
Bachelor’s thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Mobile Application for
Recognition of
Japanese Writing System

Jan Zdeněk

Program: Open Informatics
Field: Computer and Information Science

May 2014
Supervisor: prof. Ing. Pavel Zahradník, CSc.

● ●

2

Acknowledgement

First of all, I would like to express my gratitude to my supervisor, prof. Ing. Pavel Zahradník,
CSc., for giving me the opportunity to work on this project. I appreciate his guidance and
comments on my work and I would like to thank him for giving me the freedom to explore on
my own.

I would like to acknowledge the help of my friend Jakub Černý who gave me his opinion on
the thesis and provided me with helpful comments.

Finally, I want to thank my parents for their love, encouragement and constant support
throughout my studies.

i

Declaration / Prohlášení

I declare that I worked out the presented thesis independently and I quoted all used sources of
information in accord with Methodical instructions about ethical principles for writing academic
thesis.

In Prague, May 23, 2014 ..
Jan Zdeněk

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité
informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne, 23. května 2014 ..
Jan Zdeněk

ii

Abstract / Abstrakt

The objective of this work was to implement and compare various methods which can be
used for optical character recognition (OCR) of characters used in the Japanese language and
create a mobile application which could recognize characters in an image captured by the camera
of a device and present the user with a translation of the words into English.

The engine for recognition has been trained on a database with 2,908 unique characters.
Using the moment shape normalization, the Histogram of Oriented Gradients for feature ex-
traction, and quadratic discriminant function for classification, recognition rate of 99.9% has
been achieved on isolated characters in standard fonts used in print publications and the engine
outperformed some of the free OCR engines for Japanese.

An initial alpha version of a mobile application for Japanese OCR for Android operating
system has been created and the engine with optimal results has been successfully implemented
therein. The author intends to continue the development of the application and expand the
range of its possible use. The OCR engine could also be used in other applications requiring
Japanese OCR.

Keywords: Pattern Recognition; OCR

Cílem práce bylo implementovat a otestovat různé metody použitelné pro optické rozpozná-
vání znaků (OCR) používaných v japonštině a vytvořit mobilní aplikaci, která bude rozpoznávat
znaky v obraze zachyceném fotoaparátem zařízení a poskytne uživateli překlad textu do anglič-
tiny.

Systém pro rozpoznávání byl natrénován na databázi obsahující 2908 unikátních znaků. Za
použití momentové normalizace pro normalizaci tvaru znaku, histogramu orientovaných gra-
dientů pro extrakci příznaků a kvadratické diskriminační funkce pro klasifikaci bylo dosaženo
úspěšnosti rozpoznání 99,9% na izolovaných znacích ve standardním fontu používaném v tiště-
ných publikacích. Systém byl úspěšnější než některé existující volně šířené systémy pro OCR
japonštiny.

Byla vytvořena počáteční alfa verze aplikace pro operační systém Android a úspěšně v něm
byla implementována verze systému dosahující nejlepších výsledků. Autor chce nadále pokračovat
ve vývoji aplikace a rozšířit spektrum její použitelnosti. OCR systém aplikace by mohl bý použit
i v dalších aplikacích vyžadujících OCR japonštiny.

Klíčová slova: Rozpoznávání; optické rozpoznávání znaků

iii

Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 State of the Art and the Goal . 1
1.2 Related Work . 3
1.3 Japanese Writing System . 4
1.4 Thesis Structure . 6

2 Dataset Generation 7
2.1 Supported Characters . 7
2.2 Character Image Generation . 8

3 Preprocessing and Feature Extraction 9
3.1 Grayscale Normalization . 9
3.2 Shape Normalization . 9

3.2.1 Aspect Ratio Adaptive Normalization . 10
3.2.2 Linear Normalization . 10
3.2.3 Moment Normalization . 11
3.2.4 Bi-moment Normalization . 13
3.2.5 Smoothing . 14

3.3 Feature Extraction . 15
3.3.1 Zonal Line Density Method . 16
3.3.2 Histogram of Oriented Gradients in Local Regions 16

4 Learning and Classification 19
4.1 Dimensionality Reduction . 19

4.1.1 Principal Component Analysis . 19
4.1.2 Linear Discriminant Analysis . 20

4.2 Classification Methods . 21
4.2.1 k-Nearest Neighbors . 22
4.2.2 Linear Discriminant Function . 23
4.2.3 Quadratic Discriminant Function . 24

4.3 Results . 24

iv

Contents ●

5 Text Extraction 30
5.1 Binarization . 31
5.2 Black on White / White on Black Detection . 32
5.3 Skew Correction . 33
5.4 Character Segmentation . 36

5.4.1 Projection Profile Analysis . 36

6 Implementation 42
6.1 Training . 42
6.2 Comparison . 42
6.3 Application . 42

7 Conclusion 45
7.1 Summary . 45
7.2 Future Work . 46

References 47

A Abbreviations and Symbols 52
A.1 Abbreviations . 52
A.2 Symbols . 53

B CD Content 54

C Application Manual 56

D Dataset Format 57

E Matlab Demo for OCR 58

v

List of Figures

1.1 Examples of hiragana, katakana, and kanji characters 5

3.1 Examples of grayscale normalization . 9
3.2 Examples of shape normalization . 14
3.3 Example of image smoothing using a Gaussian filter 15
3.4 Example of a character composed of multiple existing kanji 15
3.5 Visualization of gradient direction and gradient strengths 17
3.6 Division of a block during calculation of HOG . 18

4.1 Example of a k-NN classifier with 3 classes . 22
4.2 Recognition error rates of tested shape normalization methods with varying sizes

of feature vectors. Tested on standard print fonts. 25
4.3 Recognition error rates of tested shape normalization methods with varying sizes

of feature vectors. Tested on fonts resembling handwriting. 25
4.4 Recognition error rates using different classification methods with varying sizes

of feature vectors. Tested on standard print fonts. 26
4.5 Recognition error rates using different classification methods with varying sizes

of feature vectors. Tested on fonts resembling handwriting. 26
4.6 Recognition error rates using different methods for feature dimensionality reduc-

tion with varying sizes of feature vectors. Tested on standard print fonts. 26
4.7 Recognition error rates using different methods for feature dimensionality reduc-

tion with varying sizes of feature vectors. Tested on fonts resembling handwriting. 26
4.8 Recognition error rates using different methods for feature extraction. Tested on

standard print fonts. 27
4.9 Recognition error rates using different methods for feature extraction. Tested on

fonts resembling handwriting. 27
4.10 Examples of correctly classified characters . 28
4.11 Examples of incorrectly classified characters . 28

5.1 Diagram of the steps from image acquisition to character classification. 31
5.2 Example of binarization using Otsu’s thresholding method 32
5.3 Radon transform mechanism . 34
5.4 Example of Radon transform on a correctly aligned line of text 35
5.5 Proposed method for skew correction using radon transform 36
5.6 Example of correctly split multi-character projection block 38
5.7 Example of correctly merged projection mark blocks 40
5.8 Example of incorrectly merged projection blocks of two hiragana characters . . . 41

vi

List of Figures ●

5.9 An example of correctly segmented line of printed text. 41

6.1 Screenshot of the Android application. 43

C.1 Screenshot of the Android application with description of elements. 56

E.1 Screenshot of the demo application in Matlab. 59

vii

List of Tables

4.1 Minimum recognition error rate of different classification methods using moment
normalization and LDA for dimensionality reduction. 27

4.2 Percentage of correctly recognized characters by the tested OCR systems. 29

5.1 Percentage of characters successfully extracted from text 41

viii

Chapter 1
Introduction

1.1 State of the Art and the Goal
Optical Character Recognition (OCR) is the process of converting an image containing text

into machine-readable information representing the characters in the image. OCR is one of the
oldest fields of computer vision and pattern recognition and the first ideas giving birth to OCR
date back to the late 1920’s [1]. The first attempts at OCR were realized in the 1950’s after the
rise of modern computers and the approach that was applied involved optical and mechanical
matching of the character being recognized with character templates. Rays of light were cast
at the character and their reflection was intercepted by photo-sensitive detectors. The acquired
analog values were digitized and compared with the templates. At first, the OCR systems were
limited only to recognition of characters written in one specific font, but systems that could
recognize characters in multiple fonts eventually started appearing [2], and as more time passed,
the range of usability expanded and it became possible to recognize handwritten characters up
to a certain extent, too. Contemporary OCR systems work with digital images, using various
advanced techniques used in pattern recognition, and achieve very high recognition rates even
on handwritten characters that are difficult to read.

A lot of approaches to OCR have been tried out over the years, but all approaches have
something in common and that is the presence of two essential components:

� Feature extractor, which extracts information about the character from an image. The
methods of extraction can be divided into two categories.

– Template matching, where the image is compared with character templates, usually
using image pixels as features.

– Structural analysis. There are various attributes that can be used as features in
an image, such as corner positions, stroke orientations, character holes, etc. This
approach is more complex, but it is also more robust than simple template matching.

� Classifier, which uses the extracted information, features, to classify the character in the
image as one of the characters in the set of characters it can recognize.

There are many factors that make OCR a difficult task due to which OCR is still an ac-
tive field of research in pattern recognition, despite the performance of the best systems being
remarkable. The most significant ones are:

� Similarity of characters. When two characters have a similar shape, the features ex-
tracted from them is also likely to be similar and they are more prone to be classified
incorrectly. The more characters the OCR system is supposed to recognize, the smaller
the differences between characters will get and the harder will their recognition become.

1

● 1.1 State of the Art and the Goal

� Variability of typography. The text may be printed in a wide variety of fonts or it may
be handwritten. The spacing and the size may also differ.

� Segmentation. Individual characters may be connected with each other and they first
need to be correctly segmented before they can be classified. Even if the characters in
text are not connected, they have to be correctly separated. Most characters in the Latin
alphabet are single connected components, but many characters in other scripts do not
have this attribute and may consist of several connected components.

� Image quality. There can be stains, artifacts, and other defects in the image. The
lighting conditions can be bad and the image resolution can be low. All of this makes the
recognition more difficult.

Today, there are a lot of OCR systems1 available, both commercial and free, and they are
used in various applications across many fields. OCR can be used for example for ID card
checking, license plate recognition, making of editable text versions of books and other printed
documents, assistance for visually impaired people, etc.

OCR for a language which uses a very complex writing system such as the Japanese language
is a task even more demanding than OCR for a language using the Latin alphabet due to the
large difference in number of characters. Japanese writing system uses Chinese characters -
usually called kanji (lit. Chinese character) when referring to their use in Japanese - imported
from China and two sets of syllabaries developed from kanji. It is impossible to specify an
exact number of characters used in Japanese language, but approximately 3,000 characters are
commonly used [3]. Despite the complexity of the task, a lot of research has been done over
the years in the field of OCR and nowadays, one can find OCR engines supporting Japanese
language in commercial applications, scanners, and other machines.

Various research institutes compete with their leading-edge engines for optical recognition
of Chinese characters in competitions organized by the International Conference on Document
Analysis and Recognition (ICDAR) [4], [5] and the best engine has achieved accuracy of recog-
nition that reaches 94.77% on individual, hardly legible handwritten Chinese characters from
GB2312-80 character set2 consisting of 3,755 Chinese characters and 88.76% on handwritten nat-
ural Chinese text. However, it goes without saying that such engines often have high computing
power and memory requirements and their range of possible use is limited by that.

With the increasing computing power of mobile devices, it has become possible to create a
mobile application that would recognize Chinese characters and characters from the Japanese
syllabaries in real time. However, only a few attempts have been made to bring OCR for Japanese
language to the field of mobile applications. While there are a few mobile OCR applications
supporting Japanese language available for download on the Play Store3 of Android operating
system and the App Store4 of iOS operating system, their performance leaves a lot to be desired
in most cases. Some of the applications, mostly those that are built for multi-language support,
lack the desired accuracy of recognition and their usability is very limited. Other applications
only support recognition of text in a standard font used in printed publications and cannot handle
text printed in more ornate fonts, fonts that resemble handwritten text and real handwritten
text.

As the Japanese language uses a complex script that requires years for a person to learn, a
well-performing application which can recognize and translate a text in Japanese can be very

1Comparison of optical character recognition software - https://en.wikipedia.org/wiki/Comparison_of_
optical_character_recognition_software

2GB2312 character set - https://en.wikipedia.org/wiki/GB_2312
3Application distribution center for Android maintained by Google.
4Application distribution center for iOS maintained by Apple.

2

https://en.wikipedia.org/wiki/Comparison_of_optical_character_recognition_software
https://en.wikipedia.org/wiki/Comparison_of_optical_character_recognition_software
https://en.wikipedia.org/wiki/GB_2312

1. Introduc on ●

useful not only for tourists traveling to Japan, but also for students of Japanese all over the
world. Looking up a word in a dictionary requires a certain amount of time when one does
not recognize the characters used in the word because one cannot type the word on a keyboard
without knowing how to read it, neither one can find it in a regular printed Japanese-English
dictionary. One has to analyze the characters and find the individual characters in a kanji
dictionary by means of common patterns5 appearing in the characters, and only then it becomes
possible to look up a word in an electronic dictionary. Another way is to draw the characters
on a device supporting online recognition of characters used in the Japanese language, which
is performed by analyzing how the character has been drawn, particularly by the order and
direction of individual strokes. Both approaches are rather time-consuming and being able to
scan the unknown word using a mobile device would save one a lot of time in the long run.

The goal of this work is to test and compare various methods applicable for OCR of characters
used in Japanese language and create a mobile application which will be able to scan text in
Japanese using the camera of a mobile device and recognize the characters therein. Subsequently,
the application will display the scanned word or several words on its screen and provide the user
with its reading - the way the word is pronounced in Japanese - and translation into English.

1.2 Related Work
There are several mobile applications for OCR of Japanese text for Android OS and iOS.

Mobile OCR by Smart Mobile Software6, OCR by Angeldroid Studio7, and OCR Instantly Free
by TheSimplest.Net8 are OCR applications for Android with multi-language support. Mobile
OCR can only recognize text in images or photos saved on the device. OCR offers support for
Japanese language, but it admits in its description that the performance is poor. OCR Instantly
Free also works only on saved images and admits that the performance on Japanese language
is lacking. Anyway, none of these three applications provide translation into another language
and only convert an image with text into a machine-readable information about the characters
in the text.

Japanese Text/Kanji OCR by space.works9 is an application focusing on recognition and
translation of Japanese text, but according to its developers, it is in beta-phase and no update
has been made since June 2013, which indicates that the development may be on halt. The
recognition takes a lot of time and the accuracy is low. Another application for Japanese OCR
with built-in translation, Kanji Yomi by inda310, is available on Android. It requires internet
connection to perform recognition, because it uses the services of the WeOCR project, which
allows it to perform recognition on its servers using the free OCR engine for Japanese language,
NHocr, introduced below. However, the latest update was made in September 2010 and the
ratings and reviews of the application are very diverse.

The situation on the App Store for iOS is much brighter. There are two applications for
Japanese OCR with subsequent translation of the recognized text whose performance is out-
standing. Japan Goggles by LucSens Oy11 does not seem to be updated anymore - the latest
update was made in May 2011 - but its performance on printed text with good contrast is very

5Kanji can be looked up using so called radicals, which are common patterns appearing in more kanji characters.
6Mobile OCR - https://play.google.com/store/apps/details?id=com.smartmobilesoftware.

mobileocrfree
7OCR - https://play.google.com/store/apps/details?id=app.angeldroid.ocr
8OCR Instantly Free - https://play.google.com/store/apps/details?id=com.thesimplest.ocr
9Japanese Text/Kanji OCR - https://play.google.com/store/apps/details?id=space.works.jocrfree

10Kanji Yomi - https://play.google.com/store/apps/details?id=jp.ne.biglobe.inda3.kanjiyomi
11Japan Goggles - http://japangoggles.lucsens.com/, https://itunes.apple.com/us/app/japan-goggles/

id397724055?mt=8

3

https://play.google.com/store/apps/details?id=com.smartmobilesoftware.mobileocrfree
https://play.google.com/store/apps/details?id=com.smartmobilesoftware.mobileocrfree
https://play.google.com/store/apps/details?id=app.angeldroid.ocr
https://play.google.com/store/apps/details?id=com.thesimplest.ocr
https://play.google.com/store/apps/details?id=space.works.jocrfree
https://play.google.com/store/apps/details?id=jp.ne.biglobe.inda3.kanjiyomi
http://japangoggles.lucsens.com/
https://itunes.apple.com/us/app/japan-goggles/id397724055?mt=8
https://itunes.apple.com/us/app/japan-goggles/id397724055?mt=8

● 1.3 Japanese Wri ng System

good and the description says it can recognize over 3,000 characters. A newcomer OCR appli-
cation on the App Store is Yomiwa by Vivien Seguy12 whose first version was released in 2013.
It is frequently updated with improved performance and its recognition capabilities are very
good. Neither Japan Goggles, nor Yomiwa requires internet connection to perform character
recognition and both applications have got positive ratings.

There are some mobile phones on the Japanese mobile phone market which have built-in
OCR systems, but their performance is limited [6]. Since these mobile phones can only be used
in Japan and are aimed at the Japanese, they only recognize a character or a compound of
characters and provide the user with their reading together with an explanation of meaning of
the word in Japanese.

Besides mobile applications for Japanese OCR mentioned above, there are also free OCR
engines available, which can be used for development of OCR applications. They either support
multiple languages or are made especially for recognition of text in Japanese. Two of them will
be used for OCR engine performance comparison in this work.

� The first one is NHocr13. NHocr is an OCR engine designed for recognition of machine-
printed Japanese characters. According to the author, NHocr may be the first open-source
Japanese OCR engine. Its development began in 2008 and the author says that it is a
product of his weekend programming. NHocr uses Peripheral Local Moment (P-LM) for
feature extraction proposed by Hori et al. in the late 90’s in [7].

� The second one is Tesseract14, an open-source OCR engine sponsored by Google. It was
dormant between 1995 and 2006, but it has been largely improved since then and it has
become one of the best known free OCR engines. It offers multi-language support, provided
it is used with data trained for the required language, and there are many datafiles with
trained data available for download on the website of Tesseract, including a trained datafile
for Japanese.

1.3 Japanese Writing System
The modern Japanese writing system consists of a combination of three scripts: Chinese

characters, usually called kanji, and two syllabaries, called hiragana and katakana. Japanese
started adopting the Chinese characters along with other cultural aspects in the 4th century [8]
because they lacked a writing system of their own. At first, Chinese characters were used for
writing in Classical Chinese and only later a system for writing Japanese using Chinese characters
was developed. The system called man’yōgana [8] designated a phonetic value derived from
Chinese readings to kanji instead of their semantic meanings. The modern syllabaries hiragana
and katakana are simplifications of man’yōgana [9].

A lot of new words and concepts which Japanese language had no equivalent for came to
Japan from China, thus a lot of words entered Japanese directly with pronunciations similar
to the original Chinese ones. The reading derived from Chinese is known as on’yomi (lit.
sound reading) and words using this reading are classified as Sino-Japanese. However, the
native Japanese language included a lot of words that were equivalent by their meaning to kanji
borrowed from Chinese and literate people started using kanji to represent these words. This
reading is referred to as kun’yomi and is used together with on’yomi in modern Japanese. A
kanji can have none, one or multiple kun’yomi and on’yomi readings and the reading depends on

12Yomiwa - http://www.yomiwa.net/, https://itunes.apple.com/us/app/
yomiwa-japanese-camera-translator/id670931120?mt=8

13https://code.google.com/p/nhocr/
14https://code.google.com/p/tesseract-ocr/

4

http://www.yomiwa.net/
https://itunes.apple.com/us/app/yomiwa-japanese-camera-translator/id670931120?mt=8
https://itunes.apple.com/us/app/yomiwa-japanese-camera-translator/id670931120?mt=8
https://code.google.com/p/nhocr/
https://code.google.com/p/tesseract-ocr/

1. Introduc on ●

Figure 1.1: Examples of hiragana (left), katakana (middle), and kanji (right) characters.

the word in which it is used. For example, the character 通 is read tō in the word 通る (tōru, to
go by), kayo in the word 通う (kayou, to attend (school, etc.)), dō in the word 裏通り (uradōri,
side street) and tsū in the word 通貨 (tsūka, currency). In modern Japanese, kanji are usually
used for words that carry the content of text:

� nouns, e.g. 女 (onna, woman), 音楽 (ongaku, music).

� stems of verbs and adjectives, e.g. 話 in 話す (hanasu, to speak), 詳 in 詳しい (kuwashii,
detailed)

� personal and place names, e.g. 佐藤 (Satō), 京都 (Kyōto). However, certain names are
written in hiragana, katakana or combination of syllabaries and kanji.

The roots of modern hiragana and katakana syllabaries go back to the 9th century. Both
syllabaries have undergone changes over time and were finally codified in 1900 [9]. Hiragana
consists of 48 unique characters, 2 of which are obsolete in contemporary Japanese. The use of
diacritic marks and digraphs (syllables consisting of two unique characters) extends this set to
94 syllables. Hiragana is usually used for these script elements:

� native or naturalized Japanese words which lack a kanji or their kanji equivalent is not in
common use.

� okurigana (送り仮名) - grammatical patterns for inflectional endings in verbs and adjec-
tives, e.g. える in 変える (kaeru, to change) and its corresponding past tense form えた
in 変えた (kaeta, changed), い in 薄い (usui, thin) and its past tense form かった in 薄
かった (usukatta, was thin).

� joshi (助詞) - grammatical particles marking sentence topics, subjects and objects, having
a purpose similar to prepositions in English. E.g. を in 彼を (kare wo, him) to describe
the sentence object.

� furigana (振り仮名) - phonetic representation of kanji placed above or beside the kanji
character. Usually used in books for children and non-native speakers, alternatively when
a kanji character is uncommon or its intended meaning is unusual. E.g. ろうそく over
ろうそく

蝋燭 (rōsoku, candle).

Katakana comprises the same number of characters as hiragana, that is 48 unique characters,
2 of which are obsolete and 1 of which is uncommon in modern Japanese. Similarly to hira-
gana, katakana is extended by diacritic marks and digraphs to represent 94 distinct syllables.
Katakana is commonly used for:

� transliteration of foreign words and names. E.g. パソコン (pasokon, personal computer),
カリフォルニア (kariforunia, California)

5

● 1.4 Thesis Structure

� names of animals and plants which have no equivalent in kanji or the equivalent is not in
common use, e.g. イルカ (iruka, dolphin).

� emphasis on word, similar to capitalization in latin alphabet.

� phonomimes (words mimicking actual sounds), e.g. ケロケロ (kerokero, ribbit - frog
sound), phenomimes (words depicting non-auditory senses), e.g. キラキラ (kirakira, be-
ing sparkling), and psychomimes (words describing psychological states), e.g. ワクワク
(wakuwaku, being excited).

Modern Japanese also uses Latin alphabet and Arabic numerals for abbreviations, foreign
names and phrases, or to invoke a foreign flavor. However, since the aim of the proposed appli-
cation is to help the user understand a Japanese word which they cannot read, Latin alphabet
and Arabic numerals are not crucially important and are not included in the set of supported
characters for testing of optical character recognition methods which will be introduced in the
following chapters.

1.4 Thesis Structure
� Chapter 1, Introduction, gives a brief review of history of OCR and explains the complexity

of Japanese writing system.

� Chapter 2, Dataset Generation, describes the creation of the training data and the set of
characters which are to be supported and possible to recognize by the OCR engine.

� Chapter 3, Preprocessing and Feature Extraction, describes the transformations which
an image of a character undergoes before it is used for training or before it is classified.
Extraction of features from the image is explained as well.

� Chapter 4, Learning and Classification, introduces procedures and classification methods
which have been tested and compared, and presents the results that have been achieved.

� Chapter 5, Text Extraction, explains the methods for extraction of pure text from a
captured picture which have been tested and used.

� Chapter 6, Implementation, gives information about the implementation of the mobile
application and execution of training and testing of various methods introduced in other
chapters.

� Chapter 7, Conclusion, recaps and summarizes what has been performed and accomplished,
and what needs to be done in the future.

6

Chapter 2
Dataset Generation

A program for optical character recognition needs a classifier which will be able to perform
recognition and classification of individual characters.

Definition 1 Classification in a classifier is executed by a classification function Y. It is a
function that assigns a class label yi to an input feature vector x.

In order to create a classifier, it is necessary to generate a dataset which will be used for its
supervised learning.

Definition 2 Supervised learning is a task where a classification function Y is derived from
labeled training data T. The training data is made of training samples and each sample is a pair
of an input object xi and its desired output value yi.

� Input: T = {(x1, y1), . . . (xn, yn)}

� Output: Y

The dataset will consist of pairs of images of individual characters and their unicode hex code
numbers. Only the characters in the dataset used for training of a classifier can be recognized. It
is impossible for a classifier to recognize something that it does not know. This chapter describes
the creation of a dataset.

2.1 Supported Characters
To make a dataset, samples of each character that the classifier should recognize have to be

acquired. It is clear that the classifier has to be able to recognize every character of hiragana
and katakana syllabaries, except the obsolete ones. However, it is impossible to state an exact
number of kanji used in modern Japanese since there is a large number of kanji carrying a
meaning in Japanese which are not in common use. The Japanese Ministry of Education,
Culture, Sports, Science and Technology manages a list of kanji which students after 12 years of
education are expected to understand, called jōyō kanji (lit. kanji for everyday use) [10]. The
current list comprises 2,136 characters, which is 191 more than prior to the latest update issued
in 20101. However, you can easily encounter a character that is not on the list of jōyō kanji,
and some characters absent in this list can be actually seen more often than certain characters
included on the list. Therefore, creating a list of kanji which should be supported by an optical
recognition application is, in itself, a task which requires a certain amount of effort to be put
into.

1196 new characters were added and 5 characters were removed from the list. https://en.wikipedia.org/
wiki/J%C5%8Dy%C5%8D_kanji

7

https://en.wikipedia.org/wiki/J%C5%8Dy%C5%8D_kanji
https://en.wikipedia.org/wiki/J%C5%8Dy%C5%8D_kanji

● 2.2 Character Image Genera on

Using only the kanji in the jōyō kanji list would cover most kanji you can see on an everyday
basis, but it would be far from exhaustive. The Japanese encoding standard JIS X 02082 features
two lists of kanji. There are 2,965 characters in the level 1 set, which includes the more common
kanji, and another 3,390 characters in the level 2 set, containing the less frequent ones. However,
although the level 2 set consists mostly of kanji which are not in common use, there are quite a
few examples of characters in the level 2 set which are not exactly uncommon. Therefore, opting
for the level 1 set, which is what some researchers engaged in Japanese OCR do for experiments
[11], would not be the best option for an application whose goal is to be practical for use.

In the end, I have decided to use the list of 2,500 most frequent kanji in newspapers [12]
derived from the KANJIDIC [13] file as the basis for the list of supported characters. It takes
into account only the usage in newspapers, which makes it biased towards the kanji likely to be
found in newspapers; however, it provides much better and much more practical foundation than
the list of jōyō kanji or the level 1 set of JIS X 0208 standard. The list was, then, extended by
the jōyō kanji which are not listed among the 2,500 most frequent kanji in newspapers, adding
up to 2,599 characters. After that, I proceeded to manual selection from the jinmeiyō kanji list
(lit. kanji for use in personal names) and from kanji which do not appear on the jinmeiyō kanji
list, jōyō kanji list and the list of 2,500 most frequent kanji in newspapers, but often appear
in literature, specialized texts, and other contents where less common kanji do appear. The
finalized list consists of 73 hiragana characters with and without diacritic marks, 73 katakana
characters with and without diacritic marks and 2,762 kanji characters, summing up to 2,908
characters in total.

2.2 Character Image Generation
It was essential to acquire images of all characters that are to be supported to prepare the

training data. 82 free digital font files were used for this purpose and bitmap images of individual
characters were extracted from these files by means of Batik Java library3 for manipulation
with scalable vector graphics. The extracted images are grayscale and all further processing is
performed in 8-bit grayscale color depth to prevent undesirable effect of aliasing of character
strokes which would have a negative influence on the recognition performance because feature
extraction in this work is based on stroke direction. With the effect of aliasing, the stroke
directions would be distorted and the extracted information would not be sufficient enough.

The final training dataset consists of pairs of character images and Unicode hex code numbers
that specify what class the character belongs to, which means what character is in the image in
this case.

2https://en.wikipedia.org/wiki/JIS_X_0208
3Apache™ Batik SVG Toolkit - http://xmlgraphics.apache.org/batik/

8

https://en.wikipedia.org/wiki/JIS_X_0208
http://xmlgraphics.apache.org/batik/

Chapter 3
Preprocessing and Feature Extraction

Every image in the dataset of character images is processed to acquire a feature vector
which can be used for training of a classification model. The image processing consists of several
phases. First, the images are normalized on the gray scale so that their pixel intensities span
the whole color space. Next, the shape of the character in the image is normalized in order to
reduce differences between various images of the same character, which will make their feature
vectors closer to each other in the feature space and improve separability of each class. Gaussian
filtering is performed after the shape normalization to smooth rough and jagged stroke edges.
Finally, a feature vector which will be further used for training of a classifier is extracted from
the image. The same process is applied when extracting a feature vector from an image of
a character which is to be classified. Each phase of the process is described in detail in the
following sections.

3.1 Grayscale Normalization
The grayscale image is normalized so that the intensity values of its pixels range from 0 to

255 and utilize the whole 8-bit space [14], thus enhancing the contrast between the text and the
background. Linear normalization is applied to achieve this. Let A(m, n) be an input image,
whose size is M ×N , m = {1, 2, . . . , M}, and n = {1, 2, . . . , N}. The output image B(m, n) is
defined as:

B(m, n) = 255
Amax −Amin

(A(m, n)−Amin) (3.1)

Figure 3.1: Examples of grayscale normalization performed on different images.

3.2 Shape Normalization
Shape normalization is performed by mapping the input image on an image plane of a given

size. Let A(x, y) be the input image and B(x, y) the normalized image. For 1D normalization

9

● 3.2 Shape Normaliza on

methods, each coordinate (x, y) from the input will be mapped to a coordinate (x′, y′) in the
output by a mapping function:

x′ = f(x)

y′ = g(y)

This is called forward mapping. Alternatively, it is possible to use backward mapping and map
each coordinate (x′, y′) in the normalized output image to coordinate (x, y) in the input image:

x = f−1(x′)

y = g−1(y′)

I have implemented and tested three normalization methods: linear normalization (LN),
moment normalization (MN), and bi-moment normalization (BMN). MN and BMN for Chinese
characters were first described by Liu et al. [15]

3.2.1 Aspect Ratio Adaptive Normalization
The final image for feature extraction will be square; however, in order to preserve the

original aspect ratio of a character up to some extent and reduce the deformation of oblong
characters, aspect ratio adaptive normalization (ARAN) [16] is adopted to calculate the output
width and height of the characters for shape normalization. Let W1 be the width of the input
image and H1 be the height thereof. The aspect ratio R1 is defined as:

R1 =

H1
W1

, if H1 < W1

W1
H1

, otherwise

If W1 is bigger than H1, W2, the width of the output image, is set deliberately. Otherwise, H2,
the height of the output image is specified. The aspect ratio R2 of the output image and the
size of the other side is calculated by:

R2 =
√

sin(π

2
R1)

H2 = W2R2, if H1 < W1

W2 = H2R2, otherwise

(3.2)

3.2.2 Linear Normalization
The first normalization method I have implemented is linear normalization [17]. Linear

normalization aligns the boundaries of the input image to the boundaries of the output image.
It linearly shrinks or extends the image of size W1×H1 in both dimensions to match the desired
size W2 × H2. Let A be the input image and B the normalized output image. The forward
mapping functions which map each pixel A(x, y) in the input image to a pixel B(x′, y′) in the
normalized image are then defined as:

x′ = W2
W1

x

y′ = H2
H1

y

(3.3)

10

3. Preprocessing and Feature Extrac on ●

Since mapping described in 3.3 is not guaranteed to be surjective, to make sure that each
pixel in the normalized image receives a value from the input and blank space is not generated,
backward mapping is performed instead. Each pixel B(x′, y′) in the normalized output image
is mapped to a pixel A(x, y) in the input image and receives its value. The mapping functions
are as follows:

x = W1
W2

x′

y = H1
H2

y′
(3.4)

3.2.3 Moment Normalization
Since the strokes of a character are sometimes, particularly in handwriting, not evenly spread

and are accumulated in one part of the character, shifting the centroid of character strokes from
the geometric center of the character, the visual information about the character gets condensed
in a smaller area and the shape deviates from the standard shape of character used in print
publications. Stretching the condensed part of the character would spread the visual information
and make the shape resemble the standard shape more. Linear normalization cannot do that,
because it can only linearly change the shape, which means that it cannot stretch one part of
the character more than the rest. Therefore, a non-linear method is needed to perform this task.

The moment normalization method [15] aligns the centroid1 of the input image (cx, cy) to
the geometric center of the normalized output image (x′

c, y′
c). The geometric center of output

image is defined as (x′
c, y′

c) = (W2
2 , H2

2). The width W1 and height H1 of the input image are
replaced by modified width δx and height δy in the calculations. δx and δy are derived using the
second order 1D central moments µ20 and µ02:

δx = 4√µ20

δy = 4√µ02

Consequently, the boundaries of the input image (0, W1) and (0, H1) are shifted to (cx − δx
2 ,

cx + δx
2) and (cy − δy

2 , cy + δy

2). The definition of central moment [18] is given by:

µij =
X∑

x=1

Y∑
y=1

(x− cx)i(y − cy)jf(x, y) (3.5)

In this case, the function f(x, y) denotes the pixel intensity A(x, y) at position [x, y] in the
image. Using the definition to calculate the central moment is not the most efficient method to
do so. It is possible to calculate central moments from several raw moments, which are easier
to calculate. Raw moments Mij for discrete 2D functions are calculated by:

Mij =
X∑

x=1

Y∑
y=1

xiyjf(x, y) (3.6)

The centroid (cx, cy) of an image can be calculated by the following formulas, where M00 is the

1Centroid refers to the centroid of character stroke pixels here.

11

● 3.2 Shape Normaliza on

sum of pixel intensities over the whole image.

cx =
∑X

x=1

∑Y

y=1 xA(x,y)∑X

x=1

∑Y

y=1 A(x,y)

= M10
M00

cy =
∑X

x=1

∑Y

y=1 yA(x,y)∑X

x=1

∑Y

y=1 A(x,y)

= M01
M00

(3.7)

Starting with the definition of the second order central moment, one can derive a formula
consisting solely of raw moments.

µ20 =
∑X

x=1
∑Y

y=1(x− cx)2(y − cy)0A(x, y)

=
∑X

x=1
∑Y

y=1(x− cx)2A(x, y)

=
∑X

x=1
∑Y

y=1(x2 − 2xcx + c2
x)A(x, y)

=
∑X

x=1
∑Y

y=1 x2A(x, y) +
∑X

x=1
∑Y

y=1−cx(2x− cx)A(x, y)

= M20 − cx
∑X

x=1
∑Y

y=1(x + x− cx)A(x, y)

= M20 − cx

(∑X
x=1

∑Y
y=1 xA(x, y) +

∑X
x=1

∑Y
y=1(x− cx)A(x, y)

)
= M20 − cx

(∑X
x=1

∑Y
y=1 xA(x, y) + 0

)
= M20 − cxM10

(3.8)

The derivation of the final formula for the second order central moment µ02 using the raw
moments is analogous, only the x coordinates and centroid coordinates component cx are re-
placed with y and cy, respectively. The coordinate mapping for moment normalization is then
calculated by:

x′ = W2
δx

(x− cx) + x′
c

y′ = H2
δy

(y − cy) + y′
c

(3.9)

For the same reason as in linear normalization, backward mapping is used to set a value to each
pixel of the normalized image. Coordinates (x, y) in the original image will be calculated by:

x = δx(x′−x′
c)

W2
+ cx

y = δy(y′−y′
c)

H2
+ cy

(3.10)

The coordinates (x, y) range from (cx − δx
2 , cy − δy

2) to (cx + δx
2 , cy + δy

2), as the boundaries of
the input image have been shifted. To retrieve a pixel from the input image, it is necessary to
calculate the original coordinates. Let (xo, yo) be the original coordinates in range from (0, 0)
to (W1, H1), and (xs, ys) be the shifted coordinates from range (cx − δx

2 , cy − δy

2) to (cx + δx
2 ,

cy + δy

2). It is obvious that f(cx − δx
2) = 0, f(cx + δx

2) = W1, and also f(cx) = cx. Using the

12

3. Preprocessing and Feature Extrac on ●

Lagrange polynomial for interpolation, the coordinate xo is calculated by:

xo = Lx(xs) = f(x1) · xs−x2
x1−x2

· xs−x3
x1−x3

+ f(x2) · xs−x1
x2−x1

· xs−x3
x2−x3

+ f(x3) · xs−x1
x3−x1

· xs−x2
x3−x2

= cx ·
xs−(cx− δx

2)
cx−(cx− δx

2)
· xs−(cx+ δx

2)
cx−(cx+ δx

2)
+ W1 ·

xs−(cx− δx
2)

cx+ δx
2 −(cx− δx

2)
· xs−cx

cx+ δx
2 −cx

= cx ·
xs−cx+ δx

2
δx
2

· xs−cx− δx
2

− δx
2

+ W1 ·
xs−cx+ δx

2
δx

· xs−cx
δx
2

= 2W1
x2

s−2xscx+c2
x+ δx

2 (xs−cx)
δ2

x
− 4cx

x2
s+c2

x− δ2
x
4 −2xscx

δ2
x

(3.11)

Similarly, one can derive the function for coordinate y:

yo = Ly(ys) = 2H1
y2

s − 2yscy + c2
y + δy

2 (ys − cy)
δ2

y

− 4cy

y2
s + c2

y −
δ2

y

4 − 2yscy

δ2
y

(3.12)

3.2.4 Bi-moment Normalization
In a similar fashion to moment normalization, the bi-moment normalization [15] method

aligns the centroid of the image to the geometric center of the output image. Whilst the moment
normalization method calculates one central moment for x-coordinate and one for y-coordinate
and resets the image boundaries so that the centroid is in the middle of the computed interval,
bi-moment normalization method utilizes four central moments, two for each coordinate. For
x-coordinate, one central moment is calculated in the part of the image left of the centroid,
and the other one for the part on the right. Similarly, for y-coordinate, one central moment is
calculated in the part below the centroid, and the other one above the centroid. The width and
height are not treated as symmetrical around the centroid.

µ−
x =

∑
x<cx

∑Y
y=1(x− cx)2A(x, y),

µ+
x =

∑
x>cx

∑Y
y=1(x− cx)2A(x, y),

µ−
y =

∑
y<cy

∑X
x=1(y − cy)2A(x, y),

µ+
y =

∑
y>cy

∑X
x=1(y − cy)2A(x, y).

(3.13)

The image boundaries (0, W1) and (0, H1) are shifted to (cx−δ−
x , cx +δ+

x) and (cy−δ−
y , cy +δ+

y),
where

δ−
x = 2

√
µ−

x ,

δ+
x = 2

√
µ+

x ,

δ−
y = 2

√
µ−

y ,

δ+
y = 2

√
µ+

y .

Mapping is performed identically to moment normalization as is shown in equation (3.10).
However, as the centroid of the image is not in the middle of the interval as in the moment
method, mapping from the output image to the bi-moment coordinates is not linear, thus it is
necessary to perform interpolation twice to map the output image coordinates to the bi-moment
coordinate system, and the bi-moment coordinates to the original input image coordinates.

13

● 3.2 Shape Normaliza on

In Figure 3.2, you can see examples of shape normalization by means of linear, moment,
and bi-moment normalization methods. The first row shows the original trimmed characters
in a square box, the second row contains the same characters after linear normalization, the
third row are shape-normalized characters using moment normalization, and characters in the
fourth row have been normalized by the bi-moment method. The first example is very similar
in all four cases, because it uses a standard font which you could find for example in books and
newspapers. The second example shows that moment-based normalization has a huge advantage
over linear normalization in case that there remains some undesirable noise in the image. Small
noise or a blot cannot alter the centroid of the image very much, therefore the centroid in the
original image is shifted heavily to the right side and is located approximately in the middle
of the actual character. Moment and bi-moment normalization transforms the image so that
the centroid is in the geometric center of the output image. Both linear and moment-based
normalization methods are global transformations and have a desirable property that the shape
of the character is not heavily deformed by the transformation, which could happen if a local
transformation method was used instead [15].

Figure 3.2: Examples of shape normalization performed on different images. First row: cropped original
images fit into square; Second row: images after linear normalization; Third row: images after moment
normalization.

3.2.5 Smoothing
Gaussian blur is applied after shape normalization in order to smooth character strokes and

alleviate the effect of ruggedness, which could be present in the original image of a character
or might be caused by shape normalization. The filter is applied by convolving the image with
a Gaussian function [19], [20]. One-dimensional Gaussian function without the normalization

14

3. Preprocessing and Feature Extrac on ●

constant

G(x) = exp
(
− x2

2σ2

)
(3.14)

is used to fill the kernel for convolution. The size of the kernel is set to ⌈6σ +1⌉(⌈·⌉ is the ceiling
function), where σ denotes the standard deviation of the Gaussian distribution, and the values
are normalized so that their sum is unity. The size of the kernel is decided by the aforementioned
rule so that the kernel coefficients make up most of the sum of coefficients over the Gaussian
function. In other words, increasing the size of the kernel would have virtually no effect on the
result, because the coefficients in the added area would be small enough to be considered zero
as is shown in the following figure. Let σ be 1. Then, the 1D kernel is

0.004 0.054 0.242 0.399 0.242 0.054 0.004

2D Gaussian blur is a separable filter, which means it can be expressed as a product of two
vectors [21]. Therefore, it can be applied as two independent one-dimensional operations for
a 2D image. First, the image is blurred horizontally / vertically, and then it is blurred in the
other way. Using this approach for filtering is more efficient in computational terms as it can
be achieved in O(Wker ·Wimg ·Himg) + O(Hker ·Wimg ·Himg) time, while the two-dimensional
approach takes O(Wker ·Hker ·Wimg ·Himg) time.

(a) (b)

Figure 3.3: Example of an image before applying a Gaussian filter of σ = 2 on the left and after filtering
on the right.

3.3 Feature Extraction

Figure 3.4: An example of a char-
acter consisting of multiple existing
kanji. Character 忠 - meaning loy-
alty, fidelity - is composed of two ex-
isting kanji characters: 中 - mean-
ing center, inside - and 心 - meaning
heart, mind.

Most kanji are composed of several parts which may be
an existing kanji themselves, see Figure 3.4, or they at least
reappear in multiple characters. Patterns that appear fre-
quently are called radicals and they have been traditionally
used for finding kanji characters in dictionaries. The six most
common radicals make up as much as 25% of jōyō kanji2. It
might be possible to make use of the fact that most kanji con-
sist of several patterns and turn the process of recognition of
a complex character into a task of recognizing several simpler
patterns. However, it would be necessary to correctly divide
the character into several distinct patterns, which would be
a demanding task because there is no rule as to how many
common patterns can be found in a kanji and how to divide

2https://en.wikipedia.org/wiki/Table_of_Japanese_kanji_radicals

15

https://en.wikipedia.org/wiki/Table_of_Japanese_kanji_radicals

● 3.3 Feature Extrac on

the kanji to extract them. Therefore, it sounds more reasonable to adopt a more conservative
statistical approach.

3.3.1 Zonal Line Density Method
The first algorithm for feature extraction which I have implemented - building on introduction

to OCR approaches in a work by Line Eikvil [2] - and tried out is a zonal approach in which
the character is divided into several blocks and features are calculated in each of these blocks
separately. The algorithm calculates the density of pixel lines and outputs these measurements
as a feature vector that can be used for training of a classifier and subsequently classification of
new samples. The process is described below:

(1) Resize the grayscale image to 120 × 120 pixels and add 4 pixel large margins on each side.

(2) Normalize the pixel intensities such that their mean is 0 and they have unit variance. Let
A(x, y) be the input matrix and B(x, y) the output matrix. The output B(x, y) is defined
as:

B(x, y) = A(x, y)−A√
1

MN−1
∑M

m=1
∑N

n=1(A(m, n)−A)2
(3.15)

(3) Divide the image into 64 blocks of 16 × 16 pixels in size, that is 8 blocks in a row and 8
blocks in a column.

(4) Sum up the pixel values in 1 × 16 pixel columns in every block and divide it by 16. This
will yield 1,024 values which will be used as a feature vector. Let aij be a pixel in a block
whose value ranges from 0.0 to 1.0.

vj = 1
16

16∑
i=1

aij , j = {1, 2, . . . , 16} (3.16)

(5) Sum up the pixel values in every row and every column of the whole 128 × 128 pixel large
image and divide it by 128. This will yield another 256 values for a feature vector, adding
up to 1280-dimensional feature vector.

cj = 1
128

128∑
i=1

aij , j = {1, 2, . . . , 128}

ri = 1
128

128∑
j=1

aij , i = {1, 2, . . . , 128}
(3.17)

(6) Scale the values in the feature vector so that they range from 0.0 to 1.0.

The above algorithm is simple and while its results are not exactly poor, it does not reach
the desired recognition rate as will be shown in section Results.

3.3.2 Histogram of Oriented Gradients in Local Regions
A more sophisticated algorithm suggested by Dong et al. [22] uses edge detection and

histogram of oriented gradients (HOG) to analyze the stroke characteristics. The algorithm is
a modification of a method proposed by Kimura et al. [23] in 1997, which uses a histogram of
chain codes in local regions and works on binary images. By applying a similar idea on grayscale

16

3. Preprocessing and Feature Extrac on ●

Figure 3.5: Visualized gradient strength of an image of characterゼ on the left and the gradient direction
of the same image on the right.

images using oriented gradients instead of chain codes, Dong et al. were able to achieve better
results. This algorithm has been proven to yield very good results on various writing systems
[24]. In this work, the algorithm is slightly modified in the way that the pixel intensities are
normalized so that they have unit variance and their mean is 0, which provided slightly better
results than the approach in the original version of the algorithm, where the pixel intensities are
scaled so that they range from 0 to 1. The feature extraction process is as follows:

(1) Resize the grayscale image to 64 × 64 pixels and center it in a 80 × 80 pixel large square
by adding 8 pixel margins on each side. This is performed in order to utilize the peripheral
strokes as much as the strokes closer to the middle.

(2) Normalize the pixel intensities such that their mean is 0 and they have unit variance (3.15).

(3) Calculate the image gradient strengths and gradient directions in each pixel using Roberts
cross operator for edge detection. [25]
First, the original image is convolved with kernels:1 0

0 −1

 ,

 0 1

−1 0

Let A(x, y) be a pixel in the original image and G1(x, y), G2(x, y) be points produced by
convolving the original pixel with the first and second kernel, respectively. The gradient
strength ∇ is then defined by the following equation:

∇A(x, y) =
√

G2
1 + G2

2 (3.18)

The gradient direction θ is defined as:

θA(x, y) = atan2 (G2(x, y), G1(x, y)) (3.19)

(4) Divide the image into 16 × 16 pixel large overlapping blocks such that there is 9 blocks in
each row and column. Each block overlaps exactly a half of its adjacent blocks. There will
be 81 blocks in total.

17

● 3.3 Feature Extrac on

(5) Divide each block into 4 subareas such that subarea S1 is 4 × 4 pixels in the middle of the
block, subarea S2 is 8 × 8 pixels in the middle exclusive of S1, subarea S3 is 12 × 12 pixels
exclusive of S1 and S2, and subarea S4 is the whole 16 × 16 pixel block exclusive of S1, S2,
and S3. See Figure 3.6.

(6) In each block, sum up the gradient strengths over 32 quantized gradient directions in each
subarea S1, S2, S3, S4, creating a histogram of oriented gradients. Use a mask vector (4, 3,
2, 1) for the subareas to eliminate the difference in area size of each subarea S1, S2, S3, S4.
The result will be 9 × 9 32-dimensional vectors xk.

ai = ∇A(x, y), A(x, y) ∈ S1 ∪ S2 ∪ S3 ∪ S4
vi = δA(x, y), A(x, y) ∈ S1 ∪ S2 ∪ S3 ∪ S4

xk =
∑
vi∈I

4

 ∑
ai∈S1

ai

+ 3

 ∑
ai∈S2

ai

+ 2

 ∑
ai∈S3

ai

+
∑

ai∈S4
ai,

I =
⟨
−180 + (k − 1)

(360
32

)
;−180 + k

(360
32

))
k = {1, 2, . . . , 32}

(3.20)

(7) Downsample the 32-dimensional vectors to obtain 16-dimensional vectors using binomial
filtering with mask vector (1, 4, 6, 4, 1). Join the generated 16-dimensional vectors into one
large 1296-dimensional feature vector (9 × 9 × 16).

(8) Exponentiate each element of the feature vector by 0.4 so that the distribution is closer to
Gaussian distribution. [26]

(9) Rescale the values of the elements in the feature vector so that they range from 0.0 to 1.0.

Figure 3.6: Division of a block
into 4 subareas.

18

Chapter 4
Learning and Classification

With feature vectors extracted from the images as described in the previous chapter, it is
possible to train a classifier for character recognition. Before creating a classifier, an algorithm
to reduce the size of feature vectors and improve the performance is applied.

Various combinations of algorithms for reduction of feature vector dimensionality and meth-
ods for classification have been tested on the character set described in Chapter titled Dataset
Generation. Each class is represented by 82 training samples.

4.1 Dimensionality Reduction
The feature vectors acquired in the feature extraction are high-dimensional; however, major-

ity of the useful information stored in the feature vectors could be represented in a space of much
lower dimensionality. Dimensionality reduction algorithms are used to map the data from one
space to a lower dimensional space, which results in lower space and computational complexity,
and alleviation of the negative effect of the phenomena called ”the curse of dimensionality”
[27], which in terms of machine learning refers to reduction of effectiveness of an algorithm due
to reduced contrast of distance differences caused by irrelevant dimensions in high-dimensional
space.

Most of the engines for OCR of Chinese characters participating in competitions use LDA
for reduction of dimensionality and some engines use modified versions of LDA, such as het-
eroscedastic LDA [4], [5].

4.1.1 Principal Component Analysis
Principal Component Analysis (PCA) [28] is a linear transformation which transforms the

data and represents them in a new coordinate system whose first basis vector, the principal
component, has the highest variance of data, and the variance of each succeeding principal
component is as high as possible under the condition that it is orthogonal to all preceding
principal components. The objective is to represent the data in a space L of lower dimension
than M while minimizing the approximation error and preserve as much information as possible.

Let N be the number of observations and M be the number of variables describing one
observation. Data are arranged in a M × N matrix X, where each observation is a column of
the matrix. Each variable is normalized so that the sum of each row in the matrix is zero, which
is accomplished by subtracting the mean of each row from every value in the corresponding row.

µm = 1
N

∑N
n=1 Xm,n, m = 1, . . . , M

X̄ = X− µ

(4.1)

19

● 4.1 Dimensionality Reduc on

Let us compute the empirical sample covariance matrix Σ from the dataset matrix,

Σ = X̄T X̄ (4.2)

The matrix Σ is guaranteed to be positive semi-definite,

aT Σa, a ∈ Rm

aT (X̄T X̄)a

(X̄a)T (X̄a) ≥ 0

which means that it also has real and positive eigenvalues. Let us compute the eigenvalues λi

and eigenvectors wi of the matrix Σ. Next, the eigenvalues are normalized so that their sum is
unity and the eigenvectors are normalized so that their length is unity, that is ∥wi∥2 = 1. Then,
the eigenvalues and their corresponding eigenvectors are sorted from the largest to the smallest
one. The first eigenvector holds the largest amount of information about the data. A necessary
number of eigenvectors will be kept so that the desired percentage of information is preserved
and the allowed loss of information is not exceeded. The percentage loss of information ϵ is

ϵ = 1−
L∑

i=1
λi (4.3)

Let W be the matrix of size M × L with L first eigenvectors sorted by their corresponding
eigenvalues and X̄ be the matrix of size M ×N with N observations in columns. The reduced
representation of observations Y is a linear combination of the principal components and is
calculated by:

Y = WT X̄ (4.4)
PCA ignores the class distribution of samples in the dataset and only tries to maximize the
variance of each principal component.

4.1.2 Linear Discriminant Analysis
Linear Discriminant Analysis (LDA) is a method to find a linear combination of features,

which best explains the data, and unlike PCA, it tries to model the differences between classes
and separate them.

LDA for cases with more than two classes seeks a projection matrix W such that classes in
projection Y,

Y = WT X, (4.5)
are separated as best as possible [29], which means that samples from the same class should be
projected close to each other and samples from different classes should be as far as possible from
each other.

Let us define the within-class scatter matrix SW ,

SW =
K∑

i=1

∑
x∈ki

(x− µi)(x− µi)T , (4.6)

where x is a column in the matrix X, K is the number of classes, ki means that the sample
belongs to the i-th class,

µi = 1
Ni

∑
x∈ki

x, (4.7)

20

4. Learning and Classifica on ●

and Ni gives the number of samples in the i-th class. Let us also define the between-class scatter
matrix SB,

SB =
K∑

i=1
Ni(µi − µ)(µi − µ)T , (4.8)

where
µ = 1

N

∑
∀x

x. (4.9)

The projection that will best discriminate between individual classes can be found by maxi-
mizing Fisher’s linear discriminant, which maximizes the scatter between classes and minimizes
the scatter within classes, given by

J(W) = |W
T SBW|

|WT SW W|
. (4.10)

After differentiation and equation to zero, the problem requires the solution of

S−1
W SBW = J(W)W⇒ |S−1

W SB − J(W)I| = 0, (4.11)

where J(W) is a scalar and it is also an eigenvalue of S−1
W SB. The best projection vectors of the

projection matrix W are, therefore, the eigenvectors which correspond to the largest eigenvalues
of S−1

W SB. The eigenvector w1 corresponding to the largest eigenvalue λ1 = J(w1) separates the
classes in the projection the best of all eigenvectors. The smaller the eigenvalue, the less it can
separate the classes in the data. That means that it is possible to keep only a certain number
of eigenvectors which can best describe the data in the projection matrix W, which will result
in a projection of X into a lower-dimensional space while separating individual classes as best
as possible.

4.2 Classification Methods
Each training example in the training data is a pair consisting of a feature vector extracted

from an image and its desired Unicode value output. A supervised learning algorithm is needed
to analyze the training data and infer a function therefrom, which can be used to classify new
examples whose Unicode value is not known.

When choosing an algorithm, it is important to bear in mind where the classification model
is going to be used and what kind of limits are imposed on it. Since the classification model
in this case will be used in a mobile application, a light-weight model which does not need a
large amount of data and is fast enough to be used for real-time recognition is what is needed.
A method which needs all or a large portion of training samples, such as k-nearest neighbors,
cannot be used in the application (k-NN was used for comparison purposes). Discriminant
function has turned out to be a suitable method, which achieves high recognition rate, allows
fast classification, and the size of the resulting data necessary for classification is around 10
megabytes (MB).

Most systems for recognition of Chinese characters seem to use the modified quadratic dis-
criminant function (MQDF) proposed by Kimura et al. [30] in 1987. In recent years, artificial
neural networks and support vector machine (SVM) classifier have been also increasingly used.
However, the training phase of the regular SVM for a task with a large amount of classes requires
a lot of time, as well as the training of a neural network, which was not suitable in this case due
to limited computing power of my working environment. The size of the classification models
used in leading-edge OCR engines which participate in international competitions appears to

21

● 4.2 Classifica on Methods

be a few hundred megabytes on average, with a classifier produced by Fujitsu presented on the
ICDAR 2013 Chinese Handwriting Recognition Competition [4] reaching the size of 2,460 MB.
Classifiers of this size are not exactly well suited for use in contemporary mobile devices, even
though the data size restrictions, as well as computing power restrictions have been growing
weaker in recent years.

The next subsection introduces the classifiers used for testing.

4.2.1 k-Nearest Neighbors
k-Nearest Neighbor is an algorithm which selects k training samples ti from the training data

T which are closest in the feature space to a new sample and uses them for classification[28].
The distance can be calculated by various metrics, such as Euclidean distance or Manhattan
distance, and the performance of the classifier is dependent on the selection of an appropriate
metric.

k-NN does not have a regular training phase; training consists only of storing feature vectors
and labels of training samples. All computation is performed in the classification phase. Various
metrics can be used to determine the distance in k-NN algorithm. Euclidean distance is used
here and it is calculated by:

de(x, ti) =

√√√√ N∑
i=1

(xi − ti)2, (4.12)

where t is a sample in the training data, x is the unlabeled data point which is to be classified,
and N is the length of the feature vector. k training samples with shortest computed distance
from the new data point are selected and the class which is the most frequent among the selected
samples is the output used to classify the new data point. Let Y be a function assigning class
labels to feature vectors. Class Y(x) of a new data point is derived by:

Y(x) = mode{l(t1), . . . , l(tk)} (4.13)

This method needs a supplementary decision rule to determine the class of a new sample in
case of a tie. One of the possible rules is that the training sample of one of the classes that are
tied which is the closest to the feature vector of a new sample has the final extra vote in the
classification process and the output class is selected accordingly. In other words, if two classes
are tied, the one whose member is closer to the new sample wins.

Figure 4.1: An example of k-NN classifier with 3 classes. The number k used is 3. The classifier finds
3 samples closest to the new sample which has to be classified. The class which is prevalent among the
3 selected samples is chosen as the class the new sample belongs to. In this example, the new sample is
classified as an orange circle.

22

4. Learning and Classifica on ●

4.2.2 Linear Discriminant Function
This and the following subsection introduce the linear discriminant function (LDF) [31] for

classification and its quadratic version. The training data is represented by a matrix T in which
each column is the feature vector of one training sample. Let us begin with Bayes’ theorem.
We want to maximize the posterior probability that a sample belongs to class k. This method
is called maximum a posteriori estimation (MAP). The posterior probability is given by

P (k|x) = P (x|k)P (k)∑K
i=1 P (x|k)P (k)

, (4.14)

where x is the feature vector of a new sample that we want to classify, K is the number of
classes, P (k) is the prior probability of class k, and P (x|k) is the probability density function
of class k. The classification function Y is defined as

Y(x) = arg max
k=1,2,...,K

P (ki|x). (4.15)

The classifier assumes that each class in the training data has a Gaussian distribution. Let N
be the number of training samples and M be the number of variables in a feature vector. The
multivariate Gaussian density of a class is given by

P (x|k) = 1
(2πM |Σk|)

1
2

exp
(
−1

2
(x− µk)T Σ−1

k (x− µk)
)

, (4.16)

where |Σk| is the determinant of Σk, µk are class means defined as

µk = 1
Nk

N∑
n=1

Ckntn, (4.17)

tn is a feature vector of one sample from the training data T, Nk is the number of samples of
class k, Ckn is an element of a membership matrix C of size K-N and

Ckn =

1 if the n-th sample belongs to class k

0 otherwise
(4.18)

Matrix Σk is the within-group covariance matrix of class k. We suppose that the covariance
matrix is identical for all classes and it can be calculated by

Σ = 1
N −K

N∑
n=1

K∑
k=1

Ckn (xn − µk) (xn − µk)T (4.19)

The prior probability of all classes is considered to be equal, P (k) = 1
K , because the frequency

of characters undoubtedly differs depending on the setting in which the recognition is performed
and it would be difficult to determine the prior probabilities in a way that would make them
plausible. Under equal prior probabilities, the outcome can be determined by maximizing the
Gaussian density function.

Probability that a class k will have a member x is the same as the function of likelihood
that x belongs to a class k. P (x|k) = L(k|x). It will be hereinafter referred to as the likelihood
function. Since the prior probabilities are omitted and only the likelihood function remains,
MAP becomes maximum likelihood estimation (MLE). Instead of the likelihood function, it is

23

● 4.3 Results

possible and more convenient to operate with the natural logarithm of the likelihood function,
because logarithm is a monotonically increasing function and the logarithm of a function reaches
its maximum in the same point as the function itself. The classifying function becomes a linear
discriminant

logL(k|x) = −1
2

log |Σ| −M log π − 1
2

(x− µk)T Σ−1 (x− µk) (4.20)

The first and the second term on the right side is identical for all classes, which means it cannot
affect the result and can be omitted. The constant 1

2 before the third term does not have any
effect, either. The function can be, therefore, reduced to the following form:

Y(x) = arg max
k=1,2,...,K

logL(k|x) ≡ arg max
k=1,2,...,K

− (x− µk)T Σ−1 (x− µk) , (4.21)

The third term in equation 4.20 above is the Mahalanobis distance between a class k and a new
unclassified sample x. Therefore, another possible way to interpret this classification function is
that it tries to minimize the Mahalanobis distance, because minimizing a function is equivalent
to maximizing its additive inverse.

dm = (x− µk)T Σ−1 (x− µk) (4.22)

Y(x) = arg min
k=1,2,...,K

dm(x, k) (4.23)

4.2.3 Quadratic Discriminant Function
Quadratic discriminant function (QDF) [31] is derived in the same way as LDF, but the

difference is that each class has its own covariance matrix, which is given by

Σk = 1
N − 1

N∑
n=1

Ckn (xn − µk) (xn − µk)T (4.24)

Since each class has its own covariance matrix, it means that it also has its own log |Σk|, and
the first term in the discriminant function

logL(k|x) = −1
2

log |Σk| −M log π − 1
2

(x− µk)T Σ−1
k (x− µk) (4.25)

cannot be left out. After omitting the second term, canceling common constant, and reverting
maximization to minimization, the final function for classification is

Y(x) = arg min
k=1,2,...,K

log |Σk|+ (x− µk)T Σ−1
k (x− µk) (4.26)

4.3 Results
The following figures display the performance of introduced methods. The tests are per-

formed on the set of 2,908 characters described in previous chapters. LDA is used for dimen-
sionality reduction, HOG for feature extraction, and QDF for classification where not stated
otherwise. Samples of two fonts are always set apart for testing and not used in the training
phase so that the classifier cannot benefit from training on the data which it has to classify

24

4. Learning and Classifica on ●

afterwards. This process is repeated four times, always with different two fonts, and the final
result is the average of the four error rates. The error rate is calculated as

Error = Number of incorrect classifications
Number of all classified characters . (4.27)

Figures 4.2 and 4.3 show the performance of recognition using different techniques for nor-
malization of character shape. LDF was used as a classifier for this test. It is evident that
the effect of shape normalization on characters in a standard font used in print publications is
negligible. It is not surprising, because the examples of shape normalization presented in the
previous chapter showed that the shape of a character in a standard print font after any of
the normalization methods does not differ very much from the original. However, non-linear
shape normalization displays its strength on handwritten characters where both moment and
bi-moment normalization outperform linear normalization and recognition with no shape nor-
malization whatsoever. Using bi-moment normalization instead of moment normalization does
not seem to result in better performance.

Figure 4.2: Recognition error rates of tested
shape normalization methods with varying sizes
of feature vectors. Tested on standard print
fonts.

Figure 4.3: Recognition error rates of tested
shape normalization methods with varying sizes
of feature vectors. Tested on fonts resembling
handwriting.

Figures 4.4 and 4.5 present the results of recognition by different classifiers. Moment nor-
malization is used for the normalization of character shape in this test. There is virtually no
difference between the linear and quadratic discriminant functions on characters in standard
print font, but the quadratic version outperforms the linear one on characters whose shape de-
viates more from the standard form. 3-NN achieves the best recognition rate on handwritten
characters, but it requires much more time for classification than LDF and QDF. The difference
between the accuracy of 3-NN and QDF is too insignificant to justify the use of 3-NN even if
space requirements of the classifier did not have to be considered.

25

● 4.3 Results

Figure 4.4: Recognition error rates using dif-
ferent classification methods with varying sizes
of feature vectors. Tested on standard print
fonts.

Figure 4.5: Recognition error rates using dif-
ferent classification methods with varying sizes
of feature vectors. Tested on fonts resembling
handwriting.

Figures 4.6 and 4.7 tell us what happens if PCA is used instead of LDA for reduction of
feature space dimensionality. The result is not surprising. Since the projection of features into
a lower-dimensional space in PCA ignores any differences between classes, the contrast with the
performance of LDA is striking.

Figure 4.6: Recognition error rates using dif-
ferent methods for feature dimensionality reduc-
tion with varying sizes of feature vectors. Tested
on standard print fonts.

Figure 4.7: Recognition error rates using dif-
ferent methods for feature dimensionality reduc-
tion with varying sizes of feature vectors. Tested
on fonts resembling handwriting.

Finally, Figures 4.8 and 4.9 show the comparison of feature extraction methods. The method
using HOG is, as expected, superior in both cases. The Zonal Line Density method I have
designed can recognize characters with quite a good precision when the characters are in a
standard print font, but since it is not a translation-invariant method, which means that it is
largely dependent on the position of pixels in the image, the accuracy of recognition on characters
with a shape that deviates from a standard template drops drastically. The other method, which
uses HOG, is translation-invariant up to a certain extent, because the gradient magnitudes and
directions are the same regardless of the position of the strokes, so if there is a stroke in one of
the 16 × 16 pixel blocks of the image, the stroke can be anywhere in the block and the extracted
features will be alike.

26

4. Learning and Classifica on ●

Figure 4.8: Recognition error rates using dif-
ferent methods for feature extraction. Tested on
standard print fonts.

Figure 4.9: Recognition error rates using dif-
ferent methods for feature extraction. Tested on
fonts resembling handwriting.

Table 4.1 presents the achieved minimum recognition error of all three tested classifiers, using
moment method for shape normalization. The feature vectors in all cases had the size of about
200 dimensions.

LDF QDF 3-NN

Standard font 0.07% 0.09% 0.15%

Neat handwriting font 0.89% 0.62% 0.52%

Brush-writing font 13.94% 10.91% 10.56%

Table 4.1: Minimum recognition error rate of different classification methods using moment normaliza-
tion and LDA for dimensionality reduction.

It is virtually impossible to achieve 100% correct recognition even on characters in standard
print font. One of the reasons is the lack of difference between hiragana characters へ (he), べ
(be) and ぺ (pe), and katakana ヘ (he), ベ (be) and ペ (pe).

27

● 4.3 Results

(a) 曙 (b) 惚 (c) 黙 (d) 飛 (e) 傷

(f) 香 (g) 猫 (h) 玄 (i) 鬱 (j) 孫

(k) 鎌 (l) 盧 (m) 烈 (n) 駿 (o) 秒

Figure 4.10: Examples of characters correctly classified by my system.

(a) 嗚 9 鳴 (b) 傷 9 楊 (c) 入 9 人 (d) 燦 9 傑

(e) 駻 9 解 (f) 禰 9 祇 (g) 覊 9 覇 (h) 辟 9 砕

Figure 4.11: Examples of characters which were incorrectly classified by my engine. The correct
character is shown on the left side and the incorrect classification is shown on the right side in the
captions under the images.

Table 4.2 shows the comparison of performance of my engine, NHocr, and Tesseract. I have
used moment normalization, LDA for dimensionality reduction, and QDF classifier for this test.
A set of 160 isolated characters in a standard print font, fonts resembling handwriting, and a
font resembling writing with a brush were used for testing. None of the samples for testing
have been used for training of my classifier so as not to give it an advantage. The precision of
recognition is calculated by dividing the number of correctly classified characters by the number
of all characters used in the test.

Both, my system and NHocr had no trouble recognizing characters in regular print font and
neat handwriting. The difference in performance developed on fonts which deviate a lot from
the standard form of character used in print fonts, which is not surprising because NHocr is not
suited for recognition of handwritten characters according to the creator.

The lack of performance of Tesseract OCR was surprising. It had trouble recognizing charac-
ters even in regular print font. However, it is impossible to make any conclusions as to why the
performance was so poor due to the absence of information about how the data for classification,
which is available on the website of Tesseract, was trained.

28

4. Learning and Classifica on ●

Tesseract NHocr My engine

Recognition precision 35.0% 86.3% 98.8%

Table 4.2: Percentage of correctly recognized characters by the tested OCR systems.

29

Chapter 5
Text Extraction

If one wants to perform optical character recognition in an application that is meant for
real-life practical use, it is necessary to extract the text from an image taken by a camera and
split the text into individual characters. First of all, a choice had to be made as what kind of
approach to text extraction will be adopted. One of the options was extraction with assistance,
where the user specifies what part of image they are interested in and want the application to
recognize. Another one was extraction without any assistance, which means that an algorithm
has to find out whether there is any text in the image and return a bitmap only with the text
extracted from the whole image as its output. The former is easier to implement and also more
suitable for the purpose of this work, because if the user is interested only in a part of text,
there is no point in extracting and doing OCR on the whole text captured by the camera as
it would produce extra information that the user is not interested in, which would impair the
whole user experience. Text detection without assistance might be useful in some cases too, but
the user can always specify the part of the image they are interested in if they are given means
to do so. If they were not given a way to do it, they could never select only a part of captured
text. Therefore, it was decided that the user of the application would have to draw a rectangle
on the screen of a device and only the section of the image bounded by the rectangle would be
processed and forwarded to the OCR engine of the application and the rest of the image would
be discarded.

There are two major categories of localization of text in an image and extraction of it
therefrom:

� Localization and extraction of text from printed documents - Locating and ex-
tracting text from a document is a task which has been studied for a long time, and now
there are methods which achieve precision of over 99% [32]. One of the ways to extract
text from a document is by binarization of the scanned image.

� Localization and extraction of text from a scene in real world - While localization
of text in printed documents can be considered a solved task, localization of text in a
scene from the real world is still an open problem which requires much more sophisticated
techniques. There are two main categories of methods: methods using sliding windows,
and methods using region grouping [33].

In the end, only a simple method for text extraction using binarization of image has been
implemented in the application. The idea is that the text and the background will be binarized
as inverse colors, either black text on white background or white text on black background.
It does not try to locate what appears as text in the image like advanced methods do. The
following assumptions are made for the extraction process.

30

5. Text Extrac on ●

Figure 5.1: Diagram of the steps from image acquisition to character classification.

� The text is in contrast with the background. If the text is of the same color as the
background, the extraction will fail. The ideal case is when there is a large difference
between the luminance of the color of the text and the luminance of the background color.

� The background is not complex and does not consist of light and dark colors.

If an image does not meet the following criteria, it is unlikely that the text will be extracted
successfully therefrom.

The following subsections describe all methods for text extraction and character segmentation
which have been tested and used.

5.1 Binarization
First, the 32-bit image is reduced to 24-bit depth by dropping the alpha channel with trans-

parency information, which is irrelevant here. Then, the 24-bit image is transformed into an
8-bit grayscale image by the luminance-preserving method [34] which is computed as a weighted
sum of the intensity of the red, green, and blue channels of the original image:

Gray = 0.2126×Red + 0.7152×Green + 0.0722×Blue (5.1)

The resulting grayscale intensity values of individual pixels range from 0 to 255. The grayscale
conversion is over and binarization process follows.

All pixels whose intensity values on the gray scale are higher than a certain threshold are
transformed into white pixels, and all pixels whose intensities are lower are assigned as black
pixels. Otsu’s thresholding method [35] has been used to find an optimum threshold value to
separate the foreground from the background. The algorithm works with a grayscale image and
it separates its gray-level histogram into two classes - black and white - so that the sum of their
weighted between-class variances is maximal. The sum of between-class variances is defined as

σ2
B = ω0ω1(µ1 − µ0)2, (5.2)

31

● 5.2 Black on White / White on Black Detec on

(a) (b)

(c) (d)

Figure 5.2: Example of binarization using Otsu’s thresholding method. (a) and (c) are original images.
(b) and (d) are the binary image results.

where ω0 and ω1 are the percentages of foreground and background pixels given by

ω0 =
∑k

i=1 pi

ω1 =
∑L

i=k+1 pi,

(5.3)

where L is the total number of gray levels, k is a threshold between the two classes, and pi is
the percentage of pixels at gray level i, which means that

L∑
i=1

pi = 1, pi ≥ 0. (5.4)

Values µ0 and µ1 are the class mean levels given by

µ0 =
∑k

i=1
ipi
ω0

µ1 =
∑L

i=k+1
ipi
ω1

,

(5.5)

The optimum threshold value that maximizes σ2
B is found by performing a sequential search over

the histogram levels. Each gray level is selected as the threshold parameter and its corresponding
σ2

B is calculated. The gray level for which σ2
B is maximal is chosen as the best candidate for

the threshold. Should the area of maximum σ2
B stretch over two or more neighboring levels, its

rounded average is selected as the best candidate.

5.2 Black on White / White on Black Detection
After performing the binarization, it is necessary to determine whether the text is black

on white background or vice versa. I have designed the following algorithm for this purpose.

32

5. Text Extrac on ●

Assuming that the text is horizontal, it searches for a column with the largest number of white
pixels and a column with the largest number of black pixels. If the largest number of white
pixels found is larger than the largest number of black pixels, the background is considered to
be white. Otherwise, the background is believed to be black.

Input: BinaryImage
whiteMax ←− 0;
blackMax ←− 0;
for i ←− 1 to number of columns do

colWhite ←− 0;
colBlack ←− 0;
for j ←− 1 to number of rows do

if BinaryImage[i][j] is black then
colBlack ←− colBlack + 1;

else
colWhite ←− colWhite + 1;

end
end
if colWhite > whiteMax then

whiteMax ←− colWhite;
end
if colBlack > blackMax then

blackMax ←− colBlack;
end

end
if whiteMax > blackMax then

the background is white;
else

the background is black;
end

Assuming that there is some space on the side by the text, it is not necessary to go through
all columns of the picture, but only analyze the first column. If the first column consists of
white pixels, the background is considered to be white. Otherwise, the background is black and
the colors need to be swapped because the gradient directions in feature extraction would have
opposite orientation.

5.3 Skew Correction
The deviation of text baseline from the horizontal axis - in case of horizontal text - is

called a skew, and it is possible to correct it by rotation of the text. The algorithm for character
segmentation as well as the character recognition process is likely to fail if the text is significantly
skewed. Therefore, it is desirable to detect the skew angle of the text and rotate the text so
that it is aligned with the horizontal axis in case of horizontal text. Radon transform method
proposed by Aithal et al. [36] is applied to detect the skew angle.

The Radon transform function computes projections of an image matrix along specified di-
rections [21]. The original version of the algorithm can be explained by supposing that there

33

● 5.3 Skew Correc on

Figure 5.3: Radon transform mechanism on the left and an example of one projection on the right.
Figures taken from [37]

is a source of parallel beams that are emitted towards the image matrix and their projection is
registered by a sensor line behind the image matrix, which is perpendicular to the beams. This
idea of figurative explanation is used on Matlab Documentation Center [37]. In my implementa-
tion, the source of beams is stationary and the image matrix rotates around its center; however,
identical results can be achieved. The projection is computed under 180 different angles, with a
1° step between each angle.

Input: OriginalImage
Output: R
R ←− new int[180][hypot(WOriginalImage, HOriginalImage)];
for i ←− 1 to 180 do

RotatedImage ←− rotate OriginalImage by i degrees;
R[i] ←− sum up columns of RotatedImage;

end

Each projection in the Radon transform is stored in a matrix R of sizes 180×diagimg, where
diagimg is the length of the diagonal of the image. The main idea of this method is that the
highest intensity value in the projections will be in the column which corresponds to the skew
angle. The reason for that is that pixels of text projected along its skew angle will be projected
on the least number of bins. Let the intensity of a projection be the number of pixels collected
in a projection on a single bin. The skew angle of the text is determined by the following process
wherein the angle with the highest found intensity is found.

34

5. Text Extrac on ●

Input: R
maximum ←− 0;
skewAngle ←− 0;
for i ←− 1 to 180 do

for j ←− 1 to diagimg do
if R[i][j] > maximum then

maximum ←− R[i][j];
skewAngle ←− i;

end
end

end
skewAngle ←− -(skewAngle - 90);

The image used for the Radon transform should be reduced in size in order to make the
computation faster. The time necessary for the computation grows quadratically with increasing
size of the image.

Figure 5.4: An example of Radon transform on a correctly aligned line of text.

The performance of Radon transform for skew correction is very good on a long line of text.
However, when the text consists only of a few characters, this approach tends to fail and does
not produce exact results. The reason for the drop in performance is that the vertical projection
of the text does not differ very much from projections in different directions because the number
of pixels in a line is not that big. As a result, a projection in a different direction might have a
higher intensity than the projection in the direction of the skew angle.

A possible solution for the problem described above might be not to look for the highest
intensity, but to look for the longest sequence of bins with zero intensity in a projection. The
projection line has the same length for all examined angles, which means that when the baseline
of text is perpendicular to the projection line, the area of bins which nothing is projected on is
the largest as can be seen in 5.5. If there are at least two characters of aspect ratio close to 1:1
in the image, the rotation of the text is determined correctly in most cases. However, if there
is only one character in the image, neither this method can determine the rotation correctly.
This simple method is also likely to fail if something else than the text, for example residual
noise, is present in the image, but since the whole character extraction process assumes that the
background has been cleaned by binarization, this problem does not have to be considered here.

35

● 5.4 Character Segmenta on

Figure 5.5: Radon transform of the image on the right. Blue color denotes zero intensity, red color
denotes high intensity. The location of the longest zero projection sequence in the Radon transform
corresponds with the skew angle of the text and it can be found in the 91th column of the Radon transform
matrix. The point of the highest intensity is found in the 107th column and the estimated skew angle
differs from the correct one.

5.4 Character Segmentation

Unlike the ISO basic Latin alphabet wherein all characters printed in a standard font, except
lowercase ’i’ and ’j’, are single connected components, Chinese characters and characters from
Japanese syllabaries may consist of several unconnected components, which makes extraction of
individual characters from text a more complex task. If only characters printed in a standard
font, in which individual characters do not overlap each other and heights of the characters
are almost equal to their widths, were considered, an approach based on aspect ratio might be
adopted. However, a method using only aspect ratios to extract individual characters will fail if
the characters are handwritten or printed in a non-standard font, wherein the heights are likely
to differ from the widths of the characters, and two or more characters might be connected at
some point or overlap each other.

A modified version of algorithm presented by Chen et al. [38] has been used to perform the
character segmentation in this work. It makes use of projection of the text on a line, which is
analyzed to derive several features which are then used to segment the individual characters.

5.4.1 Projection Profile Analysis

Segmentation of horizontal text written from left to right will be described here. However,
a very similar process can be used to extract individual characters from horizontal text written
from right to left and from vertical text as well. The projection of horizontal text is acquired
by the following process.

36

5. Text Extrac on ●

Input: BinaryImage
Output: projection
for i←− 1 to number of columns in the image do

columnSum ←− 0;
for j ←− 1 to number of rows in the image do

/* assumes black text on white background */
columnSum ←− columnSum + 255 - BinaryImage[i][j];

end
projection[i] ←− columnSum;

end

Calcula ng Projec on Block Features

1. Block width Wi - The width of a projection block.

2. Block height Hi - The height of a projection block.

3. Block gap Gij - The distance between two neighboring projection blocks.

4. Average block width avgWB = 1
N

∑N
i=1 Wi - The average width of a projection block.

5. Average character width avgWC = 1
M

∑M
i=1 Wi, ∀Wi ∈ W : Wi > avgWB - The average

width of a projection block which is wider than the average block width, therefore likely
to be a single character and not just a part of it.

6. Average block height avgHB = 1
N

∑N
i=1 Hi - The average height of a projection block.

N is the total number of projection of blocks and M is the number of projection blocks that are
wider than avgWB.

Each projection block is categorized into one of the following four groups of blocks based
on the profile features described above. The classification of blocks into the four groups follows
exactly the same rules as presented by Chen et al. [38]

1. Mark: The width of the projection block is smaller than avgWC×Tmark, where Tmark = 0.3.

2. Half-character: The width of the projection block is larger or equal to avgWC×Tmark and
smaller than avgWC × Thalf , where Thalf = 0.7.

3. Single character: The width of the projection block is larger or equal to avgWC × Thalf

and smaller than avgWC × Tsingle, where Tsingle = 1.5. The block is likely to be a single
character.

4. Multi-character: The width of the projection block is larger or equal to avgWC × Tsingle.
The block is probably a compound of two or more characters.

37

● 5.4 Character Segmenta on

Figure 5.6: An example of a multi-character block correctly split into two blocks with kanji 媒 and 体.

Spli ng Mul -character blocks

The blocks that are classified as multi-character blocks are likely to consist of two or more
overlapping characters and need to be split. However, there is no easy way to correctly tell
where to split the block into two. Common characteristics of kanji and Japanese syllabaries
suggest that it is reasonable to assume that a suitable splitting point will be somewhere near
the point that is avgWC distant from the side of the block. Therefore, a candidate area for a
splitting point which ranges from the distance of 0.55 × avgWC from the side of the block to
1.45× avgWC is defined. Subsequently, the following process is performed:

Divide the candidate area into 9 sections. Section 1 is the closest to the side of the
block and section 5 is where the point avgWC distant from the side is. ;
Find the minimum mini of the histogram projection in each of the 9 sections. ;
Find the maximum maxH of the histogram projection in the whole candidate area.
;
if the minimum in sections 4, 5 or 6 is lower than maxH

4 then
the splitting point is the minimum of mini, where i ∈ {4, 5, 6}. ;

else
the vector of minimums mini is multiplied by elements with vector
3.0 2.5 2.0 1.5 1.0 1.5 2.0 2.5 3.0 ;

The minimum of modified mini, where i ∈ {1, 2, . . . 9} is selected as the
splitting point. ;

end

The algorithm tries to split the block in the point near avgWC where the density of character
stroke pixels is minimal, which is likely to occur on the side of the characters.

When all multi-character blocks are split, another two features are calculated. It is the
estimate of the average gap between two characters (avgGB) and the estimate of the average
gap between two parts of one character (avgGW).

1. avgGB = 1
N

∑N
i=1 Gij , where Gij is a gap between projection blocks Bi and Bj , and Bi

is a multi-character, single character or a half-character, Bj is any of the four categories,
and N is the total number of gaps meeting these conditions.

2. avgGW = 1
M

∑M
i=1 Gij , where Gij is smaller than avgGB and it is a gap between projection

blocks Bi and Bj , and Bi is a half-character or a mark, Bj is , and M is the number of
gaps meeting these conditions.

Merging Mark Blocks

The blocks classified as marks are very unlikely to be single characters and most of them
need to be merged with a neighboring block. Let Bi, Bj , and Bk be three neighboring blocks

38

5. Text Extrac on ●

and Bj be classified as a mark block. If the gap Gij between blocks Bi and Bj is smaller than
the gap Gjk between Bj and Bk, and Gij is also smaller than the average within-character gap
avgGW , Bj is merged with Bi. If Gjk is smaller than Gij and avgGW , Bj is merged with Bk.

If a mark did not meet either of the above criteria and was not merged with a neighboring
block, its height is compared with the average block height avgHB. In case the height of the
block mark is larger than a half of avgHB, it is unlikely to be a punctuation mark, comma,
or residual background noise, and it ought to be merged with a neighboring block if one of its
neighbors is a mark block or a half-character block. Should both neighbors belong to one of the
two categories, a mark block is given higher priority for merging. If the two neighbor blocks are
both marks or both half-characters, the currently examined block is merged with the one that
is closer to it. When all mark blocks have been processed, the average gaps avgGB and avgGW

are recalculated.

/* Bi, Bj, and Bk are neighboring blocks */
foreach block Bj ∈ mark blocks do

markConnected ←− 0;
if Gij < Gjk and Gij < avgGW then

merge Bi and Bj ;
markConnected ←− 1;

else if Gjk < Gij and Gjk < avgGW then
merge Bj and Bk;
markConnected ←− 1;

end
if markConnected = 0 and Hj > avgHB

2 then
if Bi is mark and Bk is mark then

if Gij < Gjk then
merge Bi and Bj ;

else
merge Bj and Bk;

end
else if Bi is mark then

merge Bi and Bj ;
else if Bk is mark then

merge Bj and Bk;
else if Bi is half-character and Bk is half-character then

if Gij < Gjk then
merge Bi and Bj ;

else
merge Bj and Bk;

end
else if Bi is half-character then

merge Bi and Bj ;
else if Bk is half-character then

merge Bj and Bk;
end

end
end

39

● 5.4 Character Segmenta on

Figure 5.7: An example of mark blocks correctly merged into hiragana character り.

Merging Half-character Blocks

The last phase of the segmentation deals with half-character blocks. There is a high chance
that a half-character block is a part of a character and should be merged with another block;
however, it can also be a character on its own, whose width is simply smaller than the average.
Therefore, it is impossible to easily tell whether a half-character should be merged with another
block or not. The information about the gap sizes around the half-character block are used
in the decision whether a half-character block should be merged or not. If a gap between a
half-character block and one of its neighboring blocks is smaller than the average within-block
gap avgGW or smaller than 2 times avgGW in case the neighbor is a half-character itself, the
half-character block may be merged with its neighbor and the possibility is explored further.

The block resulting from the merge should not be significantly wider than the average width
of a character, so a limit for the resulting width is set. Should the merge result exceed the limit,
the merge is not performed and the half-character block is considered to be a single character.
The limit was set as 1.2× avgWC . The following pseudocode describes the process.

/* Bi, Bj, and Bk are neighboring blocks */
foreach block Bj ∈ half-character blocks do

if Gij < Gjk then
if (Bi is single character block and Gij < avgGW) or (Bi is a
half-character block and Gij < 2× avgGW) then

if Wi + Gij + Wj ≤ 1.2× avgWC then
merge Bi and Bj ;

end
end

else
if (Bk is single character block and Gjk < avgGW) or (Bk is a
half-character block and Gjk < 2× avgGW) then

if Wj + Gjk + Wk ≤ 1.2× avgWC then
merge Bj and Bk;

end
end

end
end

After performing the last phase of the segmentation, each block is treated as a single character
which can be processed in order to extract its feature vector, which is subsequently used for
classification of the character using one of the classifying methods introduced in the previous
chapter.

40

5. Text Extrac on ●

Figure 5.8: An example extracted from a longer line of text where hiragana characters と and し, which
were both classified as half-character blocks, were incorrectly merged into one block due to their small
widths and proximity.

Figure 5.9: An example of correctly segmented line of printed text.

Successful extraction
Handwritten text 277/315 (87.9%)
Printed text 260/262 (99.2%)

Table 5.1: Table shows the percentage of individual characters successfully extracted from text.

Table 5.1 shows the accuracy of segmentation algorithm on printed text and handwritten
text. The accuracy is calculated as a ratio between correctly extracted characters and total
number of characters. A segmentation mistake where two characters are merged into one,
therefore, counts as two errors. The cases where the algorithm failed on printed characters
were situations in which there were only a few characters in the picture, so the information
about characteristics of the text was limited and was not sufficient to derive a correct decision.
Therefore, it might be a good idea to abandon this method when only a few projection blocks
are detected and try adopting an aspect ratio approach which would attempt to join neighboring
blocks whose width/height aspect ratio is significantly lower than 1, and cut blocks whose aspect
ratio is significantly higher than 1.

41

Chapter 6
Implementation

6.1 Training
The training phase and all testing of my OCR engine was performed in Matlab. The following

toolboxes and applications that are not a part of an official Matlab distribution were used for
training or testing of different approaches in Matlab:

� Statistical Pattern Recognition Toolbox for Matlab - A toolbox with implemen-
tations of various methods used in pattern recognition and machine learning created
and maintained by Vojtěch Franc and Václav Hlaváč. http://cmp.felk.cvut.cz/cmp/
software/stprtool

� Feature Analysis - Code by Iftekhar Tanveer, http://www.mathworks.com/matlabcentral/
fileexchange/26895-feature-analysis. Its LDA implementation was used for dimen-
sionality reduction step.

6.2 Comparison
The following tools were used for comparison of my OCR engine with other free OCR engines

for Japanese language:

� Tess4J - Java wrapper for Tesseract OCR API. http://tess4j.sourceforge.net/

� WeOCR Project website - Web-based online OCR services with various OCR engines,
including NHocr. http://weocr.ocrgrid.org/

6.3 Application
An alpha version of a mobile application for the Android OS has been created. The ap-

plication is written entirely in Java language, and the minimum Android API requirement for
the application is API 111, that is Android 3.0 Honeycomb. The application makes use of the
built-in camera of a device to scan a text which the user wants the application to recognize and
translate. The user can see the camera preview on the screen of the device and he or she has to
draw a rectangle over the part of the image where the text he or she wants to analyze is located.
After the user makes a selection, the specified section of the image is forwarded and processed
further. The pure text is extracted by methods described in Chapter 5, but skew correction is

1Android API levels http://developer.android.com/guide/topics/manifest/uses-sdk-element.html

42

http://cmp.felk.cvut.cz/cmp/software/stprtool
http://cmp.felk.cvut.cz/cmp/software/stprtool
http://www.mathworks.com/matlabcentral/fileexchange/26895-feature-analysis
http://www.mathworks.com/matlabcentral/fileexchange/26895-feature-analysis
http://tess4j.sourceforge.net/
http://weocr.ocrgrid.org/
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html

6. Implementa on ●

not used in the current implementation of the application2. The extracted text is then sent to
the OCR engine. The optimal combination of preprocessing, feature extraction, and classifier
as presented in Chapters 3 and 4 is used.

Figure 6.1: Screenshot of the Android
application.

To acquire a sharp and clean image of a text, the text
has to be in focus of the camera. By default, the cam-
era of a device does not try to focus on any object on its
own, but it is possible to change its behavior so that it
handles focusing automatically. Continuous picture auto
focus mode (FOCUS_MODE_CONTINUOUS_PICTURE)3,
which is an API level 14 parameter, is used on de-
vices that support this feature to make the camera
perform auto-focusing. Continuous video focus mode
(FOCUS_MODE_CONTINUOUS_VIDEO) is used on de-
vices supporting only API 13 and lower. Continuous pic-
ture focus mode is preferable as it is more dynamic, while
the video focus mode results in smoother changes in fo-
cus according to the official Android documentation. It is
possible to use the flashlight integrated in a mobile device
to improve legibility of text under bad lighting conditions.
The flashlight can be turned on and off by setting the pa-
rameters of the camera.

The original idea was that the application would pe-
riodically scan the view of the camera and provide the
user with recognition results which will be automatically
updated if the user moves with the device so that the se-
lection rectangle drawn by the user on the screen specifies
a different part of text, thus different characters. However,
it has proven to be too much of a burden for the device to
take high-resolution pictures one by one in a loop as fast
as it can, which was roughly a period of one picture per half a second. The device would run
out of memory despite attempts to recycle the pictures which were not necessary anymore by
the garbage collector in Java. Therefore, the current implementation requires the user to draw
a selection rectangle on the screen and press a button which makes the camera take one picture.
Subsequently, the section of the picture defined by the selection rectangle is forwarded to the
OCR engine of the application, and the result of the recognition is shown on the screen when
the classification process is over. The picture taken by the camera is not stored anywhere and
is recycled when the OCR engine does not need it anymore.

Mathematical operations are performed using the ElPsy Java library which I have made
for this purpose. The library is small and does not feature many functions, but it features all
functions that were needed for the application to run which are not in the standard Java Math
library.

The JMDict (Japanese-Multilingual Dictionary)4, a popular electronic Japanese dictionary
file, is used to translate Japanese words into English. Since JMDict is distributed only as a
single XML file, it has been exported into a SQLite database using the script available at http:
//repo.or.cz/w/jblite.git. The program tries to match sequences of characters recognized

2Skew correction is used in the Matlab demo application presented in Appendix E.
3Android Documentation - Camera.Parameters http://developer.android.com/reference/android/

hardware/Camera.Parameters.html
4The JMDict Project - http://www.edrdg.org/jmdict/j_jmdict.html

43

http://repo.or.cz/w/jblite.git
http://repo.or.cz/w/jblite.git
http://developer.android.com/reference/android/hardware/Camera.Parameters.html
http://developer.android.com/reference/android/hardware/Camera.Parameters.html
http://www.edrdg.org/jmdict/j_jmdict.html

● 6.3 Applica on

by the OCR engine with dictionary entries in the database. The application assumes that the
sequence is not very long, so it starts with the whole sequence of characters and reduces the
length of the sequence one by one from the end of the sequence until a match in the database,
a word or a phrase, is found. The subsequence of characters found in the dictionary is removed
from the whole sequence and the same process is repeated on the rest of the sequence until the
whole sequence is processed and translated. After that, all entries found in the database are
displayed on the screen. Access into database is rather slow and needs to be optimized.

Sony Ericsson Xperia Ray with OS Android 4.0.4 Ice Cream Sandwich (API Level 15) has
been used for testing. The device has a 1 GHz single-core CPU and dual-channel 333 MHz
LPDDR2 memory. The resolution used by the camera is 2048 × 1536 pixels. The time between
the moment when the user presses the button for recognition and when the picture from camera
is ready for further processing is approximately 1,200 milliseconds and there is currently no way
to speed up this phase as it is hardware-dependent. The time necessary to retrieve a selection
of size 170 × 140 pixels from the whole picture is about 140 milliseconds. Extracting a feature
vector from a picture of the aforementioned size takes roughly 750 milliseconds. Classification
of a feature vector of 170 dimensions requires roughly another 350 milliseconds.

44

Chapter 7
Conclusion

7.1 Summary
Several methods for optical character recognition of Japanese writing system have been tested

and compared and the optimal method has been implemented in a mobile application for devices
with Android OS. The application is in alpha phase, has not been given a name yet, and needs
further development. Several essential improvements should be done in the near future so that
the application can be released to public.

The results show that a non-linear method for shape normalization results in better perfor-
mance on characters which deviate from the standard form of the character. It is an expected
result, because non-linear normalization methods focus on the parts of the character that need
to transformed in order to get closer to a standard shape of the character used in print pub-
lications. However, there was no significant difference in performance between the two tested
non-linear methods, the moment and bi-moment methods.

The created OCR engine was tested using a character set of 2,908 characters defined specifi-
cally for this application. The achieved recognition rate on isolated characters in standard fonts
used for instance in books and newspapers was 99.91% when using moment method for shape
normalization of the character, HOG for feature extraction, LDA for dimensionality reduction of
feature vectors, and QDF for classification. The optimal feature vector size was approximately
150-180 dimensions. The recognition rate dropped to 99.38% on fonts imitating easily legible
handwriting. The engine has outperformed NHocr, a free OCR engine for Japanese language
which is used by a handful of applications, including those for mobile devices.

Text extraction from image is the weakest point of the system that requires attention the
most in the near future. Extraction of the text is performed only by using the difference in
contrast between the text and the background, which poses restrictions on the range of usability
of the system. Thankfully, in many cases in which a user might be interested in the meaning
of text, such as books, signs, and product labels, the text usually is in significant contrast with
the background. Most often it is black text on white or whitish background.

Projection profile analysis is used for character segmentation and it has displayed good
performance on longer lines of text. When the text for recognition is only one or a few characters
long, there is not enough information for the algorithm to learn the properties of the text and the
performance is not optimal. Implementing a different approach for such cases, e.g. an approach
using aspect ratio of characters, is necessary.

The high accuracy of recognition of isolated characters is a good sign that the application
might be used in a wide range of situations when other pieces of the system, text extraction
in particular, are improved. It would be possible to use the created OCR engine in other
applications that require Japanese OCR, too.

45

● 7.2 Future Work

7.2 Future Work
Extraction of Text from Background

The performance of the application is largely dependent on whether the text is extracted
correctly from the image or not. Currently, only extraction from a simple background
is possible and extraction from more complex backgrounds will fail, thus the extraction
process is what needs the most attention now. Improvement of text extraction would
expand the scope of use of the application and it would be possible to recognize text even
in situations where it is more difficult to separate the text from background.

Vertical Text and Horizontal Text with Text Flow from Right to Left
The method for segmentation of characters has been tested on horizontal text with flow of
text from left to right and it is also the only supported text flow in the current implemen-
tation. Since Japanese is traditionally written vertically from top to bottom with columns
ordered from right to left, and both the horizontal and vertical flow is used today - the
vertical text flow being the prevalent text flow in paper publications and the horizontal
text being prevalent in handwriting - it is necessary for the application to support both
text flows. In addition, one may encounter cases in which the text is horizontal, but it
flows from right to left. It is not a common text flow and it was mostly used in the past
in cases where it was necessary to write in a horizontal line, for example on horizontal
wooden signs. However, as it is a text flow which is not a foreign concept for the Japanese
language, its support in future is desirable too.

Skew and Slant Correction
A method for skew correction to align the text baseline with the horizontal axis for hori-
zontal text has been implemented and tested and it showed good results on longer lines of
text. The performance on text which consists of one or a few characters, however, is not
satisfactory and modifications need to be done if skew correction should be used in the
application.
Text can also be slanted, which means that the direction of the left and right bounding
line of every character in the text deviates from the direction perpendicular to the text
baseline. If a text is significantly slanted, the segmentation and character recognition
algorithms are likely to fail. For that reason, a slant correction would also increase the
performance and operational scope of the application.

Speed Optimization
The code has been written with processing speed in mind; however, there is space for
further improvement and the improvement is necessary. A possible solution to increase
the speed of the OCR phase might be to write the code responsible for OCR in C++ to
make the demanding computations run faster and wrap it in a Java shell. The dictionary
database and accessing thereof has to be optimized and its speed improved. A new SQLite
database should be created from the dictionary XML file, omitting the parts unnecessary
for the application and organizing the database so as to minimize redundancy.

Support for Alphanumeric Characters
I would like to include support for recognition of characters from the basic Latin alphabet
and Arabic numerals in the future, as there are phrases and acronyms using these literals
alone or in combination with kanji, hiragana, and katakana characters in Japanese. While
a user would be able to read a sequence of Latin letters and Arabic numerals, they might
not understand their meaning in Japanese and the application would not be able to find
the phrase in the dictionary as it could not recognize the characters.

46

References

[1] S. Mori, C. Suen, and K. Yamamoto, “Historical review of ocr research and development”,
Proceedings of the IEEE, vol. 80, no. 7, pp. 1029–1058, Jul. 1992. doi: 10.1109/5.156468.

[2] L. Eikvil, “Optical character recognition”, 1993. [Online]. Available: http://www.nr.no/
~eikvil/OCR.pdf.

[3] S. Makino, Y. Abe Hatasa, and K. Hatasa, Nakama 1: Japanese Communication, Culture,
Context. Houghton Mifflin College Div, Jun. 1998, isbn: 978-0618135721.

[4] F. Yin, Q.-F. Wang, X.-Y. Zhang, and C.-L. Liu, “Icdar 2013 chinese handwriting recog-
nition competition”, in Document Analysis and Recognition (ICDAR), 2013 12th Inter-
national Conference on, Aug. 2013, pp. 1464–1470. [Online]. Available: http://www.
nlpr.ia.ac.cn/events/CHRcompetition2013/competition/ICDAR%202013%20CHR%
20competition.pdf.

[5] C.-L. Liu, F. Yin, Q.-F. Wang, and D.-H. Wang, “Icdar 2011 chinese handwriting recog-
nition competition”, in Document Analysis and Recognition (ICDAR), 2011 International
Conference on, Sep. 2011, pp. 1464–1469. [Online]. Available: http://www.nlpr.ia.ac.
cn/events/HRcompetition/ICDAR2011%20CHR%20Competition%20Final.pdf.

[6] Y. Sobu and H. Goto, “Binary tree-based accuracy-keeping clustering using cda for very
fast japanese character recognition”, in Proceedings of the IAPR Conference on Machine
Vision Applications (IAPR MVA 2011), 2011, pp. 299–302. [Online]. Available: http:
//www.mva-org.jp/Proceedings/2011CD/papers/09-18.pdf.

[7] K. Hori, K. Nemoto, and A. Itoh, “A study of feature extraction by information on outline
of handwritten chinese characters : peripheral local outline vector and peripheral local
moment”, The transactions of the Institute of Electronics, Information and Communication
Engineers, vol. 82, no. 2, pp. 188–195, Feb. 1999, issn: 09151923. [Online]. Available: http:
//ci.nii.ac.jp/naid/110003228675/en/.

[8] A. Kent, H. Lancour, and J. E. Daily, Encyclopedia of Library and Information Science:
Volume 13 - Inventories of Books to Korea: Libraries in the Republic of , ser. Encyclo-
pedia of Library and Information Science. Taylor & Francis, 1975, pp. 269–273, isbn:
9780824720131. [Online]. Available: http://books.google.cz/books?id=uyPhAAAAMAAJ.

[9] W. Hadamitzky and M. Spahn, Japanese Kanji and Kana. A Guide to the Japanese Writ-
ing System. Ser. Tuttle Language Library. Charles E. Tuttle, 1996, isbn: 9780804820776.
[Online]. Available: http://books.google.cz/books?id=BCGylyOazSYC.

[10] List of jōyō kanji, Official website of Japanese Agency for Cultural Affairs. [Online].
Available: http://www.bunka.go.jp/kokugo_nihongo/joho/kijun/naikaku/pdf/
joyokanjihyo_20101130.pdf.

47

http://dx.doi.org/10.1109/5.156468
http://www.nr.no/~eikvil/OCR.pdf
http://www.nr.no/~eikvil/OCR.pdf
http://www.nlpr.ia.ac.cn/events/CHRcompetition2013/competition/ICDAR%202013%20CHR%20competition.pdf
http://www.nlpr.ia.ac.cn/events/CHRcompetition2013/competition/ICDAR%202013%20CHR%20competition.pdf
http://www.nlpr.ia.ac.cn/events/CHRcompetition2013/competition/ICDAR%202013%20CHR%20competition.pdf
http://www.nlpr.ia.ac.cn/events/HRcompetition/ICDAR2011%20CHR%20Competition%20Final.pdf
http://www.nlpr.ia.ac.cn/events/HRcompetition/ICDAR2011%20CHR%20Competition%20Final.pdf
http://www.mva-org.jp/Proceedings/2011CD/papers/09-18.pdf
http://www.mva-org.jp/Proceedings/2011CD/papers/09-18.pdf
http://ci.nii.ac.jp/naid/110003228675/en/
http://ci.nii.ac.jp/naid/110003228675/en/
http://books.google.cz/books?id=uyPhAAAAMAAJ
http://books.google.cz/books?id=BCGylyOazSYC
http://www.bunka.go.jp/kokugo_nihongo/joho/kijun/naikaku/pdf/joyokanjihyo_20101130.pdf
http://www.bunka.go.jp/kokugo_nihongo/joho/kijun/naikaku/pdf/joyokanjihyo_20101130.pdf

● REFERENCES

[11] M. Nakagawa and K. Matsumoto, “Collection of on-line handwritten japanese character
pattern databases and their analyses”, IJDAR, vol. 7, no. 1, pp. 69–81, 2004. [Online].
Available: http://www.tuat.jp/~nakagawa/pub/2004/pdf/nakagawa0404a-e.pdf.

[12] List of 2500 most frequent kanji in newspapers. [Online]. Available: http://www.atgc.
org/kanji/kanji_2500_master_table_fr.html.

[13] J. W. Breen, Electronic dictionary file kanjidic, Monash University, 2000. [Online]. Avail-
able: http://www.csse.monash.edu.au/~jwb/kanjidic.html.

[14] R. Fisher, S. Perkins, A. Walker, and E. Wolfart, Contrast stretching, 2003. [Online].
Available: http://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm.

[15] C.-L. Liu, H. Sako, and H. Fujisawa, “Handwritten chinese character recognition: alterna-
tives to nonlinear normalization”, in Proceedings of the Seventh International Conference
ond Document Analysis and Recognition, IEEE, 2003, pp. 524–528.

[16] C.-L. Liu, M. Koga, H. Sako, and H. Fujisawa, “Aspect ratio adaptive normalization for
handwritten character recognition”, in Advances in Multimodal Interfaces ―ICMI 2000,
ser. Lecture Notes in Computer Science, vol. 1948, Springer, 2000, pp. 418–425.

[17] C.-L. Liu and K. Marukawa, “Pseudo two-dimensional shape normalization methods for
handwritten chinese character recognition”, Pattern Recognition, vol. 38, no. 12, pp. 2242–
2255, Dec. 2005. [Online]. Available: http://dx.doi.org/10.1016/j.patcog.2005.04.
019.

[18] M.-K. Hu, “Visual pattern recognition by moment invariants”, Information Theory, IRE
Transactions on, vol. 8, no. 2, pp. 179–187, Feb. 1962. doi: 10.1109/TIT.1962.1057692.

[19] E. R. Davies, Machine Vision: Theory, Algorithms, Practicalities. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2004, pp. 49–51, isbn: 0122060938.

[20] R. Fisher, S. Perkins, A. Walker, and E. Wolfart, Gaussian smoothing, 2003. [Online].
Available: http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm.

[21] B. Batchelor, Machine Vision Handbook. Springer, 2012, pp. 716–718, 764–765, isbn: 978-
1-84996-168-4.

[22] J.-x. Dong, A. Krzyzak, and C. Y. Suen, “An improved handwritten chinese character
recognition system using support vector machines”, Pattern Recognition Letters, vol. 26,
no. 12, pp. 1849–1856, 2005, issn: 0167-8655. [Online]. Available: http://dx.doi.org/
10.1016/j.patrec.2005.03.006.

[23] F. Kimura, T. Wakabayashi, S. Tsuruoka, and Y. Miyake, “Improvement of handwritten
japanese character recognition using weighted direction code histogram”, Pattern Recog-
nition, vol. 30, no. 7, pp. 1329–1337, 1997. [Online]. Available: http://dx.doi.org/10.
1016/S0031-3203(96)00153-7.

[24] M. Sagheer, C. L. He, N. Nobile, and C. Suen, “Holistic urdu handwritten word recognition
using support vector machine”, in Pattern Recognition (ICPR), 2010, 20th International
Conference on, IEEE, Aug. 2010, pp. 1900–1903. [Online]. Available: http://dx.doi.
org/10.1109/ICPR.2010.468.

[25] L. G. Roberts, “Machine perception of three-dimensional solids”, Optical and Electro-
Optical Information Processing, 1965.

[26] K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed. Academic Press,
1990, pp. 76–77. [Online]. Available: http://books.google.cz/books?id=BIJZTGjTxBgC.

48

http://www.tuat.jp/~nakagawa/pub/2004/pdf/nakagawa0404a-e.pdf
http://www.atgc.org/kanji/kanji_2500_master_table_fr.html
http://www.atgc.org/kanji/kanji_2500_master_table_fr.html
http://www.csse.monash.edu.au/~jwb/kanjidic.html
http://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm
http://dx.doi.org/10.1016/j.patcog.2005.04.019
http://dx.doi.org/10.1016/j.patcog.2005.04.019
http://dx.doi.org/10.1109/TIT.1962.1057692
http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm
http://dx.doi.org/10.1016/j.patrec.2005.03.006
http://dx.doi.org/10.1016/j.patrec.2005.03.006
http://dx.doi.org/10.1016/S0031-3203(96)00153-7
http://dx.doi.org/10.1016/S0031-3203(96)00153-7
http://dx.doi.org/10.1109/ICPR.2010.468
http://dx.doi.org/10.1109/ICPR.2010.468
http://books.google.cz/books?id=BIJZTGjTxBgC

References ●

[27] M. Verleysen, “Learning high-dimensional data”, in Limitations and Future Trends in
Neural Computation 186, IOS Press, 2003, pp. 141–162. [Online]. Available: http://
perso.uclouvain.be/michel.verleysen/papers/nato03mv.pdf.

[28] C. M. Bishop, Pattern Recognition and Machine Learning. Berlin: Springer, 2006, isbn:
0387310738.

[29] J. Matas, University lecture on PCA and LDA. [Online]. Available: http://cw.felk.
cvut.cz/wiki/_media/courses/a4b33rpz/2010.11.29-pca.pdf.

[30] F. Kimura, K. Takashina, S. Tsuruoka, and Y. Miyake, “Modified quadratic discriminant
functions and the application to chinese character recognition”, Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, vol. PAMI-9, no. 1, pp. 149–153, Jan. 1987.
[Online]. Available: 10.1109/TPAMI.1987.4767881.

[31] Discriminant analysis, MATLAB Documentation Center. [Online]. Available: http://
www.mathworks.com/help/stats/discriminant-analysis.html.

[32] X. Lin, “Reliable ocr solution for digital content re-mastering. document recognition and
retrieval”, in IX, Proceedings of SPIE 4670, 2001, pp. 223–231.

[33] L. Neumann and J. Matas, “Text localization in real-world images using efficiently pruned
exhaustive search”, in Document Analysis and Recognition (ICDAR), 2011 International
Conference on, Sep. 2011, pp. 687–691. doi: 10.1109/ICDAR.2011.144.

[34] C. A. Poynton, “Rehabilitation of gamma”, Proc. SPIE, vol. 3299, pp. 232–249, 1998.
[Online]. Available: http://dx.doi.org/10.1117/12.320126.

[35] N. Otsu, “A threshold selection method from gray-level histograms”, Systems, Man, and
Cybernetics, IEEE Transactions on, vol. 9, no. 1, pp. 62–66, Jan. 1979. [Online]. Available:
http://www.tecgraf.puc-rio.br/~mgattass/cg/trbImg/Otsu.pdf.

[36] P. K. Aithal, G Rajesh, D. U. Acharya, and P. Siddalingaswarny, “A fast and novel skew
estimation approach using radon transform”, in International Journal of Computer In-
formation Systems and Industrial Management Applications, vol. 5, 2013, pp. 337–344.
[Online]. Available: http://eprints.manipal.edu/78905/1/A_Fast_and_Novel_Skew_
Estimation_Approach_using_Radon_Transform.pdf.

[37] Radon transform, MATLAB Documentation Center. [Online]. Available: http://www.
mathworks.com/help/images/radon-transform.html.

[38] J.-L. Chen, C.-H. Wu, and H.-J. Lee, “Chinese handwritten character segmentation in
form documents”, in Document Analysis Systems: Theory and Practice, S.-W. Lee and Y.
Nakano, Eds., ser. Lecture Notes in Computer Science, vol. 1655, Springer, 1999, pp. 348–
362. [Online]. Available: 10.1007/3-540-48172-9_28.

49

http://perso.uclouvain.be/michel.verleysen/papers/nato03mv.pdf
http://perso.uclouvain.be/michel.verleysen/papers/nato03mv.pdf
http://cw.felk.cvut.cz/wiki/_media/courses/a4b33rpz/2010.11.29-pca.pdf
http://cw.felk.cvut.cz/wiki/_media/courses/a4b33rpz/2010.11.29-pca.pdf
10.1109/TPAMI.1987.4767881
http://www.mathworks.com/help/stats/discriminant-analysis.html
http://www.mathworks.com/help/stats/discriminant-analysis.html
http://dx.doi.org/10.1109/ICDAR.2011.144
http://dx.doi.org/10.1117/12.320126
http://www.tecgraf.puc-rio.br/~mgattass/cg/trbImg/Otsu.pdf
http://eprints.manipal.edu/78905/1/A_Fast_and_Novel_Skew_Estimation_Approach_using_Radon_Transform.pdf
http://eprints.manipal.edu/78905/1/A_Fast_and_Novel_Skew_Estimation_Approach_using_Radon_Transform.pdf
http://www.mathworks.com/help/images/radon-transform.html
http://www.mathworks.com/help/images/radon-transform.html
10.1007/3-540-48172-9_28

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Jan Z d e n ě k

Study programme: Open Informatics

Specialisation: Computer and Information Science

Title of Bachelor Project: Mobile Application for Recognition of Japanese Writing System

Guidelines:

The task is to create a mobile application for optical recognition of Japanese writing system, i.e.
Chinese characters used in Japanese, and Japanese syllabaries.

The application is supposed to recognize the characters in a given sign or text and provide
a translation into English.

Bibliography/Sources:
[1] Christopher M. Bishop: Pattern Recognition and Machine Learning. 2006.
 ISBN: 978-0-387-31073-2.
[2] Daniel Lopresti, Jianying Hu, Ramanujan Kashi (Eds.): Document Analysis Systems V.
 5th International Workshop, DAS 2002 Princeton, NJ, USA, August 19–21, 2002
 Proceedings. ISBN: 978-3-540-44068-0 (Print) 978-3-540-45869-2 (Online).
[3] Proceedings of the 7th International Conference on Document Analysis and Recognition.
 August 2003, Edinburgh, Scotland, UK. IEEE. ISBN: 0-7695-1960-1.
[4] International Conference on Pattern Recognition, Proceedings. 20th International
 Conference on Pattern Recognition, ICPR 2010, Istanbul, Turkey, 23-26 August 2010.
 ISBN: 978-1-4244-7542-1.

Bachelor Project Supervisor: prof. Ing. Pavel Zahradník, CSc.

Valid until: the end of the summer semester of academic year 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 10, 2014

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ BAKALÁTSKÉ PRÁCE

Student: Jan Z d e n ě k

Studijní program: Otevřená informatika (bakalářský)

Obor: Informatika a počítačové vědy

Název tématu: Mobilní aplikace pro rozpoznávání japonského písma

Pokyny pro vypracování:

Úkolem je vytvořit aplikaci pro rozpoznávání japonského písma, tj. čínských znaků
používaných v japonštině, a japonských slabičných abeced.

Aplikace by měla rozpoznat nápis a nabídnout pro něj anglický překlad.

Seznam odborné literatury:
[1] Christopher M. Bishop: Pattern Recognition and Machine Learning. 2006.
 ISBN: 978-0-387-31073-2.
[2] Daniel Lopresti, Jianying Hu, Ramanujan Kashi (Eds.): Document Analysis Systems V.
 5th International Workshop, DAS 2002 Princeton, NJ, USA, August 19–21, 2002
 Proceedings. ISBN: 978-3-540-44068-0 (Print) 978-3-540-45869-2 (Online).
[3] Proceedings of the 7th International Conference on Document Analysis and Recognition.
 August 2003, Edinburgh, Scotland, UK. IEEE. ISBN: 0-7695-1960-1.
[4] International Conference on Pattern Recognition, Proceedings. 20th International
 Conference on Pattern Recognition, ICPR 2010, Istanbul, Turkey, 23-26 August 2010.
 ISBN: 978-1-4244-7542-1.

Vedoucí bakaláUské práce: prof. Ing. Pavel Zahradník, CSc.

Platnost zadání: do konce letního semestru 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 10. 1. 2014

Chapter A
Abbreviations and Symbols

A.1 Abbreviations

1D One-dimensional.
2D Two-dimensional.
API Application Programming Interface.
ARAN Aspect Ratio Adaptive Normalization.
HOG Histogram of Oriented Gradients.
ICDAR International Conference on Document Analysis and Recognition.
ISO International Organization for Standardization.
JIS Japanese Industrial Standard.
k-NN k-Nearest Neighbors.
LDA Linear Discriminant Analysis.
LDF Linear Discriminant Function.
MAP Maximum A Posteriori Probability.
MLE Maximum Likelihood Estimation.
MQDF Modified Quadratic Discriminant Function.
NN Neural Network.
OCR Optical Character Recognition.
PCA Principal Component Analysis.
QDF Quadratic Discriminant Function.
SVM Support Vector Machine.

52

A. Abbrevia ons and Symbols ●

A.2 Symbols
C Class membership matrix.
cx X-axis component of centroid.
cy Y-axis component of centroid.
de Euclidean distance.
dm Mahalanobis distance.
L Lagrange polynomial.
L Likelihood function.
O Asymptotic computational complexity.
P(·) Prior probability.
P(· | ·) Conditional probability.
R Aspect ratio.
R Radon transform.
T Training data as feature vectors in matrix form.
T Training data.
ti Feature vector of a sample from the training data.
w Eigenvector.
x Coordinate on the x-axis.
xc X-axis component of geometric center.
y Coordinate on the y-axis.
yc Y-axis component of geometric center.
Y Estimated classification.
θ Gradient direction.
λ Eigenvalue.
µ Mean.
µ Mean vector.
µij Central moment of image.
π Number pi, the ratio of a circle’s circumference to its diameter.
σ Standard deviation.
σ2 Variance.
Σ Empirical sample covariance matrix.
∇ Gradient strength.

53

Chapter B
CD Content

� Android Application - A project with the Android application built in Android Software
Development Kit1 which can be installed and run on a mobile device with Android OS.
The application is called Japanese OCR for the time being and it is located in the AppTest
folder. Mathematical operations of the application require the ElPsy Java library included
in the Apptest
libs folder.

� Datasets - Image datasets obtained by processing PNG image files of individual char-
acters. There are four datasets in the folder. A different method for normalization of
character shape was used for each of them. BMN denotes bi-moment normalization, MN
moment normalization, LN linear normalization, and NN means that no shape normaliza-
tion method was used.

� Image Samples

– Images for testing - This folder contains images with short text lines or individual
characters which may be used for testing in the Matlab demo application.

– Samples from the training dataset - This folder contains a selection of images
which were used for training of classifiers. The image size is 500 × 500 pixels in most
cases. The whole dataset used for training is not included on the CD as it is 7.32 GB
large.

� Font Processing - Java Net Beans project with scripts for converting TrueType font files
into SVG files, and subsequently into PNG image files. Uses Java Batik library. There
are text files with lists of Unicode hex codes for various character sets, including the 2,908
character set used for the OCR engine, in this folder, too.

� Matlab files - Matlab scripts used for this work. images2mat.m lets you create a dataset
from image files. get_feats_all.m extracts and stores feature vectors from images in a
specified dataset. training.m trains a classifier from a selected dataset. The third-party
tools mentioned in Chapter Implementation are necessary to run the files and can be
downloaded by accessing the provided links.

� Matlab OCR Demo - All files necessary to run the Matlab demo are included in this
folder. The demo can be launched by opening the file called demo_for_ocr.m.

� PDF - This thesis in PDF format, together with the XƎLATEX file used to create the PDF
and all figures and tables presented in the thesis.

1Android SDK - http://developer.android.com/sdk/index.html

54

http://developer.android.com/sdk/index.html

B. CD Content ●

� Tess4J - Java wrapper for Tesseract OCR used for testing.
’Tess4J/src/net/sourceforge/tess4j/example/’ contains the source file created for tests.

55

Chapter C
Application Manual

The interface and the controls of the application are very simple. The main screen of the
application shows the camera preview. The region of interest for recognition can be specified by
drawing a rectangle on the screen of the device with a finger. When you are satisfied with your
selection, you can press the OCR start button located on the top of the screen. After that, the
result of OCR together with the reading of the result in hiragana and the English translation
are displayed on the screen in a blue box.

The settings menu contains only the About page and it can be accessed via the settings
button of the device.

1 - Flash button. Pressing this button turns
on/off the flashlight of the device.

2 - Start OCR button. OCR and translation
is performed after pressing this button.

3 - Camera zoom-in button. Pressing this
button increases the zoom of the camera.

4 - Camera zoom-out button. Pressing this
button decreases the zoom of the camera.

5 - Recognized word in kanji.
6 - Translation of the recognized word into

English.
7 - Reading of the recognized word in hira-

gana.
8 - A word selected for recognition by a red

rectangle drawn on the screen.

Figure C.1: Screenshot of the Android
application with description of elements.

56

Chapter D
Dataset Format

There are four datasets included on the attached CD - one processed by linear shape normal-
ization, one by moment normalization, one by bi-moment normalization, and one without shape
normalization of characters. Each dataset is a simple Matlab structure named Character_Data
where each element represents a picture of a character. Each element has three fields:

� char_image - 80 × 80 pixel pre-processed image of the character. The image is shape-
normalized, smoothed, and shrunk to the needed size.

� label - Unicode hex code number of the character

� font - Font number denoting which of the used fonts this character image belongs to.

235,256 image files with pictures of individual characters were used to create datasets. The
image files follow this naming convention: fXX_YYYY.png, where XX denotes the font number (1-
83) and YYYY is the unicode hex code of the character. Font number 56 was deemed unsuitable
and was not used in the end. Only a selection of the used image files is included on the CD
because the entire set of images has 7.32 GB in size.

57

Chapter E
Matlab Demo for OCR

I have made a demo application in Matlab which performs OCR on image files. It uses
the optimal engine presented in the thesis. The demo application can be launched by running
the demo_for_ocr.m file in the Matlab OCR Demo folder on the attached CD. There are also
image samples included on the CD which can be used to try the application out and see the
performance of the OCR engine.

When the checkbox is not checked, the application only performs single character recognition
regardless of the input. When it is checked, it can recognize a line of text and it also uses the
proposed modification of the Radon transform method for skew correction.

� 1 - Filepath of the selected image.

� 2 - Opens file dialog.

� 3 - Choose between recognition of a single character and recognition of a line with multiple
characters.

� 4 - Click to start recognition.

� 5 - Displayed result of recognition.

� 6 - Unicode hex codes of recognized characters.

� 7 - Displayed image which recognition was performed on.

58

E. Matlab Demo for OCR ●

Figure E.1: Screenshot of the demo application in Matlab.

59

	List of Figures
	List of Tables
	Introduction
	State of the Art and the Goal
	Related Work
	Japanese Writing System
	Thesis Structure

	Dataset Generation
	Supported Characters
	Character Image Generation

	Preprocessing and Feature Extraction
	Grayscale Normalization
	Shape Normalization
	Aspect Ratio Adaptive Normalization
	Linear Normalization
	Moment Normalization
	Bi-moment Normalization
	Smoothing

	Feature Extraction
	Zonal Line Density Method
	Histogram of Oriented Gradients in Local Regions

	Learning and Classification
	Dimensionality Reduction
	Principal Component Analysis
	Linear Discriminant Analysis

	Classification Methods
	k-Nearest Neighbors
	Linear Discriminant Function
	Quadratic Discriminant Function

	Results

	Text Extraction
	Binarization
	Black on White / White on Black Detection
	Skew Correction
	Character Segmentation
	Projection Profile Analysis

	Implementation
	Training
	Comparison
	Application

	Conclusion
	Summary
	Future Work

	References
	Abbreviations and Symbols
	Abbreviations
	Symbols

	CD Content
	Application Manual
	Dataset Format
	Matlab Demo for OCR

