
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Bachelor Thesis

Handwriting Beautification
Ondřej Vančák

Supervisor: Ing. Šedivý Jan, CSc.
May 2014

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Ondřej V a n č á k

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Bachelor Project: Handwriting Beautification

Guidelines:

1. Study current methods of handwriting beautification.
2. Implement MATLAB a prototype of one of the State of the Art algorithms.
3. Implement a tablet application for saving handwritten notes.
4. Extend the application of handwriting beautification.
5. Perform a user research (A/B testing) of implemented algorithm.

Bibliography/Sources:
[1] Zitnick C. L : Handwriting Beautification Using Token Means. SIGGRAPH, Anaheim,
 California, USA, 2013.
[2] Schenk J., Lenz, J., and Rigoll G.: "On-Line Recognition of Handwritten Whiteboard Notes:
 A Novel Approach for Script Line Identification and Normalization," Proc. 11 th Int'l Workshop
 Frontiers in Handwriting Recognition, Montreal, Quebec, Canada, pp. 540-543, 2008.
[3] Simard P. Y., Steinkraus D., and Agrawala M.: "Ink normalization and beautification," in Proc.
 8 th Intl. Conf. on Document Analysis and Recognition (ICDAR 2005), Vol. 2, Los Alamitos,
 CA: IEEE Computer Society, pp. 1182-1187, 2005.
[4] Vinciarelli A, Luettin J. : "A new normalization technique for cursive handwritten words",
 Pattern Recognition Letters, Vol. 22, No. 9, pp. 1043-1050, publisher: Elsevier BV,2001.
[5] Zhu X, Jin L. : "Calligraphic Beautification of Handwritten Chinese Characters: A Patternized
 Approach to Handwritting Transfiguration", International Conference on Frontier on
 Handwriting Recognition (ICFHR 2008), Anaheim, California, USA, pp. 135-140, 2008.
[6] Brakensiek A, Kosmala A, Rigoll G. : "Comparing Normalization and Adaptation Techniques
 for On-Line Handwriting Recognition", in Pattern Recognition, Proceeding 16th International
 Conference on, Quebec, Canada, Vol.3, pp. 73-76, 2002.

Bachelor Project Supervisor: Ing. Jan Šedivý, CSc.

Valid until: the end of the summer semester of academic year 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 10, 2014

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: Ondřej V a n č á k

Studijní program: Kybernetika a robotika (bakalářský)

Obor: Robotika

Název tématu: Zkrášlování rukopisu

Pokyny pro vypracování:

1. Nastudujte současné metody pro zkrášlování písma.
2. Implementujte v MATLABu prototyp jednoho ze State of the Art algoritmu pro zkrášlování
 písma.
3. Implementujte aplikaci pro tablet umožňující vkládání ručně psaných poznámek.
4. Rozšiřte aplikaci o automatické zkrášlování písma.
5. Proveďte uživatelský výzkum (A/B testování) implementovaného algoritmu.

Seznam odborné literatury:

[1] Zitnick C. L : Handwriting Beautification Using Token Means. SIGGRAPH, Anaheim,
 California, USA, 2013.
[2] Schenk J., Lenz, J., and Rigoll G.: "On-Line Recognition of Handwritten Whiteboard Notes:
 A Novel Approach for Script Line Identification and Normalization," Proc. 11 th Int'l Workshop
 Frontiers in Handwriting Recognition, Montreal, Quebec, Canada, pp. 540-543, 2008.
[3] Simard P. Y., Steinkraus D., and Agrawala M.: "Ink normalization and beautification," in Proc.
 8 th Intl. Conf. on Document Analysis and Recognition (ICDAR 2005), Vol. 2, Los Alamitos,
 CA: IEEE Computer Society, pp. 1182-1187, 2005.
[4] Vinciarelli A, Luettin J. : "A new normalization technique for cursive handwritten words",
 Pattern Recognition Letters, Vol. 22, No. 9, pp. 1043-1050, publisher: Elsevier BV,2001.
[5] Zhu X, Jin L. : "Calligraphic Beautification of Handwritten Chinese Characters: A Patternized
 Approach to Handwritting Transfiguration", International Conference on Frontier on
 Handwriting Recognition (ICFHR 2008), Anaheim, California, USA, pp. 135-140, 2008.
[6] Brakensiek A, Kosmala A, Rigoll G. : "Comparing Normalization and Adaptation Techniques
 for On-Line Handwriting Recognition", in Pattern Recognition, Proceeding 16th International
 Conference on, Quebec, Canada, Vol.3, pp. 73-76, 2002.

Vedoucí bakalářské práce: Ing. Jan Šedivý, CSc.

Platnost zadání: do konce letního semestru 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 10. 1. 2014

vi

Declaration
I hereby declare that I have worked out the presented thesis independently
and I have quoted all used sources of information according to the Methodical
instructions about ethical principles for writing academic thesis.

In Prague May 23, 2014 .

vii

Aknowledgements
I would like to thank Ing. Jan Plešek for his advice and patient guidance of
this work. Also I would like to thank Karolina for her psychical support and
advice concerning the English language.

viii

Abstract

The goal of this work is to bring a mobile application that would implement
handwriting beautification algorithm. To that account several previously
published works on this topic are reviewed and discussed. Selected algorithm
is described in depth to provide detailed information of the system principles.
The implementation includes MATLAB prototype that has been used for
testing. Finally an HTML5 application that beautifies user’s handwritten
notes has been developed.

ix

Abstrakt

Cílem této práce je vytvořit mobilní aplikaci, která bude obsahovat algo-
ritmus zkrášlení ručně psaného písma. Za tímto účelem bylo rozebráno a
diskutováno několik dosud publikovaných článků s ohledem na jejich možné
uplatnění. Vybraný algoritmus byl následně dopodrobna popsán, aby byly
osvětleny principy na ktrých celý systém funguje. Implementační část práce
zahrnuje prototyp napsaný v MATLABu k otestování algoritmu a finální
aplikaci napsanou v HTML5.

Contents

1 Introduction 1

2 State of the art 2
2.1 Normalization techniques . 2
2.2 Calligraphic beautification . 4
2.3 Script refining . 5

3 Implemented algorithm 7
3.1 Data preprocessing . 8

3.1.1 Resampling . 8
3.1.2 Scale normalization . 8

3.2 Token refining . 10
3.2.1 Descriptor . 10
3.2.2 Clustering . 11
3.2.3 Merging . 12
3.2.4 Refining . 12
3.2.5 Cluster prediction . 13

3.3 Rendering . 14

4 The application 16
4.1 Prototype . 16

4.1.1 The data input . 16
4.1.2 Parameter tuning . 17

4.1.2.1 Resampling parameters 17
4.1.2.2 Gaussian parameters 17
4.1.2.3 Clustering parameters 18

4.2 HTML5 . 19
4.2.1 User interface . 20
4.2.2 Rendering . 20

5 Results 21
5.1 Performance testing . 21
5.2 User testing . 22

6 Conclusion 25

x

CONTENTS xi

CD contents 26

Bibliography 27

List of Figures

2.1 Illustration of slant and slope removal 3
2.1a Slant and slope . 3
2.1b Density histogram . 3

2.2 Lines used in normalization 4
2.3 Lines normalization . 4
2.4 Illustration of quadratic curve interpolation 5

2.4a Straight line rendering 5
2.4b Quadratic curve interpolation 5

2.5 Illustration of the token means algorithm 6

3.1 System flow chart . 7
3.2 Illustration of resampling . 9

3.2a Resampled letter . 9
3.2b Descriptors of resampled tokens 9

3.3 Scaling of the visible magnitudes 9
3.3a Scaled magnitudes . 9
3.3b Input data . 9
3.3c Scaled data . 9

3.4 Clustering comparison flow chart 10
3.5 Illustration of descriptor . 11

3.5a Descriptor histogram 11
3.5b Descriptor raw . 11
3.5c Descriptor blurred . 11

3.6 Illustration of merged tokens 13
3.6a Match cost matrix . 13
3.6b Merged token . 13

3.7 Illustration of the match confidence 14
3.7a Descriptors of letters a and ee 14
3.7b Good match . 14
3.7c Bad match . 14

3.8 Illustration of the rendering alignment 15
3.8a Raw rendering . 15
3.8b Aligned rendering . 15

4.1 Resampling parameters impact 18
4.1a The impact of α . 18

xii

LIST OF FIGURES xiii

4.1b The parameter rβ . 18
4.2 Illustration of the Gaussian parameters 18
4.3 Illustration of the τ parameter 19

5.1 Browser performance comparison 22
5.2 Tested image . 23
5.3 Tested failure case . 23
5.4 Tested image . 24

1 | Introduction

Handwritten text still remains one of the most natural ways to write. The
benefits of handwriting are indisputable—it is the most comfortable way of
taking notes. However, the notes are often not very easy to read, especially
when the text is scribed in a hurry. Additionally, in the era of computers the
usage of handwritten materials is dropping to digital text, mostly because
the computers are usually equipped only with keyboard and are programmed
to process textual data more efficiently. With the new tablets and smart-
phones, however, the touchscreen interface which allows one to write by hand
becomes very common. Nevertheless, writing on a touchscreen still is not
as comfortable as writing on a piece of paper and the script often is even
more difficult to read. There is an open field for software—especially mobile
application—that would implement processing methods on the digitalized
data and significantly help to increase the handwriting readability.

The usual approach widely used in older devices was based on recogni-
tion of the written input. This means the algorithm was interpreting the
handwritten symbols and converted them into textual data. Handwriting
beautification algorithms, however, usually do not interpret the meaning of
the input strokes and only process them to improve their appearance. Today
computers, nonetheless, can not imitate the feeling of aesthetics, therefore,
the ideal of beautiful script must be defined to them. Definition commonly
used in this order is some kind of symmetry although refining based on merg-
ing with recognized template is also known.

Even though several beautification systems have been already described
in published papers, to my knowledge none of them would be available in
the form of an end product software. The goal of this work is to review the
state of the art and find a system that could be implemented in a functional
application. That means the focus of this work is in realization of the selected
algorithm. You can get acquaint with the process of development of the
application in the following chapters.

In Chapter 2 the review of several previously published papers on this
topic can be found. The algorithm that has been selected as a fundament
of the application is explained in detail in Chapter 3. In Chapter 4 the
implementation of the algorithm in an application is described. The results
of user testing of the application are presented in Chapter 5.

1

2 | State of the art

Several articles approached this topic and many of the partial problems are
solved and well documented. Nonetheless, most articles deal with the script
refining only as a method of data preprocessing. Such preprocessed data is
then used only as an input for recognition algorithms. These techniques are
described further in Section 2.1.

There is also other common approach often used which focuses on ren-
dering of the handwriting and calligraphic simulation. This procedure is well
known not only in use in handwriting beautification but also in common
note taking and drawing applications. Common approaches are described in
Section 2.2.

The approach aimed directly on handwriting beautification is based on
refining of the words. In that case user written data are merged with a
template and their shape is changed. This approach is rarely found, still,
some articles exist and are highly acknowledged in this work. You can find
brief explanation of these methods in Section 2.3 and in–depth description
of such algorithm used in this work in Chapter 3.

2.1 Normalization techniques

Most of the presented techniques are focused on cursive letters only. Mainly
in recognition systems it is crucial to normalize the input data in order to
achieve concise results. This reflects the fact that most of the handwritten
words do not keep the bottom line and the scale varies. Therefore, most
of the published articles approach the topic of script reshaping just as a
normalization technique used as preprocessing in recognition systems. This
task is different form the script beautification for the desired result may not
be considered more beautiful by humans. However, the concept is similar
and is relevant to the topic.

The article [7] provided a detailed technique for slant and slope removal.
The terms slant and slope are well illustrated in Figure 2.1a. This ap-
proach works with bitmap renderings of the handwritten text. Described
older method for slope removal worked with identified bodies of the letters
and applied rotational transformation until the bottoms of the bodies were
aligned to horizontal line. The novel presented technique computes density

2

CHAPTER 2. STATE OF THE ART 3

(a) Slant and slope (b) Density histogram

Figure 2.1: Illustration of the methods used in article [7]; (a) Illustration
of slant and slope on handwritten word. (b) Density histogram computed to
identify the slope

histogram of the written word and applies transformation based on the char-
acteristic peaks generated by the horizontal lines in letters. This method is
illustrated in the Figure 2.1b. Also a novel technique for slant normalization
that works on similar principle was presented. It was demonstrated that
the slant is removed once the maximal of sum of continuous line sections
in columns is reached. The previously used technique computed the aver-
age slant from the lines connecting the centroids of extreme parts of letters.
Similar techniques that also work with bitmap data has been compared in
the article [1].

The articles [5] and [2] describe handwriting recognition systems that
work with whole word unlike common systems that work with separated
letters. Described normalization method works with vectors representing
the words. Therefore, further reshaping has less effect on final rendering
of the word. Filtering of the input data is applied as to find local maxima
an minima in the vertical strokes and reshape them in order to match the
writing characteristic lines. The lines used in normalization are illustrated
in Figure 2.2; recognized lines within word are shown in Figure 2.3. The
normalization method used in system described in the article [4] works on
very similar principle with the focus on line normalization of whiteboard
notes. All these methods have been proven to increase the classification rate
when applied before recognition.

Unlike the other presented methods described above, the article [6] aims
not only on preprocessing normalization but also on beautification. Similar
method for line fitting is used, however, curvature changes are removed and
the script is smoothed in order to produce beautified script and achieve better
classification score if used in recognition. Nevertheless, the achieved conclu-
sion is that the line warping is not sufficient for handwriting beautification
for the changes are very subtle.

CHAPTER 2. STATE OF THE ART 4

On-Line Recognition of Handwritten Whiteboard Notes:
A Novel Approach for Script Line Identification And Normalization

Joachim Schenk and Johannes Lenz and Gerhard Rigoll
Institute for Human-Machine Communication

Technische Universität München
Theresienstraße 90, 80333 München
{schenk, lej, rigoll}@mmk.ei.tum.de

Abstract

In this work we use a previously published ap-
proach for script line identification of handwritten
whiteboard notes in order to perform skew correction
and size normalization of the script trajectory. Arbi-
trary assignments of sample points to certain script
lines are hypothesized and described in a trellis. The
normalization is performed by equalizing the script
lines and warping the script trajectory accordingly.

In an experimental section we show that the novel
normalization achieves a relative improvement of r =
1.6 % in character level accuracy and r = 1.4 % in
word level accuracy compared to a system using stan-
dard normalization.

Keywords: On-line handwriting recognition,
whiteboard, normalization, script lines, preprocessing

1. Introduction

In recent years, many publications have addressed
the problem of on-line handwriting recognition [9; 14].
While high recognition rates are reported for isolated
word recognition systems [7], performance consider-
ably drops when it comes to unconstrained handwrit-
ten sentence recognition. The lack of previous word
segmentation introduces new variability. An even
more demanding task is the recognition of handwrit-
ten whiteboard notes as introduced in [12]. The con-
ditions described in [12] make on-line handwritten
whiteboard note recognition difficult.

An important step in any handwriting recognition
system is the normalization of the script trajectory.
Thereby, writer dependent aspects such as the slant,
the skew and the varying sizes in the script are nor-
malized to meet well defined values [9; 12]. A key
issue for normalization is the identification of certain
script lines (see e. g. [1; 9]) in a line of text as shown
in Fig. 1. The top line, the corpus line, the base line,

 base line
 bottom line

 corpus line
 top line

Figure 1. Script lines as e. g. defined in [1; 9]. Script

sample taken from IAM-onDB [11].

and the bottom line are (ideally) defined by the top of
tall letters (such as “H” and “t”), the top of lower case
letters (such as “o” and “w”), the base line points, and
the bottom of characters such as “y” and “f” respec-
tively [1]. However, in order to decide if, and in case
it does, on which script line a sample point lies, the
position and characteristics of each script line must
be known. In other words, to find the exact charac-
teristics of the script lines, it must be known which
sample points belong to each line [8].

Different approaches for identifying the script lines
in a handwritten line of text, aimed at solving the
above paradox, have been published. Base lines and
corpus lines are described by linear regression lines
approximating local minima and local maxima of the
trajectory, respectively in e. g. [4]. In [2; 3] the script
lines are found by analyzing the profile of the y-
projection of the handwritten script. In contrast, all
four script lines are approximated as parameterized
curves of a second order polynomial in [1; 9]. Thereby,
the parameters of the curves are found by fitting a
geometrical model to the trajectory by applying the
Expectation-Maximization (EM) algorithm [1; 5].

While these approaches seem to work fine for nor-
mal handwriting, enhanced algorithms are needed for
the variations observed in the script lines of handwrit-
ten whiteboard notes. To cope with these variations,
in [12], a line of text is heuristically segmented into
sub parts and the script lines are separately identified
in each of the sub parts.

From: Proc. ICFHR 2008, Montreal, Canada
ISBN 1-895193-03-6

Figure 2.2: Lines commonly used in line normalization. Corpus line is also
often referenced as middle line or half line. Image presented in an article [4]

Figure 2.3: Illustration of recognized local extremes and lines within word.
Image taken from an article [5]

2.2 Calligraphic beautification

Especially in Chinese writing the shape of character is not the only thing that
matters—the calligraphy can also significantly improve text appearance. The
article [8] proposed a method specificly focused on Chinese character beauti-
fication. The system is based on both on paintbrush calligraphy simulation
and character reshaping. These methods, however, are widely used in many
writing or drawing applications and can be applied on any data.

Commonly used calligraphy simulation technique which is also well de-
scribed in the article [8] is speed based line width regulation. From the col-
lected points the speed of the pen can be estimated easily. The transitions
between strokes are smoothed and on the interpolated trajectory between
collected points the circles of different diameter are drawn densely. Finally,
the anti–aliasing is applied on the rendering in order to smooth the edges of
the new trajectory.

The other used technique is based on trajectory interpolation. The data
collected from the touchscreen are usually separated points and straight lines
are drawn between them like in Figure 2.4a. What the user typically draw,
however, is a smooth curve. This shape can be simulated by plotting curves
rather than straight lines between the points. A simple approach to this has
been presented in [3]. The trick is drawing quadratic lines from the middle

CHAPTER 2. STATE OF THE ART 5

(a) Straight line rendering (b) Quadratic curve interpolation

Figure 2.4: Illustration of quadratic curve interpolation explained in [3]; (a)
The shape of the raw trajectory (b) Quadratic curve interpolation—the orig-
inal points are used as control points in quadratic bézier curves

points and using the input points only as control points. This is illustrated
in Figure 2.4b. The method proved to be very effective and yet simple,
therefore, it was implemented in the application.

2.3 Script refining

The approach with the goal to actually beautify the written symbol includes
the symbol reshaping. To be able to reshape the symbol the algorithm must
have some definition of what the ideal symbol looks like. This could be
achieved by improving the symmetry of the symbol—a method used in an
article [9] or in the line normalization techniques could be interpreted this
way.

In the article [8] a different solution to this problem has been described.
The proposed method uses a character recognition to match handwritten
Chinese character with its template. A commonly used Chinese font stands
as a static library of templates. The recognition is based not only on character
shape but also on the order of written strokes which allows several possible
sequences. The main advantage of this approach is that it is specialized on
Chinese characters only. For Latin letters there is no concise writing style nor
there is a usable template for cursive letters. Therefore, a different method
of template definition is needed.

The complex solution is provided by the article [9] from Microsoft Re-
search. Their approach works on every possible data be it written text or
Chinese characters or mathematical symbols. The main idea of this approach
is that when one symbol is written repeatedly, the average shape should be

CHAPTER 2. STATE OF THE ART 6

Figure 2.5: Illustration of the word “full” being computed as an average of
six different instances

better than individual instances of the symbol—this is demonstrated in Fig-
ure 2.5. This approach leads to very robust and complex algorithm that
is indifferent to the type of input data and the user’s characteristic writ-
ing style. For that reason the algorithm has been selected as fundament for
the application. The in depth description of the algorithm can be found in
Chapter 3; the concrete implementation in the application is presented in
Chapter 4.

3 | Implemented algorithm

As mentioned in Chapter 2 the method described in an article [9] provided
by Microsoft Research has been chosen to be implemented in this work. This
method works with so called tokens—the written text is split to constant
length stroke groups called tokens and each of these is processed individually.
The similar tokens are clustered and if a token is added to the cluster it is
reshaped with the mean value of all the tokens in the cluster. This means
all the tokens within a cluster look similar but still keep their uniqueness.

As mentioned before the algorithm has been chosen for its robustness—
the algorithm works on every input data no matter whether it is written
script, Chinese characters or math symbols. This complexity, however, means
larger computational load. Therefore, an optimization on the mobile devices
is necessary.

The algorithm has been well described in the cited article. In this section
it will be described in detail. The flow chart of the algorithm is illustrated
in Figure 3.1. The preprocessing methods are explained in Section 3.1, the
classification and refining is described in Section 3.2 and the rendering is
described in Section 3.3.

Input data
Curvature

based sampling
Scale nor-
malization

Split to tokens Clustering Refining Rendering

Preprocessing

Refining

Figure 3.1: System flow chart

7

CHAPTER 3. IMPLEMENTED ALGORITHM 8

3.1 Data preprocessing

In order to achieve great success with the algorithm, the data preprocessing is
crucial. It is important to filter the redundant data and remove the scale vari-
ation. The data is stored as difference vectors; the whole set Φ = {φ1, . . . , φn}
consists of stroke samples φi = {xi, yi, pi} where coordinates xi and yi mark
the difference between the positions of points on the screen and pi is the
stylus pressure. Since most of today’s capacitive screens do not provide pres-
sure information, the value is simply set to pi = 0 when there is no contact
with the screen and pi = 1 otherwise. Other often used data references are
magnitudes ri = ‖xi, yi‖ and orientations θi = arctan (yi, xi). Those values
could be obtained from x and y values when needed, however, it is faster to
compute them immediately when the stroke is captured and save them with
the stroke sample.

3.1.1 Resampling
The data is usually sampled at uniform distance or in fixed time intervals.
The method used in this approach, nevertheless, showed that resampling the
data on curvature basis has many advantages over the uniform sampling.
With curvature based sampling the sampling rate is decreased on straight
line strokes to avoid the redundant data and is increased on curved strokes
to preserve the shape information. This leads to a much more concise and
better aligned data which are then much easier to process.

Given the parametrization Φ = {φ1 . . . φn}, where every sample consists
of coordinates and pressure level φi = {xi, yi, pi} the resampled set Φ is
computed. Instead of uniform distance sampling the curvature based samples
are found using the Formula 3.1

zi = zi−1 + min(1, α∆θβj
2π) (3.1)

where z is the sample mapping, α is empirically defined constant controlling
the sampling density, ∆θ ∈ [0, π] is the absolute orientation change and
βj = max(0,min(1, rj −

√
2)) is used to reduce increase of z for small rj. For

the pressure information in our case is binary it had to be treated differently.
In the article the p value was computed as a weighted average—in our case
the the value of z is rounded up with every change of p. With the sample
mapping z the sample φi is added to sample φcj using the formula φcj =
{xi + xj, yi + yj, pj} where j = bzic. If the stroke sample φcj does not exist
yet it is initialized with the value of φi. Resampling method is illustrated in
the Figure 3.2.

3.1.2 Scale normalization
Once the resampled strokes Φc are obtained they are then rescaled in order to
remove scale variation between the written input. Gaussian weighted moving

CHAPTER 3. IMPLEMENTED ALGORITHM 9

−100 −80 −60 −40 −20 0 20 40
−100

−50

0

50

100

150

200

250

(a) Resampled letter (b) Descriptors of resampled tokens

Figure 3.2: Illustration of resampling: (a) The sampling ratio is decreasing
and increasing depending on the line curvature; (b) The descriptors of two
similar tokens are more concise when the data is resampled.

0 10 20 30 40
10

−1

10
0

10
1

10
2

10
3

original
scaled

(a) Scaled magnitudes (b) Input data (c) Scaled data

Figure 3.3: Scaling of the visible magnitudes: (a) Graph of the magnitudes
scale on logarithmic axis; (b) The input data with scale variation; (c) Rescaled
data without scale variation

average is used comparing each sample with the weighted average value of
preceding samples. This results in samples with magnitudes ri ≈ 1 and only
extreme values diverging.

For each visible stroke magnitude ri the Gaussian weighted moving aver-
age value ηi is computed using the Formula 3.2. The average value is defined
as the sum of the preceding magnitudes weighted by normal distribution
function with µ = i.

ηi =
∑i
j=i−4 rj N (j, i, σ)∑i
j=i−4N (j, i, σ)

(3.2)

The scaled magnitudes are then simply computed as r̂i = ri/ηi and coor-
dinates likewise x̂i = xi/ηi and ŷi = yi/ηi. In Figure 3.3 an example of
magnitude scaling is shown.

CHAPTER 3. IMPLEMENTED ALGORITHM 10

Compare token
with each cluster

distance > τ
Create new

cluster

distance < τ
Merge token

within cluster

distance < τv
Use cluster
for refining

distance < τa
Use cluster

for prediction

Figure 3.4: Clustering comparison flow chart

3.2 Token refining

The data consists of large amount of strokes and the spacing between them
which also holds important information. The set is split to tokens so that
each token consists of n neighboring strokes while each stroke is part of n
tokens. Note that the algorithm can run continuously—new data comes as
the user writes and is processed immediately.

Each time new token appears its descriptor is computed and it is then
clustered. The distance between the token descriptor and the descriptors of
cluster means is computed. If the distance is below threshold τ the token
is merged with the cluster mean; otherwise new cluster is created. If the
distance is smaller than threshold τv > τ the cluster is added to a list of
potential matches mj and the token can then be refined if the match is
verified. The clusters with distance smaller than τa are added to the list of
adjacent clusters and are used for prediction of possible cluster matches of
the next token in order to optimize the process. The clustering comparison
is illustrated in flow chart in Figure 3.4.

3.2.1 Descriptor
The descriptor is used in the metrics of the distance between two tokens in
order to decrease the distance between two similar tokens and increase it
between the different ones. It provides robustness for small temporal shifts
and scale variations and yet it remains characteristic for the input data. In
the result stroke magnitudes and orientation changes are involved as well as
pen pressure.

For each stroke sample with the magnitude r and orientation θ the value
is computed as a histogram of the orientation multiplied by the magnitude.

CHAPTER 3. IMPLEMENTED ALGORITHM 11

(a) Descriptor histogram (b) Descriptor raw (c) Descriptor blurred

Figure 3.5: Illustration of descriptor: (a) An example of histogram creation;
(b) Created descriptor of a token; (c) Final descriptor blurred in order to
cover small temporal shifts

Since the small magnitudes can be as important as the large ones, in this
case the logarithmic normalization is applied. Each column of the descriptor
has 8 rows for histogram bins at the interval of 〈0; 2π); the value r is split
into two bins closest to the value θ using the ratio of those distances. The
histogram creation is illustrated in Figure 3.5a.

Furthermore, a second histogram is computed for the strokes made with-
out the pen being in contact with the screen as those bear significance as well.
In order to cover small shifts between two tokens the descriptor is blurred in
temporal dimension as shown in Figure 3.5c. The focus in an online refining
approach lies on the middle stroke, therefore, the values of the descriptor are
weighted by temporally centered Gaussian distribution.

3.2.2 Clustering

Clustering is performed dynamically—as the user writes, new stroke samples
φ of the preprocessed data appear. With every new sample a new token can
be created and classified. For each stroke sample belongs to n tokens only
the first sample of the new token can be refined after the clustering—all n
tokens it belongs to have already been clustered.

Crucial role in this procedure is played by the selected value of n. Having
n = 31 showed the best results as each token covered roughly 2–3 neighboring
letters. This is very important since the shape of each letter is dependent on
adjoining letters but 2–3 letter groups are still generalizable in longer written
texts.

In Section 3.2.1 the method of computing a token descriptor has been
explained. The L2 distance is used as a metrics of the distance between two
descriptors. The clustering procedures dependent on the obtained distance
between the token and each cluster is illustrated in Figure 3.4.

CHAPTER 3. IMPLEMENTED ALGORITHM 12

3.2.3 Merging

Two similar tokens can be merged together to create a new token by averaging
their matching points. To find couples of matching points within the tokens
a match cost matrix β is computed and minimal cost path is found within
using a Dijkstra’s algorithm to ensure globally optimal path. Thereafter, the
corresponding stroke samples are averaged and create new token.

The match cost of two strokes is computed using the Equation 3.3 for kth
and lth member of token stroke sets such that

βk,l = ∆r̂ + ∆θ + δp (3.3)

where ∆r̂ is the absolute difference between normalized stroke magnitudes
r̂k and r̂l, ∆θ is the absolute difference between θk and θl and δp = 1 if both
pk and pl are either equal to zero or both have nonzero value and δp = 0
otherwise.

The optimal path leads from β1,1 to βn,n using only the moves that in-
crease at least one of the coordinates. A move has cost of βk,l + ε where
ε = 0 if both coordinates are increased or ε = 0.2 if only one of coordinates
is increased. The found path yields pairs of stroke indexes within the tokens
and for each pair merged stroke is computed as described in Equation 3.4.

φk,l =
{
x̂k + x̂l

2 ,
ŷk + ŷl

2 ,
r̂k · pk + r̂l · pl

r̂k + r̂l

}
(3.4)

Since the pressure values are only 0 or 1 in implementation, the value is
rounded for the merged strokes with inconsistent visibility. Nevertheless,
this happened rarely during the testing.

3.2.4 Refining

For each token there is set of clusters which mean tokens are potentially useful
for refining. This cluster set consists of all clusters that have the mean within
the distance τv larger than τ . Each stroke is refined individually with the
cluster matches of all tokens it belongs to. However, the matching clusters for
the token have been computed using the token descriptors which can be very
similar even if the token renderings would be different. This phenomenon is
well illustrated in Figure 3.7. From that reason each cluster match has to be
verified with a confidence score. The refines stroke is then computed as an
average of corresponding matched strokes weighted by confidence score and
the cluster size.

The match confidence score λi,j which is used to verify the match of two
tokens Ti and Tj is computed from the blurred token renderings. This ensures
the tokens are visually similar. The renderings are spatially centered on the
bitmap canvas and then small amount of Gaussian blur is applied on them.
The confidence score is then obtained using a normal distribution on the L2

distance of the rendered bitmaps.

CHAPTER 3. IMPLEMENTED ALGORITHM 13

(a) Match cost matrix (b) Merged token

Figure 3.6: Illustration of merged tokens: (a) The match cost matrix β with
the optimal path marked; (b) The two original tokens (blue) and the product
of their merge (red)

Each stroke of the set belongs to n tokens and each token has a set of
candidate cluster mean matches. Therefore, an impact on refining the stroke
must be weighted accordingly. The weight wijk assigned to ith stroke in jth
token for kth cluster mean is computed using the Equation 3.5.

wijk =
∑

j∈[i−(n−1),i]

∑
k∈mj

λj,kN (i− j, n2 , σ) (3.5)

The normal distribution is used to weight the contributions of the clusters
and add more importance to those tokens where the stroke is in the middle.
The refined stroke is then computed using Equation 3.6.

x̃i =
x̂i + ∑

j∈[i−(n−1),i]
∑
k∈mj

wijkskx̂i−j

1 + ∑
j∈[i−(n−1),i]

∑
k∈mj

wijksk
(3.6)

The parameter sk is used to weight the clusters and is computed as a square
root of the cluster size. The value for ỹi is of course computed with the same
equation.

3.2.5 Cluster prediction

The number of clusters can be really large and comparing each token with
every cluster would significantly slow down the whole process. Therefore,
an optimization technique is needed. Each cluster has a set of adjacent
clusters that are within a threshold τa. Since the tokens are overlapping it is
expected that the next token would be close to similar set of cluster means.

CHAPTER 3. IMPLEMENTED ALGORITHM 14

(a) Descriptors of letters
a and ee (b) Good match (c) Bad match

Figure 3.7: Match confidence illustration—two tokens may have similar look-
ing descriptor and thus be classified within same cluster. Their rendering
produced different results, however, and their match confidence λ is small.

By shifting the descriptor of token Ti and comparing it to the set of adjacent
cluster descriptors, the set of clusters close to token Ti+1 is predicted.

Every time a new cluster is created it would be computationally expensive
to find adjacent clusters within the whole cluster set. When the cluster set is
large only several clusters are selected randomly and if those are close, their
adjacent cluster set is compared with the new cluster.

3.3 Rendering

Once all the strokes within a stroke set are refined they can be rendered to
replace the input data with the beautified version. Each of the visible stroke
sets is rendered individually—the non visible strokes are ignored during the
rendering process. It is important to align the stroke sets spatially so the
new data would be rendered in the same place. Therefore, the stroke set
centroid is shifted by the difference to the centroid of matching stroke set
within the original data. This procedure is illustrated in Figure 3.8.

Calligraphic simulation techniques mentioned in Section 2.2 can be ap-
plied on the aligned rendered data. In this project only quadratic curve
interpolation has been used. This technique is dependent on the concrete
implementation, therefore, it is described in more detail in Section 4.2.2.

CHAPTER 3. IMPLEMENTED ALGORITHM 15

(a) Raw rendering (b) Aligned rendering

Figure 3.8: Illustration of the rendering alignment; the centroids of the words
are highlighted

4 | The application

In Chapter 3 the algorithm fundamental to the app has been described in
detail. This chapter reviews to process of implementation of the algorithm.
First, the methods have been scripted using the MATLAB environment. The
scripting language is easy and works well with large amount of data. More-
over, tuning of the code and parameters is easy due to variety of data visu-
alization techniques. This implementation is more experimental for it does
not support data collection and is not conceived as a functional application.

For that a HTML5 application has been written. This app takes an
advantage of modern web browsers that are present on many different devices
from smartphones and tablets to classic desktop computers. That means the
application should be platform independent and usable on any device with
a modern web browser. Nevertheless, touch screen devices are of course
primarily targeted.

4.1 Prototype

The MATLAB has been chosen for the experimental implementation for its
easy scripting language and large possibilities of algorithm tuning. However,
the scripting language is not fast enough to implement an online working
application. Therefore, the algorithm implemented in MATLAB is static
and works with the input data provided by a special HTML5 app. Since the
computational time of the algorithm increases exponentially for larger data
and no special optimizations were applied, the prototype implementation can
only handle data consisting of several sentences in the range of minutes. This
means the prototype can only be used for algorithm tuning and creation of
illustrative figures.

4.1.1 The data input

MATLAB supports several common data formats which could be used to load
the data input. Nonetheless, this would mean saving to the file and loading
it manually every time new data is created. Moreover, this would work
only with a special written program on the same computer as the MATLAB
is installed. To overcome this problem I have created a simple HTML5

16

CHAPTER 4. THE APPLICATION 17

application that allows to capture handwriting on any device with a modern
web browser and upload it to custom written Node.js server. From the server
the data can be loaded with a single click in the MATLAB integrated web
browser as MATLAB provides an interface to launch commands from web
page. This also means any function can be launched immediately with the
data load to further simplify the process of data import.

4.1.2 Parameter tuning

The article that presented the algorithm provided some of the used constant
parameters. Nevertheless, they have worked with slightly different input data
collected from high resolution pressure sensitive graphic tablet. Therefore,
the parameter tuning was necessary to verify the validity of those parameters
in this implementation. The MATLAB environment is perfect for the task
thanks to large variety of visualization tools and data processing functions.

4.1.2.1 Resampling parameters

The resampling of the data can significantly change the results of the whole
system. The process and benefits of curvature based sampling have been
described in Section 3.1.1. The sampling density depends on two parameters:
α controls the density based on the sample angular differential and rβ reduces
the sampling of very close samples.

The α roughly corresponds to the number of samples that would represent
a circle. The values above 20 have been found sufficient. The proposed value
α = 24 has been validated by the graph in Figure 4.1a. The input data used
for the testing consisted of circles drawn in different scales and for several
values of α the average count of samples per circle has been computed.

The parameter rβ basically controls the smallest distance between two
samples. The argument βj used in Formula 3.1 is dependent on parameter
rβ—this is demonstrated in Formula 4.1.

βj = max(0,min(1, rj − rβ)) βj =

rj < rβ βj = 0
rj ≤ rβ + 1 βj = rj
rj > rβ + 1 βj = 1

(4.1)

In Figure 4.1b the impact of the parameter rβ on the sampling density is
illustrated. It shows the the average count of samples per letter is different
for the same text written in cursive and Latin scripts. Therefore, values
between 1 and 2 are meaningful to keep the suggested rate that 31 samples
cover 2–3 letters. Mostly the proposed value rβ =

√
2 has been used.

4.1.2.2 Gaussian parameters

In several techniques implemented in the system the Gaussian weightings
or blurs are applied. It is hard to determine the impact of their relevant

CHAPTER 4. THE APPLICATION 18

5 10 15 20 25 30 35 40
10

15

20

25

30

α

sa
m

pl
es

 p
er

 c
irc

le

(a) The impact of α

0 0.5 1 1.5 2 2.5 3

8

10

12

14

16

rβ

av
er

ag
e

sa
m

pl
es

 p
er

 le
tte

r

cursive letters
latin letters

(b) The parameter rβ

Figure 4.1: The impact of parameters α and rβ on sampling density

σ = 1.5

σ = 2.5

σ = 1.5

σ = 2.5

Figure 4.2: Illustration of the Gaussian parameters: Significant change of
the parameter leads to small change in the result

parameters. Different values have been tried, nevertheless, often the changes
were unnoticeable. The proposed values of the parameters have been used
for there was no reason to change them. You can find illustration of their
impact in Figure 4.2.

4.1.2.3 Clustering parameters

The most important parameter to tune is τ the maximum distance between
the token and a cluster to merge the token within. Values too small mean the
effect of beautification is not visible and larger values result in completely de-
formed shapes that are useless. The testing showed that τ is very dependent
on the nature of input data. It is demonstrated in Figure 4.1b that different
scripts have different average count of strokes per letter. This means that
the effect of whole beautification process cannot be accurately predicted.

As mentioned above, too large value of τ can lead to wrong results. There-
fore, rather smaller values of τ were selected to avoid the deformation. The
originally proposed range 1.4–1.8 has been decreased to 0.8–1.2, mostly the

CHAPTER 4. THE APPLICATION 19

0 200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6

token

di
st

an
ce

 fr
om

 1
st

 to
ke

n

τ
τ
v

τ
a

Figure 4.3: Illustration of the τ parameter: L2 distance between token de-
scriptors smaller than τ merges the token with the cluster, smaller than τv
are verified and used to refine the stroke, clusters with distance below τa are
used to predict close clusters for the next token

value τ = 1.1 was used. However the proposed ratios for τv = 1.1τ and
τa = 1.2τ have been kept.

For the parameter tuning mostly the effects of beautification have been
rated visually. However, to gain the basic idea of the reasonable value range
of τ the visualization of the distances between token descriptors has been
used. The visualization of the distance between the first token descriptor
and the descriptors of all other tokens is illustrated in Figure 4.3.

4.2 HTML5

To build the application HTML5 has been chosen for several reasons. The
main benefit of HTML5 is the ability to run the same application on multiple
platforms. That means the application can be used on any device with a
modern web browser. Though the javascript performance might not be as
good as other languages, the difference should not be problematic for the
javascript engines speed has increased dramatically in the last years and in
several cases it is comparable to native code. The performance testing is
discussed in Section 5.1.

The code has been written using a jQuery framework to interconnect
javascript with HTML. The framework has been used mostly within the user
interface. The canvas drawing is performed with jCanvas plugin. In order to

CHAPTER 4. THE APPLICATION 20

achieve better performance, the algorithm itself is written in pure javascript.
To save the notes and settings the HTML5 local storage is used.

4.2.1 User interface

The application benefits from an HTML5 <canvas> element which allows
manual drawing into graphic context. The data is collected by the binded
touch/mouse events that provide screen coordinates. Input trajectory is
drawn on the canvas immediately to give the user feedback.

The user interface of the application is very simple and allows user to
beautify and save notes with different names and load them the next time
the application is launched.

4.2.2 Rendering

The refined stroke sets have been aligned to their original place using the
method described in Section 3.3. In order to smooth the edges the trajec-
tories have been interpolated with quadratic bézier curves using the method
described in [3]. The rendering is called once the input data is beautified or
when the note is loaded.

5 | Results

In Section 4.1.2.3 it was mentioned that the effect of stroke refining is very
dependent on the user’s script style combined with the tuning of parameters.
It has been proven that with parameter τ set to higher values the results
can not be predicted. Therefore, the parameters have been tuned to provide
rather subtle but concise results. In Section 5.1 the application is tested
in order to prove whether the algorithm is fast enough to run on different
devices. To verify whether the subtle changes are sufficient enough to be
referred as beautification an A/B testing has been done. In Section 5.2 a
user testing results are discussed.

5.1 Performance testing

In order to evaluate performance, the algorithm has been tested on several
devices. To provide smooth writing experience the application has to be ca-
pable of capturing around 50 samples per second to keep the input trajectory
information. This leaves the algorithm roughly 20ms of time to refine one
sample.

The main bottle neck of the algorithm proved to be the match confidence
score computation. To accomplish that the euclidean distance of token ren-
derings has to be found. Even though the modern browsers do support hard-
ware acceleration of 2d graphic context rendering, this task is still computa-
tionally expensive because getting the pixel information from the rendered
context is costly.

With the cluster prediction only relevant clusters are compared with each
token. This means at maximum roughly 30 match confidence score values
should be needed to refine the stroke. Therefore, the performance has been
tested and evaluated with the average time needed to estimate confidence
score. The average has been computed from the overall time taken to com-
pute 10000 scores.

The fastest browser proved to be Internet Explorer 11 which took around
1.5ms per confidence score. This performance is impressive, however, it is
still not sufficient for an online working algorithm. The comparison of the
performance of different browsers is shown in the chart in Figure 5.1.

21

CHAPTER 5. RESULTS 22

0 2 4 6 8 10 12 14 16 18 20

Internet Explorer 11 @ i5 CPU

Google Chrome 32 @ i5 CPU

Internet Explorer 10 @ Lenovo Tablet II

Internet Explorer 11 @ Nokia Lumia 920

Google Chrome 35 @ Lenovo Tablet II

ms

Figure 5.1: Comparison of match confidence computational performance in
different browsers

5.2 User testing

The sense of aesthetics is very individual, therefore, the verification of the
results must be done. Several sets of original and beautified pairs of rendering
have been produced and the testers have been asked to select which option
appears better to them. These tests have been done with vary raw renderings
produced by MATLAB prototype and the testers were obliged to select one
of the options. The order of the tested samples has been chosen randomly
to avoid user decision based on the position.

As mentioned above the algorithm has been set to provide rather subtle
changes, therefore, the results of testing are very balanced. This could also
be supported with the fact that there has been no option to select neither of
the images so the testers decided randomly in the unclear cases. The user
testing results are provided by Table 5.1.

CHAPTER 5. RESULTS 23

original trajectory beautified trajectory
1 17 25
2 16 26
3 32 10
4 23 19
5 22 20
6 12 30
7 18 24
8 15 27

summary 155 181

Table 5.1: User testing results

Figure 5.2: Example of tested images, in this case 71% of testers selected the
beautified trajectory on the right

Figure 5.3: Tested failure case, only 24% testers have chosen the option on
top

CHAPTER 5. RESULTS 24

Figure 5.4: One of the tested images, 64% of the respondents selected the
refined image on the right

6 | Conclusion

In this work a process of creating an application with handwriting beau-
tification algorithm has been shown. Several approaches from previously
published articles have been discussed and one of them has been selected for
the implementation. The selected algorithm has been prototyped and tested
within MATLAB interface and coded into HTML5 application. Finally the
application has been tested to verify the results.

From the reviewed algorithms the most robust and complex has been
chosen in order to bring the best beautification experience. However, the
robustness is weighted by the higher computational load which showed to be
problematic in an online approach. In future approaches the performance on
the mobile devices could be increased by dedicating the calculation on the
server.

The algorithm also showed the robustness itself is limited, therefore, the
results are dependent on the input data. The parameters have been tuned to
provide best results for the possible input data types, nevertheless, in future
this issue could be handled by the input data type recognition and dynamic
change of the parameters. The parameters tuned to provide concise result
for different input styles proved to produce small changes that some of the
testers could barely notice.

25

CD contents

/
Thesis.pdf...........................This work in electronic form
MATLAB.............The MATLAB implementation of the algorithm

data.................................Data used in demo scripts
demo.....................................Demonstration scripts
fig.............................Scripts used to generate figures

HTML5................................The implemented application
index.html
main.cssMain stylesheet
js..Javascript files

libExternal libraries

26

Bibliography

[1] A. Brakensiek, A. Kosmala, and G. Rigoll. Comparing Normalization
and Adaptation Techniques for On-Line Handwriting Recognition. In
International Conference on Pattern Recognition, volume 3, pages 73–76,
2002.

[2] Y. B. Y. L. Cun. Word Normalization for On-Line Handwritten Word
Recognition. In International Conference on Pattern Recognition, 1994.

[3] J. Harwig. Capture a signature on ios. https://www.altamiracorp.
com/blog/employee-posts/capture-a-signature-on-ios, 2013. Ac-
cessed: May 2014.

[4] J. Schenk, J. Lenz, and G. Rigoll. On-Line Recognition of Handwritten
Whiteboard Notes: A Novel Approach for Script Line Identication And
Normalization.

[5] G. Senit, N. NasrabadiS, and R. Sriharit. An on-line cursive word recogni-
tion system. In Computer Vision and Pattern Recognition, pages 404–410,
1994.

[6] P. Y. Simard, D. Steinkraus, and M. Agrawala. Ink Normalization and
Beautification. In International Conference on Document Analysis and
Recognition, pages 1182–1187, 2005.

[7] A. Vinciarelli and J. Luettin. A new normalization technique for cursive
handwritten words. Pattern Recognition Letters, 22:1043–1050, 2001.

[8] X. Zhu and L. Jin. Calligraphic Beautification of Handwritten Chinese
Characters: A Patternized Approach to Handwriting Transfiguration1.

[9] C. L. Zitnick. Handwriting beautification using token means. ACM Trans.
Graph., 32(4):53:1–53:8, July 2013.

27

https://www.altamiracorp.com/blog/employee-posts/capture-a-signature-on-ios
https://www.altamiracorp.com/blog/employee-posts/capture-a-signature-on-ios

	Introduction
	State of the art
	Normalization techniques
	Calligraphic beautification
	Script refining

	Implemented algorithm
	Data preprocessing
	Resampling
	Scale normalization

	Token refining
	Descriptor
	Clustering
	Merging
	Refining
	Cluster prediction

	Rendering

	The application
	Prototype
	The data input
	Parameter tuning
	Resampling parameters
	Gaussian parameters
	Clustering parameters

	HTML5
	User interface
	Rendering

	Results
	Performance testing
	User testing

	Conclusion
	CD contents
	Bibliography

