, crawlers on di�erent machines, etc.), the whole system is not automated
and we copy �les and start modules manually. But for our purposes this does not mean a
big problem.

7.1 ProbeDataProcessor

ProbeDataProcessor is a Java module responsible for extracting important statistics from log
�les. Before we dive into the details of the unit, we must brie�y describe basic technologies
used in this part of the system.

Protocol Bu�ers The contracting ESP stores the logs in the Protocol Bu�ers format.
Protocol Bu�ers is a language-neutral, platform-neutral and extensible way of serializing
structured data for use in communications protocols, data storage, etc. [17]. The format
was originally developed at Google, but now it is available under open-source license. It was
designed to be smaller and faster than other existing methods such as json or xml. The main
building block of the method is a special schema-de�nition language, which allows developers

7.1. PROBEDATAPROCESSOR 25

to specify the underlying (platform-independent) structure of the data. Such de�nition is
stored to .proto �les. When a developer wants to read or write the data from the program,
he can use protocol compilers (available for C++, Java, Python and various other languages)
to create a language speci�c stub. Using the stub, data are serialized into binary format
which is very compact but not self-describing and so the .proto �le is always needed for data
deserialization.

When we want to read the logs in our Java program we also need to compile a class
which works as a java stub for the underlying logs structure (Our generated class can
be found in package cz.email). The stub contains only methods for accessing the data
�elds. For practical usage we need methods which contain some application logic (i.e.
combining values from multiple �elds to discover whether an user has deleted an email
without reading it, etc.) but on the other hand it is not recommended to extend the
stub. So we do not use it directly, but we have created a class RecordWrapper (in package
cz.cvut.gogartom.probedata.entities) which scans the stub, stores important �elds and
contains the application logic (this approach is known as Wrapper design pattern).

Hadoop The infrastructure used for storing and processing the log �les used by ESP
is Hadoop. Hadoop is a framework for distributed processing of large data sets across
clusters of computers using simple programming models [1]. A detailed description of Hadoop
architecture and its features is out of scope of this work. We will only mention that it provides
a distributed �le system (HDFS) which allows us to split large data sets across multiple
machines. In order to keep the network tra�c as low as possible, it exploits the locality of
data and create computation as close to data as possible. Another requirement is ability
to make the computations parallelized. This is achieved by using MapReduce programming
model. This model is basically composed of two phases Map and Reduce. The whole model
works with Key-Value pairs as follows: The input data set is split into multiple parts (and
can be therefore saved to distributed �le system). The �rst phase called Map takes one data
element at a time and transforms it to Key-Value pair. Those pairs are then ordered and
passed to Reduce function which merge the results and outputs the �nal Key-Value pair
which is saved to resulting �le. An example of MapReduce work�ow is in �gure 7.2. In this
example we process email logs and compute how many similar messages we have received.
At the beginning, the logs are split to smaller parts and stored on multiple machines, in the
Map functions the hash string from the matching system (which identi�es the content of the
message) is extracted and returned as the key together with the count (which is always 1 in
this example). After that, the key-value pairs are sorted and passed to the Reduce function,
which computes the counts of the messages with similar hash string. These results are then
merged in one output �le. As you can see this programming model splits input �les and
works with key-value pairs. Therefore Hadoop also includes a specialized binary data format
called Sequence �le. This format perfectly suits the needs of MapReduce model, because
it is designed to store the key-value pairs and it can be split easily (the boundaries of the
individual pairs are �agged so we know where we can split the �le).

Since we receive large amount of logs in Sequence �les (the structure is depicted in Figure
7.3) and Hadoop perfectly suits the task of large dataset processing, we decided to use it for
statistics extraction as well. The whole process carried out by ProbeDataProcessor is shown
in Figure 7.4. Only few subtasks needed to exploit parallel MapReduce approach (those are

26 CHAPTER 7. IMPLEMENTATION

Figure 7.2: MapReduce example: counting emails with similar content

Figure 7.3: Structure of input Sequence �le

marked with `MR:' in the �gure), the other tasks process smaller amount of data and could
be computed locally.

The whole process begins in FindBulkEmails task. This Map-Reduce task counts hash
strings from matching system in order to �nd the emails which arrived in large volume
(the threshold for a bulk mail is set to 500 messages). From this step until the end of the
classi�cation process, the hash string is used as an identi�er of the Bulk group.

The second subtask GetStatisticsForBulkGroups takes the hashes and gathers counts
of MailFrom domains, IP addresses and From addresses for the marked bulk emails. The
results after this step are stored in three Sequence �les. The structure of the result �le for
From addresses is shown the Table 7.21 (the other two �les have a similar structure).

We have already explained why we focus on the domains and not the whole address in the
Mail From �eld. But extracting the second level domains from the address is not a trivial
task (for example we cannot simply count dots in the address, because we would fail in

1Some addresses in the table were changed due to Privacy concerns.

7.1. PROBEDATAPROCESSOR 27

Figure 7.4: Structure of input Sequence �le

28 CHAPTER 7. IMPLEMENTATION

extracting co.uk domains, etc.). Fortunately the Guava project (the open source project
which publishes some Google core libraries) includes the tools for such extraction [16], so we
could utilize that.

Key (Hash string) Value

pd622c3f2f43b4566
info@aaapoptavka.cz : 17030
hidden.name@gmail.com : 2
hidden.name@iol.cz : 1

p9e5ca5e56950ecee slevy@vykupto.cz : 1746

p6ab127569b0fbb04
betclic@inzerce-news.com : 5055
betclic@betclic-news.com : 768
hidden.name@quick.cz : 1

... ...

Table 7.2: Example of statistics for From addresses

Another problem which we had to solve is that the gathered statistics contained redirect
noise. Redirect noise is caused by the users who set their other email accounts to redirect
emails to our addresses. The contents of the messages still match the Bulk group but the
addresses, domains and IPs are di�erent than those of the original sender. This phenomenon
negatively in�uences the resulting statistics as it can be seen in our example in Table 7.2
- the addresses hidden.name@gmail.com and hidden.name@iol.cz=1 used to send the �rst
email are very likely from redirects, because their usage is not very signi�cant. So in the
subtask RelevanceFilter, we �lter out non-signi�cant addresses by normalizing the counts by
the maximum value and we keep only the addresses whose normalized value exceeds some
speci�c threshold (we have used 0.02 in our tests), other addresses are discarded as possible
redirects.
If all the previous tasks �nished successfully, the list of unique domains is extracted. This
list is subsequently used by other modules which gather the domains information. The de-
scribed work�ow is automatically executed from the Main class which resides in package
cz.cvut.gogartom.probedata., the sources for Map-Reduce tasks can be found in pack-
age cz.cvut.gogartom.probedata.mr and the local ones in cz.cvut.gogartom.probedata.

local. The sources also contain other additional parts, which are not mentioned in this the-
sis, since they were used only for evaluation purposes and are not crucial for the classi�cation.
Because we launch the ProbeDataProcessor repeatedly (on di�erent data sets), we need to
pass the threshold settings and paths to the input and output folders. This is done by
specifying the settings in the con�g.xml �le, which is shown in Appendix B. The path to
input folder (the folder where ESP's sequence �les reside) is set in element probeDataPath the
output folder is speci�ed in the dateFolderPath (because we compute statistics for speci�c
dates). The other elements specify working subdirectories and thresholds.

7.2 Domains crawler

After acquiring Bulk groups statistics we need to decide whether the domains used to send
messages are suspicious (see our de�nition of suspicious domain in Chapter 6). This module

7.3. PAGERANKTOOL 29

crawls the web sites which reside on the tested domains and estimates their size (i.e. how
number of unique pages accessible from the root page). Implementing own reliable crawler
is very complex problem and so we have used an open-source python library called Scrapy
[29]. One of the basic class in the Scrapy framework is a Spider. This class de�nes what
should be scrapped from the page and how the outgoing links should be followed. To serve
our needs we set the Spider to:

• Stay on the selected domain

• Visit at maximum 10 pages (because we don't need to crawl the large websites)

• We count the pages returned with HTTP Status: 200 OK

The framework (with our customized spider) is launched from the bash script. Two �les are
passed as the parameters to the script. The �rst �le contains the domains which need to be
crawled and the second one contains already crawled domains. Since the crawling is very
time consuming part of the whole process, we do not crawl domains which we have already
crawled before. Another way of speeding up the process is to use multiple spiders - so at
the beginning of the script the new-domains �le is split into multiple parts and each part is
crawled by one Spider.

7.3 PageRankTool

As the name of this tool suggests, it is responsible for collection domains PageRanks. It is
also launched from the bash script with two parameters - paths to �les with new-domains

and already-checked-domains. The script starts a Java program which uses API originally
used by the Google Toolbar2. It creates the same HTTP query as the toolbar does and
gets the response from Google servers. Unfortunately this approach does not allow us to
gather the PageRanks quickly. We can send one query per 2 seconds, so that our IP ad-
dress is not automatically banned by Google. The script and Java program are pretty
simple, the only tricky part of this module is the function used to hash the address for
the query - the Jenkins hash function. The computation of the function can be found
cz.cvut.gogartom.pagerank.JenkinsHash.

7.4 DataAgregator

DataAgregator is a simple Java program which merges the results of the previous modules.
It accepts two parameters which represent paths to two folders - the �rst folder contains
the results from ProbeDataProcessor and the second contains Page Ranks and sizes of the
domains. The DataAgregator merges the results and creates a .csv �le which contains the
�nal features for all Bulk groups 3.

2http://www.google.com/intl/cs/toolbar/ie/index.html
3It also creates a second .csv �le with users feedback, which is used only for data labeling purposes and

it is not important for the classi�cation.

30 CHAPTER 7. IMPLEMENTATION

7.5 Models

The very last module in the whole process is implemented in Matlab and it contains source
codes for particular models and scripts for testing their performance. Every model was
implemented as Matlab class and has two public methods: trainModel (which accepts
training data set and estimates the model parameters) and getScores (which returns Normal
behavior score for test instances). All important scripts, functions and classes are summarized
in Tables 7.3, 7.4 and 7.5

Script name Description

run Main script successively runs training, validation and testing
loadData Loads all available data
loadLabels Loads labels for marked data
trainModels Takes training data and prepares all models

validationScript Runs validation procedures
testScript Runs testing procedures
plotModels Plots PDFs of all models

plotFeatureSpace Plots training data in the feature space
modelConsistency Plots models trained on di�erent data sets
mergeTwoDays Merges data from two data sets
labelEmails Script used to manually label emails

analyzeEmails Script used to manually analyze content of emails

Table 7.3: Scripts overview

Function name Description

readDataCSV Reads .csv �le with features
readFeatureNamesCSV Loads feature names from .csv
readFeedbackCSV Reads users feedback (used for labeling only)

getClassi�cationStats Returns TPR, FPR, Precision and F1 score for classi�er

Table 7.4: Functions overview

Class name Description

normalDistModel Univariate Normal Distribution model
multivarNormalDistModel Multivariate Normal Distribution model

histogramModel Histogram model
parzenModel Parzen Window model

Table 7.5: Classes overview

Chapter 8

Experiments

In this chapter we will further analyze data, train models and test them on the labeled data
sets. All those steps are carried out in order to solve the following issues:

• Is a distribution of unlabeled data consistent over some meaningful interval?
If we want to model a normal behavior of senders, we need the model to stay valid at
least for few days.

• Set the parameters for anomaly detection task. Some parameters are set directly
from unlabeled data using maximum likelihood estimate, but some parameters need
to be set based on the labeled data (i.e. thresholds for the classi�ers).

• Do anomalies in sending behavior correlate with spam emails? We have manu-
ally identi�ed anomaly emails that were most probably spam, but does this assumption
hold in the whole test set.

• Compare the proposed models. Each model should be able to detect anomalies,
but how do they perform in spam detection task?

• What is the expected performance of the system? We will measure the per-
formance of the system on the small subset of labeled data and discuss whether the
technique of anomaly detection is useful for human operator.

8.1 Model consistency

Two-sample Kolmogorov�Smirnov test is a statistical test that let us estimate whether two
sets of one-dimensional data were generated by the same underlying probability distribution.
Unfortunately this test requires the underlying distribution to be continuous, which is not
in our case. Therefore we couldn't use it and we had to check the consistency by visually
comparing the data distributions for particular days. Because we use the probability den-
sity functions (PDF) for modelling the normal behavior, we have used Parzen Windows to
estimate the distributions and plotted the PDFs for multiple days (see Figure 8.1). Since
in the later testing phases we would like to simulate the normal scenario and use the �rst
two days from February as our unlabeled training set, we have merged these days into one

31

32 CHAPTER 8. EXPERIMENTS

distribution. As you can see the PDF for the two days from February (red line) has very
similar shape as the functions for the other days. This means that the normal behavior of
the senders stayed the same for the 66 days and it suggests that we can use the models to
describe the behavior. Of course for more detailed and long-term consistency testing more
data is needed, but for our purposes we assume that models stay consistent.

8.2 Data splitting and labeling

When we know that data are consistent across multiple days, we can de�ne training, valida-
tion and test sets. The Table 8.1 shows how the data will be used - we will de�ne normal
behavior on the earliest dataset from February (to simulate the real usage). We will use two
days from the April as validation data to estimate the parameters and very last day will
be used for testing purposes. Since we would like to give at least rough estimate how the
algorithm performs, we needed to label validation and testing data. As we have said several
times - this task is not easy and therefore we have not managed to label a large number of
Bulk groups.

Labeling procedure For the labeling purposes we have used the feedback from the users
- we have analyzed how they used the �mark as spam� button as a hint for manual labeling.
We have manually checked the emails with highest �spamminess� and only if we were pretty
sure that the email is spam, we have marked it. The same manual procedure was carried
out to label ham - there we have analyzed emails with the lowest �spamminess� and only if
the sender was known and reliable internet entity we have marked it as ham.

The Table 8.1 summarizes how many Bulk groups we have managed to label. For the
validation and testing purposes, the ratio of the spam and ham should be kept as in reality.
Unfortunately, no one knows the ratio in our situation, so we will use all the labelled data we
have. But it's worth to mention, that for these reasons, the numeric estimates of e�ciency
are rather tentative.

Usage Statistics Labeled Bulk groups (Ham/Spam)

Model training
02/08/2014 � / �
02/09/2014 � / �

Validation
04/08/2014 51 / 34
04/14/2014 57 / 35

Testing 04/15/2014 48 / 34

Table 8.1: Data usage overview

In this chapter all tests are carried out on all Bulk mails which arrived to the ESP. But as we
have already stated, this component should be used together with the reputation database
and only the senders which have not been seen before should be checked for anomalies. Unfor-
tunately the reputation database is not implemented yet, so we have to test the performance
on all bulk emails.

8.2. DATA SPLITTING AND LABELING 33

F
ig
ur
e
8.
1:

U
nl
ab
el
ed

da
ta

di
st
ri
bu

ti
on

fo
r
m
ul
ti
pl
e
da
ys

34 CHAPTER 8. EXPERIMENTS

8.3 Unsupervised learning

In the �rst phase we have trained models on the unlabeled data set from February. We
have trained all models discussed in Chapter 6 and some of them are depicted in Figure 8.2.
The plots shows Probability density functions in all �ve dimensions for Univariate normal

distribution model (red curve), Histogram model (8 bins settings, blue curve) and Parzen

windows (green curve). As you can see all models correctly capture the peaks of standard
behavior. On the other hand the Normal distribution model cannot correctly capture the
smaller peaks in the `address suspicion' features. This could be solved by using Gaussian
mixtures models but that's what Parzen windows model actually does. The histogram model
can detect the other peaks, but since it is not continuous it cannot describe the distribution as
precisely as the other models. This could be solved by using smaller bins, but this approach
brings other unwanted consequences and will be discussed later.

8.4 Model validation

The validation phase uses the performance of the models on the labeled dataset to estimate
the suitable parameters for the �nal classi�er. The parameters which we want to estimate
are:

• Number of bins for Histogram model

• Classi�cation thresholds for every model

We also have to set the standard deviations for Parzen window model. Unfortunately we do
not have enough validation data to set the 5 parameters automatically. On the other hand
we have pretty good picture of the normal behavior, so we could set the deviations manually.
The �nal parameters which we have used for the Parzen window model are [1, 100, 10000,
0.05, 0.05].

8.4.1 Number of bins

We have discussed how the number of bins in Histogram model in�uences the anomaly
detection - more bins allow more accurate distribution description, but on the other hand
the sparse histogram can result in false positive errors. We have trained models with 10,
20, 30 and 50 bins and plotted their ROC curves in Figure 8.3. ROC curve plots the True
Positive Rate (TPR) and False Positive Rate (FPR) for various threshold values. The models
with more bins seem to perform slightly better on the validation set. The problem of false
positives is not very apparent but if we plot the Precision-Recall graph (as in Figure 8.4),
we can see that the curve for model with 50 bins starts at the precision lower than 0.9. This
means that some ham Bulk groups received score 0 and will be always classi�ed as spam (no
matter on the chosen threshold). This is not a desired behavior and for our task we would
rather use a less sparse model. The model with 30 bins performs just slightly worse but it
didn't give any ham Bulk group score 0, so in the rest of this work we will use that model
as a representative of this group.

8.4. MODEL VALIDATION 35

F
ig
ur
e
8.
2:

M
od
el
s
of

no
rm

al
se
nd

in
g
be
ha
vi
or

36 CHAPTER 8. EXPERIMENTS

Figure 8.3: ROC curves for Histogram models

Figure 8.4: Precision-Recall graph for Histogram models

8.4. MODEL VALIDATION 37

Figure 8.5: ROC curves for all models

8.4.2 Classi�cation thresholds

In this section we focus on the proposed models and we examine how the anomalies correlate
with received spam. In the Figure 8.5 we have plotted ROC curves of our models on the
validation dataset. ROC curve plots the True Positive Rate (TPR) and False Positive Rate
(FPR) for various threshold values. The individual values are marked as circles and are
connected with lines. Since every model created di�erent Probability density function to
describe normal behavior, the maximum possible Normal behavior score is di�erent for each
model. Therefore we cannot use the same thresholds for all models, but we use 1000 linearly
spaced values between 0 and MaxScorei , where MaxScorei is the maximum possible score
for model i.

If we look at the ROC curves, we can see that for the lower thresholds all classi�ers performs
pretty well - all of them are able to recognize more than 40% of spam (0.4 TPR) with less
than 6% false positive rate. The ROC curves grows steeply at the beginning but at certain
point (approximately 0.08 FPR and 0.5 TPR) the curves lay down and go linearly to the
endpoint (point at [1,1] where all Bulk groups are classi�ed as spam). We can also see many
points at the beginning of the curves, almost no points in the center and some points at
the end. This suggests that Bulk groups usually receive either low scores or high scores.
Moreover, every curve should be formed by 1000 points, but there is not so many points.
This implies that many Bulk groups receive similar score.

In order to validate the mentioned hypotheses we have plotted histogram of scores for our

38 CHAPTER 8. EXPERIMENTS

labeled validation data in Figure 8.6 1. We can see two peaks in the histogram - the higher
peak (more than 75%) represents Bulk groups that received the highest scores (these senders
behave normally) and the second peak (20%) which represents the Bulk groups with the
lowest scores (anomaly senders). The vast majority of the `anomaly peak' consists of spam
and that is the reason why the ROC curves grows steeply at the beginning. On the other
hand we can see that approximately the same amount of spam was sent by non-anomaly
senders. These are the sender's which we will never detect with anomaly detection algorithms
based on these features. Since we could bring some bias into the problem by using only 177
manually labeled Bulk groups (where only evident spam or ham was labeled), we have plotted
the same histogram for unlabeled data set (4700 Bulk groups) in Figure 8.7. We can see that
the score distribution is still the same and it gives us good chances that we will be able to
detect the spammers which behave abnormally.

If we look at the ROC curves for particular models we can see that Univariate and Mul-
tivariate Normal Distribution models perform almost similarly - it suggests that there is
not a strong correlation between the individual features. Based on the observations from
histogram in Figure 8.7, the performance for the lower thresholds is crucial for our task.
Parzen Window model seems to perform the best in �rst half of the curve and because we
need to choose one model for the manual analysis, it is our choose for the next phases. The
interesting threshold values and the measured performance of the Parzen Window model
are summarized in Table 8.2. In this table we don't use Accuracy as a standard measure of
performance, because it is not appropriate for anomaly detection problems 2. Instead, we
use F0.5 score, which is a measure that combines precision and recall of the classi�er while
it puts more emphasis on the precision. The equation for the score is in 8.1.

F0.5 = (1 + 0.52).
precision.recall

0.52.precision+ recall
(8.1)

Threshold TPR/FPR F0.5 score

2.18e-08 0.23/0 0.60
3.49e-07 0.46/0.05 0.74
2.71e-06 0.61/0.12 0.73

Table 8.2: Interesting thresholds for Parzen Window model

8.5 Testing and manual analysis

At the end we have used the Parzen Window model to classify Bulk groups from the last day.
The results for three threshold settings are shown in Table 8.3. The performance for the
test set con�rms the results from previous sections, but it must be noted that these results
are very tentative, since the performance was measured on the very small subset of labeled

1We have chosen Histogram model because the behavior is very apparent for its scores. But other models
behave similarly.

2It is su�cient to classify everything as a non-anomaly and the Accuracy would be high.

8.5. TESTING AND MANUAL ANALYSIS 39

Figure 8.6: Histogram of labeled Bulk groups based on scores from Histogram model

Figure 8.7: Histogram of unlabeled Bulk groups based on scores from Histogram model

40 CHAPTER 8. EXPERIMENTS

data. The last column in Table 8.3 shows how many unlabeled Bulk groups were classi�ed
as anomalies. Since these are the emails that will be shown to the human operator, our goal
should be not to overwhelm him with to many anomalies, because that would make the tool
unusable. In other words - precision is more important than recall in our task.

Threshold TPR/FPR F0.5 score Anomaly Bulk groups

2.18e-08 0.32/0.04 0.64 270
3.49e-07 0.53/0.04 0.79 516
2.71e-06 0.76/0.13 0.80 1174

Table 8.3: Performance of Parzen Window model on testing data set

In the next phase we have taken the 516 Bulk groups which received the Normal behavior
score smaller than 3.49e-7 and manually analyzed the content. We have focused on the topic
of the email and the sending entity (the sending entities were intentionally estimated based
on the content of an email, not from the headers).

Email topics The topic distribution of anomaly emails can be found in a pie chart in
Figure 8.8. As we can see almost half of the anomalies advertised some goods or services
available online. How many of these advertisements are illegal newsletters or legal grey
emails is still the question which need to be analyzed by the professionals, but we can say
that the behavior of these senders is suspicious. But there are other interesting categories of
emails which promote Online casinos, Dating sites, Earning opportunities, Loans, Pharmacy
products, Insurance or emails with sexual content. These categories make together 37% of
anomalies and are very likely unwanted bulk mails. The last category Others contains all
other content such as jokes, weather forecasts, watchdogs, informational emails, etc (lot of
those emails are very likely false positives).

Sending entities While analyzing the senders based on the content, we have discovered
that for 11% of the emails we cannot determine the name of the sending entity and such
self-presentation is very suspicious. On the other hand we have also found some trustful
companies among the anomaly emails and those emails were most probably false positivies.
These emails were usually marked as anomalies because companies send emails from special
domains (for example company XY sends emails from news-XY.com or info-XY.com), where
they do not host any website. Fortunately those domains should be included in a reputation
database and therefore these emails won't be passed to the anomaly detection unit in the
�nal implementation.

8.6 Computational requirements

Since the models used for anomaly detection are pretty simple, the training and classi�ca-
tion phases do not require much computational power. The complexity of training Parzen
Window model is O(n) and the classi�cation phase is O(nm) where n is a number of training

8.7. SUMMARY 41

Figure 8.8: Topics of anomaly emails

instances and m is a number of testing instances. So the biggest issue (in terms of time re-
quirements) is a process of crawling and acquiring Page Ranks. Fortunately, the contracting
company has its own search engine and therefore they already have pre-crawled data with
their own ranking function, so this phase can be skipped in the �nal implementation.

8.7 Summary

Even though we could not use statistical methods to check consistency of normal behavior,
from the plotted distributions it is apparent that the behavior of senders remained very
similar between the February and April 2014. The preliminary results (from the small set
of labeled data) show that approximately half of the spammers behave abnormally while
the vast majority of legal senders behave as expected. This observation implies that the
proposed tool cannot detect all the spammers, but on the other hand it should operate with
su�cient precision. High precision is a very good property for such semi-automated system,
because we don't want to overwhelm the operator with too many false positives.

42 CHAPTER 8. EXPERIMENTS

Chapter 9

Future work

9.1 Further testing

The �rst measured results look promising, but in order to get the more accurate insight into
how the system performs we need to carry out further testing:

• Testing with more feedback data We have used feedback from users (how they
use 'mark as spam' button) for data labeling purposes. Since we had the data only
for particular days the resulting statistics weren't as informative as they can be, if we
used the feedback for multiple days.

• Test the algorithm with di�erent crawlers and ranking function As we have
already stated, we are planning to use already pre-crawled data a the proprietary
ranking function. We need to measure how this change will e�ect the results.

• Testing together with reputation database Since the system is supposed to work
as a complement to the reputation database we should test them together. We think
that if our system receives message only from senders which are not in the reputation
database the false positive rate will decrease.

9.2 Final implementation

If the the tests which we have mentioned above give satisfactory results, we would like to
implement the �nal solution together with the ESP in its infrastructure. The �nal system
should be able to:

• Automatically retrieve the logs and content from the servers

• Interactively change anomaly detection threshold

• Sort anomaly Bulk groups based on multiple criterions (such as total anomaly score,
anomaly score of individual features, number of received messages, etc.)

43

44 CHAPTER 9. FUTURE WORK

9.3 Other possible features

There are still many other signals which can be used for the anomaly detection. The imple-
mentation in the infrastructure will allow us to more easily add and test the new features.
The promising signals are:

• Geolocation of sending machine

• Temporal behavior of senders

• Automatic topic analysis of the content

• Outgoing links and their landing pages

Chapter 10

Conclusions

Our task was to propose a system which will be used by a human operator to detect un-
known senders of Illegal newsletters. This is a task of detecting unsolicited bulk mails which
resembles other usual grey mail and therefore it is not detected by the existing �lters and
ends up in the users inboxes.

Our proposed system focuses on the masking behavior of the spammers. We have proposed
features that should describe the self-presentation habits of the senders. Those features were
then extracted from the large set of unlabeled data (tens of millions of emails) and were used
to train statistical models of normal behavior. In the testing phase the new instances are
compared against the normal behavior model and they receive Normal behavior score. If the
score is lower than a prede�ned threshold we consider the email as suspicious and it will be
shown to the operator.

After implementing the prototype of the system, we tried to evaluate its performance, but
the whole experimentation phase was in�uenced by the lack of labeled data. Overall, we
have managed to label 259 emails which we have used during the evaluation and testing.
In the evaluation phase we speci�ed the parameters of the models and then we tested the
performance of the classi�er on the testing dataset. The results on this small labeled set
show that our system should be able to detect approximately 50% of spam while keeping the
false positive rate under 5%. Even though such results are very promising, we take them as
very tentative and we are planning more tests on larger datasets.

We have also analyzed the distribution of Normal behavior score for labeled emails, and it
suggests that approximately half of the spammers do not behave abnormally and therefore
we won't be able to detect them by our system. On the other hand there are also ham emails
which behave unusually, but since this system is not intended as an automatic spam �lter,
but rather as a tool which should help human operators, we hope that it can still give them
a new and useful perspective on the suspicious emails.

45

46 CHAPTER 10. CONCLUSIONS

Bibliography

[1] APACHE.ORG. Hadoop project, 2014. Available at: <http://hadoop.apache.org/>.
[Online; accessed 31-March-2014].

[2] BLANZIERI, E. � BRYL, A. A survey of learning-based techniques of email spam
�ltering. Arti�cial Intelligence Review. 2008 2008, 29, 1, s. 63�92.

[3] BOYKIN, P. � ROYCHOWDHURY, V. Personal Email Networks: An E�ective Anti-
Spam Tool. Technical report, University of California, Los Angeles, February 2004.
Available at: <http://arxiv.org/abs/cond-mat/0402143>.

[4] BOYKIN, P. � ROYCHOWDHURY, V. Leveraging social networks to �ght spam.
Computer. April 2005, 38, 4, s. 61�68. ISSN 0018-9162. doi: 10.1109/MC.2005.132.

[5] BRITANNICA. Gary Thuerk, 2014. Available at: <http://www.britannica.com/
EBchecked/topic/1668817/Gary-Thuerk>. [Online; accessed 2-February-2014].

[6] CARRERAS, X. � MàRQUEZ, L. � SALGADO, J. G. Boosting Trees for Anti-Spam
Email Filtering. In In Proceedings of RANLP-01, 4th International Conference on

Recent Advances in Natural Language Processing, Tzigov Chark, BG, s. 58�64, 2001.

[7] CHANDOLA, V. � BANERJEE, A. � KUMAR, V. Anomaly Detection: A Survey.
ACM Comput. Surv. July 2009, 41, 3, s. 15:1�15:58. ISSN 0360-0300. doi: 10.1145/
1541880.1541882. Available at: <http://doi.acm.org/10.1145/1541880.1541882>.

[8] CHOWDHURY, A. et al. Collection Statistics for Fast Duplicate Document Detection.
ACM Trans. Inf. Syst. April 2002, 20, 2, s. 171�191. ISSN 1046-8188. doi: 10.1145/
506309.506311. Available at: <http://doi.acm.org/10.1145/506309.506311>.

[9] COOPER, J. � CODEN, A. � BROWN, E. A novel method for detecting similar
documents. In System Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii

International Conference on, s. 1153�1159, Jan 2002. doi: 10.1109/HICSS.2002.994037.

[10] CROCKER, D. � HANSEN, T. � KUCHERAWY, M. RFC 6376: DomainKeys Identi-
�ed Mail (DKIM) Signatures. Technical report, The Internet Engineering Task Force,
September 2011. Available at: <tools.ietf.org/html/rfc6376>. Status: INFOR-
MATIONAL.

[11] DREDZE, M. � GEVARYAHU, R. � ELIAS-BACHRACH, A. Learning Fast Classi�ers
for Image Spam. In Conference on Email and Anti-Spam, 2007.

47

http://hadoop.apache.org/
http://arxiv.org/abs/cond-mat/0402143
http://www.britannica.com/EBchecked/topic/1668817/Gary-Thuerk
http://www.britannica.com/EBchecked/topic/1668817/Gary-Thuerk
http://doi.acm.org/10.1145/1541880.1541882
http://doi.acm.org/10.1145/506309.506311
tools.ietf.org/html/rfc6376

48 BIBLIOGRAPHY

[12] DRUCKER, H. � WU, S. � VAPNIK, V. Support vector machines for spam catego-
rization. Neural Networks, IEEE Transactions on. Sep 1999, 10, 5, s. 1048�1054. ISSN
1045-9227. doi: 10.1109/72.788645.

[13] FETTERLY, D. � MANASSE, M. � NAJORK, M. On the Evolution of Clusters of
Near-Duplicate Web Pages. In Proceedings of the First Conference on Latin American

Web Congress, LA-WEB '03, s. 37�, Washington, DC, USA, 2003. IEEE Computer So-
ciety. Available at: <http://dl.acm.org/citation.cfm?id=951953.952397>. ISBN
0-7695-2058-8.

[14] GOLBECK, J. � HENDLER, J. Reputation Network Analysis for Email Filtering. In
Proc. Conference on Email and Anti-Spam (CEAS), Mountain View, USA, July 2004.

[15] GOODMAN, J. � CORMACK, G. V. � HECKERMAN, D. Spam and the ongoing
battle for the inbox. Commun. ACM. 2007 2007, 50, 2, s. 24�33.

[16] GOOGLE. Guava project, 2014. Available at: <http://http://code.google.com/p/
guava-libraries/>. [Online; accessed 31-March-2014].

[17] GOOGLE. Protocol Bu�ers library, 2014. Available at: <http://code.google.com/
p/protobuf/>. [Online; accessed 31-March-2014].

[18] GROUP, T. R. Email Statistics Report 2013-2017, April 2013. Avail-
able at: <http://www.radicati.com/wp/wp-content/uploads/2013/04/
Email-Statistics-Report-2013-2017-Executive-Summary.pdf>.

[19] HAJISHIRZI, H. � YIH, W.-t. � KOLCZ, A. Adaptive Near-duplicate Detection via
Similarity Learning. In Proceedings of the 33rd International ACM SIGIR Conference

on Research and Development in Information Retrieval, SIGIR '10, s. 419�426, New
York, NY, USA, 2010. ACM. doi: 10.1145/1835449.1835520. Available at: <http:
//doi.acm.org/10.1145/1835449.1835520>. ISBN 978-1-4503-0153-4.

[20] KASPERSKY-LAB. Spam Statistics Report Q2-2013, 2013. Available at:
<http://http://usa.kaspersky.com/internet-security-center/threats/
spam-statistics-report-q2-2013>.

[21] KLENSIN, J. Simple Mail Transfer Protocol. Request for Comments: 2821, The Internet
Engineering Task Force, April 2001.

[22] KLENSIN, J. Simple Mail Transfer Protocol. Request for Comments: 5321, The Internet
Engineering Task Force, October 2008.

[23] LEVINE, J. RFC 5782: DNS Blacklists and Whitelists. Technical report, The Inter-
net Engineering Task Force, February 2010. Available at: <tools.ietf.org/html/
rfc5782>. Status: INFORMATIONAL.

[24] PANTEL, P. � LIN, D. SpamCop:A Spam Classi�cation & Organization Program. In
In Learning for Text Categorization: Papers from the 1998 Workshop, s. 95�98, 1998.

http://dl.acm.org/citation.cfm?id=951953.952397
http://http://code.google.com/p/guava-libraries/
http://http://code.google.com/p/guava-libraries/
http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/
http://www.radicati.com/wp/wp-content/uploads/2013/04/Email-Statistics-Report-2013-2017-Executive-Summary.pdf
http://www.radicati.com/wp/wp-content/uploads/2013/04/Email-Statistics-Report-2013-2017-Executive-Summary.pdf
http://doi.acm.org/10.1145/1835449.1835520
http://doi.acm.org/10.1145/1835449.1835520
http://http://usa.kaspersky.com/internet-security-center/threats/spam-statistics-report-q2-2013
http://http://usa.kaspersky.com/internet-security-center/threats/spam-statistics-report-q2-2013
tools.ietf.org/html/rfc5782
tools.ietf.org/html/rfc5782

BIBLIOGRAPHY 49

[25] PARZEN, E. On Estimation of a Probability Density Function and Mode. The Annals
of Mathematical Statistics. 1962, 33, 3, s. pp. 1065�1076. ISSN 00034851. Available at:
<http://www.jstor.org/stable/2237880>.

[26] POSTEL, J. B. Simple Mail Transfer Protocol. Request for Comments: 821, The
Internet Engineering Task Force, August 1982.

[27] RESNICK, P. RFC 5322: Internet Message Format. Technical report, The Internet
Engineering Task Force, October 2008. Available at: <http://tools.ietf.org/html/
rfc5322>.

[28] SAHAMI, M. et al. A Bayesian Approach to Filtering Junk E-Mail. In Learning for

Text Categorization: Papers from the 1998 Workshop, Madison and Wisconsin, 1998.
AAAI Technical Report WS-98-05.

[29] SCRAPY. Scrapy crawling framework, 2014. Available at: <http://scrapy.org/>.
[Online; accessed 31-March-2014].

[30] SISSON, G. DNS Survey: October 2010. Technical report, The Measurement Factory,
November 2010. Available at: <http://dns.measurement-factory.com/surveys/
201010/dns_survey_2010.pdf>.

[31] TAYLOR, B. Sender Reputation in a Large Webmail Service. In CEAS, 2006.

[32] TELECOMMUNICATIONS, V. M. � METSIS, V. Spam Filtering with Naive Bayes �
Which Naive Bayes? In Third Conference on Email and Anti-Spam (CEAS, 2006.

[33] WANG, Z. et al. Filtering image spam with near-duplicate detection. In In Proceedings

of the Fourth Conference on Email and AntiSpam, CEAS'2007, 2007.

[34] WIKIPEDIA. Email � Wikipedia, The Free Encyclopedia, 2014. Available at: <http:
//en.wikipedia.org/wiki/Email>. [Online; accessed 2-February-2014].

[35] WONG, M. � SCHLITT, W. RFC 4408: Sender Policy Framework (SPF) for Authoriz-
ing Use of Domains in E-Mail. Request for Comments: 4408, The Internet Engineering
Task Force, April 2006.

[36] WU, C.-T. et al. Using visual features for anti-spam �ltering. 3, s. 509�512, 2005.
Available at: <http://dx.doi.org/10.1109/icip.2005.1530440>.

http://www.jstor.org/stable/2237880
http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc5322
http://scrapy.org/
http://dns.measurement-factory.com/surveys/201010/dns_survey_2010.pdf
http://dns.measurement-factory.com/surveys/201010/dns_survey_2010.pdf
http://en.wikipedia.org/wiki/Email
http://en.wikipedia.org/wiki/Email
http://dx.doi.org/10.1109/icip.2005.1530440

50 BIBLIOGRAPHY

Appendix A

Contents of attached CD

Directory structure:

• Sources

� ProbeDataProcessor

� DomainsCrawler

� PageRankTool

� DataAgregator

� ModelingTool

• Thesis

� Sources

� Gogar-thesis-2014.pdf

51

52 APPENDIX A. CONTENTS OF ATTACHED CD

Appendix B

ProbeDataProcessor: con�g.xml

<?xml version="1.0"?>

<proccessConfiguration>

<!-- Folder names -->

<probeDataPath>ProtoFiles/04_15/</probeDataPath>

<dateFolderPath>ProtoOutput/04_15/</dateFolderPath>

<tmpFolder>tmpFolder/</tmpFolder>

<finalFolder>finalOutput/</finalFolder>

<!-- Subfolders names -->

<bulkPepcaSubfolder>bulkPepcas/</bulkPepcaSubfolder>

<statsSubfolder>stats/</statsSubfolder>

<sumphashSubfolder>sumphash/</sumphashSubfolder>

<feedbackSubfolder>feedback/</feedbackSubfolder>

<!-- Constants -->

<bulkMailThreshold>500</bulkMailThreshold>

<relevantPercentageThreshold>0.02</relevantPercentageThreshold>

</proccessConfiguration>

53

54 APPENDIX B. PROBEDATAPROCESSOR: CONFIG.XML

Appendix C

Figures

Figure C.1: Content of an anomaly email - name, addresses and images were hidden due to
privacy concerns

55

	Introduction
	Bulk Emails
	Unsolicited Bulk Emails
	Grey Emails
	Illegal newsletters

	Our goal
	Email characteristics
	SMTP envelope
	Email headers
	Email content

	Related work
	First filtering methods
	Content-based methods
	Behavioral methods
	Email standard extensions
	SpamAssassin

	Data
	Design of proposed solution
	Hypothesis: Expected behavior of a sender
	Features
	Bulk group consistency features
	Domain Features
	Definition: Suspicious domain

	Data analysis
	Anomaly detection
	Parametric techniques
	Non-parametric techniques

	Implementation
	ProbeDataProcessor
	Domains crawler
	PageRankTool
	DataAgregator
	Models

	Experiments
	Model consistency
	Data splitting and labeling
	Unsupervised learning
	Model validation
	Number of bins
	Classification thresholds

	Testing and manual analysis
	Computational requirements
	Summary

	Future work
	Further testing
	Final implementation
	Other possible features

	Conclusions
	Contents of attached CD
	ProbeDataProcessor: config.xml
	Figures

