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Abstrakt
Cílem této práce bylo vybrat a implementovat algoritmus pro registraci
bodových shluků ve 3D za použití knihovny Point Cloud Library (PCL). Vy-
braný korelační algoritmus byl detailně popsán, včetně teoretického pozadí.
Navíc byly navrženy tři modifikace tohoto algoritmu pro zlepšení jeho vlast-
ností. Tento algoritmus byl implementován spolu s dalšími pomocnými ap-
likacemi na předzpracování nebo generování vstupních dat. Vlastnosti tohoto
algoritmu byly experimentálně testovány na datech z robotického datasetu
[1]. Výsledky těchto experimentů ukazují, že je algoritmus schopen reg-
istrovat po sobě jdoucí scany zvoleného datasetu za přibližně tři sekundy
s chybou ve translaci v řádu centimetrů.

Abstract
A goal of this work was to choose and implement an algorithm for registra-
tion of 3D point clouds using the Point Cloud Library (PCL). The selected
cross-correlation algorithm was described in detail, including a theory behind
it. In addition, three modifications of the algorithm for improving its perfor-
mance were suggested. The algorithm was implemented along with additional
supplementary applications for preprocessing or generating input data. A per-
formance of the algorithm was examined by experiments on robotic dataset
[1]. According to these experiments, the algorithm was able to register con-
secutive scans in approximately three seconds with translational error in order
of centimeters for selected dataset.
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Chapter 1

Introduction

Nowadays, a presence of 3D rangefinders (e.g. Microsoft Kinect, ASUS Xtion PRO, Minolta
Range 5) in robotic applications is very common, especially on mobile platforms and mounted
manipulators. These sensors became very popular especially because of a natural character of
acquired data, which is in a certain manner similar to human’s perception of a World. Also price
and accessibility of rangefinders makes them affordable even for hobbyists. Registration of point
clouds, which is a main theme of this work, is one of the most common tasks in processing
data acquired by these sensors.

This task can be solved using many algorithms, for example the famous Iterative closest
point (ICP) or also very popular Random sample consensus (RANSAC) among others. Each
of these algorithms has advantages and drawbacks. The ICP is universal and was proven to
converge to local optima, but it needs an estimation of the translation. Similarly the RANSAC
is robust, but it requires a feature detection. In this work, the cross-correlation algorithm will be
described, implemented and tested, as an alternative to above mentioned ICP and RANSAC.

The main principle of the cross-correlation algorithm lies in determining the rotational part of
the searched transformation, which registers assigned clouds, before the translational part. The
rotation is computed by generating histograms of normals of the input clouds and finding the
rotation for that their cross-correlation is maximal. The translation corresponds to the maximum
of cross-correlation of occupancy grids of the clouds. The main advantage of this algorithm is
that it finds a global optimum of the cross-correlation of the input scans, so neither estimation
of the transformation nor feature detection is needed.

The work is structured as follows. A definition of the registration task is formalized in
chapter 2 and an overview of algorithms often used for finding its solution is given in chapter
3. In chapter 4, the cross-correlation algorithm is described in detail. An implementation of the
algorithm itself, along with other created additional tools, is described in chapter 5. In chapter
6, conducted experiments and observed properties of the implemented algorithm are described.
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Chapter 2

Problem definition

In this chapter, the task of registration of point clouds is introduced. First, in chapter 2.1,
basic definition of point clouds is given, then, in chapter 2.2, the registration task is formally
defined.

2.1 Point clouds

In this text, a point cloud C is defined as a finite sequence of points

C = (Ci)ni=1 = (C1, C2, C3, . . . , Cn),

where a position of each point Ci in a 3D space is defined by three coordinates Ci =
[
Cx

1
Cy

1
Cz

1

]
.

Coordinates of points in the cloud can be also written as a matrix

C =

C
x
1 Cx

2 Cx
3 . . .

Cy
1 Cy

2 Cy
3 . . .

Cz
1 Cz

2 Cz
3 . . .

 (2.1)

which is useful in some expressions. Example of a point cloud containing three points is in
the Figure 2.1. Figure 2.2 shows an example of a cloud obtained by a real sensor (in this case
ASUS Xtion PRO).

Rangefinders usually acquire clouds with frequency 1-30 Hz, which can lead to inaccuracies
caused by a movement of the sensor or scanned objects. In this work we will neglect this type
of error assuming that the sensor is fast enough when capturing the data.
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2.2. REGISTRATION

x
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Figure 2.1: A point cloud containing three
points lying on a surface of a grey box. A
sensor is placed in point O.

Figure 2.2: An example of a point cloud
scanned by a real sensor. This cloud con-
sists of 307200 (i.e. 640× 480) points.

2.2 Registration

Registration of point clouds is a task with two input point clouds: T (target) and S (source),
which typically partially overlap. Simply put, it is a process of finding a way how to move the
source cloud such that overlapping parts of both scans were aligned.

Formally defined, a goal of the registration is to find a transformation which maximizes a
value of similarity function Fsim of the cloud T and a transformed cloud S. Searched transfor-
mation consists of a rotation (which can be described by a rotation matrix R ∈ R3×3) and a
translation (which can be described by a vector Q ∈ R3×1), so the solution of the task can be
mathematically expressed as

{Rsol, Qsol} = arg max
R,Q

Fsim(T,RS +Q). (2.2)

The similarity function Fsim can be defined in more ways, in this work, a discrete inner
product of occupancy grids of clouds will be used. The occupancy grid of cloud C is created by
dividing a space (in this case a 3D area) into cubes (so called voxels) and determining a value
corresponding to each of these cubes. The value of a voxel equals to a number of points of
cloud C lying in the voxel. The voxels can be ordered and indexed one by one, in this case, a
value of the i-th voxel of C will be denoted as ci, where i ∈ N. Another possibility is to index
voxels in all three dimmensions separately. For this case, a notation cx,y,z, where x, y, z ∈ N
will be used.

The similarity function Fsim of clouds T and W = RS +Q is then defined as follows

Fsim(T,W ) =
m∑
i=1

ti · wi, (2.3)

where ti is a value of the i-th voxel of cloud T and wi is a value of the i-th voxel of cloud
W = RS +Q.
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Chapter 3

Registration algorithms

A lot of methods using different approaches were developed for registration of point clouds.
In this section, some of the most used ones are introduced. A cross-correlation algorithm,
implemented as a part of this work, is in this chapter described only briefly, more detailed
description can be found in chapter 4.

3.1 Iterative closest point

The iterative closest point (ICP) algorithm, introduced in [3], is one of the most popular
algorithms for registration of point clouds. This algorithm is very universal, because in addition
to point clouds, it is able to register the source cloud to some other representations of the target
geometric data, such as line segment sets, triangle sets, curves or surfaces. The only condition
is that it must be possible to find a target point that has the smallest Euclidean distance from
the selected source point. It is possible to register both, 2D and 3D geometric data with the
ICP. In addition to that, a convergence of this algorithm was proven in [3].

The main disadvantage of the ICP algorithm is a fact that it converges only to a local
optima. It means that if the searched transformation between the target and source clouds is
not small enough, the algorithm can compute a wrong transformation. Therefore for general
usage, an estimation of the searched transformation is needed, which is, in case of mobile
robots, usually obtained from odometry. The ICP algorithm is also sensitive to the relative size
of an overlapping area, because all points that don’t have correspondence cause an error in the
registration.

As described in [2], the ICP is an iterative algorithm that performs following tasks in each
iteration.

1. Cloud S ′ is generated by applying a transformation computed in the previous iteration to
source cloud S (in the first iteration, the odometry estimation is used, or an identity if
no estimation is known).
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3.2. RANDOM SAMPLE CONSENSUS

2. For each point S ′i ∈ S ′, a corresponding point Ti ∈ T is found such that Ti is the closest
point to S ′i of all points in T .

3. From sets of corresponding points S ′i and Ti a new transformation that minimizes a
penalization function 3.1 is computed.

Iterating is stopped when the new transformation differs from the transformation computed in
the previous iteration negligibly (usually if the difference between two consecutive transforma-
tions is lower than a predefined threshold). Ilustration of the tasks executed in one iteration of
the algorithm is in Figure 3.1.

applying transformation 
from the previous iteration

1) 2) 3) computing the transformation that
minimizes the penalization function

finding corresponding points  in the next iteration

Figure 3.1: One iteration of the ICP algorithm for 2D data. The source cloud contains 13 points
and the target consists of three line segments. Excerpted from [2].

The penalization function minimized in step 3 of the ICP algorithm is a sum of squares of
the Euclidean distances between points S ′i and corresponding points Ti, which can be mathe-
matically written as

E(R,Q) =
∑
i

|RS ′i +Q− Ti|2, (3.1)

where R ∈ R3×3 is a rotation matrix and Q ∈ R3×1 is a translation vector. The transformation
which minimizes this penalization function can be computed according to an algorithm described
in [3].

A lot of variants and improvements of this algorithm were developed. A basic overview
of them including comparison of their performance can be found in [4]. Some more recent
papers even focus directly on usage of this algorithm with popular rangefinders. For example
[5] formulates the ICP in inverse depth coordinates which better conform to a way in which
these sensors acquire data.

3.2 Random sample consensus

The random sample consensus (RANSAC) algorithm, originally introduced in [6], is a non-
deterministic algorithm for a robust model fitting. It is able to find parameters of a model of
data from given set Z of samples containing outliers. The RANSAC is an iterative algorithm
that performs following steps in each iteration.
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3.3. CROSS-CORRELATION

1. A subset of samples Z ′ is randomly chosen from Z.

2. Parameters of a model which fits to Z ′ are computed.

3. Number of inliers (points of Z that are closer to the model than a predefined threshold)
is computed.

4. If the number of inliers is higher than the number of inliers of the best model found so
far, actual model becames the best one.

Iterating is finished after predefined number of iterations.

Usage of the RANSAC algorithm for registration was described in [7] among others. For
registration tasks, the RANSAC algorithm is usually slightly modified. It is preceded with a
keypoint detection (e.g. SIFT, SURF or ORB keypoints are used) and instead of choosing
points, couples of keypoints (one source and one target) are selected. One iteration of the
algorithm then consists of following steps.

1. At least three (minimum for computing a transformation) couples of keypoints are ran-
domly selected.

2. A transformation that transforms source keypoints to positions of their coupled target
keypoints is computed.

3. Number of inliers (transformed source keypoints that are close enough to some target
keypoint) is computed.

4. If the number of inliers is higher than the number of inliers of the best transformation
found so far, the actual transformation becames the best one.

The main disadvantage of this algorithm is a fact that it requires a robust keypoint detection,
which can be problematic in some environments.

3.3 Cross-correlation

In some applications, use of the reliable ICP algorithm isn’t possible, usually because of
unknown estimation of a transformation or too small overlap of target and source clouds. In
these cases, it is required to find a global maximum of the similarity function Fsim (defined in
2.2). If a keypoint detection is possible, it is a perfect task for the RANSAC algorithm. But if
the detection can’t be done, a different approach must be used. One way of solving these tasks
is to use an algorithm that computes whole cross-correlation of occupancy grids.

The main problem of this approach is that a space of possible transformations (matrices
R, Q in 2.2) is enormous. Namely a rotational part of the transformation can be defined by
three independent variables (e.g. Euler angles) and a translational part of the transformation by
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3.3. CROSS-CORRELATION

another three independent variables. So that even for a resolution 2◦ in each angle of rotation
and 50 discrete steps in each axis of translation, the number of possible transformations is
1803 · 503 = 729 · 109. If a naive approach had been used, an occupancy grid would have been
created and a similarity function 2.3 evaluated for each of these transformations.

A lot of techniques were developed for avoiding this computationally demanding step. One
of them lies in dividing the transformation into a rotational and a translational part and com-
puting these parts separately. This technique (concretely determining the rotation first and the
translation afterwards) is used in the algorithm, which was implemented as a part of this work
and which is described narrowly in chapter 4.
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Chapter 4

Cross-correlation algorithm

This chapter contains a detailed description of the cross-correlation algorithm briefly intro-
duced in [8], which was implemented as a part of this work. At first, an overview of the algorithm,
including a pseudo-code, is given in section 4.1. Following sections 4.2 and 4.3 describe indi-
vidual steps of the pseudo-code with necessary mathematical background. Finally, section 4.4
contains descriptions of modifications of the original algorithm that were implemented in order
to improve its properties or enable usage of the algorithm in specific applications.

4.1 Overview of the algorithm

An input of the cross-correlation algorithm consists of target (T ) and source (S) clouds
introduced in chapter 2.2.

Outputs of the algorithm are rotation Rsol and translation Qsol from equation 2.2. Rsol and
Qsol maximize the similarity function fsim defined by equation 2.3. A principle of the algorithm
can be described by the following scheme.

1. rotation Rsol is determined, as described in chapter 4.2

(a) centres H = (Hi)hi=1 =
([

θi
φi

])h
i=1

of histogram bins (points uniformly distributed
on a unit sphere) are generated using formulas 4.1 and 4.2

(b) histograms (ti)hi=1 of the target cloud and (si)hi=1 of the source cloud are computed
from T , S and H using algorithm 1

(c) coefficients t̂ml and ŝml of a spherical harmonic (SPH) expansion of the target and
source histograms (ti)hi=1 and (si)hi=1 are computed for all bands l up to selected
maximum lmax

i. values of associated Legendre polynomials Pm
l (cos θi) for l ≤ lmax are computed

using formulas 4.4a - 4.4d
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ii. values of spherical harmonic functions Y m
l (θi, φi) in points Hi are computed

from Pm
l (cos θi) according to equation 4.5

iii. coefficients t̂ml and ŝml are computed from (ti)hi=1, (si)hi=1 and Y m
l (Hi) using

formula 4.13
(d) cross-correlation C(Ri) of the target and source histograms is computed from t̂ml

and ŝml

i. samples (Ri)ri=1 =
([

αi
βi
γi

])r
i=1

of a space of 3D rotations around origin are

selected
ii. values of Wigner d-function dlm,n(βi) are computed for all βi using equation

4.28
iii. values of Wigner D-function Dl

m,n(Ri) are computed for all samples Ri from
αi, γi and dlm,n(βi), using equation 4.24

iv. from t̂ml , ŝ
m
l and Dl

m,n(Ri), a value of cross-correlation C(Ri) is computed for
all samples Ri according to formula 4.23

(e) rotation Rsol = arg maxRi
|C(Ri)| is found as the rotation for that a magnitude of

cross-correlation C(Ri) reaches its maximum

2. translation Qsol is determined, as described in chapter 4.3

(a) rough translation Q′ is determined from T , S and Rsol

i. points Tmin and Umin defined by equation 4.29 are found
ii. translation Q′ is computed from Tmin and Umin according to equation 4.30

(b) fine translation Q′′ is determined from T , S, Rsol and Q′

i. occupancy grids tx,y,z of the target cloud T and vx,y,z of cloud V = RsolS+Q′

are created from T , S, Rsol and Q′

ii. direct DFT is applied to tx,y,z and vx,y,z producing coefficients F(t)x,y,z and
F(v)x,y,z according to equation 4.32

iii. coefficients of a correlation F(t ? s) are computed from F(t)x,y,z and F(v)x,y,z
using formula 4.31

iv. correlation (t ? s)(a, b, c) of occupancy grids tx,y,z and vx,y,z is computed from
F(t ? s) using an inverse 3D DFT defined by 4.33

v. points amax, bmax, cmax for which (t ?s)(a, b, c) reaches its maximum are found
vi. translation Q′′ is computed from amax, bmax, cmax according to equation 4.34

(c) translation Qsol is computed using equation 4.35

4.2 Rotation determination

Rotation Rsol from equation 2.2 is determined in step 1 of the pseudo-code in section
4.1. This part of the algorithm serves for finding a rotational component (matrix Rsol) of the
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searched transformation regardless of a translation. A principle of this approach lies in finding
a histogram of normals of target and source clouds, computing their cross-correlation (using
an spherical harmonic expansion and an SO(3) Fourier transform) and finding a rotation for
which the cross-correlation reaches its maximum. Details of the mentioned procedures and
mathematical concepts will be introduced in following sections.

The spherical harmonic (SPH) transformation and the SO(3) Fourier transform (SOFT)
are mathematical concepts based on principles described in [9]. This mathematical theory was
summed up and extended (including practical applications) in [10], [11], [12] among others.

4.2.1 Spherical coordinate system

Before explaining the methods for computing the rotation, a spherical coordinate system will
be defined here. It is necessary, because more conventions in diferent sources exist, which can
cause misunderstandings.

The spherical coordinate system (which is an alternative of the Cartesian one) is a coordinate
system which describes a position of a point X in a 3D space with an origin O by 3 coordinates:
θ, φ, r. For this work, the following convention of coordinates will be used.

φ ∈ [0, 2π) is an angle between an x-axis and a projection of a line segment OX onto a plane
xy. θ ∈ [0, π] is an angle between a z-axis and a line segment OX. Finally, r is an Euclidean
distance between points O and X. Ilustration of a spherical coordinate system defined such
way is in Figure 4.1.

X

O
ρ

r

x

y

z

ϕ

θ

Figure 4.1: Spherical coordinate system.
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Following relations between Cartesian coordinate system and the spherical one hold:

ρ =
√
x2 + y2 ρ = r sin(θ)

r =
√
x2 + y2 + z2 x = ρ cos(φ)

φ = arctan
(
y

x

)
y = ρ sin(φ)

θ = arcsin
(
ρ

r

)
= arccos

(
z

r

)
z = r cos(θ).

4.2.2 Histogram of normals

The histogram of normals is generated in step 1b of the pseudo-code in section 4.1. In this
part of the algorithm, we try to eliminate a translational part of searched transformation, so a
proper description of clouds, which isn’t affected by a translation, must be used. The histogram
of normals is one of such descriptions. It describes a cloud by a real function f(θ, φ) defined
on discrete points of a unit sphere, where θ and φ are spherical coordinates of a discrete point
(r is always equal to one). The discrete points represent centres of bins of the histogram and
their positions must be chosen before computing the histogram itself. The process of selection
of these points will be described later in this chapter.

Besides positions of bins, it is also needed to compute surface normals in each point of the
described cloud. For this task a method introduced in [13] can be used.

Having both, centres H = (Hi)hi=1 of bins, and normals (~nj)lj=1 of the described cloud, the
histogram can be computed according to algorithm 1.

Algorithm 1: Generating a histogram of normals.
input : centres H = (Hi)hi=1 of histogram bins, normals (~nj)lj=1 of the described cloud
output: histogram (hi)hi=1 of the described cloud

1 for i = 1 to h do
2 hi ← 0;
3 end
4 for j = 1 to l do
5 translate the normal nj such that its starting point lies in an origin of the coordinate

system;
6 find endpoint Nj of the translated normal nj;
7 find point Hx ∈ H with a minimal Euclidean distance from point Nj;
8 hx ← hx + 1;
9 end

A histogram created this way can be visualized in many ways, one of them displays centres
of bins on a unit sphere and values of bins are represented by a colour of points (brighter colour
means higher value of a bin). Another possibility is to represent values of individual bins by
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distance of center points from origin of a coordinate system. Both these methods are illustrated
in Figure 4.4. A cloud from which the histogram was generated is in Figure 4.3.

Some further computations (concretely discrete integration using a Monte Carlo estimator
described by equation 4.12) will require the bins’ centres to be placed uniformly, independently of
a parametrization of the sphere used (in our case angles θ, φ). An intuitive approach consisting
in the use of formulas

θ = uπ

φ = v2π,

where u ∈ [0, 1] and v ∈ [0, 1) are uniformly distributed, leads to an incorrect solution, because
generated points are accumulated near poles of the sphere (which is apparent in Figure 4.5
in comparison to Figure 4.6). For correct generating of points uniformly distributed over the
sphere, one of methods listed in [14] can be used. The simplest one uses formulas

θ = arccos(2u− 1) (4.1)
φ = v2π, (4.2)

where u and v are uniformly distributed over the interval (0, 1). Another method, described in
[8], uses a projection of a polyhedra (concretely an icosahedron with further divided faces) onto
a sphere.

4.2.3 Associated Legendre polynomials

Associated Legendre polynomials are computed in step 1(c)i of the pseudo-code in section
4.1. They are introduced here, because they will be used in chapter 4.2.4 for defining spherical
harmonic functions.

Associated Legendre polynomials are real functions of real value, defined, according to [15],
as solutions to the associated Legendre differential equation. It is possible to express them
explicitly by a formula

Pm
l (x) = (−1)m

√
(1− x2)m

(
dm
dxmPl(x)

)
, (4.3)

where l ∈ N0 is a band (sometimes called a degree), m ∈ (0, 1, 2, . . . , l) denotes an order (it
doesn’t indicate a power of Pl) and Pl(x) is an unassociated Legendre polynomial defined in
[16] as

Pl(x) = 1
2ll!

dl
dxl (x

2 − 1)l.

For negative order, associated Legendre polynomials are defined by a formula 4.4d.

12/46



4.2. ROTATION DETERMINATION

photo of the bottle scanned cloud
Figure 4.2: A plastic bottle that was scanned with ASUS Xtion PRO.

side view top view
Figure 4.3: Scan of a plastic bottle from figure 4.2. All points and each
5-th normal are displayed.

colour histogram distance histogram
Figure 4.4: Histogram of plastic bottle from Figure 4.3.
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side view top view
Figure 4.5: Intuitively sampled sphere.

side view top view
Figure 4.6: Uniformly sampled sphere.

Although formula 4.3 is explicit, it is not very practical for numerical computation, because it
contains derivations. Fortunately, associated Legendre polynomials can be also computed using
recurrence relations

P l
l (x) = (−1)l(2l − 1)!!

√
(1− x2)l (4.4a)

P l
l+1(x) = x(2l + 1)P l

l (x) (4.4b)
(l −m)Pm

l (x) = x(2l − 1)Pm
l−1(x)− (l +m− 1)Pm

l−2(x) (4.4c)

P−ml (x) = (−1)m (l −m)!
(l +m)!P

m
l (x), (4.4d)

where m ∈ (0, 1, 2, . . . , l) and symbol !! denotes a double factorial defined as

(n)!! =


n · (n− 2) · . . . · 5 · 3 · 1 for n > 0 odd
n · (n− 2) · . . . · 6 · 4 · 2 for n > 0 even
1 for n = −1, 0,
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after using equation 4.4a after using equation 4.4b

m
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after using equation 4.4c after using equation 4.4d

Figure 4.7: Recursive computation of associated Legendre polynomials. White cir-
cles indicate currently unknown values, coloured ones represent values already com-
puted. Input values are in bubbles, outputs are pointed by arrows.

so equation 4.3 doesn’t need to be used at all. The recursive method of calculation is advan-
tageous especially if the whole set

P = {Pm
l (x) | l < lmax;−l ≤ m ≤ l}

for a given band lmax and argument x is computed at once, which is the case of the algorithm
described in this chapter. The recursive computational process is illustrated in Figure 4.7.

4.2.4 Spherical harmonics (SPH)

Similarly to a spherical coordinate system, spherical harmonic functions (or shortly spherical
harmonics), computed in step 1(c)ii of the algorithm, are defined inconsistently in different
sources (e.g. [11], [12], [17]). The most common way is to define them as the angular portion
of the solution to Laplace’s equation in spherical coordinates. However, this definition isn’t very
practical for computing and what is more, it contains an urcentainty consisting in a normalization
coefficient.

Therefore, in this work an explicit definition of spherical harmonics, similar to the one used
in [17], will be used. According to it, the spherical harmonics are functions f : S2 → C, that
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can be written as

Y m
l (θ, φ) =

√√√√2l + 1
4π

(l −m)!
(l +m)!P

m
l (cos θ)eimφ , (4.5)

where S2 denotes a unit sphere, θ ∈ [0, π] and φ ∈ [0, 2π) are spherical coordinates defining a
point on the unit sphere, l ∈ N0 denotes a band (or degree), m ∈ (−l, . . . , 0, . . . , l) denotes
an order of the spherical harmonic (as for associated Legendre polynomials, it doesn’t indicate
a power of Yl), Pm

l is an associated Legendre polynomial and i is an imaginary unit. Figure 4.8
displays real parts of spherical harmoics up to band 2.

Figure 4.8: Spherical harmonics of bands 0-2. Axis (including scales) are the same for all func-
tions.

Sometimes it is advantageous to use only one number for indexing spherical harmonics instead
of two (l and m). In these cases, notation Yi(θ, φ) denoting the same function as Y m

l (θ, φ) can
be used, where conversion formula is

i = (l + 1)l +m.

This conversion can be interpretted as ordering spherical harmonics by l from lowest to highest
and then by m (from −l to l) in each band. Index i can then be generated by indexing such
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ordered functions from 0. Both ways of indexing spherical harmonics are illustrated in Figure
4.9.

m
l

-3 -2 -1 0 1 2 3

0

1

2

3 10

87654

321

0

9 11 12 13 14 15

Figure 4.9: Two ways of indexing spherical harmonics. The first one uses indices l (green) and
m (red), the second one uses only index i (yellow).

4.2.5 Spherical harmonic expansion and reconstruction

As a first approach, it is possible to imagine SPH expansion and reconstruction as opera-
tions in some way similar to very popular direct and inverse Discrete Fourier transform (DFT).
The direct DFT projects a function onto a basis consisting of selected goniometric functions,
generating a list of complex coefficients. Similarly, the SPH expansion (computed in step 1c of
the algorithm) projects a function onto a basis consisting of spherical harmonics, generating a
list of complex coefficients (referred as SPH coefficients). The SPH reconstruction is an inverse
operation for SPH expansion, much like the inverse DFT is for direct DFT.

For a formal definition, let’s first denote a space of square-integrable complex spherical
functions as L2(S2). Then the SPH expansion of a function f ∈ L2(S2) generates a list of
complex coefficients

f̂ = (f̂ 0
0 , f̂

−1
1 , f̂ 0

1 , f̂
1
1 , . . . ) = (f̂0, f̂1, f̂2, f̂3, . . . )

defined as
f̂ml =< f, Y m

l > (4.6)

or using one-index notation
f̂i =< f, Yi >, (4.7)

where f̂ml = f̂i ∈ C, l ∈ N0 denotes a band, m ∈ (−l, . . . , 0, . . . , l) denotes an order and <>
denotes an inner product, which is for functions L2(S2) defined as

< f, g >=
∫
S

f(ω)g(ω)dω =
∫ 2π

0

∫ π

0
f(θ, φ)g(θ, φ) sin(θ)dθdφ, (4.8)
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where
∫
S
denotes an integral over a sphere and g denotes a complex conjugate of g. Combining

equations 4.6 and 4.8, the following formula for computing coefficients of the SPH expansion
can be derived

f̂ml =
∫ 2π

0

∫ π

0
f(θ, φ)Y m

l (θ, φ) sin(θ)dθdφ. (4.9)

Function f : L2(S2) can be, according to [11], reconstructed from coefficients f̂i using formula

f(θ, φ) =
∞∑
i=0

f̂i Yi(θ, φ) (4.10)

or from coefficients f̂ml using formula

f(θ, φ) =
∞∑
l=0

l∑
m=−l

f̂ml Y m
l (θ, φ), (4.11)

which represent a linear combination of all base functions (spherical harmonics) multiplied by
their associated coefficients.

So far, using formulas 4.9 and 4.10, we are able to expand and reconstruct functions from
L2(S2). Formula 4.10 can also be used for reconstructing sampled (or "discrete") spherical
functions (i.e. defined only on specified points of a unit sphere), but neither formula 4.9 nor
4.6 can deal with this type of functions directly. For expansion, integral over a sphere in these
formulas must be discretized and values of the sampled function estimated in areas between
sampling points. This can be achieved by so called Monte Carlo estimator described in [11] and
[18]. According to it, an integral over multidimensional volume V can be estimated as

∫
hdV ≈ V

N

N∑
s=1

h(Xs), (4.12)

where N is a number of samples and X1, X2, . . . , XN are samples uniformly distributed in V .
Using this formula with V substitued by a surface of a unit sphere, an inner product (defined
by 4.8) can be estimated as follows

< f, g >=
∫
S

f(ω)g(ω)dω ≈ 4π
N

N∑
s=1

f(Xs)g(Xs),

so a formula for estimating coefficients of an SPH expansion of uniformly sampled spherical
function f is

f̂ml ≈
4π
N

N∑
s=1

f(Xs)Y m
l (Xs) . (4.13)

When working with real data, formula 4.11 can’t be used as is, because it contains an infinite
sum which can’t be computed in a finite time. Instead, an approximation can be computed,
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using the following formula

f(θ, φ) =
lmax∑
l=0

l∑
m=−l

f̂ml Y m
l (θ, φ), (4.14)

where lmax ∈ N0 is a maximal band. A value of lmax is selected as a trade-off between a
precision of the approximation and its speed. But this approximation can be exact for some
functions. If the expanded function does not contain "high frequency content" (i.e. it has all SPH
coefficients with l > lmax equal to zero), nothing is lost during the approximated reconstruction
by equation 4.14 and the original function is reconstructed exactly. But if a function with a
"high frequency content" is expanded, reconstruction according to equation 4.14 generates only
an approximation of the original expanded function. However this approximation can be often
sufficient. An effect of the approximation is illustrated in Figure 4.10.

original
function l

max
=0 l

max
=2 l

max
=5 l

max
=8

Figure 4.10: Effect of filtering high frequency content out. Red function is expanded and then
reconstructed using only coefficients from 0 to lmax.

4.2.6 Notations of rotation

A rotation in 3D space can be described in many ways, and of course, some of them are
more advantageous in some cases than the others. In this work, three kinds of notation are
used, all of them are described in this chapter, along with some relations between them.

Rotation matrix

The first notation, the rotation matrix is a 3 × 3 real matrix R with det(R) = 1. Further,
R−1 = RT , where R−1 denotes an inverse of R and RT is matrix R transposed.

This notation is very handy when rotating clouds, because if an input cloud C is expressed
by the equation 2.1, nothing more than a simple matrix multiplication D = RC is needed for
generating a rotated cloud D. The next advantage of the rotation matrix is an easy chaining
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of consecutive rotations. If a cloud C is rotated by a rotation R1 and then by another rotation
R2, it can be written as

R2R1C = R2,1C. (4.15)

So a single rotation consisting of 2 consecutive rotations can be enumerated by a matrix
multiplication.

On the other hand, the rotation matrix has also drawbacks. At first, it isn’t very illustrative
(i.e. it is difficult to interpret nine numbers as an imaginable rotation without a visualization
tool). The second disadvantage is that the rotation matrix is very redundant, which can be a
problem when storing larger number of them. The redundance is also a problem for random
generating, because all nine numbers depend on each other.

Euler angles

The next notation, which uses so called Euler angles, expresses a 3D rotation as three
independent numbers α, β, γ. These numbers represent three consecutive rotations around
selected axis of a coordinate system. Axes can be selected in more ways, but in this work, so
called z-y-z convention will be used consistently. According to this convention, an input cloud
C and axes x, y, z are firstly rotated around axis z by angle α, producing cloud C ′ and new
axes x′, y′, z′ (so axes z ≡ z′). Then cloud C ′ and axes x′, y′, z′ are rotated around axis y′

by angle β, producing a cloud C ′′ and axes x′′, y′′, z′′ (so axes y′ ≡ y′′). Finally cloud C ′′ is
rotated around axis z′′ by angle γ, producing an output cloud.

A formula for converting Euler angles α, β, γ to rotation matrix Rzyz(α, β, γ), can be derived
from matrices Ry(ω), Rz(ω) that correspond to rotations by an angle ω around axes y and z
of a coordinate system.

Ry(ω) =

 cos(ω) 0 sin(ω)
0 1 0

− sin(ω) 0 cos(ω)

 Rz(ω) =

cos(ω) − sin(ω) 0
sin(ω) cos(ω) 0

0 0 1


The rotation matrix Rzyz(α, β, γ) can be now expressed as

Rzyz(α, β, γ) = Rz(α) ·Ry(β) ·Rz(γ), (4.16)

which gives after substitution

Rzyz(α, β, γ) =
cos(α) cos(β) cos(γ)− sin(α) sin(γ) − cos(γ) sin(α)− cos(α) cos(β) sin(γ) cos(α) sin(β)

cos(α) sin(γ) + cos(β) cos(γ) sin(α) cos(α) cos(γ)− cos(β) sin(α) sin(γ) sin(α) sin(β)
− cos(γ) sin(β) sin(β) sin(γ) cos(β)

.
(4.17)

An order of matrices in equation 4.16 may seem inverse, because, according to 4.15, a matrix
representing the first rotation applied, is the closest to the cloud. But it is necessary to keep
in mind that all matrices Rz(α), Ry(β), Rz(γ) rotate its input around axes z, y, z and not
around axes produced by previous rotations.
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A formula for converting a rotation matrix R =
[ r11 r12 r13
r21 r22 r23
r31 r32 r33

]
to Euler angles isn’t such

straightforward. It is based on calculating each angle one by one from elements of the rotation
matrix, starting with β. This angle is the easiest for computing, because r33 = cos(β) is directly
an element of the rotation matrix. When β is known, it is possible to get other angles from the
last row and column of the rotation matrix. But because of ambiguities caused by computing
inverses of goniometric functions, multiple solutions can be found and it is necessary to select
the valid ones by testing if the computed Euler angles match all elements of the rotation matrix.

Another method for computing Euler angles from R, presented in [19], uses a function
atan2(y, x), which computes the arctan of the ratio y

x
, but it is able to determine a quadrant

of the resulting angle from signs of its two arguments y and x. With this function, two solutions
(triplets of the Euler angles) can be expressed as follows

α1 = atan2(r23, r13) α2 = atan2(−r23,−r13)

β1 = atan2
(√

r2
13 + r2

23, r33

)
β2 = atan2(−

√
r2

13 + r2
23, r33)

γ1 = atan2(r32,−r31) γ2 = atan2(−r32, r31).

This notation is more illustrative than the rotation matrix, which makes it useful for inter-
facing with humans. What is more, the angles α, β, γ are not constrained by any equation,
which makes generating random rotations as easy as generating tree numbers.

The main disadvantage of the Euler angles is that a special attention must be taken to
preserving a consistency of the selected convention. Also, this notation is ambiguous, because
it is possible to describe one rotation by more triplets of Euler angles. The next drawback is that
a transformation of the Euler angles to the rotation matrix (formula 4.17) requires goniometric
functions, which can be slow or inaccurate in some applications. Also, the Euler angles can’t
be used directly (without a thansformation to the rotation matrix) to a cloud described by a
matrix. Last but not least, chaining of consecutive rotations can’t be computed directly as a
sum of the individual Euler angles, but some (usually more computationally demanding) process,
such as transformation to rotation matrices followed by a matrix multiplication and an inverse
transformation, must be used.

Quaternions

The last notation, described in [20] among others, uses a fact that each 3D rotation can be
described by its axis and an angle of the rotation around this axis. A quaternion describes the
rotation using four numbers as follows

q =


q0
q1
q2
q3

 =


vx sin ω

2
vy sin ω

2
vz sin ω

2
cos ω

2

 , (4.18)
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where vector ~v =
[ vx
vy
vz

]
is a unit vector in a direction of axis of the rotation and ω is an angle

of the rotation around ~v.

From this definition, following constraint to elements of the quaternion can be derived

|q| = v2
x sin2 ω

2 + v2
y sin2 ω

2 + v2
z sin2 ω

2 + cos2 ω

2 = (v2
x + v2

y + v2
z) sin2 ω

2 + cos2 ω

2 = 1. (4.19)

Therefore q defined in this way is sometimes called a unit quaternion.

An inverse rotation q−1, which "cancels out" the effect of the rotation q, can be computed
from q as follows

q−1 =


−q0
−q1
−q2
q3

 .
Depending on the interpretation, it either rotates its input about angle −ω around axis ~v or
about angle ω around axis −~v.

Although the definition of the quaternion can seem overcomplicated at the first glance, thanks
to it the quaternions have some very beneficial properties. One of them is that a rotation matrix
can be, according to 4.20, computed from them using only second order polynomials of qi (so
no goniometric function is needed, contrary to the Euler angles).

R =

q
2
3 + q2

0 − q2
1 − q2

2 2(q0q1 − q3q2) 2(q0q2 + q3q1)
2(q0q1 + q3q2) q2

3 − q2
0 + q2

1 − q2
2 2(q1q2 − q3q0)

2(q0q2 − q3q1) 2(q1q2 + q3q0) q2
3 − q2

0 − q2
1 + q2

2

 (4.20)

Also a chaining of consecutive rotations expressed as quaternions a and b (corresponding to
rotation matrices A andB) is possible without converting quaternions a and b to matrices. The
quaternion c corresponding to rotation matrix AB can be computed according to a formula

c =


a3b0 + a0b3 + a1b2 − a2b1
a3b1 + a1b3 + a2b0 − a0b2
a3b2 + a2b3 + a0b1 − a1b0
a3b3 − a0b0 − a1b1 − a2b2

 .

The inverse transform, from a rotation matrix R =
[ r11 r12 r13
r21 r22 r23
r31 r32 r33

]
to the quaternion, can be

found by computing both components, ~v and ω separately. The rotation angle ω can be easily
evaluated from a formula

1
2(traceR− 1) = cosω,

where traceR = r11 + r22 + r33. The unnormalized rotation axis ~u can be estimated as follows

~u =




r32 − r23

r13 − r31

r21 − r12

 if R is not symmetric

arbitrary non-zero column of R + I if R is symmetric,
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where I denotes a 3×3 identity matrix. The ~u is not normalized, which means not only that its
length doesn’t need to be one, but it is also possible, that its direction is inverse to a direction
of the rotation axis corresponding to computed rotation angle ω. Therefore, two unit vectors
can be computed from ~u

~u1 = ~u

|~u|
, ~u2 = − ~u

|~u|

and only the one which corresponds to the assigned matrix R must be selected as ~v. The
selection can be done for example by substituting of ~u1, ~u2 and ω to 4.20 and comparing the
results with assigned R. Finally, when both, rotation axis ~v and angle ω are estimated, the
quaternion can be computed using formula 4.18.

In addition to easy conversion to the rotation matrix and easy chaining of rotations, the
quaternions are also relatively illustrative and not very space-demanding when stored. Their us-
age has also drawbacks, such as ambiguities (quaternions q and −q describe the same rotation)
or not very straightforward transformation of a rotation matrix to the quaternion. Also, more
conventions for ordering elements in the quaternion exist.

4.2.7 Cross-correlation based orientation determination

This part of the algorithm serves for computing a cross-correlation of histograms of normals
of target and source clouds, which takes place in step 1d of the pseudo-code in section 4.1.
The rotation, for which this cross-correlation reaches its maximum, is very important, because
it is the rotation Rsol from equation 2.2, searched in the whole chapter 4.2.

The cross-correlation of histograms is defined as

C(R) =
∫
S

t(ω)s(R−1ω)dω, (4.21)

where t ∈ L2(S2) is a continuous histogram of a target cloud and s ∈ L2(S2) is a continuous
histogram of a source cloud. C(R) is now defined as a function SO(3) → C, where SO(3)
denotes a group of 3D rotations around origin. Alike functions from L2(S2), complex square
integrable functions on SO(3) (denoted as L2(SO(3)) can be decomposed and reconstructed
too. This time, a basis consists of Wigner D-functions that will be defined further. A formula
for reconstruction is

f(α, β, γ) =
∞∑
l=0

l∑
m=−l

l∑
n=−l

f̂ lm,nD
l
m,n(α, β, γ),

where f ∈ L2(SO(3)) is a reconstructed function, f̂ lm,n ∈ C are SO(3) Fourier coefficients and
Dl
m,n is a Wigner D-function.

Finally a main concept lying behind this algorithm can be presented. Simply put, it is possible
to compute SOFT coefficients of a cross-correlation C(R) by multiplying SPH coefficients of
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target and source histograms. Exact formula (including a reconstruction of C(R)), which was
derived in [10], is

C(R) =
∞∑
l=0

l∑
m=−l

l∑
n=−l

t̂ml ŝnl (−1)n−mDl
−m,−n(R)

=
∞∑
l=0

l∑
m=−l

l∑
n=−l

t̂−ml ŝ−nl (−1)m−nDl
m,n(R),

which can be also written as

C(R) =
∞∑
l=0

l∑
m=−l

l∑
n=−l

t̂ml ŝnl D
l
m,n(R) (4.22)

or for band-limited C(R) as

C(R) =
lmax∑
l=0

l∑
m=−l

l∑
n=−l

t̂ml ŝnl D
l
m,n(R). (4.23)

Here, t̂ denotes SPH coefficients of a target histogram, ŝ denotes SPH coefficients of a source
histogram and D is a Wigner D-function. This function, evaluated in section 1(d)iii of the
pseudo-code in section 4.1, is defined as

Dl
m,n(R) = Dl

m,n(α, β, γ) = e−imαdlm,n(β)e−inγ = e−i(mα+nγ)dlm,n(β) , (4.24)

where α, β, γ are Euler angles corresponding to rotation R and d is a Wigner d-function. The
Wigner d-function, evaluated in section 1(d)ii of the pseudo-code in section 4.1, is for z-y-z
convention of Euler angles defined as

dlm,n(β) =

√√√√ (l + n)!(l − n)!
(l +m)!(l −m)!

(
sin β2

)n−m (
cos β2

)m+n

P
(n−m,n+m)
l−n (cos β), (4.25)

where P (b,c)
a denotes a Jacobi polynomial defined (e.g. in [21]) as

P (b,c)
a (x) = (a+ b)!(a+ c)!

∑
r

1
r!(a+ b− r)!(c+ r)!(a− r)!

(
x− 1

2

)a−r (x+ 1
2

)r
(4.26)

for a, a + b, a + c, a + b + c ∈ N0 and for all r ∈ N0 for which arguments of all factorials are
nonnegative. Formula 4.26 is for x = cos β equivalent to

P (b,c)
a (cos β) = (a+ b)!(a+ c)!

∑
r

1
r!(a+ b− r)!(c+ r)!(a− r)!

(
− sin2 β

2

)a−r (
cos2 β

2

)r
.

(4.27)
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By a substitution of formula 4.27 into 4.25, we get an equation

dlm,n(β) =

√√√√ (l + n)!(l − n)!
(l +m)!(l −m)!

(
sin β2

)n−m (
cos β2

)m+n

(l −m)!(l +m)!

∑
r

1
r!(l −m− r)!(n+m+ r)!(l − n− r)!

(
− sin2 β

2

)l−n−r (
cos2 β

2

)r
,

which can be further transformed as follows

dlm,n(β) =
√

(l +m)!(l −m)!(l + n)!(l − n)!
(

sin β2

)n−m (
cos β2

)m+n

∑
r

1
r!(l −m− r)!(n+m+ r)!(l − n− r)!

(
− sin2 β

2

)l−n−r (
cos2 β

2

)r

dlm,n(β) =
√

(l +m)!(l −m)!(l + n)!(l − n)!
∑
r

(−1)l−n−r
r!(l −m− r)!(n+m+ r)!(l − n− r)!

(
cos β2

)2r+m+n (
sin β2

)2l−n−2r−m

.

Finally using a substitution r = −q + l − m, we get a complete explicit formula for Wigner
d-function

dlm,n(β) =
√

(l +m)!(l −m)!(l + n)!(l − n)!
∑
q

(−1)m−n+q

(l −m− q)!q!(n− q + l)!(m− n+ q)!

(
cos β2

)2l+n−m−2q (
sin β2

)m−n+2q

.

(4.28)

4.3 Establishing translation using FFT

In this phase of the algorithm (denoted as step 2 of the pseudo-code in section 4.1), rotational
part (Rsol from equation 2.2) of searched transformation is known. It remains only to find a
translation Qsol. This task isn’t as hard as finding the rotation, because we can use the already
computed Rsol. The translation is searched in 2 consecutive steps: rough and fine.

Rough alignment

Firstly, in step 2a of the algorithm, clouds T =
[
Tx

1 Tx
2 Tx

3 ...

T y
1 T y

2 T y
3 ...

T z
1 T z

2 T z
3 ...

]
andRsolS = U =

[
Ux

1 Ux
2 Ux

3 ...

Uy
1 Uy

2 Uy
3 ...

Uz
1 Uz

2 Uz
3 ...

]
are aligned roughly. Simply put, point Tmin lying in a "corner" of cloud T is aligned with point
Umin lying in a "corner" of cloud RsolS. The points Tmin and Umin are defined as

Tmin =

mini T xi
mini T yi
mini T zi

 , Umin =

mini Ux
i

mini Uy
i

mini U z
i

 . (4.29)
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The rough translation Q′ can be then computed as

Q′ = Tmin − Umin. (4.30)

4.3.1 Fine alignment

In the second step (denoted as 2b of the pseudo-code in section 4.1), fine translation Q′′,
which aligns clouds T and RsolS + Q′, is found. For finding the fine translation Q′′, a cross-
correlation is used again. In this case, occupancy grid tx,y,z of target cloud T is correlated with
occupancy grid vx,y,z of cloud V = RsolS+Q′. The cross-correlation (t?s)(a, b, c) is, according
to [22], given by the following equation

(t ? s)(a, b, c) =
∞∑

i=−∞

∞∑
j=−∞

∞∑
k=−∞

ti,j,k · si+a,j+b,k+c.

Similar idea as for computing a cross-correlation of functions from L2(S2) can be used here
for computing a cross-correlation of occupancy grids: Fourier coefficients of the cross-correlation
can be computed by a multiplication of Fourier coefficients of occupancy grids. This can be,
according to [8], mathematically written as

F(t ? s) = F(t) · F(s). (4.31)

The occupancy grids can be handled as 3D discrete functions, which can be expanded using
a 3D discrete Fourier transform (DFT). The 3D DFT can be computed as consecutive 1D
DFT transformations along each dimmension, where the 1D DFT transformation of samples
(x0, x1, . . . , xN−1) produces an N -periodic sequence of coefficients yk defined in [23] as

yk =
N−1∑
j=0

xje
−2πi jk

N , (4.32)

where xk, yk ∈ C and i is the imaginary unit. Also the 3D inverse DFT can be computed as
consecutive 1D transformations, defined as

yk =
N−1∑
j=0

xje
2πi jk

N , (4.33)

where (x0, x1, . . . , xN−1) are input coefficients, and yk ∈ C is an N -periodic sequence of output
samples. The 1D direct and inverse DFTs can be effectively computed using the FFT algorithm,
which reduces a complexity of the computation to N logN .

After computing the cross-correlation (t ? s)(a, b, c) of the occupancy grids, values amax,
bmax and cmax for that the cross-corelation reaches its maximum are found. Transformation Q′′

is computed from them as follows

Q′′ =

amaxvxbmaxvy
cmaxvz

 , (4.34)
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where vx, vy and vz are sizes of voxels in corresponding dimmensions.

When both translations, the rough one and the fine one are determined, the complete trans-
lation Qsol can be finally computed as

Qsol = Q′ +Q′′. (4.35)

4.4 Modifications of the original algorithm

In order to improve performance of the original algorithm described in [8] or to overcome is-
sues that appeared during implementation, some modifications of the algorithm were suggested.
They are all described in this section.

4.4.1 Precomputing spherical harmonics and Wigner D-function

The main performance-improving modification uses a fact that in some cases, values of
spherical harmonics and values of Wigner D-function can be computed before the source and
target clouds are known. Concretely, values of the spherical harmonics Y m

l (θi, φi from step
1(c)ii of the pseudo-code in section 4.1 can be computed as soon as a maximal value lmax
of l and positions of the centres of histogram bins are known. Because these positions are
generated randomly, only their number lasts for their assignment. Therefore if the number of
bins h and lmax are constants known before an arrival of the target and source clouds, positions
of points (Hi)hi=1 =

([
θi
φi

])h
i=1

and values Y m
l (θi, φi) can be precomputed, which reduces a time

of a registration of the target and source clouds. Additional reduction of a computational time
can be achieved, instead of precomputing only Y m

l (θi, φi), by precomputing the whole terms
4π
h
Y
m
l (θi, φi), which can be used directly in equation 4.13.

Also, values of the Wigner D-function can be precomputed. In this case the condition is that
the lmax and rotation samples (Ri)ri=1 must be known. Again, more computational time can
be saved by precomputing complex-conjugated values Dl

m,n(Ri), which can be used directly in
equation 4.23.

4.4.2 Two-level rotation determination

Although benefits of the SPH transform and the SO(3) Fourier transform are significant, a
speed of the algorithm for selected resolution in rotation (density of samples Ri) can be for some
applications insufficient. Therefore the "two-level rotation determination" was implemented in
order to increase the speed of the algorithm and decrease its memory requirements.

This method in its first step finds a rough estimate R′ of the rotation Rsol using a low-density
rotation samples (R′i)r

′
i=1 instead of (Ri)ri=1. Then the source scan is transformed according to

the estimated rotation producing a scan R′S. In the second step a fine rotation R′′ which
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transforms scan R′S towards the target scan is found. The benefit is that if the first estimate
R′ is correct, the second rotation is small, so rotation samples can be generated only in a
surroundings of an identity rotation (represented by the identity matrix). Finally the searched
rotation can be computed as Rsol = R′′R′.

But this procedure can be improved even more. So far it is necessary for deternmining the
R′′ to find normals, create their histogram and sompute coefficients ŝ′

m

l of cloud R′S. These
added steps, especially finding the normals, require additional computational time which slows
the registration down. Fortunately, using the implication

f(X) = g(R−1X) =⇒ f̂ lm =
l∑

n=−l
ĝnl D

l
m,n(R) (4.36)

from [12], where f, g ∈ L2(S2) and X is a point on the unit sphere, it is possible to compute
coefficients ŝ′

m

l directly from coefficients ŝml of the source histogram as follows

ŝ′
m

l =
l∑

n=−l
ŝnl D

l
m,n(R′). (4.37)

If the two-level rotation determination technique is used, steps 1d and 1e of the pseudo-code
in section 4.1 are changed to

(d) cross-correlation C ′(R′i) of the target and source histograms is computed from t̂ml and
ŝml

(i) sparse samples (R′i)r
′
i=1 =

([
α′

i

β′
i

γ′
i

])r′

i=1
of a space of 3D rotations around origin are

selected

(ii) values of Wigner d-function dlm,n(β′i) are computed for all β′i using equation 4.28

(iii) values of Wigner D-function Dl
m,n(R′i) are computed for all samples R′i from α′i, γ

′
i

and dlm,n(β′i), using equation 4.24

(iv) from t̂ml , ŝ
m
l and Dl

m,n(R′i), a value of cross-correlation C ′(R′i) is computed for all
samples R′i according to formula 4.23

(e) rotation R′ = arg maxR′
i
|C ′(R′i)| is found as the rotation for that a magnitude of cross-

correlation C ′(R′i) reaches its maximum

(f) cross-correlation C ′′(R′′i ) of the target histogram and histogram of the cloud R′S is
computed from t̂ml , ŝ

m
l and Dl

m,n(R′)

(a) coefficients ŝ′
m

l of the histogram of cloud R′S are computed from ŝml and Dl
m,n(R′)

according to equation 4.37
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(b) dense samples (R′′i )r
′′
i=1 =

([
α′′

i

β′′
i

γ′′
i

])r′′

i=1
close to identity rotation are selected

(c) values of Wigner d-function dlm,n(β′′i ) are computed for all β′′i using equation 4.28

(d) values of Wigner D-function Dl
m,n(R′′i ) are computed for all samples R′′i from α′′i ,

γ′′i and dlm,n(β′′i ), using equation 4.24

(e) from t̂ml , ŝ′
m

l and Dl
m,n(R′′i ), a value of cross-correlation C ′′(R′′i ) is computed for all

samples R′′i

(g) rotation R′′ = arg maxR′′
i
|C ′′(R′′i )| is found as the rotation for that a magnitude of

cross-correlation C ′′(R′′i ) reaches its maximum

(h) rotation Rsol is computed as Rsol = R′′R′

The main disadvantage is that the algorithm modified in this way can skip some local optima
in its first step. On the other side this technique significantly improves a speed of the algorithm
and decreases its memory requirements.

4.4.3 Limiting number of voxels during translation determination

The determination of a fine translation in step 2b can be problematic if the occupancy grids
tx,y,z and vx,y,z are too large. Size of voxels is always a trade-off between a computational com-
plexity and an accuracy, because the size of a voxel corresponds to a resolution of a computed
translation.

In case that the number of generated voxels is too large, a limitation that reduces a sampled
area of the cloud was added to the algorithm. If a size of a cloud with assigned size of a voxel
would generate more than vmax voxels, only vmax voxels is created and only the part of the
cloud that lies in these voxels is used, other points are ignored.
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Chapter 5

Implementation

As a part of this work, a tool for registration of point clouds with the cross-correlation
algorithm described in section 4 was implemented. In this chapter, the tool is described along
with other implemented utilities used for testing or processing input data.

5.1 Architecture

The cross-correlation algorithm was implemented in the C++ language and its functionality
is divided into nine basic parts implemented as classes of object-oriented programming. Each
of these classes is introduced here including its purpose and relations to the other classes.

5.1.1 Sph_expander

This class serves for computing coefficients of the spherical harmonic expansion of a sampled
L2(S2) function. The class has three constructors, so an object of this class can be created in
one of three ways. The first constructor accepts a name of the file that contains precomputed
values of spherical harmonics (stored as an object Sph_expander_data described later). This
way of construction is the fastest, because nothing has to be computed. The second constructor
accepts a value lmax (maximal band of spherical harmonics) and a path to the file (in pcd format)
containing pre-generated positions of centres of histogram bins (Hi)hi=1. In this case, values of
spherical harmonic functions in points (Hi)hi=1 are computed during construction of the Sph_
expander object. The last constructor accepts a value lmax and a number h of bins’ centres.
This constructor firstly generates h points uniformly distributed on the unit sphere (centres of
bins) and then computes values of spherical harmonic functions in these points.

The most important method of this class is compute_coefficients, which computes SPH
coefficients of a function from values of the function (given to the method as an input argument)
and values of spherical harmonics computed in one of the constructors.
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5.1.2 Sph_expander_data

This class is used as a container for precomputed values

4π
h
Y m
l (θi, φi) (5.1)

of (complex-conjugated and scaled) spherical harmonic functions in centres of histogram bins

(Hi)hi=1 =
([

θi
φi

])h
i=1

.

As described in 4.4.1, these values can be used for SPH expansion of sampled L2(S2) functions,
which is done by Sph_expander class.

The Sph_expander_data class stores not only values of spherical harmonics, but also co-
ordinates θi and φi, for which values 5.1 were computed. An object of this class (including
coordinates and precomputed values 5.1) can be saved as a file using a boost/serialization
library (described in 5.4.2).

The Sph_expander_data class does not contain any logic for computing spherical harmonics.
This computation is done by classes implementing the Precomputer_spharm interface.

5.1.3 Rotation_correlator

The main purpose of the Rotation_correlator class is to compute cross-correlation C(Ri)
of two sampled L2(S2) functions from their SPH coefficients. This task corresponds to step
1d of the pseudo-code in section 4.1. This class has two constructors, the first one accepts a
path to the file that contains precomputed values of complex-conjugated Wigner D-function for
rotations Ri. These precomputed values are stored as a Rot_correlator_data object escribed in
5.1.4. The second constructor accepts parameter lmax (specifying the maximal band of spherical
harmonics used for SPH expansion) and nine other parametres specifying rotations Ri in which
the cross-correlation will be evaluated. From these parameters, the constructor computes values
of complex-conjugated Wigner D-function instead of loading them.

In addition to the method that computes values of the cross-correlation for all Ri, this class
also contains a method for finding Rmax ∈ Ri for which the cross-correlation is maximal. Also
a method that computes SPH coefficients of function f(X) = g(R−1X) only from ĝ and R
according to the right side of implication 4.36 is implemented as a part of this class.

5.1.4 Rot_correlator_data

This class serves as a container for precomputed values of complex-conjugated Wigner D-
function Dl

m,n(Ri) from step 1(d)iii of the pseudo-code in section 4.1. These values are used
for computing a correlation of two histograms of normals from their SPH coefficients according
to 4.23.
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The Rot_correlator_data class does not store all rotations Ri. Instead, it stores the nine
parametres from which the rotations can be easily reconstructed. The class (including precom-
puted values) can be saved as a file using boost/serialization library.

5.1.5 Translation_correlator

This class is used for translation determination from step 2 of the pseudo-code. It handles
both, the rough and the fine translation. The rough one is computed directly by the Transla-
tion_correlator, the fine one is computed using the FFTW library described in 5.4.3. Unlike
Rotation_correlator and Sph_expander, this class does not precompute (or load) anything in
its constructor. The translation is determined by the function compute_translation, which, in
addition to input clouds, accepts three arguments (each for one dimension) that determine a
size of voxels used for generating occupancy grids. Also one argunent is used for limiting number
of voxels in each dimension (this feature is described in section 4.4.3).

5.1.6 Precomputer_spharm

This purely virtual class represents an interface for classes computing values of scaled and
complex-conjugated spherical harmonics (formula 4.5). Values computed by this function are
stored in an object of the class Sph_expander_data and they are used by the Sph_expander
class.

The main demand on inherited classes is that they have to implement a method precompute_
spharm, which computes values of scaled and complex-conjugated spherical harmonics and
stores them in an assigned Sph_expander_data object.

5.1.7 Precomputer_spharm_wolfram

This class implements the interface Precomputer_spharm (described in 5.1.6). It precom-
putes values of spherical harmonics using formula 4.5, which corresponds to formula (6) in [17].
That’s why the class has "wolfram" in its name.

5.1.8 Precomputer_D

This purely virtual class represents an interface for classes computing values of complex-
conjugated Wigner D-function. Values computed by this function are stored in an object of the
class Rot_correlator_data and they are used by the Rotation_correlator class.

The main demand on inherited classes is that they have to implement a method precompute_
D, which computes values of complex-conjugated Wigner D-function and stores them in an
assigned Rot_correlator_data object.
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5.1.9 Precomputer_D_kostelec

This class implements the interface Precomputer_D (described in 5.1.8). It precomputes
values of Wigner D-function using formula 4.24, which corresponds to formula (6) in [10],
hence the name of the class.

5.2 Main implemented tools

In this section, tools that were implemented in order to solve the task of registration of point
clouds, are described.

5.2.1 object_search

This versatile tool, which uses above introduced classes, can serve for more purposes. The
basic and simplest one is a registration of two point clouds and visualization of the result. But
it is only a subset of tasks which this tool can handle, because its main purpose is a recognition
of objects found in a scene. Therefore a simple distance-based clustering of the target (or more
precisely scene) cloud was implemented. Also a filtering of a plane in the scene is possible,
which is useful e.g. for removing a desk under scanned objects.

The recognition, i.e. selecting the best model for given target cloud (or cluster in the scene),
is solved using a brute-force approach. All models are registered to the target and their similarity
is computed as a value of the cross-correlation divided by the number of points of the model.
The model with the highest value of similarity is then labeled as a model of the target.

All these functionalities can be adjusted in a configuration file. The default one is pre-
generated, but it can be replaced by another one, which can be passed to the binary as a
command-line parameter.

5.2.2 continual_localization

This tool serves for registering multiple consecutive scans stored in a directory. Each scan
(except the first one) is registered to the previous one. Determined translation Qsol =

[ xsol
ysol
zsol

]
and rotation written as a quaternion rsol =

[ rx
ry
rz
rw

]
are printed to standard output as one line

xsol ysol zsol rx ry rz rw for each couple of scans.

As well as object_search, the continual_localization accepts one parameter - a path to the
configuration file. Follofing parametres affect the registration:

verbose
If this value is true, informational messages are printed to standard output.
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input_dir
Directory containing pcd files that will be registered.

filter_voxel_size
Size of voxels of the voxel grid filter (used for downsampling input clouds).

normals_radius
Normal of each point is computed from the point itself and points in its neighbourhood.
A radius of this neighbourhood is defined by normals_radius.

max_l
Maximal band of spherical harmonics used for SPH expansion of histograms.

sph_expander_precomputed
File with precomputed Sph_expander_data object. If this parameter is non empty, other
sph_expander_* parametres are ignored.

sph_expander_sphere_pcd
Pcd file containing points uniformly distributed on a unit sphere.

sph_expander_nr_pts
Number of generated points uniformly distributed on a sphere. This parameter is ignored
if sph_expander_sphere_pcd isn’t empty.

rot_corr_precomputed
File with precomputed Rot_correlator_data object. If this parameter is non empty, other
rot_corr_* parametres are ignored.

rot_corr_offset_deg
The smallest value of Euler angles of samples Ri.

rot_corr_step_deg
Step (in degrees) between values of Euler angles of samples Ri.

rot_corr_nr_samples
Number of samples in each Euler angle.

translation_cell_size
Size of a cell (voxel) of the Translation_correlator object.

translation_max_cells_per_dim
Maximal number of cells generated by the Translation_correlator per dimension.
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5.2.3 precomp_rot_correlator, precomp_sph_expander

These tools generate, according to assigned parametres, objects of classes Rot_correlator_
data or Sph_expander_data respectively. The generated objects are then serialized using boost-
/serialization library and saved as a file. They can be used later for faster initialization of objects
of classes Rotation_correlator or Sph_expander.

5.3 Supplementary tools

In addition to the main tools, the supplementary ones were implemented. Their purpose
lies mainly in generating or preprocessing input data for the main tools. Among other smaller
scripts, following tools were implemented:

5.3.1 camera

This tool displays a real-time data acquired by a connected rangefinder (MS Kinect or Xtion
Pro). During the visualization it is possible to save the actually displayed cloud as a file (using
the space key). The camera tool was used for acquiring most of testing data. It is very useful,
because the sensor can be properly aligned to the scene and only the right scan is stored, which,
comparing to common tools that store all acquired frames, decreases a processor load, saves a
disc space and eliminates the time neededd for finding the correct cloud in the saved sequence.

5.3.2 model_builder

Using one scanner, it is not possible to capture a 3D model of a whole object in one frame,
because the scanner can see at most a half of the object at once. Therefore an interactive tool,
which creates the model (one cloud) from multiple clouds (the object scanned from different
angles), was implemented.

With this tool, it is possible to load all the different scans of the object, move (translate and
rotate) each of them and also delete selected points. In addition to that, the model_builder
is able to decimate points in selected areas and smooth the whole model by a voxel grid filter
(described in [24]). But this tool doesn’t take care only of points, tehir normals are handled
also. So if a cloud is moved, its normals are moved as well. Thanks to this feature, all normals
of the created model have a direction from the model (and not into it).

Because the model_builder generates not only the output cloud with normals, but also copies
of the input clouds without deleted points and a file with executed transformations, the work
can be interrupted at any time and resumed later.

The process of building the model is illustrated by Figure 5.1.
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1 - overlapping input scans 2 - selecting points for deleting

3 - overlapping relevant parts of the scans 4 - scans in correct relative positions

5 - aligned model 6 - aligned model with normals
Figure 5.1: Illustration of a process of creating a model from individual scans using the model_
builder tool.
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5.3.3 test_grid_generator

This tool generates a data for visual testing of the object_search tool. The test_grid_
generator loads a set of objects, each described by two pcd files (one contains points, the other
one contains corresponding normals) and uses a set of rotations (defined in a source code).
From all these input files and the rotations, two pcd files are generated (one for points, one
for normals). The generated files contain a grid composed of loaded objects (along the z-axis)
rotated according to the set of rotations (along the x-axis).

An example grid produced by this tool is in Figure 5.2.

Figure 5.2: A grid generated by the test_grid_generator. It contains five object, each of them
rotated by three different rotations.

5.4 Used libraries

In the implementation, sereval third-party libraries were used. The most important of them
are listed in this section along with their main purpose.

5.4.1 Point Cloud Library

The following description is presented in [24]: "The Point Cloud Library (PCL) is described as
a large scale, open project for 2D/3D image and point cloud processing. The PCL framework
contains numerous state-of-the art algorithms including filtering, feature estimation, surface
reconstruction, registration, model fitting and segmentation. These algorithms can be used, for
example, to filter outliers from noisy data, stitch 3D point clouds together, segment relevant
parts of a scene, extract keypoints and compute descriptors to recognize objects in the world
based on their geometric appearance, and create surfaces from point clouds and visualize them
– to name a few."

37/46



5.4. USED LIBRARIES

This library is a base of all the implemented code, because even the class used for representing
a point cloud is defined in this library. Functionalities of this library were used all over the
implemented code in an effort not to duplicate once implemented features. Apart from handling
points of all clouds, this library was most frequently used for acquiring data from rangefinders,
transforming clouds and visualizing them.

5.4.2 Boost

The Boost project, presented in [25], is a collection of carefully-designed C++ libraries
with different purposes. The following libraries from the Boost collection were used in the
implemented code.

program_options
This library was used for parsing configuration files of the implemented tools.

filesystem
The filesystem library was used for creating and deleting files whose content was generated
by implemented binaries. The library was also used for listing a content of directories and
for checking an existence of files.

serialization
This library was used for saving objects of classes Sph_expander_data and Rot_correlator_
data as files (and of course for their loading later).

5.4.3 FFTW

The FFTW library is in [23] described as follows: "FFTW is a C subroutine library for
computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input
size, and of both real and complex data (as well as of even/odd data, i.e. the discrete cosine/sine
transforms or DCT/DST)."

This library was used for computing the translation in section 2b of the pseudo-code in
section 4.1.

5.4.4 Eigen

The Eigen library, available in [26], is a C++ template library for linear algebra: matrices,
vectors, numerical solvers, and related algorithms. It was used in cases that the rotation had to
be denoted in a form of a matrix or a quaternion.
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Chapter 6

Experiments

6.1 Testing platform

In order to test the implemented algorithm, experiments described in this chapter were
conducted. All of them were executed on a notebook HP ProBook 6550b with a core i5 processor
and 4 GB RAM. An operating system used was a 64 bit Ubuntu 13.10 Saucy Salamander. For
the tests, the following versions of libraries were used: PCL 1.7.1, Boost 1.53.0, Eigen 3.2.0 and
FFTW 3.3.3. Executables were compiled using a gcc in version 4.4.8.1. For generating graphs,
a gnuplot visualizing tool was used in version 4.6.3.

6.2 Registration on robotic dataset

This experiment examines a performance of the implemented algorithm in different configu-
rations, processing data from the robotic dataset [1]. The dataset contains a data acquired with
the MS Kinect rangefinder along with its precise (ground-truth) position which was measured
by another sensors. Concretely, the first 101 scans from sequence freiburg1_desk of the dataset
is used. This sequence contains a sweep over a table in a typical office environment (see Figure
6.1).

For the testing, from the 101 ground-truth positions of the sensor, 100 position-to-position
transformations (rgt, Qgt) were computed (rotations are written as quaternions r). The depth
data from the Kinect stored as png files were converted to clouds in a pcd file format, which
can be read by the PCL library. Except the first one, each of these clouds was then registered to
its predecessor, generating transformations (rsol, Qsol). Then errors in translation determination

∆Q were computed as an Euclidean norms of differences of Qgt =
[
xgt
ygt
zgt

]
and Qsol =

[ xsol
ysol
zsol

]
as

follows
∆Q =

√
(xsol − xgt)2 + (ysol − ygt)2 + (zsol − zgt)2.
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Figure 6.1: Two clouds from the freiburg1_desk sequence of the dataset [1].

Errors in rotation determination were computed using a quaternion metric described in [27].
According to it, the rotational error can be computed as

∆r = min(|rsol − rgt|, |rsol + rgt|),

where | . . . | denotes the Euclidean norm (or 2-norm) of a quaternion. In addition to errors ∆Q
and ∆r, a time needed for the 100 registrations was measured.

Default values of configuration parameters used in the experiments are in Table 6.1. Values
of parameters max_l and sph_expander_nr_pts were changed in the individual experiments,
but in each of them only one parameter was modified and the other one was set to its default
value.

parameter name parameter value
verbose false
filter_voxel_size 0.01
normals_radius 0.02
max_l 6
sph_expander_nr_pts 100
rot_corr_1_offset_deg −6
rot_corr_1_step_deg 0.2
rot_corr_1_nr_samples 61
translation_cell_size 0.01
translation_max_cells_per_dim 100

Table 6.1: Default values of configuration parameters.

In the first experiment, a dependency of the accuracy and speed of the algrithm on maxi-
mal used band of spherical harmonics lmax (parameter max_l) was examined. The results are
summed up in Figure 6.2 and in Table 6.2. From the graphs, a decrease of an error in rotation
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Figure 6.2: Rotational and translational error for different values of lmax.

is apparent with increasing lmax. For higher lmax, the input clouds are registered with higher ac-
curacy, because histograms of their normals are represented by SPH coefficients more precisely.
A drawback of increasing value of lmax is an increase of time needed for registration.

lmax time per registration average error
[s] rotation translation

2 3.243 0.00969 0.0298
3 3.225 0.00895 0.0287
4 3.310 0.00804 0.0263
5 3.669 0.00761 0.0261
6 4.431 0.00769 0.0260

Table 6.2: Computation time and errors for different values of lmax.

The second experiment examined a performance of the algorithm depending on a number
h of histogram bins (Hi)hi=1 from step 1a of the pseudo-code in section 4.1. Results of this
experiment are in Figure 6.3 and Table 6.3. Especially at the beginning of the sequence, an
error in rotation is smaller with higher number of histogram bins. This effect is caused by a fact
that more bins can store more deatiled information about directions of normals. If the bins are
too sparse, not enough details are stored in the histograms, which is a source of the errors.

h time per registration average error
[s] rotation translation

30 4.271 0.00916 0.02824
50 4.206 0.00873 0.02809
80 4.235 0.00781 0.02532
120 4.298 0.00796 0.02529

Table 6.3: Computation time and errors for different numbers of histogram bins.
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Figure 6.3: Rotational and translational error for different numbers of histogram bins.

42/46



Chapter 7

Conclusion

According to the assignment, an overview of the most popular algorithms for registration
of 3D point clouds was given in chapter 3. One of them, the cross-correlation algorithm, was
described in detail in chapter 4. For creating this description, it was necessary to unify a theory
behind the algorithm, which had been split in different sources with different terminology.

For improving performance of the original algorithm, three modifications (precomputing
spherical harmonics and Wigner D-function, two-level rotation determination and limiting num-
ber of voxels during translation determination), described in section 4.4, were suggested.

The described cross-corelation algorithm was implemented in C++ language using the Point
Cloud Library. Two main tools using this algorithm were created - the object_search, serving
for registration of couples of point clouds and the continual_localization, which serves for
registration of more consecutive clouds. Also three supplementary applications for preprocessing
data for the main tools were implemented. The first one, the camera, serves for real-time
displaying of a data from sensor and capturing selected frame. The second one, the model_
builder, serves for interactive generating of a full 3D model of an object from its partial scans.
The third implemented supplementary tool, the test_grid_generator, serves for generating data
for visual testing of the object_search.

A performance of the implemented algorithm was examined by experiments on robotic
dataset [1]. The experiments described in chapter 6 involved comparison of results of the algo-
rithm with ground-truth position of the sensor. According to these experiments, the algorithm
was able to register consecutive scans in approximately three seconds with translational error
in order of centimeters for selected dataset. Also an increase of the rotational error caused by
decreased band of used spherical harmonics was shown. Finally, the experiments demonstrated
that the error in rotation is higher for lower numbers of histogram bins.
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Appendix

CD Content

In table 7.1 are listed names of all root directories of the attached CD with a brief description
of their content.

Directory name Description
thesis.pdf Text of the diploma thesis.
text Source code of the text of the diploma thesis.
c++ Source codes of the implemented tools.
tests Scripts used for testing the implemented tools.
data Data used for testing.

Table 7.1: CD Content
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