
Bachelor’s thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Example-based 3D-model
synthesis

Adam Papoušek
Software Technologies and Management

May 2014
Supervisor: Ing. Michal Lukáč

Acknowledgement / Declaration
I would like to sincerely thank my

supervisor Ing. Michal Lukáč for his
guidance and assistance with this work,
RNDr. Petr Olšák for providing help
with typesetting of the document and
my family and friends who always sup-
ported me throughout my studies.

I hereby declare that I have complet-
ed this work independently and that I
have listed all the literature and publi-
cations used.

I have no objection to usage of this
work in compliance with the act §60
Zákon č. 121/2000Sb. (copyright law),
and with the rights connected with the
copyright act including the changes in
the act.

In Prague on 23/5/2014

. .

iii

Abstrakt / Abstract
Tvorba 3D modelů je pro běžné uži-

vatele obtížnou činností. Proto vznikly
nové metody tvořící modely z příkladů,
které využívají rostoucího množství
modelů v online databázích. Tato práce
zkoumá tři metody založené na tomto
principu – první využivá geometrické
analýzy tvarů (Jain et al. 2012), druhá
je založená na prohazování specifických
uspořádání částí (Zheng et al. 2013)
a třetí modely tvoří pomocí pravdě-
podobnostního modelu vytvořeného
učením z dat (Kalogerakis et al. 2012).
Jedna z těchto metod je zvolena pro
implementaci, která je hlavní náplní
této práce.

Klíčová slova: syntéza modelů, ana-
lýza modelů, 3D tvorba založená na da-
tech.

Překlad titulu: Syntéza 3D modelů z
příkladů

Shape synthesis is generally a task
that is hard to master. New methods
using 3D-model synthesis from exam-
ples emerged with the growing number
of shapes in model repositories. This
work reviews and compares three such
methods – one using geometry analysis
(Jain et al. 2012), second one reshuf-
fling certain part arrangements (Zheng
et al. 2013) and third one employing
probabilistic model learned from train-
ing datasets (Kalogerakis et al. 2012).
One of the methods is chosen for imple-
mentation, which is the main focus of
the work.

Keywords: shape synthesis, shape
analysis, data-driven 3D creation.

iv

/ Contents
1 Introduction .1
2 State of Art .2
2.1 Exploring Shape Variations

by 3D-Model Decomposition
and Part-based Recombination . .2
2.1.1 Shape Analysis2
2.1.2 Shape Synthesis5

2.2 Smart Variations: Function-
al Substructures for Part
Compatibility .7
2.2.1 Shape Analysis8
2.2.2 Shape Synthesis9

2.3 A Probabilistic Model of
Component-Based Shape
Synthesis . 10
2.3.1 Shape Analysis 11
2.3.2 Shape Synthesis 12

2.4 Comparison of the Systems. . . . 12
3 Analysis and Design 14
3.1 Programming Language 14
3.2 External Libraries and

Frameworks . 14
3.3 Application Classes 15

4 Implementation. 19
4.1 Shape Analysis 19

4.1.1 Mesh Segmentation 19
4.1.2 Contact Analysis 19
4.1.3 Symmetry Detection 21
4.1.4 Hierarchy Creation 23

4.2 Shape Synthesis 26
4.2.1 Shape Matching. 26
4.2.2 Shape Interpolation 27

5 Testing . 28
5.1 Shape Analysis 28
5.2 Synthesized Shapes 32

6 Conclusion . 35
References . 37

A List of Abbreviations Used 39
B Contents of the Attached DVD . 40
C List of Important Parameters . . . 41

v

Chapter 1
Introduction

Three-dimensional content creation is a challenging, cumbersome task that takes a
long time and there are not too many easy-to-use modelling systems that can produce
high quality results. Users that need 3D models often resort to collections like Google
Warehouse or Turbosquid, but these don’t always provide the exact shape the user is
looking for.

A common use of 3D models is in virtual reality and video games. In order to create
a realistic environment we often need to create many similar but not identical shapes.
For example, let’s imagine a futuristic millitary video game with fighting robots. If we
would like the game to look authentic, it would be necessary to have a wide variety of
robot models, possibly tens or hundreads, maybe even more. A standard approach to
create that many shapes would be to simply make those with a conventional 3D creation
software like Maya or Blender, but such approach requires financial resources that many
small game development studios can’t afford. It would be better if we could make only
a fraction of the required shapes and then we would apply a simple automated process
that would synthesize new similar, but still different shapes.

This work introduces automated methods of shape synthesis that would be applicable
for such case. The process of shape creation is not an easy challenge. Näıve methods
that interchange shape parts easily fail, beacause these methods quickly destroy shape
plausibility and function. There are three non-trivial approaches mentioned in this
work. One interpolates shapes by combining parts retrieved from objects based on
hierarchy analysis [Jain et al. 2012], another is based on identification and reshuffling
of certain part arrangements [Zheng et al. 2013] and the last employs a probabilistic
model learned from training datasets, which encodes part-based composition. Shape
synthesis is then done by sampling such probabilistic models [Kalogerakis et al. 2012].

The goal of this work is to implement one of the methods and describe its process.
First in chapter 2 the algorithms are reviewed in further detail. Next, in chapter 3,
the overall analysis and design of the proposed application is introduced. Chapter 4
contains detail of the implementation. Testing of the program is described in chapter
5. In the last chapter (6) the results of the work are summarized.

1

Chapter 2
State of Art

The goal of this chapter is to review articles that describe example-based 3D-model
synthesis and choose one system to implement. The articles are these three:.Exploring Shape Variations by 3D-Model Decomposition and Part-based Recombi-

nation by Jain et al. [Jain et al. 2012].Smart Variations: Functional Substructures for Part Compatibility by Zheng et al.
[Zheng et al. 2013].A Probabilistic Model of Component-Based Shape Synthesis by Kalogerakis et al.
[Kalogerakis et al. 2012]

The following sections will introduce the algorithms described in each article including
their inputs, outputs and what they are best suitable for. The systems described have
a common workflow – first the shapes are analysed in an offline stage and then the data
is used in an online stage, where new shapes are created. This common trait leads to
the possibility of creating a base platform, which would incorporate all three systems
in one.

2.1 Exploring Shape Variations by 3D-Model Decom-
position and Part-based Recombination

This algorithm takes polygonal meshes as its input. The only preprocessing necessary
is the upright orientation of the meshes. The shapes don’t need to be from the same
category – although the results are better if they are.

The offline phase of the algorithm prepares the shape for the online phase in numerous
steps – segmentation, contact analysis, symmetry detection and hierarchy creation.
This process is done independently for each shape.

During the online phase a new shape is synthesized from two input ones. First the
two shapes’ hierarchies are unified. The user then chooses the ratio that describes how
much each shape contributes to the final shape. An interpolation between the input
shapes based on the ratio between them is then done, which results in a new shape. On
this shape a mass-spring system is applied, which enforces contacts between the parts
of a shape. The final shape can be then used for further shape synthesis.

The system provides best results for shapes with a great amount of symmetries so
it is best suited for man-made shapes. More asymmetric shapes like trees or terrain
won’t probably yield very useful results.

2.1.1 Shape Analysis
This process is an oflline part of the application during which the shapes are processed
independently. The input shapes Si are polygonal meshes. The shapes don’t need to be

2

. 2.1 Exploring Shape Variations by 3D-Model Decomposition and Part-based Recombination

Figure 2.1. The steps of the offline shape analysis. Image taken from [Jain et al. 2012].

segmented, it is only necessary that they have an upright orientation. An illustration
of the steps of the analysis can be seen in figure 2.1.

Segmentation. With the use of a region growing algorithm shapes are split into parts
Pi,j , these parts are again polygonal meshes. Every part is then sampled to a point cloud
P̄i,j , where all the points of each P̄i,j are evenly distributed on the surface so that the
distance between them is roughly equal. Principal component analysis (PCA) of P̄i,j is
performed, which provides a transformation Ti,j from the global into the local coordinate
system of the part. A point p from P̄i,j in the local coordinate system of the part Pi,j
can be acquired by the formula p′ = Ti,jp = Ri,jSi,j(p − ci,j), where ci,j is a geometric
center of the part, Ri,j is a rotation matrix given by the three PCA basis vectors and
defines the local rotation axes and scaling matrix Si,j = diag(1/sx, 1/sy, 1/sz) using the
three singularvalues si,j = (sx, sy, sz)T .

Contact analysis. Contacts are found between all parts Pi,j using the point clouds
P̄i,j . A contact Ci,j,k is a set of points p from P̄i,j , whose distance between the points
from P̄i,k is smaller than 0.1 % of the bounding box diameter of the two parts. The
operations so far are visualized in figure 2.2.

Figure 2.2. a.) shape, b.) segmentation, c.) PCA, d.) contacts. Image taken from [Jain
et al. 2012].

Symmetry Detection. In this step the dominant global symmetry transformation
Hi is found (a reflection, rotation or translation). In each iteration a transformation
candidate K is generated and support α(K) is computed using all parts from of the
shape. For each part Pi,j its center ci,j is mapped to c′i,j = Kci,j and if a matching
part Pi,j′ is found at c′ the support counter is incremented. Two parts are matching if

3

2. State of Art .
their eigenvalues si,j and si,j′ are similar, which also means that their shape is similar.
The process of candidate generation is different for each transformation type. For
reflection symmetries two parts Pi,j and Pi,k are chosen at random and difference vector
di,j,k = ci,k − ci,j is computed, which defines the normal of a reflective symmetry
plane and a reference point on the plane is given by (0.5di,j,k + ci,j). For translation
symmetries di,j,k is used as a translation offset. When generating rotation symmetries
a third part Pi,l is chosen randomly again and a circle is fitted to the center of all three
parts defining a rotation around a point by an angle. To choose the right Hi from the
candidates the best reflective symmetry with support above threshold 80 % is found.
If no such candidate exists translational candidates are generated and if none of these
matches the same criteria rotational symmetries are generated. It can happen that no
dominant symmetry is found.

Hierarchy Creation. The shape is now organized into a hierarchical structure, where
each node Ni,j,k contains parts, an eigen-transform Ti,j,k calculated by the PCA and
symmetry transformation Hi,j,k if it exists. The hierarchy is constructed in a coarse-to-
fine manner, which means that on the coarsest level all parts are included in one node
and on the finest level there is a multitude of nodes into which the parts are split. A
root node Ni,0,0 in depth k = 0, which contains all shape parts, eigen-transform Ti,0,0
of the whole shape and the dominant global symmetry transformation Hi is generated
first. When going from a coarser level (k − 1) to a finer level for each parent node
Ni,j,k−1 usually two child nodes are generated into which the parts of the parent node
are split. If the parent node contains a symmetry transform, the parts are split into two
sets using the symmetry plane and are then added to each node. A third child node is
added if there are parts whose center ci,j is close to the splitting plane. The splitting
process is successful if at least two nodes, where each contains at least one part, are
generated. If it isn’t successful or if no symmetry exists a plane x = 0 in the local
coordinate system of the parent defined by parent’s eigen-transform Ti,j,k−1 is used.
Planes y = 0 and z = 0 are used similarly if no previous attempt yields success and
if even these aren’t successful a single node is created, which containst all the parts of
the parent. For each node transforms Ti,j,k (using the PCA) and Hi,j,k (using the same
procedure as in the previous paragraph) are generated. An example of a generated
hierarchy is shown in figure 2.3.

Figure 2.3. An illustration of the hierarchy creation. The coarsest level of the hierarchy is
shown top left, the initial part segmentation at the bottom right. Image taken from [Jain

et al. 2012].

4

. 2.1 Exploring Shape Variations by 3D-Model Decomposition and Part-based Recombination

Enforcing Nodes without Disconnected Parts. The hierarchy generated so far
doesn’t take contacts into account, which can cause that a node can contain parts
that are disconnected. After the creation of each level k an algorithm that enforces
only non-disconnected parts is used. The algorithm has a separating and a merging
step, let’s assume that each level contains nNk nodes after its creation. In the separating
step a region growing algorithm is used for splitting of the set of the parts into smaller
sets, where parts aren’t disconnected, for each new set a node is created. The merging
step is used after the separating step was used on each node of the level. Its goal is to
merge the nodes back so that the number of nodes in the level is again nNk . The nodes
are sorted by size and nNk nodes are kept. The remaining nodes are merged with kept
nodes with which they share at least one contact. If more than one such kept node
exists the smallest is used. When merging, all parts of the remaining node are added to
the kept node and the remaining node is subsequently deleted. A level with nNk nodes
without disconnected parts is achieved this way. There is an exception – when nodes
smaller than kept nodes have a similar size (95% threshold) these nodes are also used
as kept nodes, which makes the number of nodes in a level higher than nNk . All the
data generated so far is serialized to the disk for later use.

2.1.2 Shape Synthesis
The synthesis is done interactively in the online stage using the data from the offline
stage. The process of new shape creation is achieved in three steps – shape matching,
shape interpolation and contact enforcement. The operations in the offline phase were
applied on a single shape, from now on the actions will be done with two shapes S1 and
S2.

Figure 2.4. a.) Source and target shapes b.) matched target shape. The process of shape
matching (bottom). Image taken from [Jain et al. 2012].

Shape Matching. Hierarchy structures and part counts are very likely to be different
from each other. Because of this a four step shape matching process between source
shape S1 and target shape S2 is necessary. In the first step the hierarchy of the target
shape is created anew. New empty root node is created with eigen-transform T2,0,0. The
algorithm iterates over all the levels of source shape hierarchy and creates hierarchy of
the target shape that is identical to heirarchy of the source shape. The nodes in S2
are now empty and have references to the nodes of S1. The second step redistributes

5

2. State of Art .
parts into nodes based on nearest neighbour matching. T2,p(j),k−1 is an eigen-transform
of target parent node, c2,j is center of the part. Center in the local coordinate system
of the parent node is c′2,j = T2,p(j),k−1c2,j . Similarly, T2,p(m),k−1 is an eigen-transform
of source parent node of child node N1,m,k, whose center c1,m in the local coordinate
system of the parent node is c′1,m = T2,p(m),k−1c1,m. The approach adds the target parts
into the target nodes that have the smallest distance between c′2,j and c′1,m. This is
possible due to the references between the nodes of the source shape and the target
shape. When all parts are added an eigen-transform is calculated for the newly created
node. If there are no parts added, the node is deleted in the third step. To keep
the same number of nodes in each hierarchy the corresponding source node is merged
with nearest child node of its parent node, whose corresponding target node contains
at least one part. The final fourth step applies the procces of non-disconnected nodes
enforcement explained before with the change that the number of nodes in each level
must remain the same. The shape matching process is illustrated in figure 2.4.

Shape Interpolation. New shape S(w) is created based on weight parameter w from
interval [0; 1], naturally S(0) = S1 and S(0) = S2. In the other cases the nodes in the
finest level are used. The process so far ensured that there is equal number of nodes
and the nodes have references between each other. In the level there are nNl nodes.
From shape S1 first wnNl nodes are used and from S2 the rest, which is 1−wnNl nodes.
If nodes are symmetrical it must be ensured that only both or none of the nodes are
used in the final shape. The final result is highly dependent on the way the nodes were
sorted before interpolation. Best results are achieved when nodes are sorted by size in
a way that the biggest nodes are in the middle (w = 0.5) and the smallest are at the
edges (w = 0.0, w = 1.0). There can be multiple other sorting criteria (e.g. random
order). The final shape can be reused again for another interpolation.

Figure 2.5. Finding contacts for interpolated shapes: a.) the contacts are known for the
source and the target shape; b.) an instantiated node should connect to its contact partners
from that originated from the same shape, but if a contact partner isn’t available, the node
connects to the node of the other shape with which the original contact partner forms a

match. Image taken from [Jain et al. 2012].

Contact Enforcement. The positions of parts in interpolated shapes still need to
be adjusted based on the contacts between them in the source and the target shapes.
Nodes, which were in contact in both the source and the target shapes should remain
connected in the final shape as well. Based on the relation between nodes unidirectional
(if nodes were in contact only in source or target shape) and bi-directional (if nodes
were in contact in both shapes) connections are created. For better illustration see
figure 2.5. Unidirectional contacts will be used only if they are not in conflict with
another bi-directional contact. The algorithm uses a mass-spring system to optimize
the positions of parts. Masses are created in the centers of nodes and springs are for each
node created between masses and contact points and between contact points mutually.
The contact points of each node with connected node are calculated by averaging all
contacts of the two parts in contact – there is usually multiple points where two parts
intersect. Springs inside the node will always tend to keep their length, because a node
is a cluster of parts that should keep its shape. Springs between nodes are added, which

6

. 2.2 Smart Variations: Functional Substructures for Part Compatibility

tend to make their length zero, making the nodes stick together and create a compact
shape.

Figure 2.6. The mass-spring system: a.) interpolated shape without mass-springs b.)
source shape c.) mass-spring system d.) solved mass-spring system e.) solved shape f.)

target shape. Image taken from [Jain et al. 2012].

2.2 Smart Variations: Functional Substructures for
Part Compatibility

The input of this system are polygonal meshes pre-segmented into meaningful parts,
which don’t need to be labeled. This can be achieved using automated methods [Sidi
et al. 2011, Huang et al. 2011]. The shapes can be from different categories.

The key feature of the algorithm are symmetric functional arrangements, sFarrs. An
sFarr is a triplet of parts, where two parts are symmetrical and third one connects
them. There are three types of sFarrs (placement, embed, support) and also three
functionalities (stable, unstable, coaxial).

Each shape is processed by the offline phase. The offline phase of the system consists
of these steps:.The creation of the spatial relation graph, where parts of the shape are nodes and

relations between them are edges,. identification of sFarrs and clusters of sFarrs (sFarr type may change if they share
a part with another sFarr) and. rectification of orientation (front facing vs. back facing).

Within the online phase the system creates new shapes from multiple input ones.
First, compatible sFarrs are indentified – sFarrs are compatible if their type and func-
tionality are the same. Next, the order of sFarr replacement between compatible sFarrs
is determined based on geometry compatibility. As the last step, sFarrs are replaced
and positioned.

In most cases (85%, based on the result of user study included in the article) this
system produces plausible results, but it can produce failures as well. This of course
applies to shapes representing man-made objects and in other cases the plausability
won’t be as good.

7

2. State of Art .
2.2.1 Shape Analysis

sFarrs. As mentioned in the introduction an sFarr is defined as a triplet of parts, where
two parts are symmetric and the third connects them. Each sFarr has its type and
functionality.

The three types of sFarrs are support, where the connecting part is above the sym-
metrical parts, embed, where the connecting part is between the symmetrical parts and
placement, where the connecting part is below the symmetrical parts. For a picture of
the different types see figure 2.7.

Figure 2.7. sFarr types. Image taken from [Zheng et al. 2013].

An additional property of an sFarr is its functionality. Together with the type of
an sFarr functionality defines the compatibility of two sFarrs. There are three types
of sFarrs – stable, unstable and coaxial. Put simply an sFarr is stable if it doesn’t
topple and it is unstable if it does. To be more precise an sFarr is stable, if the
centre of mass of the sFarr projected on the ground falls into the convex hull formed
by its ground-touching vertices. A vertex touches the ground, if it’s the vertex with
the lowest position in the shape. Coaxial sFarrs have all the part centres on a same
axis and their symetrical parts have a cylindrical shape – this can be determined using
primitive fitting. The different sFarr functionalities can be seen in figure 2.8.

Figure 2.8. sFarr functionalities. Image taken from [Zheng et al. 2013].

Pre-processing. The input shapes must be segmented into meaningful parts. The
segmentation can be done manually using an application like ShapeAnnotator 1) or via
an implementation of automated algorithms [Sidi et al. 2011, Huang et al. 2011]. To be
able to determine which vertices are ground-touching, the shapes need to be upright
oriented. This can be again automated [Fu et al. 2008]. The flip problem (front-facing
vs. back-facing orientation) is resolved as a part of the system.

The Spatial Relation Graph. In the graph structure shape parts are nodes and the
relations between pairs of parts are edges. Symmetries are detected using the method
1) http://shapeannotator.sourceforge.net/

8

http://shapeannotator.sourceforge.net/

. 2.2 Smart Variations: Functional Substructures for Part Compatibility

of [Mitra et al. 2006]. The edges are oriented based on the type of a relation. If one part
supports another, the edge will then be directed towards the part that is supported.
If two parts are from an embed sFarr, their relation is then bidirectional. Nodes are
marked as ground-touching if a part is the lowest from the shape. Examples of spatial
relation graphs can be seen in figure 2.9.

Figure 2.9. The spatial relation graph. Each part represents a node. Graph edges are
either supportive or embedding. Symmetric nodes are in the same color. Image taken

from [Zheng et al. 2013].

Group sFarrs. If there are sFarrs that share nodes with other sFarrs, it is necessary
to add extra compatibility criteria to improve reshuffling results. If the two sFarrs
are a placement and a support, both sFarrs should then be considered as placement
and support. If they are embed and support, they should be regarded as embed and
support. If the sFarrs are both ground-touching, a support attribtue is added. In other
cases no new attributes are added. To better understand sFarr grouping, see figure
2.10.

Figure 2.10. Group sFarr combinations. Image taken from [Zheng et al. 2013].

Graph-based Orientation Rectification. It is necessary to make sure that the shapes
are either front or back facing during the reshuffle phase. This is done for each category
separately (the user needs to unify the orientation, when using multiple categories).
The best alignment is found as the minimum value of pairwise matching cost using a
Markov Random Field formulation. A graph assignment problem is solved using the
Hungarian algorithm based on the Euclidean distances between the centroids of nodes
of the spatial relation graphs.

2.2.2 Shape Synthesis
sFarr Compatibility. Two sFarrs are compatible if they are of the same type (support,
embed, placement) and functionality (stable, unstable, coaxial). Let’s have two sFarrs
n1 and n2, where at least one is from an sFarr cluster, and sets N1, N2 that contain

9

2. State of Art .
their attributes. An sFarr n1 can be substituted by n2 if N1 ⊆ N2 or if (N1 \N2) ∩
{support, placement} = ∅. Both sFarrs also need to have the same number of contact
slots.

sFarr Replacement. Given a graph Gi of a shape from the set of all graphs all sFarrs
are found in the rest of the graphs that are compatible with the sFarrs from Gi, denote
the set of such sFarrs as Ω. Then all sFarr clusters are found in Gi and they are sorted
by size, denote this set as Ξ. The sFarrs from each cluster in Ξ are then sorted by the
compatibility with the sFarrs in Ω. If there are two sFarrs tk and tl their geometric
compatibility can be determined using a function Υ = (tk, tl) that is based on relative
sizes, angles and distances. The size of the clusters together with the value of Υ define
the order of reshuffling. The threshold for the value of Υ is set to 10 by default, higher
values may yield more interesting results.

sFarr Positioning. An sFarr is replaced one part at a time. First the parts that will
stay unchanged or these that were already changed are fixed, denote this set as Λ. The
part is then replaced based on the contact slots, part size and the relations between
parts in Λ. As soon as a part is replaced it is added into Λ and the proces is repeated
for the remaining parts.

2.3 A Probabilistic Model of Component-Based
Shape Synthesis

Figure 2.11. The results of the methoid. Given 22 construction vehicles (green), the
probabilistic model synthesizes 253 new vehicles (blue). Image taken from [Kalogerakis

et al. 2012].

Again, the input of the system are polygonal meshes, but this time they need to
be pre-segmented into meaningful parts and these parts need to be uniformly labeled.
As with the system by Zheng et al. automated methods can be used [Sidi et al. 2011,
Huang et al. 2011]. The shapes also must be from the same category.

The steps of the offline phase are model creation and learning. The core of this
approach is a probabilistic model, which is created for each category and contains
multiple random variables, where some are observed (computed directly from the shapes
and include mostly geometric properties) and some are latent (computed during the
learning phase).

In the online stage multiple new shapes are created using the probabilistic model
from the offline stage. Using a greedy algorithm new shapes with the best score are
created. The newly created shapes are then geometrically optimized based on contacts
and symmetries. The number of output shapes is usually bigger than the number of
input shapes by an order of magnitude.

10

. 2.3 A Probabilistic Model of Component-Based Shape Synthesis

Due to the input strictness of the system, the system is able to produce a great
amount of plausible shapes, but the geometrical optimization may sometimes fail to
yield plausible results.

2.3.1 Shape Analysis

Figure 2.12. The probabilistic model. The outlined part is repeated L times for each
component. The shaded variables are observed. Image taken from [Kalogerakis et al.

2012].

Probabilistic Model. The model is composed of several random variables, which are
organized into a hierarchical structure, see figure 2.12. R is a variable that represents
shape type from a category (e.g. a table), l is a component category (e.g. table top
or leg), Sl represents a component style from a particular category (e.g. round or
square table top), Nl is a number of components from category l for each style (tables
can have one or two table tops or a different number of legs). Cl is a continuous
geometry vector for components from category l, which includes a curvature histogram,
shape diameter histogram, scale parameters, spin images, PCA-based descriptors and
lightfield descriptors. Dl is a discrete geometric feature vector for components from
category l, especially adjacency information. The random variables R and Sl are latent,
which means that they can’t be observed directly and need to be calculated during the
learning process. The other random variables Nl, Cl and Dl are observed directly from
the input shapes. For an illustrative example of the model, see figure 2.13.

11

2. State of Art .

Figure 2.13. A dataset of input shapes (top) and the probabilistic model learned (bottom).
Image taken from [Kalogerakis et al. 2012].

Learning. Based on the set O = N,C,D the goal is to get a structure G, which has
the highest probability score. By Bayes’ rule this probability can be expressed as

P (G|O) = P (O|G)P (G)
P (O) .

To make the process computationally tractable, it is approximated using Cheeseman-
Stutz score [Cheeseman and Stutz 1996]. A greedy algorithm is used. There is R
with the size of one and Sl with one component. The size of Sl is increased and if
the probability score decreases, the last size is saved and the process is repeated for
a different category. After it has been iterated over all categories, the size of R is
increased and the procedure is repeated. The algorithm is finished if a local maximum
is reached that doesn’t improve for ten interations.

2.3.2 Shape Synthesis
Synthesizing Components. Based on the probability model created in the offline phase
new shapes are created. First the nodes of the model are sorted into a list. A tree with
an empty root is created and all possible assignments are added into R based on the
sorted list. Assignments that have probability lower than 10−12 are removed, leaving
us with a set of components that can be used for shape creation.

Component Placement Optimization. During the model creation the contact points,
where two components are in contact, are found. Each point contains a designation of a
component that belongs to it as well as a symmetry that allows for a better placement
(e.g. four symmetrical legs of a chair). A few other placement and scaling optimisations
are applied.

2.4 Comparison of the Systems
This section describes the main differences between the systems. A table summarizing
the differences can be found at the end of the section.

12

. 2.4 Comparison of the Systems

Shape Restrictions. The system [Jain et al. 2012] requires no pre-segmentation as
it should be a part of the system itself. The other two systems [Zheng et al. 2013,
Kalogerakis et al. 2012] require that the shapes are segmented into meaningful parts
and the system [Kalogerakis et al. 2012] even need the parts to be labeled. For both of
the systems an automated approach can be applied [Huang et al. 2011, Sidi et al. 2011].

Category Restrictions. The systems [Jain et al. 2012, Zheng et al. 2013] allow the
synthesis of shapes from two different categories, while the system [Zheng et al. 2013]
requires that the two categories are facing in the same direction (front/back facing),
which needs to be made the same for both categories by the user. The system [Kaloger-
akis et al. 2012] doesn’t allow synthesis of parts from multiple categories.

Number Of Shapes. The system [Jain et al. 2012] takes two shapes on the input
and creates a third one. To create more than one shape, the intermediate results with
different value of the weight parameter can be used or a repeated synthesis between a
multitude of shapes must be done. The other two methods [Zheng et al. 2013, Kaloger-
akis et al. 2012] can take multiple shapes on the input and create multiple new shapes.

Jain et al. Zheng et al. Kalogerakis et al.
requires pre-segmented
input shapes no yes yes
requires labeled parts
of shapes no no yes
number of
input/output shapes 2/1 multiple/multiple multiple/multiple
shapes must be from
the same category no no yes

Table 2.1. Comparison of the reviewed systems.

13

Chapter 3
Analysis and Design

The system chosen for implementation is [Jain et al. 2012]. The main reason for that
is its independency on the input shapes as it doesn’t need any pre-processing like
segmentation or part labelling as well as its ease of use – user only chooses two shapes
and then adjusts a slider to achieve a desired result. Also the fact that the models can
be from different categories is a big advantage as it allows for an even more interesting
outcome. More information about the system can be found in section 2.1.

3.1 Programming Language
The wide range of libraries available for C++ made it almost the only choice. Other
languages like C# or Java were considered but some of the libraries needed exist only
in C++ and programming of e.g. shape segmentation from scratch would require too
much time and effort.

The platform used is Windows PC. The native compiler of the platform is used –
Microsoft Visual C++ Compiler 12.0 (2013). It was necessary to use this version as it
is the only version supported by some of the libraries (VCGLib, cereal), due to their
reliance on C++11 template metaprogramming features.

3.2 External Libraries and Frameworks
One of the biggest strengths of C++ is the amount of libraries that are available, which
helps the focus on the algorithm itself instead of recreation of code that has already
been written and is available in open source form.

Mesh Manipulation. The backbone of the application is the VCG Library1). It offers
import and export, point cloud sampling, transformation and displaying features for
meshes. The code was downloaded directly from the SVN repository2) of the authors,
revision used is 5197.

User Interface. The VCG Library has a direct support for Qt GUI framework 3). It
was found that it is easy to use and provides all the features necessary - OpenGL 3D
displaying, standard window support like keyboard and mouse use, layout arrangement
and GUI elements (buttons, sliders, combo boxes, etc.). The signal/slot mechanism the
framework is based on has proven to be very intuitive and easy to manage. The version
used in the application is the latest build of Qt4 at the time that supports Visual Studio
2013 compiler, version 4.8.6-rc1. The reason Qt5 wasn’t used is to ensure compatibility
with VCGLib.

Math. Eigen4) is used for all the linear algebra needs. The features used are Principal
Component Analysis, basic vector and matrix operations and transformations. Latest
version 3.2.1 is used.
1) http://www.vcg.isti.cnr.it/˜cignoni/newvcglib/html/
2) svn://svn.code.sf.net/p/vcg/code/trunk/vcglib
3) http://www.qt-project.org/
4) http://www.eigen.tuxfamily.org

14

http://www.vcg.isti.cnr.it/~cignoni/newvcglib/html/
svn://svn.code.sf.net/p/vcg/code/trunk/vcglib
http://www.qt-project.org/
http://www.eigen.tuxfamily.org

. 3.3 Application Classes

Shape Segmentation. The most recent shape segmentation with freely available
source code is the method using Shape Diameter Function [Shapira et al. 2008]. The
source code is freely available1) without any licensing information. Permission of one of
the authors was granted and the implementation was integrated into the application but
during the testing it was found that the system wasn’t very reliable. It wouldn’t segment
all the parts and would leave a big chunk of the mesh unsegmented, so it couldn’t be
used. Luckily, an implementation of the same method was released at the beginning of
April in the CGAL library2), version 4.4. One downside of this implementation is that
it segments a triangulated polyhedron, which is an orientable 2-manifold. A process of
mesh repairing is employed but it is not always successful, which results in some meshes
being unusable.

Mesh Repairing. The JMeshLib3) in version 1.2 is used to run its repairing proce-
dures. It implements cutting-edge technologies to process 3D geometry and it is the
same as in the ReMESH tool [Attene and Falcidieno 2006]. Unfortunately some low
quality meshes can’t be repaired even by this library and thus can’t be used.

Serialization. C++11 library cereal4) version 1.0 is used to save the data generated
during the offline phase. The library provides serialization for all standard C++ library
types as well as simple user defined types. The library is easily extensible so support
for other external types such as Eigen::Matrix or VCGLib mesh structure wasn’t
very hard to implement. The library doesn’t support raw pointers or references but
the application uses smart pointers such as std::shared_ptr and std::unique_ptr
instead, which are fully supported even including std::enable_shared_from_this.

3.3 Application Classes
This section describes all the created classes, especially their data structure and general
purpose. The GLArea and MainWindow parts also contain some additional information
about how the GUI works. To see the processes in which the classes are involved see
figure 3.1.

Shape. Shape is a class, which represents the whole shape. It contains all the parts
of the shape, a root Node and the hierarchy levels in an std::vector of std::vectors
containing Nodes of each level. All the important operations like segmentation, contact
detection, building of a hierarchy, shape matching and interpolation are initiated by
this class. The class also contains methods that convert the structure of the shape into
a VCGMesh that represents some of the visualizations of the analysed shape.

Part. Part class represents a part of the mesh. It is a simple data structure containing
an std::vector of Contact objects, a PointCloud object and a VCGMesh object. The
VCGMesh object represents the mesh of this part and the PointCloud is a point cloud
sampled from the mesh. Apart from some standard get/set methods it contains a
findConnected method, which retrieves all the Parts this part is in contact with,
even through other part contacts.

Node. Node objects are the building blocks of the shape hierarchy. Each Node
contains an std::vector of Parts, an std::vector of children Node objects, a par-
ent Node, a corresponding Node during shape matching, a PointCloud object as a
joined point cloud of its Parts and a Symmetry object that determines how chil-
dren Nodes should be split from this Node. The PointCloud is computed only if it
1) http://www.liors.net/shape-diameter-function
2) https://www.cgal.org/
3) http://sourceforge.net/projects/jmeshlib/
4) http://uscilab.github.io/cereal/

15

http://www.liors.net/shape-diameter-function
https://www.cgal.org/
http://sourceforge.net/projects/jmeshlib/
http://uscilab.github.io/cereal/

3. Analysis and Design .

Figure 3.1. An overview of the application pipeline. Shape Segmentation creates new
Part objects for a Shape. Point Cloud Sampling gives the Parts PointCloud objects as
properties and Contact Analysis adds Contacts. During the Hierarchy Creation Parts of a
Shape are put into a Node structure that forms the hierarchy of the Shape. Shape Analysis

then works with the Node hierarchy of two Shapes.

is necessary, a boolean pointCloudNeedsUpdate variable is changed, whenever new
parts are removed or added. This variable is checked in the getter to make sure the
PointCloud is computed only once, when the Node isn’t changed. The class also con-
tains a getConnectedSets method, which separates its Parts into sets of connected
parts. This method is used during the separating step.

PointCloud. PointCloud is a class that represents a point cloud of a Part or an
Node. The actual point cloud is represented by an Eigen::MatrixXd variable cloud,
which is simply a matrix, where the rows are the coordinates of the points. The class
samples the point cloud data from a VCGMesh, which is then used by a Part object or it
can take the cloud data of other PointCloud objects to create a union of these input
point clouds, which is used by an Node. The main purpose of the class is to calculate
the the eigen-transform of the part or node and the data is used for during the contact
detection procedure.

Contact. Contact objects contain a set of Eigen::Vector3d points and a smart
pointer to the Part these points are in contact with for a given Part. Imagine that
the contact structure is a graph, the Part objects would be nodes and Contact objects
edges that connect them.

16

. 3.3 Application Classes

Symmetry. Symmetry is a class that is used for the splitting of nodes when shape hi-
erarchy is being built. Its objects are either generated by the SymmetryGenerator class
or they can represent a splitting plane x = 0, y = 0 or z = 0 in the local coordinate sys-
tem of a node. Every Symmetry contains an Eigen::Vector3d called referencePoint,
which represents a point on the symmetry plane, and another Eigen::Vector3d called
normal, which represents a normal of the plane. These two variables are used in the
splitting process of nodes. If a Symmetry was generated by the SymmetryGenerator
class it also contains a an Eigen::MatrixXd, which represents the actual symmetry
transformation. A Symmetry has a support value, which is used during quality com-
putation.

SymmetryGenerator. SymmetryGenerator is used to generate a number of candidate
Symmetry objects for a set of parts of a node, which are then evaluated and the dominant
symmetry is found.

Segmentation. Segmentation is similarly to the MeshRepair class just a class that
accesses the CGAL library classes and methods used to triangulate an input mesh, run
Shape Diameter Function segmentation on it and save the parts as OFF mesh files.

MeshRepair. MeshRepair is a simple class that is used to run the JMeshLib mesh
repairing operations.

GLArea. GLArea is together with the MainWindow class the backbone of the GUI
and displaying part of the application. The code is based on the example Qt application
located in apps/sample/trimesh_QT/ in the VCGLib files. The class inherits from the
Qt QGLWidget class and reimplements initializeGL, resizeGL and paintGL methods.
It takes care of the higher level operations compared to the MainWindow class.

The VCGLib objects vcg::GlTrimesh and vcg::Trackball objects take care of the
user input/output commands for view like resizing or moving and the actual displaying
of the different visualizations of the analysed shape (point clouds, contacts, segmenta-
tion, etc.). When the paintGL method is called the vcg::Trackball object is used to
orient the view and the vcg::GlTrimesh calls its Draw method that draws the mesh
based on the DrawMode enumeration value.

Two enumerations store the current state for the viewer. First one is called DrawMode
with values SMOOTH, POINTS, WIRE, FLATWIRE, HIDDEN and FLAT, which represent the
methods the mesh is drawn. For example when WIRE is set, the mesh is drawn as a wire-
frame, when POINTS is set, only the vertices of the mesh are drawn. The other one is
called ShapeMode and stores the type of visualization to be shown by the application rep-
resented by the values SEGMENTATION, CONTACTS, CLOUDS, TRANSFORMS, CONTACT_PARTS,
HIERARCHY_LEVELS, HIERARCHY_TREE. Most of these correspond to the operations done
in the shape analysis phase. TRANSFORMS shows the eigen-transformation visualization
a box of size 1 transformed into the local coordinate system of its corresponding part.
CONTACT_PARTS displays parts that have at least one contact as green and contact-
less parts as red. HIERARCHY_LEVELS shows the different levels of the shape hierarchy,
HIERARCHY_TREE displays the whole hierarchy.

MainWindow. MainWindow inherits from the QMainWindow class and manages the
lower level operations of the Qt GUI – slots and signals connections1). Every action in
Qt can have a reaction that is done as a response. A connection needs to be established
first for example:

connect(sender, SIGNAL(somethingHappened()),
receiver, SLOT(doSomethingAsReaction()))

1) http://qt-project.org/doc/qt-5/signalsandslots.html

17

http://qt-project.org/doc/qt-5/signalsandslots.html

3. Analysis and Design .
establishes a connection between the sender and the receiver object. If the signal

somethingHappened() is emitted a slot method doSomethingAsReaction() is subse-
quently called.

VCGMesh. VCGMesh is a class used to define a triangle mesh to be used with the
VCGLib. Each component of the mesh (vertex, face) needs to be enabled as well as the
properties of these components (color, position, normal, etc.). More information about
this can be found in a tutorial by the creators of the library1). The class inherits from
the vcg::tri::TriMesh with VCGVertex and VCGFace as the template parameters:

class VCGMesh : public vcg::tri::TriMesh
<std::vector < VCGVertex >, std::vector < VCGFace >> {...};

These two types also inherit from their respective vcg::tri:: classes, which have
standard components enabled via the template parameters:

class VCGVertex : public vcg::Vertex
<VCGUsedTypes, vcg::vertex::VFAdj, vcg::vertex::Coord3f,
vcg::vertex::Normal3f, vcg::vertex::Color4b,
vcg::vertex::BitFlags> {};

class VCGFace : public vcg::Face
<VCGUsedTypes, vcg::face::VFAdj, vcg::face::VertexRef,
vcg::face::Normal3f, vcg::face::Color4b, vcg::face::BitFlags> {};

The vcg::vertex::VFAdj property enables that a reference between adjacent
vertices and faces is stored. This is necessary for the point cloud samplig. The
VCGUsedTypes inherits from the vcg::UsedTypes class and declares which are the
types invoved in the definition of the mesh:

class VCGUsedTypes : public vcg::UsedTypes
<vcg::Use<VCGVertex>::AsVertexType,
vcg::Use<VCGFace>::AsFaceType> {};

The class has a surfaceArea method, which computes the area of all faces of the
mesh and is used later for point cloud sampling, it also contains some convenience
methods for loading the mesh from file (loadOBJ, loadOFF and so on)

1) http://vcg.isti.cnr.it/˜cignoni/newvcglib/html/basic_concepts.html

18

http://vcg.isti.cnr.it/~cignoni/newvcglib/html/basic_concepts.html

Chapter 4
Implementation

4.1 Shape Analysis
The shape analysis is an offline part of the method that is done on a single input mesh.
First the mesh is segmented into parts, which are sampled to point clouds. Using these
point clouds contacts are detected. Hierarchy used later for the synthesis of new shapes
is created using the contact information and symmetries that need to be detected. The
following subsections describe how all these steps were implemented.

4.1.1 Mesh Segmentation
Before the actual segmentation of the mesh a couple of operations are carried out.
The mesh is first loaded as a VCGMesh and it is uniformly rescaled by the average
of its width, height and depth, so that every shape loaded has a similar size. The
width, height and depth are the absolute values of the differences between maximum
and minimum values of the point cloud of the whole mesh in the x, y and z dimensions.
The rescaled shape is exported to an OFF file that is used for mesh repairing.

The MeshRepair object’s run method is then used, which simply creates an instance
of JMeshLib Triangulation class, loads the OFF file and checkAndRepair method of
the Triangulation object is ran to repair the mesh, which is then saved again as OFF
that is going to be segmented by CGAL.

Segmentation object is created and loads a repaired mesh as a polyhedron,
which must be an orientable 2-manifold. If it is not the segmentation pro-
cess can’t be ran and the shape can’t be used. If the shape is correct CGAL’s
triangulate_polyhedron method is applied and the segmentation can begin. First
the CGAL::sdf_values method is ran, which computes the SDF values using the
default parameters. Afterwards, the CGAL::segmentation_from_sdf_values method
is ran to do the segmentation of the mesh using parameters number_of_clusters = 7
and smoothing_lambda = 0.15. These values have proven to give the best results for
a wide variety of shapes. The method fills a map object, where the keys are Facets
and the values are part ids. Using this map the parts of the mesh are built with the
use of CGAL::Polyhedron_incremental_builder_3 and each part is then exported as
an OFF file. These files are then loaded into VCGMesh objects, which are used in the
Part objects of a Shape. All the newly created files are then deleted as they are no
longer needed.

4.1.2 Contact Analysis
When a Part object is being constructed, its mesh is sampled as a point cloud. The
method used for this is the vcg::tri::PoissonSampling that uses the Poisson-Disk
sampling method to sample the mesh to a point cloud, where the distance between
points is roughly similar. The number of samples, which needs to be specified, is

19

4. Implementation .
determined using the formula, which ensures that the sampling is done uniformly for
all parts and shapes:

Apart · µ
ϕ

+ ω

The part area (Apart) is computed by iterating over all faces of the mesh and computing
their areas, the area of the part is then the sum of all face area values. The area of a
face is given by 1

2 |~a×~b|, where ~a and ~b are the vectors from vectices A to B and A to C
respectively. The sample count multiplier (µ) determines the density of the sampling.
To make sure the sampling is uniform the diameter of the whole shape (ϕ) is also used.
It was found that it gives best results for a value of 100 000. The minimal sample count
(ω) variable ensures that even the smallest parts are sampled to at least 200 points,
which is the value it is set to. The sampled points are then put into an Eigen::MatrixXd
with rows as individual points, let’s call it a data matrix. The coordinates of the points
are homogeneous, because a translation is required to compute the transformation into
the local coordinate system of the part (eigen-transform) and it is convenient that the
eigen-transform is a single matrix.

Once the point cloud is sampled, the transformation into the local coordinate system
of the part eigen-transform is computed. The center c of a part is calculated as an
average of all rows of the point cloud values. Using the center a translation that moves
the part into the center is given as:

T =


1 0 0 −cx
0 1 0 −cy
0 0 1 −cz
0 0 0 1


Next the rotation matrix is computed. To do this, Eigen::SelfAdjointEigenSolver

is used, which takes a covariance matrix of the data on the input. The covariance matrix
is calculated from the data matrix. First the center c is subtracted from each row, let’s
call this matrix C. The covariance matrix is given as:

cov = CT · C
Nrows − 1

The three eigenvectors ~e1, ~e2, ~e3 from the eigen solver form a rotation matrix:

R =


e1x e1y e1z 0
e2x e2y e2z 0
e3x e3y e3z 0
0 0 0 1


For the scaling matrix it would be a good assumption that the eigenvalues computed

by the eigen solver could be used, but unfortunately these don’t seem to give a correct
result. Instead data matrix is transformed by the rotation and then the singular values
sx, sy and sz are computed as the absolute value of the difference between the extremes
of the corresponding dimension. The scaling matrix is then:

S =


1
sx

0 0 0
0 1

sy
0 0

0 0 1
sz

0
0 0 0 1


Once these three matrices are known, the eigen-transform (ET) is simply:

20

. 4.1 Shape Analysis

ET = S ·R · T

During the construction of a Part a bounding box is set as a vcg::Box3 created from
the minimum and maximum values of the point cloud. The bounding box is enlarged
uniformly for each Part by adding 1 % of the diameter of the whole shape, so that
when two bounding boxes are right next to each other, but don’t actually collide, they
are still considered as colliding.

When finding the contacts, each possible pair of parts is checked. First the bounding
boxes of the parts are tested for a collision using the vcg::Box3::Collide method.
If the parts collide then for each point pair of the two parts a distance between the
two points is computed and if it is smaller than 0.1 % of the shape’s diameter the two
points are added into the Contact object that is constructed afterwards. Of course it
is ensured that all the points in the contact set of points are unique, because a point
can be in contact with multiple other points.

4.1.3 Symmetry Detection
The symmetries are detected by the SymmetryGenerator class for a set of Parts from a
Node object. Each type of symmetry is detected separately, reflection candidates first,
then translation candidates and roatation candidates last. At the start 2 ·Nparts + 10
candidates are generated, where Nparts parts is the number of parts in a Node.

The generating process starts by choosing two (for reflection, translation) to three
(rotation) randomly selected parts, whose centers are used for the creation of a sym-
metry matrix. The parts aren’t chosen fully randomly as it is always checked if the
part sizes are similar as mentioned in [Wang et al. 2010]. This greatly improves the
performance of the algorithm, because high quality symmetries are always created from
similar parts anyway. The parts are considered similar if for each two parts from the
chosen parts the difference between their diameters is smaller than 5 % of the average
of these diameters. If the parts aren’t similar, it is sought for another ones that are
until a maximum of attempts is reached, which is N2

parts + 10. It can happen, that
a smaller number of candidates is generated than initially requested, but not by a
dramatic margin.

From the part centers symmetries are created. For the reflection symmetries there
are two centers c1 and c2 used. Normal ~n of the reflection is the difference between
the centers. A reference point ref on the reflection is given by 1

2~n + c1. This point is
translated to origin of the coordinate system by matrix T :

T =


1 0 0 −refx
0 1 0 −refy
0 0 1 −refz
0 0 0 1


The normal vector is rotated to reflection plane at origin until it is coincident with

positive z axis by matrix Rxy, where λ =
√
~ny

2 ~nz
2:

Rxy =


λ
|~n|

−~nx~ny

λ|~n|
−~nx~nz

λ|~n| 0
0 ~nz

λ
~ny

|~n| 0
~nx

|~n|
~ny

λ
~nz

|~n| 0
0 0 0 1


The object is then reflected throught xy plane by matrix Rl:

21

4. Implementation .

Rl =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


Inverse transformations are applied and the final reflection matrix (Mrefl) is given

by:

Mrefl = T−1 ·R−1
xy ·Rl ·Rxy · T

The translation symmetries (Mtransl) are again created using two part centers c1 and
c2. The normal ~n and reference point ref of the translation are calculated the same
way as with reflection. The translation symmetry is simply a translation by ~n:

Mtransl =


1 0 0 ~nx
0 1 0 ~ny
0 0 1 ~nz
0 0 0 1


To get a rotation symmetry three part centers c1, c2 and c3 are used. It is necessary

to find the center crot of the circumscribed circle of the the part centers. The center
crot is given by the linear combination:

crot = αc1 + βc2 + γc3

To get α, β and γ dot and cross products are used:

α = |c2 − c3|2(c1 − c2) · (c1 − c3)
2|(c1 − c2)× (c2 − c3)|2

β = |c1 − c3|2(c2 − c1) · (c2 − c3)
2|(c1 − c2)× (c2 − c3)|2

γ = |c1 − c2|2(c3 − c1) · (c3 − c2)
2|(c1 − c2)× (c2 − c3)|2

Normal ~n is computed as a cross product of vectors between the part centers:

~n = (c3 − c2)× (c2 − c1)

Angle δ between the vectors from centers c1 and c2 to crot is given by the formula:

δ = acos

(
(c1 − crot) · (c2 − crot)
|c1 − crot||c2 − crot|

)
Rotation matrix R is then retrieved using an Eigen::AngleAxis object constructed

using the normal ~n and angle δ, which is then changed into a 4×4 matrix. This matrix
is not the symmetry matrix yet as it is necessary to translate the centers into origin of
the coordinate system using a translation matrix:

T =


1 0 0 −crotx
0 1 0 −croty
0 0 1 −crotz
0 0 0 1


22

. 4.1 Shape Analysis

The final rotation symmetry matrix (Mrot) is then a simple multiplication of the
matrices mentioned above:

Mrot = T−1 ·R · T

After the symmetry candidates have been generated their quality needs to be rated.
Each part of the node is taken and its point cloud is transformed by the symmetry
candidate. The closest center to the center of the transformed point cloud is then found
and if the singular values of both point clouds are similar the support value (κ) of the
candidate is increased. The singulare values are considered similar if their difference in
each dimension is lower than 0.025. The quality of the candidate is simply κ

Nparts
·100 %.

The whole process is first done for reflections and if there exists a candidate with best
quality greater or equal to 80 % it is used as the dominant symmetry of the node. If
there isn’t such candidate, translation candidates are generated and tested same way
and if even these don’t match the criteria rotation candidates are attempted. It can
happen that no symmetry is found.

4.1.4 Hierarchy Creation
Because the paper [Jain et al. 2012] doesn’t mention how to work with parts without
any contacts at all, such parts are excluded from the whole hierarchy building process.
Contactless parts are a rare occurance but they can spoil the process of hierarchy
creation severely.

The hierarchy of a Shape is a simple tree structure, where nodes have smart pointers
to a parent node and children nodes. The number of children is not limited to a specific
number as a node can be split into multiple parts when all steps of the hierarchy creation
are applied.

The hierarchy creation starts with a root Node, where all parts of the mesh are
inserted. This node is added into the first level of the hierarchy, which is represented
as an std::vector of std::vectors containing std::shared_ptrs of Node objects,
typedef’d as NodePtr. To make this more clear – The “outer” std::vector represents
the levels of a hierarchy and the “inner” std::vectors contain the Nodes of the level.

Several local variables are created – std::vector<NodePtr> currentLevel, which
represents the level being currently created, int lastLevel = 0, which keeps track of
the number of the last created level and boolean levelSplitSuccess = true, which
stores whether the level got split, if this is false the last level wasn’t split and the
hierarchy building process ends.

Node Splitting. While the levelSplitSuccess variable holds true the following
iterative process is done, which is started by clearing the currentLevel to get rid of
the Nodes from the last iteration. For each Node from the lastLevelth level of the
hierarchy a symmetry is found as described in the previous subsection. Now for each
Node splitting is attempted according to the symmetry found, if no symmetry was found
or if the splitting among it is unsuccessful planes x = 0, y = 0, z = 0 are used until
the splitting is successful. If the splitting isn’t successful for any Node of the level the
whole process is finished, the process continues for another iteration otherwise.

The actual splitting process is done using a reference point on the splitting plane and a
normal. Symmetries generated by the SymmetryGenerator object have these properties
set during their creation. When it is necessary to use the non-generated splitting planes
(x = 0, y = 0, z = 0), these two properties need to be obtained. The reference point
is acquired by multiplying the origin of the coordinate system (o = (0, 0, 0)) with the
inverse eigen-transform of the Node that is about to be split. The normal is a vector ~n

23

4. Implementation .
multiplied by the same transformation. For plane x = 0 the vector is ~nx = (1, 0, 0), for
y = 0 ~ny = (0, 1, 0) and for z = 0 ~nz = (0, 0, 1).

A Node is split using a simple method for each of its Parts. The distance be-
tween the center of the part and the reference point is computed. The center is
then moved by a 1000th of the normalized normal vector and the same distance is
computed again. If the distance before was greater than the distance after, the part is
added into std::vector<PartPtr> left and into the std::vector<PartPtr> right
otherwise. If the difference between the distances is smaller than 0.0001 the
part is considered to be close to the splitting plane and it is added into the
std::vector<PartPtr> middle. From these three std::vectors new Nodes are
created, with their parents set to the Nodes they were split from and they are added
into the std::vector<NodePtr> current for further processing, namely the enforce-
ment of nodes with non-disconnected parts. Results of the spliting can be seen in
4.1.

Figure 4.1. The dominant symmetries (yellow) of whole meshes from different categories.

Enforcement of Non-disconnected Nodes. To make sure the parts in the nodes are
connected with contacts together a two step process that enforces this is applied. The
first step, called separating step, separates the nodes into sets of parts, where the parts in
one sets are connected by contacts together. The algorithm first remembers the number
of nodes in an int numberOfNodes variable, which is the size of the currentLevel
collection.

The separating step is started and for each Node the sets of connected Parts in a
Node are found. To do this a method Node::getConnectedSets is called, which cre-
ates an std::vector of std::vectors containing std::shared_ptrs of Part objects,
simply std::vector<std::vector<PartPtr>> sets and std::vector<PartPtr>
remainingParts, where all parts of the Node are put.

While the remainingParts vector contains any elements the sets of connected parts
are found. For the first part of remainingParts all connected Parts are found using
a Part::findConnected method. These parts are then put into the sets variable and
are deleted from the remainingParts vector. From the sets variable new NodePtrs
are made to reflect the separation.

The method Part::findConnected finds all the connected parts using breadth-first
search. It takes std::vector<PartPtr> nodeParts and an std::unordered_set of
Parts foundParts on the input. The nodeParts variable represents the parts of the
node and foundNodes is where the found connected parts are put. First the parts this
Part is in contact with are found and the contact parts which aren’t among nodeParts
are removed. The current Part is added into foundParts and for each contact part
that is in nodeParts, but isn’t in foundParts yet the findConnected method is ran.

To ensure the number of nodes in currentLevel is similar to the number of nodes
before the separating step the second step called merging step is ran aftwerwards. The

24

. 4.1 Shape Analysis

nodes in currentLevel are first sorted by their diameter in descending order. An
std::vectors of NodePtrs called kept and another collection of NodePtr pairs called
remaining are created. A smallest kept diameter is set to the diameter of the last node
in kept. The first numberOfNodes from currentLevel are put into kept. The other
nodes of current are put into kept if they have a diameter greater or equal to 95 % of
the smallest kept diameter or into remaining as the first NodePtr of the pair otherwise.

The remaining nodes are now merged with the kept nodes. While remaining isn’t
empty or its size isn’t shrinking a loop is executed, which takes all the remaining
nodes to merge them with kept nodes with which they share at least one contact. The
smallest of the contact kept nodes is chosen and set as the second NodePtr of the pair.
Once all remaining nodes have been processed, they are merged with the kept nodes
(the second NodePtr of the pair) and they are deleted from remaining. The merging is
done after the kept nodes are found for a remaining node so that a kept node doesn’t
change its size for whole iteration of the process. If the size of remaining doesn’t change
after the iteration, the remaining nodes are put into kept as there is nothing else to do
with them. The paper [Jain et al. 2012] unfortunately isn’t very specific when it comes
to the merging step so some of the procedures mentioned in this paragraph might not
be fully correct. The enforcement steps are illustrated in 4.2.

Figure 4.2. The mesh after split (left), the mesh after separating step (middle), the mesh
after both steps (right). It can be seen that the smallest nodes (arms) were merged with

the adjacent (torso) node.

Final Steps. After it is ensured that Nodes in currentLevel contain only connected
Parts the Nodes in the level are added into their parents as children. This wasn’t
done until now, because the structure could change during the enforcement of non-
disconnected parts in nodes. the currentLevel is added into the levels hierarchy of
the Shape and if any splitting occured the whole process is repeated for the last created
level.

When the hierarchy is built the Shape is ready to be serialized to the disk using the
cereal library. The Shape is stored in a binary archive with the extension “.pcs”. The
library supports all the types from the standard C++ library used (std::shared_ptr,
std::vector, etc.), so when classes with these objects are serialized, simple serialize
method is used for saving and loading. The only two exceptions are the objects from
the external libraries, namely Eigen::Matrix and VCGMesh. For Eigen::Matrix a new
save and load methods had to be created in an external cereal/types/matrix.hpp

25

4. Implementation .
file, because it isn’t desirable to edit the Eigen library files directly. The VCGMesh is
templated as a user defined type so there is an access to the code itself. To avoid
working with the whole structure of a VCGLib mesh object a simple workaround is
used. While loading the mesh file it is saved as an OBJ file, which is then parsed as an
std::string. This string is then saved in the save function and from its contents the
mesh data is loaded in the load function using vcg::tri::io::ImporterOBJ.

4.2 Shape Synthesis
The shape synthesis is an online phase of the method done after the shapes have been
analysed. The synthesis is done using two precalculated analysed meshes called “source”
and “target” chosen by the user. The shapes are deserialized from the binary serializa-
tion files into the memory and the shape matchin procedure can start.

4.2.1 Shape Matching
The hierarchy of the target shape is cleared and a root node containing all the parts of
the target shape are added. During the process of matching every target Node keeps a
smart pointer to a corresponding node from source shape and vice versa. This relation
is later used for Node recombination. The correspondency is set for the root node.

There is again an std::vector of Nodes called currentLevel, where Nodes of the
currently processed target level are put. For each level of the source shape the following
process is done. The currentLevel collection is cleaned to wipe the data from pro-
cessing the last level. Pairs of Eigen::Vector4d centers and respective Nodes called
sourceNodePairs are created. According to the paper [Jain et al. 2012] the center
should be multiplied by an eigen-transform of parent node, but the matching didn’t
seem to work using this method. Only nodes position is used as another option men-
tioned in [Jain et al. 2012].

Target Parts Redistribution. New nodes of the target shape are then created. For
each Node from the source shape level a Node is created and the correspondency relation-
ship is set. These newly created Nodes are then put into the currentLevel collection.
Parts of the mesh are then redistributed into the new target nodes. For each Node
from the previous level of target, where the parent Nodes of the currently processed
ones reside, all Parts of the parent Node are taken and are redistributed using nearest
neighbour matching of the center of the Part and the precomputed center from the
sourceNodePairs collection. Again the center of the part should have been trans-
formed by the eigen-transform of the parent Node, but this was abandoned as described
in the previous paragraph. Only the sourceNodePairs Nodes are used, which are the
children of the corresponding source Node of the redistributed parent target Node to
ensure that Parts are redistributed only into child Nodes of the parent source Node.
The closest source shape Node is then used for redistribution and the Part is inserted
into the corresponding target Node of the closest source Node.

Empty Nodes Removal. In case that no parts are redistributed into a Node on the
current level this Node’s corresponding source Node is merged with the closest sibling,
whose corresponding target Node has at least one part. During merging all parts of
the merged Node are added into the Node it is merged with and the children Nodes of
the merged Node have their parent changed also to the Node the merged Node is being
meged with. The merged Node and its corresponding target Nodes are then deleted
from the hierarchies.

26

. 4.2 Shape Synthesis

The enforcement of non-disconnected parts in nodes is then applied on the
currentLevel collection with a couple of differences from the one used during
shape analysis. The article [Jain et al. 2012] says this process is same as during shape
analysis (except that the number of nodes after the enforcement must be always the
same as before), but this is in fact not the case as the correspondency relationship can
possibly be broken during this process. When the separating step is applied and the
node is being split into the connected nodes, the corresponding Node of the split Node
has its corresponding Node set to NULL and the Nodes created using the splitting have
their corresponding Nodes set to the corresponding Node of the Node they were created
from. In the merging step, when a Node is being merged and its corresponding Node
isn’t set to NULL, its corresponding source Nodes corresponding Node is set to NULL to
remove the relationship with the Node being merged.

The correspondecy relationships are then reestablished. For each source node from
the currently processed level if the Nodes corresponding Node is set to NULL. A node from
target that has this source Node set as corresponding is found and the correspondency
relationship is set. Even after this it can happen that a source node has no corresponding
node. It is then checked if corresponding relationship is mutual for each target node and
if it isn’t the correspondency is incorrect and the target node has the correspondency
relationship set with the source node, whose corresponding node is set to NULL.

Each Node in currentLevel is now added into their parent node to keep the parent-
child relationship. This is done after all the other steps, because this relationship
could be change when they are applied. The currentLevel collection is added into the
matched target shape and the process is then applied to all the other levels. After the
execution of the matching on all levels the two shapes are matched and they are ready
to be used in the shape interpolation.

4.2.2 Shape Interpolation
With the use of the matched source and target shapes the interpolated shape can now
be created as a recombination of the two shapes. The finest levels of the matched
source and target shapes are sorted by the cojoined diameter of the nodes and their
corresponding nodes in the other shape. The nodes on the coarsest level are then
reordered so that the nodes with the smallest diameter are at the beginning and the
end of the collection and the biggest node is in the middle. The weight parameter w
in the range 0–100, which represents the percentage of the nodes used from the source
shape is determined by the user. The recombined shape is then composed of w ·Nnodes

source nodes and 1 − w ·Nnodes target nodes, where Nnodes is the number of nodes on
the finest level of the source as well as the target shapes. The result shape can then be
saved as OBJ, OFF, PLY or VRML file.

27

Chapter 5
Testing

Testing was done for the different steps of the shape analysis, some performance data
are also included for the record. This chapter also includes the results of the shape
matching for various categories. The computer used for the testing was a Windows 7
PC with an Intel Core i7 870 processor, 8 GB of DDR3 RAM and an NVIDIA GeForce
GTX 560 Ti graphics card.

5.1 Shape Analysis

Because it is hard prove that the steps of the analysis are correct, simple illustrations
with commentary are provided. Although the shape analysis seems to be very robust
and gives correct results, it remains for the reader to decide whether it really is the
case.

Segmentation. The CGAL segmentation provides two main parameters to be set
number_of_clusters and smoothing_lambda. The number_of_clusters represents
the amount of sets of facets with similar SDF values. As mentioned in [Yaz and Loriot
2000] the number of clusters doesn’t necessarily result in a higher number of segmented
parts, but it actually mostly is the case as can be seen in figure 5.1.

Figure 5.1. Segmentation of a shape with different values of the number_of_clusters
variable (1, 3, 5, 7 and 9 from left to right). The smoothing_lambda was set to the value

used – 0.15.

The value of number_of_clusters was set to 7 as it segments the mesh into a good
amount of detail, while still keeping the parts meaningful. The smoothing_lambda
parameter on the other hand does always ensure that the number of parts will change
as it changes. The number of parts gets bigger as the parameter gets closer to 0,
where no smoothing is applied. A value of 0.15 was used for similar reasons as with
the number_of_clusters parameter. A multitude of segmentations with different
smoothing_lambda values can be seem in figure 5.2

28

. 5.1 Shape Analysis

Figure 5.2. Segmentation of a shape using different values of the smoothing_lambda
variable (0.0, 0.05, 0.1, 0.15, 0.2 and 0.5 from top left to bottom right). The

number_of_clusters variable was set to 7, which is the value used.

In general a slightly more segmented mesh is better than a less segmented one,
because the procedures used later will merge the parts into more bigger groups. Figure
5.3 shows segmentations of shapes from different categories.

Figure 5.3. Segmentations of shapes from various categories.

Point Cloud Sampling. Sampling of the parts into point clouds with evenly dis-
trubuted points is essential for the correctness of the contact analysis as well as symme-
try detection. Figure 5.4 shows that the point clouds have correct distributionm with
the exception of smaller parts, where the minimal sample count variable ω is applied,
which has proven to be necessary for correct contact detection, when small parts are
involved.

29

5. Testing .

Figure 5.4. Shapes from different categories sampled to point clouds.

The most important parameter is the sample count multiplier µ, which determines
the number of samples (points) of the point cloud. When set to µ = 75 000, satisfying
results are already achieved, but to make sure the processes depending on the sampling
are running smoothly a value of 100 000 is used. Figure 5.5 shows the contact graph
visualizations for diferent values of µ.

Figure 5.5. Graphs of shape’s contacts using different values of the sample count multiplier
µ (from left to right – segmented mesh, graphs using µ with a value of 25 000, 50 000, 75

000, 100 000 and 200 000).

Symmetry Detection. As it was shown in 4.1 in a previous chapter, the symmetry
detection process produces reasonable results for most of the shapes. There are, how-
ever, some shapes, where the symmetries are not easy to detect as they can be rather
ambiguous. Examples of these cases can be seen in figure 5.6.

30

. 5.1 Shape Analysis

Figure 5.6. Shapes with ambiguous symmetries. The blades of an airplane engine are
symmetric in multiple ways (top). The Magellan space probe (bottom) is symmetric in
two ways, while only one is desirable in the context of the category as it separates the solar

panels (bottom right).

Shape Hierarchy. There isn’t a simple way of making sure the hierarchies are correct,
but it can be seen in figure 5.7 that the most important features work as intented. The
nodes that are split appear on the lower levels of the hierarchy and when no splitting is
done, the node remains on the next level. The enforcement of non-disconnected parts
works well too as can be seen in figure 4.2, which is comparable to 2.3 at least for the
coarser levels.

31

5. Testing .

Figure 5.7. Hierarchies of shapes from various categories. The first child node is always
in red and the other ones sharing the same parent are in other colors.

Performance. The table below shows the durations of different operations done for
shapes of varying faces count and from various categories. The results show that a
great portion of the time is spent during the segmentation that is done by the external
CGAL code that can’t really be further optimized. The other procedures also take a
considerable amount of time, especially contact analysis and hierarchy creation, but the
overall duration of nearly three minutes for one of the bigger shapes is still manageable,
because the analysis needs to be only once and can be reused almost instantly if it is
serialized.

bunny frog ankylo rosetta boeing757
Mesh Faces 633 13216 10230 16901 108986
Mesh Area 0.424 0.423 0.608 0.141 0.323
Load & Preparation [ms] 90 163 273 570 1630
Mesh Repair [ms] 10 118 103 284 1521
Segmentation [s] 7.8 11.3 10.3 29.9 116.6
Contact Analysis [s] 14.6 12.4 21.1 14 45.8
Hierarchy Creation [s] 0.7 2.2 6 130.1 102.2
Overall duration [s] 23.2 26.2 37.9 175 267.7

Table 5.1. Performance of the shape analysis for shapes of varying complexity.

5.2 Synthesized Shapes
It is always possible to generate an interpolation between two shapes, but the results
have a varying quality depending on the similarity between the two input models. The
main reason is the fact that during the shape matching procedure part redistribution
using eigen-transforms could not be implemented even with the greatest amount of effort
expended. A different solution also mentioned in [Jain et al. 2012] is simple comparison
of a part and node centers, which is used instead and it unfortunately doesn’t always
yield the best results for shapes that are not very similar. Also the contact enforcement

32

. 5.2 Synthesized Shapes

using mass-spring system or a similar method wasn’t implemented due to lack of time,
which would further improve the shapes created. The results of shape synthesis from
the categories of animals, dinosaurs, humanoids and space aircraft can be seen in figures
5.8, 5.9, 5.10 and 5.11.

Figure 5.8. Shapes created from the models in the animal category.

Figure 5.9. Shapes created from the models in the category of dinosaurs.

Figure 5.10. Shapes created from the models in the humanoid category.

33

5. Testing .

Figure 5.11. Shapes created from the models in the spacecraft category.

34

Chapter 6
Conclusion

Three methods of example-based 3D-model synthesis [Jain et al. 2012, Zheng et al.
2013, Kalogerakis et al. 2012] were reviewed and compared. The method by [Jain et al.
2012] was chosen for implementation for its ease of use, undemanding input shape
requirements and flexibility and it was further studied.

Many useful open-source external libraries dealing with linear algebra, shape segmen-
tation, point cloud sampling, mesh processing and user interface creation were found
and employed, which greatly helped with the whole process of implementation.

Shape analysis consisting of mesh segmentation, point cloud sampling, symmetry and
contact detection was implemented. For the shape segmentation an implementation of
the SDF segmentation created by Shapira et al. was used at first. The integration
wasn’t simple and took approximately two weeks of time to do. The segmentations
produced also suffered from many errors. It was then later found that a CGAL im-
plementation was released at the beginning of April, which took about two days to
integrate and produced much better results.

The application is able to produce interpolations for a pair of shapes with a varying
quality for four categories (animals, dinosaurs, humanoids and spacecraft). Unfor-
tunately the meshes used in [Jain et al. 2012] are not freely available 1) so a direct
comparison between the interpolated shapes can’t be made. The redistribution of the
parts using parent node eigen-transforms lead to strange results and had to be substi-
tuted with redistribution using part centers only, which is a method also mentioned in
[Jain et al. 2012] but not as sophisticated. Also the contact enforcement wasn’t imple-
mented. Due to these two facts it is probably safe to assume that the shapes wouldn’t
be very similar for greatly dissimilar inputs. Similar inputs, on the other hand, yield
acceptable results. Although the article [Jain et al. 2012] was pretty thorough there
were some vague parts that most likely prevented an exact realization of the method.
The authors were contacted to make the misunderstandings clear but no answer was
received.

Future Work. The part redistribution using eigen-transforms could be fixed to really
unleash the potential of the shape interpolation. Contact enforcement method such as a
mass-spring system could also be implemented to improve the plausibility of the meshes
created. To do this, the hierarchy of the created shape would need to be updated to
use the contacts of the source and target shapes. A mass-spring system would then
be applied to enforce the contacts of the newly created shape. Vega FEM library’s2)
implementation of a mass-spring system could be used.

Although the performance of the application isn’t bad, there is always room for
improvement. As mentioned in [Jain et al. 2012] contact analysis could be done using
an AABB tree as explained in [van den Bergen et al. 1998].

1) http://www.doschdesign.com/products/3d
2) http://run.usc.edu/vega/

35

http://www.doschdesign.com/products/3d
http://run.usc.edu/vega/

6. Conclusion .
The input shapes could be refined using a Winding Numbers application [Jacobson

et al. 2013] to ensure that any mesh could be used as the shape segmentation from the
CGAL library requires polyhedral surfaces as its input.

The other reviewed methods [Zheng et al. 2013, Kalogerakis et al. 2012] could be
implemented and integrated into the application to allow the user to synthesize new
shapes even if the results of the other methods aren’t plausible, because each of the
methods is expected to work best for a limited range of shape categories. These two
methods require segmented and annotated shapes so other shape segmentation methods
[Huang et al. 2011, Sidi et al. 2011] could be implemented as well.

36

References
[Attene and Falcidieno 2006] Attene, M., and Falcidieno, B. 2006. Remesh: An

interactive environment to edit and repair triangle meshes. In Shape Modeling
and Applications, 2006. SMI 2006. IEEE International Conference on, IEEE,
41–41.

[Cheeseman and Stutz 1996] Cheeseman, P., and Stutz, J., 1996. Bayesian classifica-
tion(autoclass):theory and results.

[Fu et al. 2008] Fu, H., Cohen-Or, D., Dror, G., and Sheffer, A. 2008. Upright
orientation of man-made objects. ACM Trans. Graph. 27, 3.

[Huang et al. 2011] Huang, Q., Koltun, V., and Guibas, L. 2011. Joint shape
segmentation with linear programming. ACM Trans. Graph. 30, 6 (Dec.), 125:1–
125:12.

[Jacobson et al. 2013] Jacobson, A., Kavan, L., , and Sorkine-Hornung, O. 2013.
Robust inside-outside segmentation using generalized winding numbers. ACM
Transactions on Graphics (proceedings of ACM SIGGRAPH) 32, 4, 33:1–33:12.

[Jain et al. 2012] Jain, A., Thormählen, T., Ritschel, T., and Seidel, H.-P. 2012.
Exploring shape variations by 3d-model decomposition and part-based recombina-
tion. Comp. Graph. Forum 31, 2pt3 (May), 631–640.

[Kalogerakis et al. 2012] Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun,
V. 2012. A probabilistic model for component-based shape synthesis. ACM
Trans. Graph. 31, 4 (July), 55:1–55:11.

[Mitra et al. 2006] Mitra, N. J., Guibas, L., and Pauly, M. 2006. Partial and
approximate symmetry detection for 3d geometry. ACM Transactions on Graphics
(SIGGRAPH) 25, 3, 560–568.

[Shapira et al. 2008] Shapira, L., Shamir, A., and Cohen-Or, D. 2008. Consistent
mesh partitioning and skeletonisation using the shape diameter function. Vis.
Comput. 24, 4, 249–259.

[Sidi et al. 2011] Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., and Cohen-Or,
D. 2011. Unsupervised co-segmentation of a set of shapes via descriptor-space
spectral clustering. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 30, 6,
126:1–126:10.

[van den Bergen et al. 1998] van den Bergen, G., Van, G., and Bergen, D. 1998.
Efficient collision detection of complex deformable models using aabb trees. J.
Graphics Tools 2 .

[Wang et al. 2010] Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng,
Z., and Xiong, Y., 2010. Symmetry hierarchy of man-made objects.

[Yaz and Loriot 2000] Yaz, I. O., and Loriot, S. 2000. Triangulated surface mesh
segmentation. In CGAL User and Reference Manual, 4.4 ed. CGAL Editorial
Board.

37

References .
[Zheng et al. 2013] Zheng, Y., Cohen-Or, D., and Mitra, N. J. 2013. Smart varia-

tions: Functional substructures for part compatibility. Computer Graphics Forum
(Eurographics) 32, 2pt2, 195–204.

38

Appendix A
List of Abbreviations Used

3D Three-dimensional
AABB Axis-aligned bounding box

C# C# programming language
C++ C++ programming language

C++11 The most recent version of C++
CGAL Computational Geometry Algorithms Library

GUI Graphical User Interface
OBJ Wavefront .obj File
OFF Object File Format

OpenGL Open Graphics Library
PCA Principal Component Analysis
PCS Precalculated Shape File
PDF Portable Document Format
PLY Polygon File Format

Qt Qt User Interface Framework
SDF Shape Diameter Function
sFarr Symmetric Functional Arrangements
SVN Apache Subversion
VCG Visualization and Computer Graphics Library

VRML Virtual Reality Modeling Language

39

Appendix B
Contents of the Attached DVD

DVD/
bin/ Executable binaries with necessary DLL files
lib/ Compiled libraries used
models/ Input models with their precomputed versions
src/ Visual Studio 2013 solution
tex/ TeX source codes of the thesis
thesis.pdf The thesis in PDF
README.txt Information about the DVD and compilation

40

Appendix C
List of Important Parameters

Name Symbol Source Code Name Value
Number of Clusters – number of clusters 7
Smoothing Lambda – smoothing lambda 0.15
Sample Count Multiplier µ SAMPLE COUNT MULTIPLIER 100 000
Minimal Sample Count ω MINIMAL SAMPLE COUNT 200
Contact Threshold – CONTACT THRESHOLD 0.001
Part Similarity Threshold – SIMILARTIY THRESHOLD 0.025
Symmetry Quality Threshold – SYMMETRY QUALITY THRESHOLD 0.8

41

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	/Contents
	Introduction
	State of Art
	Exploring Shape Variations by 3D-Model Decomposition and Part-based Recombination
	Shape Analysis
	Shape Synthesis

	Smart Variations: Functional Substructures for Part Compatibility
	Shape Analysis
	Shape Synthesis

	A Probabilistic Model of Component-Based Shape Synthesis
	Shape Analysis
	Shape Synthesis

	Comparison of the Systems

	Analysis and Design
	Programming Language
	External Libraries and Frameworks
	Application Classes

	Implementation
	Shape Analysis
	Mesh Segmentation
	Contact Analysis
	Symmetry Detection
	Hierarchy Creation

	Shape Synthesis
	Shape Matching
	Shape Interpolation

	Testing
	Shape Analysis
	Synthesized Shapes

	Conclusion
	References
	List of Abbreviations Used
	Contents of the Attached DVD
	List of Important Parameters

