
Bachelor’s thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Measurement

Big Data and Its Analysis

Oleg Ostashchuk
Open Informatics - Computer Systems

May 2014
Supervisor: Miloš Kozák

Acknowledgement / Declaration
I would like to thank the supervisor

of my thesis, Ing. Miloš Kozák for his
help, useful tips and for friendly access
throughout period of writing my thesis.

I declare, that I have completed this
thesis independently and that I have
used only the sources listed in the bib-
liography.
In Prague 23. 05. 2014

. .

v

Abstrakt / Abstract
Cílem teto práce je nastudovat pro-

blematiku velkých dat a připravit distri-
buované prostředí pro jejich zpracování
pomoci Hadoop frameworku. Také při-
pravit aplikace pro analýzu dat na bázi
MapReduce algoritmu. Všechny úkoly
prezentované v moji práci se zastávají
dvou hlavních principu, využívat jenom
volně dostupné nástroje a hledat takové
řešeni problému, aby mohlo byt použito
v reálné aplikaci z praxe.

The main aims of this thesis was to
study the area of Big data, to prepare
a distributed data processing environ-
ment using Hadoop framework, to de-
velop MapReduce algorithms to exploit
prepared environment. All work pre-
sented in my thesis was based on two
main principles, to use just freely avail-
able tools and to demonstrate solutions
ready to be used in real life applications.

vi

Contents /
1 Introduction to Big Data and

Hadoop. .1
1.1 Big Data .1
1.2 Principles of data processing2
1.3 Hadoop framework3
1.4 HDFS. .5
1.5 MapReduce. .7
1.6 YARN .9
1.7 Alternative distributions. 10

1.7.1 Cloudera Distribution
for Hadoop 10

1.7.2 Hortonworks Data
Platform. 10

1.7.3 MapR. 11
2 Installing Hadoop in pseudo

distributed mode 12
2.1 Choice of Operating system . . . 12
2.2 CentOS . 12
2.3 Installation and configura-

tion of CentOS 13
2.3.1 Network configuration . . . 13
2.3.2 Disable SELinux and

Firewall. 15
2.3.3 Java installation 15
2.3.4 Establish SSH connec-

tion . 15
2.4 Choice of Hadoop distribu-

tion . 16
2.5 Installation and configura-

tion of Apache Hadoop 16
2.5.1 Installing Apache

Hadoop 16
2.5.2 Modifying .bashrc. 16
2.5.3 Configuring Apache

Hadoop 17
3 Installing CDH in fully-

distributed mode 21
3.1 Hardware Specification 21
3.2 Installing CDH 22

4 Data Analysis . 27
4.1 Data description 27
4.2 Tasks description 28
4.3 Tasks realization 28

4.3.1 Tasks definition 28
4.3.2 Downloading data 28
4.3.3 Preparing data 28

4.3.4 Loading data to HDFS . . 29
4.3.5 Performing MapRe-

duce job 29
4.3.6 Observing results 30
4.3.7 Pearson’s chi-squared

test of calculated results . 30
4.3.8 Minimal and maximal

daily temperatures 32
5 Conclusion . 33

References . 35
A Source code: MapReduce ja-

va program . 37
A.1 TempMapper class 37
A.2 TempReducer class 39
A.3 TempJob class 40

B Source code: PrepareFiles ja-
va program . 41

B.1 PrepareFiles class 41
B.2 FilesMerger class 43

C CD contents . 45

vii

Chapter 1
Introduction to Big Data and Hadoop

Humans are creating records for many years. Naturally, important of them they
have been trying to store, the reasons why were they doing it are different,
certainly just for case that the records will be needed sometimes later. People
have been creating archives, where all these records were stored, we can imagine
big rooms with high shelves filled by many folders and records, sometimes not just
the rooms but even whole buildings are used for archives. Searching information
in that kind of archives can be not so easy and sometimes requires more time to
be spent on it. Invention of computer in 20th century significantly influenced the
data storing. It enabled to store records in absolutely different way, in digital
form. Huge volumes of space previously needed are not required now. Since the
computers started to be used for storing data, it enabled to to search needed
records significantly faster than before, and to decrease amount of resources
needed for storing and seeking information.

Many organizations and institutions started to use computers. Certainly their
work has been producing a lot of records. For many years computers with ease
managed with all input information to be processed and stored. The problems
appeared over the past few years, when we were able to observe rapid progression
of data, produced by people in digital form. Processing these huge data sets,
seemed to be not an easy task, and requires enough resources.

1.1 Big Data
In last years organizations are generating huge amounts of information about their
customers. Usually to be successful in their branch of activity, there is often a
necessity of storing, as much useful information as is possible, for further analysis..Financial institutions store much more information about their clients, than

usually people expect. They observe records about various clients’ accounts,
such as income, payments, periodically balance state and many other. All
these records are processed to create a vision of client’s expected behavior. It
seemed to be very useful information for financial institutions like banks and
insurance companies. After they are able to obtain client’s expected behavior,
they can decrease risk in making decisions, about providing or not providing
different kind of services (such as loans) to the client.

.Search engines is good example, where enormous amount of data is need to
be processed. At first search engines need to store a lot of information about

1

1. Introduction to Big Data and Hadoop .
web pages, its content, keywords, whether the web page is popular or not.
Then users, they involve another huge amount of information to be recorded.
Example, often entered words to be searched, then web pages, in which
user was interested and visited them. These records are being stored to ensure
that people could easily search the web page with the content they really need.

. Institutions in sphere of telecommunication, such as mobile operators, store
almost any information about client’s actions. All records about calls, their du-
ration, the numbers that are called, amount of traffic used for internet services,
and many other services, it is all recorded and used for later analysis. What
allows to optimize services, so they maximally satisfied the client’s demand.

.Social networks are nowadays getting more and more popular. People upload
their photos and videos, update their statuses, message their friends. It is an
example of case where the problem is not related to the processing of huge data
sets of log files, but to the storage resources.

Naturally the general aim, why companies in all these sectors, are storing and
analyzing data is to make more profit. Many of these greatest organizations,
which obtain a lot of records about people and their activities sometimes even
cooperate with security agencies, which collect and analyze data about people for
safety reasons.

And now the term, Big Data, it represents all those previously mentioned large
data sets, which seems become a key basis of competition, underpinning new
waves of productivity growth and innovation.

1.2 Principles of data processing
Processing of large data sets has always been limited to the processing power
that can be built into a single computer. The rapid progression of generated data
to be stored and analyzed, observed during last few years, caused that existing
tools for it, were becoming inadequate to process such large data sets. Companies
like Google, Yahoo and Amazon were first which were able to feel insufficiency
of existing data storage systems. Even fast and expensive computers with high
performance were unable to manage with a given problems. The problem is
easy to explain. However the storage capacities of hard drives have increased
massively over the years, access speeds to the medium wasn’t improved so much.
So there was a necessity of system with a new approach for storing data. Today
there are two approaches to scaling a system, generally referred to as scale-up
and scale-out. [1]

Classic data processing systems have typically been working on large comput-
ers with usually large price tags. As the size of the data grows, and the data
processing reaches computer’s performance limits, the solution is in moving to

2

. 1.3 Hadoop framework

a bigger and more powerful computers. This approach of scaling a system is
known as scale-up. Today given approach is still very useful and widely used for
applications such as commercial database engines, where the software handles the
complexities of utilizing the currently available hardware. The problem appears
in practical limits on just how big a single computer can be, so at some point,
scale-up cannot be extended any further.

Instead of growing a system onto larger and larger hardware, the scale-out
approach spreads the processing onto more and more machines. An alternative
solution is based on idea of distributed data storage. If the data set doubles,
simply use two servers instead of a single double-sized one. If it doubles again,
then just move to four hosts. The obvious benefit of this approach is that pur-
chase costs remain much lower than for scale-up. Server hardware costs tend to
increase sharply when you are looking for larger machines, for example ten times
increased processing power may cost a hundred times as much, but byuing ten
slower machines will affect the price just lineary. The downside of the scale-out
approach, as the scale-out systems get larger, the difficulties caused by the com-
plexity of the parallelism in the systems have become significant. One of the
problem is related to count of used machines, as we start to use multiple com-
puters, the chance of failure one of them is increased, what makes higher risk of
data loss. This can be solved by data replication, stored data are replicated on
different hosts, what excludes probability of data loss. Data processing sometimes
requires the data stored on different hosts to be processed together at once, what
demands often complex processes like shifting and combining the data partitions.
In general, effectively utilizing multiple computers seemed to be a difficult task,
and implementing the necessary mechaisms for it can entail enormous effort.

1.3 Hadoop framework
The Apache Hadoop software library is free open source framework that allows
for the distributed processing of large data sets across clusters of computers
using simple programming models. It is designed to scale up from single servers
to thousands of machines, each offering local computation and storage. Rather
than rely on hardware to deliver high-availability, the library itself is designed to
detect and handle failures at the application layer, so delivering a highly-available
service on top of a cluster of computers, each of which may be prone to failures.
Mostly, Hadoop term is known for programing model MapReduce and for its
distributed filesystem – HDFS, but in fact the name is used for several Apache
projects related to distributed computing and data processing.

Previously was mentioned, that distributed data processing leads to several
complexities. Hadoop manages with all those mentioned problems of distributed
data storage systems. That’s why it becomes to be popular and recently often
used. For people who never heard about Hadoop, it can be described with three
main properties which makes it so useful.

3

1. Introduction to Big Data and Hadoop .
.Concurrency — everything works in parallel. Data are splitted into partitions

and stored in distributed file system. Later computing processes over the data
are being executed simultaneously on different machines.

.Reliability — Hadoop is a reliable system, that takes care of data replication
(with a suitable replication count) and in case of some failure it ensures that
data are not lost.

.Scalability — whenever there is a need to handle larger data, Hadoop scales
linearly, just by adding another nodes to the cluster.

In general Hadoop is the thing, that allows users to use complex distributed
system simply, as locally working system. Software developers don’t have to care
about whole complexity of distributed system and can easily focus on the aims of
their work.

As the distributed computing is getting popular, there are appearing differ-
ent projects, not necessarily under Apache, providing complementary services to
Hadoop. Currently Hadoop base consists of four sub-projects, providing the base
functionality of the system.

.Hadoop Common — A middleware, set of the common utilities and libaries
that support the other Hadoop modules.

.Hadoop Distributed File System (HDFS) – Distributed file system, designed
for storing very large data sets by scaling out across a cluster of hosts. Files are
splitted into so called block of given size. It achieves high availability through
replication.

.MapReduce — Programing framework used for performing distributed com-
puting processes. Data are processed in two main steps mapping and reducing.

.YARN — A new MapReduce runtime designed for better job scheduling and
cluster resource management.

Except for four main Hadoop components, enabling base functionality of dis-
tributed system, there are plenty of other complementary projects, supplementing
additional facilities.

Hive — The Apache Hive data warehouse software facilitates querying and
managing large datasets stored in distributed file systems. Hive provides a
mechanisms to query the data using a SQL-like language called HiveQL. HiveQL
queries are built to work in MapReduce model, at the same time language also
allows traditional map/reduce programmers to add their custom map and reduce

4

. 1.4 HDFS

functions when it is inconvenient or inefficient to express this logic in HiveQL.

Pig — Apache Pig runs on Hadoop and makes use of MapReduce and the
Hadoop Distributed File System (HDFS). The language for the platform is
called Pig Latin, which abstracts from the Java MapReduce idiom into a form
similar to SQL. Pig Latin is a data flow language that describes how data will be
transformed. Similarly as Hive, Pig also allows users to extend Pig Latin with
own user defined functions, which can be written in Java or Python.

HBase — Hbase is a column-oriented distributed database system, built on
top of HDFS. HBase component is being used when a real-time read/write access
to large datasets is required.

Sqoop — A tool for transferring data between relational databases and
Hadoop.

To get something running on Hadoop, it obviously need to be configured. One
useful property of Hadoop is, that it lets the user decide in which mode should
Hadoop run.

.Local standalone mode — This is the default mode if anything else is not
configured. In this mode, all the components of Hadoop, such as NameNode,
DataNode, JobTracker, and TaskTracker, run in a single Java process.

.Pseudo-distributed mode — In this mode, a separate JVM is spawned for
each of the Hadoop components and they communicate across network sockets,
effectively giving a fully functioning minicluster on a single host. This is very
useful mode for developing applications, as the everything works like on the
real cluster, just with one node. It will be not possible to test efficiency of
distributed system, but testing application on smaller amounts of data, saves
the time.

.Fully distributed mode — In this mode, Hadoop is spread across multiple
machines where each node has its assigned function.

Fully distributed mode is obviously the only one that can scale Hadoop across a
cluster of machines, but it requires more configuration work. While developing the
software, generally the pseudo-distributed mode is preferred, even when running
applications on a single host in the pseudo-distributed mode, everything is almost
identical to how it works on a real cluster.

1.4 HDFS
Hadoop Distributed File System, or just HDFS – it is main storage system, used
by Hadoop components. It was designed for storing huge amounts of information

5

1. Introduction to Big Data and Hadoop .
(terabyte even petabyte), simultaneously providing high rate of access speed.
Files stored in HDFS are splitted onto blocks, replicated and distributed over
the nodes of cluster, this provides high rate of reliability and computing speed.
The system is designed in the way that, files in HDFS are written only once, and
editing of already written files is not possible. As the HDFS is block-structured
file system, files during their loading have to be physically splitted onto the
blocks of fixed size. Size of the blocks is set in cluster’s configuration file (default
size is 64 MB). Each file block is then replicated with the preset replication
quotient (default value is 3). Replicated blocks are stored on physically separated
machines, there are used suitable mechanisms to spread copied blocks over cluster
nodes, what ensures, that in case of some failure, needed data are not lost and
could be read from another node. As the HDFS was designed for storing big
files, it is normal that files stored in HDFS could easily exceed storage capacity
of single machine’s hard-drive, nothing guarantees that blocks of one file will be
stored on the same machine, blocks are spread over the cluster automatically,
using the suitable hash function.

HDFS provides all mentioned mechanisms by running set of daemons. These
daemons could be understood as an individual programs, each performing its
specific role. Some daemons are running on one server, and another are running
across multiple machines. Currently HDFS includes these daemons:

.NameNode — Hadoop implements a master/slave architecture for both,
distributed storage and distributed computation. It performs master role of
HDFS. Namenode manages general information about structure of the file
system, like file system tree, metadata for all files and directories in the tree.
Metadata of file doesn’t require much of storage, it contains only information
about file name, permissions and where file blocks are physically stored, in
addition, to ensure that structure of metadata wasn’t modified by multiple
simultaneously connected clients, all metadata are stored in the main memory
of single machine running the namenode daemon. The general functionality of
namenode can be described as managing of memory and assigning the simple
I/O tasks to slave nodes. To decrease the workload of machine, server hosting
the namenode typically doesn’t store any user data or perform computing
operations.

.DataNode — Datanodes daemons are usually running on the slave machines
of the cluster, performing simple read and write tasks of HDFS files’ blocks
to the concrete place of memory on the local file system. Namenode holds
an information where each file block is stored, and when read or write task
is performed, namenode provides this information to the client, which further
communicates directly with the datanode. Datanodes are constantly reporting
to the namenode, each datanode informs namenode about file blocks it is
currently storing.

6

. 1.5 MapReduce

.Secondary NameNode — Each cluster has many datanodes and just one
namenode, therefore namenode is a single point of failure. Any hardware or
software failure of the machine, running the namenode daemon, can cause whole
storage system crash. For this cases was invented secondary namenode, it’s an
assistant daemon form monitoring the state of cluster. During functionality of
cluster, all metadata about files and file system tree are managed by namen-
ode, secondary name node just periodically takes snapshots of this information
(intervals can be modified). In case of namenode’s failure, secondary name
node doesn’t substitute the namnode’s function, it just helps to minimize the
data loss and time of recovery process.

HDFS file blocks are not part of the local file system, usually all nodes of the
cluster are locally running on linux OS, but any operations like copying, moving
of the HDFS file blocks within local operating system are not possible. Instead of
it, HDFS contain its own utility that supports file managing commands, syntax
is used similar to linux OS’s commands. [1–3]

To open the file, client firstly communicates with namenode, it receipts list of
file’s blocks, from which file consists and where are they stored. Further the client
communicates directly with the datanode, and namenode doesn’t take part in any
information exchanging.

1.5 MapReduce
MapReduce term refers to two distinct things: the programming model and the
specific implementation of the framework in Hadoop. Programing model is de-
signed to simplify the development of large-scale, distributed, fault-tolerant data
processing applications. MapReduce is primarily a way of writing applications.
In MapReduce, developers write jobs that usually consist of two steps, a map
function and a reduce function, and the framework handles all complexities of
parallelizing the work, scheduling tasks of the job on slave machines, recovering
from failures, and others. Developers don’t have to implement complex and
repetitious code and instead, can easily focus on algorithms and logic of their
work.

Hadoop MapReduce is a specific implementation of the MapReduce program-
ming model, and the computation component of the Apache Hadoop project.
The combination of HDFS and MapReduce is what makes Hadoop so powerful.

In mapreduce programming model, users are responsible to write a client ap-
plication that submits one or more mapreduce jobs that consists of user-defined
map and reduce functions and a job configuration. The framework handles
breaking the job into tasks, scheduling tasks to run on machines, monitoring each
task’s health, and performing any necessary retries of failed tasks. Commonly, the

7

1. Introduction to Big Data and Hadoop .
input and output data sets are one or more files stored on a distributed filesystem.

A mapreduce job is made up of four distinct stages, executed in order: client
job, map task execution, shuffle and sort, and reduce task execution. Client
applications can really be any type of application the developer desires, from
commandline tools to services. The job itself is made up of code written by a
developer using the MapReduce APIs and the configuration which specifies things
such as the input and output data sets.

Similarly as the HDFS, Hadoop’s MapReduce component is working in mas-
ter/slave architecture. Whole logic is implemented in running one master daemon
that is responsible for resource managing and task scheduling, and running many
slave daemons on working machines, where each tasks are running.

In Hadoop’s MapReduce component, there are two job related daemons Job-
tracker (master service) and Tasktracker (worker service):

. Jobtracker — Similarly as the HDFS’s daemon – namenode, the jobtracker
is the master process, responsible for accepting job submissions from clients,
scheduling tasks to run them on working machines, and providing administra-
tive functions such as working node’s health and task progress. Similarly as the
namenode, there is only one jobtracker per MapReduce cluster, what makes it
a single point of failure, it usually runs on reliable hardware since a failure of
the master will result in the failure of all running jobs.

Just like the relationship between datanodes and the namenode in HDFS,
the similar communication is being performed between MapReduce’s daemons,
tasktrackers inform the jobtracker about their current health and status by
way of regular heartbeats. Each heartbeat contains the total number of map
and reduce task slots available, and detailed information about any currently
executing tasks. After a configurable period of no report from tasktracker side,
a tasktracker is assumed dead.

When a job is submitted, information about each running task that makes
up the job is stored in jobtracker’s node memory. This task information
updates with each tasktracker heartbeat while the tasks are running, providing
a near real-time view of task progress and health. After the job completes,
this information is retained for a configurable time period or until a specified
number of jobs is executed. On an active cluster where many jobs, each with
many tasks, are running, this information can consume a considerable amount
of RAM memory.

The process of deciding which tasks of a job should be executed on which
worker nodes is referred to as task scheduling. Similarly like CPU is being
shared for computing on one machine, tasks in a MapReduce cluster share

8

. 1.6 YARN

working nodes, the only difference, that there is no switching between tasks
running — when a task executes, it executes completely..Tasktracker — The second daemon, obviously similar to HDFS’s datanode, is
a daemon with slave role of architecture. Tasktracker receives task assignments
from the jobtracker, executes given tasks, locally over the data portion stored
exactly on the same machine, and periodically reports the progress back to
jobtracker. There is always running only one tasktracker on each working node.
As it could be predicted from the architecture principles, both tasktrackers and
datanodes daemons are running on the same working node’s machines, what
makes each node both, a compute node and a storage node.

Each tasktracker has a configurable number of map and reduce task slots that
indicate how many tasks of each type it is capable of executing in parallel. A
task slot is exactly what it sounds like, it is an allocation of available resources
on a worker node to which a task may be assigned. A tasktracker executes
some number of map and reduce tasks in parallel. Map and reduce slots are
configured separately, as they consume resources differently. For efficient work
of the program, it is very important to pick up the correct number of map and
reduce task slots, to reach the full use of the working node’s machine.

[4, 2–3]

1.6 YARN
Architecture of distributed data processing described before, seemed to work
very effectively until the some limitations were reached. With the rising number
of nodes in Hadoop cluster, was seen that resource requirements on a single
running jobtracker were just too high. In new releases of Hadoop, traditional
MapReduce component has been modified. New component is named YARN
(“Yet Another Resource Negotiator “), sometimes also referred as MapReduce 2.
The main differences are related to principles of jobtracker work. In new releases,
rather than have a single daemon, that assigns resources such as CPU, memory
and manages MapReduce jobs, these functions were separated into two daemons.

The resource management aspect of the jobtracker is now being run as a new
daemon called the resource manager. A separate daemon responsible for creating
and allocating resources to multiple Map-Reduce jobs. Each Map-Reduce job
is now assigned as an individual application, and in difference to have a sin-
gle jobtracker per whole cluster, each job now has its own jobtracker equivalent
called an application master that runs on one of the working nodes of the cluster.

This is significant difference, in comparing to the previously centralized job-
tracker. In new concept application master of one job is now completely isolated
from any other. This means that if some unexpected failure will occur within the
jobtracker, other jobs are not affected. Further, because the jobtracker is now

9

1. Introduction to Big Data and Hadoop .
dedicated to a specific job, multiple jobtrackers can be running on the cluster
at once. When an application completes, its application master, such as the
jobtracker, and other resources are returned backt to the cluster. As a result,
there’s no central jobtracker daemon in YARN.

Worker nodes in YARN have also undergone some changes. Now the tasktracke
runs as a new daemon called the node manager. While the tasktracker expressly
handled MapReduce specific functionality such as launching and managing tasks,
the node manager is more generic. Node manager launches any type of process,
dictated by the application, in an application container. [5]

1.7 Alternative distributions
Apache Hadoop is an open source project, what allows other enterprises to use
and extend the code base with additional features. Beside the new components
that are being developed by the companies, configuring of already known open
source Apache components, sometimes requires much effort and wide knowledge,
to ensure that whole complex system will be safe and all components will cooperate
properly. These are general branches of services provided by companies in the
mentioned sphere.

1.7.1 Cloudera Distribution for Hadoop
Cloudera Distribution for Hadoop is probably the most known widely used Hadoop
distribution, that is often referred as CDH. Cloudera is the company where Doug
Cutting, the creator of Hadoop, is currently working. Useful Hadoop componet,
Sqoop was also created by Cloudera and contributed back to the open source
version. The Cloudera distribution is available at its offical webpage, containing
a large number of Apache products pre-configured to work properly together, in-
cluding Hadoop itself, then previously mentioned components as Hive, Pig, Hbase
and tools such as Sqoop and other lesser-known products. Cloudera Distribution
is available in several package formats, some of which are avaible to be used for
free, and presents the software in a ready-to-go form. The base Hadoop prod-
uct, for example, is separated into different packages for the components such as
NameNode, TaskTracker, and so on, and for each, there is integration with the
standard Linux service infrastructure. Beside the base Hadoop, CDH was the first
widely available alternative distribution, and its availability for free cost has made
it as very popular choice. Cloudera also provides additional commercial-only prod-
ucts, such as different management tools, in addition to training, support, and
consultancy services. [6]

1.7.2 Hortonworks Data Platform
Hortonworks is the Yahoo derived company, created as a division responsible for
the development of Hadoop. In difference to Cloudera, Hortonworks presents all
its modifications 100% open source inculidng Apache Hadoop, without any non-
open components. Hortonworks offers a very good, easy-to-use sandbox for getting

10

. 1.7 Alternative distributions

started. Hortonworks developed and committed enhancements into the core of
Hadoop that make possible to run it natively on the Microsoft Windows platforms
including Windows Server and Windows Azure. They have also produced own pre-
integrated Hadoop distribution, called the Hortonworks Data Platform (HDP) and
available to be downloaded from the official webpage. Hortonworks Data Platform
is in fact very similar to its Cloudera’s opponent, and the general differences can
be watched in their focus. Hortonworks follows the fact that HDP is fully open
source, including the management tool, what is different for Cloudera Distribution,
which provides management tool as part of commercial release. Hortonworks does
not offer any commercial software, its business model focuses instead on offering
professional services and support for the platform.

1.7.3 MapR
MapR is a little bit different type of distribution offered by MapR Technologies,
the company and its distributions are usually referred simply as MapR. Their
distribution, as usually, is based on Hadoop but it has added a number of changes
and enhancements. MapR successfuly focused it’s activity on performance and
availability, it was the first distribution to offer a high-availability solution for
the Hadoop NameNode and JobTracker, what is a significant weakness of Hadoop
core, known as single points of failure. MapR replaced HDFS with a full POSIX-
compliant filesystem that can easily be mounted remotely. MapR provides both
a community and enterprise edition of its distribution, not all the extensions are
available in the free product. MapR similarly as the previous two companies
also provides support services as part of the enterprise product subscription, in
addition to training and consultancy.

11

Chapter 2
Installing Hadoop in pseudo distributed mode

In this chapter I’m going to describe installation and configuration of Apache
Hadoop framework on one computer, in pseudo-distributed mode. This is usually
the first and most typical procedure for persons that are introducing with hadoop.
Pseudo-distributed mode doesn’t reflects any advantage of the distributed data
processing but it allows to feel importance of any configurations required to be
done on the real cluster. It is a good option for software developing and testing
it on small amounts of data.

Following sections of this chapter describe steps, that are going to be realized
on one computer. In the case of running cluster in fully-distributed mode, each of
its host machines requires the same configurations like it is needed to be done on
one computer running pseudo-distributed mode of hadoop. Therefore following
chapter describes base configurations that will be later used when creating real
fully-distributed cluster.

2.1 Choice of Operating system
Decision about choosing the operating system of host machines is the first step,
that has to be done. Beside some presented ideas and solutions of Hortoworks
company about using Microsoft Windows platform, I better preferred Linux dis-
tribution, as it is generally recommended by Apache Hadoop. My decision about
concrete Linux distribution was mainly influenced by many recommendations at
the internet, and by general fact, that all last stable distributions of Cloudera and
Hortonworks companies were presented on host machines, running on CentOS.
Therefore for my further steps I have chosen using of CentOS.

2.2 CentOS
Community Enterprise Operating System, or mostly known just for CentOS
term, is an enterprise Linux distribution. It was developed by the CentOS
Project community using the source code of the commercial Linux distribution,
the Redhat Enterprise Linux (RHEL). CentOS was created to be a freeware
alternative to RHEL and to have a Linux distribution that is as stable as its
commercial counterpart and can keep up with the requirements of the enterprise.
Besides the popularity and widely useability of commercial RHEL, its freeware
alternative doesn’t fall behind in its popularity. As the CentOS was built using

12

. 2.3 Installation and configuration of CentOS

the source code of RHEL, it is binary compatible with the RHEL.

Another significant advantage of CentOS operating system is related to its
developers’ principles, that CentOS will follow the redistribution rules of RHEL
making it truly free alternative to the original one. CentOS is continuously
being developed by its core developers and community, providing all security and
software updates, what ensures the stability of the distribution.

In addition, Red Hat in year 2012 has announced that it intends to maintain
the life cycle of its Red Hat Enterprise Linux distribution of versions 5 and 6 for
ten years, instead of the previously planned seven. Actually, the customers with
the additional three year Extended Lifecycle Support will also receive additional
support beyond the standard ten year period, meaning that RHEL users can
receive up to 13 years’ support. Following this extension, RHEL 5 should come
to the end of its life cycle in March 2017 and RHEL 6 in November 2020, with
Extended Lifecycle Support coming to end three years later. Because of the
effort of CentOS’s developers community and Red Hat Enterprise Linux extended
Life Cycle, CentOS is able to have a constant release upgrades scheduled to new
releases of RHEL expectedly for the same 10 year’s period. Thanks to roots of
RHEL, CentOS generally seems to be a good choice to be used in many projects,
regarding to its compatibility, quality, and support properties.

2.3 Installation and configuration of CentOS
Generally it is recommended to use the same operating system for all nodes of the
cluster, in my case, my cluster consists just from one computer running on Cen-
tOS 6.4 version with minimal installation. Installation of operating system itself
is an easy process and doesn’t require much effort, in case of CentOS, it takes ap-
proximately 10 minutes. Image disks with the source files of operating system can
be downloaded from any of mirrors sites on the official website www.centos.org.
Similarly any other information and more detailed installation’s guide can be ob-
tained on the same website. After the installation is completed, there have to be
done several configurations, therefore for further steps we need to be logged as
root user. Minimal version installation contains minimum of preset settings or
preinstalled programs, what ensures that operating system will contain just the
things we need, and nothing else will consume computer’s resources.

2.3.1 Network configuration
Network configuration is first significant task to be done. I consider that all
computers of the cluster are already physically connected to one network. Even
if the cluster consists just from the one computer, it still requires network to be
configured. It is important that all computers of the cluster have assigned static
IP address, that all nodes were able to communicate with required destination
node anytime. Other required settings mostly depend on the concrete network
configurations, to which computers are connected and all useful parameters can

13

2. Installing Hadoop in pseudo distributed mode .
be obtained from network’s administrator.

In CentOS operating system most of required settings are configured by inter-
faces’ configuration files in the following directory.

/etc/sysconfig/network-scripts/

In my case, computer to the network is connected by the ethernet cable, there-
fore I need to edit ethernet interface configuration file:

/etc/sysconfig/network-scripts/ifcg-eth0

DEVICE=eth0
BOOTPROTO=static
ONBOOT=yes
IPADDR=192.168.227.101
NETMASK=255.255.255.0
GATEWAY=192.168.0.1
DNS1=8.8.8.8
DNS2=8.8.4.4

First line identifies the concrete used interface. If there are more ethernet inter-
faces on the used computer, than it is important choose correct one. Bootproto
parameter corresponds to way how the whole configuration will run and how the
IP adress will be assigned to the computer. There are two options, the first one,
let the dhcp server assign IP address and network configuration, then bootproto
parameter requires to be set as dhcp. The second option is to assign static IP
address by yourself, this option corresponds to static bootproto parameter and
requires that all further network configurations to be done by the user. About
the onboot parameter there is no need for long description, it just enables to start
interface after operating system boot. Then following lines have to be set in the
case that bootproto option is static , they include parameters like IP adress,
subnet mask, default gateway, domain name server address, all this information
may be obtained from network administrator. In dependency on operating system
version it is possible that given parameters are needed to be set also in other
configuration files, but in case of CentOS 6.4 all information of interfaces’ con-
figuration files is extracted automatically after network service restart command.

Then another network configuration file has to be edited:

/etc/sysconfig/network

NETWORKING=yes
HOSTNAME=node1.hadoop

Content of the given file just enables network and declares the hostname of
current computer. In relation to this, hostnames of all computers used in the
cluster have to be declared in hosts file on each computer. It is important thing,
as the future steps of installation will require that it was possible to access all
computers of the cluster with the hostnames they have assigned.

14

. 2.3 Installation and configuration of CentOS

/etc/hosts

127.0.0.1 localhost
192.168.227.101 node1
…

At this moment that’s all we need to configure about the network, and to let
operating system use configured settings there is a need to restart network service,
it can be done by running following command:

service network restart

2.3.2 Disable SELinux and Firewall
According to the Cloudera’s installation guide it is recommended to maximally
isolate cluster’s computers from the outside world, and to disable SELinux and
firewall on each computer. This can be done by editing following configuration
file

/etc/selinux/config

…
SELINUX=disabled
…

and running following commands:
system-config-firewall-tui
reboot

2.3.3 Java installation
Hadoop is written in Java, therefore it needs Java to be installed on each host of
the cluster. According to the offical documentation it is possible to use 6th or 7th
Java versions. In my case I’m going use OpenJDK 7 version. In CentOS it can
be installed by running following commands:

yum install java-1.7.0-openjdk

2.3.4 Establish SSH connection
Before the Hadoop installation can be run, all computers of the cluster have to
be reachable through SSH connection, therefore all computers need to have the
same root’s password or added public ssh keys as authorized keys. Even if cluster
consists just from one node, each Hadoop’s daemons like namenode, datanode,
jobtracker, tasktracker, all communicate through the ssh port. Following com-
mands will ensure SSH connection in CentOS.

This command installs openssh server and client.
yum -y install openssh-server openssh-clients

These commands generates new ssh key and copy public key to authorized keys.
ssh-keygen -t rsa -P ""
cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

At this point that’s all about operating system’s configuration.

15

2. Installing Hadoop in pseudo distributed mode .
2.4 Choice of Hadoop distribution

Another point for decisions is a choice of Hadoop distribution. As I have previ-
ously mentioned, today effectively working Hadoop cluster usually represents a
complex system, built of a high number of different components. Installation and
configuration of that kind system is not an easy task, therefore some companies
provides commercial either freeware distributions of Hadoop including installa-
tion, consultation and maintenance services. Usually in practice it is much more
common that distributions from Cloudera or Hortonworks are used on real Hadoop
clusters. But on the other hand, to demonstrate clear work of Hadoop framework
without any built-in components it is good to install freeware Apache Hadoop
distribution, therefore in this chapter I’m going to describe its installation and
configuration to work in pseudo-distributed mode.
At the moment of writing my thesis there was already published Apache Hadoop
2.2.0 as stable release. This version already contain significant improvements in
HDFS and MapReduce, over previous stable releases (hadoop-1.x). Improvements
are briefly described in previous chapter, but more detailed information and list
of all improvements can be found in official documentation. New Hadoop re-
leases of version 2 are backward compatible, therefore all programs working with
hadoop-1.x can be easily transferred to work on cluster running Hadoop version
2.

2.5 Installation and configuration of Apache Hadoop

2.5.1 Installing Apache Hadoop
At first we need to download required framework files from one of the official
mirror sites. It is also considered that all following commands are run by root
user.

wget mirror.hosting90.cz/apache/hadoop/common/hadoop-2.2.0/hadoop-
2.2.0.tar.gz
mv /downloads/hadoop-2.2.0.tar.gz /usr/local/
cd /usr/local/
tar xzf hadoop-2.2.0.tar.gz
mv hadoop-2.2.0 hadoop

After download is completed, archive files are extracted to directory:
/usr/local/

2.5.2 Modifying .bashrc
For more comfortable further work it is good add new permanent variables in
.bashrc file.

$HOME/.bashrc
#Hadoop variables

16

. 2.5 Installation and configuration of Apache Hadoop

export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.45.x86_64
export HADOOP_INSTALL=/usr/local/hadoop
export PATH=$PATH:$HADOOP_INSTALL/bin
export PATH=$PATH:$HADOOP_INSTALL/sbin
export HADOOP_MAPRED_HOME=$HADOOP_INSTALL
export HADOOP_COMMON_HOME=$HADOOP_INSTALL
export HADOOP_HDFS_HOME=$HADOOP_INSTALL
export YARN_HOME=$HADOOP_INSTALL

By fulfilling this step we are done with all prerequisite actions. Now it is time to
configure Hadoop framework with settings that we need. All further actions will
be realized in directory:

/usr/local/hadoop

2.5.3 Configuring Apache Hadoop
Firstly we need to open and edit hadoop-env.sh file, by entering JAVA HOME
variable value.

/usr/local/hadoop/etc/hadoop/hadoop-env.sh

...
export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.45.x86_64
...

In configuration file etc/hadoop/slaves it is required to enter hostnames of nodes
that are going to be used in cluster. In the case of pseudo-distributed mode there
is entered just hostname of one node. If some other nodes are planned to be added
to the cluster, all their hostnames have to be entered to this file.
Main system settings are set in core-site.xml

/usr/local/hadoop/etc/hadoop/core-site.xml

...
<configuration>

<property>
<name>fs.defaultFS</name>
<value>hdfs://node1:9000</value>

</property>
</configuration>

All HDFS setting have to be configured in hdfs-site.xml
/usr/local/hadoop/etc/hadoop/hdfs-site.xml

...
<configuration>

<property>
<name>dfs.replication</name>
<value>1</value>

17

2. Installing Hadoop in pseudo distributed mode .
</property>
<property>

<name>dfs.namenode.name.dir</name>
<value>
file:/usr/local/hadoop/tmp/hdfs/namenode

</value>
</property>
<property>

<name>dfs.datanode.data.dir</name>
<value>
file:/usr/local/hadoop/tmp/hdfs/datanode

</value>
</property>

</configuration>
...

For example here in this file, value of parameter dfs.replication means number of
replicas of each block in HDFS. By default this values equals 3, but if we want to
run Hadoop in pseudo-distributed mode, we will have just one node in the cluster,
this value can not be greater than number of nodes in cluster, therefore this value
is set to 1.
Parameters dfs.namenode.name.dir and dfs.datanode.data.dir tells route to the
directories where the data and information of HDFS will be physically located.
If the given folders don’t exist, they have to be created manually, before using
them.
We are going to use YARN, following file has to be edited.

/usr/local/hadoop/etc/hadoop/mapred-site.xml

...
<configuration>

<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>

</property>
</configuration>
...

All further setting related to YARN have to be configured in yarn-site.xml
/usr/local/hadoop/etc/hadoop/yarn-site.xml

...
<configuration>

<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>

</property>
<property>

<name>yarn.nodemanager.aux-services.mapreduce
.shuffle.class</name>

18

. 2.5 Installation and configuration of Apache Hadoop

<value>org.apache.hadoop.mapred
.ShuffleHandler</value>

</property>
<property>

<name>yarn.resourcemanager.scheduler
.address</name>
<value>node1:8030</value>

</property>
<property>

<name>yarn.resourcemanager.address</name>
<value>node1:8032</value>

</property>
<property>

<name>yarn.resourcemanager.webapp.address</name>
<value>node1:8088</value>

</property>
<property>

<name>yarn.resourcemanager.resource-tracker
.address</name>
<value>node1:8031</value>

</property>
<property>

<name>yarn.resourcemanager.admin.address</name>
<value>node1:8033</value>

</property>
</configuration>
...

Settings of resourcemanager are required to enable, that all nodes of cluster
were able to be seen by resource manager panel.
Command for formatting HDFS has to be run:

bin/hdfs namenode \{format

And now finally Hadoop services can be run:
sbin/start-dfs.sh
sbin/start-yarn.sh

In previous versions of Hadoop, there was used script sbin/start-all.sh, for starting
all Hadoop services, but in new version of Hadoop since 2.*.* this script was
declared as deprecated.
At the end we can check which java processes are running and we should obtain
output like this:

jps
4868 SecondaryNameNode
5243 NodeManager
5035 ResourceManager
4409 NameNode
4622 DataNode
5517 Jps

19

2. Installing Hadoop in pseudo distributed mode .

At this moment single-node hadoop cluster is ready to be used. It is running in
pseudo-distributed mode. Its operability can be checked by running some standard
examples downloaded in the archive together with hadoop installation files.

20

Chapter 3
Installing CDH in fully-distributed mode

In previous chapter was described configuration of operating system for single
computer cluster. In fact, that is a base configuration for each node of the cluster.
After providing given settings on each host machine, the system together is ready
for Hadoop framework to be launched on it.

Running Hadoop on a single node in pseudo-distributed mode is good for learn-
ing new system and software developing reasons, but the main aim of this part
of my thesis, was to keep moving forward in usability point of view. Therefore in
the given chapter I’m going to describe efforts required to be made, when creating
real fully-distributed cluster for data processing. Hadoop was designed to run and
coordinate work on big clusters consisting of hundreds nodes. During executing
my academical project I wasn’t able to use so big amount of computers, but in
fact it doesn’t change the situation very much, as the work of cluster preparation
is in principles the same.

3.1 Hardware Specification
It is hard to predict hardware requirements for Hadoop cluster, as the situation
rapidly changes with time. It mainly depends on what will be the main aim
of work of the given cluster. Hadoop is designed to run on so called cheap
hardware. It doesn’t mean that it should use cheap components. In general
cheap components with higher failure probability don’t seem to be an economical
choice, when creating cluster of hundreds machines. So called cheap means that
hardware components used in Hadoop’s cluster don’t have to be the newest and
the most powerful, presented on the markets. High efficiency of the cluster is
reached by alternative ways. This was already described in chapter 1.

For my academical purposes was absolutely enough to design cluster of 5 nodes.
All 5 nodes are independently running in one common virtualized environment,
connected by a virtual switcher enabling 1Gbps speed for ethernet technology.
Cluster contain one master node running main master’s daemons: NameNode
and JobTracker. Master node also runs few additional services, mainly Cloud-
era’s monitoring related services. Then there are four slave nodes, used for data
computation. They all are running just DataNode and TaskTracker daemons. All
CPU, RAM and storage capacity properties used for each node are written in the
table below.

21

3. Installing CDH in fully-distributed mode .
node CPU cores RAM Storage cap.

Master node 4 4 GB 20 GB
Slave nodes 1 2 GB 30 GB

Table 3.1. Hardware parameters

3.2 Installing CDH
For today Cloudera’s distribution for Hadoop seems to be the most perspective
choice for running multi-node cluster, providing reliable base Hadoop system
with additional components, including administration and monitoring services.
Therefore for my further steps, I have chosen Cloudera’s freeware distribution.
Decision of used distribution is related to the aim of my project, to represent
real usable system that correspond to distributed data processing systems used
in practice. At the moment of installation, CDH 4 was declared as stable version
and recommended by official website.

After the all required operating system’s settings from previous chapter are
successfully done on each node, cluster is ready for CDH installation. There are
several ways how CDH can be installed. Official installation guide recommends to
use Cloudera Manager (CM) for CDH installation. It facilitates CDH installation
and enables to perform whole installation via web browser. CM manager has to
be installed just on one node, user don’t have to download and configure required
CDH files on each node independently, this all is done by CM itself.

Cloudera Manager installation can be launched by entering following com-
mands:

wget archive.cloudera.com/cm4/installer/latest/cloudera-manager-
installer.bin
chmod +x cloudera-manager-installer.bin
./cloudera-manager-installer.bin

Installation of CM runs in blue console window. CM additionally installs Java,
if the user hasn’t already done it before. In my case, I have performed CM
installation on master node and all further installation step were performed from
this node.

After installation of CM is complete, there appears a window with the message,
that informs how to proceed with the CDH installation. It tells, that now it
is possible to make connection to node’s IP address via 7180 port. Simply in
other words, now it is possible to open a website in web-browser to continue
CDH installation. In my case address with given port looked 10.11.121.65:7180 .
Further installation and configuration steps will be performed by using graphical
user interface in web-browser.

22

. 3.2 Installing CDH

Figure 3.1. Installation of Cloudera Manager

Figure 3.2. CDH edition options

First step, CDH edition has to be chosen. For freeware version, Cloudera Stan-
dard option has to be chosen (figure 2).

In the next step, nodes that will be used, have to be specified. Nodes’ hostnames
or IP addresses can be entered to perform search. In my case, I have entered
hostnames of 5 nodes (figure 3).

In further steps CM will ask to provide password or SSH private key that is
accepted by all nodes. The reason, CM needs to download and configure CDH
files on each node. If we decided to install Hadoop by not using CM, all this
configurations have to be performed independently on each node. If cluster

23

3. Installing CDH in fully-distributed mode .

Figure 3.3. Specifying nodes

consists of hundreds nodes, it will require much more effort, than using CM.

After providing required SSH login credentials, CM begins to downloading and
installing phase, this is usually the longest part of installation (figure 4). CM will
also create few databases, that will be later used by HDFS for storing metadata
about files’ blocks, CM monitoring web services also requires databases. Usually
open-source RDBMS like MySQL or PostgreSQL are used.

Figure 3.4. Installation completed successfully on each node

Installation completed successfully on each node (figure 4), now it is time to
perform configurations. CM will inspect the cluster’s nodes and provide its own
scheduled design of nodes’ roles, of course roles scheduling can be changed man-
ually. Then CM provide user to set configuration values in web-browser window,
but in fact it is just simple editing of configuration xml files that were described
in chapter 2 during installing Hadoop in pseudo-distributed mode. Additionally
CM provides a brief description of each configured property, what is sometimes
very helpful (figure 5).

24

. 3.2 Installing CDH

Figure 3.5. Setting of configuration values

By confirming all entered configurations, installation process is completed.
Cluster is ready to be used for solving contemporary problems of Big Data. Now
all effort can be focused on developing algorithms of distributed data processing.
CM can further be used for monitoring and administration services (figure 6).

25

3. Installing CDH in fully-distributed mode .

Figure 3.6. CM monitoring website

26

Chapter 4
Data Analysis

4.1 Data description
In previous chapters I have described what are Big data and how to prepare
distributed data processing system for them. Now I can proceed to the final aim
of my bachelor thesis, usage of Hadoop. In this chapter I am going to demonstrate
usage, of previously prepared Hadoop framework by analyzing freely available
weather data-sets.

Data-sets used in my project consists of daily measurements provided from
5162 European weather stations in period approximately since the end of 18th
century till today. Naturally different stations provided own data in different
periods. Used data-sets were obtained from National Oceanic and Atmospheric
Administration (NOAA). “NOAA’s National Climatic Data Center (NCDC) is
responsible for preserving, monitoring, assessing, and providing public access to
the Nation’s treasure of climate and historical weather data and information. “
[http://ncdc.noaa.gov/]

Total amount of unarchived data was 18.8 GB. Data records contained infor-
mation mainly about temperatures, rainfalls, wind speed and direction, humidity
and few others less interesting records. In my project I employed just temperature
records. Generally stations are provide three daily temperature values, maximal
temperature, minimal temperature and mean daily temperature.

As I mentioned before, data-sets contains a lot of additional information, that
I will not employ in my project, therefore first step required to be done is to filter
them and obtain just useable information. For better organizations data-sets
of NCDC are splitted on many small files divided by stations and category of
information they contain. This form data storage isn’t suitable for Hadoop’s
HDFS. HDFS is designed to store less number of very large files, not for storing
many small files. This is caused by fact that files in HDFS are splitted on blocks
of strictly give size, mainly 64MB. This causes that even small files of size about
1-2 MB, each will consume full 64 MB data block. HDFS and this technique was
deeply described in previous chapters. Due to mentioned discrepancy of weather
data-sets, each file firstly need to be merged into one big input file before loading
to HDFS.

27

4. Data Analysis .
4.2 Tasks description

1. Define main aim to be reached by data analysis.

2. Download weather data from NCDC servers.

3. Filter and merge usable (temperature) records into one file.

4. Load data to HDFS.

5. Run MapReduce analysis job.

6. Study and display obtained results.

4.3 Tasks realization

4.3.1 Tasks definition
Main aim: Analyze daily temperature data sets for 20th century. Calculate mean
yearly temperature over all European weather stations that have been providing
data records constantly during period 1900 – 2000. Design results in graph and
apply Pearson’s chi-squared test over obtained results.

4.3.2 Downloading data
Data were obtained from NCDC’s ftp server.

ftp://ftp.ncdc.noaa.gov/pub/data/

4.3.3 Preparing data
First step – parsing of file with the list of all weather stations and information
about them. File contained 12 fields. For aims of my project I am interested just
in 4 of them:

STAID - Station identifier

ELEI - Element identifier, represents category of provided records (tempera-
ture, rainfalls, etc)

START - Begin date of measurements YYYYMMDD

STOP - End date of measurements YYYYMMDD

28

. 4.3 Tasks realization

From this file were extracted station’s IDs of weather stations that have been
providing temperature measurements in period from 1900 to 2000.

Second step – merging of all temperature file of stations with ID’s obtained
from the first step. As result, one big file with all temperature records is obtained.

All file parsing and merging actions were made by applications written in Java.
Source Java code is provided in attachment at the end of document.

4.3.4 Loading data to HDFS
Firstly there is created a directory in HDFS for project’s files. Then input files
are copied to HDFS. All actions are made by running Hadoop shell commands
from command line.

hadoop fs -mkdir /user/oleg/BP/pr1
hadoop fs -mkdir /user/oleg/BP/pr1/input
#
hadoop fs -copyFromLocal /root/mergedFile /user/oleg/BP/pr1/input

Now file is stored in distributed file system.

4.3.5 Performing MapReduce job
MapReduce job obviously consists of two phases, Map and Reduce.

Map task – performs parsing of date, temperature, checks quality tag and if the
parsed record (line of read input file) satisfy given criteria, results are paired into
key – value pairs that are sent to the reduce task. Key – value pair is represented
by year as key, and temperature as value.

When all map tasks are finished, Hadoop shuffles all map tasks’ outputs and
generates input for reduce task. Input for reduce task is similar to the output of
map tasks. Again it is a key – value pairs. Keys represent years, but value is in
form of iterable list of temperatures corresponding to the each year.

Reduce task – performs calculation of mean temperature for each year over all
stations. Output of reduce tasks is also output of whole MapReduce job. Output
has a form of text file with two fields per line. First field is a year in range 1900
– 2000, second field corresponding mean temperature.

Whole MapReduce job was written in Java, and consists of three Java classes:
TemperatureMapper class, TemperatureReducer class, TemperatureJob class. All
source files and corresponding documentation are provided in attachment at the
end of document.

29

4. Data Analysis .
4.3.6 Observing results

Result – output file contains 101 records of year in range 1900-2000 and corre-
sponding calculated mean temperature. Values of output file have been sketched
to the graph. Additionally in the graph can be observed linear regression a with
a slowly rising tendency.

0 °C

1 °C

2 °C

3 °C

4 °C

5 °C

6 °C

7 °C

8 °C

1880 1900 1920 1940 1960 1980 2000 2020

Temperature [°C]

Year

Figure 4.1. Mean temperatures by year in range 1900 - 2000

To provide more deeply analysis of weather data I have applied a statistical
test over the calculated results. I have used Pearson’s chi-squared test, that can
be applied to test null hypothesis stating that the frequency of certain events
observed in a sample is consistent with a particular theoretical distribution.

To provide more deeply analysis of weather data I have applied a statistical
test over the calculated results. I have used Pearson’s chi-squared test, that can
be applied to test null hypothesis stating that the frequency of certain events
observed in a sample is consistent with a particular theoretical distribution. [7]

4.3.7 Pearson’s chi-squared test of calculated results
General formula of Pearson’s chi-squared test:

H0 – null hypothesis:
Hypothesis says, that set of yearly mean temperatures in 20th century, represents
a uniform distribution. In other words, slow rising tendency seen from the graph
doesn’t mean that there is a Global warming.

H1 – alternative hypothesis:
Alternative hypothesis says the negation of H0, thus temperature values don’t

30

. 4.3 Tasks realization

Year 1900 1901 1902 … 1998 1999

Observed Temp. 5.8032393 5.468648 4.595253 … 5.947022 6.476354

Probability 0.01 0.01 0.01 … 0.01 0.01

Sum of Temp. 547.66899

Expected Temp. 5.4766899 5.47669 5.47669 … 5.47669 5.47669

0.1066345 6.47E-05 0.776932 … 0.221213 0.999328

0.0194706 1.18E-05 0.141862 … 0.040392 0.182469

(𝑂 − 𝐸𝑖)2

𝐸𝑖

(𝑂 − 𝐸𝑖)2

𝜒2
0,95 (99) = 124.34 > 6.531

Table 4.1. Pearson’s chi-squared test of mean temperatures

represent a uniform distribution and Global warming is a probable consequence.
Desired significance level is 0.05 (or equivalently, 5%).

Conclusion:
According to the calculated results of Pearson’s chi-squared test, hypothesis H0
can not be disproven, thus H1 can not be proven, within the desired significance
level. It means, that yearly mean temperatures in years 1900 - 1999 could have
a uniform probability distribution. Slowly rising tendency that is observed in
the graph, can by explained as a fact, that temperature values are periodically
rising and falling with time. Otherwise, if the temperature values really have a
rising tendency, it requires longer period to be examined to prove that its values
don’t represent uniform probability distribution, therefore fact of Global warming
wasn’t proved.

31

4. Data Analysis .
4.3.8 Minimal and maximal daily temperatures

Similar calculations using Hadoop have been performed for minimal and maximal
daily temperature records. Results of MapReduce job were not tested by Pearson’s
chi-squared test, as its result would be obviously the same as in the case of mean
temperatures. Values are just sketched to the graph, including linear regression
line. Tendencies look interesting. While minimal daily temperatures represent
similar as mean temperatures, slowly rising tendency, daily maximal temperatures
have an opposite character, slowly decreasing tendency. Graphic of daily maximal
temperatures designed by red curve in the graph doubts statements about Global
warming.

0 °C

2 °C

4 °C

6 °C

8 °C

10 °C

12 °C

14 °C

1880 1900 1920 1940 1960 1980 2000 2020

Temperature [°C]

Year

Figure 4.2. Minimal and maximal daily temperatures tendencies in years 1900 - 2000

32

Chapter 5
Conclusion

The main aim of this project was to prepare a distributed data processing envi-
ronment for Big data. After this was fulfilled, the rest of assignment is represented
for developing an algorithms to exploit prepared environment. All work presented
in my project was based on two main principles, to use just freely available tools
and to demonstrate solutions ready to be used in real life applications.

Created data processing environment is based on freely available Apache
Hadoop framework. Given framework represents one of the most perspective
technology for processing very large amounts of information. Environment prepa-
ration was performed in two steps. Firstly framework was installed to be used
simply on one server in pseudo-distributed mode. This enabled me to deeply
introduce with the given system, to study its whole complexity and to prepare
solutions how to proceed with given tasks. Second step was an installation of
framework in real distributed mode.

Hadoop cluster prepared in my project contains five computers. It is not much,
it represents just very small cluster, if we compare it with the Hadoop clusters
used in real life applications, but on the other hand it is absolutely enough for
my academical purposes. Hadoop is designed to work with MapReduce algorithm
model. Programs implementing MapReduce algorithm are designed to work
independently on the number of nodes in the cluster. That’s why five nodes’
cluster absolutely satisfied requirements of usability.

After system was installed and configured, it was ready to be exploited. To
make experiments I required some sample data. There was more options for data
analysis, but data-sets obtained from National Climatic Data Center seemed
to be the most interesting and seemed to have the most suitable structure for
demonstrating MapReduce algorithm in work. Obtained data-sets contained
daily records from thousands European weather stations that have provided their
measurements in period of last 3 centuries. Total size of raw data was 18.8
GB. Data were loaded to distributed storage system and successfully processed
by a MapReduce application. Results of the application were further tested
by Pearson’s chi-squared test. This enabled to make statements about Global
warming.

33

5. Conclusion .
Hadoop framework and distributed data processing model itself seems to be very

perspective. During performing this project I have gained a lots of experiences
related to Big data sphere and I hope, I will be able to employ them in my future
life.

34

References
[1] WHITE, Tom. Hadoop: the definitive guide. 3rd ed. Sebastopol: O’Reilly,

2012, xxiii, 657 s. ISBN 978-1-449-31152-0.
http://hadoopbook.com/.

[2] LAM, Chuck. Hadoop in action. Greenwich: Manning Publications, 2011,
xxi, 312 S. ISBN 978-1-935182-19-1.

[3] SAMMER, Eric. Hadoop operations. 1st ed. Sebastopol, CA: O’Reilly, 2012,
xii, 282 p. ISBN 14-493-2705-2.

[4] OWENS, Jonathan R, Jon LENTZ a Brian FEMIANO. Hadoop real-world
solutions cookbook: Realistic, simple code examples to solve problems at
scale with Hadoop and related technologies. Birmingham [England]: Packt
Pub., 2013, iv, 298 p. ISBN 978-1-84951-912-0.

[5] Apache Hadoop 2.2.0 Documentation [online]. 2014 [cit. 2014-03-24].
http://hadoop.apache.org/docs/stable/.

[6] CDH4.6.0 Documentation [online]. [cit. 2014-05-23].
http://www.cloudera.com/content/support/en/documentation/cdh4-documentation/
cdh4-documentation-v4-latest.html.

[7] NAVARA, Mirko. Pravděpodobnost a matematická statistika. Vyd. 1.
Praha: Nakladatelství ČVUT, 2007, 240 s. ISBN 978-80-01-03795-9.
http://cmp.felk.cvut.cz/˜navara/psi/.

35

http://hadoopbook.com/
http://hadoop.apache.org/docs/stable/
http://www.cloudera.com/content/support/en/documentation/cdh4-documentation/cdh4-documentation-v4-latest.html
http://www.cloudera.com/content/support/en/documentation/cdh4-documentation/cdh4-documentation-v4-latest.html
http://cmp.felk.cvut.cz/~navara/psi/

Appendix A
Source code: MapReduce java program

A.1 TempMapper class

package BP.map_red_job;

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class TempMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {

public static final int START_YEAR = 1960;
public static final int STOP_YEAR = 2010;

public static final int PRAGUE_STATION_ID = 27;

@Override
public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

// value = one line of input file
String line = value.toString();

// Year
String year = line.substring(14, 18);
int y = Integer.parseInt(year);

if (y >= START_YEAR && y <= STOP_YEAR) {

// Q_TG - quality tag [0 -> OK ; 9 -> wrong]
int qTag = Integer.parseInt(line.substring(33, 34)
\\.replaceAll("\\s+",""));

// check [if quality tag = 0]
if (qTag == 0) {

// Temperature value

37

A Source code: MapReduce java program .
int airTemperature = Integer.parseInt
\\(line.substring(23, 28).replaceAll("\\s+",""));

// write [key, value] to result
context.write(new Text(year),

new IntWritable(airTemperature));
}

}

}

public static boolean checkID(int chkID, String line) {
int ID = Integer.parseInt(line.substring(0, 6)
\\.replaceAll("\\s+",""));
return (ID == chkID);

}

}

38

. A.2 TempReducer class

A.2 TempReducer class

package BP.map_red_job;

import java.io.IOException;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class TempReducer
extends Reducer<Text, IntWritable, Text, FloatWritable> {

@Override
public void reduce(Text key,

Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {

float result, sum = 0;
int numOfValues = 0;

for (IntWritable value : values) {
sum += value.get();
numOfValues++;

}

result = sum/numOfValues;
result = result/10;

context.write(key, new FloatWritable(result));
}

}

39

A Source code: MapReduce java program .
A.3 TempJob class

package BP.map_red_job;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class TempJob {

public static void main(String[] args) throws Exception {

String inputPath = "hdfs:///user/oleg/BP/pr1/inputTX";
String outputPath = "hdfs:///user/oleg/BP/pr1/outputTX";

Configuration conf = new Configuration();

Job job = new Job(conf);

job.setJarByClass(TempJob.class);
job.setJobName("Max temperature");

FileInputFormat.addInputPath(job, new Path(inputPath));
FileOutputFormat.setOutputPath(job, new Path(outputPath));

job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);

job.setMapperClass(TempMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);

job.setReducerClass(TempReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FloatWritable.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);
}

}

40

Appendix B
Source code: PrepareFiles java program

B.1 PrepareFiles class

package BP.prep_files;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;

/**
*
* @author Oleg Ostashchuk
*/

public class PrepareFiles {

public static final int START_YEAR = 1960;
public static final int STOP_YEAR = 2010;

public static final String MEAN_TEMPERATURE = "TG";
public static final String MAX_TEMPERATURE = "TX";
public static final String MIN_TEMPERATURE = "TN";

public static final String CATEGORY = MAX_TEMPERATURE;

public static final String LIST_FILE = "...";
public static final String INPUT_DIRECTORY = "...";
public static final String OUTPUT_FILE = "..." + CATEGORY;

public static boolean[] list = new boolean[10000];

static void readListFile(File file) {

BufferedReader reader = null;
String line;

try {
reader = new BufferedReader(new FileReader(file));
int lineCount = 0;
while ((line = reader.readLine()) != null) {

if(lineCount >= 25){
if (getStartYear(line)<=START_YEAR

41

B Source code: PrepareFiles java program .
&& getStopYear(line)>=STOP_YEAR) {

if (getCategory(line).contains(CATEGORY)) {
list[getStatiobID(line)] = true;

}
}

}
lineCount++;

}

} catch (FileNotFoundException ex) {
ex.printStackTrace();

} catch (IOException ex) {
ex.printStackTrace();

} finally {
try {

if (reader != null) {
reader.close();

}
} catch (IOException ex) {

System.out.println(ex);
}

}
}

public static String getCategory(String line) {
return line.substring(84, 86);

}

public static int getStatiobID(String line) {
return Integer.parseInt(line.substring(0, 5)
\\.replaceAll("\\s+",""));

}

public static int getStartYear(String line) {
return Integer.parseInt(line.substring(88, 92));

}

public static int getStopYear(String line) {
return Integer.parseInt(line.substring(97, 101));

}

public static void main(String[] args) {

readListFile(new File(LIST_FILE));

FilesMerger.getFiles(list, INPUT_DIRECTORY);

}

}

42

. B.2 FilesMerger class

B.2 FilesMerger class

package BP.prep_files;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStreamReader;

/**
*
* @author Oleg Ostashchuk
*/

public class FilesMerger {

public static String prefix = PrepareFiles.CATEGORY;
public static String mergedFilePath = PrepareFiles.OUTPUT_FILE;

public static void getFiles(boolean[] list, String path) {

File[] allFiles = new File(path).listFiles();
File[] filteredFiles = new File[500];

int count = 0;

for (File file : allFiles) {
if (!file.isDirectory()) {

if (isTempFile(file) && isInList(file, list)) {
filteredFiles[count] = new File(path + "/"
+ file.getName());
count++;

}
}

}
mergeFiles(filteredFiles, count);

}

public static boolean isInList(File file, boolean[] list) {
return list[Integer.parseInt(file.getName().substring(8, 14))];

}

public static boolean isTempFile(File file) {
return file.getName().contains(prefix);

}

public static void mergeFiles(File[] files, int count) {

File mergedFile = new File(mergedFilePath);

43

B Source code: PrepareFiles java program .

FileWriter fstream = null;
BufferedWriter out = null;

try {
fstream = new FileWriter(mergedFile, true);
out = new BufferedWriter(fstream);

} catch (IOException ex) {
ex.printStackTrace();

}

int lineNum;

for (int i = 0; i < count; i++) {

lineNum = 0;
System.out.println("merging: " + files[i].getName());
FileInputStream fis;
try {

fis = new FileInputStream(files[i]);
BufferedReader in = new BufferedReader(

new InputStreamReader(fis));

String aLine;
while ((aLine = in.readLine()) != null) {

if (lineNum>20) {
out.write(aLine);
out.newLine();

}
lineNum++;

}
in.close();

} catch (IOException e) {
e.printStackTrace();

}
}

try {
out.close();

} catch (IOException e) {
e.printStackTrace();

}
}

}

44

Appendix C
CD contents

Path Description
bp.pdf Bachelor thesis in pdf format
source code directory with two NetBeans projects
calculations.xlsx MS Excel spreadsheet with graphs and calculations

45

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Introduction to Big Data and Hadoop
	Big Data
	Principles of data processing
	Hadoop framework
	HDFS
	MapReduce
	YARN
	Alternative distributions
	Cloudera Distribution for Hadoop
	Hortonworks Data Platform
	MapR

	Installing Hadoop in pseudo distributed mode
	Choice of Operating system
	CentOS
	Installation and configuration of CentOS
	Network configuration
	Disable SELinux and Firewall
	Java installation
	Establish SSH connection

	Choice of Hadoop distribution
	Installation and configuration of Apache Hadoop
	Installing Apache Hadoop
	Modifying .bashrc
	Configuring Apache Hadoop

	Installing CDH in fully-distributed mode
	Hardware Specification
	Installing CDH

	Data Analysis
	Data description
	Tasks description
	Tasks realization
	Tasks definition
	Downloading data
	Preparing data
	Loading data to HDFS
	Performing MapReduce job
	Observing results
	Pearson's chi-squared test of calculated results
	Minimal and maximal daily temperatures

	Conclusion
	References
	Source code: MapReduce java program
	TempMapper class
	TempReducer class
	TempJob class

	Source code: PrepareFiles java program
	PrepareFiles class
	FilesMerger class

	CD contents

