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Abstract

Low-density parity-check (LDPC) codes have become quite popular these days.
They have good performance which is close to Shannon limits and can be used
in satellite communication with excellent results. This thesis presents elemen-
tary tools for work with them. Mainly we show how to generate pseudo-random
sparse parity-check matrix H, which de�ne code. We also describe two methods
to make algebraically constructed matrix H. Next there is repeat-accumulate
(RA) LDPC code which can encode source data to codeword more easily. Fur-
ther we examine error-correcting decoding for transferred messages through
AWGN channel especially with Sum-product algorithm (SPA), which is mainly
used with log-likelihood ratio (LLR) information. Then we also present two
methods for analyzing qualities of code with Bit-error rate (BER) test and Ex-
trinsic information transfer (EXIT) charts. In the last part we compared some
special cases of codes to show di�erences for various parameters. All methods
are implemented in MATLAB codes.

Keywords: LDPC, sparse matrix, pseudo-random matrix, AWGN channel, RA
LDPC, SPA decoding, BER, EXIT chart

Abstrakt

Low-denstiy parity-check (LDPC, �ídké paritu kontrolující) kódy jsou v t¥chto
dnech celkem populární. Mají dobrý výkon, který je blízko Shannovýmu limitu
a mohou být s výbornými vysledky vyuºity v satelitní komunikaci. V této
práci uvádíme základní nástroje pro práci s nimi. Hlavn¥ ukazujeme zp·sob,
jak generovat pseudo náhodné °idké kontrolní matice H, které de�nují kód.
Dále popisujeme dv¥ metody algebraické tvorby matice H. V dal²í £ástí je
repeat-accumulate (RA) LDPC kód, který jednodu²eji kóduje zdrojová data
na kódová slova. Zkoumali jsme také chyby opravující dekódování pro p°e-
nesené zprávy p°es AWGN kanál, hlavn¥ dekódování s Sum-product algorit-
mem (SPA), který je hlavn¥ pouºit s informacemi v podob¥ log-likelihood ratio
(LLR). Dále jsme také ukázali dv¥ metody pro analýzu kvalit kód· s Bit-error
rate (BER) testem a Extrinsic information transfer (EXIT) grafem. V poslední
£ásti porovnáváme n¥které speciální p°ípady kód· pro ukázání rozdíl· pro r·zné
parametry. V²echny metody jsou implementovány do MATLABových kód·.

Klí£ová slova: LDPC, °ídké matice, pseudo náhodné matice, AWGN kanál,
RA LDPC, SPA dekódování, BER, EXIT graf
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Chapter 1

General principles

1.1 Introduction

The goal of this thesis is to make useful codes for work with Low-density parity-
check (abbreviated LDPC) codes. We have implemented methods in MATLAB
which does not produce the fastest programs (than e.g. in C++), but whose
codes are more illustrative. Converting codes from MATLAB to C++ is not too
hard, so if it necessary, they can be easily converted. All codes are implemented
by us are in Appendix A.

Low-density parity-check codes are a linear block codes from group of for-
ward error correction codes. They were introduced by Robert G. Gallager in
1962 [3], but for a long time they had been forgotten for their computational
cost. They were re-discovered by David J. C. MacKay in 1999 [7] and after
that their popularity has grown up. Especially for their performance which is
close to the Shannon limit (theoretical upper bound of ability to transfer sym-
bols in noisy channel) [8]. That is the reason why they are used for satellite
communication in space [2]. They are mainly known for usage with standard
DVB-S2 (Digital Video Broadcasting - Satellite, second generation) [9], which is
used with current digital television. Also it can be used for microwave wireless
communication, for example with Wi-Fi routers.

The main task of this work is to study and implement method for decoding
codes (in Chapter 2). The best decoders for LDPC are over Factor graph. In our
case, we will use message passing Sum-Product algorithm. Then we will study
in Chapter 3 methods of generating codes, mainly how to generate its parity-
check matrix H which de�nes code. And in Chapter 4 we will show methods of
analyzing qualities of codes.

The second goal of this thesis is utilize knowledge gained during study on
CTU. We especially talk about subjects with basics of theory of Probability,
Information and Digital communication. We want to prove understanding of
technical papers and main principles and ability to use them properly to imple-
ment in codes. Then simplify implemented methods for better explanation in
pseudo-codes algorithms.

1
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1.2 Finite �eld algebra

Before we start with LDPC codes, we must introduce algebra over a �nite �eld,
or also known like Galois �eld, which is denoted by GF (pk), where p is a prime
number and k is a positive integer [8]. It is �eld with �nite number of elements,
exactly with pk elements (from 0 to pk−1) which is de�ned by modulo operator
(mod pk).

LDPC codes can be used with any of GF (pk), but in this thesis we will
use codes only over GF (2), so we will use binary alphabet. It is more com-
mon to work with binary data. With GF (2) addition and subtraction are
the same ( (1 + 1) mod 2 =(1 − 1) mod 2 = 0) and we can replace this with
binary operation XOR. It is similar with multiplication and division ( (1 ×
1) mod 2 =(1/1) mod 2 = 1) which can be represent by binary operation AND.
In table 1.1 is summary of elementary operation over GF (2).

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Tab. 1.1 � Operation with GF (2)

1.3 Parity-check matrix

Performance and properties of codes are determined by their parity-check ma-
trices H. So good construction of matrix H is essential for good code. From
the name of Low-density parity-check code we need for code sparse parity-check
matrix H. Sparse means that are few ones towards all possible elements of
matrix. In �gure 1.1 we have example of LDPC parity-check matrix H with
dimension n = 10000, m = 7500 and parameters wc = 3, wr = 4 (meaning
of wc, wr is explained in subsection 1.3.4), where we have 7.5 · 107 elements of
matrix, but only 3 · 104 ones, which are only 0.04% of whole matrix. (Dots in
�gure are bigger than they should be, but smaller we could not see.)

Also from sparse matrix we will gain good factor graph(subsection 1.3.2),
which is essential for decoding.

Another important condition for good code is big dimensions of matrix. We
will gain better results for bigger matrices with longer codewords. For DVB-S2
LDPC codes we have n = 64800 symbols [9].

1.3.1 Construction

Construction of parity-check matrix H has a big role of quality of code. It
determines the way to source data s encode with code (making of generator
matrix G), performance of code and mainly storing of matrix H (with G).
There are two main groups of construction - pseudo-random and algebraic.
Pseudo-random can have better performance than algebraic, but good algebraic
can have the same results, but for coder and decoder they will be more useful,
because they can generate matrix H anytime they need it and they do not need
to remember big matrices like with pseudo-random.

Construction of codes is subject of Chapter 3.



CHAPTER 1. GENERAL PRINCIPLES 3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

1000

2000

3000

4000

5000

6000

7000

nz = 30000

Fig. 1.1 � Example of parity-check matrix H, n = 10000, m = 7500, wc = 3,
wr = 4

1.3.2 Factor graph

Parity check matrix can be transferred into graph, to be exact, into factor graph
(FG) (for this usage also known like Tanner graph). It is a bipartite graph which
is composite from edges and nodes (variable and check nodes). It shows how
variable nodes are connected to check nodes via edges.

We can split parity check matrix H into n columns andm rows. The columns
represent variable nodes (abbreviated VN) of graph, in this thesis denoted by
red circles, where j-th variable node represent j-th bit of incoming code word.
Rows represent check nodes (CN) of graph, here denoted by blue squares, where
i-th check node check parity of all incoming messages. It means that check
node control V N(1)⊕ V N(2)⊕ ...⊕ V N(n) = 0, where V N(1)...V N(n) are all
connected variable nodes to concrete check node.

Edges are connection between variable nodes and check nodes. If Hij is
non-zero element, then is edge between i-th check node and j-th variable node.

In �gure 1.2 is factor graph for parity check matrix

H =



0 0 1 1 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 0 0


, (1.1)

where we have n = 15 columns, which make 15 variable nodes and m = 10
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rows, which make 10 check nodes. In the �rst column we have ones on positions
i ∈ {2, 5}, which give us edges from �rst variable node to the second and �fth
check nodes.

 

VN

CN

Edges

Fig. 1.2 � Factor graph for matrix (1.1), with 15 variable nodes with weight 2
and 10 check nodes weight 3

The main meaning of factor graph is not the better illustration of H, but
good usage with message passing decoders. The graph here is like a diagram
for decoder, where we give functions to nodes [6], which are executed during
passing messages. We divide decoders by functions, which is used in nodes, like
Sum-product algorithm used in this thesis, in section 2.1.

Example: Figure 1.3 shows example of message passing algorithm, where
illustration of one path from the second variable node to others. From this
example we can see strength of LDPC codes. There is showed only one path,
which connects nine variable nodes. If there is error in the 14th variable node,
it means VN number 4 from path, then it can receive good information from
four other variable nodes from both sides of this path. There is bigger factor
graph for bigger matrix H. Then path can be longer, so then variable node can
receive more information from others. �

The MATLAB code for drawing factor graph from H is in A.1 on page 51.
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VN

CN

Edges

0. 8.  5.  1.     7.      6.        3.          4.         2.

Fig. 1.3 � Example of message passing algorithm

1.3.3 Cycles and girth

In the previous part we have shown factor graph and message passing. Figure
1.3 shows one path of message passing through graph. If we continue from step
8, then we close this path to cycle. Cycle is path which ends in same node like
from it start. Possibly length of cycles is 2k, where k ∈ N and possibly minimal
length is 4-cycle. Let girth is length of minimal cycle of graph.

Small cycles can decrease performance of code, mainly 4-cycles. In [5] show
that cycles of length 6 and more did not a�ect performance of code. Four-cycles
are from four edges which connect two variable nodes to two check nodes. That
causes bad correcting of errors in both variable nodes in 4-cycle. In parity check
matrix we can recognize 4-cycles, if ones make square in matrix. In matrix

H =


1 0 0 1 0 1
0 1 1 0 1 0
1 0 0 1 1 0
0 1 1 0 0 1

 (1.2)

we have two 4-cycles. Blue ones make four cycle in �gure 1.4 a) and 4-cycle
from square with red ones is in �gure 1.4 b).

Finding larger girth of graph than four is not easy task. But we said that
big problem makes just 4-cycles and bigger did not a�ect code performance too
much. It is easier to avoid certain girth of matrix H from construction than try
�nd it in already existing matrix.

The MATLAB code of tool for �nding 4-cycles in already existing matrix H
is in A.2 on page 51.

1.3.4 Degree and edge distribution

One of the methods how to analyze parity-check matrix H is detection of its
weight of rows and columns and for irregular matrix degree distribution.
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VN

CN

Edges

 

a)

b)

Fig. 1.4 � Example of 4-cycles from matrix H(1.2)

The weight of columns wc is the number of connected check nodes to one
variable node which is represented by number of ones in a column. The same
with weight of row wr which represent the number of connected variable nodes
to one check node, represented by count of ones in a row of matrix H. We can
divide matrices by weights on regular or irregular codes, where regulars codes
have constant wr, wc for every rows and columns and irregular not.

For regular codes we have

nwc = mwr (1.3)

where this represent total amount of edges (total amount of ones in H). That
give us m = nwc

wr
. From that and from code rate

r =
k

n
, (1.4)

which determine ratio between length of data word and code word, we have

k

n
=
n−m
n

= 1− m

n
= 1− wc

wr
, (1.5)

where we assume wc ≤ wr. From this equation we gain design rate r′ which can
be lower than actual rate of code r, because parity-check equations of H might
not be all independent [1].
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For irregular codes it is similar, but with degree distributions. We can
not describe irregular code with just one number of weight. We can use to
description degree distribution or edge degree [5].

Degree distribution of column is description towards amount of all columns,
which have weight i. Matrix H with dimension m × n have for columns with
weight i degree distribution

vi =
number of columns with weight i

n
(1.6)

and for rows with weight i have

hi =
number of rows with weight i

m
. (1.7)

Both must ful�ll ∑
i

vi = 1
∑
i

hi = 1. (1.8)

From that all we get design rate

r′ = 1−

∑
i

vii∑
i

hii
. (1.9)

Edge degree is ratio of i edges from one node towards all edges in factor
graph from parity-check matrix H. For i edges coming from variable node we
have

λi =
i× number of varible nodes with i edges

total amount of all edges
(1.10)

and for i edges from check node we have

ρi =
i× number of check nodes with i edges

total amount of all edges
(1.11)

and both also must ful�ll ∑
i

λi = 1
∑
i

ρi = 1. (1.12)

We can get degree distribution from edge with

vi =
λi/i∑
j

λj/j
(1.13)

hi =
ρi/i∑
j

ρj/j
. (1.14)

and after input it into (1.9) we get design code rate

r′ = 1−

∑
i

ρi/i∑
i

λi/i
. (1.15)
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Irregular code can have better performance than regular code with same
rate. For improving is enough to has irregular column weight with regular row
weight. [5]

Example: Let we have matrix

H =


0 0 0 0 0 1 1 1 0 1
0 1 1 1 0 0 0 1 1 0
1 0 0 1 1 1 0 0 0 1
1 0 1 1 0 0 1 1 0 0
0 1 1 0 1 1 0 0 1 0

 (1.16)

 

VN

CN

Edges

Fig. 1.5 � Factor graph of matrix H (1.16)

for irregular code. This matrix have degree distribution v2 = 6/10 = 0.6,
v3 = 4/10 = 0.4, h4 = 1/5 = 0.2 and h5 = 4/5 = 0.8. For edge degree we will
get λ2 = 2 · 6/24 = 0.5 and λ3 = 3 · 4/24 = 0.5 for edges coming from variable
nodes and ρ4 = 4 · 1/24 = 0.16̄ and ρ5 = 5 · 4/24 = 0.83̄ for edges from check
nodes. �

The MATLAB code for analysis for weights and degrees is in A.3 on page 52.

1.4 Encoding

In this thesis all types of encoding are systematic. It means that we have k-bits
of data word s which we encode to codeword c with length of n bits where �rst
k bits are the same bits like s. Then codeword c can be split to two parts, the
�rst k bits are source data word s and next m bits are parity check bits p. Then
we have length of code c expressed by n = k + m. That leads to the easiest
decoding - we just take from corrected codeword c′ �rst k bits and gain data
word s′.

How we said, the code is de�ned by its parity check matrix H, so its encoding
is derived from it. It is linear coding and we can use equation

G·HT = 0, (1.17)

where G is generator matrix, which encode source data word s to codeword c
with

c = GTs. (1.18)

This works good with for example Hamming codes. But there is problem with
LDPC code, because H is normally really large and sparse matrix H may not
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generate sparse matrix G. Without sparse G can be really hard to compute
codeword c, because it will cost many additions during multiply the vector s
with matrix G.

This leads us to better method for encoding with pseudo-random LDPC
codes. In subsection 3.1.1 we introduce Repeat-accumulate code which make
new parity check matrix H.

H = [Hs|Hp] =


0 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 1 1 0
1 0 1 0 1 0 1 0 0 0
0 0 0 1 0 0 1 1 0 1

∣∣∣∣∣∣∣∣∣∣
1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

 .
With this new matrix H, where HS represent pseudo-random LDPC parity
check matrix and HP parity check part, we can also systematicly encode data
bits s to codeword c.

For LDPC codes created by Algebraic construction there exists of speci�c
way to encode data. Section 3.2 handle with this subject.

For the method, how to encode two message for one relay there is section
3.3.

1.5 BPSK and AWGN channel

In this thesis we used only binary data, so best modulation for it is BPSK
(binary phase-shift keying). This linear modulation has only two constellation
points qn ∈ {−1, 1} for n-th symbol. In this work we use mapping rule 0 → 1
and 1→ −1 for binary data input [10].

LDPC can correct transmitted codes with errors created during transmission.
Good model for real communication is AWGN (additive white Gaussian noise)
channel. The output of AWGN channel can be described by

y(t) = x(t) + n(t), (1.19)

where x(t) are sent symbols with BPSK modulation and n(t) is additive white
Gaussian noise. We control this channel by changing SNR (signal-to-noise ratio)
or N0(noise power spectral density). Fig.1.6 is comparing the same data input
with output from AWGN channel with di�erent SNR. Obviously in higher SNR
it is easier to determine which received symbol belongs to the constellation
point.

If we want to determine which symbol we received from AWGN channel, we
use likelihood function

Λ(x) = p(y|x) = ce−
||y−x||2

2N0 . (1.20)

This function states probability of likeness of received symbol with every
possible sent symbol. Then we assume that we received xi, if the Λ(xi) is the
biggest value of all Λ(x).

All MATLAB codes for BPSK and AWGN operation is in A.4 on page 52.
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Fig. 1.6 � Constellation space observation of BPSK for 1000 symbols in AWGN
Channel for various SNR
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1.6 Decoding

LDPC codes are well known for their error-correction ability. The best results
we will gain from soft-decision decoding (that mean using soft information),
because this use more information than from hard-decision (where we have only
binary information for symbol). That is the reason why we are using in this
thesis Sum-product algorithm for decoding, which we introduce in Section 2.1,
because it works well with soft information. We will systematic decode our
codewords after code's error-correction decoding. This means that �rst k-th
symbols of received and corrected word are our decoded data word. Chapter 2
deals with decoding.



Chapter 2

Error-correction decoding

We mostly simulated codes over AWGN channel, so we did not receive exactly
bits, but just only likelihood functions described by (1.20) on page 9. We had
probability of occurrence of symbol, so we would have lost many valuable in-
formation if we had reduced it only on binary bit (0 or 1). It means that is
better to use soft decision decoding than hard decisions. In this chapter we im-
plemented for Soft decision decoding Sum-Product algorithm with Probability
domain in section 2.1.1.1 or LLR in section 2.1.1.2. For Hard decision decoding
we have two methods - Hard decision SPA in section 2.1.2 and Bit-�ip decoding
in section 2.2.

Soft decision is good for noisy channels, like AWGN (from section 1.5), where
we examine information from likelihood function (1.20). There is not strict
decision which symbol is receives, it is easier for decoder for deciding use the
most information which its can. This means to use exactly soft information
from likelihood function.

Hard decision is good for binary symmetric channel (BSC), where only errors
are made by �ip binary symbol ( 1 to 0 or 0 to 1) [8]. Also this can be used for
binary erasure channel (BEC), where you send 0, 1 and receive 1, 0 and e for
error. This means that you received 1, it is certainly 1, but when you receive
symbol e, then it means that you lost that symbol during transmission. We did
not implement this model of channel, but it is easy to made it.

Hard decision can also be used for noisy channels, but with worse results
than with soft decision. For BPSK we assume that received symbol is 0 for
Λ(0) ≥ Λ(1), otherwise symbol is 1 for Λ(1) > Λ(0). If Λ(0) = Λ(1), then it
does not matter which symbol we guess, because we really cannot say anything
about it.

For examples in this chapter we use LDPC code with parity check matrix H
with m = 4, n = 6, wc = 2, wr = 3, without 4-cycles. To be accurate, this one

H =


0 0 1 1 0 1
1 0 0 1 1 0
1 1 0 0 0 1
0 1 1 0 1 0

 , (2.1)

with its factor graph in �gure 2.1.

12
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Edges 1.  2.               3.              4.

   1.   2.   3.  4.                        5.                        6.

Fig. 2.1 � Factor graph for H (m = 4, n = 6, wc = 2, wr = 3)

2.1 Sum-Product algorithm

The most often used decoder for LDPC codes over factor graph is the sum-
product algorithm (abbreviated SPA). Many authors have many names for this
algorithm - SPA like in this thesis, the belief propagation algorithm or message
passing algorithm.

We are using �ooding schedules for decoding. This means that we send all
messages from variable nodes to check nodes in one time and vice versa from
check nodes to variable nodes. We divide SPA to three categories by type of
input data. The �rst one is soft decision with message in probability form. Then
we have reduced form with log-likelihood ratio, which is easier to compute than
probability form. At least we have hard decision which reduced information
only on binary message. Used methods are described in [11].

2.1.1 Soft decision

We assume that we received transmitted code over AWGN channel and the
most information we gain from soft decision, where we use soft information from
likelihood function (1.20). We can reduce soft information to hard decision, but
then we will gain worse results than from soft decision.

We �rstly show decoding with probability domain, which is more illustrative,
but can be harder to compute. Then we show SPA with log-likelihood ratio,
which is better for computing.

2.1.1.1 Probability domain

For SPA with probability domain we use input message with probabilities from
likelihood function for AWGN channel (1.20), but we must multiply every i -
th symbol with constant ki = 1

Λi(0)+Λi(1) . Then we have pi(0) = kiΛi(0) and
pi(1) = kiΛi(1), which give us pi(0) + pi(1) = 1.

The main point of sum-product algorithm is method how check nodes and
variable nodes exchange incoming messages with out coming message. Espe-
cially the one outcome message from node is composite from all other incoming
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messages. So from that ideally after few iteration every node is somehow con-
nected to all others. From this follows that every message is in�uenced by all
observation from channel.

Check nodes control that XOR of all incoming messages is zero (like we will
more show in hard decision in Fig. 2.5). So probability of correct check node
with two inputs is

Pr[c1 ⊕ c2 = 0] = q1(1)q2(1) + q1(0)q2(0)

= q1(1)q2(1) + (1− q1(1))(1− q2(1))

=
1

2
[1 + (1− 2q1(1))(1− 2q2(1))] = q. (2.2)

It is probability that c1 = c2, so (1+1) mod 2 = (0+0) mod 2 = 0. Probability
of check node with error is Pr[c1 ⊕ c2 = 1] = 1− q.

For three incoming messages we need even number of 1's for correct check
node. We have

Pr[(c1 ⊕ c2)⊕ c3 = 0] = (1− q)q3(1) + qq3(0)

=
1

2
[1 + (1− 2(1− q))(1− 2q3(1))]

=
1

2
[1 + (1− 2q1(1))(1− 2q2(1))(1− 2q3(1))](2.3)

which we can generalize it to

Pr[(c1 ⊕ ...⊕ cn = 0] =
1

2
+

1

2

n∏
i=1

(1− 2qi(1)). (2.4)

Therefore, out coming message from check node to variable node is

rji(0) =
1

2
+

1

2

∏
i′∈Vj 6=i

(1− 2qi′j(1)) (2.5)

rji(1) = 1− rji(0) (2.6)

where Vj is the set of all variable nodes connected to j-th check node (in �gure
2.2 a) is shown example of exchange messages in check node).

Variable node receives messages from connected check nodes and observation
xi from channel. From that we have for message from variable node to check
node

qij(0) = kijxi(0)
∏

j′∈Ci 6=j

rj′i(0) (2.7)

qij(1) = kijxi(1)
∏

j′∈Ci 6=j

rj′i(1), (2.8)

where Ci is the set of all check nodes connected to i-th variable node. The
constant kij is there for ful�llment condition qij(0) + qij(1) = 1. (in �gure 2.2
b) is shown example of exchange messages in variable node).

For output of algorithm we count e�ective probabilities of every code symbol

Qi(0) = kixi(0)
∏
j∈Ci

rji(0) (2.9)
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Qi(1) = kixi(1)
∏
j∈Ci

rji(1), (2.10)

where we count with all incoming messages from check nodes and observation
(shown in �gure 2.2 c)). After that we can gain received code word by ci = 1 if
Qi(1) > Qi(0), or ci = 0 if Qi(0) ≥ Qi(1).
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Fig. 2.2 � Exchange messages in soft decision SPA in probability domain
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Algorithm 2.1 Soft decision SPA in probability domain
INPUT: x - input probabilities of 0, 1 of symbols, max - maximal iteration,
H - parity-check matrix
OUTPUT: c - corrected codeword

Step 1: Make factor graph from H. Set counter = 1, qij(0) = xi(0), qij(1) =
xi(1), where qij(0) is edge connected from i -th variable node to j -th check
node with probability of 0 symbol. The same with qij(1).

Step 2: If counter ≤ max, then go to Step 3. Otherwise, Stop with information
about reach maximal iteration.

Step 3: Count rji(0) = 1
2 + 1

2

∏
i′∈Vj 6=i

(1 − 2qi′j(1)), rji(1) = 1 − rji(0), where

Vj is the set of all variable nodes connected to j -th check node. rji(0)
represent edge connected from j -th check node to i -th variable node and
send probability that i -th variable node represent symbol 0. The same
with rji(1).

Step 4: Count q′ij(0) = xi(0)
∏

j′∈Ci 6=j
rj′i(0), q′ij(1) = xi(1)

∏
j′∈Ci 6=j

rj′i(1), where

Ci is the set of all check nodes connected to i -th variable node. Then count
qij(0) =

q′ij(0)

q′ij(0)+q′ij(1) and qij(1) =
q′ij(1)

q′ij(0)+q′ij(1) for qij(0) + qij(1) = 1.

Step 5: Count Qi(0) = kixi(0)
∏
j∈Ci

rji(0), Qi(1) = kixi(1)
∏
j∈Ci

rji(1), where ki

is constant to ensure Qi(0) +Qi(1) = 1. Qi represent e�ective probability
of 0 and 1 at i -th symbol from all incoming messages to i -th variable node.
Then we estimate ci = 1 if Qi(1) > Qi(0), or ci = 0 if Qi(0) ≥ Qi(1).

Step 6: Count c ·HT mod 2. If the result is zero vector, then Stop. Otherwise,
set counter = counter + 1 and go to Step 2.

The MATLAB code for it is in A.5.1.1 on page 54.

2.1.1.2 Log-likelihood ratio

The principle of SPA for log-likelihood ratio (LLR) is similar to SPA for proba-
bility domain. Just we do not use separate probabilities for 0 and 1 symbol, but
their ration. For easier counting we use this ratio in logarithmically domain.
Exactly we use for i -th symbol

li = ln
Λi(0)

Λi(1)
. (2.11)

Then it is easy from li to determine which symbol is more likely received. Es-
pecially when li = ±∞, then we can certainly determine it. It is 0 if li > 0 or 1
if li < 0. If li = 0, then we can't say about it anything and we can choose if it
is 0 or 1.

Log-likelihood ratio sum-product algorithm is the same like with probabil-
ities, but we substitute LLR to probabilities and join separated equation for
pi(0) and pi(1) to one with li.
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Variable node sends message to check nodes exactly like in probability do-
main. We use q′ij(0) from (2.7), q′ij(1) from (2.8) and observation xi to have

qij = ln
q′ij(0)

q′ij(1)
= ln

xi(0)

xi(1)

∏
j′∈Ci 6=j

rj′i(0)

rj′i(1)


= xi +

∑
j′∈Ci 6=j

rj′i. (2.12)

For message coming from check nodes to variable node we use r′ji(0) from
(2.5) and r′ji(1) from (2.6). Then we get

rji = ln
r′ji(0)

r′ji(1)
= ln

1
2 + 1

2

∏
i′∈Vj 6=i

(1− 2q′i′j(1))

1
2 −

1
2

∏
i′∈Vj 6=i

(1− 2q′i′j(1))

= ln

1 +
∏

i′∈Vj 6=i
tanh(

qi′j
2 )

1−
∏

i′∈Vj 6=i
tanh(

qi′j
2 )

. (2.13)

We get (2.13) from (2.12), where

eqij =
1− q′ij(1)

q′ij(1)

q′ij(1) =
1

1 + eqij

and then
1− 2q′ij(1) =

eqij − 1

eqij + 1
= tanh(

qij
2

).

At last we turn equation (2.9),(2.10) to

Qi = ln
Q′i(0)

Q′i(1)
= li +

∑
j∈Ci

rji. (2.14)

If Qi > 0,the ci = 0, otherwise ci = 1.
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Algorithm 2.2 Soft decision SPA with log-likelihood ratio
INPUT: l - input LLR of symbols, max - maximal iteration, H - parity-check
matrix
OUTPUT: c - corrected codeword

Step 1: Make factor graph from H. Set counter = 1, qij = li. Where qij
is edge connected from i -th variable node to j -th check node with LLR
information.

Step 2: If counter ≤ max, then go to Step 3. Otherwise, Stop with information
about reach maximal iteration.

Step 3: Count rji = ln

1+
∏

i′∈Vj 6=i

tanh(
q
i′j
2 )

1−
∏

i′∈Vj 6=i

tanh(
q
i′j
2 )

, where Vj is the set of all variable

nodes connected to j -th check node. rji represent edge connected from
j -th check node to i -th variable node and sending LLR information.

Step 4: Count qij = xi +
∑

j′∈Ci 6=j
rj′i, where Cj is the set of all check nodes

connected to i -th variable node.

Step 5: Count Qi = xi+
∑
j∈Ci

rji, where Qi represent e�ective LLR of i-th sym-

bol from all incoming messages to i-th variable node. Then we estimate
ci = 0 if Qi ≥ 0, or ci = 1 if Qi < 0.

Step 6: Count c · HT mod 2. If result is zero vector or all Qi = ±∞, then
Stop. Otherwise, set counter = counter + 1 and go to Step 2.

The MATLAB code for it is in A.5.1.2 on page 55.
Example: In �gure 2.4 is example of soft decision sum-product algorithm

with log-likelihood ratio. We coded image (600 x 451 px) where we coded every
row with RA LDPC code with rate r = 0.5. H has m = 600, n = 1200 and
base matrix Hs has wc′ = 3, wr′ = 3, so whole H has wr = 5, wc1 = 3 with
vwc1

= 0.5 and wc2 = 2 with vwc2
= 0.5. Matrix H is in Fig. 2.3. Code is send

over AWGN channel with SNR = - 0.3 dB.

0 200 400 600 800 1000 1200
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100
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400
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600

nz = 2999

Fig. 2.3 � Parity check matrix H for example of SPA LLR

In section a) of the �gure 2.4 we can see how we coded image and added
parity check bits. Then we have in section b) of �gure, what we received from
AWGN channel with SNR = - 0.3 dB. There is strong noise. We corrected
image with SPA LLR. In section c) is progress of decoder. It is noticeable how
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errors are correcting from one iteration to next. Correction of the whole image
is complete in the twenty-�rst iteration, but the most of all rows are corrected
in the eighth iteration. �

Over AWGN
channel with
SNR = - 0.3 dB

a )

c ) Decoding

b )Coded Received from the channel

1. iteration 2. iteration

4. iteration 8. iteration

15. iteration 21. iteration

Fig. 2.4 � Example of soft decision SPA with LLR

2.1.2 Hard decision

Sum-product algorithm works very well with soft information, but we can ap-
proximate it to hard decision. How it was said in the introduction to this
chapter, we can reduce output of likelihood function (1.20) to 0's or 1's with
rules that we received symbol is 0 for Λ(0) ≥ Λ(1), otherwise symbol is 1 for
Λ(1) > Λ(0). Or hard decision is good for binary symmetric channel (BSC) or
other channels, which use only binary information.

The main idea of hard decision SPA is to count every check nodes and then
check nodes which do not meet condition of correct check node (that mean zero
value, Fig. 2.5 a)) return to variable nodes opposite values than that come
in. We assume that there is one error bit, so check node send back opinion of
correcting it to change symbol to opposite value, but can not determine which
variable nodes have error, so send it to every one. We can see an example
in �gure 2.5 b), c), d), where we change the �rst, second and at last message
to variable node. Then we have di�erent inputs from check nodes and from
observation to one variable node. The most often incoming value is our decided
value.
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CN
Edges

          

a )

   1     1           1

1

          

b )

  0     1            1

0

          

c )

   1    0            1

0

          

d )

   1    1           0

0

Fig. 2.5 � Exchange messages in check nodes in hard decision SPA

Algorithm 2.3 Hard decision SPA
INPUT: x - input codeword, max - maximal iteration, H - parity-check matrix
OUTPUT: c - corrected codeword

Step 1: Make factor graph from H. Set c = x, counter = 0.

Step 2: If counter ≤ max, then go to Step 3. Otherwise, Stop with information
about reach maximal iteration.

Step 3: Count CN = c ·HT mod 2, where CN is vector of check nodes. If CN
is zero vector, then Stop. Otherwise, go to Step 4.

Step 4: For every elements of CN . Let i-th element of CN is zero, then i-th
CN return to variable nodes what it received from them. Otherwise, if
i-th CN is one, then i-th CN send opposite value to variable nodes than
what it received.

Step 5: For every elements of c. Let j-th element of c is the most often value
which j-th variable node received from every connected check nodes and
observation x.

Step 6: Set counter = counter + 1 and go to Step 2.

The MATLAB code for it is in A.5.1.3 on page 57.
Example: Again we use H (from (2.1)) and code word c0 =

[
1 1 1 1 0 0

]
.

Let send c0 over BSC and receive c =
[
1 1 0 1 0 0

]
with one error on

position three.
Let send received code c from variable nodes to check nodes (Fig. 2.6 a)).

We can see that they are two bad check nodes, the �rst and fourth. It means
that the �rst and fourth check nodes send back opposite values than which they
received(Fig. 2.6 b)). Then to third variable nodes come two 1's from check
nodes and 0 from observation c. This means that we correct the third symbol
of code to 1 and then we gain c′ =

[
1 1 1 1 0 0

]
. That is what we sent.

�
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VN
CN
Edges

1  0  0  1

a )

c =    1   1   0  1                         0                         0

1  0  0  1

b )

               0  1    0     1        1 0       1  1           0       1  0     0

1  1                     0  1            1       1           0  1                     0     1           1    0    
c‘= 1                                      1                                     1                                      1                                        0                                  0

c =    1   1   0  1                         0                         0

Fig. 2.6 � Example of hard decision SPA

2.2 Bit-�ip decoding

How it is described in [4], the main idea of bit-�ip decoding (abbreviated BF)
is to correct variable node or nodes which are connected to the the greatest
number of bad check nodes. Error correction is with bit �ip (change 0 → 1 or
1→ 0).
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Algorithm 2.4 Bit-�ip decoding
INPUT: x - input codeword, max - maximal iteration, H - parity-check matrix
OUTPUT: c - corrected codeword

Step 1: Set counter = 0, c = x.

Step 2: If counter ≤ max, then go to Step 3. Otherwise, Stop with information
about reach maximal iteration.

Step 3: Count CN = c ·HT mod 2, where CN is vector of values of check
nodes. If the CN is zero vector, then Stop. Otherwise, go to Step 4.

Step 4: For every bit of c, which represent variable node, count the number
of connected check nodes, which are not have zero value. Change bit (or
bits) of c with the greatest number of errors from 0 to 1 or from 1 to 0
and then set counter = counter + 1. Then go to Step 2.

The MATLAB code for it is in A.5.2 on page 58.
Example: Let have H (from (2.1)) and code word c0 =

[
1 1 1 1 0 0

]
.

Let send c0 over BSC and receive c =
[
1 0 1 1 0 0

]
with one error on

position two.
Then we send received c over factor graph from H and count values in check

nodes (Fig. 2.7 a)). We can see that we have the third and fourth check nodes
with errors. It means that only the fourth variable node is not connect to check
node with error. Then the �rst, third, �fth and sixth are connected to one check
node with error and only the second variable node is connected with two check
nodes with error (Fig. 2.7 b)). So we bit �ip this check node, so we change 0 to
1 and we gain c′ =

[
1 1 1 1 0 0

]
. Again we send it to check nodes and

we can see, that is right code word and we got what we sent (Fig. 2.7 c)). �
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Fig. 2.7 � Example of BF decoding



Chapter 3

Type of codes

LDPC code is de�ned by its parity-check matrix H. Matrix determine perfor-
mance of code (how many errors can be corrected (how bad channel can be), how
many iteration need to be correct, a rate etc.), coder, decoder etc. An impor-
tant attribute is construction of parity-check matrix H and then construction
generating matrix G from this matrix H. There are two types of construction -
pseudo-random construction in section 3.1 or algebraic construction in section
3.2. Encoder and decoder for code with pseudo-random constructed H need to
remember really big H and also it is really hard to make G with general way
from solve equation (1.17) (and sparse matrix H may not produce sparse matrix
G and then encoding isn't to simple). On the other hand pseudo-random can
have better performances than algebraic.

3.1 Pseudo-random construction

Pseudo-random construction was introduced by Gallager [3]. This construction
makes good parity-check matrix H, but not generally with easy encoding. Ma-
trix is constructed by pseudo-random placing 1's to zero matrix and with that
we connected variable nodes with check nodes. Pseudo is because we control
condition of wc and wr, it means that we control count of 1's in every row and
column. Also control presence of of 4-cycles, or bigger cycles.

With pseudo-random H is not easy to �nd way to encoding. Matrix can be
really large and can be really hard to solve G·HT = 0 (1.17). Then we can
use other option - use this H like base matrix for repeat-accumulate low-density
parity check code, which we introduce in subsection 3.1.1.

For construction we used algorithm described in [1], which we modi�ed.
They make binary random column by column and then new column control
with previous columns for meets conditions. As they describe it, they can make
only regular H, where wc is same for every column and wr is same for every
row.

We are making it row by row, but mainly we don't making binary row, but
row with indices of 1's in row, so we change this

Hi =
[
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

]

24
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into this
H′i =

[
3 10 22 27

]
.

Then it is easy to control number of 1's in every row (number of indices in
row is equal to number of 1's in standard row) and in every column (number
of repetition of index i represent weight of i -th column). Also this type of
description of matrix is more savers than normal description (you have matrix
m × wr, than m × n, where wr � n). After know that all, it is easy to make
matrix.

Algorithm 3.1 Pseudo-random construction of H
INPUT: n - columns, wr- weight of row (must be regular), wci - i-th weight
of column, vi- degree distribution of wci, max - maximal loops in one cycle
OUTPUT: H - parity check matrix

Step 1: Sort wci′ < ... < wci′′ . Count number of rows m = n
∑

i wcivi
wr

(m must
be integer). For regular code it is only m = nwc

wr
.

Step 2: Count real number of column with weight wci, wcni
.
= vi · n. Where∑

i wcni = n.

Step 3: Permute indices of all columns, col = σ(1, 2, ..., n). Then
we make vector of column's indices of all 1's. H′ =
[repeat-wci′ -times(col[1...wcni′ ]) repeat-wci′′ -times(col[(wcni′ +
1)...(wcni′ + wcni′)] ... repeat-wci′′′′-times(col[(wcni′ + ...wcni′′′ +
1)...(wcni′+ ...+wcni′′′′)]). Then we reshape this vector to matrix m×wr.

Step 4: Set a = 1, where a represent actually constructed a-th row.

Step 5: If a ≤ m, then set help = 0 and go to Step 3.(help stop from endless
loops) Otherwise, go to Step 10.

Step 6: If help < max, then permute elements of a-th to m-th row of H′.
Otherwise set a = a− 1 and go to Step 5.

Step 7: If in the a-th row are two or more identical indices, then set help =
help+ 1 and go to Step 6. Otherwise, go to Step 8.

Step 8: If in the a-th row and any of 1-st to (a− 1)-th row are more than one
identical indices, then set help = help + 1 and go to Step 6. Otherwise,
go to Step 9.

Step 9: Set a = a+ 1 and go to Step 5.

Step 10: Transfer matrix of indices H′ to standard binary matrix H. Then
Stop.

The MATLAB code for it is in A.6.1 on page 61.
Algorithm 3.1 can make irregular-columns matrix with di�erent wr for every

row. In [5] show, that irregular-rows did not change performance of code more
than the irregular-columns. From that we can use only irregular-columns.

Step 8 in Algorithm 3.1 eliminate 4-cycles from matrix, which are described
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in subsection 1.3.3. Because with

H′ =

1 3 7 10
2 5 8 9
1 2 4 7


we have

H =

1 0 1 0 0 0 1 0 0 1
0 1 0 0 1 0 0 1 1 0
1 1 0 1 0 0 1 0 0 0


where is in the �rst and seventh columns and the �rst and third rows 4-cycle.

Example: We want regular LDPC parity check matrix H, with n = 10,
m = 5, wr = 4, wc = 2. We will make it with Algorithm 3.1. First we will make
matrix of all 1's elements indices

H′ =

[
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

]
and reshape it to matrix 5× 4 (m× wr).

H′ =


1 3 6 8
1 4 6 9
2 4 7 9
2 5 7 10
3 5 8 10

 ,
which can be transformed into

H =


1 0 1 0 0 1 0 1 0 0
1 0 0 1 0 1 0 0 1 0
0 1 0 1 0 0 1 0 1 0
0 1 0 0 1 0 1 0 0 1
0 0 1 0 1 0 0 1 0 1

 .
Now we can see, that matrix H ful�ll conditions of wr, wc, but after only reshap-
ing is full of 4-cycles, which corrupt performance of code. So then we permute
full matrix and then we will control row by row. After the �rst permutation we
get

H′ =


6 4 5 5
7 9 1 8
3 4 10 8
7 9 2 6
3 2 10 1


and we now only control the �rst row where we have now two same elements.
Then we permute it again and get

H′ =


9 10 5 6
1 7 3 2
7 8 3 2
10 6 1 8
5 4 4 9

 .
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We have the complete the �rst row, so we now permute the second to �fth rows
of H′,thus

H′ =


9 10 5 6

10 1 8 7
6 4 3 8
5 4 2 3
1 7 2 9

 .
In the second row there are not any duplicates and between the �rst and second
rows there are only one same index, so second row is good, then we can make
the third row.

H′ =


9 10 5 6
10 1 8 7
3 5 1 6
4 7 3 8
2 2 9 4

 (3.1)

The third row does not have two the same indices, but it has 4-cycle with �rst
row. We again permutes the third to the �fth row of H′. Then we will make
the fourth and the �fth row. After all iteration, we will gain �nal matrix

H′ =


5 6 9 10
1 2 4 6
2 3 8 9
1 3 5 7
4 7 8 10

 , (3.2)

where the second row is di�erent than in H′ from (3.1) because during making
matrix occur endless loop, so it was necessary to come back to good rows and
change them. We transform (3.2) to standard binary matrix

H =


0 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 1 1 0
1 0 1 0 1 0 1 0 0 0
0 0 0 1 0 0 1 1 0 1

 (3.3)

and we can see that matrix H ful�ll n, m, wr, wc and it is 4-cycle free. �
This method can generate good LDPC codes from H, but problem of pseudo-

random matrix is problematic conversion to generating matrix G. For big ma-
trix H it is really hard to solve equation (1.17), so we can use repeat-accumulate
code.

3.1.1 Repeat-accumulate code

Big problem with code from pseudo-random matrix H is its problematic encod-
ing. Because we assume big dimension of matrix, so then it will be really hard to
solve G·HT = 0 (1.17). But we can use repeat-accumulate codes (abbreviated
RA) [5] (or Staircase codes in [8]).

RA LDPC code make encoding really fast without hard computation. Parity
check matrix H for repeat-accumulate low density parity check code is composite
from two submatrices - Hs and Hp. Hs is base submatrix of H, it is parity
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Fig. 3.1 � Factor graph of matrix H from (3.3)

check matrix for LDPC code, which control source bits s of code c. For example
matrix H from section (3.1). Hp is submatrix, which controls parity bits p of
code c. It is submatrix of dimension m ×m (m from Hs) with ones on main
diagonal and ones on subdiagonal immediately below main diagonal.

In (3.4) is example of RA LDPC parity check matrix H, where Hs is from
(3.3) and in �gure 3.2 its factor graph.

H = [Hs|Hp] =


0 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 1 1 0
1 0 1 0 1 0 1 0 0 0
0 0 0 1 0 0 1 1 0 1

∣∣∣∣∣∣∣∣∣∣
1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1


(3.4)

 

VN

CN

Edges

Fig. 3.2 � Factor graph of matrix H from (3.4)

Encoding is systematic and it goes in two steps described in Algorithm 3.2.
Gained code have �rst k data bits and then m parity bits.
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Algorithm 3.2 Repeat-accumulate encoding
INPUT: s - data, H = [Hs|Hp]- parity check matrix of RA LDPC
OUTPUT: c = [s|p]- codeword

Step 1: Compute v = Hss.

Step 2: Compute parity bits p by

p1 =
k∑
i=1

Hs1isi = v1

p2 = p1 +
k∑
i=1

Hs2isi = p1 + v2

p3 = p2 +
k∑
i=1

Hs3isi = p2 + v3

...

pm = pm−1 +
k∑
i=1

Hsmisi = pm−1 + vm.

(3.5)

The MATLAB codes for it is in A.6.2 on page 62.
When Hs is sparse matrix (by de�nition of LDPC), then computation of v is

just only addition (or XOR) of few elements and (3.5) is then only accumulation
of p.

On the same principle work also LDPC codes for DVB-S2 (Digital Video
Broadcasting - Satellite - Second Generation), which is then only de�ned by
di�erent Hs[9].
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nz = 4999

Fig. 3.3 � RA LDPC code's parity check matrix H (n = 2000, m = 1000, R =
1
2
), where Hs is pseudo-random with wr = 3, wc = 3, with 4999 ones

3.2 Algebraic construction

As it is shown in the previous section, generate parity check matrix H by pseudo-
random construction can be very tricky. It takes time to generate matrix, but
the main problem is their remake and storage. If you make H from pseudo-
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random construction, then you must save it, because there is not another way
to make it same again. Together with that there is also a problem with storage
of codes. We must store the whole random matrices or their compressed form,
as from Section 3.1, where we storage only indices of 1's. Although, that matrix
of indices can be really big for matrix H with n = 64800, m = 32400.

On the other hand, with parity check matrix made by algebraic construction
we gain an easy way to store and make matrix. Algebraic construction means
that we have some algorithm, which from inputs can make parity check matrix.
That algorithm, program code, can be and it is a lot of easier for storage than
random matrix. And with good algorithm we can have plenty of matrices H for
various inputs. For Quasi-cyclic code from subsection 3.2.1 we can gain many
codes only with choosing wr, wc and parameter for the size of matrix. Or matrix
with only few allowed con�guration, where you can choose rate r of code and
length of codeword n, like in construction from Subsection 3.2.2.

3.2.1 Quasi-cyclic code

This method was shown in [1, 5] and it is really easy to compute and store. The
method which makes quasi-cyclic (QC) LDPC codes is only repeating and cycle
shifting of predetermined matrix. In our case we will use matrix, which is only
cyclically shifted identity matrix, exactly

Jp×p ,



0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
0 0 0 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1
1 0 0 0 . . . 0 0


. (3.6)

Then this method made parity check matrix H from given wr, wc and chosen
p > (wc − 1)(wr − 1), which determine dimension of matrix J.

After all was given, we only count this matrix

H =


J0 J0 J0 · · · J0

J0 J1 J2 · · · Jwr−1

J0 J2 J4 · · · J2(wr−1)

...
...

...
. . .

...
J0 J(wc−1) J2(wc−1) · · · J(wr−1)(wc−1)

 , (3.7)

where l-th power of J represent cyclical shifting rows by l mod p positions to
the right, where J0 is identity matrix Ip×p.

Matrix H from (3.7) has exactly n = wr · p rows and m = wc · p columns.
Also in every row is exactly wr ones and exactly wc ones in every column. It
can be proofed that this construction guarantees no present of 4-cycles.



CHAPTER 3. TYPE OF CODES 31

0 10 20 30 40 50 60

0

5

10

15

20

25

30

35

40

45

nz = 192

Fig. 3.4 � Example of QC LDPC code's parity check matrix H, with wc = 4,
wr = 3, p = 16

Matrix from this method can be also used like base matrix Hs in repeat-
accumulate codes from Subsection 3.1.1.

The MATLAB code for encode is in A.6.4.1 on page 64.

3.2.2 AR4JA LDPC code

The second type of algebraic construction is type, where you only choose wanted
parameters, like rate, code length or source data length and rest, like wr, wc
is given by method. Good example of this type is AR4JA LDPC code from
Orange Book [2], which is invented for near-Earth and deep space applications.
This construction can make nine codes with di�erent rates r or source block
length k. Exactly values of supported values are in table 3.1.

Source block length k
Code block length n

rate r = 1/2 rate r = 2/3 rate r = 4/5
1024 2048 1536 1280
4096 8192 6144 5120
16384 32768 24576 20480

Tab. 3.1 � Codeblock length k for supported code rates r

Parity check matrix H is made by following matrices. For code with rate
r = 1/2 is

H1/2 =

0M 0M IM 0M IM ⊕Π1

IM IM 0M IM Π2 ⊕Π3 ⊕Π4

IM Π5 ⊕Π6 0M Π7 ⊕Π8 IM

 , (3.8)
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where IM and 0M are M ×M identity and zero matrices. Πk is permutation
matrix with ones in row i and column πk(i) for i ∈ {0, 1, ...,M − 1} and

πk(i) =
M

4
((θk + b4i/Mc) mod 4) + (φk(b4i/Mc ,M) + i) mod M

4 (3.9)

where functions θk and φk(j,M) are de�ned in Tables 3.3 and 3.4. Value of size
of submatrices M are from Tab. 3.2.

Source block length k
Submatrix size M

rate r = 1/2 rate r = 2/3 rate r = 4/5
1024 512 256 128
4096 2048 1024 512
16384 8192 4096 2048

Tab. 3.2 � Sizes of submatrix M for supported codes

For codes with rate r = 2/3 we have matrix

H2/3 =

 0M 0M
Π9 ⊕Π10 ⊕Π11 IM

IM Π12 ⊕Π13 ⊕Π14

∣∣∣∣∣∣ H1/2

 . (3.10)

And �nally for code with rate r = 4/5, which come from matrix for rate
r = 3/4, we have

H3/4 =

 0M 0M
Π15 ⊕Π16 ⊕Π17 IM

IM Π18 ⊕Π19 ⊕Π20

∣∣∣∣∣∣ H2/3



H4/5 =

 0M 0M
Π21 ⊕Π22 ⊕Π23 IM

IM Π24 ⊕Π25 ⊕Π26

∣∣∣∣∣∣ H3/4

 . (3.11)

Matrices constructed by this method are constructed bigger than is needed.
In Fig. 3.5 we have H for code with rate r = 4/5 and source length k = 4096.
That con�guration gives us code with length n = 5120 (from table 3.1), but
matrix is 1536×5632. From that we will use only columns 1 through 5120 from
matrix H , it means that columns 5121 through 5632 are not transmitted. That
corresponds that last M columns are unused (5632− 5120 = 512 = M). In Fig.
3.6 is really used part of matrix H.
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Fig. 3.5 � H from AR4JA LDPC code for r = 4/5, k = 4096
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Fig. 3.6 � Used part of H from AR4JA LDPC code for r = 4/5, k = 4096

φk(0,M) φk(1,M)
k θk M = 27...213 M = 27...213

1 3 1 59 16 160 108 226 1148 0 0 0 0 0 0 0
2 0 22 18 103 241 126 618 2032 27 32 53 182 375 767 1822
3 1 0 52 105 185 238 404 249 30 21 74 249 436 227 203
4 2 26 23 0 251 481 32 1807 28 36 45 65 350 247 882
5 2 0 11 50 209 96 912 485 7 30 47 70 260 284 1989
6 3 10 7 29 103 28 950 1044 1 29 0 141 84 370 957
7 0 5 22 115 90 59 534 717 8 44 59 237 318 482 1705
8 1 18 25 30 184 225 63 873 20 29 102 77 382 273 1083
9 0 3 27 92 248 323 971 364 26 39 25 55 169 886 1072
10 1 22 30 78 12 28 304 1926 24 14 3 12 213 634 354
11 2 3 43 70 111 386 409 1241 4 22 88 227 67 762 1942
12 0 8 14 66 66 305 708 1769 12 15 65 42 313 184 446
13 2 25 46 39 173 34 719 532 23 48 62 52 242 696 1456
14 3 25 62 84 42 510 176 768 15 55 68 243 188 413 1940
15 0 2 44 79 157 147 743 1138 15 39 91 179 1 854 1660
16 1 27 12 70 174 199 759 965 22 11 70 250 306 544 1661
17 2 7 38 29 104 347 674 141 31 1 115 247 397 864 587
18 0 7 47 32 144 391 958 1527 3 50 31 164 80 82 708
19 1 15 1 45 43 165 984 505 29 40 121 17 33 1009 1466
20 2 10 52 113 181 414 11 1312 21 62 45 31 7 437 433
21 0 4 61 86 250 97 413 1840 2 27 56 149 447 36 1345
22 1 19 10 1 202 158 925 709 5 38 54 105 336 562 867
23 2 7 55 42 68 86 687 1427 11 40 108 183 424 816 1551
24 1 9 7 118 177 168 752 989 26 15 14 153 134 452 2041
25 2 26 12 33 170 506 867 1925 9 11 30 177 152 290 1383
26 3 17 2 126 89 489 323 270 17 18 116 19 492 778 1790

Tab. 3.3 � Description of φk(0,M) and φk(1,M)

For systematic encoding we will make generating matrix G from parity check
matrix H. We will divide matrix H into two submatrix. To P which contains
last 3M columns of H and into Q, which contains �rst KM columns, where for
r = 1/2 is K = 2, for r = 2/3 is K = 4 and for r = 4/5 is K = 8. Exactly

H = [Q3M×KM | P3M×3M ] . (3.12)
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φk(2,M) φk(3,M)
k θk M = 27...213 M = 27...213

1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 12 46 8 35 219 254 318 13 44 35 162 312 285 1189
3 1 30 45 119 167 16 790 494 19 51 97 7 503 554 458
4 2 18 27 89 214 263 642 1467 14 12 112 31 388 809 460
5 2 10 48 31 84 415 248 757 15 15 64 164 48 185 1039
6 3 16 37 122 206 403 899 1085 20 12 93 11 7 49 1000
7 0 13 41 1 122 184 328 1630 17 4 99 237 185 101 1265
8 1 9 13 69 67 279 518 64 4 7 94 125 328 82 1223
9 0 7 9 92 147 198 477 689 4 2 103 133 254 898 874
10 1 15 49 47 54 307 404 1300 11 30 91 99 202 627 1292
11 2 16 36 11 23 432 698 148 17 53 3 105 285 154 1491
12 0 18 10 31 93 240 160 777 20 23 6 17 11 65 631
13 2 4 11 19 20 454 497 1431 8 29 39 97 168 81 464
14 3 23 18 66 197 294 100 659 22 37 113 91 127 823 461
15 0 5 54 49 46 479 518 352 19 42 92 211 8 50 844
16 1 3 40 81 162 289 92 1177 15 48 119 128 437 413 392
17 2 29 27 96 101 373 464 836 5 4 74 82 475 462 922
18 0 11 35 38 76 104 592 1572 21 10 73 115 85 175 256
19 1 4 25 83 78 141 198 348 17 18 116 248 419 715 1986
20 2 8 46 42 253 270 856 1040 9 56 31 62 459 537 19
21 0 2 24 58 124 439 235 779 20 9 127 26 468 722 266
22 1 11 33 24 143 333 134 476 18 11 98 140 209 37 471
23 2 11 18 25 63 339 542 191 31 23 23 121 311 488 1166
24 1 3 37 92 41 14 545 1393 13 8 38 12 211 179 1300
25 2 15 35 38 214 277 777 1752 2 7 18 41 510 430 1033
26 3 13 21 120 70 412 483 1627 18 24 62 249 320 264 1606

Tab. 3.4 � Description of φk(2,M) and φk(3,M)

After that we can compute
W = (P−1Q)T (3.13)

and then we can create generating matrix by

G =
[
IMK W

]
, (3.14)

where IMK is MK ×MK identity matrix and dense matrix W.
Example: In �gure 3.7 and 3.8 we can see di�erence between H and G for

code with r = 1/2, k = 4096. There H is really sparse with 30 720 ones from all
62 914 560 positions (dimension of matrix is 6144×10240). In matrix G we have
12 679 168 ones from all 41 943 040 positions (G has dimension 4096× 10240).
In �gures 3.9 and 3.10 are matrices without unused columns.
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Fig. 3.7 � Example of H from AR4JA LDPC code for r = 1/2, k = 4096

Fig. 3.8 � Example of G from AR4JA LDPC code for r = 1/2, k = 4096
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Fig. 3.9 � Example of used part of H from AR4JA LDPC code for r = 1/2,
k = 4096
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Fig. 3.10 � Example of used part of G from AR4JA LDPC code for r = 1/2,
k = 4096

Used parts of matrices for code r = 4/5, k = 1024 are in �gures 3.11 and
3.12 only for illustration. �
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Fig. 3.11 � Example of used part of H from AR4JA LDPC code for r = 4/5,
k = 1024
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Fig. 3.12 � Example of used part of G from AR4JA LDPC code for r = 4/5,
k = 1024
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3.3 Joint channel in two-way relay system

We normally take one data input and code them and send them over channel.
But Wübben shows in [14] that we can code two data inputs with one code and
send it over channel. Just we do not use one BPSK for modulation, but two
BPSK with di�erent fading coe�cients hA, hB .

Let us assume that we have two binary inputs bA, bB , both have k bits. We
will code both with the same LDPC code, which give us code words cA a cB .
Then we modulate code word cA with BPSK and gain channel symbols xA with
fading coe�cient hA, same with cB , which give us channel symbols xB with
fading coe�cient hB . Then we send simultaneously those xA and xB to relay
and we get

yR = hAxA + hBxB + nR, (3.15)

where nR is noise (AWGN) on relay. This is called Multiple access (MAC) stage
and it is illustrated in Fig. 3.13 a).

We received from channel observation xR, where xR corresponds modulated
relay codeword cR, which is XOR of cA, cB , so cR = cA⊕B = cA ⊕ cB . From
that we can estimate for sources A, B

yA = hAxA + nA (3.16)

yB = hBxB + nB , (3.17)

where nA, nB is noise. This Broadcast (BC) stage is shows in Fig. 3.13 b). Then
we can estimate the information b′R,A and b′R,B from yA, yB . After knowing one
source from Multiple access stage, we can gain b′B = b′R,A⊕bA, or b′A = b′R,B⊕bB ,
which is similar to c′A = c′R ⊕ cB or c′B = c′R ⊕ cA.

BA

R

BA

R

a) b)

x
A

x
B

x
R

h
A

h
B

h
A

h
B

y
R
=h

A
x
A
+h

B
x
B
+n

R

y
A
=h

A
x
R
+n

A
y
B
=h

B
x
R
+n

B

Fig. 3.13 � Connection of two sources with one relay

In Tab. 3.5 are relationships between codewords symbols cA, cB and their
modulation and then modulation for relay xR.

i cA cB cA⊕B cAB xA xB xR = xAB
0 0 0 0 0 1 1 hA + hB
1 1 0 1 1 -1 1 −hA + hB
2 0 1 1 D 1 -1 hA − hB
3 1 1 0 1+D -1 -1 −hA − hB

Tab. 3.5 � Relationship between code words cA,cB and xAB

Example: In �gure 3.14 we show example of constellation space observation
of sent symbol from relay xR and observation of received symbol yR. For this
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example we use hA = 1 for source A and hB = exp(j π2 ) for source B. We can
see in �gure that for cB = 0 we have xB(0) = j, so sent symbols are in upper
half of graph. Same for xB(1) = −j, where symbols are in lower part of graph.
It is similar with xA.

The MATLAB code for encode is in A.6.6.1 on page 69.
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Fig. 3.14 � Constellation space observation from channel with SNR = 0.8 dB,
with constellation point for cAcB

3.3.1 Separated channel decoding

As we can see in diagram in Fig. 3.15, the main point of Separated channel
decoding (SCD) is to separate decoding parallely for only one code extra. Input
to Sum-product algorithms are probabilities from likelihood function (1.20),
exactly

Pi {yR|xR(i)} =
1

C
Λ(i) (3.18)

for i ∈ {0, .., 3} from table 3.5 and C is constant, which guarantee
∑
i

Pi = 1.

Inputs to SPA for source A are

Pr {cA = 0|yR} = Pr {cAB = 0|yR}+ Pr {cAB = D|yR}
= P0 + P2 (3.19)

Pr {cA = 1|yR} = Pr {cAB = 1|yR}+ Pr {cAB = 1 +D|yR}
= P1 + P3, (3.20)

which are based on Tab. 3.5, where cA = 0 for cAB = 0, cAB = D. Also cA = 1
for cAB = 1 or cAB = 1 +D. This we can reduce it to LLR, with

lA = ln

(
Pr {cA = 0|yR}
Pr {cA = 1|yR}

)
= ln

(
P0 + P2

P1 + P3

)
. (3.21)
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Similar it is with source B, where we have

Pr {cB = 0|yR} = Pr {cAB = 0|yR}+ Pr {cAB = 1|yR}
= P0 + P1 (3.22)

Pr {cB = 1|yR} = Pr {cAB = D|yR}+ Pr {cAB = 1 +D|yR}
= P2 + P3, (3.23)

which give us

lB = ln

(
P0 + P1

P2 + P3

)
. (3.24)

y
R

APP

+

+
SPA  A

SPA  A
+

+

+

P
0

P
1

P
2

P
3

c‘
A

c‘
B

c‘
R
=c‘

A
+c‘

B

Fig. 3.15 � Block diagram of Separated channel decoding

Now we have all needed information for correction of received codewords.
We will put lA to Sum-product algorithm(Alg. 2.2) which give us corrected
c′A. Same with lB which give us c′B . After that, we gain codeword for relay
c′R = c′A ⊕ c′B .

The MATLAB code for it is in A.6.6.2 on page 69.

3.3.2 Joint channel decoding

If we want only get c′R, then we just want XOR from sources. We don't need
execute two SPA and then from their output codewords count their XOR. We
will count one SPA, which will directly give us c′R. In Fig. 3.16 is scheme of
Joint channel decoding (JCD). Inputs to SPA are

Pr {cA⊕B = 0|yR} = Pr {cAB = 0|yR}+ Pr {cAB = 1 +D|yR}
= P0 + P3 (3.25)

Pr {cA⊕B = 1|yR} = Pr {cAB = 1|yR}+ Pr {cAB = D|yR}
= P1 + P2, (3.26)

where Pi are from (3.18). LLR of that we gain from

lA⊕B = ln

(
P0 + P3

P1 + P2

)
. (3.27)
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That log-likelihood ratio is put to SPA, which give us c′A⊕B which corre-
sponds to c′R = c′A ⊕ c′B .

The MATLAB code for it is in A.6.6.3 on page 69.



Chapter 4

Analytic tools

In this chapter we would like to introduce two methods to analyze and compare
codes and decoding methods. All used methods are functions of signal-to-noise
ratio (SNR), which represent noise from channel, which is source of errors. With
this analysis we want to show how channel can be bad for receiving correct in-
formation. In this thesis we used two types of analysis - analysis from simulation
and analysis from matrix.

The analysis from simulation has really good results, because we get testing
results from real decoding for channel model. On the other hand we need very
much repeated simulation, ideally in�nite repetition, because we use model with
random noise and we do not get good statistic results from only one experiment.
We implement bit error test (section 4.1), which is good a example.

The analysis from matrix makes test just from properties of matrix without
simulation of real decoding. Our results are just only from structure of matrix
and so this analysis can only make some bounds or determine area for deeper
analysis. It is good, because it takes lower time than with simulations. In this
thesis we implement EXIT chart (section 4.2) from [13].

4.1 Bit error rate

This is a well know analytic tool which is used for testing constellation, error-
correction ability of codes or for everything, where we have bits which are af-
fected by errors.

For our purpose we will use bit error rate (BER) for examine error-correction
of LDPC codes for di�erent signal-to-noise ratio. The main idea of analysis
is easy - encode source data s, send them over AWGN channel with BPSK
modulation, decoding them and then compare it with s and count how many
errors left and divide it by all bits. This process will be repeated a few times
to get good statistic data for di�erent signal-to-noise ratio. We must repeat,
because we send them over AWGN channel, which is model of random noise, so
for one SNR we can have better or worse properties than are average for given
SNR. We can choose a number of repetition or number of errors, which we want
to reach for good results.

We can choose if we will making BER for all transmitted bits(with redun-
dant/parity bits) or only for information bits. We choose for this thesis BER

41
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for information bits, so value of BER corresponds probability of error in one bit
of decoded word. It is similar with the frame error rate (FER), which control
correctest of full frame(transmitted word) than only bit. It depends if we need
to receive all bits corrected or if we need almost corrected bits.

Algorithm 4.1 Bit error rate
INPUT: encoder, decoder, rep - number of repetition, SNR - range of examined
SNR

Step 1: Set i = 1.

Step 2: Set errors(i) = 0, counter = 1.

Step 3: Make random source word s with length k and encode it with encoder
into codeword c. Then modulate it with BPSK into x.

Step 4: Send x over AWGN channel with SNR(i) and get y = x+ n, where n
is noise.

Step 5: Demodulate y and correct and decode it with decoder into s′.

Step 6: Count errors(i) = errors(i) + (s − s′) mod 2, represent remaining
errors after decoding.

Step_7: If counter ≤ rep, then set counter = counter + 1 and go to Step 3.
Otherwise go to Step 8.

Step 8: Set BER(i) = errors(i)
k·rep .

Step 9: If SNR(i) isn't last, then set i = i + 1 and go to Step 2. Otherwise
Stop.

Example: In �gure 4.1 is BER for code for example from section 2.1.1.2,
where we used RA LDPC code with rate 0.5 (with pseudo-random Hs, where
whole H has m = 600, n = 1200, wr = 5, wc1 = 3 with vwc1 = 0.5 and wc2 = 2
with vwc2 = 0.5).

We compare three types of sum product algorithm decoders - LLR, probabil-
ity domain and hard decision with received message from channel without error
correction. All of them have maximum 30 iterations and we sent and decoded
250 messages. We sent it over AWGN channel with SNR from -5 dB to 6 dB,
with step 1/3 dB.

For soft decision decoding with LLR and probability domain we have same
results. LLR is only modi�ed method of probability domain and we expected
the same results. We can see that BER for decoded message with soft SPA is
same with transmitted symbols without correction to SNR = -3.66 dB. After
SNR = -3.66 dB soft SPA have rapidly better results than direct symbols from
channel. After SNR = 1 dB soft SPA decoded messages without remaining
errors. For SNR between -0.33 dB and 0.66 dB we have also BER = 0, but for
SNR = 0.66 we have BER = 1.33 · 10−5 and for SNR = 1 is BER = 6.66 · 10−6,
so we assume, that saver is use this code for SNR over 1 dB.

We also use SPA with hard decision, which shows that reduce soft informa-
tion to hard can injure decoding. To SNR = 0.66 we have worse BER after SPA
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hard decision than before. After SNR = 0.66 dB we have slowly better BER
after decoding than before decoding.

The MATLAB code of this example is in A.7.1 on page 70. �
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Fig. 4.1 � BER for code from example in section 2.1.1.2

4.2 Extrinsic information transfer chart

Another good tool to examine a code is making extrinsic information transfer
(EXIT) chart. It is show how two decoders exchange their information. In our
case of LDPC codes it exchanges between variable node decoder (VND) and
check node decoder (CND). To be exact, into variable node decoder coming
Ich - average channel information and Iav - average a priori information, where
Iav = Iec and from VND coming Iev - average extrinsic information. Into check
node decoder come in Iac - average a priori information, where Iac = Iev and
from CND is output message Iec - average extrinsic information. Figure 4.2
shows the scheme of decoders and exchange of information.

VND CND

I
ch

I
ev

I
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I
ec

I
av

Fig. 4.2 � Scheme of two decoders of LDPC codes for EXIT chart

This thesis uses the method intended for design of LDPC codes by Stephan
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ten Brink [13]. Another method is described in his other work [12]. But we can
use it also for analysis from given parity check matrix H. Just matrix H must
have regular weight of rows and can have irregular weight of columns. Also we
assume that code will be used for AWGN channel with soft decision with LLR.

EXIT chart is composed from curve of the Inner VND and curve from Outer
CND and curve of transferring information between both decoders, which in-
terpret whole decoder of code.

For curve of the variable node decoder we will come out from SPA LLR
decoder in subsection 2.1.2 on page 19, exactly from (2.14), which we will rewrite
like

Li,out = Lch +
∑
j 6=i

Lj,in. (4.1)

We used BPSK over AWGN channel with noise variance σ2
n. That will give is

modi�ed (2.11)

Lch = ln
p(y | x = +1)

p(y | x = −1)
=

2

σ2
n

y, (4.2)

from which we can get variance of Lch conditioned on x

σ2
ch =

4

σ2
n

. (4.3)

We get for compute EXIT function for regular LDPC with matrix H with weight
of columns wc

Iev(Iav, wc, SNR, σ
2
n) = J

(√
(wc − 1)[J−1(Iac)]2 + σ2

ch

)
, (4.4)

or for irregular-columns matrix H with size m × n, edge degrees wci, λwci
,

where i = 1, ...D, we get

Iev(Iav, SNR, σ
2
n) =

D∑
i=1

bi · Iev(Iac, wci, SNR, σ2
n), (4.5)

where
bi =

nλiwci

n
D∑
j=1

λjwcj

(4.6)

and
D∑
i=1

bi = 1. And J and J−1 are approximation described by

J(σ) ≈


aJ,1σ

3 + bJ,1σ
2 + cJ,1σ, 0 ≤ σ ≤ 1.6363

1− eaJ,2σ3+bJ,2σ
2+cJ,2σ+dJ,2 , 1.6363 < σ < 10

1, 10 ≤ σ
(4.7)

where

aJ,1 = −0.0421061, bJ,1 = 0.209252, cJ,1 = −0.00640081
aJ,2 = 0.00181491, bJ,2 = −0.142675, cJ,2 = −0.0822054, dJ,2 = 0.0549608.
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For inverse function J−1 we get

J−1(I) ≈

{
aσ,1I

2 + bσ,1I + cσ,1
√
I, 0 ≤ I ≤ 0.3646

−aσ.2 ln[bσ,2(1− I)]− cσ,2I, 0.3646 < I < 1
(4.8)

where
aσ,1 = 1.09542, bσ,1 = 0.214217, cσ,1 = 2.33727
aσ,2 = 0.706692, bσ,2 = 0.386013, cσ,2 = −1.75017.

Then we make curve of VND only with putting Iav ∈ 〈0, 1〉 into (4.4) or (4.5).
For EXIT curve of check node decoder it is similar. Again we come from

SPA LLR, exactly from (2.13)

Li,out = ln

1−
∏
j 6=i

1−eLj,in

1+eLj,in

1 +
∏
j 6=i

1−eLj,in

1+eLj,in

. (4.9)

After adjustments and approximations we get

Iec(Iac,wc) ≈ 1− J
(√
wc − 1 · J−1(1− IA)

)
. (4.10)

The curve of CND we again gain after inputting Iac ∈ 〈0, 1〉. CND is indepen-
dent on SNR of channel.

For curve of decoder we start with Iav = 0 and put it in (4.4) for regular
or in (4.5) for irregular matrix. We get from it Iev = Iac and put it into (4.10)
which give us Iec = Iav and so on.

Decoder path ends in place where curves of CND and VND cross. This
means that decoder did not reach right codeword. The number of stairs of
decoder path can respond to needed number of iterations of decoder.

The MATLAB code for EXIT chart is in A.7.2 on page 71.
Example: In �gure 4.3 we have EXIT chart for code from example from

section 2.1.1.2, where we used RA LDPC code with rate 0.5 (with pseudo-
random Hs, where whole H has m = 600, n = 1200, wr = 5, wc1 = 3 with
λwc1

= 0.601 and wc2 = 2 with λwc2
= 0.399).

We analyze SPA with LLR for SNR=[-5,-3,-1,1,3,5]. From the chart we can
see that below SNR = 1 dB we cannot reach right codewords and over it we
can have good decoding. This corresponds with results from BER analysis in
previous part. Just this analysis took few seconds and BER took few hours. �
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Fig. 4.3 � EXIT chart for code from example in section 2.1.1.2

4.2.1 Design tool

This method was intended for determine performance of code before parity-
check matrix H construction. Out implementation for analyzing can be used
for it. We only directly give values of length of code n, weight of row wr, which
must be regular and weight of columns wci and their degree distribution vwci

.
We get edge distribution for computation from degree distribution with

λi =
wcivwcin

mwr
. (4.11)

Rest of it is same like in previous part.
The MATLAB code for design with EXIT chart is in A.7.2.1 on page 73.



Chapter 5

Comparison of codes

We want to show that matrices with almost same properties but with di�erent
construction, size or degree distribution can a�ect better or worse performance.
Also we want to show the comparison between all three types of SPA.

5.1 r = 1/2, n = 1200

We compare the codes with rate r = 1/2 and codeblock length n = 1200, where
we have length of source data bits k = 600 and length of parity bits m = 600.

We tested RA LDPC codes, where we have di�erent construction of Hs, but
same rate r and codeblock length n. In �gure 5.1 we have comparison of three
codes. Code in column a) has regular Hsmade by pseudo-random construction
with wc = 3, wr = 3. This code was used in Examples in subsection 2.1.1.2
and 4.1. Next code in column b) has irregular-column Hs constructed also with
pseudo-random construction, but with degree distribution of columns v2 = 0.2,
v3 = 0.6 and v4 = 0.2. Last code in column c) have quasi-cyclic constructed
matrix Hs with wc = 3, wr = 3 and p = 200.

We made EXIT charts of them and BER test, with 250 repetition and de-
coders have 30 iterations for SNR from -5 dB to 6 dB, with step 1/3 dB. From
EXIT charts we can see that all codes have here almost same results, only
irregular code have little better performance.

Last part of �gure has BER tests. For pseudo-random constructions we have
almost same results. Regular code has BER = 0 for SNR > 1 dB and irregular
for SNR > 2 dB. But both have rapid decrease of BER for SNR larger -1,66
dB. With QC code we have BER = 0 after SNR = 3.66 dB. Interesting is that
the BER curve decrease here slowly and not so fast, like with pseudo-random
matrices.

It is show, that in this case, pseudo-random codes have better results.

5.2 r = 0.53, wc = 2, 3, 4

We made this example to show how dimension of matrix H (with length of
codeword) improve performance of code.

We made two parity check matrices H. Both are for RA LDPC and have
rate of code r = 0.53 and their Hshave wr = 4, wc ∈ {3, 4} with almost same

47
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Fig. 5.1 � Comparison of codes with r = 1/2 , n = 1200

degree distribution. For code with length of data bits k = 500 we have degree
distribution v3 = 0.52 and v4 = 0.48. For code with k = 5000 we have v3 = 0.5
and v4 = 0.5.

In �gure 5.2 we have again analysis of both codes. Illustration of matrices,
EXIT charts and BER tests for AWGN channel with SNR from -5 dB to 6 dB,
with step 1/3 dB. We analyze SPA decoders - with LLR, in probability domain
and with hard decision. Every decoder have maximal iteration equal to 30.

In section a) we have analysis for code with length of data bits k = 500 with
parity-check matrix with dimension m = 435 and n = 935. From EXIT chart
we know that code can be decoded without errors for AWGN channel with SNR
above 1 dB. But from BER test, with 250 repetition, we know that code works
great with soft decisions SPA decoders for AWGN with SNR > 0.33 dB. We
have similar results for hard decision SPA like in the previous example. It has
worse results than data directly from channel for SNR < 1 dB. After SNR = 1
dB hard decision has better results.

Column b) shows results for matrix H with k = 5000. Matrix has dimension
n = 9375, m = 4375. EXIT chart of this code is almost similar like with the
previous code. We can see that it should work with AWGN channel with SNR
> 1 dB. But from BER test, with 125 repetition, we can see that soft decision
SPA can correct words without error for SNR > - 0.66 dB. Hard decision SPA
have similar properties like with the second code.

Both BER test proved that code with long codeblock have better perfor-
mance than code with similar properties, but with shorter length. Soft SPA
decoder can decode codeword from code with n = 935 without error for AWGN
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channel with SNR > 0.33 dB, but from code with n = 9375 it works for SNR
> - 0.66 dB. That is di�erent 1 dB for ten times larger n.
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Fig. 5.2 � Comparison of codes with r = 0.53, wc = 2, 3, 4



Chapter 6

Conclusion

In the previous chapters we wanted to show what we learned about LDPC
codes. A large part of process of writing a thesis consists of making research
and reading books and papers. It was not easy to �nd good sources which
examine what we need to �nd. It is quite a popular topic these days, so there
are plenty of works dealing with it, but many of them are either useless for our
purposes or over our bachelor's knowledge.

We implemented many tools in MATLAB codes. Especially a big set of de-
coding tools with three variety of Sum-product algorithm. Then we implemented
a good and quite fast method for making pseudo-random parity-check matrices
H without 4-cycles. For better encoding we implemented repeat-accumulate
code, which expands LDPC codes. This method is also used with DVB-S2
LDPC codes. We also implemented two methods for algebraic construction of
matrix H. At last there are codes for BER test and for EXIT charts, which will
be used for determine qualities of codes. All codes are made by us and none of
them is copied.

We hope that this thesis will be used as an introduction into LDPC codes and
our MATLAB's codes will help with future works with digital communication.
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Appendix A

MATLAB source codes

A.1 Making factor graph from parity check ma-

trix

function LDPC_draw_FG(H)

%{

Draw FG from parity check matrix H

%}

[m,n]=size(H);

VN=[-(n-1):2:(n-1)]; % variable node

CN=[-(m-1):2:(m-1)]; % check node

figure

axis([-n n -6 6])

hold on;

plot(VN,5.*ones(n,1),'Marker','o','MarkerEdgeColor','red','MarkerFaceColor',

'none','MarkerSize',12,'LineStyle','none','LineWidth',1.2);

plot(CN,-5.*ones(m,1),'Marker','s','MarkerEdgeColor','blue','MarkerFaceColor',

'none','MarkerSize',12,'LineStyle','none','LineWidth',1.2);

set(gca,'XTick',[],'YTick',[]); % remove numbers

set(gca, 'Units', 'normalized', 'Position', [0,0,1,1]);

[ED(:,1),ED(:,2)]=find(H); % edges

for i=1:size(ED,1) % draw edges

plot([VN(ED(i,2)) CN(ED(i,1))],[5 -5],'black', 'LineWidth',.1);

end

legend('VN','CN', 'Edges', 'Location','SouthEast');

A.2 Finding 4-cycles of factor graph

function [free4]=LDPC_4cycle(H)
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%{

Finding 4 cycles of factor graph from parity-check matrix H

free4 - 1 - without 4-cycles

0 - with 4-cycle

%}

[m,n]=size(H);

free4=1; %index for controlling

for i=1:(m-1) % Control row by row

len_i=sum(H(i,:)); % number of 1's in i row

for j=(i+1):m

len_j=sum(H(j,:)); % number of 1's in i row

len_ij=len_i+len_j;

len_ij_sum=sum(mod(H(i,:)+H(j,:),2)); % number of 1's after i+j row

if ~((len_ij-len_ij_sum)/2==0 || (len_ij-len_ij_sum)/2==1)

% there is /2 because if there are same element,

then it will missing in both rows

disp(['Factor graph has 4-cycle between ', num2str(i),'-th and '

,num2str(j),'-th row.']);

free4=0;

end

end

end

if free4==1

disp('Factor graph is without 4-cycles');

end

A.3 Degree, edge distribution of H

function [R, wcd, wrd, wce, wre] = LDPC_H_analysis(H)

[m,n]=size(H);

R=(n-m)/n; % Rate

wc=sum(H,1); % weigth of every column

wr=sum(H,2)'; % weigth of every row

wcd=unique(wc); % edges from VN

wrd=unique(wr); % edges from CN

wcd(2,:)=histc(wc,wcd(1,:))./length(wc); % Degree distribution of VN

wrd(2,:)=histc(wr,wrd(1,:))./length(wr); % Degree distribution of CN

edg=sum(sum(H));

wce=unique(wc); % edges from VN

wre=unique(wr); % edges from CN

wce(2,:)=wce(1,:).*histc(wc,wce(1,:))./edg; % Degree of edge distrib. of VN

wre(2,:)=wre(1,:).*histc(wr,wre(1,:))./edg; % Degree of edge distrib. of CN

A.4 BPSK and AWGN
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function [y]=bpsk(x,h)

%{

BPSK (0 -> 1, 1 -> -1)

y - output

x - input

h - fading coefficients

%}

y=h.*ones(1,length(x));

y(x==1)=-h;

function [y,sigma2]=LDPC_AWGN(code, M, SNRdB, No)

%{

AWGN channel model

y - word with noise

sigma2 - Standard deviation^2

code - input word

M - number of constellation points

SNRdB - SNR in dB

No - noise power spectral density

%}

if isempty(No)

Es=1;

Eb=Es/log2(M);

SNR=10.^(SNRdB/10);

No=Eb/SNR; %standard deviation

end

N=sqrt(No/2)*(randn(1,length(code))+1i*randn(1,length(code)));

y=code+N;

sigma2=var(N);

function [p]=prob_awgn(x,S,sigma2)

%{

Give likelihood function (probability) for AWGN channel

p - output probability

x - bpsk output

S - constellation symbols for [0, 1, 2, 3, ...]

sigma2 - standart deviation of noise

%}

for i=1:length(S)

p(i,:)=exp(-((abs(x-S(i)).^2)/2/sigma2));

end

sump=repmat(1./sum(p),length(S) ,1);

p=p.*sump;
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A.5 Error-correction decoding

A.5.1 Sum-Product Algorithm

A.5.1.1 Soft decision - Probability

function [c, p, counter]=SPA_soft(x, H, iter)

%{

Soft Decision of sum product algorithm

c - decoded word (binary)

p - probability

counter - number of iteration

x - coded word (probability)

H - parity check matrix

iter - maximal iteration

%}

[m,n]=size(H);

counter=1;

q(:,:,1)=H.*repmat(x(1,:),m,1); % From VN to CN

q(:,:,2)=H.*repmat(x(2,:),m,1);

r=zeros(m,n,2); p=zeros(2,n);

while counter<=iter

% From VN to CN %

for j=1:m

ind=find(H(j,:));

k=0;

for i=ind

k=k+1;

r(j,i,1)=1/2+(1/2)*prod(1-2.*q(j,ind([1:(k-1) (k+1):length(ind)]),2));

r(j,i,2)=1-r(j,i,1);

end

end

% From CN to VN %

for j=1:n

ind=find(H(:,j));

k=0;

for i=ind'

k=k+1;

q(i,j,1)=x(1,j)*prod(r(ind([1:(k-1) (k+1):length(ind)]) , j , 1));

q(i,j,2)=x(2,j)*prod(r(ind([1:(k-1) (k+1):length(ind)]) , j , 2));

sum=q(i,j,1)+q(i,j,2);

q(i,j,1)=q(i,j,1)/sum;

q(i,j,2)=q(i,j,2)/sum;

end

end

% Soft decision of VN %

for j=1:n

ind=find(H(:,j));



APPENDIX A. MATLAB SOURCE CODES 55

for i=ind'

p(1,j)=x(1,j)*prod(r( ind, j , 1));

p(2,j)=x(2,j)*prod(r( ind, j , 2));

sum=p(1,j)+p(2,j);

p(1,j)=p(1,j)/sum;

p(2,j)=p(2,j)/sum;

end

end

c=round(p(2,:)); % binary code of VN

if mod(H*c',2)==0

break;

end

if counter==iter

disp('Reach maximal iteration without codeword');

else

counter=counter+1;

end

end

A.5.1.2 Soft decision - Log-likelihood ratio

function [c,l,counter]=SPA_llr(x, H, iter, ending)

%{

Soft Decision of sum product algorithm from LLR (log likelyhood ratio)

c - decoded word (binary)

l - LLR

counter - number of iteration

x - coded word LLR)

H - parity check matrix

iter - maximal iteration

ending - what is goal of SPA

- infin - end after reach LLR=+-infinity

- code - end after reach codeword

%}

[m,n]=size(H);

q=H.*repmat(x,m,1);

counter=1;

r=zeros(m,n);

l=zeros(1,n);

while counter<=iter

% From VN to CN %

for j=1:m

ind=find(H(j,:));

k=0;

for i=ind

k=k+1;

r(j,i)=log((1+prod(tanh(0.5.*q(j,ind([1:(k-1)

(k+1):length(ind)])))))./(1-prod(tanh(0.5.*
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q(j,ind([1:(k-1) (k+1):length(ind)]))))));

end

end

% From CN to VN %

for j=1:n

ind=find(H(:,j));

k=0;

for i=ind'

k=k+1;

q(i,j)=x(j)+sum(r(ind([1:(k-1) (k+1):length(ind)]) ,j));

end

end

% Soft decision of VN %

for j=1:n

ind=find(H(:,j));

for i=ind'

l(j)=x(j)+sum(r(ind,j));

end

end

% End of algorithm %

switch ending

case 'infin'

%%% End with infinity LLR %%%

if sum(isinf(abs(l)))==n % if all element of l is infinity

c=zeros(1,n);

c(l==Inf)=0;

% binary code of VN

c(l==-Inf)=1;

if mod(H*c',2)==0

break;

end

end

if counter==iter

c=ones(1,n);

c(l>0)=0;

if mod(H*c',2)==0

disp('Codeword without infinity LLR');

break;

else

disp('Reach maximal iteration');

break;

end

else

counter=counter+1;

end

case 'code'

%%% End with codeword from codebook %%%

c=ones(1,n);

c(l>0)=0;

if mod(H*c',2)==0
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break;

end

if counter==iter

disp('Reach maximal iteration');

break;

else

counter=counter+1;

end

end

end

A.5.1.3 Hard decision

function [c, counter]=SPA_hard(x, H, iter)

%{

Hard Decision sum-product algorithm

c - decoded word (binary)

counter - number of iteration

x - coded word (binary)

H - parity check matrix

iter - maximal iteration

%}

c=x;

counter=0;

if sum(mod(H*c',2))~=0 % if there is error

[m,n]=size(H);

Cin_or=H; % original matrix H

Cin_or(Cin_or==0)=NaN; % NaN is ignored by mode

while counter<iter

Cin=Cin_or;

CN=mod(H*c',2);

for i=1:m

if CN(i)==0

Cin(i,Cin(i,:)==1)=c(find(H(i,:)));

else

Cin(i,Cin(i,:)==1)=~c(find(H(i,:)));

end

end

c=mode([x;Cin]);

if mod(H*c',2)==0

break;

end

counter=counter+1;

if counter==iter

disp('Reach maximal iteration');

end

end

end
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A.5.2 Bit-�ip decoding

function [c,counter]=BITFLIP(x, H, iter)

%{

Bit flipping algorithm

c - decoded word / coded word

counter - end step

H - parity check matrix

iter - maximal iteration

%}

c=x;

counter=0;

while counter < iter

CN=mod(c*H',2);

if CN==0 % code from code book

break

end

M=H; % matrix with bad CN

for j=1:length(CN)

M(j,:)=CN(j).*M(j,:);

end

VNerr=sum(M); % sum of bad CN

flip=find(VNerr==max(VNerr)); c(flip)=mod(c(flip)+1,2);

counter=counter+1;

if counter==iter

disp('Reach maximal itteration');

end

end

A.5.3 Decoding framework

This function cover all decoding methods and make it easier to toggle between
them.

function [c,counter,soft]=LDPC_er_cor(H, x, iter, msg_type, decod_type, sigma2)

%{

Correction of errors from received message with factor graph from H

c - corrected word

counter - counter of iteration

soft - value of soft decision

H - parity-check matrix

x - received word

iter - maximal iteration

msg_type

- type of received word

- prob - probability of 0, 1

- llr - log likelyhood ratio

- bin - binary msg, hard decision
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- bpsk - raw data from awgn channel with bpsk modulation

decod_type - type of decoding

- hspa - hard decision SPA

- sspa - soft decision SPA

- llrspa_inf - LLR SPA, ended with infinity LLR or reach max iteration

- llrspa_code - LLR SPA, ended after finding code word

- bf - bit flopping

sigma2 - standart deviation of AWGN

%}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[m,n]=size(H); % m - number of CN, n - number of VN

switch msg_type

case 'prob'

%%%%%%%%%%%%%%%%%%%%%%%%% Probability %%%%%%%%%

switch decod_type

case 'bf'

%%%%%%%%% Bit flopping %%%%%%%%%

[c,counter]=BITFLIP(round(x(2,:)),H, iter);

case 'hspa'

%%%%%%%%% Hard Decision SPA %%%%%%%%%

[c,counter]=SPA_hard(round(x(2,:)),H, iter);

case 'sspa'

%%%%%%%%% Soft SPA %%%%%%%%%

[c, soft, counter]=SPA_soft(x, H, iter);

case 'llrspa_inf'

%%%%%%%%% Log likelyhood ration SPA, end inf %%%%%%%%%

l=log(x(1,:)./x(2,:));

[c, soft, counter]=SPA_llr(l, H, iter, 'infin');

case 'llrspa_code'

%%%%%%%%% Log likelyhood ration SPA, end code %%%%%%%%%

l=log(x(1,:)./x(2,:));

[c, soft, counter]=SPA_llr(l, H, iter, 'code');

end

case 'llr'

%%%%%%%%%%%%%%%%%%%%%%%%% Log Likely Hood message %%%%%%%%%

switch decod_type

case 'llrspa_inf'

%%%%%%%%% SPA for LLR, end inf %%%%%%%%%

[c, soft, counter]=SPA_llr(x, H, iter, 'infin');

case 'llrspa_code'

%%%%%%%%% SPA for LLR, end code %%%%%%%%%

[c, soft, counter]=SPA_llr(x, H, iter, 'code');

case 'hspa'

%%%%%%%%% Hard Decision SPA %%%%%%%%%

bin=ones(1,n);



APPENDIX A. MATLAB SOURCE CODES 60

bin(x>0)=0;

[c,counter]=SPA_hard(bin, H, iter);

end

case 'bin'

%%%%%%%%%%%%%%%%%%%%%%%%% Binnary message %%%%%%%%%

switch decod_type

case 'bf'

%%%%%%%%% Bit flopping %%%%%%%%%

[c,counter]=BITFLIP(x, H, iter);

case 'hspa'

%%%%%%%%% Hard Decision SPA %%%%%%%%%

[c,counter]=SPA_hard(x, H, iter);

end

case 'bpsk'

%%%%%%%%%%%%%%%%%%%%%%%%% BPSK message %%%%%%%%%

% BPSK: 0-> 1, 1 -> -1

p(1,:)=exp(-((abs(1-x).^2)/2/sigma2));

p(2,:)=exp(-((abs(-1-x).^2)/2/sigma2));

switch decod_type

case 'bf'

%%%%%%%%% Bit flopping %%%%%%%%%

sump=p(1,:)+p(2,:);

x=round(p(2,:)./sump);

[c,counter]=BITFLIP(x,H, iter);

case 'hspa'

%%%%%%%%% Hard Decision SPA %%%%%%%%%

sump=p(1,:)+p(2,:);

x=round(p(2,:)./sump);

[c,counter]=SPA_hard(x,H, iter);

case 'sspa'

%%%%%%%%% Soft SPA %%%%%%%%%

sump=p(1,:)+p(2,:);

p(1,:)=p(1,:)./sump;

p(2,:)=p(2,:)./sump;

[c, soft, counter]=SPA_soft(p, H, iter);

case 'llrspa_inf'

%%%%%%%%% Log likelyhood ration SPA, end inf %%%%%%%%%

l=log(p(1,:)./p(2,:));

[c, soft, counter]=SPA_llr(l, H, iter, 'infin');

case 'llrspa_code'

%%%%%%%%% Log likelyhood ration SPA, end code %%%%%%%%%

l=log(p(1,:)./p(2,:));

[c, soft, counter]=SPA_llr(l, H, iter, 'code');

end

end
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A.6 Parity-check matrix construction

A.6.1 Pseudo-random construction

function [FH]=LDPC_gen_ser_H(n,wc,wr)

%{

Function to make LDCP control matrix regular or irregular column H with

regular

wr (only position of 1 in every row) by make series and then mix it

wc - ones in column

wc[2 ; :] - wc(1,:) - weigth of ones, wc(2,:) - degree distribution

wr - ones in row

m - number of rows

n - number of columns

%}

if 1==size(wc,1) && 1==size(wc,2) % for regular H, with one element wc

m=n*wc/wr;

FH = repmat(1:n,wc,1); % Make k-times indexes from 1 to n and then

reshape it to right size

else %% for irregular H

wc=(sortrows(wc'))';

m=n*sum(wc(1,:).*wc(2,:))/wr;

if ~( m == floor(m))

m

error('Number of m (CN) is not integer')

end

wcn=wc; % wcn - count of column with wc(1,:)

for i=1:length(wc(1,:))-1

wcn(2,i)=round(wc(2,i)*n);

end

wcn(2,end)=n-sum(wcn(2,1:(end-1)));

col=randperm(n);

FH=[];

j=1;

for i=1:length(wcn(1,:))

FH = [FH repmat(col(j:j+wcn(2,i)-1),1,wcn(1,i))];

% Make k-times indexes from 1 to n and then reshape it to right size

j=j+wcn(2,i);

end

end

FH = reshape(FH,m,wr);

a=1;

while a<=m % for rows

go=1;

cycle_help=0; % Help to endless cycles

while go==1

cycle_help=cycle_help+0.2;

vec = randperm(size(FH(a:m,:),1)*size(FH(a:m,:),2)); % Vector for

permutatiton

i2=1;

FH2=zeros(m-a+1, wr);
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FH=FH'; % transposition for right reading by FH(1), FH(2), ...

for i=(1+(a-1)*wr):(m*wr)

FH2(vec(i2))=FH(i); % This shake elements

i2=i2+1;

end

FH=FH';

FH(a:m,:) = FH2; % This give shaked matrix to target matrix

go_if=1;

if length(unique(FH(a,:)))==length(FH(a,:))

% Control that there is only unique indexes in every row

if a==1

go=0;

end

for i=1:(a-1) % Eliminate 4 cycles

len=length([FH(i,:) FH(a,:)]);

len_un=length(unique([FH(i,:) FH(a,:)]));

if ~(len_un<=len && len_un>=(len-1))

% Can be only one same index in every row

go_if=0;

break;

end

end

if go_if==1

go=0;

end

end

if cycle_help>=ceil(0.1*m)

% If there is loop, this will return to previous rows and do it again

a=a-1;

cycle_help=0;

end

end

a=a+1;

end

FH=sort(FH,2);

A.6.2 Repeat-accumulate code

function [H]=LDPC_gen_RA_H(Hs)

%{

Generate repeat accumulate parity check matrix H

m - number of parity bits

Hs - base LDPC code

%}

[m,~]=size(Hs);

Hp=eye(m)+diag(ones(m-1,1),-1);

H=[Hs Hp];
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For better parity check matrix H without any 4-cycles is good to add into
code A.6.1 condition, which eliminate any same elements in two near rows and
then here is not any 4-cycles with elements from Hp.

...

if length(unique([FH(a-1,:) FH(a,:)]))~=2*wr % Elimate 4 cycles with Hp

go_if=0;

else

for i=1:(a-2) % Eliminate 4 cycles in random matrix

len_un=length(unique([FH(i,:) FH(a,:)]));

if ~(len_un<=2*wr && len_un>=2*wr-1)

% Can be only one same index in every row

go_if=0;

break;

end

end

end

...

function [c]=LDPC_encod_RA(d,H)

%{

Encode message d (length n-m) to code c with RA LDPC code

c - coded message

d - data message

H - RA LDPC parity check matrix

%}

[m,n]=size(H); % m - parity bit, n - lenght of code

k=n-m;

Hs=H(:,1:k);

v=mod(Hs*d',2);

p(1)=v(1);

for i=2:m

p(i)=mod(p(i-1)+v(i),2);

end

c=[d p];

A.6.3 Conversion between indices and binary matrix

function [H]=LDPC_IndToMat(FH)

%{

Convert matrix with indices to matrix with ones

FH - matrix with indices

H - normal matrix with ones

%}

m=size(FH,1);
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n=max(max(FH));

H=zeros(m,n);

for i=1:m

for j=1:size(FH,2)

if FH(i,j)~=0

%For irregular matrix, where are zeros in FH for empty elements

H(i,FH(i,j))=1;

end

end

end

function [FH]=LDPC_MatToInd(H)

%{

Convert matrix with ones to matrix with indices

FH - matrix with indices

H - normal matrix with ones

%}

wr=max(sum(H,2));

FH=zeros(size(H,1),wr);

for i=1:size(H,1)

FH(i,:)=find(H(i,:));

end

A.6.4 Algebraic construction

A.6.4.1 Quasi-cyclic codes

function [H]=LDPC_gen_QC_H(wc,wr,r)

%{

Generate H for LDPC by quasi-cycle

wc - weight of column

wr - weight of row

r - number, which will be added to p=(wc-1)*(wr-1)+r, for p>(1-j)*(1-k)

%}

p=(wc-1)*(wr-1)+r; % p>(1-j)*(1-k)

J=eye(p);

J=circshift(J,-1);

H=[];

for i=0:(wc-1)

H2=[];

for j=0:(wr-1)

H2=[H2 J^(i*j)];

end

H=mod([H;H2],2);

end
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A.6.5 AR4JA LDPC code

function [Hused,H] = LDPC_gen_AR4JA_H (r, k)

%{

Parity check matrix from AR4JA

Hused - used part of H

r - rate = [1/2, 2/3, 4/5]

k - block length = [1024, 4096, 16384]

M - submatrix size = [128, 256, 512, 1024, 2048, 4196, 8192]

%}

M=value_M(k,r);

switch r

case 1/2

H=[zeros(M) zeros(M) eye(M) zeros(M) mod(eye(M)+permM(1,M),2);

eye(M) eye(M) zeros(M) eye(M) mod(permM(2,M)+permM(3,M)+permM(4,M),2);

eye(M) mod(permM(5,M)+permM(6,M),2) zeros(M) mod(permM(7,M)+permM(8,M),2)

eye(M)];

case 2/3

H=[zeros(M) zeros(M) zeros(M) zeros(M) eye(M) zeros(M) mod(eye(M)+permM(1,M),2);

mod(permM(9,M)+permM(10,M)+permM(11,M),2) eye(M) eye(M) eye(M)

zeros(M) eye(M) mod(permM(2,M)+permM(3,M)+permM(4,M),2);

eye(M) mod(permM(12,M)+permM(13,M)+permM(14,M),2) eye(M)

mod(permM(5,M)+permM(6,M),2) zeros(M) mod(permM(7,M)+permM(8,M),2) eye(M)];

case 4/5

H=[zeros(M) zeros(M) zeros(M) zeros(M) zeros(M) zeros(M) zeros(M) zeros(M)

eye(M) zeros(M) mod(eye(M)+permM(1,M),2);

mod(permM(21,M)+permM(22,M)+permM(23,M),2) eye(M)

mod(permM(15,M)+permM(16,M)+permM(17,M),2) eye(M)

mod(permM(9,M)+permM(10,M)+permM(11,M),2) eye(M) eye(M) eye(M)

zeros(M) eye(M) mod(permM(2,M)+permM(3,M)+permM(4,M),2);

eye(M) mod(permM(24,M)+permM(25,M)+permM(26,M),2) eye(M)

mod(permM(18,M)+permM(19,M)+permM(20,M),2) eye(M)

mod(permM(12,M)+permM(13,M)+permM(14,M),2) eye(M)

mod(permM(5,M)+permM(6,M),2) zeros(M)

mod(permM(7,M)+permM(8,M),2) eye(M)];

end

Hused=H(:,1:(end-M));

function [x] = value_M (k,r)

tab = [512 256 128; 2048 1024 512; 8192 4096 2048];

if k==1024, i=1; end

if k==4096, i=2; end

if k==16384, i=3; end

if r==1/2, j=1; end

if r==2/3, j=2; end

if r==4/5, j=3; end

x=tab(i,j);

function [P] = permM (k,M)

P=zeros(M,M);

for i = 0:(M-1)
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P(i+1,pi_k(M,i,k)+1)=1;

end

function [x] = pi_k (M, i, k)

x=M/4*(mod(theta(k)+floor(4*i/M),4))+mod(fi(k,floor(4*i/M),M)+i,M/4);

function x=theta(k)

% tab - table of values

tab = [3 0 1 2 2 3 0 1 0 1 2 0 2 3 0 1 2 0 1 2 0 1 2 1 2 3];

x=tab(k);

function x=fi(k,i,M)

%{

fi_k(i=0..3, M)

i=floor(4*i/M)

M = [128, 256, 512, 1024, 2048 4196, 8192];

%}

switch i

case 0

tab = [1 59 16 160 108 226 1148;

22 18 103 241 126 618 2032;

0 52 105 185 238 404 249;

26 23 0 251 481 32 1807;

0 11 50 209 96 912 485;

10 7 29 103 28 950 1044;

5 22 115 90 59 534 717;

18 25 30 184 225 63 873;

3 27 92 248 323 971 364;

22 30 78 12 28 304 1926;

3 43 70 111 386 409 1241;

8 14 66 66 305 708 1769;

25 46 39 173 34 719 532;

25 62 84 42 510 176 768;

2 44 79 157 147 743 1138;

27 12 70 174 199 759 965;

7 38 29 104 347 674 141;

7 47 32 144 391 958 1527;

15 1 45 43 165 984 505;

10 52 113 181 414 11 1312;

4 61 86 250 97 413 1840;

19 10 1 202 158 925 709;

7 55 42 68 86 687 1427;

9 7 118 177 168 752 989;

26 12 33 170 506 867 1925;

17 2 126 89 489 323 270];

case 1

tab = [0 0 0 0 0 0 0;

27 32 53 182 375 767 1822;

30 21 74 249 436 227 203;

28 36 45 65 350 247 882;

7 30 47 70 260 284 1989;

1 29 0 141 84 370 957;

8 44 59 237 318 482 1705;
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20 29 102 77 382 273 1083;

26 39 25 55 169 886 1072;

24 14 3 12 213 634 354;

4 22 88 227 67 762 1942;

12 15 65 42 313 184 446;

23 48 62 52 242 696 1456;

15 55 68 243 188 413 1940;

15 39 91 179 1 854 1660;

22 11 70 250 306 544 1661;

31 1 115 247 397 864 587;

3 50 31 164 80 82 708;

29 40 121 17 33 1009 1466;

21 62 45 31 7 437 433;

2 27 56 149 447 36 1345;

5 38 54 105 336 562 867;

11 40 108 183 424 816 1551;

26 15 14 153 134 452 2041;

9 11 30 177 152 290 1383;

17 18 116 19 492 778 1790];

case 2

tab = [0 0 0 0 0 0 0;

12 46 8 35 219 254 318;

30 45 119 167 16 790 494;

18 27 89 214 263 642 1467;

10 48 31 84 415 248 757;

16 37 122 206 403 899 1085;

13 41 1 122 184 328 1630;

9 13 69 67 279 518 64;

7 9 92 147 198 477 689;

15 49 47 54 307 404 1300;

16 36 11 23 432 698 148;

18 10 31 93 240 160 777;

4 11 19 20 454 497 1431;

23 18 66 197 294 100 659;

5 54 49 46 479 518 352;

3 40 81 162 289 92 1177;

29 27 96 101 373 464 836;

11 35 38 76 104 592 1572;

4 25 83 78 141 198 348;

8 46 42 253 270 856 1040;

2 24 58 124 439 235 779;

11 33 24 143 333 134 476;

11 18 25 63 339 542 191;

3 37 92 41 14 545 1393;

15 35 38 214 277 777 1752;

13 21 120 70 412 483 1627];

case 3

tab = [0 0 0 0 0 0 0;

13 44 35 162 312 285 1189;

19 51 97 7 503 554 458;

14 12 112 31 388 809 460;

15 15 64 164 48 185 1039;

20 12 93 11 7 49 1000;

17 4 99 237 185 101 1265;
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4 7 94 125 328 82 1223;

4 2 103 133 254 898 874;

11 30 91 99 202 627 1292;

17 53 3 105 285 154 1491;

20 23 6 17 11 65 631;

8 29 39 97 168 81 464;

22 37 113 91 127 823 461;

19 42 92 211 8 50 844;

15 48 119 128 437 413 392;

5 4 74 82 475 462 922;

21 10 73 115 85 175 256;

17 18 116 248 419 715 1986;

9 56 31 62 459 537 19;

20 9 127 26 468 722 266;

18 11 98 140 209 37 471;

31 23 23 121 311 488 1166;

13 8 38 12 211 179 1300;

2 7 18 41 510 430 1033;

18 24 62 249 320 264 1606];

end

x=tab(k,log2(M)-6);

function [Gused,G] = LDPC_gen_AR4JA_G (H,r,k)

%{

Generate generating matrix G from AR4JA

Gused - used part of G

H - Parity check matrix

r - rate = [1/2, 2/3, 4/5]

k - block length = [1024, 4096, 16384]

M - submatrix size = [128,256,512,1024,2048,4196,8192]

%}

if r==1/2, K=2; % K/(K+2)

elseif r==2/3, K=4;

elseif r==4/5, K=8;

end

M=value_M(k,r);

P=gf(H(:,end-(3*M-1):end));

Pinv=inv(P);

Pinv=double(Pinv.x);

Q=H(:,1:K*M);

W=(mod(Pinv*Q,2))';

G=[eye(M*K) W];

Gused=G(:,1:M*(K+2));

function [x] = value_M (k,r)

tab = [512 256 128; 2048 1024 512; 8192 4096 2048];

if k==1024, i=1; end

if k==4096, i=2; end

if k==16384, i=3; end

if r==1/2, j=1; end

if r==2/3, j=2; end
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if r==4/5, j=3; end

x=tab(i,j);

A.6.6 Joint channel in two-way relay system

A.6.6.1 Joint channel encoding

function [y]=JC_encode(Ca, ha, Cb, hb)

%{

Joint channel encoding

Ca - code a

Cb - code b

ha - fading coefficients for a

hb - fading coefficients for b

%}

y=bpsk(Ca,ha)+bpsk(Cb,hb);

A.6.6.2 Separated channel decoding

function [Cr, Ca, Cb] = SC_Decode(y , ha, hb, H, sigma2, iter)

%{

Separated Channel Decoding

Ca, Cb, Cr - output codewords for a,b,r

y - input

ha, hb - fading coefficients for a, b

sigma2 - standart deviation of noice

iter - maximal iteration

%}

S = [ha+hb; -ha+hb; ha-hb; -ha-hb]; % [Ca Cb] = [0 0; 1 0; 0 1; 1 1]

p=prob_awgn(y,S,sigma2);

Pa=[p(1,:)+p(3,:);p(2,:)+p(4,:)];

la=log(Pa(1,:)./Pa(2,:));

Pb=[p(1,:)+p(2,:);p(3,:)+p(4,:)];

lb=log(Pb(1,:)./Pb(2,:));

Ca=LDPC_er_cor(H,la, iter,'llr','llrspa_code', sigma2);

Cb=LDPC_er_cor(H,lb, iter,'llr','llrspa_code', sigma2);

Cr=mod(Ca+Cb,2);

A.6.6.3 Joint channel decoding
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function [Cr] = JC_Decode(y , ha, hb, H, sigma2, iter)

%{

Joint Channel Decoding

Ca, Cb, Cr - output codewords for a,b,r

y - input ha, hb - fading coefficients for a, b

sigma2 - standart deviation of noice

iter - maximal iteration

%}

S = [ha+hb; -ha+hb; ha-hb; -ha-hb]; % [Ca Cb] = [0 0; 1 0; 0 1; 1 1]

p=prob_awgn(y,S,sigma2);

P=[p(1,:)+p(4,:);p(2,:)+p(3,:)];

l=log(P(1,:)./P(2,:));

Cr=LDPC_er_cor(H,l, iter,'llr','llrspa_code', sigma2);

A.7 Analytic tool

A.7.1 Example of bit error rate

k=600; wc=3; wr=3; iter=30; % maximal iteration for decoder

rep=250; % repetition

SNR=[-5:1/3:6];

H=LDPC_gen_stair_H(k,wc,wr);

[m,n]=size(H);

uncod=randi([0 1],rep,k);

cod=[];

for i=1:rep

cod(i,:)=LDPC_encod_RA(uncod(i,:),H); % codeword

cod_tr(i,:)=bpsk(cod(i,:),1);

end

sum_er_channel=nan(rep,length(SNR));

sum_er_de_llr=nan(rep,length(SNR));

sum_er_de_prob=nan(rep,length(SNR));

sum_er_de_hard=nan(rep,length(SNR));

parfor i=1:length(SNR)

for j=1:rep

[x,sigma2]=LDPC_AWGN(cod_tr(j,:), 2, SNR(i),[]);

p0=exp(-((abs(1-x).^2)/2/sigma2));

p1=exp(-((abs(-1-x).^2)/2/sigma2));

l=log(p0./p1);

trans=ones(1,n);

trans(l>0)=0;

sum_er_channel(j,i)=sum(mod(uncod(j,:)-LDPC_decod_sys(trans,k),2));

decod_llr=SPA_llr(l, H, iter, 'code');

sum_er_de_llr(j,i)=sum(mod(uncod(j,:)-LDPC_decod_sys(decod_llr,k),2));

sump=p0+p1;

x=round(p1./sump);

decod_hard=SPA_hard(x,H, iter);

sum_er_de_hard(j,i)=sum(mod(uncod(j,:)-LDPC_decod_sys(decod_hard,k),2));
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p0=p0./sump;

p1=p1./sump;

decod_prob=SPA_soft([p0;p1], H, iter);

sum_er_de_prob(j,i)=sum(mod(uncod(j,:)-LDPC_decod_sys(decod_prob,k),2));

end

end

% count error on one bit

sum_er(1,:)=sum(sum_er_channel,1)./(k*rep);

sum_er(2,:)=sum(sum_er_de_llr,1)./(k*rep);

sum_er(3,:)=sum(sum_er_de_prob,1)./(k*rep);

sum_er(4,:)=sum(sum_er_de_hard,1)./(k*rep);

figure(11)

hold on;

plot(SNR,sum_er(1,:),'bx-');

plot(SNR,sum_er(2,:),'ro-');

plot(SNR,sum_er(3,:),'g+-');

plot(SNR,sum_er(4,:),'ks-');

legend('From channel', 'SPA - LLR ', 'SPA - Prob.', 'SPA - Hard');

set(gca,'YScale','log');

ylabel('Bit error rate');

xlabel('SNR (dB)');

A.7.2 EXIT chart

function EXIT_chart_multi(H,SNRdB)

%{

Make EXIT chart for many SNR

Only for regular wr, that mean only one wc for every CN

%}

%%%%%%%%%% Start - info from H

[m,n]=size(H);

R=(n-m)/n;

wc=sum(H,1); % weigth of every column

wr=sum(H,2)'; % weigth of every row

edg=sum(sum(H));

dvi=unique(wc); % edges from VN

dci=unique(wr); % edges from CN

dvi(2,:)=dvi(1,:).*histc(wc,dvi(1,:))./edg; % Degree distribution of VN

dci(2,:)=dci(1,:).*histc(wr,dci(1,:))./edg; % Degree distribution of CN

dc=ceil(sum(dci(1,:).*dci(2,:))); % degree of CN

dv=sum(dvi(1,:).*dvi(2,:)); % degree of VN

b=(n.*dvi(1,:).*dvi(2,:))/(n*dv); % b for dv (VND)

%%%%%%%%%% EXIT Curves

SNRdB=sort(SNRdB,'descend');

steps=[0.0001:(0.9999-0.0001)/49:0.9999];

nsteps=length(steps);

IecIav=zeros(2,nsteps);
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IevIac=zeros(2,nsteps);

%%%%% Graph

figure

hold on;

axis([0 1 0 1]);

xlabel('I_{EC} I_{AV}');

ylabel('I_{EV} I_{AC}');

set(gca,'XTick',[0:0.2:1]);

set(gca,'YTick',[0:0.2:1]);

title({['EXIT chart, R = ' num2str(R,2) ',

  wr = ' num2str(dc) ', wc = ' num2str(dvi(1,:))] ;

['SNR = [' num2str(SNRdB) '] dB']});

jsnr=1;

for iSNRdB=SNRdB

[y,sigma2]=LDPC_AWGN(ones(1,n),2,iSNRdB, []); % BPSK 1 -> WORD 0

sigma2ch=4/sigma2;

j=0;

for i=steps

j=j+1;

IevIac(1,j)=i;

IevIac(2,j)=IeVNDdvi(b,IevIac(1,j),dvi,sigma2ch);

if jsnr==1 % CND is indenpendent of AWGN, it same everytime

IecIav(1,j)=i;

IecIav(2,j)=IeCND(IecIav(1,j),dc);

end

end

%%%%% Decoder path

j=1;

decoder=[steps(1);steps(1)];

breaker=0;

while decoder(1,end)<=0.99999 % For almost 1 (0.999999)

j=j+1;

decoder(:,j)=[decoder(1,j-1);

IeVNDdvi(b,decoder(1,j-1),dvi,sigma2ch)];

if decoder(2,end)>=0.99999

break;

end

j=j+1;

decoder(:,j)=[IeCND(decoder(2,j-1),dc);decoder(2,j-1)];

if decoder(:,j)==decoder(:,j-2)

breaker=breaker+1;

else

breaker=0;

end

if breaker==50

break;

end

end

%%%%% Graph

plot(decoder(1,:),decoder(2,:), 'k-'); % Path of Decoder

plot(IevIac(1,:),IevIac(2,:), ':' ); % From y

if jsnr==1

plot(IecIav(2,:),IecIav(1,:), 'r--'); % From x

legend('Decoder','VND','CND','Location','SouthEast');
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end

jsnr=jsnr+1;

end

hold off;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [I]=IeVND(IA,dv,sigma2ch)

I=J(sqrt((dv-1)*(inv_J(IA))^2+sigma2ch));

function [I]=IeVNDdvi(b,IA,dvi,sigma2ch)

I=0;

for i=1:length(b)

I=I+b(i)*IeVND(IA,dvi(1,i),sigma2ch);

end

function [I]=IeCND(IA,dc)

I=1-J(sqrt(dc-1)*inv_J(1-IA));

function [I]=IaCND(IE,dc)

I=1-J(inv_J(1-IE)/sqrt(dc-1));

function [I]=J(sigma)

if 0<=sigma && sigma<=1.6363

I=-0.0421061*sigma^3+0.209252*sigma^2-0.00640081*sigma;

elseif 1.6363<sigma && sigma<10

I=1-exp(0.00181491*sigma^3-0.142675*sigma^2-0.0822054*sigma+0.0549608);

elseif sigma>10

I=1;

end

function [sig]=inv_J(I)

if 0<=I && I<=0.3646

sig=1.09542*I^2+0.214217*I+2.337727*sqrt(I);

elseif 0.3646<I && I<1

sig=-0.706692*log(0.386013*(1-I))+1.75017*I;

end

sig=real(sig);

A.7.2.1 Design with EXIT chart

function EXIT_chart_design(n,wc,wr,SNRdB)

%{

Make EXIT chart for many SNR

Only for regular wr, that mean only one wc for every CN

wc[2 ; :] - ones in column, irregular columns

wc(1,:) - weigth of ones,

wc(2,:) - degree distribution

wc - ones in column, regular columns

wr - ones in row

n - number of columns
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%}

%%%%%%%%%% Start - parameters

if 1==size(wc,1) && 1==size(wc,2) % for regular H, with one element wc

m=n*wc/wr;

else %% for irregular H

m=n*sum(wc(1,:).*wc(2,:))/wr;

end

if ~( m == floor(m))

error(['Number of m (CN) is not integer. m = ',num2str(m)])

end

R=(n-m)/n;

edg=m*wr;

dvi(1,:)=wc(1,:); % edges from VN

dvi(2,:)=wc(1,:).*wc(2,:).*n./edg; % Edge distribution of VN

dc=wr; % degree of CN

dv=sum(dvi(1,:).*dvi(2,:)); % degree of VN

b=(n.*dvi(1,:).*dvi(2,:))/(n*dv); % b for dv (VND)

%%%%%%%%%% EXIT Curves

...

Rest of code is same like in previous part.
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In this folder is our thesis in version for print and for computer.
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