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Abstract

Game theory is science not only for modeling games such as Chess, Poker or Backgammon
compute its solutions but it can also provide useful tools for modeling and solving real life
problems that we are not aware of at the first sight. For example, one problem from this category
is borders patrolling . These problems are linked because each of them includes huge state space
which has to be searched in order to find an optimum solution that maximizes possible payoff

under the assumption that opponent acts rationally.
The aim of this work is to design and experimentally evaluate the performance of a parallel

version of the algorithm from framework developed by ATG group from FEE, CTU. This al-
gorithm uses double-oracle framework, which narrows searched state space by allowing only
some strategies to be played by players. The algorithm solves two-player zero-sum games
with imperfect information. Before proposing a parallel design an analysis of the algorithm
and a survey of known parallel search techniques on two-players game trees are investigated.
Parallel version should contribute by shorter computation time allowing faster computation of
exploitability of heuristic strategies in imperfect-information games. Simplified, exploitability
expresses distance of a strategy from optimum. When comparing two strategies, the one with
lower exploitability is better.

Experiments show that parallel design proposed in this work achieved speed up of 2.2.

Keywords

parallelization, extensive form game, Nash equilibrium
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Abstrakt

Teorie her je obor zabývající se nejen modelováním her jako jsou šachy, poker nebo vrhcáby
a jejich řešení, ale i modelováním a řešení realných problému, kterých si nemusíme na první
pohled být vědomi. Jedním z těchto realných problému je například ochrana a patrolování hra-
nic. Tyto problémy spojuje velký stavový prostor, který musí být prohledán pro nalezení op-
timálního řešení, které vede k největšímu možnému zisku za předpokladu, že protihráč hraje
racionálně.

Tato práce si klade za cíl navrhnout a experimentálně ověřit výkonnost paralelní verze al-
goritmu z frameworku vyvinutého ve skupině ATG z FEL, ČVUT. Tento algoritmus využívá
double-oracle framework, který zmenšuje prohledávaný stavový prostor omezením strategií,
které můžou hráči používat. Jedná se o dvou hráčové hry s nulovým součtem a neúplnou infor-
mací. Před provedeném samotného návrhu je nejdříve analyzován algoritmus a poté je proveden
průzkům paralizačních technik prohledávání dvouhráčových hracích stromů. Paralelní verze by
měla přispět k rychlejším výpočtům, což umožňuje rychlejší vypočítávání exploitability heuris-
tických strategií pro hry s neúplnou informací. Zjednodušeně řečeno, exploitability vyjadřuje
vzálenost strategie od optima. Čím menší exploitability je, tím je daná strategie lepší.

Experimenty provedné na navržené paralelizaci, která je popsána v této práci, daného algo-
ritmu dosáhly zrychlení 2.2.

Klíčová slova

paralelizace, hry v extenzivní formě, Nashovo equilibrium
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1 Introduction

Game theory is a useful mathematical tool for modeling and solving well known games such as
Chess, Tic-Tac-Toe and Go but also for Poker or Phatnom Tic-Tac-Toe. The cardinal difference
separating these two categories is what information each player has. The second category
represents an imperfect-information game; those are games where a player is not ensured to
know all information about the game state. For example, a player does not know what cards his
opponent has in Poker or which coordinates the opponent has taken by his mark in Phantom
Tic-Tac-Toe. Security games can be also formulated by game theory and this kind of games is
relevant to humankind safety and real life problems [3] because these models can be used in
real life situations to minimalize potential danger or loss.

1.1 Formulation of problem

Extensive form is a powerful framework since it can be used for modeling imperfect-information
games and also security games or stochastic ones. However, even using extensive form the size
of a game tree representing a game grows in most cases exponentially according to the number
of choices that are available in a game state. In [11] authors have shown that two-player Texas
hold’em has 9.17 × 1017 game states. Traversal of this kind of the tree is infeasible even on
modern computers.

Therefore approaches solving large-scale problems have been investigated. Some of these
approaches are focused on narrowing searched space. One of them is double-oracle framework
whose high level and simplified idea is based on finding the best possible strategy against
fixed opponent strategy in each iteration. If there is no better strategy to be added to player’s
strategies the algorithm ends; otherwise the player is allowed to play the best found strategy
and another iteration continues. The player having a set of allowed strategies has restricted
possibilites of actions. On the other hand, only maximizing strategies may propagate to a
player allowed strategy set. Imagine a strategy space for above mentioned Texas hold’em. It is
easy to see that a set of good strategies is smaller than full strategy space. By good strategies are
meant those strategies that have propagated to a player strategy set in some iteration. Therefore
computation with a set of good strategies is less computationally demanding than computation
of all possible strategies against all opponent’s strategies.

1.2 Motivation

Parallelization of the algorithm in [2] allow us to compute results faster. Despite that there still
will be large instances of games for which it will be infeasible to compute even by the parallel
algorithm. There are opportunities to use a heuristic search in this kind of large instances, so the
given instance would be feasible. Monte-Carlo tree search is an example of a heuristic search.

Regardless that a parallel version of the algorithm will not be able to compute some large
instances of some game, it is possible to use the parallel version to determine exploitability
of some heuristic search in a given game state. Exploitability is a number greater or equal to
zero representing distance from a Nash Equilibrium in a game. When comparing two heuristic
strategies, the one with smaller exploitability is better. An incomplete search through a game

1



1 Introduction

tree can be seen as a heuristic search depending on the used utility function in non-terminal
nodes. By an incomplete search such a search is meant that it does not evaluete full depth of a
game tree but only a predefined depth is traversed.

2



2 Background and definitions

In this chapter, basic knowledge of game theory is defined and described to understand the
algorithm later described in Chapter 3. Game theory is a study of conflict and cooperation of
players. Mathematical models are used to represent conflict, cooperation and players who make
desicions. Game theory is used for solving games as Poker, Phantom Tic-Tac-Toe and Bridge
but it is also used in real life situations as economics, political science and biology [6, 25].

2.1 Game examples

Firstly, let’s describe a few games from the category that the algorithm described in Chapter 3
solves. This category is called impefect-information games and better formulation of it is de-
scribed later in this chapter. For simplicity, it difers from well known games such as Chess or
Go by the information each palyer disposes. Comparing imperfect-inforamtion Phantom Tic-
Tac-Toe to Tic-Tac-Toe, in the second one each player knows in which game state he is located,
despite the first one where player knows only some information about how game state looks
like.

A game state can be informally described as a tuple of player knowledge and situation of
playing board. For example in Phantom Tic-Tac-Toe, a game state cannot be figured out by just
looking on playing board without having history of one player’s actions, since one could not
figure out the order of moves leading to this deployment of playing board.

We will refer to a player as he throught this work.

2.1.1 Phantom Tic-Tac-Toe

Playing board is a 3 × 3 board on which two players are trying to put three marks in vertical,
horizontal or diagonal row to win the game. One of the players uses a circle meanwhile the
other uses a cross to mark each one one’s taken positions on the board. Both players remember
what action they played but are unable to see opponent’s moves unless one of the players tries
to put his mark on a position already taken by the opponent; in this case the player knows
that the position is taken by the opponent and this information is added to the playing player’s
knowledge. Players alternate while playing, which is necesserary for any corruption of playing
board, for example by putting two different marks on the same position in the same time.

2.1.2 Poker Games

Poker is well known card game and in this thesis we will focuse on two-player poker. Both
players start with the same amount of chips and have to put some chips in the pot. Then,
Nature player gives to each player a card, so the opponent cannot see the card. A player can
quit the game and lose by folding or let the opponent play his move by checking or give some
amout of money by betting, calling or raising. The second player can do the same. Thereafter,
if no player folds, Nature player gives one card on the table. A player wins if his card matches
the one on table and the opponent’s does not match, or the card on table does not mach to any
card of both players and the player disposes higher card than his opponent.

3



2 Background and definitions

2.1.3 Search Games

The game consists of two players and a directed graph on which one tries to safely cross from
the starting point to the destination point, the other player wants to capture the first one. The
crossing player moves leave tracks on the graph but the player can use slow moves which erase
these tracks. The other player is allowed to move only between some nodes of the graph. If the
crossing player does not make his path to the destination point within a predefined number of
steps and is not captured along his path, a draw occurs. Otherwise crossing player wins if he
manages to get to the finishing point or loses if he is captured by the opponent.

2.2 Two-player zero-sum finite games with perfect-recall

Game theory can be used for formulations of many situations with multiple players. In this
thesis we will considere only two-player zero-sum games. It is a branch of games where two
players are playing. We will use N to refer set of players. So in case of two-player game
N = {I, II} where I and II refer to Player I and Player II respectively. Three possibilities can
occure at the end of a game. Firstly, Player I wins and Player II loses. Secondly, Player I loses
and Player II wins. Finally, a draw can occure meaning that no player wins or loses.

Each player can choose a strategy to play. According to strategies that both of players se-
lected, the end state is reached. The end state is a state in which the game is terminated, so it is
also sometimes called terminal state. In the end state, each player gains a payoff. In zero-sum
games, sum of all palyer’s payoffs is equal to zero; in other words, since describing two-player
game, one player gains the same value as the second loses.

Later in this text, by a game a finite game is meant. A finite game is a game where all players
have a finite set of strategies. The set of strategies is described later.

Also only games with perfect-recall are described in this work. In this type of games a
player remembers all information that he has gained during playing. Let’s demonstrate this on
Phantom Tic-Tac-Toce - once a player has taken a position by putting his mark on the position,
he knows that the position is taken by his mark to the end of the game and he does not forget
this information.

2.3 Strategies

A strategy for a game is a complete description of actions for a player to perform in every
possible state of the game that can occure during the game. S i is a set of strategies of player i.
There are pure and mixed strategies.

Player using a mixed strategy is focused on his average payoff, since the outcome is an aver-
age of some pure strategies. More precisely, mixed strategy consists of a set of pure strategies
weighted by a probability distrubution.

2.4 Normal form

The normal form game is a triplet (S I , S II , A) cosisting of nonempty sets of strategies S i for
all i ∈ N and a payoff function A : (sI , sII) → R where sI ∈ S I , sII ∈ S II . Payoff function A
represents payoff of Player I; payoff of Player II is the same but multiplied by −1 since the sum
of both players payoff is equal to zero. This is a simple formalization of a game, yet still able
to express games such as Poker and Rock-Paper-Scissors.

Let’s make an example on Rock-Paper-Scissors game which payoff fucntion for Player I is in
Table 1. A player can play rock, paper or scissors. After each player select his option, both of

4



2.5 Method of solving

Table 1 A payoff matrix for a two-player zero-sum game for Player I

Player II

Player I

rock paper scissors

rock 0 1 -1

paper -1 0 1

scissors 1 -1 0

them reveal selected options in the same time and one can win or lose or a draw occures. Rules
are that the paper strategy beats the rock one, the rock one beats scissors one and the scissors
strategy beats the rock. In Table 1 rows represent actions of Player I and columns represetn
actions of Player II. For example, if both players play rock, profit for Player I is 0 because table
cell on rock-rock. If Player I plays rock and Player II paper, Player I wins and gains 1, as seen
in the second cell from left in the first row of the table. If Player I plays rock and Player II plays
scissors, Player II loses and gains −1, as seen in the third cell from left in the first row of the
table.

2.5 Method of solving

Knowing what a player can do and what strategy and normal form are, we can define a rational
player. Rational player is such a player that is playing in a way to get the maximal possible
outcome of a game. Let both players act rationaly. Player I is maximizing his payoff meanwhile
Player II is minimizing payoff of Player I. In details, Player II is maximazing his payoff and
since the game is zero-sum, it means that payoff of Player I is minimized.

Minimax theorem [6] tell us that for every two-player zero-sum finite game there is a value
V and there is a mixed strategy for Player I that will gain at least V on average independently
of the strategy of Player II and there is a mixed strategy of Player II that will lose at most V
on average independtly of the strategy of Player I. Player I wins if V is greater then 0, loses
if V is less then 0 and a draw occures if V is equal to 0. Later in the extensive form, we will
see a minimax tree and a minimax algorithm that finds the maximal possible gain for a selected
player in a game. This theorem is mentioned here for reasons of the minimax algorithm and
the minimax tree since it corresponds to solving perfect-information games. Some algorithms
in Chapter 4 are constructed to solve perfect-information games. Perfect-information games is
a category of games in which each player knows all information of a game state he is currently
situated; a player can use information of his opponent against him, because he knows them as
well.

Nash equilibrium [6] can be also used for solving the type of games we are examining. In
a Nash equilibrium each player’s strategy is the best response to all opponent’s strategies. The
best response is described later in this chapter.

As shown in [6] Nash equilibrium can be computed by linear programming. But as we will
see later, computing a Nash equilibrium of normal-form game is memory and CPU demanding
and that another form can be used for computation of a Nash equilibrium by linear program-
ming.
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2 Background and definitions
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I [1;2]I [1;1]

Figure 1 Example of a part of a game tree of Phantom Tic-Tac-Toe with players actions labeling edges
and nodes representing playing board.

2.6 Extensive form

Extensive form is another concept for modeling games. In comparsion to normal form, it allows
to add elements of chance that are represented by Nature player.

Firstly, we define a game tree. The Game tree is a tuple (H, A) where H is a finite set of nodes
representing game states and A is a finite set of edges. A chance can be expresed in extensive
form as a third player called Nature, yet the game is still two-player. Nodes can be divided into
three separated groups according to thier owners; each node belongs to exactly one of these
players - Player I, Player II and Nature.

Each leaf of the game tree is a terminal node. We use Z ⊆ H as a set of terminal nodes. For
each terminal node and a player i an utility funcion is defined, ui : Z → R. The utility functions
represent a payoff for player i.

From each non-terminal node h edges lead to others nodes. Each edge represents an action
performed by a player to whom h belongs. We say that action a ∈ A leads from node h ∈ H to
a succesor / child ha. Some actions of both players can have several combinations and since a
playing board can look the same, it is not the game state. This is caused by the fact that a game
state consists of a situation on playing board and information of a player. We can see this in
Figure 1. In the figure, playing board on both terminal nodes looks the same but it is not the
same game state since in the left one Player I knows history [[1; 1], [1; 2]] meanwhile in the
second he knows history [[1; 2], [1; 1]]. By history is meant the ordered list of actions that the
palyer played.

A rational player will maximize his payoff. Let’s ilustrate this on Figure 2. Player II is max-
imizing his payoff, so in node B he chooses action a and gains −4, in node F he chooses action
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2.7 Game with imperfect information

A

B

C

(4; -4)

D

(11; -11)

E

(7; -7)

F

G

(20; -20)

H

(2; -2)

I

(7; -7)

J

K

(2; -2)

L

(7; -7)

M

(-1; 1)

I [a] I [b] I [c]

II [a]
II [b]

II [c]II [a]
II [b]

II [c] II [a]
II [b]

II [c]

Figure 2 A minimax tree, circle nodes belong to Player II, rectangle nodes to Player I, in terminal
nodes payoff is described in tuple (payoff of Player I, payoff of Player II). Graph edges are labeled by
actions of players.

b and gains −2, finally in node J he chooses action c and gains 1. Since player I is maximizing
but also acting as player II behaves rationaly, he chooses from node A action a leading to node
B, because he gains the best possible payoff, in this case 4, under the assumption that both
players act rationally. In a zero-sum game while II is maximazing he is also minimizing I’s
payoff. So we can see this as a minimax tree which means that in each two layers of the tree
one player is maximizing and the second is minimizing.

A minimax algorithm is a basic approach to solve a extensive-form game. The minimax
algorithm works on a minimax tree in the way we described above. In case of Nature player
represented by a chance node h, payoff from this node consists of the maximal possible pay-
off of its succesors weighted by probability distribution of actions from node h leading to
each succesor. Later in section 4.1 variants of minimax algorithm with some ehnacements
are described because their analysis can be helpfull while designing an algorithm searching
imperfect-information game tree.

2.7 Game with imperfect information

From the previous section we know what a game tree and a game state are. Now we define a
new term information set.

In each node a player knows all moves he has performed to reach this node. A player is
also aware of an order in which his actions were performed. Opposite to this, a player has a
limited knowledge about opponent’s actions. An infromation set is a set of nodes in which the
player knows the same information. The game with imperfect information is such a game that
its game tree has at least one information set having more than a single node.

An example of a game tree with information sets is in Figure 3. Actions of players label
edges of the tree. In the root Player I put his mark on coordinates [1; 1] and [1; 3] and these
actions lead to different nodes. But Player II is unable to distinguish between these two nodes,
because it is one game state for him since he does not know what Player I has palyed. So
Player II has to consider that he is situated in both of these two nodes. A palyer can know some
information about opponent’s action; for example in Phantom Tic-Tac-Toe by putting a mark
on already taken position, as mentioned before.
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2 Background and definitions
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Figure 3 Example of a part of Phantom Tic-Tac-Toe game tree with highlighted information sets.
Player’s actions label edges. Information sets of Player I are are dashed; information sets of Player II
are densely dotted. The densely dotted curve connecting two leaves represents an information set by
connecting these two nodes.

2.8 Sequence form

We can transfer an extensive-form game to normal form. Since we know the method for slov-
ing normal-form game, for example linear programming, we can compute Nash equilibrium by
transfering game from extensive to normal form. This way is quite expensive since the normal
form is exponential in the size of extensive form. This is due to all combinations of informa-
tion set actions for each player and payoff have to be considered [25]. To compute a Nash
equilibrium on exponentially larger strategy space also deals larger memory demands.

The sequence form is based on representing all paths from the root of a game tree using
sequences. A sequence can be imagined as a list containing history of player’s actions. Ac-
tions represent edges in a game tree, since that by applying a suequence to a node, one can go
throught a part of a tree. This representation allows to use it for linear programming compu-
tation of a Nash equilibrium as well as normal form do [24]. In addition, memory demands of
sequence form is linear to the size of extensive form and therefore more suitable for computa-
tion of large instances, opposite to exponential size of normal form in comparison to the size
of extensive form. The sequence form is also suitable for imperfect-information games [25].
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2.9 Realization plan

2.9 Realization plan

A realization plan expresses the probability of a sequence δi that i is playing assuming that
opponent will play actions reaching the same information set. The function ri : Σi → R

represents i’s realization plans where Σi is set of all possible sequences in a game for player i
and δi ∈ Σi.

2.10 Best response

Now let’s define the best response. Let δ−i be opponent’s strategy then δBR
i is a best response

for player i if (1) holds.

ui(δBR
i , δ−i) ≥ ui(δ

′

i , δ−i) ∀δ
′

i ∈ ∆i (1)

In other words, i’s best response gains the best possible payoff for player i against opponent’s
fixed strategy under the assumption that both players acts rationally.

2.11 Restricted game

Restricted game is a game that arises from the original game by restricting some actions of one
or both of players.
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3 Double-oracle sequence-form algorithm

The aim of this thesis is to parallelize an algorithm from [2], therefore the algorithm is presented
in this chapter.

3.1 Double-oracle algorithm

Finding an exact Nash equilibrium for a game with a large space of strategies is a computa-
tionally demanding task. The idea of oracle algorithms is to solve large-scale optimization
problems. The principle of double-oracle is to search only a fraction of strategy space. Double-
oracle is an iterative algorithm for solving two-players games. Pseudocode of the main idea of
double-oracle algorithm sovling normal-form game is in Algorithm 1.

Before describing the algorithm, let’s remember and define used notation. N = I, II is the
finite set of player. We use i to refer to a player from N, i ∈ N, and −i to his opponent. Σi is a
set of all possible sequences in a game for player i. We use NEi to refer i’s Nash equilibrium.
BRS is an abbreviation for Best-response sequence algorithm that si described later. LP is an
abbreviation for linear programming

Data: a two-player zero-sum game
Result: an exact Nash equilibrium and best stretegies for both players

1 ΣA = { arbitrary strategies }
2 ΣB = { arbitrary strategies }
3 while true do
4 (NEa, NEb)← compute Nash equilibrium by LP for ΣA and ΣB

5 σb = BRS(NEa)
6 σa = BRS(NEb)
7 if σa ∈ ΣA and σb ∈ ΣB then
8 break
9 end

10 ΣA = ΣA ∪ σa

11 ΣB = ΣB ∪ σb

12 end
Algorithm 1: Double-oracle pseudocode for normal-form game

First of all, it creates a new restricted game by assigning arbitrary strategies to both players
(lines 1, 2). Then in iterations three main steps are executed.

1. Nash equilibrium for each player in the restricted game (line 4) is computed.
2. Best-response strategy for both players (lines 5 - 6) is found.
3. If each of calculated best-responses are already in appropriate startegies set, the algorithm

terminates (lines 7 - 9), because there is no better best-response. Otherwise, each of
calculated best-responses is added to the relevant player’s strategies set (lines 10 - 11). In
other words, restricted game is expanded by those strategies, and the algorithm continues
in another iteration. The set of strategies is finite, therefore the algorithm stops after finite
number of iterations.

10



3.2 Double-oracle sequence-form algorithm

In the worst case scenario, the entire strategy space is searched but usually only a fraction of
the space is used during the search [3].

3.2 Double-oracle sequence-form algorithm

The algorithm from [2], on which this work is mainly focused, uses a sequence-form and
double-oracle framework to solve two-player zero-sum games in extensive-form with imper-
fect information. By Double-oracle sequence algorithm we will refer to this algorithm. This
algorithm uses Best-response sequence algorithm which is described in 3.4 and we will refer
to it also with the capital starting letter.

Both sequence and normal forms can be used for computation an exact Nash equilibrium by
LP. Sequence-form is linear in size of the extensive-form game in contrast to exponential size
of normal-form of the same game. LP computation of a sequence-form representation is less
memory demanding than normal-form because of the size of both representation. This allows
us to compute larger instances of games with the same memory load.

Double-oracle using sequence-form representation is constructed by the same idea as the
double-oracle algorithm for normal-form game but there are also differences. The main differ-
ence is in adding the best found strategies. Adding best-response sequences to the restricted
game can cause inconsistencies and therefore an incorrect solution can occure. This is described
in [2] in more details.

The algorithm uses a realization plan for representing mixed strategies of both players. A
realization plan expresses the probability of a sequence δi that searching player is playing as-
suming that opponent will play appropriate actions leading to the same information set. An
information set can be reached by sequentially applying actions of the first and then second
player repeatedly. The function ri : Σi → R expresses player’s i realization plans. With this
formulation we can construct following LP that computes the equilibrium of realization plans.

min vIi(∅) (2)

vIi(σi) −
∑︁

Ik
i ∈Ii:seqi(I

k
i )=σi

vIk
i

=
∑︁

σ−i∈
∑︀
−1

∑︁
h∈ω(σi,σ−i)

gi(h) * r−i(σ−i) ∀σi ∈ Σi (3)

r−i(∅) = 1 (4)

∑︁
∀a∈A(Ik

−i)

r−i(σ−ia) = r−i(σ−i) ∀σ−i = seqi(I
k
−i), I

k
−i ∈ I−i (5)

r−i(σ−i) ≥ 0 ∀σ−i ∈ Σ−i (6)

The equation (3) provides that expected values in each information set are maximized by
using the best possible action. Equations (4) to (6) represents player −i’s realization plan to
minimize expected values.

3.3 Best-response algorithm

Best-response algorithm searches the best possible strategy against a fixed opponent’s strategy
and returns it.
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3 Double-oracle sequence-form algorithm

3.4 Best-response sequence algorithm

Since now, we are describing Best-response sequence alogrithm that is proposed in [3], because
this work is focused on its parallelization. Also we use an abbreviation BRS and BRSA for this
algorithm. BRS is a version of the best-response algorithm adapted to a sequence-form game.
The algorithm executes a depth-first search throught an entire game three.

The output of this algorithm is the best possible strategy for searching player and its expected
value against the extended strategy of the opponent. An extended strategy of the opponent is
an opponent’s strategy from a restricted game extended by default strategy. Default strategy
of a player is predefined on the start of the algorithm. Nodes of the opponent and Nature
are examined in the same manner but differently from execution of searching player’s nodes,
therefore an analysis of both cases is described separately.

The idea of the algorithm is to traverse the complete game tree using depth-first search to
find the best-response against opponent’s fixed strategy given by realization plan r′i . Aslo a
prunning technique is used to cut-off brachnes that definetely does not participate in the best
response.

Before investigating of the algorithm let’s notice that we do know the upper bound of the
game. Since it is a zero-sum two-player game we also know the lower bound. We refer to these
as MaxUtility and MinUtility. These values are used for cutt-offs of the algorithm shown in
following sections.

In following subsections notation is used as in [2, 3]. A(h) denotes a set of actions that can
be applied in node h; ha = h′ ∈ H means that node h′ is reachable from node h by use of action
a ∈ A(h). Realization plan in the restricted game is dentoed by r′i : Σ′i → R for a sequence of
player i. seqi denotes sequence(s) of actions of player i leading to a node / a set of nodes / an
information set. An information set of the player i is denoted by Ii. The realization plan for
player i extended to the complete game is denoted by r′i : Σ′i → R. C : H → R denotes the
probability of reaching a node w.r.t. Nature play. Finally, we extend utility function to be zero
in non-terminal nodes - gi : H → R .

gi(h) =

⎧⎪⎪⎨⎪⎪⎩ui(h) *C(h), if h ∈ Z
0, if h < Z

(7)

3.4.1 Nodes of opponent and Nature

In opponent’s and Nature’s node the algorithm traverses a game tree in depth-first strategy
manner and an opponent is playing by his default strategy or strategy given by his realization
plan r−i computed by LP in information sets which are in the restricted game. This case is in
Algorithm 2.

The algorithm works in following way. It is supposed to searched a node h that belongs to
the opponent or Nature.

Firstly, if h is a terminal node, a value of the utility function of playing player for this node is
weighted by a propabability that the opponent will play actions leading to h and by the Nature
probability of h is returned (lines 1 - 3).

Otherwise algorithm sorts action in descending order (lines 4 - 5) and traverses through
succesors of node h (lines 7 - 16). Finally it returns a sum of values given as a result of
examination of succesors by Best-response sequence algorithm (lines 11, 17).
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3.4 Best-response sequence algorithm

Data: i - playing player, h - current node, r′−i - opponent’s strategy, Min/MaxUtility -
bounds on utility values, λ - lower bound for a node h

Result: expected value of strategy against the extended strategy of the opponent
1 if h ∈ Z then
2 return ui(h) * r′−i(seq−i(h)) *C(h)
3 end
4 w←

∑︀
a∈A(h) r−i(seq−i(ha)) *C(ha)

5 sort A(h) according to probability
6 vh ← 0
7 for a ∈ A(h) do
8 wa ← r′−i(seq−i(ha)) *C(ha)
9 λ′ ← λ − [vh + (w − wa)*MaxUtility]

10 if λ′ ≤ wa * MaxUtility then
11 vh ← vh+ BRSi(ha, λ′)
12 w← w − wa

13 else
14 return MinUtility *w
15 end
16 end
17 return vh

Algorithm 2: BRSi in nodes of the opponent, taken from [3]

Cut-off technique

In previous description of Algorithm 2 cut-off was ommited. The cut-off in this algorithm acts
in following way.

A lower bound, represented by λ, is an input parameter as well as a node h. This lower
bound expresses a minimal value for the returned value in order to get node h to the best-
response. More presice, if value of h is higher than λ this node can parcipate in best-response
that is currently computed because parent of h can particpate in best-response etc.; but it does
not ensure that h participates in best-response definitely. The only thing that we do know that
there is node h does not participate in best-response if his value cannot exeed λ. A new bound
λ′ for each action is calculated (line 9) under the assumption that all other actions yield their
maximal values. If λ′ exceeds the maximal possible value of a succesor, this h cannot be a part
of best-response and therefore the search terminates (line 14). Otherwise another succesor of h
is examined.

3.4.2 Nodes of searching player

Algorithm 3 searches a node h of a playing player. To be precise, since 3.2 solves imperfect-
information games, Best-response sequence algorithm searches all nodes of an information set
that node h belongs to.

Firstly, if h is a terminal state, its utility function weighted by opponent’s and Nature’s prob-
abalities is returned as in previous case. If h is already computed, a technique similar to trans-
pozition table is used to return a stored result from the previous examination. The reason for
this is that a requirement to compute an information set can be sumbited repeadly.

Secondly, it takes all nodes from h’s information set and sorts them in order decreasing
according to a probability of the opponent and Nature (lines 4 - 5).

Thirdly, each action of each node from h’s information set is searched (lines 10 - 25).
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3 Double-oracle sequence-form algorithm

Finally, to each node of the searched information set a value of the best action leading from
this information set is assigned and the same value is returned (lines 26 - 27).

Data: i - playing player, h - current node, r′−i - opponent’s strategy, Min/MaxUtility -
bounds on utility values

Result: expected value of strategy against the extended strategy of the opponent
1 if h ∈ Z then
2 return ui(h) * r′−i(seq−i(h)) *C(h)
3 end
4 H′ ← {h′; h′ ∈ Ik

i }

5 sort H′ descending according to value r′−i(seq−i(h)) *C(h)
6 w←

∑︀
h′∈H′ r′−i(seq−i(h)) *C(h)

7 maxVal← −∞
8 va ← 0 ∀a ∈ A(h′)
9 w←

∑︀
a∈A(h) r−i(seq−i(ha)) *C(ha)

10 for h′ ∈ H′ do
11 wh′ ← r′−i(seq−i(h′)) *C(h′)
12 for a ∈ A(h′) do
13 if maxAction is empty then
14 λ← wh′*MinUtility
15 else
16 λ← (vmaxAction + w*MinUtility ) − [va + (w − wh′)*MaxUtility ]
17 end
18 if λ ≤ wh′ * MaxUtility then
19 vh′

a ← BRSi(h′a, λ)
20 va ← va + vh′

a
21 end
22 end
23 maxAction← argmaxa∈A(h′) va

24 w← w − wh′

25 end
26 store vh′

maxAction ∀h′ ∈ H′

27 return vh
maxAction

Algorithm 3: BRSi in a node of the playing player, taken from [3]

Cut-off technique

Now we describe prunning technique that is used in Best-response sequence algorithm in nodes
of a playing player.

In each iteration a new lower bound λ is calculated for an action (lines 13 - 17). This bound
is used for refusing a succesor that will not get to the best-response because it’s best possible
value is lower than the bound under the assumption that this action will yield maximal possible
values from other nodes of the currently examined information set.

In case that an action a from a node h′ from the currently examined information set has got a
possibility to get to the best-response, BRSi(h′a, λ) is invoked and the lower bound is forwarded
for further prunning that is decribed in section 3.4.1.
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4 Survey of parallelization of tree search
algorithms

In this chapter, we describe several parallelization approaches of a few tree searches. Most of
sources are focused on solving games like Go or Chess using a parallel enrichment of the Alpha-
Beta prunning technique. Few approaches are oriented on selecting the best move within a time
limit or different game trees [23, 22, 5]. Since both of these approaches are more restricted than
our goal, they are mentioned in short. In section describing Alpha-Beta algorithm, techniques
as best-first ordering and transpozition table are covered because these techniques are used in
algorithm in Chapter 3.

Throughout this chapter we will use the term first son / child for leftmost succesor of a node.

4.1 Alpha-Beta

Alpha-Beta is an algorithm that traverses a minimax game tree in a way to reduce number
of searched nodes as much as possible. The algorithm is constructed to find the same result
on a two-player game tree like minimax algorithm. Minimax algorithm performs a complete
depth-first search on a two-player game tree. Alpha-Beta switches between maximizing and
minimizing player. Two bounds are used.

∙ α is a bound used for remembering the highest score. α is used for cut-offs in minimizing
nodes.

∙ β is a bound used for remembering the lowest score. β is used for cut-offs in maximizing
nodes.

The bounds are sometimes called a window because they are supposed to form an interval
from α to β. Pseudocode for Alpha-Beta is in Algorithm 4.

4.1.1 Node types

For designing any kind of parallel version of Alpha-Beta, an analysis of types of nodes is
needed. Authors in [14] showed that in an arbitrary two-player game tree there is always a
minimal tree that is traversed by Alpha-Beta. Figure 4 contains a complete two-player game
three with depth 3; the minimal Alpha-Beta tree is highlighted by thick edges. In the mentioned
paper three types of nodes are defined.

∙ Type 1 - every first child of type 1 is a type 1. Root node is a type 1.
∙ Type 2 - all children of a type 1 node are a type 2 except of the first child. All succesors

of a type 3 node are a type 2.
∙ Type 3 - the first child of type 2 node is a type 3.

It holds that every 1, 2 and 3 node type is traversed by Alpha-Beta independently of terminal
nodes values; in other words, node of these types forms a minimal Alpha-Beta tree [14].
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4 Survey of parallelization of tree search algorithms

Data: h - node, α, β, i - player
Result: the best value for player in a zero-sum two-player game tree

1 if h ∈ Z then
2 return ui(h)
3 end
4 if i is maximizing player then
5 for a ∈ A(h) do
6 α← max(α, alphabeta(ha, α, β,−i))
7 if α ≥ β then
8 break
9 end

10 end
11 return α
12 end
13 else
14 for a ∈ A(h) do
15 α← min(α, alphabeta(ha, α, β,−i))
16 if α ≥ β then
17 break
18 end
19 end
20 return β
21 end

Algorithm 4: Alpha-Beta pseudocode
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Figure 4 A highlighted minimal tree of a game tree searched by Alpha-Beta indepedently of values of
terminal nodes. Rectangle nodes belongs to Player I, circle nodes belongs to Player II. In terminal
nodes I player’s payoff is shown.
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4.1 Alpha-Beta

These three types are ctritical for executing Alpha-Beta’s cut-offs. Let’s make an example to
see a cut-off. Nodes A, B, C are type 1. Nodes D, E, F, J are type 2. Nodes G and K are type 3.
Examination of B, the first child of the root, with α = −∞ and β = ∞ will yield 4 and all of its
children, C, D, E, will be examined as well. Thereafter Alpha-Beta will start to evaluate node F
with α = 4 and β = ∞. Node G has got value 2 and therefore a cut-off occures and examination
of node F yeilds 4. Then Alpha-Beta will evaluate node J with α = 4 and β = ∞ and another
cut-off will occure because K has got value -1. If node K or G have got bigger values than α,
cut-off would not occure during computation of K and G.

4.1.2 Best-first ordering

Selecting the first child is crucial to ensure that Alpha-Beta would not do more work than is
needed. Authors of [18] called this strong ordering. There are a few ways to approach a game
tree to be a strongly ordered tree. A strongly ordered tree is such a tree having best-first ordering
[18].

First of these approaches, the most straightforward can be used in games where utility func-
tion is non-zero for non-terminal nodes; children are sorted according their uitility function
values in this case.

Second one, is to use history heuristic, which requires to store history of sufficiency of each
action. A weight of sufficiency of each action is assigned to each action in [23]. Then, the
weight of an action is increased if the node expanded by this action was usefull during the
search. But this technique does not ensure that the most sufficient in a given node is the best-
first move.

Last one was used in [18]. In this paper iteratively deepening was used to get weights for
each action but sufficiency of each action was kept only as a node information, not a global
history shared throught the whole game tree as in the previous case. In each iteration children
are expandend in order according to their results from the previous iteration.

4.1.3 Other enhancements

In games, for example Go and Chess, a game state can be represented by multiple nodes. This is
caused by representation of a game by a tree. To prevent multiple examination of a game state
transpozition table can be used. This technique was used in [18, 23, 22, 19]. Transpozition
table is a table that contains values of already computed game states. After a game state is
examined for the first time, its value is assigned to the table. This method saves computation
time in contrast to memory demands.

4.1.4 Complexity

Using the best-first ordering Alpha-Beta can traverse only the minimal tree. In [14] authors
showed that in best case scenario, that is finding the best-first move ordering, the complexity is
(8) where w is branching factor and d is depth the traversed tree.

w⌈d/2⌉ + w⌊d/2⌋ − 1 (8)

In the worst case scenario Alpha-Beta would not cut-off any node and the complexity would
be the same as minimax algorithm complexity, (9).

wd (9)
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4 Survey of parallelization of tree search algorithms

4.2 Losses

During a parallel computation of an algorithm like Alpha-Beta a few kinds of losses can occur
and these are:

∙ starvation loss
∙ interference loss
∙ speculative loss

The starvation loss is caused by waiting a processor on a task, meanwhile the processor is
doing nothing.

The interference loss is caused by critical sections and occurs when one processor is waiting
for another to leave a critical section that the first one want to enter.

The speculative loss is caused by speculative work that is unnecessary. A parallel aglorithm
uses speculative work to determine whether the work is mandatory.

4.3 Efficiency and speed-up

In this chapter also efficiency and speed-up are used to describe or classify an algorithm. In [8]
speed-up and efficiency are defined as follow:

speed-up =
time required by best serial algorithm

timerequired by parallel algoritm
(10)

e f f iciency =
speed-up

number o f processors used
(11)

4.4 Mandatory-Work-First

The main idea behind MWF is to reduce speculative loss. It is an algorithm based on Alpha-
Beta idea. MWF starts its search with a parallel search of the minimal Alpha-Beta tree. Spec-
ulative work is permformed when more than the minimal tree must be searched. MWF was
investigated in [7].

High level idea can be formulated as follow: minimal Alpha-Beta tree is traversed in parallel,
thereafter if some of evaluated subtrees proves that more than minimal Alpha-Beta tree has to
be traversed, then this subtree is evaluated again as this subtree belongs to a minimal Alpha-
Beta tree. Repeated search over a subtree would not occure in best-first oredering trees. By
subtrees children of a currently examined node are meant.

Let’s have a parent node p of a type 1, its first child h and other children s. Firstly, the
algorithm evaluates in parallel all children but differently according to whether a node is the
first child or other child. The first child h is again evaluated in the same manner as his parent
node p since both of them are of type 1. The rest of children s are evaluated in a way that
only nodes of types 2 and 3 are examined in subtrees rooted in children s. After this parallel
examination is completed another parallel examination of children s starts. The values of each
children s are compared to the value gained by evaluation of the first child h; if any of these
values are better than the first child’s value, search on this particulary node (that has been
evaluated as a node type 2) starts in a manner that this node is a type 1. Thereafter, gained
value from a new search are stored and compared. The best gained value is returned.

In [7] comparsion of MWF with Palphabeta algorithm was performed. Palphabeta is a par-
allel version of Alpha-Beta algorithm on a tree of computers. Authors concluded that there is a
significant iprovement of MWF over Palphabeta.

18



4.5 Tree-Splitting

In [26] authors showed that best number of processors for MWF efficiency is around 6 on
random game trees. More than 10 processors only lead to a starvation loss.

4.5 Tree-Splitting

This method investigated in [8] uses a tree of processors for parallel execution of Alpha-Beta.
A master and slave relationship between processors is established. A master processor keeps
its slaves busy as much as possible and also keep them informated about an actual window
size. Each time a master processor examines a node, it expands all of the node succesors and
sumbits them to other processors for evaluation. But these processors are both masters and
slaves because they are masters to their slaves. Only a leaf processor is a slave and not the
master one. In a leaf processors sequential Alpha-Beta is executed. If a node examined by
a master processor has more children than number of available processors, then children are
queued in a waiting queue until another processor is available.

In [8] authors shown that with best-first moves order tree-splitting reaches efficiency O(1/
√

k)
where k is the number of used processors.

In comparison to MWF, no child of a node is evaluated multiple times and more interaction
between processors is used. Also Tree-Splitting suffer because of speculative loss.

4.6 Principal Variation Splitting Algorithm

The parallel PVS is an Alpha-Beta whose main idea is to propagate a gained score back as soon
as possible using a tree of processors. This approach was used in [22].

It traverses a game tree to a splitting node from which a parallel search on the node succesors
is permformed. Always the first child is selected to be examined on the way to a splitting node.
A splitting node is a node in a game tree whose distance from a terminal node is precisely the
height of the processor tree used. The first child on the way from root to a splitting node is
called a principal variation candidate in this case.

In [19] authors shown that efficiency drops approximately exponentially according to in-
creasing number of processors.

One of the very first usage of PVS was called Palhphabeta and Calphabeta as mentioned in
[18]. In this paper PVS variant with a narrow window (score, score + 1) was used, where the
score is the best found value so far. When this algorithm examines an unordered game tree, it
traverses more nodes than Alpha-Beta. Enhancing the algorithm by iterative deepening brought
better results due to the reordering of the traversed tree.

4.7 Aspiration Search

The window used for Alpha-Beta can be modified to give a better idea about the meaning of
the bounds. When the examination of a node yields a value between α and β, the search was
usefull and α is modified. A cut-off occured if the examination returns α, therefore the node
has to be searched again with different window to determine the true value of the node.

With this method a node can be examined more than once, but the research is performed only
when the previous search failed. The whole idea comes from the best-first ordering of moves,
therefore reevaluating of a node is not considered to happen too often.
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4.7.1 Parallel Aspiration Search

In [18] the parallel version of the aspiration search method was investigated. They proposed an
algorithm that splits the window to disjoint intervals that are then examined in parallel.

The first possibility is to divide the window into two intervals where V is the estimated value
of the search.

(−∞,V) (V,∞) (12)

Another possiblity to divide the window into three intervals where V is the estimated value
of the search and e is the expected error.

(−∞,V − e) (V − e,V + e) (V + e,∞) (13)

In both of cases, each interval is examined by one processor.
This technique gains an advantage of sequential Alpha-Beta only in case that there is no good

estimation for the used window. In comparison to sequential Alpha-Beta with a good window
no speed-up is attained as shown in [19].

4.8 Young Brother Wait Concept

In [5, 17] YBWC was examined. The main idea of YBWC is to evaluate the first child of a
node at the beginning of the search; only after that an examination of any of remaining children
can be performed. In compare to PVS, the parallel search is possible at any node, but in PVS
parallelism is allowed only in principal variation candidates.

There are two varaints of YBWC. For simplification of further reading, let’s say that the
eldest brother is the first child of a node and remaining nodes are younger brothers as in [17]
were.

4.8.1 Weak YBWC

The master-slave relationship between processors is used. Examination of the root is assigned
to a master processor. Then traversation of the game tree begins. After the eldest brother
is evaluated, the processors select a split node, which means that a parallelization can start.
Slave processors start to request for other processors to give them tasks and becomes a master
processor to them. A helpful master concept can be used when a processor submitted more
tasks than available processors are; in this case, the processor starts to computate one of the
submitted tasks as well.

4.8.2 Strong YBWC

In this variant, four diferent types of nodes are established. The main difference is that all
promising children must be searched before a parallism can be used instead of the eldest son.
Promising children are supposed to produce a cut-off. Whether a node is promising or not
depends on appliaction.

In [4] is shown that strong YBWC can perform better speed-up than weak YBWC, despite
strong YBWC reduces possible parallelism.
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4.9 ER

4.9 ER

In [26] ER algorithm was introduced. Both MWF and PVS perform a selected speculative
work. But both of them suffer for starvation loss, therefore the main idea of ER is to prove
that speculative work is useful, so ER is ehnanced by a technique that no approaches described
earlier.

The name comes from two types of nodes:

∙ E-node - an evaluating node.

∙ R-node - a refuting node.

Since an R-node is supposed to be refute in the search and all children of an E-node have
to be evaluated, selection of an E-node is the important matter. Every non-terminal node has
excatly one E-node among its children. They proposed to select E-node from the children
accoring to their children values, so according to the grandchildren of the examined node. A
slight similarity to the node type 1 and 2 can be seen here, because at least one child of node
has to be evaluted to know whether the rest of the children can be prunned or not.

ER algorithm firstly evaluates most promising grandchildren of a node in parallel. Then an
E-node is selected from the children of a node according the highest score of already evaluated
grandchildren and the rest of the children are refuted.

4.10 Iterative deepening

Iterative deepening is a breadth-first search that runs in iterations with an increasing depth in
each iteration. After the first terminal state is reached its value is yielded. This algorithm is less
memory demanding and has the same asymptotic complexity as breadth-first search.

4.10.1 Iteratively deepening parallel Alpha-Beta

In [22] an iteratively deepening in parallel is described. Authors made a few stages in the
computation.

The first step is to compute the first two iterations with all processors identical. Then moves
from root are uniformly divided among procesors. In the third step, each processor computes a
set of subtrees using Alpha-Beta with iterative deepening and with the same initial window (α
and β). A time limit is used for computation in this case because the algorithm is constructed
to yeild the result in a given time.

They compared this algorithm with PVS. The result was that PVS was slower in situations
where mover ordering was poor.

4.11 Parallelization of AND/OR tree

In [13] a study of parallelization of AND/OR trees were performed. AND/OR tree is a game
tree whose terminal nodes have assigned values 0 or 1. They proposed a parallel algorithm
simplier than Alpha-Beta due to AND/OR tree structure but still similar. The main idea is to
work in steps; in each step to evaluate w leaves in parallel and according to the results from this
step the algorithm decide the next step. The algorithm stops when it computates the value of
the root of a tree.
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4.12 Expectiminimax

In this section expectiminimax algorithm and its possible parallelization are investigated. Ex-
pectiminimax algorithm is similar to minimax algorithm but it traverses a minimax tree with
chance nodes. Chance nodes represent Nature player. The algorithm acts in the same way as
minimax does in node of minimizing and maximizing player. In chance nodes the algorithm
sums values of all children weighted by the probability distribution of actions. For example,
backgammon is a game that can be formulated into a minimax tree with chance nodes and
expectiminimax can be used for its solving.

In [15] an approach to expectiminimax paralelization was presented. The main idea is to ex-
amine all children of a chance node in parallel. This shows a significant improvement compared
to a non-parallel version in non-deterministic games. But still, according to authors, investiga-
tion of paralelization of expectiminimax enriched with Alpha-Beta prunning technique or move
ordering remains for future work.
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5 Analysis of parallelization of
Double-oracle sequence-form algorithm

In this chapter we describe possible parallelization of algorithm from Chapter 3. We can split
this task into two separated areas - parallelization of Best-response sequence algorithm and
parallelization of loops that can be executed independently.

5.1 Parallelization of Best-response sequence algorithm

Original version of Best-response sequence algorithm is described in section 3.4. The idea
behind parallelization of this algorithm is to preserve used prunning techniques to perform only
mandatory work. In this section we will refer with searching player to player for whom the
best-response is calculated; other players, opponent and Nature, will be refered with opponent
player.

5.1.1 Opponent’s nodes

In opponent’s and Nature’s nodes Best-response sequence algorithm acts equally; only one
node is searched. In this node type, a prunning technique described in section 3.4.1 ensures
that mandatory work is performed in order to decide whether a currently examined node can
participate in best-response. We refer to this node type as an opponent node no matter whether
the opponent or Nature is playing in this node in this section.

Two situations during the evaluation of this node type can occure. The node is either fully
evaluated or refused because a cut-off had occured. A cut-off is performed when a node cannot
be a part of the best-response. Parallel examination of all children of an opponent’s node can
lead to more and longer work than is needed with the prunning technique, therefore another
concept of parallelization is proposed in this section.

To preserve the prunning technique strong YBWC is used. The idea of strong Young Brother
Wait Concept is that parallel examination of young brothers can start only if elder brothers
are already examined. Firstly, let’s remember that we do know bounds on utility values; these
are MinUtility and MaxUtility. We also know weights of all children of a node. Finally, let’s
remember λ′ bound representing the minimum necessary profit of the children ensuring that
the currently examined node participates in the best-response assuming that all unsearched
children yield maximal possible profit. Now, let’s combine these things together to get a split
point among the children of an opponent’s node. A split point divides sequential and parallel
examination of the children of an opponent’s node; in other words the children before a split
point are elder brothers that have to be examined sequentially and children behind a split point
can be examined in parallel.

Let’s label all children of an opponent’s node h as elder brothers until the profit gained so far
is bigger than the loss of remaining children under assumption that all remaining children yield
their minimal possible profit, respectively their biggest loss since the algorithm solves a zero-
sum game. The execution of elder brothers is performed sequentially in descending order of
their probabilities. After execution of each elder brother λ′ is updated for the next elder brother.
Since (14), a split point can be formulated as (15) where wh represents sum of weights of the
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5 Analysis of parallelization of Double-oracle sequence-form algorithm

unsearched children. When a split point is achieved the remaining children can be examined in
parallel. Pseudocode for this proposal is in Algorithm 5. Notice that a split point does not have
to be reached at all.

λ′ + wr * MinUtility > 0 (14)

λ′ > −wr * MinUtility (15)

In other words, more informally, until reaching a split point we do not know whether a
currently examined node h can participate in the best-response. Therefore children of h are
examined in such a way a cut-off may occure using the prunning technique. Once a split point
is reached, h definitely may be a part of the best-response, thus all of its children have to be
evaluated to know the true value of h.

The children of a node h are given to a queue in descending probabalities order (line 5). Then
all elder brothers are executed in sequential order (lines 7 - 22). In each iteration λ′ bound is
computed (line 10). If all elders brothers are examined, sequential examination ends (lines 11
- 13) and parallel examination of the remaining children is executed (lines 23 - 28). In parallel
search over younger brothers a lock is needed to avoid any data corruption (line 25 - 27). A
queue is used; peek() returns the first element of a queue and delFirst() delete the first element
of a queue.

The method proposed above ensures that no surplus work is performed compared to Best-
response seqence algorithm. For this proposal, one more reason occurs when there are multiple
actions from a node h leading to one information set. In this case, interference loss may occure
because of one information set may be requested by a multiple set to evaluate. This loss is
dependent on the usage of a parallelization concept search over an information set, respectively
nodes of the searching player. We present a concept for parallelization of a search over an infor-
mation set in the following section where multiple requests over evaluation of one information
set leads to a computation loss.

5.1.2 Searching player’s nodes

In this section we examine parallelization of a node h belonging to an information set H′ in
which the searching player performes his move. Let’s remember that we have a set of nodes
H′, from each of them a set of action is leading to other nodes in a game tree.

If a simply run was performed one parallel loop in another parallel loop as shown in Al-
gorithm 6 a prunning technique from section 3.4.2 could not be used. Therefore more than
actually needed children leading from information set H′ would be examined and the paral-
lelization could be slower than the sequential search with the prunning technique described in
section 3.4.2.
1 for h′ ∈ H′ do in parallel
2 for a ∈ A(h′) do in parallel
3 search node h′a
4 end
5 end

Algorithm 6: An example of a parallel loop inside of another
There is a possibility to examine action leading from a node h belonging to H′ in parallel.

This is allowed by the fact that a searching player can determine an information set according
to actions that he has performed. When he performs two different actions from h in parallel,
it means that two different subtrees are examined. So, during the parallel computation no
node is shared between these two examined subtrees; in other words, these subtrees do not

24



5.1 Parallelization of Best-response sequence algorithm

Data: i - searching player, h - current node, r′−i - opponent’s strategy, Min/MaxUtility -
bounds on utility values, λ lower bound for a node h

Result: expected value of strategy against the extended strategy of the opponent
1 if h ∈ Z then
2 return ui(h) * r′−i(seq−i(h)) *C(h)
3 end
4 w←

∑︀
a∈A(h) r−i(seq−i(ha)) *C(ha)

5 queue← sort A(h) according to probability
6 vh ← 0
7 while queue is not empty do
8 a← queue.peek()
9 wa ← r′−i(seq−i(ha)) *C(ha)

10 λ′ ← λ − [vh + (w − wa)*MaxUtility]
11 if λ′ > −w * MinUtility then
12 break
13 end
14 if λ′ ≤ wa* MaxUtility then
15 va ←BRSi(ha, λ′)
16 vh ← vh + va

17 w← w − wa

18 else
19 return MinUtility *w
20 end
21 queue.delFront()
22 end
23 for a ∈ queue do in parallel
24 va ←BRSi(ha,−MinUtility)
25 lock
26 vh ← vh + va

27 unlock
28 end
29 return vh

Algorithm 5: Parallel BRSi in opponent’s nodes

share any resources. In contrast to two parallel loops from the previous paragraph, this is
more promising since in the previous case there can be shared resources which slow down a
parallel computation. In addition, the prunning technique for this node type can still be used.
A pseudocode for this proposal is in Algorithm 7.

Firstly, an information set H′ containing a requested node h is locked (line 4). The first thread
that requested to compute information set H′ is given control over this set. Then, each node
in H′ is examined in the descending probabilities order like in non-parallel version with the
exception of a parallel examination of actions leading from a currently examined node (lines
14 - 29). The prunning technique described in section 3.4.2 is used as well (lines 17 - 25).
Finally, computed values are stored (line 30) and the information set is unlocked (line 31).
Meanwhile a thread is computing an information set, other threads that also requested to get
a node from this information set are waiting till the first thread completes its work; thereafter
others threads take store value (line 6).

25



5 Analysis of parallelization of Double-oracle sequence-form algorithm

Data: i - searching player, h - current node, r′−i - opponent’s strategy, Min/MaxUtility -
bounds on utility values, λ lower bound for a node h

Result: expected value of strategy against the extended strategy of the opponent
1 if h ∈ Z then
2 return ui(h) * r′−i(seq−i(h)) *C(h)
3 end
4 lock this information set
5 if h has been evaluated then
6 return stored value
7 end
8 H′ ← {h′; h′ ∈ Ik

i }

9 sort H′ descending according to value r′−i(seq−i(h)) *C(h)
10 w←

∑︀
h′∈H′ r′−i(seq−i(h)) *C(h)

11 maxVal← −∞
12 va ← 0 ∀a ∈ A(h′)
13 w←

∑︀
a∈A(h) r−i(seq−i(ha)) *C(ha)

14 for h′ ∈ H′ do
15 wh′ ← r′−i(seq−i(h′)) *C(h′)
16 for a ∈ A(h′) do in parallel
17 if maxAction is empty then
18 λ← wh′*MinUtility
19 else
20 λ← (vmaxAction + w*MinUtility ) − [va + (w − wh′)*MaxUtility ]
21 end
22 if λ ≤ wh′* MaxUtility then
23 vh′

a ← BRSi(h′a)
24 va ← va + vh′

a
25 end
26 end
27 maxAction← argmaxa∈A(h′) va

28 w← w − wh′

29 end
30 store vh′

maxAction ∀h′ ∈ H′

31 unlock this information set
32 return vh

maxAction
Algorithm 7: Parallel BRSi in playing player’s nodes

5.2 Parallelization of independent loops

The second area of possible parallelization of the algorithm described in Chapter 3 is area of
independent loops. By independent is meant such a loop that its execution does not depend on
previous iterations of the loop.

In the existing code there are few independent loops, for example inside traverseCom-
pleteGameTree method in GeneralDoubleOracle class. Since this particular loop is used only
for computation the size of a game tree, it has no effect on Double-oracle sequence-form algo-
rithm’s speed. Thus its parallelization is useless and was not implemented.

In GeneralDoubleOracle class and SQFBestResponseAlgorithm class, which implements
Best-response sequence algorithm, are some independent loops, but these loops work with a
small set of seqeuences or with players. Let’s imagine that we have two players and for each
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of them we want to do some work, for example copy their best-response sequences from one
data structure to another. Would it be efficient to make new tasks, assign them to threads while
the destination data structure is shared for both players? The destination data strucutre has to
be thread-safe in order no data corruption can occure. In addition, would this parallelization
of few players or sequences executed in parallel have a significant improvement while a few
instructions are executed inside the loop?

In DoubleOracleConfig class there is a loop that in initializeRG method that constructs the
restricted game in each iteration. The method uses depth-first search throught the game tree in
order to construct the restricted game. This is a promising loop for parallelization but on the
other hand, there are few shared resources that are used for all nodes in the restricted game. So,
speed-up by parallelization of this loop and the parallelization efficiency are not ensured in this
case.

5.3 Summary

In this chapter we proposed parallelization of Doube-oracle sequence-form algorithm. Our
main goal was to propose such a parallelization that will not do more work than original non-
parallel Best-response sequence algorithm. We were also focused on parallelization of inde-
pendent loops but it occurs that this type of loops is not used in the algorithm. However, we try
to parallelize a loop inside initializeRG method which creates the restricted game to see if there
is any speed-up or wheather the loop si independently in the first place.

27



6 Implementation

6.1 Frameworks and libraries for parallelization

Before deciding which framework or library to use for parallelization a survey of these tech-
nologies was performed. The survey was focused on parallelization technologies and frame-
works that use functional programming’s approach because this approach allows executing a
function over each element of a collection. Moreover, execution of a function over a collection
can be done in parallel, thus it can be interpreted as a parallel foreach loop over a collection.
Notice, that no comparsion between these frameworks was found. These frameworks were
investigated:
∙ Functional Java
∙ Java 8
∙ Lambdaj
∙ Guava
∙ Ateji PX
∙ JPPF
Functional Java [10] is a library that is focused on some concepts that are not present in Java

(at least until Java 1.7). For example, it allows to use map, zip, fold function over a collection.
Also it has a parser for monads.

Java 8 [20, 21] brings to Java some functional’s approaches. There are functional interfaces
which are interfaces containing precisely one method. Also new to Java are closures also called
anonymous method. Also the collection interface is enhacemented by parallelStream method
that returns a parallel stream of a collection. On a parallel stream one can call foreach method
that takes a closure. parallelStream is implemented in the way that the collection is divided to
parts and each part is executed by a thread. A fork-join design pattern is used in parallelStream;
the pattern works in the way that the main thread assigns work to other threads (it forks threads)
and after all forked thread finish their work the main thread continues.

Lambdaj [16] is a library which was designed to make Java code more readable; in details,
clean and readable work over collections is the main idea of it. It brings to Java foreach, filters
and closures to Java. But no parallelism in foreach loops is used.

Guava [9] is a library from Google that brings to Java functional approach over collection
using interfaces for predictors and functions. This library was written before release of Java 8
which enables some of funcional approach.

Ateji PX [1] is a framework that allows to use parallel for loops in Java. The framework is
released in a form of a plugin to Eclipse IDE.

JPPF [12] is a framework for computation Java application on cloud. It is mentioned here as
another possibility for parallelization. It works in the way that the task is separated to subprob-
lems and each of the subproblem is computed in parallel.

6.2 Used technologies

The project was coded in NetBeans IDE using these technologies:
∙ Java 8
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∙ org.apache.wicket.util.collections
∙ java.util.concurrency

Java 8 was used because of its functional and parallel approach to collections. In addition,
while continuing in expansion of the framework in which Double-oracle sequence-form algo-
rithm is implemented no additional framework is needed, only version of Java 8 is needed.

The two remaining libraries was used because they implements conccurent collections and
locks that was used in the implementation, for example ConccurentHasSet was used.

6.3 Implementation

6.3.1 Best-response sequence algorithm

Double-oracle sequence-form algorithm is implemented in GeneralDoubleOracle class which
uses DoubleOracleBestResponse class to calculate the best-response. DoubleOracleBestRe-
sponse class extends SQFBestResponseAlgorithm class which implements Best-response se-
quence algorithm.

In Chapter 7 three versions of parallelization of Best-response sequence algorithm are com-
pared to non-parallel version; these are:

∙ Best-response sequence algorithm with parallelization of searching player’s nodes imple-
mented in DoubleOracleBestResponseParallelSearchingPlayerOnly class

∙ Best-response sequence algorithm with parallelization of opponent’s nodes implemented
in DoubleOracleBestResponseParallelOpponentPlayerOnly class

∙ Best-response sequence algorithm with parallelization of both opponent’s and searching
player’s nodes implemented in DoubleOracleBestResponseParallel class

In order to test these three variants, they have to be implemented. They differs only in im-
plementation of selectAction method that calls the best-response recursively call if cut-off has
not occured. Since they differ only in implementation of one method they can be implemented
as an extension of another class that represents thread-safe Best-response sequence algorithm;
that thread-safe best-response is implemented in DoubleOracleBestResponseConccurent class.
The DoubleOracleBestResponseConccurent class has to be an extension of DoubleOracleBe-
stResponse class in order to be possible to use the class in DoubleOracleBestResponse.

The DoubleOracleBestResponseConccurent class was implemented in almost the same way
as the SQFBestResponseAlgorithm class. The only difference is that conccurent collections are
used for shared resources and synchronized was used for locking critical sections. Also this
conccurent class is an abstract one because it has got two abstract method that have to be im-
plemented according to what type of parallelization is wanted; each of the methods represents
selectAction method for one type of player (searching player, opponent). In order to calculate
a split point in opponent’s nodes a new method was added to a new class BROppSelectionCon-
current which extends BROppSelection defined in SQFBestResponseAlgorithm class.

It is surely not the best design because some methods are overriden (calculateBR, bestRe-
sponse, calculateEvaluation) but it was implemented in this way because of complexity and
size of the framework that Double-oracle sequence-form belongs to.

Unit tests were written for the implemented classes.

6.3.2 Implementation of independent loops

Implementation of independent loops is not covered in the output of this work. This is mainly
because the the most promising independent loop in initializeRG method from DoubleOracle-
Config class is not as independent as it seems to be. The order of expansion restricted game’s
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6 Implementation

nodes have some side effects on the whole Double-oracle sequence-form algorithm. More-
over, as shown in section 7.3.1 time consumed by constructing the restricted game is few times
smaller than time of Best-response sequence algorithm.

30



7 Experiments

7.1 Methodology

Few types of games were selected for measuring speed-up and efficiency achieved by the pro-
posed parallelization design. These games were submitted to Double-oracle sequence-form
algorithm which called all of tested BRS versions during each iteration meanwhile collecting
their execution time. Each test was performed serveral times, then arithmetic average and vari-
ace was computed from total of measured data for each BRS version. Smaller instance were
tested ten times; bigger instances, such tests that run longer than 30 minutes, were performed
five times.

There are two figures (figs. 7, 8 and 12), each representing execution time of tested BRS
versions divided by time consumed by execution of sequential BRS in the same iteration. Each
of these figures was computed from only one run of Double-oracle sequence-form algorithm.
They are shown only for better imagination of how the game tree of the restricted game can
differ in each iteration of Double-oracle sequence-form algorithm. With increasing number of
iterations of the algorithm, the restricted game increases its size. By combining this knowledge
with the assumption that parallel BRS is faster on large game trees in comparison to sequential
BRS, meanwhile on small game trees parallel BRS does not have to show any improvements,
one gets that with increasing number of iterations of the algorithm parallel BRS may increase
its speed-up against sequential BRS.

Efficiency defined in section 4.3 was defined according to Fishburn’s paper [8]. Since early
80’s computers and processors have been evolved. Processors with Hyper-threading allow to act
as they have double of cores than they have physicaly. Therefore, while computing efficiency
one should remember Hyper-threading and use number of logical processors used as number
of processors in (11) instead of number of used physical cores.

Experiments were performed on Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz with 4
cores with Hyper-threading, 8 GB RAM and 64 bit Windows 7.

7.2 Experiments with Best-response sequence algorithm

In this section, three possible combination of parallelization described in 5.1 are experimentally
compared to the original algorithm described in section 3.4; these are:

∙ parallelization in searching player’s nodes
∙ parallelization in opponent’s nodes
∙ parallelization in nodes of both players

To make legends of graphs more readable, parallel searching player, parallel opponent and
parallel BRS terms are used in this section to refer parallelization of searching player’s nodes,
opponent’s nodes and parallelization in nodes of both players respectively. Notice that all BRS
versions was with implemented with prunning described in section 5.1.

Graphs in figures are divided into subgraphs in order to be readable. This is caused by the
fact that size of experiments grows exponentially with respect to depth of a game tree. While
using a linear y axe (time), results of experiments with the smallest examined depth are hardly
to see. While using log axe for time, all results are big enough to be seen but defferences
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between measurements of the same game tree depth are hardly to be recognized since their
differnces are linear and the axe is logarithmic. Therefore results of experiments were divided
to subgraphs according to the game tree depth.

In following experiments, such settings of games that have impacts on the size of game tree
were set in the way, there would be smaller and larger game trees during the experiments; this
is caused mainly by depth of a game tree and branching factor. Some other settings that have
impacts on size of informations were tested, for example by allowing or fobridding slow moves
in Border patrolling games.

7.2.1 Phantom Tic-Tac-Toe

Two experiments with Phantom Tic-Tac-Toe on 3 × 3 board was performed. Phantom Tic-Tac-
Toe is a game that was used in most examples in this work; its description is in section 2.1.1.

In the first experiment, first two moves of the game was forced for both players; in other
words, both players was set up to peform their first moves on one specific coordinate. This
was used to narrow state space. The first player is forced to play his first move on coordinate
[2; 2] (rows and columns are numbered from 1); the second player is forced to do the same
thing in his first move. In Figure 5 comparison of arithmetic averages of BRS variants is
shown; in Table 2 variances of BRS versions are shown. This experiment shows almost double
speed improvement of parallel BRS and parallel searching player over sequential BRS and
no improvement of parallel opponent. Figure 7 shows each BRS version divided by time of
sequential BRS with respect to iterations.

The second experiments differs from the first one only by the fact that only the frist player
was forced to play to coordinate [2; 2]. The results of this experiments are in Figure 6 and
Table 2. This experiment shows also almost double speed improvement of parallel BRS and
parallel searching player over sequential BRS. In contrast to the previous experiment, in this
case, parallel opponent slighly better than sequential BRS. Figure 8 shows each BRS version
divided by time of sequential BRS with respect to iterations.

0

20

40

BRS version

Ti
m

e
[s

ec
on

ds
]

sequential BRS

parallel BRS

parallel searching player

parallel opponent

Figure 5 Comparison of arithmetical averages of BRS versions time on Phantom Tic-Tac-Toe on 3 × 3
board with forced first two moves to [2; 2] coordiante for both players.
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Figure 6 Comparison of arithmetical averages of BRS versions time on Phantom Tic-Tac-Toe game
with forced the first move of the first player to coordinate [2; 2].
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Figure 7 Comparison of BRS versions to sequential BRS in iterations of Double-oracle sequence-form
algorithm on Phantom Tic-Tac-Toe 3 × 3 with forced first two moves on coordinate [2; 2] for both
players.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
0

0.5

1

1.5

2

Iterations of Double-oracle sequence-form algorithm

Ti
m

e
di

vi
de

d
by

se
qu

en
tia

lB
R

S sequential BRS
parallel BRS
parallel searching player
parallel opponent

Figure 8 Comparison of BRS versions to sequential BRS in each iteration of Double-oracle sequence-
form algorithm on Phantom Tic-Tac-Toe 3 × 3 with forced the first move of the first player.

Table 2 Variances of time of BRS versions on 3 × 3 board with forced move(s) on [2; 2] coordinate in
[s2].

sequential BRS parallel BRS parallel searching player parallel opponent

first player forced 3401.5 128.019 302.216 138.554

both player forced 0.0430 0.3304 0.8968 1.7079
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7.2.2 Random Game

Random game is a two-player zero-sum game with imperfect information which has got some
settings that are described in this section. The depth of a Random game tree is double the
size of d which represents how many decisions can a player perform. Number of possible
actions is represented by branching factor. The following model for Random game was used
for following experiments: a leaf utility is total of each action’s utility on path from the root
to the leaf; for each action is computed random number. Seed s = 3 for random number
generator was used in all experiments. Each player can distinguish only a predefined number
of opponent’s actions; max observations expresses this pedefined number. During experiments
with instances of Random game other setting as max center modifications was set to 5 and keep
observations probability was set to 0.9.

Three experiments were performend on Random games with different settings; these are
shown in figs. 9 to 11. In each experiment different values for max observations and branching
factor are used. Each experiment was performed with two or three depths. Remaining settings
of games are described in the previous paragraph. In these experiments parallel opponent al-
ways finished after sequential BRS except the case on Figure 9 with d = 3. however, it is a
small case and such result has not been recorded on other cases. Parallel searching palyer has
got unclear results in these experiments since in some cases it was faster than sequential BRS
but in smaller cases (d = 2) it was even two times slower (see figs. 10 and 11). Parallel BRS was
faster in all cases except the ones with small depth (Figrue 10 with d = 2 and Figure 11 with d
= 2). In two cases parallel BRS was almost three times faster then sequential BRS (Figure 10
with d = 5 and Figure 11 with d =4).

In Figure 12 the first two thousand iterations of an instance of Random game with settings
max observations = 3, depth = 6, branching f actor = 4, are shown with divided time of each
BRS version by sequential one.
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Figure 9 Comparison of arithmetical averages of BRS versions time on a Random game with respect
to depth and settings: max obeservations = 2 and branching f actor = 3.
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Figure 10 Comparison of arithmetical averages of BRS versions time on a Random game with respect
to depth and settings: max obeservations = 2 and branching f actor = 5.
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Figure 11 Comparison of arithmetical averages of BRS versions time on a Random game with
max obeservations = 3 and branching f actor = 6 with respect to depth.
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Figure 12 Comparison of BRS version to sequential BRS in the first two thousand iterations iterations
of Double-oracle sequence-form algorithm on Random game with settings: max observations = 3,
depth = 6, branching f actor = 4.
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7.2.3 Generic Poker

Generic poker is a version of poker in which number of antes and number of maximal raises
in row can be set for one player. In experiments with Generic poker number of antes for one
player was set to 2 and number of maximal raises in row was set to 2. Besides, max different
bets and max different raises was set to 2. The main thing corresponding to the game size is
number of maximum card types, which was set to 2, and max card of each type, which was set
to 2. Experiment’s results are shown in Figure 13 and Table 3. Parallel opponent was again
slower than sequential BRS. Parallel BRS and parallel searching player achiev almost double
speed of sequential BRS.
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Figure 13 Comparison of arithmetical averages of BRS versions time on a Random game experiment.

Table 3 Variances of time of BRS versions on the Generic poker experiment in [s2].

sequential BRS parallel BRS parallel searching player parallel opponent

variance 0.0189 0.0223 0.0118 0.0323

7.2.4 Border patrolling

Border patrolling game is a type of search games described in 2.1.3. Two players act simulta-
neously on a directed graph. One player, evader, wants to get from start destination to finish
destination. He wins if he gets to goal destination within a predefined number of moves. The
second player, patroller, aims to catch evader. If patroller catches evader within a predefined
number of moves, he wins. If the predefined number of moves are exceeded and no player
wins, a draw occurs. While evader is moving, he leaves track; this can be avoided by using
slow moves by evader cause slow moves do not leave tracks. Evader also can use wait action to
stay in a node as his move. Experiments with different graphs were pefromed with allowed or
forbiden slow moves action (see figs. 14 and 15 ). Graphs used in experiments are in Appendix
A tables 8 and 9. The graph from table 8 will be refered as G1 and the one from table 9 will
be refered as G2. In experiments depth representing number of allowed moves for players and
usage of slow moves were examined. In both cases destination node was the 17th node of a
graph and evader starting node was the first one node of a graph. Also in both cases patrolling
player starts in 18th and 19th node of the graph and from these nodes he starts his patrolling.

In the first experiment on G1 there is no improvement for any of parallel versions (see Fig-
ure 14). Despite of that, the second experiment on G2 has shown speed-up around 2.5 for
parallel BRS and parallel searching player over sequential BRS. As in most of previous experi-
ments, parallel opponent shown no improvement over sequential BRS. In the first experiments,
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no improvement may have been caused by the state space which contains large information
sets.
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Figure 14 Comparison of arithmetic average of BRS versions time on a Border patrolling game with
depth = 4 on G1.
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Figure 15 Comparison of arithmetic average of BRS versions time on a Border patrolling game depth =

5 on G2.

7.2.5 Conclusion

Data from these experiments were taken and speed-up was computed for each record. In Table 5
are corresponding results to all tested variants of BRS.

Table 4 Speed-ups computed from all measurements.

parallel BRS parallel searching player parallel opponent

median 2.184 1.753 0.906

arithmetic average 2.095 1.587 0.992

Since it is evident that parallel computation takes some time because of usage of parallelism,
results computed in the same way as above can be calculated with forgetting the experiments
on small games; these are ment those game in which average of sequential BRS took less than
1 second (these are experiments shown in figs. 9 to 11 with the smallest d in each experiment).
These results are in Table 5.
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Table 5 Speed-ups computed from measurements without ones from small cases.

parallel BRS parallel searching player parallel opponent

median 2.222 1.873 0.899

arithmetic average 2.105 1.866 0.894

Median is the best likelihood estimation for 1-D measurement, according to that parallel
BRS has the biggest speed-up. But still, with a four-core processor with Hyper-threading its
efficiency is only 27, 7%. In Table 6 efficiency is computed according to median from Table 5.

Table 6 Efficiency computed using median from Table 5.

parallel BRS parallel searching player parallel opponent

efficiency 0.2778 0.234 0.112

Figures 7, 8 and 12 were shown to imagine how long it takes to compute the best-response in
each iteration to each BRS version. Since parallel BRS has been found to be the most efficient
version, it was examined in Figure 12 case. It has shown that in some iterations speed-up of
parallel BRS against sequential one was about 5 which means efficiency slightly over 60%. For
computation of this number, the speed-up of 5, the graph shown in Figure 12 was traversed and
its values representing parallel BRS time / sequential BRS time were examined; about ten of
these ratios were around 0.2.

To summarize, there are speed-ups around 2 but also a pathological case of one Border
patrolling game instance with no speed-up at all. Thus the proposed parallelization of parallel
BRS does not have to be faster than sequential BRS. This is probably caused by the structure
of the search space in this case.

7.3 Experiments with Double-oracle sequence-form algorithm

7.3.1 Restricted game building time

Measurements from the previous section also provided more data about the whole algorithm. In
section 3.2 Double-oracle sequence-form algorithm is divided into three steps - Best-response
sequence algorithm, LP computation and the restricted game building. Time required for these
three part was recorded and then perctentage of each part was computed for each experiment.
The results from this are in Table 7.

Table 7 Median and arithmetic average from percetage occurrence of LP, BRS and restricted game
building.

LP BRS restricted game building

median 0.288 0.534 0.054

arithmetic average 0.338 0.562 0.098

From Table 7 one can see which parts of the algorithm are the most time consuming. So,
building of the restricted game contributes to the whole time of the algorithm by only a small
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amount of time in comparison to remaining parts. Therefore parallelization of this part of the
algorithm would not changed much the overall time.

39



8 Conclusion

This work described basic background of Game theory, principles Double-oracle sequence-
form algorithm uses and made a survey of parallalization search on game trees. Contribution
of this thesis is a parallel design of Best-response sequence algoritm, its implementation and
its experimental evaluation.

Chapter 2 desribes basic background of Game theory and imperfect-information games; also
expamles of imperfect-information games are described. In chapter 3 an analysis of Double-
oracle sequence-form algorithm from high level point of view was done. In chapter 4 a survey
of parallel techniques for game tree search is presented. In this survey are described techniques
relevant to Best-response sequence algorithm. Chapter 5 presents possible parallelization of the
algorithm which was implemented (chapter 6) and experimentally evaluated in chapter 7. The
analysis was mainly focused on Best-response algorithm but reamining parts of Double-oracle
sequence form algorithm was examined as well.

The analysis of possible parallelization of Best-response sequence algorithm was designed
under the assumption that cutt-off in Best-response sequence algorithm are very useful for
narrowing search over a game tree. Also a proposal for parallelization of the algorithm without
prunning techniques or with partial usage of cut-offs is proposed in future work.

Experiment, described in the previous chapter, tell us that speed-up of the proposed parallel
design from Chapter 5 is statisticaly 2.22 with efficiency of 27.7% on card games, Phantom
Tic-Tac-Toe and Border patrolling and Random games. But these results were achieved on a
four-core processors with Hyper threading. Since speed-up and mainly efficiency may differ
according to used proccesor, the experimental part of this thesis was not fully elaborated and
may remain for future work.

Although, contribution of this thesis is a prallel version of Best-response sequence algorithm
and the proposed parallel version may be used for comparing future paralleling approaches of
the algorithm.

8.1 Future work

The lesson we learned from experiments is that sticking with a cut-off technique in parallel
search is not always as time saving as it may seem. As seen on results of Best-response se-
quence version with opponent nodes parallelization; using only this approach is in most of
cases slower than sequential algorithm. This is caused by speculative loss.

Since one instance of Border patrolling game has shown almost no improvement, some other
knowledge about a game’s state space may be helpful. More than some speculative work eval-
uation of actions leading from an information set in advance would be usefull in order to get
results faster even at the cost of doing some more work than is needed. This could be used in
games where the depth of search is know and thus from some predefined height from lowest
leaves of the game tree parallel evaluation of all subtrees of this height could be performed.

This bring us back into deeply study of information sets since it is an element that has not
been used in any of methods in the survey in this work. Still, this topic remains open.
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Appendix A

Graphs for expriments

Here are incidence matrices used in experiments with Border patrolling games.

0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

Table 8 The incidence matrix for graph G1.

0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

Table 9 The incidence matrix for graph G2.
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