
Bachelor’s thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering

Department of Cybernetics

Automated camera calibration
from laser scanning data in
natural environments

Jan Brabec
Open Informatics

2014

Supervisor: Tomas Svoboda

Acknowledgement / Declaration
I would like to thank my advisor Tomas
Svoboda for his invaluable guidance and
assistance throughout this project and
for the opportunity to work on other in-
teresting projects with him. I would also
like to thank Tomas Petricek for provid-
ing a valuable insight and other mem-
bers of the NIFTi team for their assis-
tance in operating the ground robot.

Finally, I would like to thank my fami-
ly for their endless support. My father
deserves a special mention because he
introduced me to programming and was
my first mentor.

The work was supported by EC project
FP7-ICT-609763 TRADR and by the
CTU project SGS13/142/OHK3/2T/13.
Any opinions expressed in this paper do
not necessarily reflect the views of the
European Community. The Commu-
nity is not liable for any use that may
be made of the information contained
herein.

I declare that I have developed the
presented work independently and that
I have listed all information sources
used in accordance with the Methodical
guidelines on maintaining ethical prin-
ciples during the preparation of higher
education theses.

. .

Prague, 23 May 2014

vii

Abstrakt / Abstract
Vyvinuli jsme aplikaci pro vnější ka-
libraci kamer z dat získaných LIDAR
scannerem. Protože prosté hloubkové
obrazy z LIDAR scanneru nejsou do-
statečně detailní, zpracovali jsme je,
abychom zvýraznili hrany a rohy a
umožnili tak operátorovi vytvářet kore-
spondence mezi body v prostoru a body
v obraze. Také jsme vyvinuli techniku
pro lokální opravu korespondencí pro
případ, že se operátor dopustí drobných
chyb. Aplikace je implementována jako
node v ROSu. Vykonali jsme experi-
menty na mobilním robotovi vyvíjeném
pro vyhledávání a záchranářské práce
v městském prostředí. Experimentálně
jsme ukázali, že aplikace může být
použita i mimo laboratorní prostředí
pro rychlou kalibraci nové kamery nebo
rekalibraci již přítomné kamery. To je
velká výhoda ve srovnání se současnými
nástroji dostupnými v ROSu, které vy-
žadují použití speciálních kalibračních
vzorů a jsou tak omezené pouze na
laboratorní prostředí.

Klíčová slova: kamera, kalibrace, LI-
DAR, ROS

Překlad titulu: Automatická kalibrace
kamery z dat laserového dálkoměru v
přirozeném prostředí

We have developed an application for
extrinsic camera calibration from the
data acquired by the LIDAR scanner.
Since the raw range images from the
LIDAR scanner do not possess enough
detail, we processed the range images to
highlight edges and corners and allow
the operator to create correspondences
between the world points and the im-
age points. We have also developed
a technique for local correction of the
correspondences in case the operator
makes a slight mistake. The application
is implemented as a node in Robot
Operating System (ROS). We have
performed experiments on a mobile
robot intended for urban search and
rescue. We experimentally show that
the application can be used outside the
laboratory to quickly calibrate a new
camera in the system or recalibrate an
already present camera. That is a big
advantage compared to the present tools
available in ROS that usually require
the use of special calibration patterns
and are restricted to the laboratory
environment only.

Keywords: camera, calibration, LI-
DAR, ROS

viii

Contents /
1 Introduction .1
2 Camera calibration4
2.1 Camera geometry4

2.1.1 Pinhole camera model4
2.1.2 Non-linear distortion6

2.2 Pose estimation and PnP6
2.2.1 Direct Linear Transfor-

mation algorithm6
2.2.2 Reprojection error

minimization7
2.2.3 EPnP .7

2.3 Point cloud visualizations7
2.3.1 Directional images8

2.4 Local correction9
2.5 RANSAC . 10
2.6 Point cloud coloring 10

3 Architecture . 12
3.1 Package structure 12
3.2 Top-level architecture 13
3.3 Calibration launcher 14
3.4 Graphical user interface 15

3.4.1 Scene views and corre-
spondences 15

3.4.2 Range image visualiza-
tions . 16

3.4.3 Calibration 17
4 User manual . 19
4.1 Applications requirements 19
4.2 Installation and build 19

4.2.1 ROS Fuerte Turtle 19
4.2.2 Newer versions of ROS . . 19

4.3 Required ROS components 20
4.3.1 Using Bag files 20

4.4 Launching the application 21
4.4.1 Launch parameters 21
4.4.2 Launching the GUI 22

4.5 Using the GUI to calibrate a
camera . 22
4.5.1 Using different point

cloud visualizations 23
4.5.2 Creating correspon-

dences . 24
4.5.3 Running the calibration . 25
4.5.4 Calibration results 26

4.6 Other useful tools 26
4.6.1 rviz . 27

4.6.2 Cloud coloring 27
5 Experiments . 29
5.1 Scenario 1 - Corridor 30

5.1.1 Comparison with the
original calibration. 32

5.1.2 Validation using the
point cloud coloring. 33

5.1.3 Calibration by inexpe-
rienced operator 34

5.2 Scenario 2 - Hall 35
5.2.1 Comparison with the

original calibration. 36
5.2.2 Validation using the

point cloud coloring. 37
5.2.3 Calibration by inexpe-

rienced operator 39
5.3 Scenario 3 - Courtyard 1 40

5.3.1 Comparison with the
original calibration. 42

5.3.2 Validation using the
point cloud coloring. 43

5.4 Scenario 4 - Courtyard 2 44
5.4.1 Comparison with the

original calibration. 45
5.4.2 Validation using the

point cloud coloring. 47
5.5 Scenario 5 - Calibration of

an external camera. 47
5.5.1 Validation using the

point cloud coloring. 49
5.6 Summary . 49

6 Conclusion . 51
References . 53

A Enclosed CD . 55

ix

Chapter 1
Introduction

In this thesis, we describe an application for extrinsic camera calibration estimation,
that we have developed for ROS[1]. The application has two main objectives. First,
the aim of the application is to ease the process of integrating a new camera into the
existing calibrated system. Second, we wanted to allow the dynamic re-calibration of
a camera positioned on the robotic arm or on a pan-tilt unit. The application is made
for a mobile robot intended for urban search and rescue, see Figure 1.2. There is no
barrier, however, that would prevent the application to be used in other robotic systems
using ROS.

The camera calibration is one of the most important tasks in the field of computer
vision. The results of many other algorithms depend on the quality of the underlying
camera’s calibration. Many different approaches and tools for both intrinsic and extrin-
sic calibration exist[2]. However, most of those tools, such as the camera_calibration
package[3] in ROS, require the use of special calibration patterns or other tools. This
is cumbersome inside the lab and almost impossible in exteriors. In our case, the robot
can be even exploring dangerous environments where the operator has no access to it.

Most of the current algorithms for camera calibration require a set of correspondences
between the world points and the image points as an input. Since our robot is equipped
with a LIDAR scanner, we decided to compute the mutual orientation and translation
between the LIDAR scanner and the camera that needs to be calibrated. The most
challenging part of our application is the matching between the depth data gained from
the LIDAR scanner and the image data from the camera. That is because the nature
of the data acquired from the LIDAR scanner is completely different compared to the
camera’s images.

Human is well trained in analysing standard color images but fairly unskilled when
inspecting point clouds or depth data in general. Therefore, it is difficult to create a
sufficent number of reasonable correspondences from raw range images, see Figure 1.3.
Our work is mainly inspired by a manual approach [4] which suggested to replace the
usual range images by several alternatives. We processed the range images to highlight
edges and corners that would not be otherwise recognizable. An important part of
our application is the graphical user interface that makes the manual creation of the
correspondences as easy and comfortable for the operator as possible. The application
also has an ability to perform a local correction of the correspondences, created manually
by the operator, and can help with the identification of the correspondences that are
not correct. We intended to go one step further and tried to create the correspondences
automatically. We processed the range images and experimented with SIFT descriptors
to identify the correspondences but we were unsuccessful with this approach.

The application performs only the extrinsic calibration for several reasons. The main
reason is, that in the presence of lens distortion, it is difficult to correctly estimate
all of the camera’s intrinsic parameters from a limited number of correspondences the

1

1. Introduction .

Image points

LIDAR

R,t

Camera

???

World points

Figure 1.1. Our approach. The transformation between the LIDAR and the camera is
estimated from corresponding points marked in the data from the LIDAR and the camera

image.

Figure 1.2. NIFTi robot with it’s robotic arm extended. The camera on the pan-tilt
unit is highlighted in the red ellipse. The LIDAR scanner is in the green ellipse. The
omnicamera used for most of the experiments is highlighted in the pink ellipse. The goal
of our application is to compute position and orientation of a camera with respect to the

LIDAR. Original image (without the highlighting) is from [5].

operator is able to create. Secondly, the intrinsic parameters of the camera are far less
volatile and there is usually no problem to estimate them with higher accuracy and
precision, using the usual tools mentioned above, in the laboratory.

This thesis is structured into the following chapters. The chapter camera calibration
explains the mathematics behind the camera models and the algorithms we used for cal-

2

. .
ibration. The architecture chapter explains the actual design of the application and the
reasoning behind it. The user manual chapter describes the application from the user’s
point of view. We have performed various experiments to evaluate the application.
Their summary can be found in the experiments chapter.

Figure 1.3. The top image is a raw range image and the bottom is RGB image from
camera. It shows how difficult it is to find correspondences.

3

Chapter 2
Camera calibration

2.1 Camera geometry
A point in 3-dimensional Euclidean space is usually represented by a real vector
(X,Y, Z). In projective geometry, however, it is more convenient to use homogeneous
coordinates. The same point (X,Y, Z) can be expressed in homogeneous coordinates
as (X,Y, Z, 1) or more generally (wX,wY,wZ,w). Given a point in homogeneous
coordinates, we can get the corresponding point in Cartesian coordinates by dividing
it by w. There is an exception to this when w = 0 as in (X,Y, Z, 0). These coordinates
represent points at infinity that exist in projective space but not in Euclidean space.

2.1.1 Pinhole camera model

A camera is a mapping between the 3D world (object space) and a 2D image[2]. A
number of different camera models exists but we are interested only in the pinhole
camera model. The pinhole camera model describes a central projection where all of
the rays meet in a single point C known as the camera centre.

Figure 2.1. Pinhole camera geometry. C is the camera centre and p is the principal
point. The camera centre is here placed at the coordinate origin. Note the image plane is

placed in front of the camera centre. Illustration and caption taken from [2].

On the image above we can see the placement of a camera in it’s coordinate frame. The
axis with the same orientation the camera is facing is called the principal axis. The
point of intersection of the principal axis and the image plane is called the principal
point and it’s 3D coordinates are (0, 0, f) where f is the distance between the image
plane and the camera centre. Often the principal point is not the origin of coordinates in
the image plane. Instead the top-left corner of the image is the origin and the principal
point is in the middle of the image at some coordinates (px, py). Also because the y
axis is usually pointed downwards in most images, the y and x axes in the object space
are also inverted. By similar triangles we can see that the mapping between the object
space and the image plane in Cartesian coordinates is:

4

. 2.1 Camera geometry

(X,Y, Z)T 7→
(
fX

Z
+ px,

fY

Z
+ py

)T

(1)

This is not a linear mapping. However, the same mapping can be expressed as linear
mapping in homogeneous coordinates using the matrix multiplication:

X
Y
Z
1

 7→
 fX + Zpx

fY + Zpy

Z

 =

 f px 0
f py 0

1 0

X
Y
Z
1

 (2)

K =

 f px

f py

1

 (3)

The matrix K is called the camera calibration matrix[2].

Usually, the 3D points are located in a different coordinate frame known as the world
coordinate frame. In our case, world coordinate frame is the frame of the point cloud. By
using homogeneous coordinates, affine transformation from the world coordinate frame
to the camera coordinate frame can be expressed in terms of matrix multiplication:

Xcam =
(

R −RC̃
0 1

)
Xworld (4)

Xworld is a 3D point in the world coordinate frame and Xcam is a 3D point in the camera
coordinate frame. R is a 3 × 3 rotation matrix and C̃ is the position of the camera
centre in the world coordinate frame. The camera calibration matrix can be multiplied
with the frame transformation matrix to obtain a projection matrix from the world
coordinate frame:

P = K [R|t] (5)

t = −RC̃

The parameters contained in K are called the internal1) camera parameters, or the
internal orientation of the camera. The parameters of R and C̃ which relate the camera
orientation and position to a world coordinate system are called the external parameters
or the exterior orientation[2]. Our application estimates the external parameters as they
relate the camera’s position to the position of the LIDAR.

1) The terms “intrinsic” and “internal” are both used to denote the same parameters. They can typically be
used interchangeably as there is no danger of confusion.

5

2. Camera calibration .
2.1.2 Non-linear distortion

Real lenses often do not behave exactly as the pinhole camera model. Due to imper-
fections in lens manufacturing some deviations to the imaging process are introduced.
The most significant deviation is usually the radial distortion. This error tends to be
more significant in lenses with wider field of view. Another usual form of distortion is
tangential distortion which is caused by misalignment of the physical elements in the
whole camera. Brown’s distortion model also called Plumb Bob model is a 5-parameter
model often used for the correction. It requires three parameters to model the radial
distortion and two for the tangential distortion. More information about the Plumb
Bob model can be found in the original article[6]. After the correction the camera again
acts as a linear device.
Removing the distortion from the image is called rectification. The process can also
be reversed and the point projected by the pinhole camera model can be unrectified
by applying the distortion function on it. This is useful when we want to obtain the
correct pixel coordinates in the original image.

Figure 2.2. Radial distortion demonstrated[7].

2.2 Pose estimation and PnP
The procedure of extrinsic calibration of a camera is often called pose estimation. When
the input is a set of correspondences Xi ↔ xi between the world points and the im-
age points and the intrinsic camera calibration is known, the problem is known as
Perspective-n-Point problem or simply PnP. Many different algorithms have been de-
veloped both iterative and non-iterative. They often offer different trade-offs between
speed, precision, robustness and convergence. Different methods also behave differently
when the correspondences are close to coplanar or collinear configuration.

2.2.1 Direct Linear Transformation algorithm
One method that can be used for pose estimation is called the Direct Linear Transfor-
mation (DLT) algorithm[2]. This algorithm finds the P matrix from the set of similarity
relations xk ∝ PXk. Camera translation can be found in the fourth column of P and
the rotation can be obtained using the RQ decomposition of the left 3× 3 sub-matrix.
This method minimizes the algebraic error. The meaning of the algebraic error and it’s
relationship to the reprojection error is fully described in[2].

6

. 2.3 Point cloud visualizations

2.2.2 Reprojection error minimization
Reprojection error also sometimes called geometric error is defined in the following way:

∑
i

d(xi,PXi)2 (6)

It is the sum of squared Euclidean distances between the image points and the projected
world points using the camera model. Because the correspondences are defined in terms
of homogeneous coordinates, the squared Euclidean distance between two points x and
x̂ in 2D is computed using the formula:

d(x, x̂)2 =
∥∥∥∥ 1
x3
· x− 1

x̂3
· x̂
∥∥∥∥2

2
(7)

Levenberg-Marquardt iterative method is often employed for minimizing the reprojec-
tion error. Known parameters (in our case matrix K) can be enforced and the P matrix
can be explicitly computed in terms of the remaining parameters. Since the iterative
method requires an initial guess, one is either provided by the operator as a launch
parameter to the application or computed using the DLT algorithm. We used the
implementation provided by the OpenCV library in the function cv::solvePnP.

2.2.3 EPnP
We also used the EPnP method that is implemented in OpenCV. EPnP is a non-
iterative method with O(n) complexity. It is supposed to be a reliable method that is
robust even when the correspondences are arranged in coplanar configuration. It can
also be used as an initial guess for the iterative method. Full description of EPnP can
be found in the paper[8].

2.3 Point cloud visualizations
Data measured with the laser scanner needed to be properly visualized in order to
help the operator recognize correspondences in them. The input to the application is
a point cloud of points measured by the laser. Point cloud is simply a list of 3D points
measured with respect to some specified coordinate frame. The 3D points do not have
any particular order or identification number. A range image is a typical visualization of
a point cloud. This is done by placing a standard pinhole camera model into the origin
of the point cloud and projecting all the points through it. As a result the visible points
are ordered in a 2D image matrix. Instead of intensity or color, the point distance is
assigned as the image value. We used the pcl::RangeImage class from the PCL library
for this. In contrast to the usual camera images, in range images the principal axis is
the x axis.
The range image can be visualized using the range information of the points. This is
done by linearly mapping the ranges from the 〈min range;max range〉 interval into
the 〈0; 255〉 interval. The color is then assigned according to some color map. In our
case it is the jet colormap. This is necessary because the human eye is not good at
noticing details in grey images.
It can be seen that there are not many details recognizable. Because of that, we also
used the following visualization methods.

7

2. Camera calibration .

Figure 2.3. A range image. The warmer the color the farther the point is from the laser.

2.3.1 Directional images

Standard edge detectors are not of much use when working with range data. Lots of
edges and corners show only a subtle difference in range with respect to their surround-
ings. Instead we tried to highlight the edges and corners by measuring the direction
changes of the surface. This idea was presented in the paper[4] as bearing angle images.
Our approach is based on the bearing angle images but we use a different formula to
compute the angle. We do not measure the angle between the surface and the ray of
the laser but measure the angle between the surface and the image plane. The reason
is that the color does not change on large flat surfaces. For each point in the range
image we measure the angle by using it’s neighbour. We pick neighbours in horizon-
tal, vertical, diagonal and the opposite diagonal directions and as a result create four
different images. Each of these images is more sensitive to the edges oriented in differ-
ent directions e.g. horizontal image is most sensitive to the vertical edges. The angle
between two points A and B is measured using the following formula:

Figure 2.4. Geometry of the directional images. Points exist in three dimensions. In
range images the x axis is facing forward.

α = arcsin Bx −Ax

|B −A|
(8)

8

. 2.4 Local correction

Figure 2.5. Visualization of a range image using the horizontal directional image. Notice
the enhanced level of detail (door, windows) compared to the raw range image, see Figure

2.3.

2.4 Local correction
Because it is sometimes difficult for the operator to mark the exact pixel in the range
image and small error can cause an entirely different world point to be used, we at-
tempted to make the process more robust. We came up with the following algorithm
for local correction of the correspondences:

1) Sorts the correspondences.
2) Corrects the correspondences one by one. Terminates if the maximal number of total

calibrations performed is exceeded or there is no more work to do.
3) Returns the corrected correspondences.

At first the correspondences are sorted in descending order according to the range
variance of the pixels in their neighbourhood. The neighbourhood Ni is a square of a
reasonable size around the i-th correspondence in the range image. We chose a square
with 9 pixel side length making it contain 81 pixels. The Ni symbol thus represents
81 values surrounding the clicked one. The range variance of i-th correspondence is
determined using the classic formula:

V ar(Ni) = E(N2
i)− E(Ni)2 (9)

The correspondences are sorted because now they are going to be corrected in that
order. The correspondences with larger range variance tend to be more dangerous for
the calibration and therefore are corrected first.

The correction of each correspondence is achieved by trying the calibration for every
point in it’s neighbourhood instead of the clicked one. The point with the lowest repro-
jection error in the calibration is picked as the correct one. The previously corrected
correspondences are used when correcting the current correspondence. This makes sense
because if we assume that the corrected location is more accurate than the original one
then there is no reason to use the original one.

Because the calibration itself is really fast there is no problem in running it hundreds
of times.

9

2. Camera calibration .
2.5 RANSAC

It is possible that some of the created correspondences are just wrong. This might
happen either because the operator did not really recognize the objects he was matching
or he might have made some other type of error e.g. forgot to assign one of the created
correspondences, unintentionally switched two correspondences between each other in
one image. We used the RANSAC[9] scheme to help with identification of these outliers.
RANSAC is used to find the subset of the correspondences (inliers) that fit the model.
The model in our case is the camera’s calibration and the correspondence fits the model
if it’s reprojection error is lesser than some predefined threshold. When the set of inliers
is obtained the calibration is computed from it using the iterative method. In the result,
outliers can be quickly identified by their large reprojection error and the operator might
choose to fix them or delete them. The main difference from the local correction is that
RANSAC does not adjust the correspondences in any way. It only finds the subset of
correspondences that seem to be “right”.

The first image in Figure 2.6 shows the correspondences created in the point cloud. In
the second image the correspondences in the camera image are marked in accordance
with the point cloud. The red circles show the projection of the correspondences into the
image using the calibration (without RANSAC) obtained from these correspondences.
In the third image the highlighted correspondence is wrong. The normal calibration
without RANSAC is affected by it. In the fourth image RANSAC was used. The
calibration ignores the wrong correspondence. It can be easily recognized by large
reprojection error and fixed.

In more detail, our implementation of the RANSAC algorithm works in the following
way:

1) Randomly selects n correspondences from the set of all correspondences.
2) Determines the extrinsic calibration from these n correspondences.
3) Every correspondence with smaller reprojection error than some predefined threshold
t is put into the set of inliers Si

4) Increases the iteration number and goes back to (1).
5) Terminates if the number of iterations is greater than some N . The calibration is

estimated from the largest set Si

In our case, n = 4 because it’s the minimal number of correspondences needed for
calibration and RANSAC uses as small initial set as feasible. Threshold t is equal to 1
percent of the camera image width.

2.6 Point cloud coloring
Point cloud coloring is a utility that can be used to validate the calibration. It assigns
a color to each point in a point cloud that is visible by the camera. The algorithm is
simple:

At first, the point is transformed into the camera’s coordinate frame. After that it has
to be checked that the point is located in front of the camera. This is done by simply
checking that the z coordinate is greater than 0. If the point is in front of the camera
it is projected onto the image plane using the pinhole camera model. Then it has to be

10

. 2.6 Point cloud coloring

Figure 2.6. RANSAC example.

distorted according to the camera’s distortion coefficients. If the distorted point lies in
the image, the point in the point cloud is assigned the color of the corresponding pixel.

Analogically, every point in the range image can be also colored using the same algo-
rithm.

11

Chapter 3
Architecture

In this chapter we describe the architecture of the application and explain the design
decisions we made. We start with the high-level overview of the architecture and then
describe the details when we feel it is necessary. Reading the user manual first may help
in understanding. User manual is mainly meant for users while this chapter is mainly
for programmers who might want to accommodate the software to their needs.

We implemented the application as a ROS[1] package. At first we used the version
Fuerte Turtle but later we also added support for newer versions of ROS using the new
build system: catkin. The whole codebase is written in C++03. We did not use a
newer C++ standard, such as C++11, because it was not supported[10] by ROS at
the time the application was written. Apart from ROS we used the following libraries:
Boost[11], OpenCV[12], PCL[13] and Qt[14]. All of those libraries were distributed
together with ROS. We also heavily used the ROS tf package[15]. Tf is a decentralized
system that keeps track of all the coordinate frames in the robotic system.

The priority was for the application to be robust and easily extensible to some extent.
On the other hand we strived to keep the design simple and avoided introducing unnec-
essary abstraction. There is no time-critical context in the application so we did not
need to specifically optimize for performance. When we had to choose between speed
and code clarity, we almost always opted for clarity.

3.1 Package structure
The package structure differs in different ROS versions. The following package structure
is the one used in newer versions of ROS using the catkin build system. In the older
versions of ROS the package structure is almost similar. The main difference is that
the package.xml file is called manifest.xml and the structure of the CMakeLists.txt
file is totally different.

. [export]
The application exports data into this directory.. [images]
Images used by the application in the GUI are stored here.. [include]
All of the header files are located here.. [launch]
Different launch configurations are stored here.. [msg]
Directory for the custom ROS messages. CalibrateCamera message is stored here.. [src]
All of the source files are located here.

12

. 3.2 Top-level architecture

. CMakeLists.txt
This file controls the build process.. package.xml
Every ROS package must contain this file. Information about the package such as
it’s name, author and license under which it can be distributed has to be specified
here. Also the dependencies on other ROS packages are listed here.. resources.qrc
Resource-definition file describing resources used by the applications GUI. Paths to
images are defined here.

The package consists of the following three ROS nodes:

. cloud camera autocalibration
This is the main node. When we mention “the application” in this text we are talking
about this node.. keyboard teleop
Launched together with the application. This node allows the user to control the ap-
plication from the terminal. It is done by publishing the CalibrateCamera messages
onto the applications topic.. cloud coloring
Separate, simple to use, helper utility that colors the point clouds by projecting their
points onto camera images. It can be used to validate the results of the calibration.

3.2 Top-level architecture

Figure 3.1. Top-level architecture overview.

At the top level the application consists of the CalibrationLauncher and the
CalibrationGui classes. The sole purpose of the CalibrationLauncher is to collect
all of the sensor data needed for the actual calibration and start the CalibrationGui.

The sensor data are not collected in the GUI mainly for historical reasons. At first we
did not plan for the GUI to play the main part in the application. Our first design was
inspired by the following pipeline:

13

3. Architecture .

Figure 3.2. Old architecture design.

In this old design every activity was represented by it’s own top level class. The GUI
was planned to be used only for the “create correspondences” step. At that stage we
also thought that we would replace the GUI by some automatic correspondences creator
entirely. As the design evolved we decided to move more responsibilities straight into
the GUI. The data collecting class was however already written so we just renamed it
to the CalibrationLauncher class.

Also it was not trivial to move the responsibilities of the CalibrationLauncher straight
into the GUI because the application is single-threaded. The reason is that the ROS
message loop has to keep spinning to collect data from the camera and the laser scanner.
Unfortunately, the GUI contains it’s own message loop which blocks the ROS message
loop.

Retrospectively, the application should have been made multi-threaded and GUI only.
The cost of such change, however, compared to it’s value was not worth it for us.

3.3 Calibration launcher

Figure 3.3. Calibration launcher architecture.

The calibration launcher acquires the range image, the camera data and then starts the
GUI. CameraData is a container class that contains the camera image, camera info, tf
transform from the cloud frame to the parent frame and the initial calibration guess
if available. Range image is an instance of the pcl::RangeImage class. Each point of
this range image contains the information about the 3D point it represents.

14

. 3.4 Graphical user interface

The CameraDataFactory class is used to create the camera data. This class subscribes
the necessary ROS topics in the constructor. The actual CameraData object is created
by it’s method createCameraData(). This method throws exceptions if the camera
data are not available or can not be created for some other reason. Analogically, the
RangeImageFactory class creates the range images from the subscribed point clouds.

3.4 Graphical user interface

Figure 3.4. Screenshot of the GUI with major parts highlighted. Blue: Range image scene
view. Red: Camera image scene view. Green: Calibration panel. Yellow: Correspondences

table.

We built the GUI on the Qt framework. Signals and slots are used for communica-
tion between objects. The signals and slots mechanism is a central feature of Qt and
probably the part that differs most from the features provided by other frameworks[16].

Large part of the widget tree is defined in the CalibrationGui.ui file. To edit this
file it is best to use Qt Creator[17] which contains a designer for these files. However,
all of the widgets inside the scene views are defined directly in the source code of those
views.

The class CalibrationGui itself does not contain much logic. It contains other parts
of the GUI, holds them together and provides callbacks for the widgets in the green
box.

3.4.1 Scene views and correspondences

Scene views are custom widgets used to display the range image and the camera image
comfortably. There are two scene views present within the GUI, see Figure 3.4. The one
with the red border displays the camera image and it is an object of class SceneView.
The other one with the blue border displays the range image and it is an object of
class RangeView which extends the SceneView with additional functionality regarding
mostly the range image visualizations.

15

3. Architecture .
Apart from scrollbars and other controllers, scene views contain a QGraphicsScene
object which acts as a surface for managing 2D QGraphicsItems. Each QGraphicsScene
contains it’s own 2D coordinate system where the QGraphicsItems live. We have based
this coordinate system on the underlying images in those scenes. That means that e.g.
the pixel located at the coordinates [50; 100] in the image is also located at the same
coordinates in the scene. We created two custom QGraphicsItem types:

. FeatureMarker
Feature markers can be directly manipulated by the operator. Their movement is
restricted to the image on the background. They are used to assign the correspon-
dences between the range image and the camera image. They can only exist in pairs.
That means that each marker has it’s own sibling on the other image.. ProjectionMarker
Projection markers can not be directly manipulated by the operator. They exist
only in the camera scene view and are connected by the CorrespondencesModel to
a parent feature marker in the range image scene view. Their position is determined
by the projection of the corresponding 3D point to the camera image. To determine
the position of the projection, these markers have knowledge of the CameraData.
The class image_geometry::pinhole_camera_model is used inside the projection
markers to compute the correct projection.

The class CorrespondencesModel keeps track of all the correspondences and acts as
a central authority. It is responsible for connecting the markers with their relatives.
It also acts as a table model[18] for the correspondence table (yellow border on the
image).

Figure 3.5. Relationships between the different marker types.

When the button Add feature in the RangeView is clicked, the addCorrespondence
slot method of the correspondences model is called. The correspondences model itself
then handles the creation of the markers and establishment of the necessary connections.
Analogously, when the delete button is pressed, the corresponding slot method is called
in the correspondences model and it handles the destruction of all the markers and other
data relating to the specific correspondence.

3.4.2 Range image visualizations
The code responsible for the creation of the range image visualizations is located in the
include/range_visualisations folder. Only the classes RangeVisualisationsFactory
and CameraColoredCloudImageFactory are used publicly.

16

. 3.4 Graphical user interface

Figure 3.6. Visualization factories and their dependencies.

At first, we did not consider creating the camera colored images. When we got the idea
of implementing them, the RangeVisualisationsFactory was already made and was
using the ImageType enum to decide which image type it will create. Unfortunately, the
creation of the camera colored images required different parameters than all the other
images. For that reason we did not add the camera colored images into the enum. After
that decision, it seemed cleaner to us to create a new factory just for them. This factory
projects each point in the range image to the camera image using the pinhole camera
model. If the projected point is in the image frame then the corresponding pixel color
is used. If the point is outside the image frame then gray color is used. If there is no
3D point associated with the pixel in the range image then black color is used.

When creating the directional images 2.3.1, the RangeVisualisationsFactory del-
egates most of the work to the PureAngleImageFactory. This factory creates the
RawDataImages. Those images do not have the color information in them but store the
actual angle instead. RangeVisualisationsFactory then assigns the color by mapping
the raw data into the range from 0 to 255 and applying a colormap.

3.4.3 Calibration

We use the solvePnP function available in the OpenCV library to estimate the ex-
trinsic camera parameters. If the operator selected RANSAC scheme in the drop-
down list we use the solvePnPRansac method to discover the inliers and then use
the solvePnP method with the inliers only. This logic is encapsulated inside the
ExtrinsicParametersEstimator class. This class transforms the data into the for-
mat solvePnP and solvePnPRansac functions can use. After it receives the results
from solvePnP it transforms them into the tf format. However, this class does not
know anything about the actual tf transform tree. For that reason the result is relative
to the cloud frame and not the parent frame.

Local correction is implemented inside the IterativeParametersEstimator class. The
class is a wrapper for the ExtrinsicParametersEstimator that runs the calibration
multiple times with slightly randomized correspondences. The number of iterations is
an input parameter. If 0 is supplied as the number of iterations this class acts exactly

17

3. Architecture .
the same as the ExtrinsicParametersEstimator. For that reason the GUI callback
running the calibration uses only the IterativeParametersEstimator class.

The results are shown using the CalibrationExport class. First, this class changes
the parent of the result transform to the parent frame. After that it displays the dialog
with the calibration output. If the debugFrame launch parameter is specified it also
starts a static transform publisher [19] in a separate process that publishes a tf frame
with the calibration result. This process shares the stdin with the application’s process
so it can be shut down using SIGINT together with the application.

Finally, CorrespondencesModel class contains a method invalidateProjections().
After the new result is stored, this method has to be called to update the positions of
the ProjectionMarkers according to the new calibration.

18

Chapter 4
User manual

The purpose of this chapter is to be the complete reference of the applications abilities
from the user’s point of view. The sections are ordered according to their chronological
position while using the application to create an extrinsic camera calibration. It is
expected that the user has at least some basic knowledge of ROS[1].

4.1 Applications requirements
Before installing the application it is necessary to have the following system configura-
tion:

. Ubuntu 12.04 “Precise Pangolin” LTS
The application was developed and tested on this system. It is possible that it will
work without any problems on some of the older distributions (10.04, 11.10) and also
newer distributions of the Ubuntu operating system (or any other operating system
ROS supports) but it has not been tested.. ROS Fuerte Turtle or newer
The application was developed on ROS Fuerte Turtle. It has also been verified that
the application is compatible with newer distributions of ROS, namely ROS Groovy
Galapagos and ROS Hydro Medusa. Installation of ROS is described in it’s official
documentation[20].

4.2 Installation and build
The installation is slightly different depending on the user’s ROS distribution. This is
because newer versions of ROS use different package structure and build system.

4.2.1 ROS Fuerte Turtle
The contents of the /rosbuild folder need to be extracted somewhere into the ROS
package path. It can the determined by running the following command a shell:

echo $ROS_PACKAGE_PATH

After that it is just needed to run rosmake in the applications package.

4.2.2 Newer versions of ROS
The contents of the /catkin folder need to be extracted somewhere into the ROS
package path. If everything is right the last folder of this path is going to be called src.
After that it is needed to run catkin_make in the catkin workspace root.

19

4. User manual .
4.3 Required ROS components

Before launching the application it is needed to start some other ROS components.
At first it is necessary that the ROS server is running. ROS server can be started by
executing the command:

roscore

After the server is started it has to be ensured that the following topics are published.
The list of published topics can be displayed by the command:

rostopic list

The mandatory topics are:

. /tf
On this topic all of the coordinate frames are published.. /point cloud topic
The name of this topic is not important (It can be set as a launch parameter.), but
the type of the message has to be sensor_msgs/PointCloud2.. /camera topic/image
Messages have to be of type sensor_msgs/Image.. /camera topic/camera info
Messages have to be of type sensor_msgs/CameraInfo.

Also there are some important tf transformations that have to or can be published.
Their exact names are not important as they can be set as launch parameters to the
application:

. /cloud frame
This transform is mandatory and it should represent the transformation origin of the
points in the point cloud.. /camera parent
Some transform has to be selected as the parent frame of the camera frame that is
going to be created.. /calibration guess
This transform is optional and it can be used as an initial guess for the calibration.
More about this can be found in the section about launch parameters.

4.3.1 Using Bag files
For testing purposes all of the prerequisites can be easily satisfied by running one of the
provided bag files in the /bags folder. It is important that the /clock topic is published
when using bags and the /use_sim_time parameter is set to True. Convenience bash
scripts located in the /bags folder can be used to properly play the bag files or it can
be done manually with commands similar to:

rosbag play <bag-to-play>.bag --clock
rosparam set /use_sim_time "True"

20

. 4.4 Launching the application

4.4 Launching the application
After all the prerequisites from the previous section are satisfied the application can be
launched via a launch file using a command:

roslaunch <package> cloud_camera_autocalibration.launch

The file is located at <package>/launch/cloud_camera_autocalibration.launch
and it contains several parameters that should be adjusted. The following is the
description of the launch parameters and how they should be set with respect to one
another.

4.4.1 Launch parameters
All of the parameters in the following list are mandatory.

. cloudTopic
This should be set to the name of the topic the cloud is published on.. cloudFrame
This should be set to the name of the /cloud_frame transform.. cameraTopic
This should be set to the name of the topic under which camera_info and image are
published.. parentFrame
This should be set to the name of the frame /camera_parent. The result of the
calibration will have this frame as a parent.

The application can be provided some initial guess for the calibration. This can be
done by providing one of the following parameters. If both parameters are provided
then the initial guess is taken from the initialTransformToCamera parameter. If no
calibration guess is provided then the application computes it’s own guess using Direct
Linear Transform algorithm.

. cameraFrame
This parameter should be used if some calibration guess already exists in the tf
system.. initialTransformToCamera
This parameter should be used if it is preferred to provide the initial guess ex-
plicitly or the initial guess is not available in tf. The format of this parameter is
x y z yaw pitch roll. The position should be measured in meters and the ro-
tation in radians. The parent of this transform is the /cloud_frame and not the
/parent_frame!

The following parameters are optional:

. debugFrame
If this parameter is provided, the application automatically starts a tf publisher
with calibration after each calibration attempt. The names of the published frames
are created by concatenating this parameter with a timestamp from the time the
calibration was run.. initialTransformToParent
This parameter is almost always not necessary, because the transform can

21

4. User manual .
be obtained from the tf in most cases. It follows the same format as the
initialTransformToCamera parameter and should represent the transform from
the /cloud_frame to the /camera_parent. Specifying the transform explicitly can
be useful in situations when it is difficult to start the calibration procedure with
the same tf configuration as when the image from the camera and the cloud were
created. The reason for this difficulty can be e.g. the camera is on an arm that is
constantly rotating.

4.4.2 Launching the GUI
After the application started it needs some time to collect the data from all of the
sources. Usually it is necessary to wait for the point cloud because point clouds are
published with the lowest frequency. When the point cloud is available the application
outputs:

New pointcloud arrived.

Now the GUI can be launched by either pressing the space button or by sending
CalibrateCamera message to the /cloud_camera_autocalibration topic. The lat-
ter option can be used e.g. from some external node to request recalibration of a
camera automatically.

It is important to make sure that the robot doesn’t change it’s position in between
receiving the point cloud, the image and starting the GUI. If it is somehow difficult to
achieve, the launch parameter initialTransformToParent might be useful.

4.5 Using the GUI to calibrate a camera

Figure 4.1. Screenshot of the whole GUI with highlighted blocks.

To calibrate a camera it is necessary to find correspondences between the point cloud
and the camera. A correspondence is a pair of points (Further on those points are called
features.) from the point cloud and the camera image that represent the same physical
point. At least four correspondences are necessary to be able to run the calibration
procedure but the more correspondences can be found the better.

22

. 4.5 Using the GUI to calibrate a camera

The whole purpose of this GUI is to make finding the correspondences as easy and
precise as possible. In the image above the GUI is logically divided into four blocks:

. Point cloud block (blue)
The point cloud is visualized in this block. Also the button to create new correspon-
dences is present here.. Camera block (red)
The image from the camera is shown here. The image features are modified here.. Calibration block (green)
The calibration can configured and run from here.. Correspondences block (yellow)
More detailed information about the current correspondences can be found here.

While the GUI is open the robot can move around freely. That is possible because all
the transforms are requested at the time of the GUI start and the application doesn’t
perform any further requests to tf. The result is therefore only dependent on the
transforms during the start of the GUI.

4.5.1 Using different point cloud visualizations

Figure 4.2. Screenshot of the point cloud block with highlighted visualization controls.

There are six visualization methods available. Their goal is to make physical objects
such as edges or corners more recognizable. In different scenes different methods can
be more useful.

The point cloud is always visualized as a range image. The position of the points
in the range image stays the same irrespective of the visualization method. Different
visualization methods, however, assign different colors to the points. The available
visualization methods are:

. Horizontal image
Has similar effects as edge detection on visual images. Highlights edges perpendicular
to the horizontal direction the most.. Vertical image
Has similar effects as edge detection on visual images. Highlights edges perpendicular
to the vertical direction the most.

23

4. User manual .
. Diagonal image

Has similar effects as edge detection on visual images. Highlights diagonal edges the
most.. Antidiagonal image
Has similar effects as edge detection on visual images. Highlights the opposite diag-
onals than the diagonal image the most.. Range image
Colors the points with respect to their range. This is the most natural visualization.
It is, however, quite ineffective in highlighting the edges that lie on the same object.. Camera colored image
This visualization serves different purpose than the previous ones. It can be used to
validate the current camera calibration by coloring the points with the color of the
pixels in the camera image they project to.

It is possible to choose a different visualization method for the foreground (drop-down
list with the blue border) and background (drop-down list with the green border). The
foreground and background can be then blended together with the slider (red border).

Blending is useful to highlight more edges at once by blending e.g. the horizontal and
the vertical image together. It’s main purpose, however, is to make the verification
of the calibration easier. This can be done by setting the camera colored image as
background and some other image as foreground. By blending them together one can
spot the errors in the coloring and therefore the calibration.

Figure 4.3. Camera colored point cloud blended with the horizontal image visualization.

On the image above a slightly trained eye can see that the coloring of the light at the
ceiling is not correct (highlighted in the red circle).

4.5.2 Creating correspondences

Correspondences are created with the button Add feature. Feature markers are then
created in the center of the current viewport in both the range image and the camera
image. They can be moved by dragging them with a mouse. The currently selected
correspondence can be deleted with the delete key.

The following marker types are used:

24

. 4.5 Using the GUI to calibrate a camera

.
This marker is used for the currently selected correspondence.

.
This marker is used for all of the other correspondences.

.
This marker represents a projection of the feature marker in the range image to the
camera image using the current calibration.

To achieve good calibration it is important to make the correspondences diverse. That
means that the correspondences should not be collinear (aligned in a line) or coplanar
(aligned in a plane). The more coplanar the correspondences are the more numerically
unstable the calibration procedure is. Sometimes it is quite tricky to realize that the
set of correspondences is coplanar:

Figure 4.4. On this screenshot correspondences are found on a staircase. This is an exam-
ple of coplanar correspondences that might not be easy to spot at first sight.

4.5.3 Running the calibration

Figure 4.5. The calibration block.

After a sufficient number of correspondences is created the calibration procedure can
be run with the button Run calibration. Next to this button there is a drop-down
list where it is possible to select a calibration method:

. Iterative
This is the recommended method. It needs an initial estimate and is reliable given
the correspondences are diverse enough.. EPnP
Theoretically this method should be better but it didn’t perform that well during
experiments. It might have it’s use in certain situations. Theoretically it should also

25

4. User manual .
handle coplanar data better. It doesn’t need initial estimate and it should perform
global optimization.. RANSAC
This method combines the classic iterative method with RANSAC scheme to recog-
nize the correspondences that are clearly wrong. The result of this method is calibra-
tion from only the correspondences that fit the model. Unused correspondences can
be recognized by large reprojection error and should be deleted or manually fixed.

Farther to the right there is a checkbox Allow local correction. If checked the cali-
bration is run multiple times and each time the range features are slightly randomized.
It might improve the calibration result when there is a lot of noise near the range
features and it is hard to mark the correct spot exactly by hand.
Button Reset calibration resets the current calibration in the GUI to the initial
guess provided on launch. This is useful when the calibration result is horribly wrong
because succeeding calibration attempts always use the current calibration in the GUI
as an initial guess.
Button Export data exports all the visualisations into the <package>/export folder.
It also exports the data from the application as a MATLAB script. The files have the
current timestamp in their name.

4.5.4 Calibration results
When the calibration succeeds the results are shown in the following dialog window:

Figure 4.6. Calibration results.

At the top the average reprojection error for the correspondences is shown. In the most
bottom line the same data as visible above are formatted so it can be copy-pasted as an
argument to static_transform_publisher node[19]. Also a debug tf frame with the
calibration is automatically published if it was set as a launch parameter. Meanwhile
in the calibration GUI, projection markers adjust to the new calibration.
Now it is possible to keep refining the calibration by modifying the correspondences
and running the calibration again. This procedure can be repeated as many times as
it is necessary.

4.6 Other useful tools
In this section some other useful tools are briefly described that will most likely be used
together with the application.

26

. 4.6 Other useful tools

4.6.1 rviz

Rviz is a visualization tool for ROS. It is most likely to be used to directly visualize the
resulting tf transforms. It is however much more powerful and can be used to visualize
transformations, camera images, point clouds, and more. More information can be
found in the official rviz user guide[21].

Figure 4.7. Screenshot from rviz visualizing the result of calibration.

The text on the image above is difficult to read because the current camera transform
and the result of the calibration are so close together that they overlap.

4.6.2 Cloud coloring

Cloud coloring is a node in the application package that can be used to color the points
in the point cloud with the color of a pixel they project on. It’s main purpose is to
help with manually validating the calibration. The principle is similar to the Camera
colored image4.3 range image visualization.

The advantage here is that the color is associated directly with the point cloud and
therefore it can be used in other ROS nodes. Most importantly it can be used in rviz
to visualize the colored point cloud in 3D.

Before launching the node it is necessary to set launch parameters in the launch file
located at <package>/launch/cloud_coloring.launch to the correct values. The
parameters are:

. cloudTopic
This should be set to the name of the topic the cloud is published on.. cloudFrame
This should be set to the name of the base cloud transform.. cameraTopic
This should be set to the name of the topic under which camera_info and image are
published.. cameraFrame
This should be set to the name of the camera transform.. outputTopic
This specifies the name of the topic the node should publish the cloud on.

Now it is possible to start the node with the command:

27

4. User manual .
roslaunch <package> cloud_coloring.launch

To visualize a colored point cloud in rviz it is necessary to add a display of type
PointCloud2 and set the Topic property to the outputTopic parameter. Then it
is necessary to set the Color Transformer property to the RGB8 value.

Figure 4.8. Result of the cloud coloring visualized in rviz.

28

Chapter 5
Experiments

This chapter contains the summary of the experiments. We test the application in five
scenarios of various difficulty. In all but one of these experiments we used an already-
calibrated camera fixed on the robot. The intrinsic calibration of this camera had a
very high quality so it should not have affected the extrinsic calibration performed by
the application in any negative way. On the other hand the extrinsic calibration was
hand-crafted, essentially by measuring the physical location of the camera on the robot.
This was not good enough to be used as a ground truth for the camera’s position.

Since the operator performs the most crucial part of the calibration we had decided
to test how much is the calibration’s result dependent on the operator’s experience
with the application. We did test this by having a second operator also perform the
calibration. This operator had no previous experience with the application and had
only read the user manual prior to the experiments.

The reprojection error is the only purely objective measure of the calibration’s quality.
However, because the original calibration was not good enough, the reprojection error
could not be accurately measured for every point available in the point cloud. Instead
it was measured only for the correspondences provided by the operator. This did not
make the reprojection error useless but some other subjective criteria were also used to
evaluate the calibration.

Because we had a quite solid extrinsic calibration available for the camera, we could
compare the application’s result with it. Comparing the differences between individual
components of the transforms gave us a valuable insight regarding the admissibility of
the application’s results.

Point cloud coloring was also used to subjectively evaluate the calibration results. By
coloring the cloud one can see the projections of all the points in the cloud at once. By
looking at miscolored points one can reveal the errors in the calibration.

The difficulty of the scenarios is influenced by the following issues:

. Number of recognizable correspondences
In each scenario only a relatively small number of correspondences is recognizable. In
reasonable scenarios it should be possible to recognize at least five correspondences.. Variability of the correspondences
It is not enough to recognize a large number of correspondences but they also have to
be variable enough. They should not be coplanar (lie in the same plane) and should
also lie in different segments of the image. This is often a problem for scenarios in
exteriors.. Camera alignment
The more the camera is misaligned with the laser the more difficult it is to find
correspondences.

29

5. Experiments .
. Intrinsic calibration quality

If the intrinsic calibration of the camera is poor the whole calibration procedure is
unreliable.

The scenarios differ mostly in the number of recognizable correspondences and their
variability. Only in the last scenario the camera alignment is a bit different. Still the
difference is not that severe to cause problems. We did not experiment with the effects
of a bad intrinsic calibration on the application’s result.

In each scenario we tried to create as many precise correspondences as possible. After
that we ran the calibration with every calibration method available in the application.
Then we picked the promising calibration results for further study. We compared the
transforms against the original transform and also inspected the colored point clouds
for miscolored points.

5.1 Scenario 1 - Corridor
In this indoor scenario objects are artificially arranged in a way that produces lots of
recognizable correspondences. Camera resolution is 1616 × 1232 pixels.

Figure 5.1. Image used for the calibration.

30

. 5.1 Scenario 1 - Corridor

Figure 5.2. 13 correspondences used for the calibration.

Calibration method Avg. reprojection error (in pixels) Max. reprojection error
Original calibration 14.3 27.5
Iterative 8.7 16.2
EPnP 13.1 33.0
Iterative with LC1) 8.5 18.5
EPnP with LC 20.8 45.7

Table 5.1. Calibration results in scenario 1.

The reprojection error was always measured with respect to the user defined corre-
spondences. This approach discriminates the methods using the local correction. The
reprojection error would be lower if it was measured with respect to the corrected fea-
tures when the local correction was used. Iterative method results and iterative with

1) LC stands for local correction

31

5. Experiments .
local correction method results were both promising and we decided to further inspect
them.

5.1.1 Comparison with the original calibration

Figure 5.3. The original transform (/camera 4) compared with the result of the iterative
method.

Value Original Result Difference
X 0.015 0.023 0.008
Y 0.039 0.011 0.028
Z -0.000 0.004 0.005

Yaw −18.04◦ −18.13◦ 0.27◦

Pitch 0.06◦ 0.65◦ 0.59◦

Roll −90.62◦ −90.06◦ 0.56◦

Table 5.2. The original transform compared with the result of the iterative method. Values
are in meters and degrees.

Figure 5.4. The original transform (/camera 4) compared with the result of the iterative
method with local correction.

Value Original Result Difference
X 0.015 0.007 0.008
Y 0.039 0.026 0.013
Z -0.000 -0.001 0.001

Yaw −18.04◦ −18.55◦ 0.04◦

Pitch 0.06◦ 0.79◦ 0.74◦

Roll −90.62◦ −89.89◦ 0.73◦

Table 5.3. The original transform compared with the result of the iterative method with
local correction.

32

. 5.1 Scenario 1 - Corridor

5.1.2 Validation using the point cloud coloring

Figure 5.5. Visualization of the colored point cloud using the calibration result of the
iterative method with local correction.

It can be seen that the point cloud is colored quite nicely. The only wrongly colored
object is the light on the ceiling. It is difficult to create correspondences precisely on
the light because the laser has trouble correctly measuring the points on the light due
to it’s reflective surface. The original calibration has the same trouble with the color
of the light.

Figure 5.6. Detail of the light with highlighted artifacts.

33

5. Experiments .
5.1.3 Calibration by inexperienced operator

We asked our colleague who was not directly involved in the development of the appli-
cation to try calibrating the camera. The following are the results of his calibration. It
can be seen that they are a bit worse than the previous results.

Figure 5.7. Correspondences used for calibration and their projections. Average reprojec-
tion error: 11.6, Maximal reprojection error: 19.0

Figure 5.8. The original transform (/camera 4) compared with the result of the calibration
by inexperienced operator.

34

. 5.2 Scenario 2 - Hall

Value Original Result Difference
X 0.015 0.050 0.036
Y 0.039 -0.004 0.043
Z -0.000 -0.027 0.027

Yaw −18.04◦ −17.53◦ 0.51◦

Pitch 0.06◦ −0.29◦ 0.35◦

Roll −90.62◦ −89.67◦ 0.95◦

Table 5.4. The original transform compared with the result of the calibration by inexpe-
rienced operator.

5.2 Scenario 2 - Hall
Camera resolution is 1616 × 1232 pixels.

Figure 5.9. 14 correspondences used for the calibration. The point cloud density was too
low to create precise correspondences on the rail.

35

5. Experiments .
Calibration method Avg. reprojection error (in pixels) Max. reprojection error
Original calibration 6.1 12.5
Iterative 5.0 9.7
EPnP 6.6 16.5
Iterative with LC 6.2 10.9
EPnP with LC 8.3 20.0

Table 5.5. Calibration results in scenario 2.

5.2.1 Comparison with the original calibration

Figure 5.10. The original transform (/camera 4) compared with the result of the iterative
method.

Value Original Result Difference
X 0.015 -0.053 0.068
Y 0.039 0.010 0.029
Z -0.000 0.018 0.018

Yaw −18.04◦ −18.20◦ 0.16◦

Pitch 0.06◦ −0.52◦ 0.58◦

Roll −90.62◦ −90.70◦ 0.08◦

Table 5.6. The original transform compared with the result of the iterative method. Values
are in meters and degrees.

Figure 5.11. The original transform (/camera 4) compared with the result of the EPnP
method.

36

. 5.2 Scenario 2 - Hall

Value Original Result Difference
X 0.015 0.089 0.075
Y 0.039 0.036 0.003
Z -0.000 -0.027 0.027

Yaw −18.04◦ −17.65◦ 0.39◦

Pitch 0.06◦ −0.09◦ 0.15◦

Roll −90.62◦ −90.37◦ 0.25◦

Table 5.7. The original transform compared with the result of the EPnP method. Values
are in meters and degrees.

Figure 5.12. The original transform (/camera 4) compared with the result of the iterative
method with local correction.

Value Original Result Difference
X 0.015 -0.035 0.050
Y 0.039 -0.028 0.067
Z -0.000 0.031 0.031

Yaw −18.04◦ −17.85◦ 0.19◦

Pitch 0.06◦ 0.52◦ 0.47◦

Roll −90.62◦ −90.49◦ 0.13◦

Table 5.8. The original transform compared with the result of the iterative method with
local correction. Values are in meters and degrees.

Even though the reprojection errors were lower than in the scenario 1, the calibration
results are quite far away from the original calibration. It can be seen that the repro-
jection error of the original calibration is really high. To check if the correspondences
were created correctly we did use the point cloud coloring.

5.2.2 Validation using the point cloud coloring
Only the result of the iterative method was tested in the cloud coloring. Because the
point cloud is too sparse on the opposite wall of the hall the 3D visualization was not
much helpful. We used the range image coloring present in the application instead.

The quality of the coloring is good and we could not find any significant artifacts
by comparing the colored range image with other visualization methods. Even the
small parts of the rail are colored correctly. This is great result because there were no
correspondences created on the rail or even the lower left quadrant of the image.

37

5. Experiments .

Figure 5.13. Colored range image is at the top. Other visualization of the same image is
at the bottom.

38

. 5.2 Scenario 2 - Hall

5.2.3 Calibration by inexperienced operator

In this scenario the results are significantly worse than the previous results. However,
they are still good enough to color the point cloud without many noticeable articafts.

Figure 5.14. Correspondences used for calibration and their projections. Average repro-
jection error: 10.3, Maximal reprojection error: 19.0

Figure 5.15. The original transform (/camera 4) compared with the result of the calibra-
tion by inexperienced operator.

39

5. Experiments .
Value Original Result Difference

X 0.015 -0.160 0.174
Y 0.039 -0.083 0.122
Z -0.000 -0.018 0.018

Yaw −18.04◦ −18.54◦ 0.51◦

Pitch 0.06◦ −0.18◦ 0.24◦

Roll −90.62◦ −90.28◦ 0.34◦

Table 5.9. The original transform compared with the result of the calibration by inexpe-
rienced operator.

5.3 Scenario 3 - Courtyard 1
This is an outdoor scenario. Camera resolution is 1616 × 1232 pixels. It is the most
difficult scenario because the camera is facing the sun and the image is oversaturated.

Figure 5.16. Image from the camera and the horizontal range image visualization.

40

. 5.3 Scenario 3 - Courtyard 1

Calibration method Avg. reprojection error (in pixels) Max. reprojection error
Original calibration 11.2 26.7
Iterative 5.2 11.0
EPnP 5.4 12.3
Iterative with LC 6.4 10.7
EPnP with LC 10.2 23.6

Table 5.10. Calibration results in scenario 3.

The reprojection errors are good. However, the maximal reprojection error in the
original calibration indicates that the correspondences were not created correctly. We
have picked all but the last calibration result for further inspection.

Figure 5.17. 9 correspondences used for the calibration.

41

5. Experiments .
5.3.1 Comparison with the original calibration

Figure 5.18. The original transform (/camera 4) compared with the result of the iterative
method.

Value Original Result Difference
X 0.015 -0.046 0.061
Y 0.039 0.242 0.203
Z -0.000 -0.281 0.281

Yaw −18.04◦ −18.37◦ 0.34◦

Pitch 0.06◦ 1.70◦ 1.64◦

Roll −90.62◦ −88.22◦ 2.40◦

Table 5.11. The original transform compared with the result of the iterative method.
Values are in meters and degrees.

Figure 5.19. The original transform (/camera 4) compared with the result of the EPnP
method.

Value Original Result Difference
X 0.015 -0.076 0.091
Y 0.039 0.277 0.238
Z -0.000 -0.276 0.276

Yaw −18.04◦ −18.44◦ 0.41◦

Pitch 0.06◦ 1.76◦ 1.70◦

Roll −90.62◦ −88.12◦ 2.50◦

Table 5.12. The original transform compared with the result of the EPnP method. Values
are in meters and degrees.

42

. 5.3 Scenario 3 - Courtyard 1

Figure 5.20. The original transform (/camera 4) compared with the result of the iterative
method with local correction.

Value Original Result Difference
X 0.015 0.088 0.074
Y 0.039 0.138 0.099
Z -0.000 -0.308 0.308

Yaw −18.04◦ −17.68◦ 0.35◦

Pitch 0.06◦ 1.49◦ 1.43◦

Roll −90.62◦ −88.27◦ 2.35◦

Table 5.13. The original transform compared with the result of the iterative method with
local correction. Values are in meters and degrees.

It is clear that some of the correspondences were wrong. All of the calibration methods
converged to the same place. The estimated camera position is significantly far from
the hand measured one. It is interesting to note that the rotational components of the
results are actually quite good.

5.3.2 Validation using the point cloud coloring
Even though the results were bad we still inspected how the point cloud coloring was
affected. We had done the point cloud coloring only for the result of the iterative
method. The results were actually quite good. The reason is that the error was mostly
in the translational component of the calibration. At long distances this error is not as
critical as the error in the rotation.

Figure 5.21. Colored range image using the calibration from the iterative method.

43

5. Experiments .
5.4 Scenario 4 - Courtyard 2

This scenario is similar to the scenario 3. However, the robot is not facing the sun and
the correspondences were easier to find. Camera resolution is 1616 × 1232 pixels.

Figure 5.22. 11 correspondences used for the calibration.

Calibration method Avg. reprojection error (in pixels) Max. reprojection error
Original calibration 7.1 15.4
Iterative 6.0 10.0
EPnP 6.0 11.1
Iterative with LC 6.2 10.1
EPnP with LC 6.6 14.5

Table 5.14. Calibration results in scenario 4.

44

. 5.4 Scenario 4 - Courtyard 2

5.4.1 Comparison with the original calibration

Figure 5.23. The original transform (/camera 4) compared with the result of the iterative
method.

Value Original Result Difference
X 0.015 0.024 0.009
Y 0.039 -0.018 0.057
Z -0.000 0.025 0.025

Yaw −18.04◦ −17.63◦ 0.40◦

Pitch 0.06◦ −0.18◦ 0.24◦

Roll −90.62◦ −90.82◦ 0.20◦

Table 5.15. The original transform compared with the result of the iterative method.
Values are in meters and degrees.

Figure 5.24. The original transform (/camera 4) compared with the result of the EPnP
method.

Value Original Result Difference
X 0.015 0.069 0.054
Y 0.039 -0.045 0.084
Z -0.000 0.050 0.050

Yaw −18.04◦ −17.32◦ 0.72◦

Pitch 0.06◦ −0.01◦ 0.07◦

Roll −90.62◦ −91.03◦ 0.41◦

Table 5.16. The original transform compared with the result of the EPnP method. Values
are in meters and degrees.

45

5. Experiments .

Figure 5.25. The original transform (/camera 4) compared with the result of the iterative
method with local correction.

Value Original Result Difference
X 0.015 0.047 0.033
Y 0.039 -0.013 0.052
Z -0.000 0.063 0.063

Yaw −18.04◦ −17.40◦ 0.64◦

Pitch 0.06◦ −0.11◦ 0.16◦

Roll −90.62◦ −90.95◦ 0.33◦

Table 5.17. The original transform compared with the result of the iterative method with
local correction. Values are in meters and degrees.

Figure 5.26. The original transform (/camera 4) compared with the result of the EPnP
method with local correction.

Value Original Result Difference
X 0.015 -0.036 0.050
Y 0.039 -0.016 0.055
Z -0.000 -0.021 0.021

Yaw −18.04◦ −17.86◦ 0.17◦

Pitch 0.06◦ −0.65◦ 0.71◦

Roll −90.62◦ −90.45◦ 0.17◦

Table 5.18. The original transform compared with the result of the iterative method with
local correction. Values are in meters and degrees.

All of the results are not bad. The rotational components of the calibrations are solid
but the translations are not that good. It is hard to tell which method was the best in
this case. The EPnP method with local correction had the greatest reprojection error
but the result is the closest to the results of the previous experiments.

46

. 5.5 Scenario 5 - Calibration of an external camera

5.4.2 Validation using the point cloud coloring

As in the scenario 4, the results were good enough to successfully color the point cloud.
At the distances most of the points are, the errors in the translations were too small to
be noticeable.

5.5 Scenario 5 - Calibration of an external camera
In this scenario we reused the scene from scenario 1 and tried to calibrate an external
camera that was not mounted on the robot. Instead, the camera was sitting on a table
next to the robot. The goal was for the calibration to be good enough to successfully
color the point cloud. The camera resolution was 320 × 240 pixels therefore the repro-
jection errors were smaller than in the previous scenarios. The intrinsic calibration of
the camera was not as good. The distortion was unknown.

Figure 5.27. Overview of the scenario 5. Camera is sitting on the table next to the
notebook. The bottom-right image is the actual image from the camera.

47

5. Experiments .
Calibration method Avg. reprojection error (in pixels) Max. reprojection error
Iterative 3.3 6.2
EPnP 3.4 6.6
Iterative with LC 3.4 11.0
EPnP with LC 3.7 8.2

Table 5.19. Calibration results in scenario 5.

For further evaluation only the results of the iterative method were used. However, all
of the results are solid.

Figure 5.28. 10 correspondences used for the calibration.

In this scenario there is no original calibration available, so the results could not be
compared to it. On the following image the result of the iterative method is visualized
in rviz. By visual comparison with the photo of the actual camera placement the result
seems to be quite good.

Figure 5.29. The result of the iterative method.

48

. 5.6 Summary

5.5.1 Validation using the point cloud coloring

The quality of the cloud coloring is really good. Rather interesting phenomenon is
highlighted in the red area. The pallet texture is wrongly attached to the wall which is
caused by the parallax between the camera and the laser scanner. The external camera
is placed much further from the laser scanner than the Ladybug camera. Certain parts
of the scene are visible only by the camera and other only by the laser scanner.

Figure 5.30. Colored range image is at the top. Mix of range image visualizations is at
the bottom.

5.6 Summary
Throughout all of the scenarios, the iterative method has consistently performed better
than the EPnP method. Both the average and maximal reprojection errors tend to be
smaller when using the iterative method compared to the EPnP method. The results
of the iterative method were also more consistent with the original calibration in all of
the scenarios.

The results using the local correction tend to have greater reprojection errors. How-
ever, this does not necessarily imply that they are worse. As explained before this
happens mainly because the reprojection error was always measured with respect to
the correspondences created by the operator and not to the corrected correspondences.
Additionally, we took great care when creating the correspondences in all of the sce-
narios and the local correction was created for situations when the operator is more

49

5. Experiments .
imprecise. Still, when compared to the original calibration, the local correction im-
proved the results in scenario 1 with the iterative method and in scenario 4 with the
EPnP method.

Since the positions of the camera and the laser scanner were fixed in the first four
scenarios, we measured the consistence of the results. We ignored the results of scenario
3 because they were considerably worse than the rest. The following table shows the
standard deviations for all of the extrinsic parameters. Only the best results from
scenarios 1, 2 and 4 were taken in account. Because the dataset was really tiny this
measurement is not a very reliable estimate of the underlying distribution. Still, it
offers us some degree of insight.

Value σ

X 0.040
Y 0.022
Z 0.013
Yaw 0.46◦

Pitch 0.68◦

Roll 0.50◦

Table 5.20. Standard deviations of the results from scenarios 1, 2 and 4. The distance of
the camera from the base frame of the point cloud is approximately 0.3 m.

It is evident that the estimation of the camera’s position was more problematic than
the estimation of the camera’s orientation. This is better than if it was the other way
round. The reason is that in applications, such as the point cloud coloring, the error in
orientation has much greater impact. We have shown this by coloring the point cloud
without noticeable artifacts in all scenarios. Even in the scenario 3, which was excluded
from the previous statistics, we colored the point cloud without problems. It is also
easier to fix the position of the camera manually than to fix it’s orientation.

In the first two scenarios we asked our colleague, inexperienced with the application, to
try and calibrate the camera. The results show that he was able to calibrate a camera to
a degree useful for point cloud coloring. However, the results are a bit worse compared
to our calibration. We also noticed that our colleague had more trouble finding the
correspondences and it took him more than twice as long than it took us.

During the development, we used only scenario 1 for testing and calibration. Therefore,
we expected that our results will be better than his in scenario 1. However, we did not
use the scenario 2 at all during development so we had the same experience with it as
our colleague when we performed the calibration. Still, the results of our colleague were
worse than ours in scenario 2. This implies that the application requires some training
to get used to. However, it also implies that it is not necessary to have previous
experience with a particular scene to be able to calibrate a camera successfully.

50

Chapter 6
Conclusion

We have implemented and tested an application for extrinsic camera calibration in
ROS. The application provides an interface for manual location of keypoints and their
association in point cloud and image data. It implements several calibration methods,
visualizes and exports the results. The application provides several visualizations of the
point cloud data in order to enhance details and allow the operator to create enough
correspondences. Furthermore, we created an advanced graphical user interface that
makes the calibration process fast and intuitive.

For the actual calibration the operator can choose between the iterative algorithm, us-
ing the Levenberg-Marquardt minimization, and the EPnP algorithm. The iterative
algorithm can be used together with the RANSAC method to identify the correspon-
dences that are clearly wrong. Additionally, we developed a local correction method
for the correspondences. The local correction method aims at fixing small inaccuracies
introduced by the operator.

To help with the validation of the results we implemented two different tools for point
cloud coloring by the calibrated camera. The first tool is incorporated directly in the
graphical user interface and it colors the range images. The second tool is a standalone
ROS node that colors the point clouds directly. We also implemented export of the
data from the application directly into MATLAB source file.

In the experiments we have shown that the application can be used for extrinsic cal-
ibration in real situations. Only one outdoor scene did not allow for an acceptable
calibration. Even in this scenario, the calibration was good enough to allow reasonable
coloring of the point cloud. The usability of the application was tested on a subject
with no previous experience of the application. He managed to calibrate the camera to
color the point cloud without any visible artifacts. Still, his results were slightly worse
than the calibration that we performed ourselves.

The application focuses on speed, flexibility and simplicity of the calibration. The
calibration can be often performed in less than five minutes to a precision that is
sufficient for many tasks. However, if the time and conditions allow it, the usual
techniques using the calibration patterns are probably going to provide more precise
calibration.

One of our initial goals was to eliminate the operator from the calibration process com-
pletely. We have done some preliminary experiments with automatic matching of the
features between the processed range images and the camera images. We experimented
with the SIFT descriptors to identify the local features in the images. Sadly, the results
were very poor. That is not surprising because, as far as we know, no one was able to
create correspondences automatically between point clouds and RGB images yet. After
our initial experiments we decided not to pursue this goal further and focus on making
the application friendly to an unskilled user.

51

6. Conclusion .
In conclusion, we have achieved all of our main goals and developed an application that
is certainly going to be further used in our team. We have solved the problem and
experimented with various different approaches to make the application intuitive and
the calibration as good as possible.

52

References
[1] ROS .

http://ros.org/, visited 2014-05-03.
[2] Richard Hartley, and Andrew Zisserman. Multiple view geometry in computer vi-

sion. 2nd edition. Cambridge: Cambridge University, 2003. ISBN 0-521-54051-8.
[3] Camera calibration package in ROS .

http://wiki.ros.org/camera_calibration, visited 2014-05-10.
[4] D Scaramuzza, A Harati, and R Siegwart. Extrinsic Self Calibration of a Cam-

era and a 3D Laser Range Finder from Natural Scenes. In: Proc. of The IEEE
International Conference on Intelligent Robots and Systems (IROS). 2007.

[5] NIFTi arm source codes.
https://github.com/NIFTi-Fraunhofer/nifti_arm, visited 2014-05-15.

[6] Duane C. Brown. Close-range camera calibration. PHOTOGRAMMETRIC EN-
GINEERING. 1971, 37 (8), 855–866.

[7] How to solve the Image Distortion Problem.
http://www.arlab.com/blog/tag/image-distortion/, visited 2014-05-10.

[8] V. Lepetit, F. Moreno-Noguer, and P. Fua. EPnP: An Accurate O(n) Solution to
the PnP Problem. 2008.

[9] Martin A. Fischler, and Robert C. Bolles. Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated Cartogra-
phy. Commun. ACM. 1981, 24 (6), 381–395. DOI 10.1145/358669.358692.

[10] ROS support of the C++11 standard.
http://www.ros.org/reps/rep-0003.html#c, visited 2014-05-03.

[11] Boost C++ Libraries.
http://boost.org, visited 2014-05-03.

[12] OpenCV .
http://opencv.org, visited 2014-05-03.

[13] PCL - Point Cloud Library.
http://pointclouds.org, visited 2014-05-03.

[14] Qt.
http://qt-project.org/, visited 2014-05-03.

[15] Tf package in ROS .
http://wiki.ros.org/tf, visited 2014-05-10.

[16] Qt signals and slots.
http://qt-project.org/doc/qt-4.8/signalsandslots.html, visited 2014-05-03.

[17] QtCreator .
http://qt-project.org/wiki/category:tools::qtcreator, visited 2014-05-03.

[18] Qt Model/View tutorial.
http://qt-project.org/doc/qt-4.8/modelview.html, visited 2014-05-03.

53

http://ros.org/
http://wiki.ros.org/camera_calibration
https://github.com/NIFTi-Fraunhofer/nifti_arm
http://www.arlab.com/blog/tag/image-distortion/
http://dx.doi.org/10.1145/358669.358692
http://www.ros.org/reps/rep-0003.html#c
http://boost.org
http://opencv.org
http://pointclouds.org
http://qt-project.org/
http://wiki.ros.org/tf
http://qt-project.org/doc/qt-4.8/signalsandslots.html
http://qt-project.org/wiki/category:tools::qtcreator
http://qt-project.org/doc/qt-4.8/modelview.html

References .
[19] ROS - Static transform publisher .

http://wiki.ros.org/tf#static_transform_publisher, visited 2014-05-03.
[20] ROS wiki.

http://wiki.ros.org/, visited 2014-05-03.
[21] Rviz - user guide.

http://wiki.ros.org/rviz/UserGuide, visited 2014-05-03.

54

http://wiki.ros.org/tf#static_transform_publisher
http://wiki.ros.org/
http://wiki.ros.org/rviz/UserGuide

Appendix A
Enclosed CD

. [bags]
Contains the bag files for scenario 1 and scenario 5. Also contains convenience scripts
able to run them directly with necessary parameters. Please note that in scenario 5
the camera topics are published under different names.. [catkin]
Contains the sources for ROS Hydro Medusa.. [rosbuild]
Contains the sources for ROS Fuerte Turtle.. [thesis]
Contains the sources for this thesis.. thesis.pdf
PDF version of this thesis.

55

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Introduction
	Camera calibration
	Camera geometry
	Pinhole camera model
	Non-linear distortion

	Pose estimation and PnP
	Direct Linear Transformation algorithm
	Reprojection error minimization
	EPnP

	Point cloud visualizations
	Directional images

	Local correction
	RANSAC
	Point cloud coloring

	Architecture
	Package structure
	Top-level architecture
	Calibration launcher
	Graphical user interface
	Scene views and correspondences
	Range image visualizations
	Calibration

	User manual
	Applications requirements
	Installation and build
	ROS Fuerte Turtle
	Newer versions of ROS

	Required ROS components
	Using Bag files

	Launching the application
	Launch parameters
	Launching the GUI

	Using the GUI to calibrate a camera
	Using different point cloud visualizations
	Creating correspondences
	Running the calibration
	Calibration results

	Other useful tools
	rviz
	Cloud coloring

	Experiments
	Scenario 1 - Corridor
	Comparison with the original calibration
	Validation using the point cloud coloring
	Calibration by inexperienced operator

	Scenario 2 - Hall
	Comparison with the original calibration
	Validation using the point cloud coloring
	Calibration by inexperienced operator

	Scenario 3 - Courtyard 1
	Comparison with the original calibration
	Validation using the point cloud coloring

	Scenario 4 - Courtyard 2
	Comparison with the original calibration
	Validation using the point cloud coloring

	Scenario 5 - Calibration of an external camera
	Validation using the point cloud coloring

	Summary

	Conclusion
	References
	Enclosed CD

