
Czech Technical University in Prague
Faculty of Electrical Engineerlng

Department of Computer Graphics and Interaction

L.s.

BACHELOR PROJECT ASSIGNMENT

Student: Václav Legát

Study programme: Software Engineering and Management
Specialisation: Web and multimedia

Title of Bachelor Project: Mobile journey planner and navigation for cycllst

Guidelines:

Design and develop a mobile application for Android smartphones capable of journey
planning and navigation with focus on cyclists, During the design and analysis, take into
account two target user groups (beginners and experts) and their specific requirements.
Together with the supervisor, select and use suitable GlS system for route calculation and
navigation, During the design and implementation process, follow User Centered Design
guidelines and peďorm continuous formative user testing and evaluation.

Bibliography/Sources:

M. Jones, G. Marsden: Mobile lnteraction Design, John Wiley & Sons, 2006
C. M, Barnum: Usability Testing Essentials. Ready, Set .., Test!, Elsevier - Morgan Kaufmann, 2011
G. Nudelman: Android Design Patterns: lnteraction Design Solutions for Developers, Wiley, 20,13

Bachelor Project Supervisor: lng. lvo Mal , Ph.D.

Valid until the end of the summer semester of academic year 201412015

/l a
prot.;IiÁg Jlrí Žára, CSc.
He/d of Department

Prague, Febru ary 24, 2014

Czech Technical University in Prague
Faculty of Electrical Engeneering

Department of Computer Graphics and Interaction

Bachelor’s Thesis

Mobile journey planner and navigation

for cyclists

Václav Legát

Supervisor: Ing. Ivo Malý, Ph.D.

Study Programme: Software Technologies and Management

Field of Study: Web and Multimedia

Acknowledgement

I would like to thank Ing. Ivo Malý, Ph.D., for his helpful comments and guidance during
the supervision of this thesis.

iii

Declaration

I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act § 60 Zákon č. 121/2000 Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Kladno, May 21, 2014 .

v

Abstract

This Bachelor’s thesis is concerned with design and implementation of a mobile application
that can plan cycle journeys in Prague. The application is developed for mobile devices
with Android operating system. The application uses Open Bicycle Trip Planner web
planner service which searches routes according to start point, finish point and defined
route profile. This web service also provides a list of instructions that are used during
the navigation process. During the design process specific requirements of target users
are taken into consideration. The finished application can search routes, it provides users
with information about elevation profile and it also informs users about possible obstacles
on the route. The application is available in Google Play store under the name City Bike
Planner.

Key words
mobile application, android, cycle planner, city cycling, navigation

Abstrakt

Tato bakalářská práce se zabývá návrhem a implementaćı mobilńı aplikace pro plánováńı
tras určených pro cyklisty v Praze. Aplikace je vyvinuta pro mobilńı zař́ızeńı s operačńım
systémem Android. Aplikace využ́ıvá služeb webového plánovače Open Bicycle Trip Plan-
ner, který vyhledává trasy na základě startovńıho a ćılového bodu a definovaného profilu
trasy. Tato služba nav́ıc poskytuje sadu instrukćı, které jsou využity k navigaci při j́ızdě.
Při návrhu aplikace jsou zohledněny požadavky ćılových uživatel̊u. Výsledná aplikace
dokáže vyhledávat trasy, poskytuje uživatel̊um informace o převýšeńı trasy a také infor-
muje o překážkách, které se mohou na trase objevit. Aplikace je volně dostupná v obchodě
Google Play pod názvem City Bike Planner.

Kĺıčová slova
mobilńı aplikace, android, cyklistický plánovač, městská cyklistika, navigace

vii

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Structure . 2

2 Analysis 3

2.1 Analysis of target groups of users . 3

2.1.1 Beginner cyclists . 3

2.1.2 Expert cyclists . 4

2.2 Overview of required application’s features 4

2.3 Review of Map SDKs . 5

2.3.1 Google Maps Android API V2 . 5

2.3.2 MapQuest . 6

2.3.3 Mapsforge . 7

2.3.4 Nutiteq . 7

2.3.5 OsmDroid + OSMBonusPack . 7

2.3.6 Evaluation of Map SDKs . 8

2.4 Review of available applications . 9

2.4.1 Cyclestreets . 9

2.4.2 OsmAnd . 9

2.4.3 BikeCityGuide . 10

2.4.4 Comparison of reviewed applications 11

2.5 Open Bicycle Trip Planner . 11

2.6 City Bike Planner requirements . 12

2.6.1 Functional requirements . 12

2.6.2 Non-functional requirements . 12

3 Design 13

3.1 Navigation between screens . 13

3.2 Use cases . 14

3.2.1 Route planning . 14

3.2.2 Managing places . 15

3.2.3 Managing routes . 15

3.2.4 Managing navigation . 16

3.3 GUI Design . 17

3.3.1 Planner UI design . 17

3.3.2 Map UI design . 18

3.3.3 Route UI Design . 19

3.3.4 Places and routes UI design . 22

3.3.5 Navigation UI Design . 23

ix

4 Implementation 25
4.1 Places data preparation . 25
4.2 Databases . 25
4.3 Implementation structure . 27

4.3.1 Activities and fragments . 27
4.3.2 Adapters . 28
4.3.3 Entities . 28
4.3.4 Helpers . 29
4.3.5 Location . 29
4.3.6 Mock . 29
4.3.7 Providers . 29
4.3.8 Routing . 30
4.3.9 Utils . 30

4.4 Implementation details . 30
4.4.1 Geocoding . 30
4.4.2 Routing . 31
4.4.3 Navigation . 33

4.5 Graphics . 33
4.6 Limits of the application . 34

5 Evaluation 35
5.1 Prototype testing . 35
5.2 Application testing . 36

5.2.1 Results of the testing . 39

6 Conclusion 41

References 43

Appendix A Contents of the CD 45

Appendix B Prototype questionnaire 47

Appendix C Testing tasks 49

List of Figures

2.1 Displaying marker and info window with Google Maps Android API V2 . . 6
2.2 Example of data returned by Guidance API 6
2.3 Route with directions from MapQuest in Nutiteq sample application 7
2.4 Example of OSMBonusPack features . 8
2.5 Cyclestreets user interface . 9
2.6 OsmAnd user interface . 10
2.7 BikeCityGuide user interface . 10

3.1 Scheme of navigation between screens . 13
3.2 Route planning use cases diagram . 14
3.3 Managing places use cases diagram . 15
3.4 Managing routes use cases diagram . 16
3.5 Managing navigation use cases diagram . 16
3.6 Planner screen interface design . 18
3.7 Map screen interface design . 19
3.8 Prototype route and itinerary screen design 20
3.9 Route screen interface design . 21
3.10 Places and routes interface design . 22
3.11 Navigation screen interface design . 23

4.1 Drawer activity with navigation drawer . 27
4.2 Open Bicycle Trip Planner web interface . 31
4.3 Examples of used icons . 33
4.4 Example of map data without cycleway . 34

xi

List of Tables

2.1 Comparison of Map SDKs for Android . 8
2.2 Comparison of reviewed applications . 11

xiii

List of Abbreviations

API Application Programming Interface

CRUD Create Read Update Delete

FRQ Functional Requirements

JSON JavaScript Object Notation

NRQ Non-Functional Requirements

OBTP Open Bicycle Trip Planner

OSM Open Street Map

POI Point Of Interest

REST Representational State Transfer

SDK Software Development Kit

SQL Structured Query Language

UC Use Case

xv

Chapter 1

Introduction

1.1 Motivation

Today city cycling in Prague is becoming a better alternative to using a car or public
transport. Compared to these motorised means of transport cycling brings more benefits
but some disadvantages may be also found.

On the one hand cyclists are not limited by waiting in traffic jams which is a very common
phenomenon in cities nowadays. Cyclists do not have to wait at stops for a bus or tram to
arrive and they do not have to change lines. Purchasing a bicycle is a very cheap option in
comparison with buying a car and it applies to its operational expenses as well. Cyclists
do not have to search for an empty spot on parking lots which primarily the centre of the
city has lack of. Besides that cycling is very friendly to the environment; it produces no
greenhouse gas. It also helps to lower noise pollution in the city. Lastly cycling is good
for people’s well being. It helps to relax and lower the stress level. In addition, people
might feel better if they know they are doing something for their body.

On the other hand cycling has some disadvantages too. Cyclists are endangered by cars
while riding on busy city streets. Cycling is a physical activity so if people go to work on
a bicycle they probably get sweaty. That is not pleasant if they have to work for another
eight hours.

The number of people using bicycle for transport around the city is constantly growing.
According to a survey1 conducted in September 2012, the number of cyclists in Prague has
doubled in comparison with 2010. So there are 120,000 cyclists riding a bike on regular
basis in Prague.

It is important to provide an easy transition between using motorised means of transport
and bicycle for new cyclists. Beginners need to find a way how to move around the city,
which includes finding the right route for their journey. It is also important that they
use routes that are not difficult, routes that are not dangerous and routes that lead them
to their final destination with the least effort. For skilled cyclists the city should be
presented from another point of view – showing them various options of routes that they
may otherwise overlook and that would be more favourable for them.

1Auto*Mat. Pr̊uzkum cyklistických preferenćı ze zář́ı 2012. 2013

1

1.2. OBJECTIVES

1.2 Objectives

The objective of this project is to design and implement an application that can plan
routes for bicycle journeys and then navigate users on these journeys. I chose “City Bike
Planner” as the name of the application. The application will be developed for Android
platform and will be available for download in Google Play store2.

Routing service and navigation instructions will be provided by Open Bicycle Trip Plan-
ner3 (OBTP). The application will allow users to create and save places which will speed
up the process of defining “from” and “to” parameters. Navigation will also be a very
important part of the application and will help users during their journey and notify them
of any possible difficulties on the route.

1.3 Structure

The bachelor’s thesis is comprised of six chapters. In chapter 2 I analyse cyclists in
Prague and their requirements, features that are required by the application and three
applications for mobile phones that try to deal with problematics of route planning for
cyclists. In chapter 3 I describe use cases of the application and design of the application’s
user interface. In chapter 4 I describe the implementation process and structure of the
application. In chapter 5 the results from user testing are provided. In chapter 6 I discuss
the results of the project and future improvements.

2https://play.google.com/store
3https://bitbucket.org/mnemet/open-bicycle-trip-planner/wiki/Home

2

Chapter 2

Analysis

In this chapter I will analyse target user groups and their requirements first. Then I will
describe general requirements of map and location aware applications along with five
SDKs for developing map applications on Android. I will provide description of three
mobile applications available for cyclists. At the end of the chapter I will describe OBTP,
which will be used as the routing service and funcional and non-functional requirements
of City Bike Planner.

2.1 Analysis of target groups of users

According to the survey conducted in 20121 over 190,000 cyclists ride at least once a week.
Daily it is around 24,000 cyclists. Major group of 134,000 cyclists is formed by recreational
cyclists, the second major group is formed by traffic cyclists. Over 50 % of cyclists are
15–19 years old. A little over 25 % are cyclists over 40. Women form only one fifth of
cyclists.

Target users of the application can be divided into two groups according to their experi-
ence. The first group is formed by beginners and less experienced cyclists. The second
group is formed by more experienced cyclists and expert cyclists. In the following section
I will describe these two groups and their requirements. The following information is taken
from the survey of cyclists preferences2 conducted in 2010.

2.1.1 Beginner cyclists

For beginner cyclists the main priority is safety and comfort of their route therefore it is
important to them to use routes where there are no obstacles or difficulties. The distance
of route they are willing to commute is around 8 kilometres with maximum elevation
around 77 metres. The survey further says that beginner cyclists would be riding more
frequently if obstacles on their route were removed. The interesting fact is that both
groups of cyclists do not mind time delay in comparison with other means of transport.
Beginner cyclists prefer to use cycleways and cycle lanes to main streets. As the most
difficult obstacles they state riding in traffic jam, turning left, riding through difficult
crossroads, steep ascending and cobblestone terrain.

1Auto*Mat. Pr̊uzkum cyklistických preferenćı ze zář́ı 2012. 2013
2Filler, V. Dotazovaćı pr̊uzkum cyklistických preferenćı – analýza výsledk̊u. 2010.

3

2.2. OVERVIEW OF REQUIRED APPLICATION’S FEATURES

The application could provide an easy way of finding the right route. Cyclist can find
comfortable and safe routes that would help them in their first steps and encourage them
to become regular cyclists.

2.1.2 Expert cyclists

Same as for beginners the main priority for expert cyclists is safety of the route but opposite
to beginners they prefer quickness of the route to its comfort. The distance they are willing
to commute is around 12 kilometres with maximum elevation around 100 metres. Experts
prefer cycleways, cycle lanes and they do not mind main streets but they do not prefer
cycleways as much as beginners. Expert cyclists state almost the same difficult obstacles
as beginners. The difference is that they do not mind turning left at the crossroads and
would overcome steep ascending up to 10 %.

Expert cyclists know the city well so it is possible that they do not have to use a special
application to show them how to get from place A to place B. Or they use some online
routing system where they find a route and later they navigate from memory. Nevertheless
the application could offer them better routes, because it takes into consideration their
preferences.

2.2 Overview of required application’s features

This section provides a description of features required by map and location aware appli-
cations which will be also used in the City Bike Planner application.

Map rendering There are two possible methods how to render a map base.

The first method uses prerendered map tiles that are downloaded only when they are
needed. This method is limited by internet connection. Internet connection must be
available and it has to provide download speed which is fast enough. Some APIs allow
map tiles caching so they do not have to be downloaded every time they are needed.

The second method uses vector map. This method is limited by the size of the vector
map. Mapsforge project provides vector map of the Czech Republic that has 196 MB.
This method is further limited by rendering capabilities of mobile devices because the
map has to be rendered every time from scratch.

Overlays Map API has to provide means to enhance map with other graphical elements
known as overlays. For example marker overlays indicate individual places on map or
polyline overlays that are used to display route.

Geocoding Geocoding is one of the main processes used in many location aware applica-
tions. It converts addresses like “Technická 2, Praha 6, Česká republika” into geographic
coordinates which consist of latitude and longitude values. These values are used for
placing markers or drawing lines and other graphical elements onto the map.

Complementary process to geocoding is reverse geocoding which converts latitude and
longitude values into human readable addresses.

Routing Routing is a process of finding a path between two nodes in a graph. In most
of the route finding applications routing is used to find a route between two or multiple

4

2.3. REVIEW OF MAP SDKS

places. Often different modes of routing can be set to adjust users’ preferences such as
pedestrian, bicycle or car mode.

Navigation Navigation or more specifically turn by turn navigation is used to guide
users on their route. Users are usually informed about the next change of direction so
they know where they have to turn. Further they can be warned against possible dangers
or obstacles on the route.

2.3 Review of Map SDKs

In the following section I will analyse available SDKs for developing Android applications
with maps. I chose five SDKs for the analysis. The main SDK for working with maps
is Google Maps Android API V2. Most of the other SDKs are trying to substitute older
version Google Maps Android API V1.

2.3.1 Google Maps Android API V2

Google Maps Android API V23 enables developers to add a Google map to their appli-
cation. At the beginning developers have to register their project in the Google APIs
Console. After the registration developers can create API key which is needed in order to
use Google maps and other Google APIs. Furthermore they have to download the Google
Play services which contain the Google Maps API. Google Maps API uses OpenGL for
rendering the map base and only Google Maps can be used as the base. Maps can be
included as a MapView or as a MapFragment. More than one map can be displayed on
the screen when using MapFragment.

Main features:

• Drawing Markers, Polylines, Polygons, Ground and Tile Overlays on the map.

• Interacting with the map by Zooming, Panning, Rotating and Tilting.

Other APIs that can be used together with Maps API:

Location API

– Determining the device location and listening for its changes.

– Determining the type of transport such as walking, cycling, driving.

– Creating and monitoring predefined geographical regions.

– Geocoding and reverse geocoding.

Directions API

– Calculating directions between locations.

– Providing waypoints for routing (number of waypoints is limited to 8).

– Searching for directions for transit, driving, walking or cycling.

3https://developers.google.com/maps/documentation/android/

5

2.3. REVIEW OF MAP SDKS

Figure 2.1: Displaying marker and info window
with Google Maps Android API V2

2.3.2 MapQuest

Mapquest4 provides basic functions such as raster map tile rendering and overlays drawing.
It also provides access to multiple MapQuest Open services:

• Guidance API Web Service allows developers to request guidance route information
between two or more points. Several modes for routing can be set, such as fastest,
shortest or bicycle.

• Geocoding Service allows developers to request latitude and longitude parameters
for an address and vice versa.

• Nominatim Search Service allows developers to find different types of POIs in a pre-
defined radius or corridor. It uses OpenStreetMap data for place searching.

Figure 2.2: Example of data returned by Guidance API

4http://developer.mapquest.com/web/products/featured/android-maps-api

6

2.3. REVIEW OF MAP SDKS

2.3.3 Mapsforge

MapsForge5 provides a free map library. It uses vector map data so they can be accessed
offline. These maps can be also styled. Vector map data for continents or individual
countries can be downloaded from MapsForge server. Custom map layer can be also
created6. Other features such as drawing markers and lines or interaction with map are
very limited. Routing and geocoding are not implemented so third party libraries have to
be used.

2.3.4 Nutiteq

Nutiteq7 is a good replacement for Google Maps API. Almost every feature in Google
Maps API is also provided by Nutiteq. In addition, both raster and vector map layer can
be used as the map base. MapQuest can be used for routing. Geocoding feature is not
implemented but online services provided by MapQuest can be used.

Figure 2.3: Route with directions from MapQuest in Nutiteq sample application

2.3.5 OsmDroid + OSMBonusPack

OsmDroid8 is a free library which represents almost full replacement of older version of
Google Maps Android API V1. It works with OpenStreetMap data. Only slf4j-android
logging library is required for proper working. These basic functions are extended by
OSMBonusPack library9.

MapQuest service can be used for routing but developers need to register and obtain API
key. Waypoints can be also included in route request. Route is returned in xml format
and contains directions that can be used for navigation. Library contains an xml parser
which transforms xml response into simple java object. Geocoding and reverse geocoding
use OpenStreetMap POIs with Nominatim.

5https://code.google.com/p/mapsforge/
6http://extract.bbbike.org/
7http://www.nutiteq.com/
8https://code.google.com/p/osmdroid/
9https://code.google.com/p/osmbonuspack/

7

2.3. REVIEW OF MAP SDKS

(a) Route with directions (b) Itinerary

Figure 2.4: Example of OSMBonusPack features

2.3.6 Evaluation of Map SDKs

In this section I provide a comparison of Android map SDKs showing the features required
by location aware applications.

Table 2.1: Comparison of Map SDKs for Android

Google Maps MapQuest Mapsforge Nutiteq OsmDroid

Map rendering vector raster vector raster, vector raster

Overlays yes yes yes yes yes

Geocoding yes yes no* no* yes

Routing yes yes no* yes yes

Directions yes yes no* yes yes

* a third party library have to be used

I implemented the basic application with all of these Map SDKs. In all of them I came
across bugs such as flickering map base or non-functional event listeners. In my opinion
the best SDK is Google Maps Android API V2. Although it uses Google Maps so the
internet connection have to available it provides best interface for working with map such
as map rotation and map tilt important for navigation. In comparison with other map
SDKs, Google Maps API contains less bugs and is the most stable SDK of those previously
reviewed.

8

2.4. REVIEW OF AVAILABLE APPLICATIONS

2.4 Review of available applications

In this section three journey planner applications for cyclists will be discussed. All of these
applications use free OpenStreetMap10 data for routing.

2.4.1 Cyclestreets

Cyclestreets11 is a mobile version of a journey planner for cyclists. It can plan routes
including waypoints. Routes are obtained from the Cyclestreets website. It uses four
modes for routing: quietest, balanced, fastest and shortest. It provides a turn-by-turn
itinerary. It has a feature for uploading photos from routes to point out problems or
good practice. These photos are displayed on a photomap which is another feature of the
application. The application is intended for users in the United Kingdom but map data12

for Prague are also available for download in Google Play.

(a) Point selection (b) Navigation (c) Itinerary

Figure 2.5: Cyclestreets user interface

2.4.2 OsmAnd

OsmAnd13 is an open source navigation system. The application is not designed primarily
for cycle route planning. It also provides route planning and navigation for cars and pedes-
trians. It works both online and offline. There are two versions of the application. The
free version contains free world vector maps; the number of downloadable detailed regional
maps is limited to ten. The paid version offers unlimited map downloads. Moreover, it
provides access to offline Wikipedia POI database.

10http://www.openstreetmap.org/
11https://play.google.com/store/apps/details?id=net.cyclestreets&hl=cs
12https://play.google.com/store/apps/details?id=net.cyclestreets.maps.czprague&hl=cs
13https://play.google.com/store/apps/details?id=net.osmand&hl=cs

9

2.4. REVIEW OF AVAILABLE APPLICATIONS

(a) Point selection (b) Navigation (c) Itinerary

Figure 2.6: OsmAnd user interface

2.4.3 BikeCityGuide

BikeCityGuide14 is a navigation system designed specifically for city cyclists. During
routing the application prefers side streets and cycleways to busy main streets. The route
planning and navigation system work both online and offline. It uses vocal instructions
during the turn-by-turn navigation which enables safer and comfortable cycling. A big part
of the application is a tour guide. Each city has pre-assembled tours which lead around
their sights and other interesting places. It works only for some European countries.
The available countries are Austria, Belgium, France, Germany, the Netherlands, Spain,
and Switzerland. Moreover, only few cities from each country are supported and a fee is
charged for the individual city data.

(a) Point selection (b) Navigation (c) Tour through the city

Figure 2.7: BikeCityGuide user interface

14https://play.google.com/store/apps/details?id=org.bikecityguide&hl=cs

10

2.5. OPEN BICYCLE TRIP PLANNER

2.4.4 Comparison of reviewed applications

In this section I provide a comparison table showing the features available in the reviewed
applications.

Table 2.2: Comparison of reviewed applications

CycleStreets OsmAnd BikeCityGuide

Primarily
for cyclists

yes no yes

Raster map
(online)

yes yes no

Vector map
(offline)

yes (13 MB) yes (479.9 MB) yes

Can be used
in Prague

yes yes no

Routing types fastest, shortest,
quietest, balanced

avoid ferries,
avoid highway,

avoid unpaved road

unknown

2.5 Open Bicycle Trip Planner

OBTP was originally designed and implemented by Marcel Német as a Bachelor’s project15

at Department of Computer Science and Engineering, Faculty of Electrical Engineering,
Czech Technical University in Prague. Currently it is under development by Agents4its16

group. It uses OpenStreetMap data as the base for routing. During routing it considers
properties of route segments and users’ requirements.

The route is evaluated from four aspects:

Speed aspect Speed acpect prioritises cycleways and cycle lanes. It avoids routes that
require cyclists to dismount their bicycle and it also avoids stairs or crossings.

Comfort aspect Comfort aspect is based on speed aspect. It avoids steep ascending.
It is not strict about dismounting bicycle. In comparison with speed aspect it discourages
stairs much more. It prioritises routes with lower traffic.

Length aspect Length aspect only considers length of a route and ascend. Ascend has
lower impact than in speed or comfort aspect.

Quietness aspect Quietness aspect prioritises routes with low or none traffic – basically
all routes intented only for cyclists.

Along with average speed the combination of these aspects are used for calculation of the
route. More about the use of OBTP can be find in Chapter 4 in Routing section.

15Német, M. Open Bicycle Trip Planner. Bachelor Thesis. Czech Technical University in Prague, 2013.
16http://agents4its.net/

11

2.6. CITY BIKE PLANNER REQUIREMENTS

2.6 City Bike Planner requirements

In this section functional and non-functional requirements of the application are listed.
The functional requirements define functionality of the application’s components. The
non-functional requirements define constraints of the application that do not have an
effect on the application’s functionality.

2.6.1 Functional requirements

FRQ01 The application will allow users to set start and finish points of a route. Start
and finish points serve as the main properties for route calculation. They can be set by
two methods. The first method is by setting the point from the map. The second method
is by typing an address into the input field.

FRQ02 Application will allow users to search for a route between two points. If all
required properties are set users can start the routing process.

FRQ03 The application will allow users to save favourite places. Users can save favourite
places so they do not have to search for them repeatedly if they use them frequently.

FRQ04 The application will allow users to save favourite routes. Users can save favourite
routes so they do not have to search for them again.

FRQ05 The application will display route on the map. The route will be displayed on
the map so that users can easily see how the route is assembled.

FRQ06 The application will display a route itinerary. The list of turn-by-turn instruc-
tions will be displayed.

FRQ07 The application will display a route profile. The route profile will be visualized
as a line graph so that users can see where steep ascends or descends are on the route.

FRQ08 The application will navigate users on their route. The route will be displayed on
the map along with turn-by-turn navigation instructions while following users’ movement.

2.6.2 Non-functional requirements

NRQ01 The application will use OBTP as the routing service.

NRQ02 The application will run on devices with Android 4.0 and higher.

NRQ03 The application will use Google Maps as the map base.

12

Chapter 3

Design

In this chapter I will describe the design of the application. In the first part I will describe
navigation logic between individual screens. In the second part I will focus on use cases
diagrams along with description of the individual use cases. In the third part I will provide
images and description of GUI design of the main screens of the application.

3.1 Navigation between screens

In this section the navigation between screens is described. The scheme of the navigation
is shown in Figure 3.1. The arrows are labelled with an action which links the individual
screens together. The base navigation structure is formed by the navigation drawer pat-
tern. The navigation drawer forms the main navigation menu and contains links to the
planner, places, route, routes and navigation screens.

Figure 3.1: Scheme of navigation between screens

13

3.2. USE CASES

3.2 Use cases

In this section I will provide use cases diagrams with description of the individual use cases
of the application. They are divided into four main parts according to the functionality
they are connected to.

3.2.1 Route planning

In this section the use cases associated with process of route planning are described. These
use cases are linked to the Planner screen.

Figure 3.2: Route planning use cases diagram

UC01 Set start point – user sets a start point from the previously saved places, from
the map, by searching in the street names database or by accessing the current location.

UC02 Set finish point – user sets a finish point from the previously saved places, from
the map or by searching in the street names database.

UC03 Set profile – user sets a profile of the route such as Commuting, Peaceful or
Extreme.

UC04 Swith points – user swiches start and finish point.

UC05 Find route – user starts the routing process.

14

3.2. USE CASES

3.2.2 Managing places

In this section the use cases associated with places management are described. These use
cases are linked to the Places screen and New Place screen.

Figure 3.3: Managing places use cases diagram

UC06 Save place – user saves a new place into the database.

UC06a Set name of place – user provides a name for a new place.

UC06b Set address of place – user sets an address from the map or from the
suggestions.

UC07 Delete place – user deletes a place from the database.

UC08 Display saved places – user displays a list of the saved places.

3.2.3 Managing routes

In this section the use cases associated with route management are described. These use
cases are linked to the Route screen, Routes screen and RouteReview screen.

UC09 Save route – user saves a new route.

UC09a Set name of route – user provides a name for a new route.

UC10 Delete route – user deletes a route from the database.

UC11 Display saved routes – user displays a list of the saved routes.

UC12 Display current route – user displays the currently active route.

UC12a Display map – user displays a route drawn onto the map.

UC12b Display itinerary – user displays the itinerary.

UC12c Display profile – user displays the route profile.

15

3.2. USE CASES

Figure 3.4: Managing routes use cases diagram

3.2.4 Managing navigation

In this section the use cases associated with navigation management are described. These
use cases are linked to the Navigation screen.

Figure 3.5: Managing navigation use cases diagram

16

3.3. GUI DESIGN

UC13 Start navigation – user starts the navigation process.

UC14 Stop navigation – user stops the navigation process.

UC15 Review travelled route – user displays the travelled route.

UC16 Display itinerary – user displays the itinerary that starts with the current in-
struction.

3.3 GUI Design

In this section the user interface design for main screens will be discussed. I designed a
prototype of the application as a part of my semester project. The prototype was created
with Balsamiq1 wireframing software. The prototype was tested by real users. Three
people were invited to testing sessions from whom two were advanced cyclists who ride
several times a week and one was a professional cyclist who rides every day. During the
design process I followed Android Design guidelines2.

The final UI had to be redesigned in order to meet users’ preferences and to be able to
work with OBTP. This section contains images from the original prototype in comparison
with redesigned UI that was created in Android Studio3 layout editor.

3.3.1 Planner UI design

The planner screen (see Figure 3.6b) is the main part of the whole application. Its func-
tion is to enable users to provide parameters needed for route planning. Firstly there
are parameters for definition of start and finish points of the route. Secondly there is
a parameter which defines the route profile.

The route points definition group is formed by autocomplete text fields and image buttons
on the right. These buttons provide access to “select from map” feature. When the
buttons are clicked the map screen is opened and users can select needed locations. When
the autocomplete text field is activated a suggestion box with the saved places appears.
Users can choose from the saved places or type a new address; the suggestions will be
filtered according to the characters typed in.

“Select from map” feature is intended for specifying precise positions of points. If the text
field is filled the icon that indicates the position is shown on the map and can be easily
dragged to the required position. In addition there is an option for quick access to the
current position located in the action bar. After activating this option the current location
is filled into the text field. An action to switch the start and finish points is also located
in the action bar.

The parameter for definition of the route profile is set by a spinner. Three profiles are
available: Commuting, Peaceful and Extreme.

The button that starts the routing process is located at the bottom of the screen.

1http://balsamiq.com/
2https://developer.android.com/design/index.html
3http://developer.android.com/sdk/installing/studio.html

17

3.3. GUI DESIGN

Changes made

There were three additional buttons for definition of terrain, obstacles and POIs of the
route in the prototype (see Figure 3.6a). They had to be removed because OBTP can only
calculate routes according to four aspects so only the spinner for setting the route profile
was kept. These profiles have predefined aspect values. By removing these buttons a new
space was gained so the titles of the text fields were repositioned under the fields to meet
design guidelines.

(a) Prototype planner screen (b) Redesigned planner screen

Figure 3.6: Planner screen interface design

3.3.2 Map UI design

The map screen (see Figure 3.7b) displays map and a marker according to the currently
set mode – start point mode, finish point mode and new places mode.

The point can be set by long touch gesture or by dragging the marker. Marker info window
contains the title of the selected mode and address corresponding with marker location.
An action to confirm selection is located in the action bar.

Users interact with the map via gestures. Swipe gesture is for map moving. Pinch open
and pinch close gestures are assigned to zooming in and zooming out respectively.

Changes made

Originally the map screen (see Figure 3.7a) was designed to also show the found route so
the action to switch to the navigation was located in the action bar. In the redesigned
version the route is shown in seperate activity and the map screen enables only selection
of points.

18

3.3. GUI DESIGN

(a) Prototype map screen (b) Redesigned map screen

Figure 3.7: Map screen interface design

3.3.3 Route UI Design

Route screen is formed by three individual screens each of which displays different visual-
ization of the route. These screens are accessible through the tabs navigation.

The map tab displays the route with its total length and time estimation (see Figure 3.9a).
The route is drawn in different colours according to the type of the individual route segment
such as cycleway or road. The icons indicating obstacles on the route are also displayed
on the map to give users warning. The itinerary tab displays the itinerary of the route
(see Figure 3.9b). The profile tab displays the elevation profile of the route and some
additional statistics such as the total ascending or the total amount of metres travelled on
cycleways (see Figure 3.9c).

The actions for saving the route and for switching to the navigation are located in the
action bar.

Changes made

The original route visualization was a part of the map screen (see Figure 3.8a). In the
redesigned version it is a part of the new activity with the tabs navigation. Along with
the route drawn onto the map there is other tab containing the route itinerary which
was originally displayed on a separate screen. The profile screen was not included in the
previous version and was added to satisfy requirements of users – they wanted some kind
of visualization of physical requirement of the route and more information about the route.

19

3.3. GUI DESIGN

(a) Route screen (b) Itinerary screen

Figure 3.8: Prototype route and itinerary screen design

20

3.3. GUI DESIGN

(a) Route drawn on map (b) Route itinerary

(c) Route profile

Figure 3.9: Route screen interface design

21

3.3. GUI DESIGN

3.3.4 Places and routes UI design

The places screen contains a list of the previously saved places (see Figure 3.10a). Each
list item includes the name and address of the place. There is a button for removing the
place from the list on the right side of the item. The action for adding a new place to the
list is located in the action bar.

If users want to add a new place a new screen is displayed (see Figure 3.10b). The screen
contains two text fields. The first one is for the name of the place which is used instead
of the address in suggestions list when choosing start or finish point of the route and the
second one is for the address itself. There is also an image button for setting a place from
the map on the right side of the address text field.

The places screen was redesigned only visually and it is not different from the prototype
design so only the redesigned screens will be shown below.

The routes screen is designed similarly to the places screen. It displays the name of the
route, start and finish address, route length and time estimation. An action for a new
route is located in the action bar and leads to the planner screen. The routes screen was
not a part of the prototype design.

(a) List of places (b) Creation of new place (c) Routes screen design

Figure 3.10: Places and routes interface design

22

3.3. GUI DESIGN

3.3.5 Navigation UI Design

The navigation screen (see Figure 3.11b) provides users with turn-by-turn instructions and
visualizes the nearest surroundings during the ride. The top part of the screen contains
the instructions themselves. On the top left side there is an enlarged icon of the direction
and distance to the direction change to them together with the address linked to this
instruction. Users’ position is shown at the bottom part of the screen, so that users
can see a bigger part of the map that lies before them. The orientation of the map is
recalculated according to the current direction of users’ movement. The actions to display
the itinerary and to stop the navigation are located in the action bar.

Changes made

The original version displayed icons of POIs on the map (see Figure 3.11a) and the instruc-
tions were positioned differently. In the redesigned version only users’ position and basic
instructions are shown so the individual content parts do not fight for users’ attention.
The route can have four colors – blue (road), green (cycleway), gray (pavement) and red
(stairs) which show users to know where they are supposed to ride.

(a) Prototype navigation screen (b) Redesigned navigation screen

Figure 3.11: Navigation screen interface design

23

3.3. GUI DESIGN

24

Chapter 4

Implementation

The application was implemeted for Android operating system. It is designed to run on
mobile devices with Android 4.0 and higher. It uses OBTP routing service for route cal-
culation and navigation instructions. It also uses Google Play services for map displaying
and for geocoding and reverse geocoding features. The HTTP protocol is used for com-
munication with the OBTP and its services are accessed via REST API. In this section
I will describe the implementation process and structure of the application.

4.1 Places data preparation

I created a database that contains street names in Prague which are used for suggestions
while searching for places. Users can set start or finish point of route by selecting a street
from the suggestions list. I obtained initial data containing names of streets from the
official database of addresses located on Ministry of the Interior website1. The database
contains over 8,000 entries. There was a lot of duplicities because some streets are located
inside more than one city district so for each district there is an individual entry. Other
problem was duplicity of abbreviations such as “Karlovo nám.” and “Karlovo náměst́ı”
or “Malostranské nábř.” and “Malostranské nábřež́ı”. I deleted these duplicities and the
final number of streets is 7,278.

As the next step I had to assign latitude and longitude values to each street. I used API
Mapy.cz to access these values. Mapy.cz2 provides latitude and longitude values that are
positioned in the middle of the street. So for specifying precise position of wanted place
the feature “Select from map” have to be used.

The placesdatabase.db file is located in the assets/databases directory and is loaded
into the application using Android SQLiteAssetHelper3 which is a helper class that man-
ages creation and version management using raw asset files.

4.2 Databases

The application contains two SQLite databases. The first database is used to save places
and the second database is used to save routes. I created the places database externally

1http://aplikace.mvcr.cz/adresy/
2http://api.mapy.cz/
3https://github.com/jgilfelt/android-sqlite-asset-helper

25

4.2. DATABASES

and it is loaded into the application differently than common databases. That is the
reason why there are two databases instead of one. The routes database is created by the
application. Each of the databases is accessed with its own content provider.

Places database

The places database contains table of places from placesdatabase.db file that are used
for suggestions and it also contains favourite places saved by user. The table consists of
the following columns:

• id is the unique identificator of database record,

• place name is the name of the place without diacritics according to which the
suggestions are filtered,

• name is the name of the place with diacritics,

• address is the name of the street associated with the place,

• latitude is the latitude value of the place’s location,

• longitude is the longitude value of the place’s location,

• my place is an indicator of places saved by a user.

Routes database

The routes database contains table of users’ favourite routes. It also contains the currently
active route. The start and finish addresses defined by users have to be saved along with
their latitude and longitude values because they are not contained in server response. The
table consists of the following columns:

• id is the unique identificator of database record,

• json is the json string containing response from server,

• name is the name of the route,

• start address is the name of the street associated with start point,

• start latitude is the latitude value of start point,

• start longitude is the longitude value of start point,

• finish address is the name of the street associated with finish point,

• finish latitude is the latitude value of finish point,

• finish longitude is the longitude value of finish point,

• length is the length of the route,

• time is the time estimation of the route,

• my route is an indicator of routes saved by a user.

26

4.3. IMPLEMENTATION STRUCTURE

4.3 Implementation structure

The application is divided into several packages. Their purpose and the main classes
located in them will be introduced in this section.

4.3.1 Activities and fragments

The activities package contains classes that represent the individual application screens.
These screens are formed by UI layouts and components which are located in the res/layout
directory. For some of the activities a fragment from the fragments package is used as
the main layout for the screen. The main activities and fragments are:

DrawerActivity The DrawerActivity class serves as the main activity for the appli-
cation that is launched right after the application is launched. It uses the Navigation
Drawer4 for navigation to other screens. It can have four different fragments as the main
layout:

• The PlannerFragment class contains UI for displaying form for definition of route
properties.

• The PlacesFragment class contains UI for displaying a list of the saved places.

• The RoutesFragment class contains UI for displaying a list of the saved routes.

• The NavigationFragment class contains UI for displaying the map and navigation
instructions.

Figure 4.1: Drawer activity with navigation drawer

4https://developer.android.com/design/patterns/navigation-drawer.html

27

4.3. IMPLEMENTATION STRUCTURE

MapActivity The MapActivity class has the MapsFragment class as a layout. It dis-
plays map from which users can select positions for the start point, for the finish point or
a new place.

RouteActivity The RouteActivity class contains the Fixed Tabs5 navigation for ac-
cess to three separate fragments:

• The RouteMapFragment class displays the found route on the map.

• The RouteItineraryFragment class displays a list of turn-by-turn instructions.

• The RouteProfileFragment class displays route profile information and a graph of
elevation for which the GraphView6 library is used.

RouteReviewActivity The RouteReviewActivity class displays planned route and
real route that users have travelled.

4.3.2 Adapters

The adapters package contains classes that are used to populate different types of lists
in the application.

DrawerAdapter The DrawerAdapter class provides data for the navigation drawer.

ItineraryAdapter The ItineraryAdapter class provides data for itinerary fragment
in the RouteActivity.

PlacesAdapter The PlacesAdapter class provides data from the database of places
for a list of the saved places in the PlacesActivity.

PlacesAutocompleteAdapter The PlacesAutocompleteAdapter class provides data
from the database of places that are used for suggestions for autocomplete text fields in
the PlannerFragment and in the NewPlaceActivity.

RoutesAdapter The RoutesAdapter class provides data from the database for a list
of the saved routes in the RoutesActivity.

4.3.3 Entities

The entities package contains mainly classes that are used to parse JSON route data
into java object.

Instruction The Instruction class represents instructions data linked to the individual
route coordinates.

RouteNode The RouteNode class represents an individual route coordinate and con-
tains the Instruction linked to them.

5https://developer.android.com/design/building-blocks/tabs.html
6http://android-graphview.org/

28

4.3. IMPLEMENTATION STRUCTURE

Route The route is formed by the RouteNode objects. The Route object is used for
displaying the route on the map, for creating an itinerary and for displaying the profile
graph.

4.3.4 Helpers

The helpers package contains classes that simplify work with graphical resources and
start, finish and new place points specific variables.

DirectionImageHelper The DirectionImageHelper class contains methods that help
to transform string representation of directions types to resources images. These methods
are used for displaying directions images in itinerary and during the navigation process.

GeneralPointHelper The GeneralPointHelper is an interface that defines methods
for the work with start, finish and new place points and markers as their representation
on the map. The StartHelper, FinishHelper and NewPlaceHelper classes implement
this interface. Each of these classes then return their specific titles, snippets, positions
and icons for displaying markers on the map and for routing.

MarkerFactory The same activity is used for map displaying so the MarkerFactory

class creates a specific marker according to the mode in which the activity is launched.

4.3.5 Location

The location package contain classes that work with users’ location.

GeocoderManager The GeocoderManager class contains methods used for geocoding
and reverse geocoding.

LocationReceiver The LocationReceiver class extends the BroadcastReceiver7 class
and it listens for changes of device’s location.

NavigationManager The NavigationManager class is used for requesting device’s lo-
cation that is used during the navigation process.

4.3.6 Mock

The mock package contains classes used for testing mock location updates from a custom
test provider. The test provider was used only for testing the navigation process to ensure
the right turn-by-turn instructions are displayed and that the map is correctly rotated in
the direction of user’s movement.

4.3.7 Providers

The providers package contains two providers – the PlacesProvider and RoutesProvider.
These providers give access to databases that store places and routes and to CRUD oper-
ations to modify their contents.

7http://developer.android.com/reference/android/content/BroadcastReceiver.html

29

4.4. IMPLEMENTATION DETAILS

4.3.8 Routing

The routing package contains classes that are used for obtaining route from server and
its additinal modification.

RouteManager The RouteManager contains only one static method that returns the
currently active route from the RoutesProvider.

RouteParser The RouteParser class contains a method that parses server response
into a Route object. Gson8 open-source java library is used for parsing JSON response.

RouteRequest The RouteRequest class is used for creating route request that is sent
to server in order to obtain calculated route.

4.3.9 Utils

The utils package contains additional classes.

HttpRequest The HttpRequest class created by Kevin Sawicki9 is used for comunica-
tion with server.

MathUtil and SphericalUtil The MathUtil and SphericalUtil classes are part of
Google Maps Android API utility library10. They are used for bearing calculation, for
correct map rotating and for indentation of the current position indicator on the navigation
screen.

4.4 Implementation details

In this section details of implementation are discussed. In the first part I will describe
geocoding and reverse geocoding and its use. Then I will focus on the use of OBTP. In
the last part I will describe the navigation functionality.

4.4.1 Geocoding

In the application both geocoding and reverse geocoding are used. The Geocoder11 class
from Google Play services is used for both types of geocoding.

The geocoding is used when users are setting a place by the text input method. As
they write the GetPointTask is executed asynchronously in order to obtain corresponding
latitude and longitude values. The task is located in the PlannerFragment class and uses
the getPointForAddress method from the GeocoderManager. When users only select
a place from suggestions latitude and longitude values from the placesdatabase.db are
used and no task is executed.

The reverse geocoding is used when setting a point from the map. Users can set a point by
long touch on the desired position on the map. A marker is created and the GetAddressTask

8https://code.google.com/p/google-gson/
9http://kevinsawicki.github.io/http-request/

10https://github.com/googlemaps/android-maps-utils
11http://developer.android.com/reference/android/location/Geocoder.html

30

4.4. IMPLEMENTATION DETAILS

is executed asynchronously in order to obtain the address of the place. The task uses
combination of getStreetNameForAddress and getAddressForLatLng methods from the
GeocoderManager. The task is also execuded after users have dragged an existing marker
to a new position.

4.4.2 Routing

OBTP was selected as the routing service. It also returns turn-by-turn instructions. The
service is accessible via REST API. In this section I will describe communication with the
service.

Figure 4.2: Open Bicycle Trip Planner web interface

Request structure

A GET request that is sent to server is created by the createRequest method located
in the RouteRequest class. The method takes LatLng values for start and finish points
and Profile of the route as the parameters from which it creates request in the following
structure:

http://transport.felk.cvut.cz/cycle-planner-1.1.3-SNAPSHOT/bicycleJourneyPlanning/
planJourney?startLon=*&startLat=*&endLon=*&endLat=*&avgSpeed=*
&travelTimeWeight=*&comfortWeight=*&quietnessWeight=*&flatnessWeight=*

where:

• startLon and startLat are longitude and latitude values of the start point,

• endLon and endLat are longitude and latitude values of the finish point,

• avgSpeed is a cyclist’s average speed in kilometres per hour,

• travelTimeWeight is speed aspect value,

• comfortWeight is comfort aspect value,

• quietnessWeight is quietness aspect value,

31

4.4. IMPLEMENTATION DETAILS

• flatnessWeight is shortest distance aspect value,

and * represents decimal values of the individual properties.

Profiles

The profile of the route can be set to meet users’ preferences and it is represented by the
Profile interface. Three basic profiles are implemented as they are described in Német’s
Bachelor’s thesis in Chapter 5. I describe the profiles along with the used values for
travelTimeWeight, comfortWeight, quietnessWeight, flatnessWeight aspects respectively:

• Commuting profile finds a quick and comfortable route. It prioritises cycleways
and avoids unsuitable surface.

Aspects values: 2, 1, 0, 0.

• Peaceful ride profile finds a comfortable route and avoids traffic.

Aspects values: 0.5, 3, 6, 0.

• Extreme profile finds the shortest route but may contain more obstacles.

Aspects values: 3, 0, 0, 1.

Sending request

When users set all parametres on the planner screen they can start the routing process.
When they do a request is created and sent asychronously by executing the RouteTask.
The HttpRequest class is used for the communication with the server. A connection and
read timeouts are set to five seconds so it gives plenty of time for the application to connect
to the server and obtain a response. When the timeouts run out an exception is thrown
and users are informed by a dialog12 that connection to the server has failed.

Server response

A response from the server containing the route properties is sent in JSON format and is
parsed by the parseRoute method from the RouteParser class.

A response contains the following properties:

• status – indicates if a route was found,

• responseId – unique identification number of the route,

• boundingBox – left, top, right and bottom coordinates of bounding box of the
route,

• coordinates – array of longitude and latitude pairs which defines the route shape,

• length – length of a route in metres,

• duration – estimated time in seconds,

12http://developer.android.com/guide/topics/ui/dialogs.html

32

4.5. GRAPHICS

• elevationGain – total elevation gain in metres,

• elevationDrop – total elevation drop in metres,

• elevationProfile – array of altitude values in metres corresponding to coordinates,

• cumulativeDistance – distance of coordinate from the start point,

• instructions – array of instructions, each instruction can contain:

– streetName – name of the street that starts in the corresponding coordinate,

– roadType – indicates the type of the road such as footway or cycleway,

– manoeuvre – turn-by-turn instruction such as turn left or turn right,

– surface – indicates the type of surface such as unpaved or cobblestone.

4.4.3 Navigation

The navigation is an essential part of the application. When users start the navigation pro-
cess the startLocationUpdates method from the NavigationManager class is executed
so the manager begins to request location updates every second. The LocationReceiver

obtains these updates and manages them in the onReceive method.

The LocationReceiver is used in the NavigationFragment where the received locations
are handled. Every location update is recorded and saved in the Application context
so it can be later used to display the real route that users travelled. Bearing is always
calculated from the previous location and current location for the correct map rotation in
the direction of users’ movement.

The computeOffsetOrigin method is used for indentation of the current position indicator
on the map so it is positioned near the bottom part of the screen.

4.5 Graphics

All graphics resources are located in res/drawable-xxxx directories. I designed logo of
the application and directions icons that are used in the itinerary and during navigation.
Other icons and especially marker icons were downloaded from Icons Land13 website.

(a) Application icon (b) Start marker (c) Turn left icon

Figure 4.3: Examples of used icons

13http://www.icons-land.com/

33

4.6. LIMITS OF THE APPLICATION

4.6 Limits of the application

Unfortunately the application cannot satisfy all needs and requirements of cyclists. The
implementation is limited by:

Map data The Google maps are used for displaying the map in the application. These
maps are not designed for cyclists so the cycleways are not highlighted on the map (see
Figure 4.4) and also some other map visualizations do not have to correspond to the real
live situations. That is the major problem because the route that is draw onto the map
may appear to lead nowhere but in reality it does, and it is just not contained in the map
base, which may confuse users.

Route customization The original design took the detailed properties of the route
and users’ requirements into consideration. Users could select types of surfaces that they
wanted to include in route calculation or they could define obstacles that they did not want
to encounter on their ride. This original design had to be abandoned due to capability
of OBTP so only three profiles are available for definition of the route and the individual
terrains are drawn in different colours.

Instructions OBTP uses OSM data for routing and for creation of navigation instruc-
tions. The correctness of instructions depends only on the quality of the OSM data. Some
manoeuvres are not available so it may happen that there are more instructions between
two manoeuvres but they are not contained in server response. That may also confuse
users because there are no instructions available even if the route is obviously changing
its shape on the map.

GPS data The application uses GPS data to access the current location of users. The
accuracy of the data depends on the ability of the mobile device to receive this data and
on the quality of GPS satellite coverage of the individual parts of the city.

Figure 4.4: Example of map data without cycleway

34

Chapter 5

Evaluation

5.1 Prototype testing

I designed a low-fidelity prototype of the application. Its functionality was limited but
the main features were available. The prototype was tested by three real users during the
testing sessions. Two of them were cyclists who ride in the city several times a week and
one was a professional cyclist who rides every day.

The sessions were divided into two parts. In the first part the users answered questions
about their experience with city cycling (see Appendix B). In the second part they worked
with the prototype and were asked to think aloud in order to receive feedback.

The most important findings from the sessions were:

1. The users mostly use journey planner applications available from web. They find the
route online and later they navigate from the memory or from written instructions.
They do not use mobile applications for navigation while they are riding.

Solution: An action for a quick access to the itinerary was added to the action bar.
That could substitute the written instructions.

2. The users would prefer if the application found several routes from which they could
choose the route which they like the best.

Solution: The solution would be to display several routes. In the current implemen-
tation of the application this option is not implemented. There is a problem of how
to decide that two or more routes are different enough so that they can be displayed
together. This is an interesting problem to solve in the future development.

3. The users do not mind obstacles on the route but they would like to be informed
about them.

Solution: The warning icons of possible obstacles are displayed on the map.

4. The users state cobblestone routes as the most difficult obstacle.

Solution: A description of what an obstacle is can be displayed by clicking a warning
icon. The obstacles that can be determined from the OSM data are only cobblestone
and unpaved road.

35

5.2. APPLICATION TESTING

5. The users do not like steep ascending.

Solution: The profile of the route is displayed in the profile tab on the route screen.
Users can see where they have to overcome steep ascending.

These findings were considered during the redesigning process of the user interface. The
changes made in the user interface are shown in chapter 3 in GUI Design section.

5.2 Application testing

The final application was tested by eight users. The participants of the test were students
between 20–25. They all have experience with cycling in the city.

The objective of the session was to test usability of the application and find possible
defects in the interface design. The participants were provided with a list of tasks (see
Appendix C). The tasks were designed to test almost every function in the application.
I was watching the participants as they were executing the tasks and took notes.

The application City Bike Planner in version 2.4 was tested and it was installed on mobile
device HTC Desire 500 with Android 4.1.2 Jelly Bean operating system.

Now I will describe the results from the testing sessions. For each task the expected
execution is described along with information about how many participants executed task
as expected. If there were problems with a task’s execution a description of the differencies
from the expected executions are also included.

At the start of the session the navigation drawer was displayed to simulate first launch of
the application.

Task 1 You want to plan a new route.

Expected execution: Clicking on the Planner item in the navigation drawer menu.

Correctly executed by: 8 participants

Task 2 You want to set your current location as your start point.

Expected execution: Clicking on the my location action located in the action bar.

Correctly executed by: 3 participants

Issues: Five participants did not associated the my location icon with setting the current
location. Two participants started typing address into the input field, three participants
tried to set the start from the map.

Task 3 You have changed your mind, you want to start in Technická street now.

Expected execution: Typing the word “Technická” into the start input field. Choosing
Technická street from the suggestions list as soon as it appears.

Correctly executed by: 8 participants

36

5.2. APPLICATION TESTING

Task 4 You want to set Karlovo náměst́ı 13 as your finish point.

Expected execution: Typing the word “Karlovo náměst́ı” into the finish input field. Choos-
ing Karlovo náměst́ı street from the suggestions list as soon as it appears and adding the
number 13 to the end.

Correctly executed by: 8 participants

Task 5 You are in no hurry and you do not like busy streets, so you set the route profile
accordingly.

Expected execution: Setting the peaceful profile as the route profile. (By default the
commuting profile was set.)

Correctly executed by: 8 participants

Task 6 Find the route.

Expected execution: Clicking on the find route button.

Correctly executed by: 8 participants

Task 7 Find out how long the route is and what the time estimation is.

Expected execution: Reading the information from the labels in the route screen.

Correctly executed by: 8 participants

Task 8 It is possible that you will encounter some obstacles on your route. Find out
what kind of obstacles they are.

Expected execution: Clicking on warning icons and reading the descriptions of the warn-
ings.

Correctly executed by: 8 participants

Task 9 Find out on the map on which type of route you will travel most of the time.

Expected execution: Associating the colour legend with the parts of the route drawn in
different colours and stating pavement as the type of the road which forms most of the
route.

Correctly executed by: 8 participants

Task 10 Find out what the distance from the start point is when you go through
U Ṕısečné brány street.

Expected execution: Switching to the itinerary tab and scrolling down the list to the item
with U Ṕısečné brány street.

Correctly executed by: 6 participants

Issues: One participant did not associated the list of instructions with the word “itinerary”.
The other participant tried to find the U Ṕısečné brány street on the map and guess the
distance.

Task 11 Find out how many metres you will travel on cycleways.

Expected execution: Switching to the profile tab and reading the information.

37

5.2. APPLICATION TESTING

Correctly executed by: 5 participants

Issues: Three participants tried to click on the cycleway in the legend in the map tab.

Task 12 Find out what the distance from the start point is when you are at the highest
altitude. What is the altitude?

Expected execution: Switching to the profile tab and reading the information from the
graph.

Correctly executed by: 8 participants

Task 13 You do not want to set out just yet, but you want to save your route for later.
Save your route.

Expected execution: Clicking on the save route action located in the action bar. Naming
the route and saving it.

Correctly executed by: 8 participants

Task 14 Display your route again.

Expected execution: Clicking on the route item in the list of the saved routes.

Correctly executed by: 8 participants

Task 15 Switch to the navigation.

Expected execution: Clicking the navigate action located in the action bar.

Correctly executed by: 7 participants

Issues: One participant opened the navigation from the navigation drawer.

Task 16 Launch the navigation.

Expected execution: Clicking the start navigation button.

Correctly executed by: 8 participants

Task 17 You are not sure where to go next. Display the itinerary and see the instruc-
tions.

Expected execution: Clicking the show itinerary action located in the action bar.

Correctly executed by: 7 participants

Issues: One participant tried to display the itinerary from the route screen.

Task 18 End the navigation prematurely.

Expected execution: Clicking the end navigation action located in the action bar.

Correctly executed by: 8 participants

Task 19 Find out how many kilometres you have actually travelled.

Expected execution: Reading the information from the route review screen associated with
red colour.

Correctly executed by: 8 participants

38

5.2. APPLICATION TESTING

Task 20 You want to visit Planetárium tomorrow. You know that Planetárium is in
Královská obora 233. Save this place, so you can easily use it in route search tomorrow.

Expected execution: Opening the places screen from the navigation drawer menu. Clicking
on the new place action located in the action bar. Naming the place, setting the address
and clicking on the save place button.

Correctly executed by: 8 participants

Task 21 You are at Planetárium and you want to plan a route back to your start point.

Expected execution: Clicking on the flip points action located in the action bar. (Technická
street was set as the start point and Planetárium was set as the finish point by default.)

Correctly executed by: 5 participants

Issues: Three participants tried to set the points by typing the addresses into the input
fields.

Task 22 Delete Planetárium from the list of saved places.

Expected execution: Clicking on the bin icon in the place item in the saved places list.

Correctly executed by: 8 participants

5.2.1 Results of the testing

All participants stated the application is easy to use as whole. Most of the problems were
associated with actions positioned in the action bar, the participants were focused on the
main content of the screen and might have overlooked these actions. They also stated that
if the my location button was positioned near the start input field it would be easier for
them to associate it with setting the current location. The same applies to the flip points
action. The participants also liked the suggestions because they did not have to type the
whole name of the street.

39

5.2. APPLICATION TESTING

40

Chapter 6

Conclusion

In this Bachelor’s project I have designed a journey planner application for cyclists. The
application is intended to be used only in Prague. It uses Open Bicycle Trip Planner for
route planning and for navigation instructions.

The main part of the application is the planner which enables users to select start and
finish point of the journey. The profile of the route can be further customized to meet
users’ specific requirements. The application contains a database of Prague street names
that are used as suggestions to make it easier for users to set journey’s start and finish
points. Also the points can be set from the map so users can specify a precise location
in Prague and they do not depend on predefined locations. The individual locations and
users’ favourite places can be saved in the application so that the process of setting the
start and finish points can be speeded up.

The application visualizes the found route in three different ways. The first way displays
the route on the map where different types of route are drawn in different colours so users
can see where they are supposed to ride on the road or cycleway. The second way displays
route itinerary which is a list of individual turn-by-turn instructions with information
about where to turn, which street to turn to and how far it is to turning. The third way
displays the elevation profile of the route. The profile is visualized in graph so users can
see where on the route they will have to go uphill or downhill.

The last important part of the application is the navigation. Users can see their progress
on their journey because the application tracks their movement. The navigation also
displays instructions to help users with orientation on their ride. The itinerary is also
accessible from the navigation so users can easily check several successive instructions.

During the design process the application was tested by real users and their requirements
were considered in order to improve the usability of the application.

The current application implementation is in some ways limited. Users can choose only
from three different profiles for routing that correspond to profiles used in OBTP. The
map bases might not correspond with real situations because Google Maps are used and
they are not intended for cyclists. The turn-by-turn instructions or manoeuvres may be
wrong in some cases because the instructions are derived from OSM data that may not
be complete or accurate.

The application can be improved further. The problem of the bad map bases could be
solved by using vector map bases containing information for cyclists but currently there
is no map SDK for Android that could provide all important features for the application
without bugs and ensure absolute functionality without crashes. A new custom map

41

SDK would have to be implemented in order to provide the application with a completely
functional SDK. At the same time if vector map bases would be used the connection to
the Internet would not be required during the navigation. The profiles that users can
choose could be more extended so users have more than three profiles to choose from.
This extention would have to be a result of disscusion with OBTP developers so more
profiles that are different enough from each other could be provided.

42

References

[1] Android Developers. url: http://developer.android.com/index.html (visited
on 04/25/2014).

[2] Android GraphView. url: http://android-graphview.org/ (visited on 04/26/2014).

[3] Auto*Mat. Pr̊uzkum cyklistických preferenćı ze zář́ı 2012. 2013. url: http://www.
auto-mat.cz/wp-content/uploads/2013/04/cyklopr%C5%AFzkum_2012_re%C5%

A1er%C5%A1e.pdf.

[4] BikeCityGuide. url: http://www.bikecityguide.org/ (visited on 04/26/2014).

[5] I.G. Clifton. Android User Interface Design: Turning Ideas and Sketches into Beau-
tifully Designed Apps. Usability. Pearson Education, 2013. isbn: 9780133154818.

[6] Cyclestreets. url: http://www.cyclestreets.net/ (visited on 04/26/2014).

[7] Google Developers. Google Maps Android API v2. url: https://developers.

google.com/maps/documentation/android/ (visited on 04/26/2014).

[8] V. Filler. Dotazovaćı pr̊uzkum cyklistických preferenćı - analýza výsledk̊u. 2010. url:
http://prahounakole.cz/wp-content/pnk/uploads/2010/10/cyklopruzkum_5_

2010_1.1.pdf.

[9] J. Gilfelt. Android SQLiteAssetHelper. url: https : / / github . com / jgilfelt /

android-sqlite-asset-helper (visited on 04/26/2014).

[10] E. Hellman. Android Programming: Pushing the Limits. Pushing the Limits. Wiley,
2013. isbn: 9781118717356.

[11] MapQuest. url: http://developer.mapquest.com/ (visited on 04/26/2014).

[12] Mapsforge. url: https://code.google.com/p/mapsforge/ (visited on 04/26/2014).

[13] R. Meier. Professional Android 4 Application Development. ITPro collection. Wiley,
2012. isbn: 9781118237229.

[14] M. Német. “Open Bicycle Trip Planner”. Bachelor Thesis. Czech Technical Uni-
versity in Prague, 2013. url: https://dip.felk.cvut.cz/browse/pdfcache/
nemetma1_2013bach.pdf.

[15] G. Nudelman. Android Design Patterns: Interaction Design Solutions for Developers.
Wiley, 2013. isbn: 9781118417553. url: http://books.google.cz/books?id=
Ifg1ZpSo7cwC.

[16] Nutiteq. url: http://www.nutiteq.com/ (visited on 04/26/2014).

[17] OsmAnd. url: http://osmand.net/ (visited on 04/26/2014).

[18] OSMBonusPack. url: https://code.google.com/p/osmbonuspack/ (visited on
04/26/2014).

[19] Osmdroid. url: https://code.google.com/p/osmdroid/ (visited on 04/26/2014).

43

http://developer.android.com/index.html
http://android-graphview.org/
http://www.auto-mat.cz/wp-content/uploads/2013/04/cyklopr%C5%AFzkum_2012_re%C5%A1er%C5%A1e.pdf
http://www.auto-mat.cz/wp-content/uploads/2013/04/cyklopr%C5%AFzkum_2012_re%C5%A1er%C5%A1e.pdf
http://www.auto-mat.cz/wp-content/uploads/2013/04/cyklopr%C5%AFzkum_2012_re%C5%A1er%C5%A1e.pdf
http://www.bikecityguide.org/
http://www.cyclestreets.net/
https://developers.google.com/maps/documentation/android/
https://developers.google.com/maps/documentation/android/
http://prahounakole.cz/wp-content/pnk/uploads/2010/10/cyklopruzkum_5_2010_1.1.pdf
http://prahounakole.cz/wp-content/pnk/uploads/2010/10/cyklopruzkum_5_2010_1.1.pdf
https://github.com/jgilfelt/android-sqlite-asset-helper
https://github.com/jgilfelt/android-sqlite-asset-helper
http://developer.mapquest.com/
https://code.google.com/p/mapsforge/
https://dip.felk.cvut.cz/browse/pdfcache/nemetma1_2013bach.pdf
https://dip.felk.cvut.cz/browse/pdfcache/nemetma1_2013bach.pdf
http://books.google.cz/books?id=Ifg1ZpSo7cwC
http://books.google.cz/books?id=Ifg1ZpSo7cwC
http://www.nutiteq.com/
http://osmand.net/
https://code.google.com/p/osmbonuspack/
https://code.google.com/p/osmdroid/

REFERENCES

[20] B. Phillips. AndroidCourseResources. url: https://github.com/bignerdranch/
AndroidCourseResources (visited on 04/26/2014).

[21] J. Pucher and R. Buehler. City Cycling. MIT Press. isbn: 9780262304993.

[22] K. Sawicki. http-request. url: http://kevinsawicki.github.io/http-request/
(visited on 04/26/2014).

44

https://github.com/bignerdranch/AndroidCourseResources
https://github.com/bignerdranch/AndroidCourseResources
http://kevinsawicki.github.io/http-request/

Appendix A

Contents of the CD

<dir> apk -- contains apk file of the application

<dir> prototype -- contains low-fidelity prototype of the application

<dir> source codes -- contains source codes of the application

<dir> thesis-latex -- contains latex version of the thesis

<dir> thesis-pdf -- contains thesis pdf file

45

Appendix A: Contents of the CD

46

Appendix B

Prototype questionnaire

Experiment – Prototyp mobilńı navigace pro cyklisty

17. 2. 2014 Participant:

Demografické údaje

• věk

• pohlav́ı

J́ızda na kole

• Jak dlouho jezd́ıte?

• Na čem jezd́ıte?
(silničńı/horské/citybike/silničńı/trackové kolo, elektrokolo, lehokolo/kolo/koloběžka)

• Jak často?

• Styl j́ızdy podle:

– povětrnostńı podmı́nky

– terén

– kvalita silnic

– profil trati

– hustota dopravy

– profil křižovatky

– stoupáńı

– vzdálenosti

– klasifikace překážek

• Kam? (Popsat detailněji trasu – vzdálenost, vlastńı trasa, četnost, alternace trasy,
zastávky na trase, r̊uzné trasy tam a zpět?)

• Kolik tras znáte?

– Mate nové nebo pravidelné trasy, pro které si trasu muśıte naplánovat?

47

Appendix B: Prototype questionnaire

– Potřebujete se pod́ıvat někdy do mapy (do instrukćı) na info o trase?

Plánováńı tras a navigace

• Plánujete si trasy a jak?

– Plánujete dopředu nebo až “u kola”

– Použ́ıváte nějaké aplikace? Popǐstě přesně, jak je použ́ıváte.

• Použ́ıváte něco na trase (jak se navigujete)?

– aplikace

Co byste ocenili při plánováńı a při j́ızdě, aby to bylo:

• komfortněǰśı

• bezpečněǰśı

• rychleǰśı

48

Appendix C

Testing tasks

1. Chcete si naplánovat novou trasu.

2. Jako startovńı pozici si chcete nastavit Vaši aktuálńı pozici.

3. Rozmysleli jste si startovńı pozici, nyńı chcete zač́ınat v ulici Technická.

4. Jako sv̊uj ćılový bod si chcete nastavit Karlovo náměst́ı s č́ıslem popisným 13.

5. Nikam neposṕıcháte, nemáte rádi rušné ulice, a tak si nastav́ıte odpov́ıdaj́ıćı profil
trasy.

6. Vyhledejte trasu.

7. Zjistěte, jak je trasa dlouhá a za jak dlouho byste se mohli dostat do ćıle.

8. Je možné, že se na trase setkáte s nějakými obt́ıžemi. Zjistěte, jaké obt́ıže to jsou.

9. Z mapy zjistěte, po jakém typu cesty pojedete nejčastěji.

10. Zjistěte, v jaké vzdálenosti od startu budete proj́ıždět ulićı U Ṕısecké brány.

11. Zjistěte, kolik metr̊u celkem pojedete po cyklostezkách.

12. Zjistěte, v jaké vzdálenosti od startu se budete nacházet v nejvyšš́ı nadmořské výšce
a jaká výška to je.

13. Nyńı trasu nechcete absolvovat, ale chcete si ji uložit pro pozděǰśı použit́ı. Uložte si
trasu.

14. Zobrazte znovu tuto trasu.

15. Přepněte se do navigace.

16. Spusťte navigaci.

17. Nejste si jisti, jak dále pokračovat, zobrazte si itinerář a prohlédněte si následuj́ıćı
instrukce.

18. Předčasně ukončete navigaci.

19. Zjistěte, kolik kilometr̊u jste skutečně ujeli.

49

Appendix C: Testing tasks

20. Źıtra chcete navšt́ıvit Planetárium. Vı́te, že se Planetárium nacháźı v ulici Královská
obora 233. Uložte si toto mı́sto, abyste ho mohli źıtra jednoduše použ́ıt pro vyhledáńı
trasy.

21. Nacháźıte se u Planetária a chcete naplánovat trasu zpět tam odkud jste přijeli.

22. Smažte Planetárium z uložených mı́st.

50

	Introduction
	Motivation
	Objectives
	Structure

	Analysis
	Analysis of target groups of users
	Beginner cyclists
	Expert cyclists

	Overview of required application's features
	Review of Map SDKs
	Google Maps Android API V2
	MapQuest
	Mapsforge
	Nutiteq
	OsmDroid + OSMBonusPack
	Evaluation of Map SDKs

	Review of available applications
	Cyclestreets
	OsmAnd
	BikeCityGuide
	Comparison of reviewed applications

	Open Bicycle Trip Planner
	City Bike Planner requirements
	Functional requirements
	Non-functional requirements

	Design
	Navigation between screens
	Use cases
	Route planning
	Managing places
	Managing routes
	Managing navigation

	GUI Design
	Planner UI design
	Map UI design
	Route UI Design
	Places and routes UI design
	Navigation UI Design

	Implementation
	Places data preparation
	Databases
	Implementation structure
	Activities and fragments
	Adapters
	Entities
	Helpers
	Location
	Mock
	Providers
	Routing
	Utils

	Implementation details
	Geocoding
	Routing
	Navigation

	Graphics
	Limits of the application

	Evaluation
	Prototype testing
	Application testing
	Results of the testing

	Conclusion
	References
	Appendix Contents of the CD
	Appendix Prototype questionnaire
	Appendix Testing tasks

