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Abstract

The main aim of this work was to get acquainted with Wireless Physical Network Coding and then
utilize the iterative soft-information decoding based on Factor Graphs and the Sum-Product algo-
rithm on the Hierarchical Decode and Forward and Joint Decode and Forward relaying strategies,
cooping with the various scenarious of observations of the Hierarchical and Hierarchical Side infor-
mation. The theoretical background about coding, Factor Graphs and WPNC is provided in the
first part. In the second part we will give the designed for solving various scenarious of available HI
and H-SI with comparasion based on simulation results.

Keywords
Factor Graphs, iterative soft-information decoding, Hierarchical Decode and Forward, Joint De-

code and Forward

Abstract

Hlavním cílem této práce bylo seznámení se s bezdrátovým síťovým kódováním na fyzické vrstvě a
poté využití iterativního dekódování s měkkou informací založeném na navrhu faktorového grafu na
různé scénáře dostupných hierarchických a postranních hierarchických informací. Úvod do teorie
kódování, faktorových grafů a bezdrátového síťového kódování na fyzické vrstvě je v první části.
V části druhé jsou předloženy návrhy k řešení rozmanitých scénářů dostupných hierarchyckých a
postraních hierarchických informací s jejich porovnáním na základě výsledků simulací.

Keywords
Faktorový graf, iterativní dekódování s měkkou informací, Hierarchical Decode and Forward,

Joint Decode and Forward
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Chapter 1

Coding theory

1.1 Channel Capacity

1.1.1 Channel Coding Theorem

From channel coding theorem follows, that for any code rate R < C exists code (2nR, n) with
probability of error Pe → 0 and analogically, any (2nR, n) code with Pe → 0 must have R ≤ C,
where 2nR denotes Typical set (further reading in ).

1.1.2 Channel capacity
The channel capacity is defined as maximal mutual information over all input distribution.

C = max
p(x)

I(x; y) (1.1)

For communication over wireless channel where the distribution of the noise is known as the
AWGN, we can obtain capacity limit as

C = Blog(1 + SNR)[bit/s]. (1.2)

This can be derived from original Shanno ergodic capacity which is considered as bits per channel
usage (dimension)

C = lg

(
1 +

σx
2

σw2

)
(1.3)

where σx2 is variance of input distribution and σw2 is variance of complex AWGN.

1.2 Elements of error-correction codes

1.2.1 Introduction to block codes
For purposes of this work, we restrict ourselves on linear error-correcting block codes. The main
benefit of this code is that they are easily implementable in terms of factor graphs, which is the
main benefit.

The reason why block codes are called block is, that the data are at first sorted into the blocks
which are then processed according to a coding function. That means that the receiver has to wait
for the whole block of data words for them to start decoding and even thought this can be consider
as drawback the whole block of data words are relatively cheap to implement into the system because
theoretically no memory is needed.

2
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1.2.2 Mathematical definition
Information source produces data information message d = [d1,. . . ,dL] with Nd dimensional data
words dn = [dn,1,. . . ,dn,Nd

], where each data symbol dn,k is from alphabet Ad with a size Md=|Ad|.
This data are input for encoder, which maps these data to codewords cn = [cn,1,. . . ,cn,Nc

] with
dimension Nc, where each symbol cn,k is from alphabet Ac with size Mc=|Ac|. Codewords then
form codeword sequence c = [c1,. . .,cL]. This mapping can be formally written as

d 7→ c.

Now, let’s consider code space S, which is based on a field (F ,+,×), where F is set of elements
(numbers), which is closed under + and × operators (further reading in ??).

Definition 1.2.1. Code is linear if its Nc− tuples from alphabet A belongs to a code space S. We
mostly consider binary codes (F=F2) from set 0,1 with modulo-2 arithmetic.
For linear code must hold:

• scalars a1, a2 ∈ F ; c1, c1 are valid codewords (1.4)
• a1c1 + a2c2 must be a valid codeword (1.5)
• linear code contains all-zero codeword c=0 (1.6)

Definition 1.2.2. Code is systematic if data word is a part of codeword. The remaining part of
codeword fills a parity word.

Definition 1.2.3. Code rate is in a sence of number of bits per one codeword over channel symbol
dimension:

R2d =
lgMNd

d

Nc
[bit/dimension]. (1.7)

In most cases Md = 2:

R =
Nd
Nc
. (1.8)

Definition 1.2.4. Generator matrix G (Nc × Nd) for block code is matrix:

G =

[
INd

P

]
(1.9)

where parity matrix P is of size (Nc-Nd) × Nd and columns of G form Nd dimensional basis of
codeword sub-space.

Definition 1.2.5. Parity check matrix H with size (Nc × (Nc − Nd):

H =

[
−PT

INc−Nd

]
. (1.10)

In a special case of binary code (Mc=2):

H =

[
PT

INc−Nd

]
. (1.11)

Definition 1.2.6. Codeword c is a set:

c = {Gd : d ∈ Fk}; Hc = 0 (1.12)

Due to the orthogonality:

HTG = [−P INc−Nd
]

[
INd

P

]
= −PINd

+ INc−Nd
P = 0 (1.13)
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Definition 1.2.7. Hamming space codes are defined as binary codes:

Mc = Md = 2, or non-binaryMc = Md > 2;Nc > Nd

Definition 1.2.8. Hamming distance, which is applied on Hamming space codes, is number of
symbols in which two words differ

ρH(c1, c2) =
∑
k

1− δ[c1,k − c2,k]

Definition 1.2.9. A code is a perfect t-error-correcting code if the set of t-spheres centred on
the codewords of the code fills the Hamming space without overlapping.

Definition 1.2.10. Hamming code (n,k) is a binary cyclic block code, with a number of parity
symbols m = n− k with minimal Hamming distance ρmin = 3 (Hamming (7,4) block code).

1.3 LDPC codes

LDPC code is a linear block code with a “parse” parity-check m × n matrix H. Matrix is sparse
in sence of small number of nonzero elements. Gallanger proposed construction of such matrix in
random way, which means random placing 1’s and 0’s, but respecting the condition, that number
of 1’s in each row must be equal to dr and each column equal to dc. Such code is then reffered to
as regular (dc,dr) LDPC code of length n. Gallanger showed, that the minimum distance of regular
LDPC code increases linearly with n if dv ≥ 3. This is the reason why regular LDPC codes are
designed with dv and dc on the order of 3 or 4. Now we would like to derive the formula for code
rate.Because of random construction of matrix, there is no guarentee that a matrix is full rank. If we
eliminate the linearly dependent rows to find a (n− k)× n parity check matrix, we lose the regular
property and this is not what we want. So we consider the designed rate of the code as:

R = 1− m

n
= 1− dc

dr
. (1.14)

In order to have R<1 for regular code,

mdr = ndc and dc < dr (1.15)

The most important advantage of LDPC codes is, that the parity check matrix H can be interpreted
as the bipartite (Tanner) graph. The term bipartite graph will be explained in section 3.
The second cathegory of LDPC codes are irregular LDPC codes, which can’t be defined in therm of
the degree of dr or dc, because this number can by for each row or column different.



Chapter 2

Algebraic structures

This subsection gives an elementary mathematical background for our latter application purposes.

Definition 2.0.1. A binary operation on a nonempty set S is generally map S × S → S.

Definition 2.0.2. A monoid (M ;�) is a set of elements S (S � S → S) on which an associative
binary operator � is defined as

• ∀a, b, c ∈ S; a� (b� c) = (a� b)� c.

With respect to that operation, monoid also contain an identity element e, such that:

• ∀a ∈ S;∃e ∈ S; (a� e) = (e� a) = a.

Definition 2.0.3. A group (G;�) is a monoid with an extra inverse element.

• ∀a∃a′ : a� a′ = a′ � a = e;∀a, a′ ∈ S.

We talk about commutative group in case of:

• a� b = b� a;∀a, b ∈ G

The group is finite if size (or |G|) of the group is finite. Group with� operator is calledmultiplicative group
and group with ⊕ operator is called additive group.

Definition 2.0.4. A ring is an algebraic structure (R,⊕,�) consisting of a set and two operations,
for which:

• (R,⊕) forms a commutative group.

• (R,�) forms a monoid.

• ∀a, b, c ∈ R, the operation � distributes over ⊕ :
a� (b⊕ c) = a� b⊕ a� c;
(b⊕ c)� a = b� a⊕ c� a;

• Additive identity 0 ∈ R : a+ 0 = a; 0 + a = a

• Multiplicative identity 1 ∈ R : a · 1 = a; 1 · a = a

• Additive inverse: ∀a ∈ R ∃ − a ∈ R : a+ (−a) = (−a) + a = 0

• It is impossible to generally define define something like multiplicative inverse, but in some spe-
cial cases it is possible. If in given ring is commutative operator�, then is called commutative ring.
If a ring is finite size, then is called finite ring.

5
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For clarification, we present the simplest example of finite ring, the set of integers modulo q, i.e.
0, 1 . . . q − 1, (q) = q, in which the operations addition and multiplication are adition and multipli-
cation modulo q.

Definition 2.0.5. A finitefield (Galoisfield) of order (size) q, GF (q) = Fq is a ring containing
multiplicative inverse for all elements except the element 0. The inverse is usually written as a−1

So we can interpret subtraction as addition of the additive inverse and division as multiplication
by the multiplicative inverse (except zero) respectively. Size q of finite fields is an integer power of
a prime number q = pm. For prime fields with m = 1, the elements can be written 0, 1, 2, . . . q − 1
and ⊕/� are addition/multiplication moodulo q (as for finite ring). For extensionfields, in which
m > 1, the elements are polynomials with coefficients 0, 1, . . . p−1 of order up to m−1. Then, the ⊕
is addition of the polynomials taking the coefficients modulo p, while � is polynomial multiplication
taken modulo some irreducible polynomial.

Because finite fileds are the most frequently exploited in coding and other ingeneering branch,
we give here an short and clear overview of properties.

• operation +

• F is closed under +

– associative (a+ b) + c = a+ (b+ c)

– commutative a+ b = b+ a

– zero element a+ 0 = a

– negative element a+ (−a) = 0

• operation ×

– F is closed under ×
– associative a(bc) = (ab)c

– commutative ab = ba

– identity element 1a = a

– inverse element ∀a 6= 0, aa−1 = 1

• × distributive over +

– a× (b+ c) = a× b+ a× c

Definition 2.0.6. A bijection (or bijectivefunction, or sometimes called one−to−one correspondence)
is mapping between elements of two sets, where every element of A mapped into exactly one element
of B (f : X 7→ Y ).Mathematically written, for bijection must hold:

∀x ∈ A : f(x) ∈ B (2.1)

∀x, y ∈ A : x 6= y ⇒ f(x) 6= f(y) (2.2)

∀z ∈ B∃x ∈ A : f(x) = z (2.3)

An injective function f : X 7→ Y maps at most one element of A into B. Conditions (2.1) and (2.2)
must hold but not necessarily condition (2.3).
A surjective function maps at least one element of A into B. Condition (2.3) hold but not necessarily
conditions (2.1) and (2.2).

Remark 2.0.1. For previous mentioned mapping functions from set A to set B arise these conse-
quences:

• bijection: |A| = |B|



7

a

b

c

d

A

(a)

1

2

3

4

B

a

b

c

A

(b)

1

2

3

4

B

a

b

c

d

A

(c)

1
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3

B

Figure 2.1: Illustration of (a) bijection; (b) injection bot not surjection; (c) surjection but not
injection

a

b

c

A

1

2

3

4

B

1

2

3

4

C

a

b

c

D

Figure 2.2: Concatenation of non-bijective functions forming a bijection

• injection: |B| ≥ |A|

• surjection: |A| ≥ |B|

Remark 2.0.2. If each function in composition of several functions is bijective, then the composition
is bijective. But also there exists the concatenation of non-bijective functions that forms a bijection,
as can be seen for example in 2.2. From this example is clear, that this rules must hold:

• Occurence of non-surjective function (A 7→ B) must preceed a non-injective (C 7→ D).

• The first function must be injective and the last surjective.

• First and last sets must have the same cardinality.

• All intervening sets must have cardinality at least as large as first(last).

Lemma 2.0.1. Multiplication of an element x from a set S using � by a coefficient a from a
coefficient set Sc sucg that S is closed on the operation for � which the associative law applies,
constitues a bijection if and only if the coefficient has an inverse on � within Sc.

Proof. Consider the function f(x) ∈ S:

f(x) = a� x;x ∈ S, a ∈ Sc, 1 ∈ Sc
f(x) = f(y)⇒ a� x = a� y; y ∈ S
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If a has an inverse a−1 in Sc:

a−1 � (a� y)⇒ (a−1 � a)� x = (a−1 � a)� y ⇒ 1� x = 1� y ⇒ x = y.

So (2.1),(2.2),(2.3) is verified and f(x) is the bijection from S to itself.

If a has an inverse a−1 in Sc,then f has an inverse function f−1:

f−1(z) = a−1 � z = x; z ∈ S

Again, we can assume bijection from S to itself. And vice versa, if a has no inverse (f cannot be
bijection).

According to deffinition (2.0.2), Sc can be considered as monoid. A corollary to 2.0.1 is that
for a multiplicative group G multiplication by a coefficient provided by any member of the group
constitues a bijection. However it does not follow, that the set must be a group, since some elements
of a monoid may have an inverse, and multiplication by these also constitues a bijection. So in fact
at least one element, the identity, must have an inverse.

The proof of 2.0.2 can be applicated also on ⊕ operation with the all consequences.

Lemma 2.0.2. For a ring, addition of any element, and multiplication by any element which has
an inverse (of which there is at least one),constitues a bijection

Lemma 2.0.3. For a Gallois field, addition of any element, and multiplication by any non-zero
,constitues a bijection.



Chapter 3

Factor graphs and the summary
propagation algorithm

3.1 Introduction

The Factor graph is very universal mathematical tool which origin lies in coding theory, but offers
many capabilities for solving artifical inteligence, signal processing and generally digital communica-
tions problems. The main task is to solve problems, for example a global function of many variables
in computionally effective way, so that the “global” function is factored into product of simpler “local”
functions depending on smaller subset of variables.

The computing algorithm, generally called Marginalization − Combination or Summary −
Propagation algorithm, of the “local” functions, is interpreted as passing “messages” along the edges
of graph. The sum-product algorithm is the main form of marginalization-combination (or summary
propagation) algorithm utilized for purposes of this work.

3.2 Terms definiton

3.2.1 Forney Factor Graph
In this work will be considered only Forney factor graph style. The main difference between FFG
and the other factor graph style is evident from figure 3.2.1. The both solves the same factorization
problem of some function f .

f(a, b, c, d, e) = f1(a, b, c)f2(c, d)f2(d, e) (3.1)

Definition 3.2.1. The Forney Factor Graph is a bipartite graph consisting of nodes representing
some factors (function), and edges, or “half edges” representing some variables. FFG is defined by
the following rules:

• There is a (unique) node for every factor.
• There is a (unique) edge or half edge for every variable.
• The node representing some factor f is connected with the edge (or half edge) repre-
senting some variable a if and only if f is a function of a. As consequence, no variable
node can be connected to more then two factors, but as we will see later, this restriction
can be circumvented.

Definition 3.2.2. The Factor graph is cycle-free if the graph is without cycle. The graph without
any cycle is a tree.

In another words, the path between particular factor and particular variable node is unique.
However, from definition 3.2.1 is this property partiall consequence.

9
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f

g1

b1

c1,1 c1,2 c1,n

. . .

g2

b2

c2,1 c2,2 c2,n

. . .

gm

bm

cm,1 cm,2 cm,n
. . .

. . .

a

(a)

f1

f2

x1

x2

(b)

Figure 3.1: (a) Tree-like (Cycle-free) FFG (b) Cycled FFG

f1 f2 f3
a

b

c d

e
(a)

f1 f2 f3a c d

b e
(b)

Figure 3.2: (a) Forney factor graph style (FFG). (b) Factor graph style

Definition 3.2.3. The Factor graph has cycles, if graph doesn’t fulfil (3.2.1).
The difference is obvious from figure 3.2.1.

3.2.2 Global function
As can be seen in example 3.1, we have some function f representing the global function, which
can be factorized into the local functions f1, f2 and f3.

Generally, the global function f is in some domain (configuration space) Ω, where Ω as in example
3.1 can be set e.g. {0, 1}5. Generally f : Ω 7→ C, where C is codomain of function g.

3.2.3 Marginalization-Combination Algorithm (MCA)
Generally, we have to define some abstract fundamental operations,that, depending on concrete
application, proceed to appropriate operation. Then the global function from example 3.1 should
be written in form

f(a, b, c, d, e) = f1(a, b, c) ◦ f2(c, d) ◦ f3(d, e) (3.2)

Definition 3.2.4. Factorization of local functions is written in the form (factors) f(�) =
f1(�) ◦ . . . ◦ fn(�). The operation:

• ◦, or sometimes denoted as
∏∗ is a combination operator

• �, or sometimes denoted as
∑∗ is a marginalization operator

• combination distributes over marginalization

a ◦ (b1�b2) = a ◦ b1�a ◦ b2 (3.3)

Provided the example (3.2), where f(a, b, c, d, e) is a global function, and we are interested e.g.
in marginal function f(c):

f(c) =

∗∑
a,b,d,e

f(a, b, c, d, e) (3.4)
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then employing the distribution property, the marginalization of global function splits into the
combination of the marginalized local functions

f(c) =

∗∑
f(a, b, c, d, e) =

( ∗∑
a,b

f1(a, b, c)

)
◦

( ∗∑
d

f2(c, d)

)
◦

( ∗∑
e

f3(d, e)

)
(3.5)

The property of factorization is mostly used in Markov chain model.

Definition 3.2.5. Assume a Markov chain x→ y → z, where x, y, z are random variables, then:

px,y,z = p(z|x, y)p(x, y) = p(z|y)p(x, y) = p(z|y)p(y|x)p(x) (3.6)

where we utilized the Markov chain property:

p(z|x, y) = p(z|y), where p(�) is PDF. (3.7)

p(x) p(y|x) P (z|y)
X Y Z

Figure 3.3: An FFG of Markov chain

3.2.4 Message passing on the FFG
As follows from previous sections, the factor graph represents structure of some system. Till now,
we have mentioned two building blocks of factor graph - the variable node and the check node. If
we consider tree-like graph, as depicted in figure 3.2.1(a), we start computing the marginal function
from leaves and succesively continue to the top where is the variable of our interest. Geting back to
the equation 3.2.3 and the relating figure 3.2.1(a), we add the folloving notations (figure 3.2.4):

µf3→d(d) =

∗∑
e

f3(d, e) (3.8)

µf2→c(c)

∗∑
d

f2(d, e) (3.9)

µf1→c(c)

∗∑
d

f2(a, b) (3.10)

As can be seen, we have introduced the notation for results of individual local marginalizations
µf�→�(�) called messages.

Passing messages from node to node represents sequential evaluation of all local marginalizations,
and as can be seen from figure 3.2.4, it is executed in both directions, where form and interpretation
depend on a particular application.

Finally, result of local marginalization f(c) (where f(�) can represent for example, as was men-
tioned in definition 3.2.3, the PDF)

f(c) = µf2→c(c) ◦ µf1→c(c) (3.11)

where the message µf1→c(c) is sometimes denoted as forward message, and message µf2→c(c) can
be denoted as backward message.

Now we skip to the next chapter, where the Sum-Product algorithm is described. There we will
define next examples of message passing rules associated with given nodes, essential for purposes of
the SPA.
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f1 f2 f3
a

b

−→
µf1→c

←−
µf2→c

c d

µf3→d
←−

e

Figure 3.4: FFG message passing

3.2.5 Sum-Product Algorithm (SPA)
Now let’s define Sum-Product Algorithm, which is particular form of Marginalization-Combination
Algorithm. The result of this task is to determine an appropriate form of functions defined in 3.2.3.

Before defining concrete functions, it is necessary to say, that the main application of SPA is
to solve the evaluation of marginalized Bayessian MAP objective function for given variable nodes,
which was already hinted in definition 3.2.3.

For simplicity and clarity we present overview of MCA operations with corresponding SPA op-
eration in table 3.1.

It is no reason to having doubts about the validity of SPA instead of MCA operations, because
it is easy to prove the distributivity and commutativity of the summing and multiplying operators,
which is the fundamental property for the message passing purposes.

MCA operation SPA operation
marginalization (

∑∗ or �) summation (+)
composition (

∏∗ or ◦) multiplying (×)
message (µ) probability densities (p)
factor node (f) conditional probabilities (p)
marginal marginalized Bayesian MAP density (belief)

Table 3.1: SPA operations table

Definition 3.2.6. Probabilistic (soft-information) messages on Cycle-Free factor graph consist of:

• Forward messages
◦ a priori PDF p(x)

• Backward messages
◦ likelihoods p(y = y(0)|x)

• Factor
◦ conditional PDF f(x|y1, . . . , yn) = p(x|y1, . . . , yn)

• Source
◦ a priori PDF p(x)

• Observation
◦ Dirac delta PDF δ(y − y(0))

• Belief
◦ MAP decision objective function (valid only for Cycle-Free FG)
◦ Product of all incoming messages at VN

B(d) =
∏
i

µi(d) = p(x = x(0), d)
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◦ forward & backward messages multiplication

B(d) = p(x = x(0), d) = p(d)p(x = x(0)|d)

As we mentioned in previous definition e.g. Factor, where we considered PDF, then we talk about:

• continues-valued variables, where PDF is intertwine with
∫

(�)dyi operator.

Or

• discrete-valued variables, where we consider probability mass function and the
appropriate operator

∑
(�)

Note, that the variable names are here only illustrative, and have no exact meaning.

3.3 Sum-Product Algorithm update rules

In the following subsections the update rules are considered only for discrete-valued variables (for
continues variables it is analogous procedure but instead of summation operator is used the integra-
tion one).

3.3.1 Factor Node
Lets consider the situation depicted in figure 3.3.1. To be fully explicit, let the function f be
provisionally open.

In case of MAC, we have the following update rule:

µf→x(x) =

∗∑
y1,...,yn

(
f(x, y1, . . . , yn)

ast∏
i

µyi→f (yi)

)
. (3.12)

The SPA update rule:

µf→x(x) =
∑

y1,...,yn

(
f(x|y1, . . . , yn)

∏
i

µyi→f (yi)

)
. (3.13)

f(�)

y1

−→

µ
y
1→
f (y

1 )

yn
−→µyn
→f

(yn
)...

x
−→

µg→x(x)

...

Figure 3.5: Sum-Product Rule

3.3.2 Variable/Equality Node
In factor graph type described in [1], we talk about Variable Node and the situation is expressed in
figure 3.3.2 with the general (according to MCA) update equation

µx→(��)(x) =

∗∏
i

µ(�i)→x(x) (3.14)
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and update rule corresponding to SPA update

µx→(��)(x) =
∏
i

µ(�i)→x(x) (3.15)

Totally anoteher situation is for FFG, where we have to utilize the so called Equality node (or
sometimes called Replication variable node). The corresponding FFG of this factor node (from
this point anymore variable node) is depicted in figure 3.3.3 with related equation:

µx→(��)(x) =
∑

(�1)...(�n)

δ
(
(x)− (x1)

)
. . . δ

(
(x)− (xn)

)∏
i

µ(�i)→x(xi). (3.16)

x

−→

µ
�1→

x (x
1 )

−→µ �n
→x

(xn
)...

x
−→

µx→��(x)

...

Figure 3.6: Variable node update

=

−→

µ
�1→

x (x
1 )

−→µ �n
→x

(xn
)...

x
−→

µx→��(x)

...

Figure 3.7: Variable node update

3.3.3 Source/Observation Factor Node
The source or observation is fixed, thus no marginalization or other operation can be directly made.
Then this is the single edge generating message directly.

µf→x(x) = f(x) (3.17)

f(x)
x−→

µf→x(x)

Figure 3.8: Variable node update

3.3.4 Memoryless channel model
Let’s have vector ~y = (y1, . . . , yn) representing the channel output symbol sequence and block of
~x = (x1, . . . , xn) of channel input symbols. Then channel model p(y|x) describing that y is received
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when x is transmitted is depicted in figure 3.3.4:

p(y|x) =

n∏
i=1

p(yi|xi) (3.18)

Y1

X1

Y2

X2

Y3

X3

Yn

Xn

. . .

Figure 3.9: Memoryless channel

3.3.5 State-space channel model
The state-space representation of channel with internal states depicted in figure 3.3.5 is given by
equation:

p(y, s|x) = p(s0)

n∏
i=1

p(yi, si|xi, si−1). (3.19)

Y1

X1

Y2

X2

Yn

Xn

S0 S1 S2 Sn. . .

Figure 3.10: State-space channel model

3.3.6 Messages for binary arithmetics on GF(2)
For discrete messages, such as binary messages is for our purposes (probilistic modeling) no other
option then considering probability mass function (PMF). Forward as well as backward messages
have some probability for state one and complementary probability for state zero. Thus keeping
probability only for one state is always sufficient.

• Forward message p(d) = {pd(0), pd(1)} (3.20)

• Backward message p(x0|d) = {pd(x(0)|0), pd(x
(0)|1)} (3.21)

Further, for simple notation, we consider µ(0) (or µ(1)) for both backward and forward recursion.

• probability difference (PD) ∆(d) = µd(0)− µd(1) (3.22)

• Likelihood ratio (LR) L(d) =
µd(0)

µd(1)
(3.23)

• Log-likelihood ratio (LLR) LLR(d) = log
µd(0)

µd(1)
(3.24)

(3.25)

As the masseges representing probabilities pass on the edges and are modified according to update
rules on given factor nodes, it is necessary to norm them on the output from an each node. It is
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implied with the following equation, where we don’t strictly say what the node (from which the
message goes out) represents and thus it can be used generally:

µnorm(0) =
µ(0)

µ(1) + µ(0)
(3.26)

µnorm(0) =
µ1)

µ(1) + µ(0)
, (3.27)

where µnorm represents the updated normalized message. Then we can write:

µnorm(0) = 1− µnorm(1) and vice versa. (3.28)

3.4 FFG of Codes

Block codes were described in chapter 1, but to be fully explicit, let’s again consider some error
correcting block code C fromed from vector space Fn where we restrict ourselves on binary modulo-
2 arithmetic F = F2 (shortcut F ).

The code is written:
C = uG : u ∈ F k (3.29)

and must hold
C = x ∈ fn : HxT = 0, (3.30)

where u are input symbols and x are coded symbols.
Then according to 3.4 we define the indicator (or characteristic) function

IC = Fn → 0, 1 : x 7→

{
1, if x ∈ C
0 else

(3.31)

Now, if we put channel model together with some code (X represent codewords) as depicted in
figure 3.4 then the joint a posteriori probability of coded symbols

p(x|y) =
p(y|x)p(x)

p(y)
(3.32)

and after neglecting some scaling factors (which would be anyway after normalizing reduced) and
for fixed observation y:

p(x|y) ∝ p(y|x)IC(x) (3.33)

Y1

X1

Yn

Xn
Channel model

Code

. . .

Figure 3.11: FFG of code with memoryless channel

The indicator function is clarified in the subsection 3.4.3.
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3.4.1 FFG of linear Block codes
Let’s have Hamming(7,4) block code with following parity check equation:

H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


Then the indicator function IC defined in previous section is:

IC(x1, . . . , xn) = δ(x1 ⊕ x2 ⊕ x4 ⊕ x5)

· δ(x1 ⊕ x3 ⊕ x4 ⊕ x6)

· δ(x2 ⊕ x3 ⊕ x4 ⊕ x7) (3.34)

where δ represents Kronecker delta function.
The resulting factor graph of this code is in figure 3.4.1. The new factor node called parity check

node will be fully described in the following subsection, but the function of this node is evident from
name, and the equation 3.4.1. Each parity check node corresponds to one row in matrix 3.4.1 and
each euality node to each column (where is more then one 1 element) of this parity check matrix.
We can apply this this method for every linear block code and then it is called Tanner graph. As
can be seen from figure 3.4.1, this graph is bipartite graph.

⊕ ⊕ ⊕

= = = =

X1 X2 X3 X4 X5 X6 X7

Figure 3.12: FFG Hamming(7,4)

3.4.2 Graph of LDPC codes
LDPC codes were described in 1.3 and now, let’s look on this graph. As can be seen from figure 3.4.2,
we have similar structure as in previous Hamming block code, which is no surprise, but additionally,
we can consider random connections denoted as "Interleaver" between check and equality nodes,
which comes from the large sparse matrix with big cycles. In other words, the individual code
symbols are considered as independent. From figure is evident, that it corresponds to regular LDPC
(4,3) code - each equality node has three connecting branches to parity check nodes with degree
four.

3.4.3 Parity check factor node
Taking figure 3.4.3 as example, then parity check node fulfils the equation:

µ(c) =
∑
a,b

δ(c− (a⊕ b))q(a)q(b) (3.35)

If we convey it into probability domain:

µ(c) =

{
µc(0)

µc(1)

}
=

{
µa(0)µb(0) + µa(1)µb(1)

µa(0)µb(1) + µa(1)µb(0)

}
(3.36)
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⊕ ⊕

= =

X1 Xn

. . .

. . .

"Interleaver"

Figure 3.13: An FFG of LDPC

This node is fully symmetric so this can be rewritten for whatever output node.
It is evident, that number of required operations for computing the output message grows ex-

ponentialy with number of incoming messages. The solution of this unpleasant problem can be
procedure suggested in [?, p. 215]. Let’s have the probability, that on node a and b is even number
of 1’s:

Pr[a⊕ b] = µa(1) ∗ µb(1) + (1− µa(1))(1− µb(1)) (3.37)
= 1− µa(1)− µb(1) + 2µa(1)µb(1) (3.38)

=
1

2
(2− 2µa(1)− 2µb(1) + 4µa(1)µb(1)) (3.39)

=
1

2
[1 + (1− 2µa(1))]. (3.40)

If we will continue with composing more and more input nodes (further denoted as x1 . . . xn) we will
realize, that it can be written in generic form:

Pr[x1 ⊕ . . .⊕ xn = 0] =
1

2
+

1

2

n∏
i=1

(1− 2µxi
(1)). (3.41)

Then the message µ(c):

µc(0) =
1

2
+

1

2

n∏
i=1

(1− 2µxi
(1)). (3.42)

⊕
µ(a)

µ(b)

µ(c)

Figure 3.14: An FFG of LDPC

3.4.4 Message passing on graph with cycles
We have already mentioned cycles in graph in subsection 3.4.2, but they were also visible on the first
sight in figure of Hamming block code 3.4.1. Provided that graph has cycles, the SPA can be still
used, but the resulting belief or other required value is only an approximation, becase iteration are
necessary, and in real system, only a finite number of iteration is possible. The number of required
iterations strictly depends on the application. It should be compromise between reasonable compu-
tational time and desired accuracy of result. In case of decoding block codes, for example LDPC,
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we can execute iterations and always after reasonable number of iterations check, wether all check
nodes conditions are satisfied, and if aren’t, then start computing again.But as a precaution against
the endless loop, we should anyway define the overall maximum permitted number of iterations.



Chapter 4

Wireless physical layer network
coding

4.1 Introduction

4.1.1 Network coding
In case of standard NC, a network node applies a joint coding function on a set of incoming data
streams instead of standard switching between them as in conventional network layer. The best
example is two way relay channel, where the case of standard routing is depicted in figure 4.1 and
network coding case is apparent from figure 4.2).

The classical network coding considers incoming signals in discrete channels. Then coding is
applied on discrete symbols and thus there is no demand on further advanced technique such as
interference cancelation etc. The data are then fully decoded on destination.The drawback against
the standard switching is necessity of having complete knowledge about the network topology.

20
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4.1.2 Wireless network coding
In case of wireless channel, where we want be able to comunicate in one channel and during the
same timeslot together with the other users, the situation is much more complicated and we have
to accede to Wireless physical layer network coding which has potential to solve these problems.

WPLNC works directly on physical layer. The main idea standing behind is trying to utilize the
superposed incoming signal (the one changing electromagnetic field) in proper way to reach the ad-
ditional potential troughput benefit. On the other hand, realizing, that the wireless communication
channel is absolutely non-deterministic and we have to face out the phenomena such as attenuation
of signal, phase rotation, time delay, multipath spreading, dispersion in the frequency etc., this is
real challenge and most of this problematic is still under research.

Figure 4.1: Traditional routing strategy for the two-way relay channel requires four time slots
to deliver 2 packets(bits/symbols/etc.), which means troughput 1/2 packets per channel use. (a):
During the first time slot, user A sends its message to the relay. (b) During the second time slot,
user B sends its message to the relay. (c) During the third time slot, the relay sends the message
from A to user B. (d) During the fourth time slot, the relay sends the message from B to user A.

Figure 4.2: A network coding strategy for the two-way relay channel requires three time slots.
During the first time slot (a), user A sends its message to the relay. (b) During the second time slot,
user B sends its message to the relay. (c) During the third time slot, the relay sends the sum of the
messages A⊕B to both users. The final troughput is 2/3 packets per channel use.

Figure 4.2:A Wireless physical layer network coding strategy (WPNC or just WNC) for the two-
way relay channel that requires two time slots. (a) During the first time slot users communicate with
relay and the combination of packets is done naturally and for free in wireless envitonment. (b)
During the second time slot, the relay sends the messages after some processing (AF,DF,JDF . . .)
back to users. Here, the troughput is 1 packet per channel use, and for moreover, inference from the
opposite side (here not depicted) source can be useful.
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Figure 4.1: Traditional routing strategy
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Figure 4.2: A network coding strategy
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Figure 4.3: A Wireless physical layer network coding strategy

4.2 Basic Therms and Fundamental Principles

4.2.1 Basic therms
For notational clarity, let b (or b) be general notation for code or data symbols (vectors). We will
use this in cases, where both is possible.This notation holds for rest of this work.

Definition� Hierarchical MAC stage Multiple interacting relay inputs from multiple sources
processed w.r.t. HI

Definition� Hierarchical BC stage Relay broadcasts processed hierarchical information to the
next stage.

Having set of all source symbols b̃ = {bA, bB , . . .}, then complementary set to bA is denoted as
b̃Ā = b̃ \ bA. Now lets define the notation for information content of obsevations.

Definition 4.2.1. Hierarchical Information b is HI w.r.t. desired data bA iff

(bA; b|b̃Ā) > 0 (4.1)

Definition 4.2.2. Hierarchical (Complementary) Side-Information (C-SI)
b̄ is H-SI w.r.t. bA iff

I(bA; b̄|b̃Ā) = 0 and I(b̄; bAB |bA) > 0. (4.2)

b̄ is not HI w.r.t. bA but affects its HI b trough b̃Ā. In fact, it carriers complementary information
I(b̃Ā; Ā|bA) > 0 and thus H-SI is considered as friendly interference.
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Definition 4.2.3. Interference (harmful) β is interference w.r.t. bA iff

I(bA;β|b̃Ā) = 0 and I(β; b|bA) = 0 (4.3)

β is not HI neither H-SI w.r.t. bA.

4.2.2 Relaying Strategies
Under the term of relying strategies, we refer to the method, how relay process the incomming
signals, and then forwards to its destinations. Here, we breafly mention the well known methods,
and the utilized for purposes of this work will be described later in more details.

Amplify & Forward (AF) It is the simplest method. Relay just amplifies the incomming
signal and no more sofisticated processing is done. Although this sollution is really cheap, we pay
for bad performance in case of low SNR incomming signal at relay (the noise is amplified as well as
signal).

Compress & Forward (CF) Sometimes called Estimate/Quantize and Forward, is application
of generally nonlinear function to compress the received superimposed signals.

Decode & Forward (DF) This is a name for whole family of strategies. Relay has more degrees
of freedom with decisions, that can be employed. These are the most interesting ones.

Joint Decode & Forward (JDF) Relay makes decisions on individual source symbols from
received superimposed signal, then decode each of them separately and in last step applies
on individual decoded data the combining function (network code). In other words, relay
in this strategy tries to convert this situation into the classical ’separated channel per each
user’ case, which can have in wireless environment significant impact on performance. In
order to hierarchically encoded data without error, the rates of each source must be such,
that relay is able to reliably decode each of them.

Hierarchical Decode & Forward (HDF) The main difference againts JDF is, that relay
tries no more to estimate individual data, but he applies all processing (demodulation →
decoding → encoding → modulation) on superimposed codewords, denoted as hierar-
chical codewords. This can offer a capacity gains over JDF, especially in the high SNR
regimes.

De-Noise & Forward (DNF) a scheme proposed in [6]. This scheme is very similar to the
previous one although in the subsequent works [7],[8] it is mainly focussing on symbol by
symbol adaptive relay processing dealing with wireless channel parametrization

Compute & Forward (CmpF) a scheme proposed in [9] that directly processes the PHY
superposition of the signals but utilising properties of lattices [10]. A problem of selection
of multiplying coefficient is another formulation of the local encoding function selection

4.3 Hierarchical Network Code

Hierarchical Network Code is denoted as a function X (. . .), which is utilized by Relay based on
HDF strategy. Providing appropriate HNC in previous stages, the destination is able to obtain
desired data. The purpose is to map the separate data streams from individual users bA, bB to the
hierarchical (network-coded) data stream bAB .

bA, dB : X (bA, bB) = bAB (4.4)

But in general, it can be many to one function and there is no restriction on the domain it can be
applied on.
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In order to guarantee, that the desired information on the given destination can be from HNC
fully decodeable, the HNC must fulfill exclusive law

bAB = X (bA, dB) 6= X (b′A, bB), ∀bA 6= b′A

bAB = X (bA, dB) 6= X (bA, b
′
B), ∀bB 6= b′B (4.5)

A code satisfying the above criteria is called a Hierarchical eXclusive Code (HXC).
Then relay hierarchical codebook cardinality must satisfy at least the minimal hierarchical code-

book cardinality. Codebook cardinalities are defined in next subsection.

4.3.1 HNC map cardinality
Let’s suppose source symbols bA ∈ BA and bB ∈ BB and the hierarchical symbol bAB = BAB .
Then we define four classes of HNC map.

Definition 4.3.1. Lossy HNC map |BAB | < max(|BA|, |BB |)
In situation requirest perfect H-SI and additional HI, or on independent HI

Definition 4.3.2. Minimal HNC map |BAB | = max(|BA|, |BB |)
In this case is requirement on perfect H-SI with no additional HI, or on independent HI

Definition 4.3.3. Fully HNC map |BAB | = |BA| × |BB |
All pairs are fully decodable at relay and no other H-SI is required

Definition 4.3.4. Extended HNC map max(|BA|, |BB |) < |BAB | < |BA| × |BB |
All pairs are fully decodable at relay and no other H-SI is required

4.3.2 Linear mapping function
The mapping function can be generally expressed as look- up table with dimension given by the
cardinalities of incoming signals. For purposes of this work, we restrict ourselves onlu on linear
mapping function. The good example is look-up table of XOR HNC depicted in figure 4.4. It can be
seen, that cardinality of both input symbols is four and cardinality of output (look-up table), given
by number of different colors, is also four. Thus, from previous subsection is obvious, that the XOR
HNC is the minimal one.

c1

c2

Figure 4.4: XOR HNC look up table

From restriction on linear mapping function also follows, that HNC can be expressed in matrix
form:

b =
∑
i

Xijbi = Xjb̃. (4.6)

To be able to solve this equation on the destination, in order to get the desired data, matrix X
defined on GF(Mn) must be full rank over GF(Mn).
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4.3.3 Layered XOR HNC Design
Layered design is proposep in [?]. The main idea standing behind this is, that under appropriate
conditions, the processing of incoming superposed symbols can be divided into two layers, where the
first, called as inner layer, has responsibility for adequate HNC map on the input, and the second -
outer layer provides the standard error correcting processing like turbo, LDPC . . . decoding.
Behind the Layered design stands the following two lemmas.
Lemma 1 (Coding distributes over the exclusive law):
Assume arbitrary linear one-to-one code mappings with a common codebook

cA = C, (cB)C(dB), cABC(dAB) (4.7)

where dA,dB ,dAB ∈ GF (Mn) and cA, cB , cAB ∈ GF (M ñ),ñ > n. Then there exists two minimal
exclusive mappings (for data and codewords)

dAB = Xd(dA,dB), cAB = Xc(cA, cB) (4.8)

such that the following holds

C(X (dA,dB)) = Xc(C(dA), C(dB)) (4.9)

Lemma 2 (Exclusive law decomposition over symbols):
Assuming that symbol mapping obeys the exclusive law for each individual symbols, then the ex-
clusive law also hold for complete codeword

cAB = cA, cB ⇐⇒ cAB = Xc(cA.cB) (4.10)

4.4 Hierarchical Decode & Forward

For purposes of this work, we are interested in relay hierarchical demodulator output metric µbAB
which has to be computed in H-MAC phase. The derivation was originally posted in [3] and we
will derive it again step by step, becasuse understanding of the following steps is crucial for our
implementation and then possible approximation of this.

4.4.1 Hierarchical soft output metric
The derivation of soft output metric µbAB (p(x|bAB)) consist from the following steps:

p(x|bAB) = p

x| ⋃
bA,bB :χb(bA,bB)=bAB

bA, bB

 (4.11)

=
p
(
x ∩

(⋃
bA.bB :χb(bA,bB)=bAB

{bA, bB}
))

p
(⋃

bA.bB :χb(bA,bB)=bAB
{bA, bB}

) .

Pairs bA, bB form a partition (disjoint subsets).Then

p(x|bAB) =

∑
bA,bB :χb(bA,bB)=bAB

p(x|bA, bB)p(bA, bB)∑
bA,bB :χb(bA,bB)=bAB

p(bA, bB)
. (4.12)

We can apply Kronecker delta function δ[bAB − χb(bA, bB)] and then summing over all bA and bB

p(x|bAB) =

∑
bA,bB

p(x|bA, bB)p(bA, bB)δ[bAB − χb(bA, bB)]∑
bA,bB

p(bA, bB)δ[bAB − χb(bA, bB)]
. (4.13)
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In the next step, we consider, that p(bA, bB) = const.

p(x|bAB) =

∑
bA,bB

p(x|bA, bB)δ[bAB − χb(bA, bB)]∑
bA,bB

δ[bAB − χb(bA, bB)]
. (4.14)

In case of minimal hierarchical exclusive code, where sum
∑
bA,bB

δ[bABχb−(bA, bB)] = Mb derivation
results in

p(x|bAB) =
1

MB

∑
bA,bB

p(x|bA, bB)δ[bAB − χb(bA, bB)]. (4.15)

And for Gaussian channel

p(x|bAB) =
1

MB

∑
bA,bB

pw(x− ubcA, bB))δ[bAB − χb(bA, bB)] (4.16)

where u function maps symbols ba and bb into hierarchical constellation point and pw(w) is complex
rotationally invariant Gaussian noise

pw(w) = αexp(− ‖ w ‖2 /σ2
w) (4.17)

We can also make an approximation of this metric by considering only the dominating exponential

p(x|cab) ≈
α

Mb
exp
(
− 1

σ2
w

‖ x− u0(bA, bB) ‖2
)
. (4.18)
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Figure 4.5: Comparision of the MAC capacity egions.

4.4.2 Troughput Rate Region
The main reason for employing HDF relaying strategy is the possible achievement of rectangular
capacity region. The situation is depicted in figure 4.5. This serves only for illustration and so we
can see only the scale of individual capacities. The legend will be explained in the following text.

From the system model
x = u(s(cA) + hs(cB)) + w (4.19)

where symbol s(�) ∈ A , code symbol c ∈ C , u is again the mapping function into hierarchical
constellation point and h ∈ C is the channel parametrization. The hierarchical mutual information

CAB = I(cAB ;x) = H[x]− h[x|cAB ] (4.20)

For the computation of received signal entropy we need p(x), which can be obtained from 4.15

p(xR) =
∑
cA,cB

p(xR|cAB)p(cAB) =
1

M2
c

∑
cA,cB

p(xR|cA, cB) =
1

M2
c

∑
cA,cB

pw(x− u(cA, cB)) (4.21)

For comparision, we give constrained first order rate region as limiting performance bound with
uniform input alphabet.

C0 = I(cA;x|cB) (4.22)

and the second order cut-set bound

Cs =
1

2
I(cA, cB ;x). (4.23)
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Chapter 5

Thesis contribution

5.1 Motivation

For introduction, let’s consider the network depicted in figure 5.1. We have source nodes labeled
S1, S2 . . . Sn transmitting channel symbols of data or codewords. The node of our interest is Dest,
which is receiving superimposed signal from this sources marked as Direct observation.

Then we have available next observation, the Side observation(this can be also in plural), which
is superposition of signals of any a subset from a set of S1, S2 . . . Sn. Side observation is orthogonal
(transmitted at different time period, different frequency etc.) with regard to Direct obserwation.

Dest can be relay performing one of the relay strategies described in subsection 4.2.2, or it can
be considered as the final destination. Our goal is to design an universal solution, which will be able
to cope with various scenarious.

S1 S2 Sn−1 Sn. . .

Dest

Direct observation
S1

Sn

Side observation

χout(. . .)

Figure 5.1: Example of network, where node Dest is of our interest

5.2 System model description

The initial situation is depicted in figure 5.2. Now let’s suppose, that sources S1,S2, . . .Sn produce
data vectors d� from the same alphabet Ad{0, 1, . . . ,Md − 1} with cardinality |Ad| = Md. Then
these data can, but not strictly, be encoded by encoder C from alphabet AC = {0, 1, . . . ,MC − 1}
which is the same for all sources into codewords with cardinality |AC | = MC − 1. It is important to
note, that the encoders are identical and thus giving us no degree of freedom in a code rate.

Now, by using the general notation for codeword or data symbols b, we want to express, that we
don’t strictly employ coder and we send data/code symbols mapped into constallation space. The
symbols b are symbol by symbol mapped into the signal space points by common mapper As such
that sS1

= s(bS1
), . . .,sSn

= s(bSn
).

29
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The symbols from individual stages are transmitted trough the channels, which are distinquished
by colours. Each color could be considered one hierarchical observation and the rest could be
perceived as hierarchical side information. But, in more complicated scenarious, this sorting is
meaningless, therefore we will mostly call every such observation as Hierarchical Observation (HO).
In each ”Hierarchical“ channel, we consider relative channel parameters h with relative relation to one
given source. For this thesis h ∈ C we restrict ourselves on |h| = 1. It is essential to make statement,
that vector of channel parameters h is perfectly known on the receiver side. The superposition of
individual sources channel symbols which can be affected by h is denoted as u.

Per one channel, where is superposition of signals from given sources, is present AWGN w� with
real and imaginary part N (0,σ�). We define SNR γ� =

ε̄S�
N0�

=
E[|s2� |]

2σ2
�

Each superposition of signals
u is affected

C As

C As

C As

dS1

dS2

dSn

+ +

+ +

+

Receiving node
cS1 sS1 u1 x1

cS2 sS2 u2 x2

cSn sSn = un xn

h11

h12 h21

w1

w2

wn

Figure 5.2: General solution of network based on FG

5.3 LDPC Code Implementation

Implementation of the LDPC code was the first step for simulation purposes of this thesis. Since
the aim was not a design of LDPC generating matrix G and parity check matrix H, we used the
framework [5].

We used the Gallager regular (3,4) LDPC code with data word length equal to 1000 and the
codeword length 1750. Then rate of this code

R =
1000

1750
= 0.5714 (5.1)

The check matrix is generated according to algtorithm originally proposed in [] which is called as
Staircase solution. What this means is that code is systematic and thus in our case first 1000 bits
of codeword are data and the rest are parity bits.

5.3.1 Decoding on factor graph
We refer on 3.4 where we described mathematical functions according to those we can then make
the implementation. Taking the cycles in graph into the consideration, we executed computation of
messages according to Flooding algorithm. The major steps of implementation are described in the
following algrithms.
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Algorithm 1 Soft decision on codeword in probability domain
Input: H - parity check matrix with c columns and r rows containing nr number of 1s per each

row and nc number of 1s per each column
Hh - matrix with dimension r × nr including indexes of ones per each row of H
Hv - matrix with dimension r × nr including indexes of ones per each row of H
x - input probabilities that symbols are in state 0

Output: c-propability of code symbols being in state 0
1: Create matrix Heq with dim(H) representing message from equality to check nodes.
2: Create matrixHcheck dim(H) representing message from equality to check nodes with dimension.
3: Update matrix elements of Heq with indexes according to Hv providing vector x and matrix

Hcheck according to 3.3.2.
4: Update matrix elements of Hcheck with indexes according to Hh providing vector x and matrix

Heq according to ??
5: Check wether the maximum number of iteration is exceeded or cHTmod2 = 0 is satisfied. If yes,

stop the computation, else go to step 3.

If we take in consideration, that for computation as described in the previous algorithm we have
to store two matrices with size of parity check matrix H, where most of the elements are zeros,
and we exactly now, where the zeros are, this solution is computantionally inefficient. But for our
purpose, where we are not strictly limited by memory, this is the easiest solution.

5.4 HDF implementation

We will try to explain our approach by providing figure 5.3. We are comming from the fact, that
this scheme should be consistent with the layer design described in 4.3.3. At first, we will propose
the solution of the part denoted in dashed yellow rectangle. This is nothing else then H-MAC phase.
Then we describe the composition of this results into final output metric.

The minimal HNC map is considered as matrix X, based on GF(2n̊). The size of matrix XHin1
,

which belongs according to the index to function MχHin1
(S1,...,Sm), is given as n̊×m.

We have to still keep in mind, that the maps XHin...
has to be solvable with regard to solvability

of Xout to get b′.

We will give an example.

Let’s have three sources S1,S2 and S3 sending b1, b2 and b3. We want b′ be b1. Then we have
available three hierarchical observations with hierarchical maps XHin�

(the order of elements
in maps is [b1 . . . ]) on GF(2).

– χout =
[

1 0 0
]

– XHin1
=
[

1 1 1
]

– XHin2
=
[

0 1 1
]

– XHin3
=
[

0 0 1
]

Due to the linearity, we can write this as the one joint hierarchical map Xin

– Xin =

 1 1 1
0 1 1
0 0 1


• The rank(Xin)=3, which means, that the map is fully solvable and we can get b′.
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The next example:

Let’s have three sources S1,S2 and S3 sending b1, b2 and b3. We want b′ be b1. Then we have
available two hierarchical observations with hierarchical maps XSin�

on GF(2).

– χout =
[

1 0 0
]

– XSin1
=
[

1 1 1
]

– XSin2
=
[

0 1 1
]

Due to the linearity, we can write this as the one overall hierarchical map Mχin

– Xin =

[
1 1 1
0 1 1

]
• The rank(Xin)=2, but due to the XOR properties,we are still able to get b′. Ovsem, if we are

interested in Xout =
[

1 0 0
]
, then the result is not consistent.

Receiving node

χout

MχHin1
(S1,...,Sn) DχHin1

MχHin2
(S1,...,Sm) DχHin2

MχHink
(S1,...,Sl) DχHink

b̂S1...Sn

b̂S1...Sm

b̂S1...Sl

b′

µ(bS1...Sn)

µ(bS1...Sm)

µ(bS1...Sl
);

x1

x2

xn

Figure 5.3: Receiver solution consistent with Layer design

5.4.1 H-MAC phase
We should mention again the formula of the soft output metric derived in 4.4.1. To be totally exact,
we will consider the most generic applicable form

p(x|bAB) =

∑
bA,bB :χb(bA,bB)=bAB

p(x|bA, bB)p(bA, bB)∑
bA,bB :χb(bA,bB)=bAB

p(bA, bB)
(5.2)

For our purposes, we should realize, that this can be generalized for arbitrary number of sources
as:

p(x|bA...B) =

∑
bA,...,bB :χb(bA,...,bB)=bAB

p(x|bA, . . . , bB)p(bA, . . . , bB)∑
bA,...,bB :χb(bA,...,bB)=bAB

p(bA, . . . , bB)
(5.3)

For notational convenience and for consistency with figure 5.3, we will further denote the prob-
ability p(x|bA,...,B), which is, of course, the metric µ(b...), as µX� . Giving example, for channel
observation given by the blue arrow, we give to the hierarchical metric the appropriate subscript,
such that we have µX2

.
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Algorithm 2 Computation of µ(b�)

Input: x - received hierarchical channel symbol
n - number of sources in channel symbol
h - channel parameters
σ2 - noise variance
M - order of -PSK modulation
pb̃ - vector of apriori probabilities of b̃ being in state 0
X - matrix of HNC map

Output: µ(b)-propability of hierarchical symbol being in state 0
1: Create matrix T with number of rows equal to nM and number of columns equal to M × n,

where each row contains unique combination of M × n bits.
2: Create vector u containing all hierarchical points in constallation space, where each hierarchical

point is computed according to given row of M and vector h.
3: Create vectorm with two elements equal to zero, where the first element represents the µ(b� = 0)

and the second µ(b� = 1).
4: for state = 0 to 1 do
5: for i = 1to nM do
6: if (XMT (i, :))mod2 = state then
7: Compute pw = exp(‖x−u(i)‖2

σ2 ), where we could neglect the scaling factor, which would be
later abbreviated anyway

8: m(state)=m(state) + pw
9: end if

10: end for
11: end for
12: Finally µ(b) = m(0)

m(0)+m(1)

The general algorithm for computation of metric µX� can be seen in Algorithm 2.

The next option can be an approximation of hierarchical metric. We refer to solution proposed
in [4].

Considering the simplest solution, where two sources are participated in MAC phase, then the
metric is approximated as

p(x|bAB) ≈ α

Mb
exp

(
− 1

σ2
w

‖x− u0(bA, bB)‖2
)

(5.4)

where u0(bA, bB) is the closest point consistent with bAB . Then the approximation of the metric is
called Hierarchical Minimum distance Approximation.

Definition 5.4.1. Hierarchical Minimum Distance

ρ2
AB,min(x, bAB) = min

bA.bB :X (bA,bB)=bAB

‖x− u(bA, bB)‖2 (5.5)

The algoritm for computation of this metric is in Algorithm 3.
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Algorithm 3 Computation of approximated µ(b�)

Input: x - received hierarchical channel symbol
n - number of sources in channel symbol
h - channel parameters
σ2 - noise variance
M - order of -PSK modulation
X - matrix of HNC map

Output: µ(b)-approximated propability of hierarchical symbol being in state 0
1: Repeat the steps 1 - 3 from Algorithm 2
2: Create vector pwprevious

(state) with two zero elements
3: for state = 0 to 1 do
4: for i = 1to nM do
5: if (XMT (i, :))mod2 = state then
6: Compute pw = exp(‖x−u(i)‖2

σ2 ), where we could neglect the scaling factor, which would be
later abbreviated anyway

7: if pw>pwprevious
(state) then

8: pwprevious
(state)=pw

9: else
10: continue
11: end if
12: end if
13: end for
14: end for
15: Finally pwprevious(0) =

pwprevious
(0)

pwprevious
(0)+pwprevious

(1)

5.4.2 Output metric
Let us think of an example, where we have two Hierarchical observations x1 and x2 and our target is
metric µ(b′) of an output hierarchical map. It is again consistent with figure 5.2, but simplified for
mathematical convenience in the following derivation. Now, we will try to develop signal processing
for this example.

Considering, that the metric µ(b′) is bayes, then

µ(b′) = p(x1, x2, b
′) = p(x1, x2|b′)p(b′) (5.6)

We can generalize it to:

µ(b′) =
∑
b̃:b′

p(x1, x2, b̃) =
∑
b̃:b′

p(x1, x2|b̃)p(b̃) (5.7)

Considering the independency of x1 and x2

µ(b′) =
∑
b̃:b′

p(x1|b̃)p(x2|b̃)p(b̃) (5.8)

For solvable minimal hierarchical map must hold:

b̃ ≡ {b, b̄} (this notation was introduced in section 4.2.1) (5.9)

and then
µ(b′) =

∑
b̃:b′

p(x1|b, b̄)p(x2|b, b̄)p(b̃) (5.10)

Now we consider the approximation of hierarchical observation, which is given by the hierarchical
metric

p(x1|b, b̄) ∼= p(x1|b) (5.11)
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and similar for p(x2|b, b̄)
p(x2|b, b̄) ∼= p(x2|b̄). (5.12)

Example: The simplest example scenario is,

- b̃ = {bA, bB}

- the input hierarchical map: b = bA ⊕ bB

- complementary side information: b̄ = bB

- esired output map: b′ = bA

b̃ = {bA, bB}, the input hierarchical map b = bA ⊕ bB , complementary side information b̄ = bB and
our desired output map is b′ = bA, then:

µ(bA) =
∑

bA,bB :bA

p(x1|bAB(bA, bB))p(x2|bB)p(bA, bB) (5.13)

=
∑
bB

p(x1|bAB(bA, bB))p(x2|bB)p(bA, bB). (5.14)

If we expand the summation further :

µ(bA = 0) = p(x1|bAB=0(bA = 0, bB = 0))p(x2|bB = 0)p(bA = 0, bB = 0) (5.15)
+ p(x1|bAB=1(bA = 0, bB = 1))p(x2|bB = 1)p(bA = 0, bB = 1) (5.16)

µ(bA = 1) = p(x1|bAB=0(bA = 1, bB = 0))p(x2|bB = 0)p(bA = 1, bB = 0) (5.17)
+ p(x1|bAB=0(bA = 1, bB = 1))p(x2|bB = 1)p(bA = 1, bB = 1) (5.18)

we can see, that this satisfies the exclusive-or function.
The situation in figure 5.3 should be consistent with Hierarchical Layered HXC design solution

5.5 JDF strategy based on factor graph

The behaviour of system before the receiving node of our interest is again depicted in figure 5.2.
The FG is again the Forney Factor Graph model, but we will call it shortly Factor Graph (FG).
The notation for variables is the same as in the previous section. For JDF strategy, which is strictly
based on Factor Graph, is essential to know, wether we make the hierarchical decoing on the received
channel symbols carying pure data, or wether some code structure is present.The main reason is that
factor graph has different structure for each inividual case, and we will present both of them. But
the fundamental program solution for both examples is identical and we will breafly introduce it in
the appendix. Now we will give some important assumptions, which holds for both solutions.

As was proposed in [4], JDF Relay Strategy can be in MAC phase designed in two variants,
which differ in the manner of computing the metric of symbols of individual sources.

• Decoders with separate marginalized metric

[d̂A, d̂B ] =

[
argmax

dA
µ(dA), argmax

dB
µ(dB)

]
(5.19)

• Composite hypothesis decoders

[d̂A, d̂B ] =

[
arg max

dA,dB
µ(dA, dB)

]
(5.20)

Now is very important to note, that since our design on factor graph is strictly based on the
Sum-Product Algorithm, we are’t consistent with none of them. But we suppose, that the second
mentioned solution based on composite hypothesis decoders can be considered as the approximation
of SPA. Next assumption is, that the HNC is based on GF(2).
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5.5.1 Factor Graph of JDF Strategy with uncoded data
We present our design in figure 5.4. This FG consists of standard blocks, which could be in model of
standard communication chain. With the red dashed rectangle are highlighted the observation factor
nodes of individual HO, with the green one the apriori factor nodes of symbols sent by individual
sources, expect the node p(d), which denotes the apriori factor node of the hierarchical symbol. Now
we will pay the attention to the factor node denoted as p(d|dS1 , . . . , d|dSn), which should respect
the hierarchical map. In case of minimal HNC map, the factor node p(d|dS1 , . . . , dSn) is exactly the
parity check factor node defined in 3.4.3 with update rule 3.42. The highlighted part with the black
dashed rectangle is part, where cycle is present. Thus the computation on factor graph is iterative
and blocks p(x|d̃) and p(y|d̃) (the block p(d|dS1

), . . . , p(d|dSn
) in case of minimal HNC map and with

no apriori information adds no additional information) exchange the information via the equality
factor nodes. We fully described all update rules of all the participating factor nodes in this FFG
in subsection 3.2.5.

p(d′)

p(d|ds1 , . . . , dsn)

p(dS1)

...

p(dSn
)

=

. . .

=

p(x1|d̃) . . .

δ(x1 − x(0)
1 )

p(xn|d̃)

δ(xn − x(0)
n )

;

Figure 5.4: Factor graph of JDF strategy

5.5.2 JDF with code structure
Solution is exemplified on the easiest example as possible. We have only one HO available, where
codewords cA and cB are participated. As we made the assumption, that the error correction code
is linear systematic block code, the FG is depicted in the figure 5.5.

The decoders interchanges the soft information via the factor node p(x|cA, cB), and the next
iterations are done in decoder factor node DA and DB . In our implemention, per one incoming
message from equality to decoder node, several iterations in the decoder are done.

The factor node Xout(dA,dB) generates the soft information of sequence of hierarchical symbols
dAB1 , . . . , dABn . In our implementation, we restricted ourselves on minimal HNC on GF(2) and thus
µ(dAB1

) is computed according to 3.42 with input messages from the edges d̂A1
and d̂B1

. In case of
GF(2n>2), the more complicated structure has to be considered to provide the appropriate mapping.
If we take into account, that the decoders DA and DB are identical, we could also provide the soft
information about parity check bits to HNC factor node. In the picture are parity variable nodes
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highlited by dashed green rectangle and denoted as c..., which is not fully consistent with FFG, but
for sake of clarity we made this exception. In this case making the conclusion, wether we obtain
some benefit is out of scope of this work.

δ(x1 − x(0)
1 ) δ(x2 − x(0)

2 )
. . .

δ(xn − x(0)
n )

p(x|cA, cB)

x1 x2 xn

DA DB

Xout(dA,dB)

. . .

dAB1
dABn

=

=

=

=

d̂A1

d̂An d̂B1

d̂Bn

c1n−m

c11

c2n−m

c21

;

Figure 5.5: Factor graph of JDF strategy with code structure

5.5.3 HDF based on factor graph
This is our last proposed solution, but at the beginning, we should mention, that many problems
remains here unsolved and can be considere as subject suitable for scientific research.

Our original idea was to modify the factor graph of JDF strategy as depicted in figure 5.4 in
such way, that we add the additional factor node which would be able to respect the metric of
hierarchical observation. The resulting FG is in figure 5.6, where for the sake of clarity only one HO
is considered. Our presumption was, that the additional factor node denoted as χin (considering
the minimal XOR map) will provide the message (metric) about the hierarchical symbol to factor
node p(x1|d̃, d), which could lead to better performance. Now we will show the problems standing
behind this decision.

Let’s have two sources S1 and S2 generating data symbols from alphabet Ad = {0, 1}, which are
mapped into the constellation space from the alphabet As = {−1, 1}. Now let’s have the observation
given by equation

x = sS1 + hsS2 + w

where |h| = 1, arg(h) = 0 and w is AWGN with zero mean and the scaling factor equal to a. Then
the hierarchical constellation space consists of set x = {−1, 0, 1}. The second element of x causes
the uncerainty about the output metric outgoing from factor node p(x|dA, dB). But as we will show,
respecting the hierarchical symbol in way which is proposed in figure 5.6 gives also ambigous results.

Let’s suppose the table 5.1 where are all possible states that can happen, if we try to decode the
hierarchical constellation symbol 0.

The first problem arrives when we try to define the red highlited states. This is intractable
problem. And even, if we try to ignore this state, this factor graph is not able to solve this problem,
because assumption, that we have no apriori probabilities available, it is really easy to show, that
even after arbitrary number of iterations the all messages remain in (considering the probability
domain) state 0.5.

We will let this problem open for further research.
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p(x0|d1, d2, d) d dA dB
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
2a 1 0 1
2a 1 1 0
0 1 1 1

Table 5.1: Table of likelohood

p(d′)

p(d|ds1 , . . . , dsn)

p(dS1
)

...

p(dSn
)

=

. . .

=

p(x|d̃, d)

δ(x− x(0))

χin

d′

dS1

dSn

x1

d

;

Figure 5.6: Factor graph of HDF strategy
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5.6 Simulation results

The simulation are based on the observation model depicted in figure 5.2, where we restrict ourselves
on As = {−1, 1}( BPSK modulation is used) and Ac = {0, 1}.

In all subsections where individual simulation scenarious are presented, BER will be related to
hierarchical symbol given by XOR HNC map on GF(2).
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5.6.1 HDF - influence of metric approximation on BER
This simulation models the situation, where one hierarchical observation of three sources A,B,C is
available, with no relative channel parametrization and χin =

[
1 1 1

]
bABC =

[
1 1 1

] [
bA bB bC

]T (5.21)

The figure 5.7 depicts the situation where sA = sdA, . . . , sC = sdC and the situation in figure 5.8 is
sA = scA, . . . , sC = scC with error correction.
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Figure 5.7: Dependence of bit error rate on the computation method of hierarchical metric
in case of received data symbols
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Figure 5.8: Dependence of bit error rate on the computation method of hierarchical metric
in case of received code symbols
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5.6.2 HDF - influence of available hierarchical observations on BER
The figure 5.9 depicts the situation, where HNC map of available hierarchical observation
χx1 =

[
1 1 1

]
and χx2 =

[
0 1 1

]
. The output hierarchical map χout =

[
1 0 0

]
.

The figure 5.10 depicts the situation, where HNC map of available hierarchical observation
χx1

=
[

1 1 1
]
and χx2

=
[

0 1 0
]
. The output hierarchical map χout =

[
1 0 0

]
.

The output hierarchical map χout =
[

1 0 0
]
The hierarchical maps are related to data

symbols
[
dA dB dC

]
.
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Figure 5.9: Hierarchical observations providing solvable hierarchical output map
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Figure 5.10: Insufficient number of hierarchical observations leading to insolvable hierar-
chical output map
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5.6.3 HDF - BER of hierarchical map of coded/uncoded data words
The figure 5.11 depicts the dependency of SNR of individual hierarchical observations with no error
correction with comparision to figure 5.12 where error correction is considered.
χx1

=
[

1 1 1
]
, χx2

=
[

0 1 0
]
and χx3

=
[

0 0 1
]
.

The output hierarchical map χout =
[

1 0 0
]
and SNRx1

=10 dB
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Figure 5.11: Dependency of BER on SNR of individual hierarchical observations without
error correction code
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Figure 5.12: Dependency of BER on SNR of individual hierarchical observations with error
correction code
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5.6.4 JDF - BER with different phases - coded/uncoded data words
One hierarchical observation is observed with three data sources. The phase of the third source is
fixed arg(h1) = 0deg. The figure 5.13 depicts the dependency of BER of the source x1 on phase of the
others (distinguished with subscript 1 and 2), where SNR=0dB and error correction is considered.

The figure 5.14 depicts the same situation, but SNR=10dB and no error correction is done.
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Figure 5.13: Phase dependecy of individual users with error correction code
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Figure 5.14: Phase dependecy of individual users without error correction code
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5.6.5 HDF vs JDF - BER
The figure 5.15 gives the comparision of BER performence of JDF and HDF with no error correction
code. We have only one hierarchical observation, χx1

=
[

1 1 1
]
and the channel parameters

arg(h11
) = 0, arg(h12

) = 45deg and arg(h13
) = 90deg.

The output hierarchical map χout =
[

1 0 0
]
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Figure 5.15: JDF vs HDF



Chapter 6

Conclusion

I have get acquainted with Wireless Physical Layer Network Coding and with the principles of
iterative soft-information based decoding on Factor Graph, where the Sum Product Algorithm was
applied. Then I used it to design block, which would be able to solve various scenarious of available
hierarchical observations, in order to get the desired information for further processing. Then I
made several simulations to show the performance of designed blocks, depending on SNR and phase
rotation, which has harmful impact on the hierarchical observations.

Significant discovery was, that the solution on Factor Graph which would be consistent with
Hierarchical Decode and Forward decoding strategy from Sum Product Algorithm point of view
cannot be straightforward implemented, thus it can be addressed as interesting subject on the
future work.
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