
Master’s thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science and Engineering

Aspect-oriented user interface
design for Android applications

Bc. Jiří Šebek
Study program: Electrical Engineering and Computer Science
Branch: Information Technology

March 2013
Supervisor: Ing. Tomáš Černý

Acknowledgement / Declaration

I thank Ing. Tomáš Černý, the
supervisor of the diploma thesis for
his valuable advice and suggestions,
which were very helpful. Further-
more i thank my family for support
during studies.

I declare, that i have done assigned
the diploma thesis alone led by super-
visor. I used only literature, that is
listed in work. Furthermore i declare,
that i have no objections against lend-
ing or making public of my diploma
thesis or it’s part with agreement of
department.

In Prague 9. 5. 2014

. .

iii

Abstrakt / Abstract

Diplomová práce se zabývá úlo-
hou vytvoření efektivního android
frameworku, pomocí kterého mohou
vývojáři vytvořit android aplikace
velmi jednoduše v krátkém časovém
intervalu pomocí aspektového ná-
vrhu aplikací. Při řešení úlohy bylo
využito jazyka Java s IDE eclipse a
s Android SDK na operačním sys-
tému Windows 7. Bylo navrženo
řešení, které umožňuje řešit jednot-
livé aspekty, jako jsou bezpečnost,
rozvržení prvků, validace vstupu,
provázání dat a prezentace, nezávisle
na sobě. Navržené řešení bylo porov-
náno s klasickým vývojem mobilních
aplikací a také s frameworkem Aspect
Faces, který aspektový přístup také
využívá, ale je určen pro Java EE
aplikace. Jednotlivé dílčí aspekty
frameworku byly otestovány a bylo
prokázáno, že framework je efektivní
v následujících oblastech: nezpoma-
luje danou aplikaci ale zrychluje ji,
zpřehledňuje kód, urychluje vývoj a
snižuje počet řádků kódu, který musí
vývojář napsat.

Klíčová slova: aspektově oriento-
vaný přístup, design řízený aspekty,
přístup řízený inspekcí entity, run-
time aspektový model, snížení úsilí
při vývoji a údržbě

This diploma thesis deals with
the creation of an effective android
framework that will allow a devel-
oper to create android applications
very easily in a short period of time
with aspect approach. Through the
solving of the given task the Java lan-
guage was used with the IDE eclipse
and with the Android SDK on opera-
tion system Windows 7. The solution
was designed which enable to deal
with separated aspects like security,
layout, input validation, data binding
and presentation independently. The
specified solution was compared with
conventional approach of developing
mobile applications and also with
framework Aspect Faces that is also
using aspect oriented approach but it
is designed for Java EE applications.
Each aspect of framework was tested
and it was proven that framework is
effective in the following domains: it
is not slowing down the application
that is using designed framework but
it is even faster, clear the code to be
more readable, it is making develop
faster and lower the number of code
lines that developper has to write
down.

Keywords: aspect oriented ap-
proach, aspect driven design, entity
inspection based approach, runtime
aspect model, reduced maintenance
and development efforts

iv

Contents /

1 Introduction . 1
2 Background . 2
2.1 Conventional approach 3
2.2 Aspect oriented approach 4
2.3 Applications developed in

Java for Android 5
2.4 Life cycle of Android ap-

plications . 7
3 Related work10
4 Framework requirements12
5 Analysis and design of the

framework. .15
5.1 Analytic model of classes15
5.2 Sequence diagram of

frameworks lifetime16
6 Implementation18
6.1 Directory structure18
6.2 The cache of framework.20
6.3 Data presentation22
6.4 Data binding25
6.5 Input validation25
6.6 Layout .29
6.7 Security .31
6.8 Error messages32

7 Comparison of aspect ori-
ented approach and con-
ventional approach for An-
droid platform35

8 Comparison of aspect ori-
ented programming (AOP)
for Android platform and
Java EE .39

9 Table of regresive tests41
10 Instalation .42

10.1 The pick of operation sys-
tem (OS) and IDE42

10.2 Instalation steps42
11 Conclusion .43
A Specification .46
B Symbols .47
C Code examples48
D References .49
E Content of attached CD51

v

Tables / Figures

6.1. Asymptotic time complexi-
ty of hashMap21

7.1. Comparison of AOP and
conventional approach36

7.2. Table of launching times36
9.1. Regresive tests41

2.1. Distribution of all OS for
mobiles . 2

2.2. The structure of conven-
tional android application 3

2.3. Xml generated view vs pro-
grammatically generated
view . 4

2.4. Creating and executing Ja-
va program. 5

2.5. Creating and executing ja-
va program for the desktop
and for the Android 6

2.6. Structure of Android 7
2.7. Life cycle of android activity . . 9
4.1. Distribution of Adroid ver-

sions .13
5.1. Analytic model of classes.16
5.2. Sequence diagram of frame-

work .17
6.1. Directory structure of

framework. .18
6.2. Example how resources

works .19
6.3. How hashMap works21
6.4. The result of presentation24
6.5. The result of presentation

with invoked software key-
boards .24

6.6. Input validation before
view is rendered26

6.7. Input validation while the
is changed .27

6.8. Data succesfully passed
validation .28

vi

6.9. Templates of basic two lay-
outs .30

6.10. The real view of basic two
layouts .31

6.11. The example of usage secu-
rity .32

6.12. The options of error mes-
sages .34

7.1. Formula of standard devia-
tion .37

7.2. The launching times of ap-
plication. .38

vii

Chapter 1
Introduction

The main task of this diploma thesis is to create an android framework that will
allow a developer to create android applications with minimal effort in a short
period of time with the aspect approach.

The aspect oriented approach in a software development means that we are
focusing on each divided aspect. These aspects are: security, layout, input val-
idation, data binding and presentation. In the conventional approach, we are
mixing a code of all these aspects together as one big code. As a result of the
aspect approach, the developer can write a less amount of code which is reusable.
We also avoid a spageti code, a redundance of code and other bad habits in the
programming.

In the first part, the background research of the aspect oriented approach in
the software development is described. This chapter also reveals the nature of
many benefits of the aspect oriented approach. The second part contains partic-
ular framework requirements on developer’s computer. An analysis and a design
of the framework are included in the third part of this diploma thesis. All of later
shown diagrams were made in the Enterprise Architect software. The fourth part
contains the proposed framework’s implementation. The final implementation was
designed according to the modern OOP requirements. As a result, the proposed
framework provides easy scalability and also fast response time. The implemen-
tation contains all of the mentioned aspects. In the fifth part, the comparison
with the conventional approach of developping android applications is described.
There is also a list of cons and benefits. The sixth part is dedicated to the insta-
lation of framework. In the conclusion, there are stated achieved results and the
discussion is provided.

1

Chapter 2
Background

Within all operation systems (OS) for a mobile device, the Android is the most
expanded as shown in Figure 2.1. Because of that, the most desirable applications
are targeted for Android. As you can see from Figure 2.1, the ratio of applications
targeted for the Android OS for mobile device is steadily growing up. This is the
reason why developers cannot omit the Android in their analysis.

Figure 2.1. Distribution of all OS for mobiles (undertook from reference 6 in Appendix
D)

2

. 2.1 Conventional approach

2.1 Conventional approach

In the conventional object oriented approach, we firstly install SDK and a plugin
for some IDE and then we create a project. We can now see the structure of the
created project in Figure 2.2.

Figure 2.2. The structure of conventional android application

In android applications, there are two parts of every screen. Every screen in
android is called Activity. The first part is java class that extends Activity where
you can place your logic and you have to connect your java class to view. That
view is second part and that can be done by xml file or programmatically. In
the folder named /src, there are java files and in the folder /res/layout, there
are xml files. Every new activity has to be registered in AndroidManifest.xml.
In this file, there is also a global class, icons, filters, an internet permission etc.
In Figure 2.3, you can see the difference between these two implementations of
the view part. Usually, xml choice is better because you can separate, at least,
layout from remaining code. In Figure 2.3, you can also see that in xml part,
you can switch the tab to see the layout in any IDE. Sometimes it is really helpful.

3

2. Background .

Figure 2.3. Xml generated view vs programmatically generated view

2.2 Aspect oriented approach
In the aspect oriented approach, we wanted to separate all mentioned aspects
resulting in a good code. In OOP designs, we use classes to describe only instance
and its attributes. That is representation for data only. Therefore, the best way to
do aspect way approach is to add these additional pieces of information to the same
representation (class). This is called Rich Entity Aspect/Audit Design (READ)
[1,2] in Appendix D. Above any instance, attribute or method you can place anno-
tation to add another information. By this procedure, we can add all required as-
pects.

4

. 2.3 Applications developed in Java for Android

2.3 Applications developed in Java for Android
The basic steps for developing Java applications are:

.Write the program in Java.Compile the source code.Run the program

The first step is to write a code and to save it in a file with extension .java.
Then, we compile this file, which contains the source code, with compiler. The
default java compiler is called javac. As a result, the compiler creates a file with
extension .class. This file contains a Bytecode. We can execute this Bytecode on
any operation system with a JRE. JRE stands for Java runtime enviroment. In
the more detail, JRE contains Java virtual machine (JVM) and sets of a standard
libraries. This JVM can execute the bytecode of the program. JVM can also
execute the file with extension .jar, which contains .class files. JVM is sometimes
called the interpret. This process is shown in Figure 2.4.

Figure 2.4. Creating and executing Java program

This is the different approach than software developing in C language, where
the source code needs to be compiled in a specific platform’s compiler (the win-

5

2. Background .
dows compiler, the ubuntu compiler...); hence, the C programs are not portable
as Java programs. Beside the term JRE, there is a well known term JDK (Java
Development Kit). JDK is a package that contains JRE, Java compiler, docu-
mentation and some supporting programs. To summarize, JRE is just used for
executing programs but JDK serves for entire program development.

The basic steps for the Java applications development on Android are similar
with a few exceptions. We also have to write the program in Java, compile the
source code and run the program, but the main difference resides in the usage
of SDK instead of JDK for the development. The bytecode generated with SDK
is compiled to the Dalvik bytecode file with the extension .dex. This bytecode
is different than the bytecode generated with JDK. Finally, this Dalvik bytecode
is executed on the Dalvik virtual machine. The Dalvik virtual machine is also
different from the Java virtual machine. In Figure 2.5, we can see the comparison
between normal desktop java approach and Java android approach.

Figure 2.5. Creating and executing java program for the desktop and for the Android
(JDK vs SDK, undertook from reference 8 in Appendix D)

6

. 2.4 Life cycle of Android applications

In Figure 2.6, there is the structure of the Android platform. As you can see
from Figure 2.6, the Android has the following layers:

.Applications.Framework services and libraries.Native libraries, daemons and services.The Linux kernel (drivers for hardware, networking, file system access and inter-
process-communication)

Figure 2.6. Structure of Android (undertook from reference 5 in Appendix D)

2.4 Life cycle of Android applications
The most important thing in android application is the Activity class. Each
Activity instance in our application can change state in the Activity life-
cycle. All of Activities are managed in activity stack. When new activity
starts it is put on the top of the stack.

7

2. Background .

Every activity has 4 main states:

.Active or running.Paused.Stopped.Finished or killed

The first state occurs when activity comes up in the foreground. If this activity
lose the focus, the state changes to paused. It is still visible and alive. If our
activity is totally covered by another activity, the state changes to stopped. Ac-
tivity with this state is not visible. When activity has state paused or stopped
the Android can remove the activity from memory. It can be done by asking it
to finish or just kill its process. Figure 2.7 shows the diagram of the life cycle of
the android activity. As we can see, there are 3 main lifetime loops.

.Entire lifetime.Visible lifetime.Foreground lifetime

The entire lifetime of the activity is called from the first call onCreate(Bundle)
to the final call onDestroy(). The visible lifetime of the activity is called from
the first call onStart() to the call onStop(). During this phase, the activity is
shown on-screen. It does not have to interact with the user. The last mentioned
lifetime loop of the activity is called the foreground lifetime. It is called from
the first call onResume() to the call onPause(). During this time, the activity is
on the top of the activity stack so it is in foreground and the user is interacting
with this activity. Every activity needs to be declared in AndroidManifest.xml.
In every activity, you will need to define at least onCreate(Bundle) where you
are initializing your activity and connecting to your xml file with UI (or pro-
grammatically). You will very often need to implement onPause(), where you
can handle the data storage etc., since the user can often leave your activity.

8

. 2.4 Life cycle of Android applications

Figure 2.7. Life cycle of android activity (undertook from reference 5 in Appendix D)

9

Chapter 3
Related work

Approach in the articles [1,2] in Appendix D is not the only way how to gen-
erate UI from the model. The topic of User Interfaces generated from domain
objects is mentioned in [9,10] in Appendix D. The framework is called Metawid-
get and it is based on Model driven development (MDD). The user just creates
objects and puts them to Metawidget’s framework. The UI is generated according
to the model. Metawidget supports a lot of technologies from Android, Google
Web Toolkit (GWT), HTML 5 (POH5), JavaScript to JSF and JSP. Metawidget
works in three basic steps. First, Metawidget comes with a UI component native
to your existing front-end. Second, Metawidget inspects, either statically or at
runtime, your existing back-end architecture. Third, Metawidget creates native
UI subcomponents matched to the back-end. In the articles [1,2] in Appendix
D, the other aspects were added based on annotations. Metawidget adds these
informations based on existing backend of any applications.

Model driven development (MDD) is based on the idea that the model should
be primary centralized place for all informations. This models is then compiled
or transformed in other way into the deployed application code. The benefits
are reduction of informations in application and structure the informations into
one place. The disadvantages can be adaptation and evolution management [11]
in Appendix D. This approach does not go well with OOP, because we need to
maintain the interconnection between the model with the backend of the applica-
tion. There is another tool that we need to describe the additional informations.
This tool in the MDD is called the Domain-specific language (DSL). Sometimes
it is informally called mini-languages, because they describe the additional in-
formation in the inner of the other language. There are a wide variety of DSL.
A domain-specific language can be one of a visual diagramming language, pro-
grammatic abstractions, declarative language (OCL) or even whole languages like
XSLT. As we can see, some of them evolve into the programming tools that are
used frequently (XSLT). Some of the domain-specific languages are not used now
as often as they were (for example OCL).

10

. .
Generative Programming (GP) is a specific type of a programming that gener-

ates the source code from domain-specific code. The goal is to improve productiv-
ity of developer, make way between application code and domain model, support
reuse, adaptation, simplify management of components [12] in Appendix D.

Meta programming (MP) is a technique, which allows the developer to modify
the structure and the behavior of the applications at the runtime. The reflection is
one of the options how to implement the MP [13] in Appendix D. The developers
can inspect the classes, the fields, the methods at the compile time and they do
not even have to know their names at compile time. The MP allows the developer
to adapt the application to the different situations. The bottleneck of this solution
is the performance. The applications are significantly slower with the MP and are
harder to test or debug then the applications without the MP. To deal with this
problem the developer can use some cache.

11

Chapter 4
Framework requirements

A good aspect oriented framework for Android should support these attributes in
order to be effective and desirable:

.multiple presentations.multiple layouts. security, visibility. validity. avoid mistakes and lower number of errors. reduce duplication. readable code fragments. adapt to runtime application context.be easy to develop and to maintain.minimal amount of written code and efforts.Android 2.2 and higher version.Adroid SDK and plugin for Eclipse.backend development

From the chapter 1, we know that we want to have implemented aspects like
security, layout, input validation, data binding and presentation. We also want to
support the developer’s multiple choices in a part of the presentation (like integers,
strings) and the layout (for example one column layout, two column layout). Very
important part of requirements is to provide some security check if a logged user
can see presented data or not. An another section is a validation. The normal
validation is checking the validity of inserted data while we click on send button.
The data are checked and based on the validation, the user is passed to another
activity or the information about errors is provided. This is the basic validation.
Another requirement on validation is to check default data that are preset to the
instance before the form is even created. If this data are not valid, the user is
informed. The last part of validation is checking validation of each element while
the user is changing the value.

If we start using any framework, we are expecting clarity of its usage to avoid
some mistakes and lower the number of errors. The reduction of duplication in

12

. .
code is obvious. We do not want to write same or similar code always again and
again; furthermore, we want to avoid the situations when the change of something
in that redundant part of code is required which would result in modifications of
all redundant parts of code. Instead of that, we want readable code fragments
with no redundance. It will result in a nice reuseable code which will be separated
according to each aspect and developer will exactly know where he needs to change
something. This approach saves the time when an application is being developed
and it is easy to maintain. Another requirement on this framework is that it has
to be able to adapt to runtime application context. It does not even have to know
your instances before the application is compiled to change layout etc., it will be
created generic. One of the most important requirement is a minimal amount
of written code and efforts. This point is joined up with the other points in the
list like reduction of duplication, readable code fragments, be easy to develop and
to maintain etc. (any framework is expected to accomplish these last mentioned
requirements). There are lots of versions of Android OS and if you make some
program for concrete version and its higher variants, it will not be working on
lower Android versions. In Figure 4.1, there is a distribution of usage of the
Android version used by users. As we can see versions under number 2.2 are not
even mentioned on the list, because the number is too small. So the minimal SDK
version 2.2 is a good choice. Of course, we need Android SDK and some plugin
for IDE. In case of this framework, it is plugin for eclipse. There are also another
plugins, for example plugin for Netbeans.

Figure 4.1. Distribution of Adroid versions (undertook from reference 7 in Appendix D)

We also do not want to only develop forms in our programs; hence, another
requirement should be the backend development. The framework should allow us

13

4. Framework requirements .
not only to maintain our UI, but we should get space to develop some functionality
in the backend of the application.

14

Chapter 5
Analysis and design of the framework

The whole framework is designed in a modular way so it is easy to extend it for
example by another aspect that will come up in the future. In phase of designing,
the important factor for the framework was platform on which the application will
run. This platform is a mobile device.

5.1 Analytic model of classes

The analytic model of classes is a diagram which captures a general static
view of the application. The purpose of this is to illustrate types of ob-
jects, variables and their relationships. Figure 5.1 shows this diagram.
It does not contain all of the files (classes) because there would be much
more objects and the diagram would not be easy to read, but it contains
all packages and main functionality.

15

5. Analysis and design of the framework .

Figure 5.1. Analytic model of classes

5.2 Sequence diagram of frameworks lifetime
The sequence case diagram is used for a visualization of interactions between
processes (objects). It also displays the right order of these interactions. It is a
behavioral type of a diagram. Therefore, it is the best choice for showing how
the framework works. The diagram includes parallel vertical lines called lifelines
and horizontal arrows that represent the messages exchanged between them in the
right order as they appear. On Figure 5.2, there is shown the sequence diagram.
It shows what happens from the start of the application using the framework. The
mandatory actions are create Presentation and call of functions buildCache(), set-
DataPresentationFromCache(). The other options of the framework are voluntary
like on the diagram. If the developer wants to validate default data in created
instances he just creates the InputValidation object and call inputValidate(). The
framework will care about the rest via created rich entity (normal instance with

16

. 5.2 Sequence diagram of frameworks lifetime

attributes and with annotations). In this diagram, it is also captured when the
user changes the value of element it will call the listener which will call the input-
Validation(). If the user sends the form of data it will also call inputValidation().

Figure 5.2. Sequence diagram of framework

17

Chapter 6
Implementation

As it was described in the chapter 2, the programming language Java without
using any other external framework was chosen for the implementation. As a
developping IDE was chosen Eclipse.

6.1 Directory structure
The directory structure of this framework is same as a normal Java Android
application. As you can see from Figure 6.1 the project contains from folders,
private libraries and other resources files.

Figure 6.1. Directory structure of framework

18

. 6.1 Directory structure

The src/ folder contains every java file in the project as it was said in the chapter
2.1. Java files are saved in the form of src/package/javaFile.java. The gen/ folder
contains java files generated by ADT. For example, the most important R.java
file or BuildConfig.java file is there. The R.java file includes all the resources IDs
provided to resources (drawables, layouts, styles etc). The assets/ folder contains
asset files which you may want to connect and use. In the bin/, there is the final
apk file that is created when you compile the whole project. The private libraries
are in the folder libs/. The resources take place in the res/ folder. In Android,
we have different types of resources. For every resource, we have a special folder
with a special subfolder with xml files or even that resource like images. The
type of resources are: color, drawable, layout, menu, values. All of them except
drawable/ folder contains xml files. In drawable folder, there are images used in
the application. We can create every other resource in the specific xml file by
writing xml tag with id and value. We can then use this resource many times in
our application instead of just writing strings, menus and layout again and again.
The example is shown in Figure 6.2.

Figure 6.2. Example how resources works

We can create any string ID we want and after compiling, SDK will create int
ID for this name and it will add it into our R.java file. @+ in ID means that it

19

6. Implementation .
is new ID and SDK will have to add it in R.java. As it was said in chapter 2.1,
there is AndroidManifest.xml in which we have to register every activity or allow
some permisions for the application.

The core of the framework structure is in the folder src/. It consists of 5
packages:

. cvut.fel.aspectfaces.metamodel.model.presentation. securityAndValidation

The first one cvut.fel.aspectfaces is mainly designed for the developer. Here,
the developer can create any java file or folder of the project. MainActivity.java
is the example file how developer should use this framework. AFContext.java is
the frameworks context which includes some important information like a cache
with metamodels, userRole and other. For every class that we will create, we
need to create the metamodel in the cache. This metamodel class and its parts
(fields and annotations) takes place in metamodel package. Model package is
assigned for classes created by the developer. The Presentation part includes the
data presentation, data binding and choosing layout. The SecurityAndValidation
package is resposible for the input validation and security.

6.2 The cache of framework
The inner cache of the framework is the core part. In entity driven development,
we regularly want to create the instance and create appropriate layout and other
parts of the application. This approach is sufficient, but we want to use this
approach for any instance we create so we need to do this more generic by using
type Object and use Java reflection to get attributes and annotations. This way is
better, but java reflection is not optimal for calling every time when we visit form.
It would be too slow and if the application will be larger, it will become a bigger
problem. The result of this is that we need some cache. Of course, we will create
the cache with usage of Java reflection but only for the first time application is
called. In this cache, we should save our metamodels effectively so the cache is
the hashmap of metamodels. And every metamodel includes hashmaps of fields
and annotations. At the end, every field has hashMap of annotations too. You
can see this structure in Figure 5.1 in chapter 5.1. Hashmap is a Java hash based
structure similar to the hashtable. It is used to store a key and value pairs. The

20

. 6.2 The cache of framework

Average Worst case
Search O(1) O(n)
Insert O(1) O(n)
Delete O(1) O(n)

Table 6.1. Asymptotic time complexity of hashMap

advantage is asymptotic time complexity that is way much better then using Java
reflection every time. Table 6.1 shows the main operations with time complexity.

As we can see from table 6.1, average time complexity is a constant for opera-
tions search, insert and delete. That first two operations are the most important
for our purposes. The worst case can happen when collisions occure. In our cache,
we are using the name of instance, field or annotation as a key and the value is
the instance, field or annotation itself. The calling process is shown in Figure 6.3.
The hashmap has one disadvantage that does not guarantee the order of elements
stored but that does not pose the problem for our framework.

Figure 6.3. How hashMap works

In the practice, this will be used a lot because many android applications are
based on fragments. The fragment is a dynamic UI and can be represented like
subactivity. One activity can include many fragments and the user is switching
between them. Sometimes it is called the multiple screen support or multi-pane
UI. Because of that, the user is relaunching some fragments again and again. The
time we save in recalling forms will pay off.

The cache is placed in AFContext. AFContext is a class which extends the
Activity. This caused accessibility cache in whole application from any Activ-
ity. It is similar to some kind of a global class.

21

6. Implementation .
6.3 Data presentation

This is the part where we want to visualize the data into some elements. Each
data can have different type so data are presented in each different way based on
that type. Our framework has implemented 3 basic types:

.String. int.password

The last one password is based on annotation above atribute. This part is not
only about show right editText (similar element as input tag in html) but also
included the invocation of right software keyboard to put the right values. The
framework also implements the @email annotation but it is primarily for value
validation. The input values are same as normal String. In Listing 1 below you
can see the declaration of attributes and the types.

@Password
String attr1;
int attr2;
String attr3;

Listing 1: Example use of data types

In Listing 2 below you can see the preparation of editText for String and in
Listing 3 you can see the preparation of editText for int. The varible isPassword
and isAllPassword are Boolean expressing if annotation @password was used.
Variable isPassword is for annotation right above attribute and isAllPassword is
for annotation above all instances. As you can see, this is not the preparation of
layout, this is only the preparation of each element.

if(isPassword || isAllPassword){
et.setInputType(InputType.TYPE_CLASS_TEXT |
InputType.TYPE_TEXT_VARIATION_PASSWORD);
}else{
et.setInputType(InputType.TYPE_CLASS_TEXT);
}

Listing 2: Preparation of editText for String

22

. 6.3 Data presentation

if(isPassword || isAllPassword){
et.setInputType(InputType.TYPE_CLASS_TEXT |
InputType.TYPE_CLASS_NUMBER);
et.setTransformationMethod(PasswordTransformationMethod.getInstance());
}else{
et.setInputType(InputType.TYPE_CLASS_TEXT |
InputType.TYPE_CLASS_NUMBER);
}

Listing 3: Preparation of editText for int

You can see the result of rendered instance in Figure 6.4 where is shown
the different types rendered. The different software keyboards that were in-
voked are shown in Figure 6.5.

23

6. Implementation .

Figure 6.4. The result of presentation

Figure 6.5. The result of presentation with invoked software keyboards

24

. 6.4 Data binding

6.4 Data binding

There are two types of data binding: static and dynamic. The static data binding
is term called when a type, name and value is resolved at the compile time. When
it is resolved at the runtime, it is called dynamic binding. To resolve this at the
runtime we can use java reflection. So we are using dynamic binding because we
cannot resolve it at the compile time. If we look at the data from Listing 1 again
we can set some default values to attributes like in Listing 4. It will simulate the
default values that can developer create in the contructor like we did or it can be
created dynamically in a program and then connected to these attributes.

this.attr1 = "";
this.attr2 = 10;
this.attr3 = "example";
this.attr4 = "aaaaaaaa";

Listing 4: Setting values

In this part we need also to ensure that the right informations are rendered.
The header of one form is the name of instance. Then it is rendered a pair of
textView and editText. TextView for name of attribute and editText for its value
as you can see in Figure 6.4. The example contains of two objects. The first
object has 4 attributes and the other 1 attribute with different types.

6.5 Input validation

The input validation is divided into three parts: checking default values, checking
while changing values and checking before sending data.

Before the view is rendered the whole metamodel is checked if the values are
correct. This is information for user for example if he has to fill some field if it
is marked as @NotNull. In Figure 6.6, we can see information message about
validation check. In the message, there is a list of all errors. This is optional part.
If this validation check of default data is not required it is not called by developer.
The Listing 5 illustrates the proper call of this validation type.

25

6. Implementation .

Figure 6.6. Input validation before view is rendered

InputValidation i = new InputValidation();
i.inputValidate(this, afContext);

Listing 5: Optinal input validation

On all elements that user can change values are source of events for frameworks
listeners. If the value is not right, user will be notified by toast message and the
element will change its background color to red as you can see in Figure 6.7.
The message contains information about errors of that one element. If the value
will be changed to the right form it will change the background color back to the
normal. For this event, the listeners and also class MyTextWatcher which extends
TextWatcher are used. It is used to keep watch on the editText while the data
is changed. TextChangedListener is used to detect changes and to attach the
MyTextWatcher to the editText. The TextWatcher contains three main methods:
afterTextChanged, beforeTextChanged and onTextChanged. The framework is

26

. 6.5 Input validation

using afterTextChanged method and this method is responsible for invoking in-
put validation. In Listing 6, we can see how MyTextWatcher is attached to the
editText by addTextChangedListener.

Figure 6.7. Input validation while the is changed

MyTextWatcher mtw = new MyTextWatcher(context, field, et);
et.addTextChangedListener(mtw);

Listing 6: MyTextWatcher attached to editText by addTextChangedListener

One of the biggest differences between this validation and the others is that this
validation is checking just that one field and its value, not whole cache with all
metamodels.

When the user wants to send data, there is the final input validation. Here, the
framework checks whole cache whether every field is valid. If it is not, user will

27

6. Implementation .
be informed and it will not be allowed to another view. In the message, there is
a list of all errors in all instances like the information message in the first part of
the validation. If all fields are valid, it will allow user to another activity as you
can see in Figure 6.8. This screen can be changed, it is up to the developer how
it will look like. For example, it can lead to another form.

Figure 6.8. Data succesfully passed validation

For support of this type of aspect, we will use annotations. The valid data can
be restricted by these annotations:

.Email.Min.Max.NotNull

28

. 6.6 Layout

In Listing 7, we can see the declaration of them with attributes.

@Min(size=1, message="the length of attr must be bigger than 1")
@Max(size=5, message="the length of attr must be smaller than 5")
@Email(message="attr is not in email format.")
@NotNull(message="attr can not be null.")

Listing 7: Annotations for validation

Every restriction is checked in InputValidation object. In detail, every restric-
tion has its own checker that is returning list of error strings if there are any.
These checkers are called from InputValidation. There is also difference between
the annotations like Email and NotNull which has only one message that will
appear to the user if the value is wrong. In these two annotations, we do not
need any more information. In case of Email annotation, the checker is compar-
ing string with regular expression. In case of NotNull annotation, the checker is
comparing String with null or empty string. The annotations Min and Max has
two attributes: size and message. The message will appear to user if the value
is wrong in same way as for Email and NotNull. The size attribute is telling
checkers of these two annotations what is the minimal or maximal boundary for
values that are valid.

6.6 Layout

In this part, we want to let the developer to use some design layout. This
is optional. If the developer will not set some layout, there is set a de-
fault one. The framework is supporting two layouts: 1 column layout and
2 column layout as you can see in Figure 6.9. The first one is default.

29

6. Implementation .

Figure 6.9. Templates of basic two layouts

In Listing 8, you can see how to set up the second layout. The first layout is
just one linearLayout with vertical orientation. All the elements are inside one by
one. The second layout has outer linearLayout with vertical orientation. But every
row for any attribute contains inner linearLayout with horizontal orientation. This
inner layout contain textView for the name and editText for the value inside.

p.setLayout("linear2");

Listing 8: How to set up another layout

30

. 6.7 Security

In Figure 6.10 you can see the result of both layouts.

Figure 6.10. The real view of basic two layouts

6.7 Security

Another aspect is the security. As a developer, we sometimes do not want the
every field to be visible to everyone. For certain users, we can create a special form.
Generaly, we have to divide users to roles. In whole application, the developer
can implement login or register as he wish but he has to store String with role
into AFContext to variable userRole. The framework then supports this aspect
through the annotation @UiUserRoles. This annotation has one attribute named
role. It is an array of Strings that represents roles which are allowed to this
attribute. If the attribute does not have this annotation, it is visible for all users.
If the instance or attribute has this annotation, it is visible only to the user with
one of roles from this array. The example of usage you can see in Figure 6.11.
The instances were created from classes in Listing 9.

31

6. Implementation .

Figure 6.11. The example of usage security

@UiUserRoles(role={"ROLE_ADMIN"})
public class ClassExample{
@NotNull(message="attr1 can not be null.")
@Password
String attr1;
@UiUserRoles(role={"ROLE_ADMIN","ROLE_USER"})
@NotNull(message="attr2 can not be null.")
int attr2;
@UiUserRoles(role={"ROLE_ADMIN"})
@Email(message="attr3 is not in email format.")
String attr3;
@Min(size=1, message="the length of attr4 must be bigger than 1")
@Max(size=5, message="the length of attr4 must be smaller than 5")
String attr4;

}

public class ClassExample2{
@UiUserRoles(role={"ROLE_ADMIN","ROLE_USER"})
String attr01;

}

Listing 9: Setup of instaces with security

6.8 Error messages
There are several ways how to inform the user about errors in values that has
been filled: list of errors at the bottom or top of form, label next to invalid value

32

. 6.8 Error messages

or invoke toast with list of errors. The first option is good in the case of desktop
application. For the mobile application this list occupies a lot of space and this is
not good for mobile application. When the form is even larger the list can be also
long and it will slower the user and the view will not be clear. Other disadvantage
is that every error is not pair directly to the element which is wrong filled. The
second option is better than the first one because it is paired with error element
but it has also the same problem. It occupies a lot of space next to element.
In the worst scenario, it will double the space of form. I have chosen the third
option for framework. The reason is that toast messages are naturally used in
android applications. The toast message contains a list of errors like first option
but it is above the entire form so it does not occupy another space on screen.
Also the toast do not lock the screen and user can still type into elements. This
option still have one disadvantage. The toast is temporarly displayed and then it
disapear. All the other options are permanent and user can see it all the time.
The information about wrong input is highlighted there by red background so it
may not make troubles to users.

These toast messages have however one problem. If the user types a long word
or just click on button send it invokes a lot of toast messages that occure right after
each other. In the framework, there is implemented own class RepeatSafeToast.
Every time this class is called to show toast, it checks few conditions. The first
condition is that the message of toast has changed. And the second condition
is that the time of last toast plus duration of toast has expired. When this
check is passed (class cannot find the pair, the key and the value for this toast
in hashmap), the record is stored in hashMap and new toast message is invoked.
Hashmap contains pairs of key and value. As a key, it is used message of toast
and as a value, it is used time. In Listing 10, we can see the usage.

RepeatSafeToast.show(myContext, (String)text);

Listing 10: The usage of RepeatSafeToast

Another important setup of toast is lenght of the duration. There is two default
values:

.SHORT DELAY.LONG DELAY

SHORT DELAY is 2 seconds and LONG DELAY is 3,5 seconds. I picked
LONG DELAY for better vision of the information to user. With the

33

6. Implementation .
SHORT DELAY could easily miss the error message. And if even this hap-
pened with this setup it is not problem for him to invoke it again (by clicking
send button or change value in editText).

Figure 6.12. The options of error messages

In Figure 6.12 you can see all three options. On the left side on the top there
is error message next to every element. As we can see edittext has to be smaller
cause of size of screen. Under this example is option where the list of errors is
above the form. The space is also enlarged. On the right side there is option with
the toast. As we can see no more additional space is required.

34

Chapter 7
Comparison of aspect oriented approach
and conventional approach for Android
platform

In the chapter 6 Implementation, there was described the aspect oriented ap-
proach. In the conventional approach, the presentation layer was implemented in
xml, the data binding in Java, input validation in Java, layout in xml and secu-
rity in Java. The project was developed to implement one form that is the same
as the first one in the example of aspect oriented approach with four attributes.
All aspects was coded in common way and not stored in annotations like in the
aspect oriented approach. If we want to do another form, we will have to write
the similar amount of code. This code is redundant and is making application
hard to maintain. The big difference against AOP is in security, where in aspect
oriented approach we just do not create particular element. Here, we create all
elements and then we are changing visibility if the user has particular user role.

The advantages of the aspect oriented approach are shown in table 7.1. Here, we
can see that AOP is definitely better in reuse, reduction of the code, maintenance
the code, separation of aspects and readability of code. The reuse in conventional
approach means copy, paste and edit. That is not good approach. From table 7.1,
we can also see the difference in lines of code (LOC). The AOP has 4 lines of Java
code and 25 of Java class. The conventional approach has 16 lines of Java class,
377 of Java code and 102 of xml. LOC where counted by regular expression in
search function in eclipse IDE. LOC is counted from the view of developer so the
body of the framework is not counted. As we know, this is example that has only
4 attributes. If this number rises for example to eight the LOC for conventional
approach will also rise by similar amount lines. On the other hand, AOP will
increase only by about ten LOC (four lines plus some annotation).

35

7. Comparison of aspect oriented approach and conventional approach for Android platform
Features AOP Conventional approach

Reuse yes no
Runtime approach yes no
Reduce code yes no
Better to maintain yes no
Separated each aspects yes no
Readable code yes no (depends on developper)
Time to launch the form (average) 119,5ms 193,1ms
Standard declination (std) 5,35ms 14,7ms
Lines of code (LOC) 29 495

Table 7.1. Comparison of AOP and conventional approach

The time to launch the form in activity is the interesting item because as you can
see in table 7.1, AOP is faster then conventional approach. The reason of this is
the creation of view by xml which is slower then the view created programmically.
This time is calculated when the form is first launched. When user is returning to
this activity it is even faster for AOP because it is using a cache with the constant
asymptotic complexity of access to data. The average time to launch the form
was calculated from the list of ten data that was taken as you can see in Table
7.2.

AOP (ms) Conventional approach (ms)

128 196
114 171
121 210
117 222
110 183
126 175
119 201
121 188
115 196
124 189

Table 7.2. Table of launching times

In Figure 7.1, there is a formula of a standard deviation. The values of the
standard deviations for both approaches and the launching time are in Table 7.2.

36

. .
As we can see, the standard deviation for AOP is smaller. As a result, we can
state that these two distributions are probably different.

Figure 7.1. Formula of standard deviation

In Listing 11, there is the example of how the time was taken. The start time
is taken before all the code in both approaches and the end time is taken on the
bottom. The result is difference between these two values.

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
//begin time
long lStartTime = new Date().getTime();

/*
code...
*/

//end time
long lEndTime = new Date().getTime();
long difference = lEndTime - lStartTime;
System.out.println("Time to launch AOP app in milliseconds: "
+ difference);

}

Listing 11: Usage how to get time of launching main activity

You can see the three examples of each prints of the lauching time in Figure
7.2. The top three prints are from the conventional application and the bottom
three are from the AOP application.

37

7. Comparison of aspect oriented approach and conventional approach for Android platform

Figure 7.2. The launching times of application

38

Chapter 8
Comparison of aspect oriented program-
ming (AOP) for Android platform and
Java EE

In this chapter, we are comparing AOP for Android platform and Java EE. The
first big difference is that each of frameworks are used to create a little different
applications. The first category contains applications only for mobile devices and
the second is basically for enterprise web applications. The android applications
are usually smaller then large enterprise application. As a developer for mobile
devices, you need to focus a lot on a view because space is much more important
then on desktop or web applications because you just have limited space for the
view. Usability is also important. Every UI on mobile device has to be simple and
easy to use. Java EE applications are huge enterprise applications deployed on
web servers. They can be used on any device with connection to the internet. But
primarily, the huge enterprise applications are focused on the desktop computer
because on mobile device it is slower to control some use cases than on the normal
desktop computer or notebook. For example, web applications can also be run on
browser on IOS and not only on Android as the native application.

The aspect oriented framework, called Aspect Faces for Java EE, was created
on a similar idea as for Java EE, but they are not implemented in a same way.
The framework for Java EE is called by the tag in a view part as we can see the
usage in Listing 12. Most of the times it is placed in JSP page or some xhtml
page. In Listing 12, there is an example how to create two forms.

<!-- Form1 generated via Aspect Faces -->
<af:ui instance="#{bean.entity1}" edit="true"/>
<!-- Form2 generated via Aspect Faces -->
<af:ui instance="#{bean.entity2}" edit="true"/>

Listing 12: Usage of Aspect Faces in Java EE

Instead of this approach, the framework for Android is called in java activ-
ity class that user creates. The reason for this is simple. In Android application

39

8. Comparison of aspect oriented programming (AOP) for Android platform and Java EE
structure, the java classes are mandatory unlike in Java EE where if you just want
the UI you do not have to create java bean or some logic behind. Furthermore,
the xml files that represents the UI are optional because you can create UI pro-
grammatically. If you create a button to another screen in Android application,
you are not connecting the button to call another view, but first, you call the java
activity class and in this class, we can choose how to create UI. In Listing 13,
there is the basic example how to create form by framework in Android.

Presentation p = new Presentation(this, arraylistOfInstances);
p.buildCache(arraylistOfInstances, afContext);
View v = p.setDataPresentationFromCache();
setContentView(v);

Listing 13: Usage of framework in Android

Both frameworks are using metamodels to save informations about instances
that are rendered in forms. Both of Frameworks are also working in the runtime.
One big difference is in the future potentional in development. A native appli-
cation against web application has the advantage that it is compatible with the
devices hardware such as motion sensors, environmental sensors, position sensors,
camera. The motion sensors include accelerometers, gravity sensors, gyroscopes
and rotational vector sensors. The environmental sensors includes barometers,
photometers and thermometers. The position sensors includes orientation sensors
and magnetometers. The web applications are limited in this way. Aspect Faces
on Java EE can get a position from GeoIP, but nothing more. These informations
from sensors can be used by framework and can react to that informations.

40

Chapter 9
Table of regresive tests

Tested function Input Result

Set layout with method String of layout name Layout of form was changed
setLayout() of instance
Presentation
Create cache with method None Cache was created
buildCache() of instance
Presentation
Set presentation with method None Return the final view of screen
setDataPresentationFromCache()
of instance Presentation
Validate input values of Context of android Notify user about all errors
elements with method application (actual java in input values
inputValidate() of instance activity), the frameworks
InputValidation global class afContext
Send valid data Valid data User will be forwarded t

sended activity
Send not valid data Invalid data User will be notify about error
Change user role and set User role Framework will create view
security annotations according to user role
Change activity to forward user Activity class name User will be forwarded to new
after sending data activity
Add annotation @password None The view element has changed

with password view
Check validation of data that is Input data (String, int...) The data is checked when user
inserted into field of form changed data in field

Table 9.1. Regresive tests

41

Chapter 10
Instalation

10.1 The pick of operation system (OS) and IDE
It is recommended to use the framework under Windows 7 and using ADT in
eclipse IDE. For this combination, the framework was tested. On the other OS
Windows 8, Ubuntu and other linux OS, it should also work but it is not tested.

10.2 Instalation steps

. Insert instalation CD do mechanics..Extract AspectFaces.zip and his content store on disc..Open eclipse.exe and import framework as project or if you do not want to work
in eclipse or you already have a project you are working on, use your IDE and
copy packages in src folder to your project..Done.

42

Chapter 11
Conclusion

The diploma thesis was created according to the assigned task under the Depart-
ment of Computer Science and Engineering, the Faculty of Electrical Engineering,
the Czech Technical University in Prague within the study program Electrical En-
gineering and Computer Science, the branch Information Technology.

The task of the diploma thesis was to study the existing solutions for the aspect
oriented user interface development for the platform Java EE from reference [1,2,3]
in Appendix D, which provided the theoretical background, and to design the
similar solution / framework for creating mobile applications for the Android.

The Android framework was created with the special consideration of the fol-
lowing aspects: security, layout, input validation, data binding and presentation.
The application generated by this framework was compared with the application
created with the use of the conventional approach. The application generated
by the framework was better then the application created in conventional way in
every feature: Reuse, Runtime approach, Reduce code, Better to maintain, Sepa-
rated each aspects, Readable code, Time to launch the form (average) and Lines
of code. The diploma thesis also contains the comparison of AOP framework for
Android platform and for Java EE. The frameworks for both platforms are based
on similar ideas. They implements same aspects in different way, but the result
is essentially the same. The main difference is in targeted platforms.

All requirements from chapter 4 are integrated in framework. Every func-
tionality in this work was tested (introduced in chapter 9). Accomplished tests
affirmed full functionality of framework; therefore, we believe that all assigned
tasks were succesfully solved. The proposed framework is available on the CD,
which is attached to this diploma thesis.

43

45

A Specification .

Appendix A
Specification

46

Appendix B
Symbols

AOP Aspect oriented programming
AF Aspect Faces
OS Operation systém
UI User interface

IDE Integrated development environment
Java EE Java Enterprise Edition

SDK Software development kit
XML Extensible Markup Language

CD Compact disc
OOP Object oriented programming

READ Rich Entity Aspect/Audit Design
JVM Java virtual machine
JRE Java runtime enviroment
JDK Java development kit
ADT Android development tools
LOC Lines of code

ms millisecond

47

Appendix C
Code examples

Listing 1: Example use of data types
Listing 2: Preparation of editText for String
Listing 3: Preparation of editText for int
Listing 4: Setting values
Listing 5: Optinal input validation
Listing 6: MyTextWatcher attached to editText by addTextChangedListener
Listing 7: Annotations for validation
Listing 8: How to set up another layout
Listing 9: Setup of instaces with security

Listing 10: usage of RepeatSafeToast
Listing 11: Usage how to get time of launching main activity
Listing 12: Usage of Aspect Faces in Java EE
Listing 13: Usage of Aspect Faces in Android

48

Appendix D
References

[1] Tomas Cerny, Michael J. Donahoo, and Eunjee Song. 2013. Towards effective
adaptive user interfaces design. In Proceedings of the 2013 Research in Adap-
tive and Convergent Systems (RACS ’13). ACM, New York, NY, USA, 373-380.
DOI=10.1145/2513228.2513278
http://doi.acm.org/10.1145/2513228.2513278

[2] Tomas Cerny, Karel Cemus, Michael J. Donahoo, and Eunjee Song. 2013.
Aspect-driven, Data-reflective and Context-aware User Interfaces Design. In
Applied Computing Review, Vol. 13, Issue 4, ACM, New York, NY, USA, 53-65.
ISSN 559-6915
http://www.sigapp.org/acr/Issues/V13.4/ACR-13-4-2013.pdf

[3] Tomas Cerny and Eunjee Song. 2011. UML-based enhanced rich form
generation. In Proceedings of the 2011 ACM Symposium on Research in
Applied Computation (RACS ’11). ACM, New York, NY, USA, 192-199.
DOI=10.1145/2103380.2103420
http://doi.acm.org/10.1145/2103380.2103420

[4] Jak vypadá Android uvnitř. Android developpers [online]. 31. Prosinec 2011
12:00 [cit. 2014-04-28].
http://www.androidmarket.cz/android/jak-vypada-android-uvnitr-aneb-
co-je-rom-kernel-bootloader-a-dalsi

[5] Android Activity Lifecycle. Android Activity Lifecycle [online]. 12/22/2011
[cit. 2014-04-28].
http: / / www . mikestratton . net / 2011 / 12 / android-activity-lifecycle

[6] Android vs IOS. Android vs IOS [online]. November 11 2013 3:22 PM [cit.
2014-04-28].
http: / / www . ibtimes . com / android-vs-ios-whats-most-popular-mobile-
operating-system-your-country-1464892

49

http://doi.acm.org/10.1145/2513228.2513278
http://www.sigapp.org/acr/Issues/V13.4/ACR-13-4-2013.pdf
http://doi.acm.org/10.1145/2103380.2103420
http://www.androidmarket.cz/android/jak-vypada-android-uvnitr-aneb-co-je-rom-kernel-bootloader-a-dalsi
http://www.androidmarket.cz/android/jak-vypada-android-uvnitr-aneb-co-je-rom-kernel-bootloader-a-dalsi
http://www.mikestratton.net/2011/12/android-activity-lifecycle
http://www.ibtimes.com/android-vs-ios-whats-most-popular-mobile-operating-system-your-country-1464892
http://www.ibtimes.com/android-vs-ios-whats-most-popular-mobile-operating-system-your-country-1464892

D References .

[7] October Android distribution numbers. Android police [online]. November 11
2013 3:22 PM [cit. 2013/10/03].
http://www.androidpolice.com/2013/10/03/october-android-distribu-
tion-numbers-more-people-get-jelly-bean-ice-cream-sandwich-and-gin-
gerbread-usage-dips

[8] Introduction To Android Mobile Operating System. Android Development, Tu-
torials [online]. August 1, 2011 [cit. 2014-04-29].
http://www.blogsaays.com/tutorial-part1-introduction-android-mobile
-operating-system

[9] R. Kennard and J. Leaney. Towards a general purpose architecture for
ui generation. Journal of Systems and Software, 83(10):1896 - 1906, 2010.
http://metawidget.sourceforge.net/media/downloads/Towards a Gen-
eral Purpose Architecture for UI Generation.pdf

[10] R. Kennard and S. Robert. Application of software mining to auto-
matic user interface generation. In SoMeT’08, pages 244 - 254, 2008.
http://metawidget.sourceforge.net/media/downloads/Application of
Software Mining to Automatic User Interface Generation.pdf

[11] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg. Models@
run.time to support dynamic adaptation. Computer, 42(10):44-51, Oct. 2009.

[12] K. Czarnecki and U. W. Eisenecker. Generative programming: meth-
ods, tools, and applications. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 2000.

[13] I. R. Forman and N. Forman. Java Reflection in Action (In Action se-
ries). Manning Publications Co., Greenwich, CT, USA, 2004.

50

http://www.androidpolice.com/2013/10/03/october-android-distribu- tion-numbers-more-people-get-jelly-bean-ice-cream-sandwich-and-gin- gerbread-usage-dips
http://www.androidpolice.com/2013/10/03/october-android-distribu- tion-numbers-more-people-get-jelly-bean-ice-cream-sandwich-and-gin- gerbread-usage-dips
http://www.androidpolice.com/2013/10/03/october-android-distribu- tion-numbers-more-people-get-jelly-bean-ice-cream-sandwich-and-gin- gerbread-usage-dips
http://www.blogsaays.com/tutorial-part1-introduction-android-mobile -operating-system
http://www.blogsaays.com/tutorial-part1-introduction-android-mobile -operating-system
http://metawidget.sourceforge.net/media/downloads/Towards a General Purpose Architecture for UI Generation.pdf
http://metawidget.sourceforge.net/media/downloads/Towards a General Purpose Architecture for UI Generation.pdf
http://metawidget.sourceforge.net/media/downloads/Application of Software Mining to Automatic User Interface Generation.pdf
http://metawidget.sourceforge.net/media/downloads/Application of Software Mining to Automatic User Interface Generation.pdf

Appendix E
Content of attached CD

The content of CD is organized into the following files and folders:

.diploma thesis – folder that contains diploma thesis in pdf format, but also
there are source tex files, images and excel file with calculations, enterprise
architekt files. aspectFaces.zip – AOP framework. conventionalApproach.zip – android application that was compared with AOP
approach

51

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction
	Background
	Conventional approach
	Aspect oriented approach
	Applications developed in Java for Android
	Life cycle of Android applications

	Related work
	Framework requirements
	Analysis and design of the framework
	Analytic model of classes
	Sequence diagram of frameworks lifetime

	Implementation
	Directory structure
	The cache of framework
	Data presentation
	Data binding
	Input validation
	Layout
	Security
	Error messages

	Comparison of aspect oriented approach and conventional approach for Android platform
	Comparison of aspect oriented programming (AOP) for Android platform and Java EE
	Table of regresive tests
	Instalation
	The pick of operation system (OS) and IDE
	Instalation steps

	Conclusion
	Specification
	Symbols
	Code examples
	References
	Content of attached CD

