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Abstract

This thesis deals with the robot localization problem. It presents a system based
on the camera localization system Whycon, which is adapted for use with hand-
held devices running Android operating system. The system is extended to take
advantage of several such interconnected devices, each with its own dedicated
camera, providing the localization system with multiple additional points of view.
Deployment of the system is easily done by installing an application on each of
the devices. The application has a simple user interface, which allows the user to
carry out all the preparation procedures necessary for the system to be able to
incorporate the device in the localization. The multiple points of view, resulting
from the usage of several devices, give the system the potential for increased spa-
tial coverage and precision. This thesis describes the challenges of dealing with
several points of view in a camera-based localization system, both while deploying
it and during its operation. It proposes convenient routines, which can be used to
increase performance and efficiency of the system.

Abstrakt

Tato bakalarska prace se zabyva problémem lokalizace robotu. Predstavuje systém
zalozeny na kamerovém lokalizacnim systému Whycon, ktery je prizptusoben pro
pouziti na prenosnych zafizenich s opera¢nim systémem Android. Systém je
rozsiten tak, aby vyuzival nékolik takovychto vzajemné propojenych zatizeni, kazdé
s vlastni kamerou, kterd systému poskytuji nékolik dalsich uhlu pohledu. Pro
pouziti systému je tieba pouze na kazdé zafizeni nainstalovat prislusnou aplikaci.
Ta obsahuje jednoduché uzivatelské rozhrani, pomoci kterého je mozné provést
vsechny tkony, potiebné k ptipravé zarizeni k vyuziti v ramci lokalizacniho systému.
Neékolik pohledu, dostupnych diky pouziti nékolika zafizeni, ddva systému po-
tencial k pokryti vétsitho prostoru a ke zvysené piesnosti. Tato prace popisuje
problémy vyvstavajici pti praci s kamerovym lokaliza¢nim systémem s vice pohledy,
jak pri jeho instalaci, tak béhem provozu. Ptredstavuje praktické postupy, pomoci
nichz 1ze dosdhnout vyssiho vykonu i lepsi efektivity celého systému.
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Chapter 1

Introduction

Localization in mobile robotics is one of the key problems to be solved and is oft-
times a necessity for the robot to fulfil its purpose. If we compare mobile robots
and their need of localization with humans, we find many analogies in the kinds
of problems both robots and humans have to deal with. Some of the tasks, which
such an individual may have to perform—Iike transportation or locating of another
object—are so closely tied with the localization problem, they would not make any
sense without it. Before one travels to a certain destination, one needs to know,
where his starting point is, so he can choose an applicable route. Similarly, to be
able to tell another object’s exact location, an individual has to be aware of its
own position with comparable precision. To solve this problem, humans are usually
able to employ several different sources of information, so they can confirm the
results, as well as increase the precision or robustness of the localization. Robots
on the other hand, mostly have a limited number of mechanisms to do so.

There are many ways to determine a position, generally distinguished by the
used sensors and overall approach. One of such approaches is to take advantage
of an external device, which overlooks the general area, where the subject of lo-
calization is expected to be placed. Such a device then provides the subject with
its position with respect to a certain landmark or even with respect to a defined
origin of a coordinate system. This thesis deals with such an arrangement, in
which there are several devices overlooking an area, where the robot is expected to
appear. These devices are equipped with cameras, which allow them to evaluate
the location of the robot within their view. Then they use wireless communication
to send the results to the robot, so it can use them for its own purposes.

It is a goal of this thesis to propose such a system, that would be easily deploy-
able on hardware already in place, so that it can be tested and used by developers



without much hassle. This involves creating a simple user interface for using the
localization system with handheld devices. Therefore, the proposed system is de-
signed to work on devices running the Android operating system, which are cheap,
commonly available and have the necessary hardware, such as the camera and the
wireless communication facilities. It is an extension of the system proposed by
Tom4s Krajnik, et al. [1] and by Jan Faigl, et al. [2].

1.1 Organization of the Thesis

The thesis is organized in the following way. Below this introduction, Chapter 2 in-
troduces the reader to the problems of localization and provides a simple overview
of the commonly used solutions. Chapter 3 provides a brief introduction to com-
puter vision and camera calibration. Chapter 4 describes the basic method of
localization employed by the system described in this thesis. Chapter 5 deals
with the usage of several cameras, which extend the capabilities of the system.
And finally, Chapter 6 presents some experimental results and achievements of
the proposed system.



Chapter 2

Localization Methods

The localization problem is one of the key problems in any advanced robotic task,
especially when considering mobile robots. By localization I mean the process of
determining an exact position of all relevant parts of the robot in relation to its
surroundings. Since it is such an important and frequently encountered problem,
there are many known ways of dealing with it. In this chapter, I present an
overview of available localization techniques and their basic categories, to put the
chosen approach into perspective. I also show common use cases for each category
to illustrate a typical scenario, in which it makes sense to use a solution similar to
the one described in this thesis.

2.1 Taxonomy of Localization Methods

Localization methods can differ in lots of aspects, be it precision, its variability in
time, area coverage, purpose, or even price of deployment. They can be divided
to several different groups, using these aspects as criteria.

2.1.1 Relative and Absolute Localization
Based on the character of localization process, it is distinguished between relative
and absolute localization [3].

In relative localization, the change of position against a previous step or frame
is measured. These relative changes in position are then stacked one after another,
reconstructing the previous movements of the robot and therefore determining the
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current position of the robot. To describe this position in relation to outside world,
the a priori knowledge of the starting point location is required. Precision of such
systems declines in time with the growing number of measurements each relying
on correctness of the preceding one. Every next steps brings a new, however
small, inaccuracy into the system irreversibly and furthermore worsens the overall
precision. Because of this, it only makes sense to use such localization methods
over short periods of time, or more precisely, over a small number of measurements.

In absolute localization it is not a concern, as each measurement is completely
independent on the previous one. The precision of this localization is therefore
constant, although it is not necessarily better than the precision of relative system.
It is also usually more difficult to set up both technically and financially and it is
often limited to a certain area. For these reasons, it is more often used for indoor
applications. Figures 2.1a and 2.1b show examples of such applications.

(a) RoboCup robotic football com- (b) SyRoTek (System for Robotic
petition E-learning)

Figure 2.1: Absolute localization applications

To increase precision and robustness of the localization a combination of both
approaches described above is often used in practical applications. A typical sce-
nario could be a mobile robot, which uses a lower frequency measurements from
an absolute localization system to eliminate the cumulative error and a higher
frequency measurement from a relative localization system to increase the opera-
tion speed, as it does not have to wait for the next absolute measurement to take
place and can make do with the relative one until such time. In this case, the
localization system described in this thesis would be well suited to play the part of
the lower-frequency reference, because it uses the absolute localization approach.
Also, its suggested deployment on real world of the shelf devices implies it will
mostly be limited to frame rates under 30 FPS, so its usage for high frequency
measurements can prove to be problematic.
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Another situation, in which the absolute localization system could be used
coupled with a relative one, might be in development, when the absolute system
provides a reference frame. Such a reference frame may then be used to measure
precision, while testing newly developed localization system.

2.1.2 Global Localization and Tracking

Based on the knowledge of the starting position, a different problem is solved by
the localization system [4].

During tracking, an assumption can be made that the initial position of the
robot is known. This knowledge is used during the localization to make estimates
of possible robot position in the next step. However, if the system relies on these
estimates too greatly, it can lead to an unrecoverable fault in localization.

Global localization does not need any previous knowledge. It searches the whole
area of coverage, so it can even be used to solve the robot wake-up problem or the
kidnapped robot problem.

The system described here is capable of localizing the target, without any a
priori information. It does, however, use the knowledge of the position from the
previous measurement to determine the starting point of search in the current one,
increasing performance greatly.

2.1.3 Active and Passive Localization

Based on the ability of the localization system to influence the control of the robot,
it can be distinguished between active and passive localization [3].

In passive localization, the location estimate is based only on the feed of data
from a sensor. Active localization, on the other hand, allows the localization system
to directly influence or even completely take over the control of the robot when
necessary. This may happen, for example if a sensor is installed on a moving part
of the robot, such as an arm.

Passive localization is the more common of the two, active localization being
used only in special cases.



2.2 Probabilistic Localization

When facing the localization problem, there is often more than one source of
information. In most cases, there are several sensors or systems, providing use
with different kinds of information of inconsistent precision and varying regularity.
There is therefore a need to merge this data to be able to use them for robot
localization. The most common approach to the data fusion is the probabilistic
localization [3, 5].

According to the probabilistic approach, the sensor findings are random vari-
ables representing location estimates. Also, the probability density is defined as a
function assigning every possible location in the working space a probability, that
it is the real robot’s position. Based on the above, the robot localization prob-
lem then becomes a problem of finding such an estimate of probability density,
which best fits the probability density of the robot’s actual position. The sought
probability density is called belief [5].

The goal of the probabilistic localization is to keep the belief as close as possible
to the probability density of the robot’s actual location. To achieve this, the belief
is updated after each received set of the results from the sensors. The first type of
update, made based on the resources of relative localization, is called prior belief
or prediction. In this step, the location is actually predicted based on the previous
robot location and the most recent sensor data. The second type of update is
called posterior belief or correction, as it corrects the location estimate based on
the data from absolute sensors.

The initial belief is the inceptive value of the belief, even before there are any
data from the sensors. It can be the case, that the original position of the robot is
known, in which case the belief function has a single peak. On the other hand, if
the starting position of the robot is not known, the belief has uniform distribution
over all the locations. There might even be cases, when the initial belief is none
of the above, such as if the robot has several possible starting locations, but the
first two cases are the most common ones.

To be able to correctly calculate the belief, there needs to be a model, which
describes, how to use the sensor data z;, acquired in step 7, to correct the estimate
of location I;. This perceptual model expresses the conditional probability P(z;|l;)
of measuring the last incoming data, given the robot is at the previous location
(i.e. the one being corrected). The perceptual model can be represented either
by an expression, describing how to calculate the value of P(z|l;), or it can be
pre-calculated for each possible combination of z and [ [4].

There are several ways to represent the perceptual model. The discrete ways



include a grid of probabilities, topological graphs and Monte Carlo localization,
while the most common continuous way lies in Kalman filters. Description of
advantages and differences between the above mentioned methods can be found
in [3, 4, 5].

2.3 Common Localization Techniques

To conclude this chapter, I hereby present some of the common examples of local-
ization techniques, divided into the relative ones and the absolute ones.

2.3.1 Relative Localization Techniques

Dead Reckoning is the simplest method for localization estimates, based solely
on the speed, direction of movement and time passed since the last known position.
This old method was originally used by sailors and later by pioneering air plane
pilots. As a common relative localization method, this technique accumulates ad-
ditive error and therefore is not usable in the long term on its own. However, it
is a good complimentary method when used with a precise absolute localization
technique, such as when the ancient sailors used it coupled with celestial naviga-
tion [3].

Odometry is a method based on estimating the change in wheeled robot’s
position by counting the number of revolution of each wheel. The counting is done
by encoders, which translate rotation movement into electric signal. There are lots
of types of encoders in use, the more widely used being the optical encoders, the
brush encoders, potentiometers and the magnetic encoders. The simple optical
encoders are considered to be generally the best [6].

Same as dead reckoning, odometry is subject to cumulative errors. The basic
additive error, caused by chaining too many measurements, is even worsened by
inaccuracies stemming from the basic premise of odometry, that the revolving
motion of the wheels precisely translates to the linear motion of the robot. Lots
of factors may prevent this from being true. Typically the disparity is caused by
unequal size and shape of the wheels, finite resolution and sampling frequency of
the encoder, or random effects of the environment, such as uneven ground or loss
of adhesion.

Inertial Navigation uses gyroscopes and accelerometers to measure the rate
of rotation and acceleration of the robot. By integrating these values, it is possible
to calculate speed and position estimates. However, because the measurements are

7



calculated by integration, the results drift over time, and thus the errors increase
without bound [4]. A popular apparatus, which provides a simple way for robots
to utilize inertial navigation, is the so-called Inertial Measurement Unit, consisting
of three axis angular turning rate detector and three axis accelerometer [7]. Lately,
it finds particularly extensive use in quadcopters.

2.3.2 Absolute Localization Techniques

Landmark Based Localization relies on detection of landmarks. Landmarks
are any features in the environment that a robot can detect. When landmarks
are detected, they are matched with a priori information known about the envi-
ronment to determine the position of the robot. (Even when there is no a priori
information about the environment, it is possible to localize the robot using the
Simultaneous Localization and Mapping (SLAM) techniques [8].)

Landmarks can be divided to active and passive. Active landmarks or beacons
actively broadcast location information. There are two methods commonly used
to determine the absolute location of the robot: triangulation and trilateration.
Triangulation uses distance and angles to several active landmarks, while the tri-
lateration only uses distances. The most well known example of such a system
is the Global Positioning System (GPS), which uses trilateration techniques to
determine latitude, longitude and altitude [4].

Active landmark localization is usually very precise and not very computation-
ally intensive. Disadvantages of using active landmarks are the cost, potential
interference or unavailability of the signal in some parts of the environment, and
the sole need of preparing the environment for the robot.

If the landmarks are not actively transmitting signals, they are called passive
landmarks. Therefore, it is the robot, which must actively search for the land-
marks within its environment. The detection of the landmarks differs according
to the type of sensor used, the most common way of detection being visual—using
cameras.

Passive landmarks may further be divided to natural and artificial. Natural
landmarks are detectable shapes, which are natural parts of the environment.
Indoors, these could be lights, corners of the room, windows or doors. In the
exteriors, typical landmarks are trees, roads or road signs. To find these landmarks
in the image, feature descriptor extraction techniques are employed, such as the
Scale-invariant feature transform (SIFT) [9].

The lack of the necessity to prepare the environment is the greatest advantage



of natural landmarks and is the main reason the passive landmarks are widely
used in outdoors robot navigation. However, they are usually not unique, hard to
detect and they may change unexpectedly.

Thus, it is often better to use artificial landmarks, such as bar codes and
contrasting or coloured geometric figures. This method is used mostly indoors,
where it is relatively easy to position the landmarks. To visually recognize it,
sufficient lighting and direct view of the landmark is necessary, which can also be
mostly expected indoors. Disadvantage of this approach lies in the limited ability
to detect the landmark from a grater distance.

The localization system discussed in this thesis is precisely of this kind—it uses
passive artificial landmarks in the form of contrasting geometrical figure coupled
with visual sensing to perform absolute localization of mobile robots.
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Chapter 3

Computer Vision

Computer vision is the enterprise of automating and integrating a wide range of
processes and representations used for vision perception [10]. In general, computer
vision aims at using cameras for analysing and understanding scenes in the real
world [11]. Tt includes techniques for geometric modelling, cognitive processing,
statistical pattern classification and image processing. Many of its approaches are
mimicking practices commonly used by vision system of humans or animals.

A complete computer vision system should be able to deal with two kinds
of problems [10]. Firstly, there are the problems solved by low-level processes,
such as the ability to determine and quantify lightness, colour, range, etc. These
are not always strictly technical abilities. For example, human colour perception
allows us to recognize black object as black even in a complex scene, where it
reflects more light than objects of other colours. Other examples of these low-
level capabilities are specialized object perception capabilities, such as the human
face recognition, or the ability to visually remember images based on relatively
primitive descriptions. Computer vision must try and reinvent these basic talents
of biological visual systems.

Secondly, a computer vision system should be able to use solutions of the low-
level tasks to fulfil goals, make plans for future actions, create complex models
based on the perceived objects and administer cognitive processes. These abilities
are called high-level capabilities. They give a purpose to the actions performed
by the vision system. A good example of such purpose is the main topic of this
thesis—Ilocalization.

Before moving on to more immediate applications of computer vision to chal-
lenges dealt with in this thesis, a very brief introduction of the basic concepts in
computer vision is presented below.
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3.1 Important Image Characteristics

The most basic data, with which a computer vision system commonly works, is an
image of a scene. An image is defined by integrating and sampling continuous real-
world data in a spatial domain. It consists of an array of pixels, each combining
a position (z,y) € Z? and a value u, the sample at position (x,y). The pixels at
positions (z,y) € Z? form a regular rectangular grid [11].

Values u of the pixels may be single discrete integers in a predefined range,
representing the intensity of light at that position, or they may be sets of several
such values, which can for example represent the colour channels in an RGB image.
These values are commonly stored as two or three dimensional arrays of numbers,
where the location of the pixel corresponds with the position of the value in the
array. Analysis of the values stored in such arrays is the basis of most computer
vision tasks.

3.1.1 Image Structure

An important structure defining feature, which can be found in a majority of
images, are edges or discontinuities in the sampled values of neighbouring pixels.
Edges are important information for understanding the image and are also useful
for simplifying the data representing the image. A convenient way to perform
the simplification and map the image into an edge image is by interpreting the
image intensity values as defining a surface having different elevations at pixel
locations. In that interpretation, the first- or higher-order derivative can be used
to map most of the intensities to values close to zero, only leaving pixels near the
discontinuities (i.e. the edges) with intensities of great absolute values. It appears
to be meaningful to detect edges at locations where the second order derivative
define a zero-crossing [11].

An alternative to using discontinuities in spatial domain as a key to understand-
ing the image structure lies in transforming the image from spatial to frequency
domain. Once transformed, low frequencies represent homogeneous additive con-
tributions to the input image, while high frequencies show local discontinuities such
as edges or intensity outliers. Spectrum and phase of the image mapped to polar
coordinates provide a convenient way to describe the image structure regardless of
the absolute values of the pixel intensities.
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3.1.2 Colour Representation

Colour is a perceptual phenomenon related to human response to different wave-
lengths in the visible electromagnetic spectrum (approximately 400 — 700 nm). In
human vision, colour is one of the most important characteristics of the perceived
scene. Further, it is useful or even necessary for powerful visual processing of the
real world. Computer vision is therefore faced with the problem of describing and
interpreting the colours in a scene.

Colour spaces are a way of organizing the colours perceived by a vision system.
It happens that weighted combinations of stimuli at three principal wavelengths
are sufficient to define almost all the colours humans can perceive. These wave-
lengths form a natural basis from which the colour measurement process can be
described [10].

There are several bases commonly used in computer vision to represent colour.
The most common is the RGB space, which is an additive colour model and
which uses a multi-channel image with values v = (R, G, B), where the R, G, B
are intensities of the red, green and blue colour components respectively [11].
Other colour spaces include the HSI model (HSI = hue, saturation, intensity), the
subtractive CMYK model or the CIE XYZ colour space. Conversions between
colour spaces are possible and frequent, as different colour spaces are better suited
for different use-cases.

Furthermore, while the colour is useful and very important in a lot of proce-
dures, in tasks where it is irrelevant, it quickly becomes an unnecessary burden in
terms of data volumes. In those situations, it makes sense to just use grayscale
images, which not only reduces the amount of data by two thirds, but it even
simplifies a lot of the calculations performed above the data.

3.2 OpenCV

OpenCV is an open source computer vision library written in C and C++ with
interfaces for many other programming languages. It is designed to provide a
simple to use computer vision infrastructure, which helps in building sophisticated
vision applications. It also contains general purpose machine learning functions,
which are highly useful for many vision tasks [12].

The localization system, which is a main topic of this thesis, uses OpenCV in
several ways. Firstly, it uses it as an interface for the camera, which is connected
to the device running the system. It takes advantage of the easy to use methods for
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obtaining frames from the camera in a computer friendly form of two dimensional
arrays (matrices).

Secondly, OpenCV is used as a convenient mathematics library. It offers various
specialized data structures simplifying vector and matrix calculations. There are
handy and effective functions for a lot of standard operations, such as functions
concerning eigenvalues and eigenvectors.

And lastly and most importantly, OpenCV’s algorithms are used to create an
ideal pinhole camera model for the camera the system is using. Each frame cap-
tured by the camera is undistorted according to its intrinsic parameters, allowing
for more precise localization. Then a transformation is done through the pinhole
model, which assigns the projected point on the image plane a location in a real
world three dimensional space. All of that is done with the help of OpenCV. Be-
sides, convenient methods for camera calibration provided by the library are used
to obtain the previously mentioned intrinsic parameters.

3.3 Camera Calibration

The information a camera has about the scene it captures is the intensity of pixels
arranged in a two dimensional array. When an object is recognized in the image,
only its two dimensional location in the image plane is known. For the purposes of
the localization system, an exact position of an object in a three dimensional space
is needed. It is therefore necessary to somehow associate a position in the two di-
mensional grid, which the camera sees, with an actual real world three dimensional
position. This can be achieved by camera calibration and 3D reconstruction. By
camera calibration I mean obtaining the four intrinsic parameters, which encom-
pass focal length, image format and principal point position, as well as radial and
tangential distortion coefficients.

The chosen approach uses a so-called pinhole camera model, where a scene view
is formed by projecting points from the real world three dimensional space into
the image two dimensional grid of pixels using a perspective transformation [13].
This transformation can be described with the following equation:

X

— A[Rt] (3.1)

w
—c

Y
Z
1

where s is the distance of the projected point from the focal plane of the camera,
(u,v) are the coordinates of the projected point in pixels, [R|t] is a matrix of
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extrinsic parameters, which is a joint rotation-translation matrix describing the
position of the object in front of a still camera or vice versa, (X,Y, Z) are the
coordinates of the projected point in the world coordinate space and A is a matrix
of intrinsic parameters, also known as camera matrix, which has the following
shape:
fo 0 ¢

A=10 f, ¢
0 0 1
where (c;, c,) are the coordinates of the principal point, which is usually at the
centre of the image and f,, f, are the focal lengths expressed in terms of pixels.
If (z,y,z) are considered to be the coordinates of the projected point already
transformed to a coordinate system fixed with respect to the camera, then the
transformation above is equivalent to the following (if z # 0):

U= fxE + ¢, (3.2)
z
)

v=rt 4, (3.3)

However, since real camera lenses always have some distortion, both radial and
tangential parts of the distortion need to considered. Therefore the model has to
be extended as follows:

2
o = 2 (U hur® 4 '+ kgt ) + 207 4 o (r2 +2(3) ) (3.4)
2
y = g (L4 krr® + kor* + k3r®) + py <r2 +2 (g) > + 2pzx—3 (3.5)
v=fuy +ey (3.7)

where ki, ks and k3 are radial distortion coefficients, p; and p, are tangential

distortion coefficients and r? = (f)2 + (%)2

Since my application has to deal with a lot of types of cameras, all with slightly
different optics, I needed a unified way to determine these parameters. OpenCV
library provides convenient methods for camera calibration [12, Chapter 11] using
a black and white chessboard pattern or either a symmetric or asymmetric circles
pattern, such as the ones seen in Figure 3.1. This allowed a creation of a simple
interface for users to be able to calibrate their cameras in three easy steps.

1. Printing (or otherwise obtaining) the provided pattern.
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(a) Chessboard pattern (b) Asymmetric circles pattern

Figure 3.1: Calibration patterns

2. Capturing several pictures of the pattern from different perspectives with
their camera. (Approximately ten shots is usually enough.)

3. Running a script that takes in the captured images of the pattern and cal-
culates the desired parameters.

The calculated parameters are then automatically saved in the devices internal
storage to be used in the main localization and tracking tasks.

My implementation of the calibration procedure works with the asymmetric
circles calibration pattern, which, according to the OpenCV Documentation [14],
requires data from less snapshots to form a well-posed equation system for the
calibration.
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Chapter 4

RobotTracker

The RobotTracker application for the Android operating system is based on the
external localization system Whycon—a vision-based software for robot localiza-
tion, described in [1], which has been created with the use of the OpenCV (Open
Source Computer Vision) library. The core of RobotTracker application is essen-
tially a Java port of the original algorithms written in C++-, which is the native
language of OpenCV, wrapped in user-friendly Android interface. It uses the same
technique for detection of simple black and white circular patterns, which is robust
to variable lighting conditions and achieves sub-pixel precision. Other key advan-
tages of the chosen approach are its resolution independence and extensibility to
multiple target detection [1]. However, it is not simply a mirror of the original
code in another programming language. RobotTracker is also an extension of the
project, trying to provide options for usage of several cameras to extend the spatial
coverage of the system. Furthermore, it is aiming to take full advantage of the
Android platform ecosystem, which gives a strong base of in place devices, so that
many users will not be forced to buy an expensive new hardware and also provides
an established distribution system—the Google Play.

Some of the features of this combination of software and hardware are not easily
determined. First of all, the quality of the cameras fitted to common Android de-
vices such as phones or tablets is very varying and while there are ways to quantize
the quality of these cameras [15], easily comparable results aren’t commonly avail-
able. Secondly, the processing power differs greatly across the broad spectrum of
devices, so the performance on each particular device is hard to determine without
real world testing. Last, but not least, since the version of OpenCV for Android is
just a Java Native Interface wrapper of the native OpenCV code, there are some
extra tasks needed to be performed at each point, where the native libraries are
used. That means extra work for the processor, which somewhat hinders the en-
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Figure 4.1: Circular pattern

tire system, as some of the performance is traded for the convenience of using the
platform’s common application programming language—Java.

The localization system described here works with a pinhole camera model. In
reality, this means it is expected from this point further, that the camera has been
calibrated and its intrinsic parameters and distortion coefficients are known. A
possible way to obtain these parameters is described in the previous chapter, but
it is not the only way. The application therefore allows for side loading of these
parameters obtained by some other means, so that the user is not forced to repeat
the process of calibration on each device. Whatever their origin, the calibration
parameters are fundamental for the process of localization, which cannot be done
without them.

4.1 Target Detection

The most basic task in the localization procedure is to locate the circular pattern
in the image, in other words, determine the position of its centre in the image
plane coordinates and its boundaries represented by maxima and minima in the x
and y axes. The pattern consists of two concentric rings—the outer one white, the
inner one black—and a white central disc (Figure 4.1). The detection itself uses a
flood fill technique with on-demand thresholding [1].

In the first run, there is no a priori information, about the pattern’s possible
position in the image, so the picture needs to be searched starting from the top left
pixel, until the pattern is found. However, while processing each succeeding frame,
the last position of all the targets is known (except when the targets have not been
found), so the system can start looking for them in these positions’ surrounding
areas and therefore likely decreasing the number of pixels that need to be checked.
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Knowledge of the previous image also allows us to correctly set the threshold level,
used to classify a pixel as either black or white, right away, whereas in the first run,
in case of an unsuccessful detection, another try needs to be made with a different
threshold. A situation, when the targets are not found at all, can be considered
a worst case scenario, which leads to examination of every pixel of the image and
execution of the flood fill method and the circularity checks on each black pixel
segment present in the image.

The threshold is used as a reference, when determining, whether a pixel is black
or white. The determination is done by comparing the brightness of the pixel with
the threshold. In case the brightness of the pixel is lower than the threshold (i.e.
the pixel is darker), the pixel is considered black. If it is the other way around,
the pixel is considered white.

As a first step, the system is trying to find the outer black ring, so when a white
pixel is detected, it can proceed to the next one. In case a black pixel is detected,
a queue-based flood-fill method is initiated, which searches all the neighbouring
pixels, until a border of white pixels is reached. Afterwards, various checks are
performed on the resulting constrained segment of black pixels for a possible match
with the outer black ring, most importantly minimum size and roundness check.
No redundant pixel classification is done in further search should any of the checks
fail, as the pixels are already marked as belonging to the current segment. If all
these checks are passed, the algorithm starts the flood-fill method again, starting
at the calculated centre of the black ring. This time it searches for white pixels
inside a black border, expecting the inner white disc in the middle of the circular
pattern to be found.

In case the white disc is successfully found as well, further testing takes place in
order to recognize the examined part as the searched circular pattern and therefore
a valid target. These tests include concentricity check and the two segments area
ratio check. The frame is also made modified by painting all the pixels of the white
inner disc of the current pattern black, which prevents multiple detection of the
same target, in case more than one target is being localized.

Result of the procedures described above is a set of features, which are obtained
during the process of detection. These include dimensions of the pattern in pixels,
average brightness and, most importantly, position of the centre of the pattern in
the two dimensional image plane coordinates. Obtaining the image plane coordi-
nates of the target is the first key step in the process of solving the localization
problem. Based on this entry data, further calculations can be made to determine
the position of the target in real world.
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4.2 Target Localization

Firstly, the position can be transformed from image plane coordinates to camera
centric real world coordinates. This is done using the camera calibration parame-
ters and the known pattern dimensions. The procedure—described in [1] and es-
pecially in [16]—involves calculating properties of the ellipse, as which the camera
sees the circle, constructing the ellipse characteristic equation and transformation
to canonical camera coordinate system.

—> Image plane coordinates

—> Camera centric coordinates P Y™
* /
o/ X

/

Image — C’ameml'

Figure 4.2: Transformation from image plane coordinates to camera centric coor-
dinates

Output of the transformation are coordinates in a three dimensional coordinate
system with origin at the principal point of the camera. A result like this may be
sufficient in certain scenarios. Supposing the exact position of the camera (i.e. of
its principal point) is known, the coordinate system belonging to it can be used as
a global reference. This approach is applicable, for example, if the most important
information from the results is the distance of the target form the camera sensor
plane, depicted as the Z coordinate in Figure 4.2. It does not, however, work well
in case there is a need to relate the resulting coordinates to other locations on or
near the viewed plane.

Consequently, there is a second method for transforming the results to a more
usable form. The localization system allows for easy setup of custom coordinate
system within the viewed plane. The coordinate system is determined by four
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points with coordinates (0,0), (0,1), (1,0) and (1, 1), whose positions are marked
in real world with four circular patterns. It is obvious therefore, that the location
information here is only two dimensional. This is because when using a coordinate
system setup by this method, it is assumed that all detected targets will lie in the
viewed plane or negligibly close to it. As long as this assumption is correct, the
third coordinate can be set to zero.

The four patterns are localized in the same way as described above and then
they are used to define the new coordinate system. That means a transformation
matrix is calculated, which projects a point from the camera centric coordinate
system, to the one defined by the four points, as seen in Figure 4.3. This way, the
target is localized within a user defined coordinate system, which every user can
customize to the specific needs of his use case.

—> Camera centric coordinates
Custom coordinates
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Figure 4.3: Transformation from camera centric coordinates to custom coordinate
system

At this point, the localization system running on a single Android device is
complete and ready to be used. Firstly, there is a simple user interface, which
allows the user to calibrate the devices camera. Secondly, there are several param-
eters, the user is prompted to set, like the resolution of the camera and dimensions
of the target circular pattern. Then the device can be positioned, so that the
camera has the area of interest in its field of view. Optionally, a user can setup
a custom coordinate system using several targets, which exactly fits his needs.
Finally, the tracking can be started with a push of a button.
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Chapter 5

Multiple Cameras

Field of view of a single camera can be very limited, especially when wide angle
lenses are not usable on account of their high distortion. It is possible to extend
the area covered by the camera by placing the camera further away, but this ap-
proach places big demands at resolution of the camera and therefore is practicable
only up to a certain point. Not to mention that the expected indoors usage of
the localization system may introduce limiting physical constraints. Analogically,
keeping the camera at a fixed distance and downsizing everything in its field of
view is possible only as far as the resolution is sufficient to perform the detection
on the downscaled circular patterns. One of the possible solutions to this problem
lies in using a whole set of cameras instead of just one.

This approach multiplies the field of view without the need of high resolution
or with insatiable spatial requirements. On the other hand, it has higher com-
putational requirements, because, instead of just one image at a time, there are
multiple images—one from each camera—all of which have to be processed before
moving on to the next frame. If all these cameras were to be attached to a single
processing unit, it would have to be substantially powerful. This is not an issue
once the tracking is already in progress and there is an a priori information about
the position of the target, but in that case, all cameras, except the one which has
the target in view, are redundant for the time being, so there is no need to even
capture the images from these cameras.

The presented implementation does not work with a set of cameras but rather
with a set of complete Android devices running the RobotTracker application and
connected by a shared Wi-Fi network. This means there is an independent process-
ing unit for each camera, which practically negates the need of a high performance
central computer, as the actual processing of each image is done independently on
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the other camera’s images. However, there still needs to be a common mechanism
assorting the results, tracking the target across all the cameras and controlling
which camera (or cameras) should be capturing images at each given moment.
Such a mechanism is especially desirable, because it cannot be assumed the de-
vices have an infinite power source, but rather it has to be expected that they
are powered by batteries with limited capacity. Selectively turning off the power
consuming task of capturing and processing images helps prolong operational time
of the localization system.

5.1 Spatial Arrangement

The usage of multiple cameras requires a predictable way of positioning the cam-
eras above the area to be monitored. A square grid arrangement with the cameras
at the junctions of the grid is a good option, since field of view of each of the
cameras is a rectangle. That way, it can always be conclusively determined, which
cameras are neighbours of each given camera and their respective position. An-
other advantage of such arrangement is that the information needed to describe
the relative position of two cameras is reduced to their coordinates in this two
dimensional grid.
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—> Image plane coordinates

—> Camera centric coordinates

Figure 5.1: Multiple cameras spatial arrangement
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To simplify the distance relationships between the cameras, one of them is cho-
sen and it’s position is used as an origin in the grid’s coordinate system. Distances
of all the other cameras are then defined as distances from this origin.

An obvious requirement, which needs to be met for a successful deployment,
is that all the cameras have the same orientation. Otherwise, it would be im-
practically complicated to keep track of which edge of each frame is common to
which neighbouring couple, or whether it is common to any neighbours at all. This
is relatively easy to achieve on Android devices, however, because they all share
the same default landscape camera orientation—ninety degrees counter-clockwise
from the regular portrait orientation.

Therefore, when the cameras are being positioned, there are two pieces of
information, which the system needs to get. Firstly, the relative position of the
positioned camera in the grid of cameras, i.e. at which junction of the grid is this
camera being positioned. Secondly, the distance (in the direction of both z and y
axis) of the positioned camera from the camera at the origin in meters.

5.1.1 Field of View Overlap

To be able to recognize the target, the whole circular pattern needs to be within
the image. If the cameras were to be positioned in such a way, that the field of
view of the one camera started at exactly the same spot where the field of view
of the next camera ended (as depicted in Figure 5.1), there would be a significant
area on the borderline of the two fields of view, where the pattern would not be
entirely in neither of them. Hence, during the time the target was in this area, it
would not be possible to find it by any of those cameras and it would be lost. The
problem is even worsened by the distortion and other optical imperfections of the
lenses, which are usually worst near the edges of the field of view [17], although
not that significantly after the undistortion procedure is carried out.

To counter this issue, it is judicious to let the fields of view of each pair of
neighbouring cameras overlap somewhat. Just how much the fields of view should
overlap depends on the size of the circular pattern and its ratio to the size of
the area in the field of view of the camera. Practical experience show, that the
width of the overlap area should be greater than the outer diameter of the circular
pattern. The extra space is needed to allow some white space between the edge
of the frame and the pattern itself, so that it can be recognized reliably by both
neighbouring cameras. (To increase clarity of the illustrations, depiction of the
fields of view overlap is omitted, except in Figure 5.2.)
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Figure 5.2: Overlap of the fields of view of neighbouring cameras

5.2 Coordinate Transformation

As stated before, each of the cameras is in this case actually a whole android
device running the tracking application relatively independently on the others.
When such an independent device tracks the target, it can output the results only
in the original image plane coordinates or in its own camera centric coordinates,
unique to each camera. There is no direct way however, to return the results in
some globally understandable shape, so it is necessary to transform them.

The only information each of the separate devices has about the whole system
is its own position in it, with respect to the device at the origin. The camera
centric coordinate system of the camera at the origin can be therefore used as
main coordinates to represent the results globally. They can also be used as a
starting point for prospective further transformation (for example to the previously
mentioned self defined custom coordinate system).

When using the square grid arrangement mentioned above, it is very simple to
transform between local and main camera centric coordinates. The transformation
is a simple translation in either positive or negative direction of the x and y axis of
the camera centric coordinate system, depending on the camera’s relative position
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Figure 5.3: Transformation from local to main camera centric coordinates

in the grid (Figure 5.3). The transformed coordinates (belonging to the main
camera) can then either be used directly, or for further transformation to a user
defined custom coordinate system, as described in the previous chapter.

5.3 Selective Capturing

As mentioned before, it would not be practical to have all the devices capture
frames all the time, because it is not likely that the target would be visible to
every one of them. Therefore, it is convenient to pause the localization on devices,
whose field of view the target leaves and only resume it, when the target re-enters
it. However, when the localization and therefore the pattern recognition is not
running, the device has no way of knowing, whether the target is re-entering its
field of view, so it needs to obtain this information from an outside source.

To be able to do this, there is a device in the system, which is working as a
server, which receives localization results from all other devices connected to it in
a client-server relationship. In my implementation, one of the devices themselves
serves as the server, receiving the results and controlling the clients. Generally
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though, it can be any other device outside the group of capturing devices. It can
even be a device, which is attached to the robot carrying the target, which is
being localized, and which therefore can conveniently feed the results straight to
its control unit.

Every time this server receives the result data from a client, it decides, whether
that particular device should continue localizing, or if it should pause. Accordingly,
it can notify some of the other clients, which are paused at the moment, that
they should resume localizing, based on the same data from the client. These
two decisions are made with two independent groups of condition checks. The
checks are based on several parameters, which are precomputed by the clients
when possible, to minimize the load on the server itself. The server only keeps a
list of the positions of the clients available, which is created during setup, and a
list of the clients which are currently localizing.

5.3.1 Resuming a Client

When the localization is started as a whole, it is expected that one of the devices
has the target in its field of view. Only that device starts localizing and when it
successfully localizes the target, it starts tracking it. Other devices are considered
paused and they wait for the server to notify them to resume localizing. To make a
decision to resume localization on a client, the target must be approaching an edge
of the frame of the camera, which is currently tracking the target. The proximity
of the target to the edge is determined by perpendicular distance of the target’s
centre from the edge in question. If the distance drops below a certain threshold
distance, the target is considered to be near the edge.

Once it happens, the system compares several consecutive frames from this
camera, evaluating, whether the distance of the target from the edge is monoto-
nously receding. If it is the case, the system can make reasonable assumption that
the target is about to leave the field of view of the current camera and also that
it is about to enter or has already entered the field of view of the neighbouring
camera, adjacent to that particular edge. Therefore, if such a camera actually is
part of the system, i.e. if the neighbouring camera exists, it is notified to resume
localization. In case the neighbouring camera does not exist, the system can only
keep tracking the target with the current camera as long as possible.

For the system to be robust, the threshold distance has to be set correctly.
Generally, the distance should be somewhat greater than the outer diameter of
the circular pattern. If it were too small, the system might fail to notice the target
is approaching the edge and subsequently fail to notify the adjacent camera to
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Figure 5.4: Camera frame with a target near the edge

resume localization and lose track of the target altogether. On the other hand,
if it were too big, there would be a lot of false alarms, resulting in resuming the
localization in vain.

5.3.2 Pausing a Client

To make a decision to pause localization on a camera, two conditions have to be
met. Firstly, it only makes sense to pause the localization, if the target is no longer
inside the field of view of the camera. To eliminate possible temporary glitches,
when the localization system fails to localize the target, even though it is still
visible to the camera, there has to be no positive match in several consecutive
frames. Only when the target is not found several times in a row, is it considered
gone from the field of view and the first condition is met.

The second prerequisite for being able to pause a camera is the fact that at
least one of the other cameras is active at the time. In standard situations, there
always is another resumed camera, when the target leaves the field of view of the
current one, because the only standard way for the target to leave the field of
view is to come close to one of the edges. At least the camera adjacent to the
edge the target came close to should therefore be active. However, in case this
neighbouring camera does not exist, the target may have left the field of view and
even though the system knew the target is about to depart, there was no device
to resume localization on.

Other possible circumstances, in which the first condition would be satisfied,
but without another device being active, may be caused by the view of target
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being obstructed by an alien object or by an unexpectedly rapid change in position
of the target. Either way, the best solution for the system is to keep the current
camera localizing, for there are no inklings as to which camera should be preferred.
Alternatively, the system could notify a random device to try and find the target
once again, or it can even notify all of them. This approach, however, would be
very wasteful as far as power is concerned and may put an unbearable load on the
server, in case the system had been created with the use of a lot of devices.

5.4 Implementation

The extension of the original localization system Whycon [1] is implemented in the
RobotTracker application for Android operating system. For increased clarity and
to allow easier demonstration of the extension, the actual application works with
a simplified version of the system. This version expects the set of devices to form
a one dimensional array, creating a straight line arrangement, rather than a two
dimensional grid arrangement. That way, setting the system up is easier, because
the positioning of the individual devices does not have to be as precise and the
revisory measurements are simpler to perform. Although this arrangement is not
especially flexible, the covered area is increased greatly, compared to the original
system.

The precision of the localization on the individual devices remains unchanged,
the transformation from local to main camera centric coordinate system may,
however, introduce some new inaccuracies. These inaccuracies originate from the
distances between the cameras not being measured precisely or from the cameras
not being aligned to be exactly parallel. Nevertheless, if the setup is carried out
carefully, the system retains good precision, as the inaccuracies are not cumulative
and are exclusive to each particular device.

On the other hand, under certain circumstances the multi device system has
extra information, compared to the single point of view version. This happens
when the target appear in fields of view of several cameras at once. In these
situations, the system has either more localization results at the same time, or it
receives the results with multiplied frequency, depending on the way the results
are processed by the server. Another advantage of such cases is higher robustness
of the target localization in environments with lots of obstacles. Obstacles which
prevent the target from being viewed from one point of view are often unimportant
for the view from other relevant components of the system.

Since all the results are actually just estimates of the real position of the tar-
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get, it is therefore possible to get a better estimate, employing the probabilistic
localization principles (as described in Chapter 2). However, when trying to take
advantage of this feature of the localization system, it is a necessity to set it up
accordingly. To get good results, there would have to be big overlaps of the cam-
era’s fields of view and slight modifications would have to be made to the way the
system coordinates the operation of the cameras (e.g. the system should start with
more than just one camera active, as there would likely be more than one camera
with the target in view).

It is clear then, that emphasising the precision this way and therefore setting
the system up with big overlaps between the field of view, goes directly against
the goal of maximizing its spatial coverage. There is no simple way of pursuing
both the spatial coverage and precision goals without one hampering the other.
The implementation presented with this thesis thus chooses to focus on the goal
of increased spatial coverage and puts lower priority on the precision aspect of
multi-camera localization.
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Chapter 6

Experiments

To illustrate the functionality of the presented system, I hereby present results
of several experiments, which has been performed with it. The experiments were
carried out using the devices listed in Table 6.1.

Device Name CPU GPU RAM
Samsung Galaxy S4 Mini 2 x 1700 MHz, Krait Adreno 305 1536 MB
HTC Desire 1000 MHz, Scorpion  Adreno 200 576 MB

Table 6.1: Testing devices

Most of the experiments were performed on the Samsung, as it better represents
an average device of today. The more than 4 years old HT'C' was used only when
cooperation of more devices is necessary.

6.1 Appropriate Setup Parameters

Before performing any experiments, it has to be made sure that the system has
been setup the right way. Especially the multiple cameras variant of the system is
quite sensitive in relation to good setup parameters. When setup incorrectly, the
system may easily be rendered much less reliable. To avoid any issues, there are
several parameters of the system, which a user of the system needs to consider.

First, there is the field of view overlap. For the system to be able to recognize
the target at any given point in space, the whole target needs to be in view of one
of the cameras. This means that when the target pattern touches an edge of the
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camera frame and therefore starts leaving the field of view, it should already be
wholly visible in the field of view of the neighbouring camera. If it is not the case,
then, regardless of the fact, that every point on the viewed plane may be visible,
there is an area near the edge of the frame, where the target cannot be localized.

This may not be a problem, as long as this area is small enough, but even then,
the target may move inside this area along the edge and get completely lost to the
system. Therefore, it is a good practice to place a pattern near the edge of the
field of view to which we plan to add a neighbour and make sure the neighbour
has the target in view as well when put in place.

The second parameter, which has to be kept in mind, is the threshold used to
determine whether a target is near an edge. This is particularly important when
the localized target may be expected to move rapidly. When they do, there is a
greater danger of the target rushing out of view of an active camera before the
system realizes what is happening. Such problems arise when the threshold is to
small. On the other hand, when the threshold is too big, there might be a lot of
unnecessary camera activations, which hinder the system performance.

It was empirically determined, that a good setting of this parameter is one and
a half to two times the size of the target pattern, which in regular indoors means
around 15% of the frame size. For applications with fast target movement, it is
advisable to increase the threshold, for slow target applications, it may be con-
sidered decreasing it, to further increase resource efficiency of the system. (Please
note, that the current implementation of the system, does not allow changes of
this parameter at runtime, as it was found that the above mentioned value—15%
of the frame size—works in majority of situations. There is a constant in the code,
however, which can be changed as necessary.)

6.2 Performance

To evaluate general performance of the system, I measured the rate at which it
is able to capture and process camera frames and produce results. Tests have
been made both in the direct camera mode, in which the application captures the
images itself and then goes straight on to process them, and in the file mode, in
which the images are loaded from JPEG files, which had been manually captured
beforehand. This illustrates what part of the time necessary to process one frame
is spent loading it and what part is actually spent with localization.

All the experiments were done several times with diverse input data. Some-
times the target was closer to the camera, sometimes it was further away, the
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backgrounds varied between uniform ones to quite complex and the lighting con-
ditions were also altered throughout the testing. Average frame rates measured
with the data and their standard deviations were then calculated separately for
each resolution used.

Resolution: 800 x 600 640 x 480 400 x 300

Camera 11.22 £ 3.59 13.09 £ 4.41 -
Files 30.99 £ 840 43.92 + 1248 92.59 £ 26.77

Table 6.2: Average frames per second

Table 6.2 shows that the image retrieval part of the localization process takes up
significant amount of time. This is caused both by the hardware limitations of the
cameras, which in most cases allows a theoretical maximum of 30 FPS, and by the
software limitations of Android operating system, which does not allow retrieval of
the next frame at any specific time. Instead, it is necessary to dispatch a request
for the next frame and then wait for a callback, which has quite unpredictable
response times.

It is also clear from the standard deviations (listed alongside the frame rates
in the Table 6.2) that the values fluctuate greatly in time. Therefore, it must be
expected the frame rate may regularly reach values, which exceed the average by
a third or even by a half grater. Due to this, the system may be rather unstable
with a high resolution input, with which the peak processing times are scaled up
accordingly.

Furthermore, in all the above experiments the system kept continuously track-
ing the target after its initial discovery. When facing a situation, in which the
target is unexpectedly lost and found during tracking, even greater peak times
result as the system needs to search the whole image, until it finds the target
again.

To test this, an experiment was carried out on several series of frames, which
contained an unexpectedly quick change of position of the target on every fourth
frame. Figure 6.1 shows how the process times rapidly grow, when the tracking
is interrupted. Standard deviations displayed in the graph illustrate, that the
time needed to retrace the target is not only incomparably longer than the usual
process time, but also quite unpredictable. Reducing the image resolution is thus
a possible solution to this problem, although it only helps partially. A better way
to prevent this problem is to maximize the general frame rate of the system, so
that these situations are as scarce as possible.
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Figure 6.1: Frame processing times for interrupted data

However, one case in which the tracking interruption cannot be avoided is when
the target is passing the border between fields of view of two neighbouring cameras.
To illustrate, what happens in this scenario, an experiment was performed, in
which the target starts in the field of view of the first device, then proceeds into
view of the second one, comes back under the first device, and finally moves into
view of the second one again.

Figure 6.2 shows the times needed to process each frame in the order, in which
they arrived to the device, which was acting as a server. Peaks around frames 20, 55
and 110 represent the frames, in which the initial time-consuming target discovery
was performed, when the target was entering (or re-entering) the field of view of
the second camera, the first camera and the second camera again, respectively.
The values measured between these peaks are mostly from one particular device,
but, due to the overlap between the fields of view, just after each of the transitions
there might be a few frames that still come from the previous camera. Note, that
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Figure 6.2: Frame processing times when transfering between cameras

the second device in this experiment was the older and much less powerful HTC,
so its peak processing times just after transfer are even greater than they would
be for an average present-day device.

To prevent this situation, which is not easily avoidable, from influencing the
operation of the localization system, there must be a big enough overlap between
the fields of view of the two cameras in question. That, together with the threshold
triggering the localization at the second device early enough, allows the first device
to continue tracking the target, while the second one performs the most time-
intensive initial search.

6.3 System Precision

The most important feature of a localization system is its precision. To measure
it, a custom coordinate system was created (as described in Chapter 4) with origin
and axes aligned with the junctions of a tile floor. This provided a fairly precise
reference frame, which could be used to evaluate the precision of the localization.

The actual experiment involved placing the target pattern precisely at the
junctions of the tiles and localizing them. The localized target positions were then
compared to the real position of the junction in terms of the same coordinate
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system. The real position was determined with knowledge of the tiles joint to
joint size—in this case 20.1cm. The Camera 0 was placed some 2 meters above
the floor near coordinates (20, —20) and the Camera 1 was 66 cm in the positive
direction of the x axis from the former.
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Figure 6.3: System precision

As can be seen in Figure 6.3, the precision of the system is quite good, although
it gets worse the farther the target moves from the origin of the custom coordinate
system. Hence, it may be advisable to place the four targets as far from each other
as possible, while creating the custom coordinate systems, as this would reduce
the cumulative error in the results transformation. The experiment also showed
better accuracy near the centre of the frame as opposed to its edges, which can
be credited to the imperfections of the pinhole camera model. Additionally, the
figure reveals that the Camera 1 was calibrated very well and its localization is
therefore subject to significant and increasing error, as the target gets near the
edges of its field of view.

The second experiment testing the accuracy of the localization was performed
with a target being dragged along a straight line parallel to one of the axes. The
line went through the field of view of two neighbouring cameras, arranged the
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same way as in the previous experiment. The results of the second experiment
are shown in Figure 6.4 (please note, that the y axis scale has been enlarged for
illustrative purposes, so the stray may seem exaggerated).
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Figure 6.4: Target dragged along straight line

This experiment shows, that while the precision of the localization in itself
remains constant, there is an offset in the results received from the second camera.
This offset has been most likely caused by imprecise alignment of the two cameras
with the created custom coordinate system. Note also, that even though the target
moved in the positive direction along the x axis, the graph says nothing about the
order, in which the results were received. The first results from the second camera
were actually measured earlier than the last results from the first, so the difference
in the x coordinate of the end of the blue line and the start of the red line is not
an inaccuracy. All in all, it can be said, that with moderate care when placing
the cameras, especially making sure they are aligned and parallel, it is possible to
have a consistent precision across the whole system of multiple devices.
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Chapter 7

Conclusion

The presented thesis deals with a camera-based localization system for mobile
robots. Instead of regular cameras, this instance of the system works with complete
handheld devices running the Android operating system. This switch allowed
for creating a multiple point of view system of mutually interconnected devices
(cameras), extending the capabilities of the system.

The proposed system implementation consists of a single Android application,
with a simple user interface, which guides the user through the procedures needed
to calibrate the camera and to setup the system itself. The application implemen-
tation further entails an adaptation of the Whycon localization system, extended
of the capability to take advantage of a common Wi-Fi network to interconnect
more devices, giving the system additional points of view.

Although it is certainly possible to take advantage of the multiple viewpoints
in many different ways, such as increasing the reliability or precision of the whole
system, it has been the main goal of this thesis to increase the spatial coverage.
Therefore, it is suggested, that the devices are placed above the monitored area,
in which robots should be localized, forming a uniform square grid or a line.

Several routines are incorporated in the system, which help the system track
a target across the fields of view of all the devices, switching of the cameras not
needed at any given point, until such time, when they are needed again. Android
devices being mostly battery powered, the above is especially useful, for it helped
making the system more power efficient aside from giving it better responsiveness
and reducing the number of dispensable failed localization attempts.

The experiments verified, that the system is indeed usable and that it fulfils
the goal of allowing localization within an expanded area. Although speed of the
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system is not overwhelming, it is sufficient even on average hardware available
today. Nevertheless, the system still has aspects, which deserve future review.
For example the current OpenCV library includes an alternative, much faster and
much more convenient way of accessing the camera frames. However, it does not
reliably work across the wide spectrum of available devices.

Another improvement may lie in extending the capabilities of the system fur-
ther, to be able to track more targets at once. This would involve solving issues
regarding distinguishing between the individual targets and more complex mech-
anism controlling the operation of the redundant parts of the system. Changes
to the base target recognition would probably be necessary to accomplish these
goals. A different set of opportunities for enhancements lies in simplification of
the setup process, for example when creating the coordinate system, or while posi-
tioning the individual devices into the grid. A method, which would automatically
determine the relative position and alignment of the cameras during setup, would
be very convenient, as it would eliminate a lot of inaccuracies, caused by external
measurements of the devices’ exact positions.

Overall though, the system is capable of quite precise (within a centimetre)
localization of a mobile robot by means of finding the circular pattern and it does
so in an area, limited in size only by the number of devices used and the range of
the used Wi-Fi network.
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Appendix A

CD content

A CD is attached to the printed version of this work containing the text of the thesis
in a PDF format, the source code of the thesis in KTEX format and the source
code of my implementation of the localization system—the android application
RobotTracker. The directory structure on the CD is described in the following
table.

Directory \ File Description

thesis.pdf the bachelor thesis report in PDF format

thesis src the bachelor thesis source code in KTEX format

RobotTracker  the Eclipse project directory of the RobotTracker An-
droid application, complete with the source code and
other resources

Table A.1: Directory structure on the CD
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