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Abstract

In the recent decades and especially in the last few years, we have experienced a rapid
growth of information. In the following years, the amount of data is supposed to multiply
by hundreds. With growing amount of data, the need for high-quality Information Retrieval
and for correct ranking of the retrieved results is rapidly increasing. Learning to Rank, as
supervised machine learning methods, can help solving the issue which is present in many
applications, such as web search engines, recommendation systems or misspelling corrections.
This thesis provides an exhaustive listing and analysis of current state-of-the-art algorithms
and it describes the necessary background for this work. Besides, it focuses on applicable
performance measures and available datasets. All the hypothesis and knowledge are utilized
in a thorough set of experiments. As LambdaMART was evaluated as the potentially best
LTR algorithm, our own implementation of the algorithm is introduced and compared to an
existing implementation. On the one hand, this thesis can server as a guide to any researcher
interested in this topic and on the other it opens many new questions and issues.

Abstrakt

V nedávných desetiletích a zvlá²t¥ pak v posledních letech zaznamenáváme velký nár·st
informací a dat. Studie p°edpokládají, ºe v následujících n¥kolika letech se mnoºství dat
zvý²í násobky sta. Vzr·stající mnoºství dat zp·sobuje stále stoupající pot°ebu po kvalitním
získávání informací a také po správném °azení dostupných získaných výsledk·. Learning to
Rank je metoda strojového u£ení s u£itelem, která m·ºe nabídnout °e²ení t¥chto problém·,
které se objevují v mnoha aplikacích jako internetové vyhledáva£e, doporu£ovací systémy
nebo opravování p°eklep·. Tato diplomová práce p°edkládá vy£erpávající re²er²i sou£asných
algoritm· a také v²e dopl¬uje popisem základních znalostí. Mimojiné se práce zam¥°uje i na
vhodné metody m¥°ení kvality modelu a dostupné datové sady pro LTR. Nabyté v¥domosti
a p°edpoklady jsou zuºitkovány v mnoºství experiment·. Jelikoº byl LambdaMART vy-
hodnocen jako potenciáln¥ nejlep²í algoritmus, zam¥°ili jsme se na n¥j v na²í implementaci.
Tato práce na²i implementace nejd°íve popí²e a poté zhodnotí v porovnání s jiº existujícími
implementacemi metod pro LTR. Tato práce jednak m·ºe slouºit jako pr·vodce aktuálního
stavu v oblasti LTR, tak i otevírá mnoho nových otázek a poukazuje na n¥kolik nových
zajímavých problém·.

xi
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Chapter 1

Introduction

In the recent decades and especially in the last few years, we have experienced a rapid growth
of information and knowledge and a consequent growth of the need for an e�cient retrieval
of relevant information. According to a study prepared by IDC1 [22], only in 15 years, from
2005 to 2020, the digital universe will grow by a factor of 300 - from 130 exabytes to 40,000
exabytes2 of which 33% will contain potentially valuable information.

It may not be fully obvious but ranking (sometimes called sorting or ordering) is tightly
related to Information Retrieval. Sorting is a very natural process which seems to be simple
when the set of objects to be sorted is not too large and, this is the main point, when you
know how to sort it. Back in the ages, it was possible to manually determine the order of a
set of objects. As the amount of information grew, several years ago, it would not be possible
to do it manually, but it would be su�cient to �nd an easy key or dependency among the
objects and determine what key will be used for the sorting. And �nally, in the recent years,
the amount of information and data is so vast, that even the dependencies and the sorting
key are sometimes unknown. The only thing that left is the ability to recognize what we
�nd being good (relevant) and what we consider being bad (irrelevant).

Issues emerge when the both aforementioned, ranking and information retrieval, is com-
bined. When a relevant information is to be retrieved from a big amount of data and no
dependencies, sorting keys nor ranking models are known. A typical example of wide-known
Information Retrieval problem is search engine results retrieval and ranking in the Internet.
Besides search engines, there are many other examples, such as recommendation systems,
on-line advertising, misspelling correction, collaborative �ltering etc., that involves ranking
in a core of their solution.

To successfully solve the given problem, machine learning methods have to be applied.
Learning to Rank (LTR) is a problem that can be solved by the means of supervised machine
learning methods that can be e�ectively applied to solve the task of creating a ranking model.
Given a set of queries, where each of the queries contains a list of documents and a list of
relevance labels determining how relevant a document is with respect to a particular query,
Learning to Rank methods construct a ranking model. The ranking model can be then used

1International Data Corporation
21 exabyte = 1 billion gigabytes = 1018 bytes

1
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to score and rank a new set of documents with unknown relevance labels. The performance
of the model is evaluated using a chosen performance measure.

On one hand, there is no doubt that without Learning to Rank methods, the Internet
could not work as it works today and also many companies could not exist or their revenue
would be much lower - without e�cient recommendation systems or relevant search results
in their applications. On the other hand, since LTR is a hot rapidly evolving topic, there is
still a lot of space for further improvements. Although, many researchers work and publish
on this topic, the best known methods are usually partially covered by secrets. The big
companies, such as Microsoft, Yahoo, Google or Yandex, who are the leaders of the research
do not uncover all the know-how (which is understandable). Moreover, there is a lot of
various methods in LTR, but to the best of our knowledge, there is no work thoroughly
comparing available means and algorithms. Most papers usually compare new algorithms
only with the old ones and therefore a comparative analysis is missing.

The subject of this thesis is Learning to Rank algorithms. The work aims on performing
a thorough analysis of Learning to Rank topic. It involves the following points:

• Introduction of general framework for Learning to Rank problem in Information Re-
trieval

• Thorough comparative analysis of available LTR algorithms, their categorization and
explanation of the di�erences among the categories

• Analysis of applicable performance measures adequate for the task and a description
of possible approaches to the optimization

• Discovering available datasets and performing their analysis and comparison, providing
also the statistics of the datasets. Also giving an explanation of feature vectors and
how it the discriminative power can be determined

• Own implementation of an algorithm

• Experimenting using di�erent algorithms, measures and datasets and its evaluation.

• Proposal of potential improvements

Apart from publicly accessible algorithms and datasets, we were also provided by a
dataset and an algorithm from Seznam.cz company which allows us to extend our experiments
and analysis with the comparison to commercially used means.

The work is structured as follows. Chapter 2.1 describes the background of the task.
First, it explains what is Information Retrieval and why it is important and then it provides
an abstract description of Learning to Rank. This chapter also involves the best known
application of LTR and then a brief description of the company Seznam.cz that co-operated
with us by providing a dataset and an algorithm which will be both described in the following
chapters.

Chapter 3 focuses on Learning to Rank, especially from the theoretic point of view.
Sec. 3.1 introduces a general framework for LTR task, Sec. 3.2 will list and describe available
datasets, Sec. 3.3 will compare and examine applicable performance measures and �nally, a
thorough description of state-of-the-art algorithms for LTR will be provided in Section 3.4.
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Chapter 4 proposes our own implementation of LambdaMART algorithm that was con-
sidered being the potentially best algorithm. The implementation is compared to the existing
implementation and the advantages of our implementation are introduced.

The knowledge obtained in the previous chapters will be veri�ed in Chapter 5, where
several experiments will be presented with their results that were sometimes as expected
and sometimes surprising (e.g. an in�uence of a noise on the performance of a ranking
model).

Finally, the thesis will be concluded in Chapter 6 where the �ndings and the results of
the work will be sumarized.
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Chapter 2

Background

Information Retrieval(IR) and Learning to Rank(LTR) are two main topics accompanying
us throughout this work. In this Chapter, an abstract description of both will be given. In
the �rst section, you will be provided with the history, the purpose and the basic problem
explanation of Information Retrieval, followed by a Section 2.2 clarifying the meaning of
Learning to Rank in relation to IR. As will be explained in the following sections, Information
Retrieval in this work is presented in relation to search engines. Therefore the subject of
Section 2.3 will focus on Search engines and simpli�ed schemes of their processes will be
shown. Since this work was created in cooperation with Seznam.cz company, the �nal
Section 2.4 will introduce Seznam.cz and explain the support of the company.

2.1 Information Retrieval

Information Retrieval (IR) is a process of locating and obtaining information that is needed
by a user. Generally said, IR helps satisfying a desire for a relevant information resource
from a collection of available information resources. [15] The activity of information retrieval
involves many subprocesses - it starts when the user identi�es his need for information, then
it involves searching and locating of an information resource and it ends when the information
is retrieved and delivered to the user in a demanded form and the information need of the
user is eventually satis�ed.

Expectedly, Information Retrieval as such is a very old problem. The �rst notes about
IR could be found even in 2000 B.C. when the Sumerians created a literary catalogue to
list all their current literature. The �rst book indexes1 appeared in a primitive form in
the 16th century. Later on, in the 18th century, the book indexes became similar to to-
day's form. Obviously, the �rst Information Retrieval `systems' facilitated the search for
information contained in books. IR techniques were applied mainly in libraries (and similar
institutions). [18]

With the modern era of the printing (and eventually the era of digital technologies),
there is a rapid increase of amount of information and data being stored. In 1944, Fremont
Rider calculated that libraries will double its capacity every 16 years. [37] And note that the

1a list of useful phrases in the book
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calculation is rather old and that the speed of growth is probably much higher nowadays. The
vast amount of information resources, which is still increasing, makes it also really di�cult
to �nd the resource that fully satis�es your need. Therefore, there was a demand for a
solution to the problem of the endless growth of resources. And the solution was Automated
Information Retrieval systems.

To point out the growth of the amount of digital data, a few interesting facts are provided.
According to a study prepared by IDC2 [22]:

• From 2005 to 2020, the digital universe will grow by a factor of 300 - from 130 exabytes
to 40,000 exabytes.

• IDC estimates that by 2020, as much as 33% of the digital universe will contain infor-
mation that might be valuable if analyzed (compared with 25% today).

Automated IR systems were originally developed in the 1940s, in order to manage the
scienti�c literature that was produced during the past decades and to reduce what was called
`information retrieval'. The systems were mainly utilized by libraries and universities. [39]
However, with the rise of computer science automated IR has become its important sub�eld.
Nowadays, the modern IR deals with data storage, analysis and retrieval of documents,
algorithms etc. [18]

The modern IR works as follows. An information need of the user is de�ned by a query
which is entered to the system (e.g. a search query in a web search engine). Since the query
is not a unique identi�er of any of the resources, it is likely that the query would match more
than only one resource. Moreover, each of the matched resources can show di�erent degree
of relevancy with respect to the given query. To �nd relevant resources and to retrieve them
in a convenient order is the purpose of an IR model (or of an IR algorithm). In other words,
given a query and a set of documents with di�erent levels of relevance, �nd the appropriate
ranking of the given candidates according to their relatedness. The model that ranks the
documents is one of the essential parts of automated IR system and Learning to Rank is one
of the �elds that provides techniques and algorithms that are capable of computing of such
a ranking model.

Generally, IR models can be divided into a few categories. Set-theoretic models, algebraic
models, probabilistic models and feature-based retrieval models. The category of feature-
based retrieval models is also the case of models learned by Learning to Rank algorithms.

Shortly, most IR systems based on feature-based retrieval models usually evaluate docu-
ments (or information resources) with a score specifying a relevancy of the documents to a
given query. Then the documents are ranked according to the values of the score. The user
is then provided only with the top scored documents. The process can be also reiterated,
e.g. when the user decides to re�ne the query.

The interconnection between IR and LTR will be further clari�ed in the following section
which focuses on Learning to Rank.

2International Data Corporation
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2.2 Learning to Rank

At it was noted in the previous section, Learning to Rank (LTR) is one of the methods
that can be e�ectively applied to solve the task of creating a ranking model in Information
Retrieval. It helps solving IR problems such as document retrieval, collaborative �ltering,
sentiment analysis, computational advertising etc. LTR method aims at learning a model
that given a query and a set of candidate documents �nds the appropriate ranking of docu-
ments according to their relevancy.

Nowadays, Learning to Rank (LTR) problem, and Information Retrieval in general, are
one of the hottest topics in the �elds of Machine Learning and Computer Science. The high
interest emerged in the recent years especially because we are experiencing a rapid growth
of the usage of digital technologies and the Internet. The amount of available data and
information is growing, as well as the desire to e�ciently use the collected data to create a
new product, to increase the satisfaction of users and eventually to utilize data to increase
the revenue ([23] predicted 2013 worldwide IT spending to exceed $2.1 trillion).

The problem is to rank any set of items according to its relevance (or any other ranking
measure), therefore it can be used to order results of a web search engine, a recommendation
system or an online advertising system. Above mentioned is the proof of the importance and
the potential of the research in the �elds of Learning to Rank and other problems related to
Information Retrieval.

Learning to Rank is a supervised machine learning method. Given a training dataset
of queries, documents and evaluations of how relevant the documents are, a LTR algorithm
constructs a ranking model. The ranking model is then usually used to assign ranking scores
to a new set of documents with unknown relevance. The ranking scores are �nally used to
order the given documents. The evaluation of the model's performance can be accomplished
by a chosen performance measure.

Detailed information on the architecture of Learning to rank methods, the problem de�-
nition, the formal framework and descriptions of data, algorithms and performance measures
will be given in a self-standing Chapter 3. In the next section, the position and the usage of
ranking models in the real-world problems, such as the web searching, will be pointed out.

2.3 Search Engines

As the web searching is one of the essential Internet activities which is known to all Internet
users and it is the case which is used in the research literature most often, we decided to
focus on Learning to Rank in the context of Information Retrieval in the web search. We
believe that all the results of the analysis and the experiments which were performed (in the
following chapters) are also applicable in other �elds using Information Retrieval.

In order to point out the purpose and the position of Information Retrieval and especially
of Learning to Rank, in search engines, a brief simpli�ed description of a search engine is
provided.

A search engine is a complex system composed of many components and processes. [40]
One process is the indexing and crawling of Internet resources. Crawlers (sometimes called
spiders) search throughout the Internet and analyze and store documents, web pages, pictures
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and other medias they come across. When the data, that were gathered by crawlers, are
analyzed, stored and indexed, a part of the data (previously annotated with relevance labels)
is utilized for the creation of Learning to Rank model. The second important process is an
interaction with a user. The user enters a search query which is �rst analyzed and evaluated
by the system, e.g. misspelling correction is suggested to the user. Then the system retrieves
a set of candidate documents relevant to the query. The LTR model evaluates and ranks
the candidate documents by relevance scores and then the �nal search engine result page
(SERP) with the documents order by the relevance is returned. A simpli�ed schemes of both
processes are given in Fig. 2.1. While Fig. 2.1a demonstrates the process of user interaction
and emphasizes the position of LTR model, Fig. 2.1b presents the indexing process.[40]

QUERY

USER

evaluation
& pre-!lter

candidate

documents

DATA STORE & INDEX

Ranking
by model

SEARCH ENGINE

RESULTS

(a) Scheme of querying process

Text 
Acquisition

Text
Transformation

Index
Creation

Document
data store

Index

E-mail, 
Web pages,

News, 
Letters, 
Memos

(b) Scheme of indexing process (source: [40])

Figure 2.1: Search engine system schemes

To apply Learning to Rank methods to a web search, is not as simple as it might seem
to be. Besides standard machine learning issues as dataset handling, parameter search etc.,
there are some issues speci�c for the web search and the users' behavior. Some of the issues
will be presented in the following sections. An algorithm's `quality' evaluation is one of the
issues. This is the issue of the choice of appropriate performance measure. It is challenging
to compare and to evaluate various orderings (permutations) of a list of documents - for
example, the decision whether the ranking with an irrelevant document at the third position
is better than the ranking with two irrelevant document at the 9th and the 10th position.
Then it depends on the approach and the particular usage.

Also the user's need and the reason for searching can be very diverse. The user's need
can be classi�ed as informational, navigational, and transactional. The �rst, informational
query, may range from simple factoid questions such as `What is the color of a frog?' to
complex ones. The navigational query can help you to �nd particular web pages on the web.
And �nally transactional queries can represent a user's wish to accomplish some action on
the web, such as the `Tax Form download'.[3] While dealing with Learning to Rank methods,
it is important to keep the aforementioned issues in mind.

The last section of this chapter is dedicated to Seznam.cz company. Section 2.4 con-
tains an introduction of the company and also the ways how they supported this work are
mentioned.
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2.4 Seznam.cz

There are several publicly available datasets and there are also benchmark results provided
for the datasets. But we can �nd a few issues related to the publicly available datasets. There
are datasets that are based on real data but the feature vectors were recalculated according
to feature sets that are commonly used in the research community, or there are datasets that
were created just for the research purposes, or there are datasets that are rather old (i.e. 10
years and more). In all the cases, the datasets are usually far from the current reality.

The other issue is that only the algorithms that are known to the research community are
benchmarked and their results published. It is di�cult (or almost impossible) to compare
the state-of-the-art algorithms (known in the research) to the algorithms that are used in
real search engines and �nd out how far the research is from the reality.

To overcome the aforementioned issues, we got a support from Seznam.cz company. The
main thing is that they provided us with their dataset, their algorithm and the basic expla-
nation of how their algorithm works. Thanks to their support, it was possible to compare
state-of-the-art algorithms to their RC-Rank algorithm and to analyze the performance of
the algorithms on a real-world dataset.

Seznam.cz is a Czech company running a web portal www.seznam.cz. The web portal has
over 20 servers of di�erent focus - a search engine, community servers, maps, news, on-line
TV, on-line catalogues, advertising, games, dating etc. Since the company was founded in
1996, they have provided a full-text search service which is the most interesting part of their
business because of the nature of the topic of this work.

Seznam.cz is also one of a few search engines in the world which are adequate regional
competitors for Google Search engine3. There was an analysis performed4 which analyzed
Google Search5 and Seznam.cz search engine. The analysis con�rmed the aforementioned.
The usage of both engines is almost equal. Google Search held a slightly bigger share on the
market though. Moreover, there was an increasing trend of Google's share. But please note,
that both analysis are at least 2 years old and the shares could have changed and that the
analysis concerned only Search engines and did not re�ect any other services.

The next chapter concentrates on Learning to Rank in detail. Many issues related to
LTR will be addressed. Chapter 3 includes sections about a general framework for Learning
to Rank, LTR algorithms description and also commonly used LTR performance measures
and publicly available datasets will be listed.

3According to an older article at [30], besides Seznam.cz, those are Baidu (China), Naver (South Korea),
Yahoo Japan (Japan) and Yandex (Russia).

4The analysis was published by E�ectix (http://www.e�ectix.com) at the beginning of 2013.[17]
5http://search.google.com
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Chapter 3

Learning to Rank

This chapter provides detailed information on Learning to Rank. First, in Section 3.1, the
general framework for LTR will be provided. The next section will o�er description of the
data format and provide a list of available datasets and the statistics. Section 3.3 examines
the ways how models' performance can be compared and measured. The basic performance
measures will be named and the main characteristics will be pointed out and analyzed. The
last section of this chapter �nally categorizes and lists LTR algorithms.

3.1 General Framework

Learning to rank process can be described as follows. A training sample is typically a
query-document pair. The necessity for using the query-document pairs as the training
samples comes from the fact, that many features are based on the relation between query and
document. Such query-related feature could be, for example, whether the document contains
the query expression. The training sample consists of feature values and a relevance label.
The relevance labels have been manually assessed by expert annotators. Training samples
with relevance labels (with respect to a given query), a particular evaluation measure and
eventually a validation dataset come as an input to the LTR algorithm. The algorithm
uses the training dataset to construct a model which is then used to sort a set of testing
samples and the ranking performance of the model is then evaluated by given performance
measure. The aim of the learning is generally minimization of a loss function, or eventually
maximization of a training performance measure. The formal description of the process is
proposed in the following paragraphs and the description of the data is given in Section 3.2.

3.1.1 Problem description

In the training phase of LTR, a set of queries Q = {q1, q2, . . . , qn}, where n denotes the
number of queries, is given. There is a set of documents di = {di1, di2, . . . , dim(qi)

} associated
with each of the queries qi. Then there is a list of labels yi = {yi1, yi2, . . . , yim(qi)

} provided
together with the documents di, where m(qi) is the number of documents given for the query
qi. yij denotes the label of the j

th document dij of the i
th query qi. A feature vector ~xij ∈ X

11
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Figure 3.1: Scheme of Learning to Rank problem

is speci�ed for each query-document pair (qi, d
i
j), i = 1, 2, . . . , n; j = 1, 2, . . . ,m(qi). Finally,

we can de�ne training dataset as a set

Strain = {(qi,di,yi)}ni=1 . (3.1)

The objective of the learning process is to construct a model optimizing the given objective
function. The objective function can di�er, depending on the particular approach. The
measures and the approaches will be described in detail in Sec. 3.3 and Sec. 3.4. Typically,
the model is then a function mapping a training sample to a score value, i.e. f : X → R.
When using the model for ranking (e.g. in testing phase) all the query-document pairs
(qi, d

i
j) in the list of documents of query qi are evaluated and have their score assigned. The

list is then ordered according to the score in the descending order.

A permutation πi(di, f) of integers is created based on a document list di and a model
function f(~xij) ∈ R. The permutation represents a ranked list in this case. The notation πi(j)
denotes the position of the document dij in the ordering based on the speci�ed permutation.

There are three inputs to the testing phase of the LTR problem. Those are a ranking
model, a testing dataset and a performance measure. Once the ranking model (i.e. function
f(~xij) ∈ R in our case) has been trained, it can be used to rank elements of document lists for
each single query in the testing dataset. Finally, we evaluate the performance of the model
using the given measure.

See Fig. 3.1 for the basic scheme of Learning to Rank process. A brief description
follows. Using a training set and relevance labels the algorithm is initiated. The algorithm
runs through several iterations and optimizes given training performance measure. Once the
model is constructed, it can be used for ranking of a new dataset. The labels in the testing
phase are necessary only in the case, when the model's performance evaluation is desired.
The labels are not necessary for the process of ranking. When the test dataset is ranked,
the known relevance labels of the data samples are used, and the performance of the model
is evaluated by the means of a chosen testing performance measure. Clearly, this is only a
general description of the architecture of training and testing phase of LTR. Deviations can
appear.
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Figure 3.2: Scheme of the general data structure - Description: The dataset contains n
queries. Each of the queries involves m(qi) documents in the list. Each document dij is
de�ned by a relevance label yij , by a related query qi and by a list of feature values.

3.2 Data

To properly train and test a ranking model, it is necessary to use a dataset of a su�cient
quality and size. As small dataset can cause a lot of problems, e.g. increase the variance
error as proven in [1]. It is quite di�cult to get an access to a current and real-world dataset
of a proper size, because usually only big companies can provide such datasets and they keep
the datasets as their valuable treasures. However, time to time, there is a dataset release
initiated by one of the big companies (e.g. Microsoft, Yahoo, Yandex) to support the research
community or they provide datasets for various competitions. The available datasets will be
listed and their statistics will be provided in Section 3.2.3. Fortunately, there is only one
widely used format of datasets for LTR, which makes the work easier. The format will be
described in the following paragraphs and is also presented in Fig. 3.2.

Each dataset consists of many query associated document lists. As a matter of fact,
it means that the dataset consists of query-document pairs. Each of the document lists is
associated with a di�erent query and there is usually more than one document belonging to
the document list of a particular query.

For more information and experiments analyzing the characteristics of data, see Chapter 5
on page 53.

3.2.1 Data �le format

Each row in the data �le corresponds to one of the query-document pairs. Each row is
composed of three (optionally four) parts. In the given order, it is an integer or �oat relevance
label yij for the query-document pair (qi, d

i
j), followed by a string in the format qid:queryid

specifying query of the pair (qi, d
i
j), where queryid denotes an integer representing the

query (qid is a keyword that remains unchanged), e.g. qid:1382 or qid:913. Then there is
a sequence specifying the feature vector. Optionally, the row can be �nished by a hash tag
and auxiliary information (e.g. document id, various pre-calculated numbers). Although,
the format is generally simple, the de�nition of a feature vector is a tricky part and di�erent
dataset sources use di�erent approaches.
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3.2.1.1 Labels

First, a relevance label yij will be described. Since the methods, this paper is referring to,
are supervised, it is necessary to provide the algorithm with labels associated with particular
query-document pairs (qi, d

i
j). The labels are usually either boolean values (i.e. zeros and

ones), or multi-level graded relevance evaluations (i.e. from zero up to the maximal relevance
grade, which is usually number 4). In the most cases, the labels are assessed by professional
assessors according to the document relevancy with respect to the given query. In the
case of boolean labels, the mapping to a word representation is simple. Zero, resp. one,
represents irrelevant, resp. relevant, document. In the case of multi-level relevance
assessment, the mapping can di�er, but generally the word representation of the labels
yij ∈ Y ;Y = (0, 1, 2, 3, 4) keeps a similar meaning and can be mapped to

G = (useless, slightly relevant, relevant, useful, perfectly relevant).

However, there are also cases when the labels are slightly changed. WLC2R dataset has
number 3 as a maximum relevance label, the maximum relevance label of LETOR 4.0 dataset
is number 2 and the dataset provided by Seznam.cz contains number 5 as the maximum
relevance grade. When the set of labels is extended to Y = (0, 1, 2, 3, 4, 5) which is the case
of Seznam.cz dataset then it can be mapped to

G = (unlabeled, off topic, irrelevant, relevant, useful, vital).

3.2.1.2 Feature vector

In the dataset �le, a feature vector is speci�ed by feature IDs and values in a given form of
fid:value (e.g. 3:0.5621), having all the features separated by a space character. What
can be handled in a di�erent manner is the handling of unde�ned values. As 0.0 value
really means the value, it cannot be used for assigning unde�ned value. Usually, this issue
is solved by leaving out the feature. Thus 1:0.5 3:0.5621 means that the feature with id
2 is unde�ned for the particular document.

There are two main approaches to the data de�nition. First, the feature de�nition in-
cludes all the ids and unde�ned value is substituted by a special value or zero. Therefore,
all the feature vectors are of the same length. Second approach is then leaving out unde�ned
values and de�ning feature vectors of di�erent lengths.

3.2.1.3 File

Data are typically speci�ed in a text �le, formated in a commonly used libSVM (sometimes
referred also as svmlight) format (originating in LIBSVM1[9] and svmlight libraries2). The
de�nition of a data row follows.

relevance qid:query_id fid:value ... fid:value # auxiliary

To make it clear, there is also one simple example of a few data rows (leaving out unde�ned
values) provided:

1http://www.csie.ntu.edu.tw/ cjlin/libsvm/
2http://svmlight.joachims.org/
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3 qid:19876 1:0.421 2:1.0 3:0.3123 4:11.4 # doc1

1 qid:19876 1:1.312 2:0.01 4:15.0 5:0.0 # doc2

4 qid:19876 1:0.0 2:0.31 4:7.41 # doc3

2 qid:1321 2:0.0 3:0.0 4:10.213 5:0.1 # doc4

0 qid:1321 1:0.023 2:0.413 3:0.792 4:3.45 # doc5

4 qid:1321 1:0.312 2:1.0 3:0.870 4:21.234 # doc6

Since all publicly accessible data are thoroughly anonymised, all the queries, document
names and feature names are obviously substituted by ids without particular relation to a
real object. Therefore, it is hard (or almost impossible) to search for any interconnection
among documents or queries.

3.2.2 Features

As already mentioned, the datasets are usually released by the big companies because there
are not many other (and maybe none) subjects who could provide a dataset of a similar size.
Although, the datasets are publicly available, all additional information is anonymised. It
means that we do not know expressions in queries, we do not know where documents come
from or even what the labels of features are. We initially intended to analyze dataset provided
by Seznam.cz and perform an analysis of features, their discriminative power and suggest
possible improvements, such which other features could be used in the dataset. Finally, it
was not possible to perform the analysis because the Seznam.cz dataset was anonymized as
well, and the feature labels and their meanings, relations and dependencies were unknown
to us. From this point of view, the analysis of features with no labels would not bring any
bene�t.

However, to provide a better insight how could we perform such an analysis, there are
two ways how to analyze the signi�cance of features.

• Analyze one feature after another and measure how the feature can discriminate the
samples in the dataset. Using calculations of expected information gain or the possible
reduction in the entropy achieved by learning the state of feature.

• To �nd a single well-discriminating feature is not always enough. Since there can be
subsets of features with bigger discriminative power than only one particular feature
can provide, it is necessary to use a more sophisticated methods. One of the possibilities
is to utilize a decision tree or a whole forest that have been built above the dataset.
The decision tree can be then used to analyze the features and the subsets of features
and their discriminative power.

3.2.3 Available datasets

Learning to Rank is a hot topic nowadays. Therefore, there is a high demand for big datasets.
However, only big corporations are able to create datasets of su�cient size. It can be tricky
to �nd a su�cient high-quality dataset because big datasets are not usually publicly released.
Usually, the datasets are released by one of the biggest corporations as Google, Microsoft,
Yahoo or Yandex to support the research or their public learning to rank contests. Though,
due to the security reasons the datasets are anonymised.
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In the following sections, a few sources of useful datasets of higher quality will be de-
scribed. Statistics, brief descriptions and comments will be provided in Table 3.1 on page 18.

3.2.3.1 LETOR

LETOR3 is a benchmark collection for research on learning to rank for information re-
trieval managed by Microsoft Research group. Besides meta-data, sitemaps, link graphs
etc., LETOR contains a set of datasets that can be used for Learning-to-rank task. Baseline
algorithms' description, benchmark performances, features descriptions, data partitioning
(train, test and validation sets) and evaluation tools are also provided. Basically, LETOR
contains 2 main datasets. The �rst one LETOR 3.0 was created based on the previous
releases composed from .gov data collection and OHSUMED data collection. The set is
altogether containing 6 datasets. The second, LETOR 4.0 was composed from Gov2 web
page collection and two query sets from Million Query track of TREC 2007 and TREC2008.

3.2.3.2 Microsoft Learning to Rank datasets

Two datasets, MSLR-WEB30K and MSLR-WEB10K 4, for research on LTR which were
released by Microsoft. The datasets consists of query-document pairs saved in a usual data
format as mentioned above. The relevance evaluations were acquired from a commercial web
search engine Microsoft Bing retired labeling. Range of values goes from 0 - irrelevant to 4
- perfectly relevant. The feature vector was created on the basis of a commonly known set
of features widely used in the research community.

3.2.3.3 Yahoo! Learning to Rank Challenge Datasets

In 2010, Yahoo! Labs organized a learning to rank contest. For this occasion, they also
released two datasets5. The datasets originates from a web search ranking which was used
to train a ranking function. However, no feature labelings, explanations or descriptions are
provided for neither urls, queries nor features. It is due to the fact that Yahoo! was worrying
about a reverse engineering. Yahoo! provided two di�erent datasets - each corresponding to
a search log from a di�erent country. Both datasets are related, but also di�erent to some
extent. This dataset is again provided in partitioned form.

3.2.3.4 Yandex Internet Mathematics 2009 contest

Yandex.ru search engine company released a dataset6 for the purpose of Internet Mathemat-
ics 2009 contest. The datasets contains a tables providing query-document pairs and cor-
responding feature vectors and assessed relevance judgements. Documents, original queries
and labelings of the features are not known for obvious security reasons. However, Yandex
claimed that there are TF*IDF, PageRank or query length features involved. The data are
said to be real, as they were used to learn the ranking function in Yandex.

3http://research.microsoft.com/en-us/um/beijing/projects/letor//
4http://research.microsoft.com/en-us/projects/mslr/
5http://webscope.sandbox.yahoo.com/
6http://imat2009.yandex.ru/en/datasets
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3.2.3.5 WCL2R

WCL2R7 is a benchmark collection for LTR to be used preferably for research with Click-
through Data. Chilean Learning to rank dataset created based on TodoCL search engine.
Data were crawled in 2003 and 2004. Di�erently from LETOR or Yahoo dataset, WCL2R
is mainly based on clickthrough features. The description of all the features is provided -
especially of those synthesized from clickthrough data.

3.2.3.6 Seznam.cz dataset

For the purpose of this work, we were provided with a dataset8 created by Seznam.cz com-
pany. The dataset was collected using their commercial web search engine. Seznam's rele-
vance judgements are mapped from Y = (0, 1, 2, 3, 4, 5) to

G = (unlabeled, off topic, irrelevant, relevant, useful, vital).

Although, it means that there is one more grade de�ned in comparison to other datasets (i.e.
y = 0 which is mapped to g = unlabeled), there is no document marked as unlabeled in this
particular dataset. There is no unde�ned value in the feature vectors, either. Therefore 0.0
means zero, not unde�ned.

3.2.4 Dataset statistics

Previously listed datasets were analyzed and compared in our experiments. The statistics
are provided in Tab. 3.1 (page 18). The table consists of several columns. The description
of the columns follows:

• Dataset Name of the dataset

• Subpart Name of the subpart of the
dataset

• Query Number of queries

• Docs Number of query-document pairs

• Feat Number of unique features

• AvgD/Q Average number of documents per
query

• ModusD/Q Most frequent number of docs
per query

• MinD/Q Minimal number of docs per query

• MaxD/Q Maximal number of docs per query

• AvgR(norm) Mean relevance grade (nor-
malized to < 0; 1 > range)

• MaxR Maximal relevance grade

• Undef Yes, if the dataset contains unde-
�ned feature values, otherwise No

7http://www.latin.dcc.ufmg.br/collections/wcl2r/
8Not publicly accessible
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Dataset Subpart Query Docs Feat AvgD/Q ModusD/Q MinD/Q MaxD/Q AvgR(norm) MaxR Undef
LETOR 4.0 MQ2007 1692 69623 46 41.15 40 6 147 0.1569 2 No
LETOR 4.0 MQ2008 784 15211 46 19.40 8 5 121 0.1270 2 No
LETOR 3.0 OHSUMED 106 16140 45 152.26 153 35 320 0.2196 2 No
LETOR 3.0 Gov03td 50 49058 64 981.16 1000 525 1000 0.0083 1 No
LETOR 3.0 Gov03np 150 148657 64 991.05 1000 7 1000 0.0010 1 No
LETOR 3.0 Gov03hp 150 147606 64 984.04 1000 112 1000 0.0012 1 No
LETOR 3.0 Gov04td 75 74146 64 988.61 1000 146 1000 0.0151 1 No
LETOR 3.0 Gov04np 75 73834 64 984.45 1000 181 1000 0.0010 1 No
LETOR 3.0 Gov04hp 75 74409 64 992.12 1000 409 1000 0.0010 1 No

Yahoo Yahoo1 29921 709877 519 23.73 9 1 139 0.3087 4 Yes
Yahoo Yahoo2 6330 172870 595 27.31 20 1 120 0.2829 4 Yes
MSLR MSLR10k 10000 1200192 136 120.02 91 1 908 0.1676 4 No
WCL2R � 79 5200 29 65.82 72 19 82 0.1625 3 No

Yandex IMAT � 21701 97290 245 4.48 1 1 31907 0.2601 4 Yes
Seznam � 20533 567689 106 27.68 18 1 217 0.492 5 No

Table 3.1: Dataset statistics
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3.3 Performance Evaluation

Similarly to other machine learning problems, it is necessary to decide how the performance of
the �nal model will be evaluated. In many machine learning methods, the objective function
which is being optimized during a learning phase is the same as the �nal measure evaluating
the resulting model. For example, MSE9 can be used in both cases, as an objective function
during the training of a regression model and when the performance of the resulting model
is being evaluated.

Unfortunately, Learning to Rank is not the same case. Since a LTR performance measure
involves sorting and it is non-smooth, it cannot be di�erentiated and thus it is very chal-
lenging to optimize the measure directly. Only a very few algorithms actually optimize the
performance measure directly. Therefore, it is important to distinguish between an objective
function and a performance measure in LTR. In the following sections, performance measures
will be listed, described and analyzed. While the ways how to deal with the issues concerning
`what to optimize' will be further addressed in Section 3.4 and mainly in Section 3.4.3.

3.3.1 Introduction to Performance Measures

It is important to note that the de�nitions of the measures are based on the data format, i.e.
a set of lists of documents where a list of documents is always related to one of the queries.
The measures are usually list-wise, therefore you use the measure to evaluate ranked lists one
after the other and then the �nal performance is obtained as an average of the values returned
for each list. For more information about the data format and the general framework of LTR
problem, see Section 3.2 and Section 3.1.

A few assumptions, used in the following text, were made. Given a ranked list (a permu-
tation) of documents πi = (d1, d2, d3), d1 is considered being the top ranked, the document
d2 is ranked as the second and d3 is ranked as the last. Moreover, the top ranked (at 1st po-
sition) document is assumed to be the most relevant document, while the bottom ranked (at
3rd position) document is assumed to be the least relevant. Thus, the higher the document
is ranked, the lower its index is. The length of the list πi depends on the particular dataset
and it can be arbitrarily long.

There are also cases in this work, when the list is represented only as a list of relevance
labels (grades) instead of a list of documents. Therefore, πi = (d1, d2, d3) can be also
represented by πi = (y1, y2, y3), where yj denotes a relevance label of document dj . Please
note, that the indexing of lists usually starts from 1 and not from 0. Also the expressions
performance measure and evaluation measure can be used interchangeably with no change
of the meaning. Actually, there are research papers ([27, 41]) using the term metric which
we �nd misleading, as the mathematical de�nition of metric is referring to a function of
distance and the reader could be confused.

In the next sections, commonly used performance measures will be �rst listed and de-
scribed and then analyzed. Finally, a short summary will be provided.

9Mean Squared Error
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3.3.2 Performance Measures

In this section, commonly used performance measures will be listed and the basic interac-
tion models that are considered by some of the measures will be provided in the following
paragraphs (as divided by [11]). Besides other measures, we can name MAP(Mean Average
Precision) and NDCG (Normalized Discounted Cumulative Gain) among the most known
measures. In the recent years, a new state-of-the-art measure has come up - Expected Re-
ciprocal Rank (ERR), as well as p-found which is a measure used by Yandex web search
engine10.

Performance measures can be basically divided into two main categories. The �rst cate-
gory expect binary relevance labels (grades), i.e. the documents can be labeled only relevant
or irrelevant. Measures in the second category can handle multi-level relevance labels (see
Sec. 3.2.1.1 for more information on labels). For example, apart from MAP or WTA mea-
sures which are the members of the �rst category, NDCG and ERR from the second category
can be used in the cases when the labels are graded by more relevance levels.

3.3.2.1 Basic User Interaction Models

The measures, that are used by the research community most frequently, are related to one
of the following user interaction models. In order to properly evaluate the performance of
the model, a few assumptions on a user's behavior has to be made. One of the issues is the
approach to the users' perception of the importance of the documents on di�erent positions of
a ranked list. The questions can be put: `How important is it, having a relevant document as
the top ranked element of the list?' and `How will change the performance when the relevant
document moves from the top position to the second position?' Those questions try to be
answered by the following performance measures and the following approaches.

Position model Position-based model assumes that user interacts (clicks) with the docu-
ment (URL) in the list under two conditions: �rst, it is relevant and second, it is examined,
where the examination probability is dependent only on the position on the document in
the ranked list (it is not in�uenced by any other document in the list). It means that it is
more likely that the �rst document in the list will be clicked than the eleventh document
because the probability of examination is much lower at 11th position. The position model
is implemented, for example, by NDCG or MAP measures.

Cascade model The cascade model is an extension of the position model. Apart from
position model, the probability of interaction with the document di also depends on the
documents that have been ranked above di and the relevance grades of those documents. It
means that if there is a perfect match on the �rst position of a retrieved list of documents,
it's not fully important how relevant the document on the further positions are, because
the needs of the user would be satis�ed by the top ranked document and the probability
of further examination is rapidly decreasing. On the other hand, if there are not really

10Yandex is Russian web search engine. As mentioned in Sec. 2.4, it is one of the regional search engines
competing with Google Search.
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relevant results at the top of the list then the importance of the ranking on further positions
is increasing.

According to recent research papers concerning LTR measures that are used in search
engines[11], and information about Yandex's MatrixNet [24, 34, 35] , the quality of the
ranking is not given only by an ordering and by a position of a document. The papers
con�rm the validity of cascade model. Cascade model is utilized, for example, by p-found,
ERR and RBP.

3.3.2.2 Winner Takes All (WTA)

Very simple and clear evaluation measure is Winner Takes All (WTA) measure which is
de�ned as follows.

WTA(f ;D,Y ) =

{
1 : the top document of the list is relevant
0 : the top document of the list is irrelevant

, where f is the ranking function, D is a set of documents and Y is a set of relevance labels
corresponding to the documents in the set D. There are only two possible outcomes of WTA.
Either it is 1 or 0. The value depends only on the document that is ranked as the very �rst
document in the ranked list. If the �rst document is relevant, the value of WTA is 1. It is
0, otherwise.

3.3.2.3 Precision

Precision (P) is another simple measure. It is a fraction of the retrieved documents that are
labeled as relevant. This measure is not often used. As in our case, it is usable only in the
cut-o� version, i.e. P@k (see Sec. 3.3.2.10). Note that this precision di�ers from precision

and accuracy that are de�ned in statistics.
Average Precision (AP) will be skipped as it is covered by Mean Average Precision

(Sec. 3.3.2.4) in our case.

3.3.2.4 Mean Average Precision (MAP)

Mean Average Precision is a next representative of measures determined for only two-level
relevance grades - irrelevant and relevant. It is based on Average Precision (AP). The actual
di�erence is that MAP is modi�ed for the use in multiple queries problems - MAP =∑n

i APi/n (APi is Average Precision computed for query qi and n is the number of queries).
MAP can be de�ned as follows. [29]

MAP (f ;D,Y ) =
1

nrel

∑
s:y(dπf (s))=1

∑
i≤s I{y(dπf (i)) = 1}

s
, (3.2)

where nrel is the number of documents labeled as relevant, I{·} is an indicator function
(returning 1 when the condition is ful�lled, 0 otherwise), dπf (s) denotes the document ranked
by the ranking function f as s-th in the ranked list(permutation) πf and y(dj) is the integer
representation of the relevance label of document dj .
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3.3.2.5 Normalized Discounted Cumulative Gain (NDCG)

Apart from MAP, NDCG measure [26] is based on a multi-graded relevance.

DCG(f ;D,Y ) =
m∑
i=1

G(y(dπf (i))))disc(i), (3.3)

where G is a increasing function called the gain function, disc is a decreasing function called
the position discount function, and πf is the resulting ranking list.

IDCG(f ;D,Y ) = max
π

m∑
i=1

G(y(dπf (i))))disc(i), (3.4)

NDCG(f ;D,Y ) =
DCG(f ;D,Y )

IDCG(f ;D,Y )
, (3.5)

Mostly, the gain function G is set to G(z) = 2z − 1 and discount function disc is set to
disc(z) = 1

log2(1+z) if z ≤ C, and disc(z) = 0 if z > C (C is a �xed integer)..

3.3.2.6 Rank Biased Precision (RBP)

The measures de�ned above were applying only position model. RBP is a measure applying
cascade model. The previous measures were missing one important part which could be very
important especially for web search engines, i.e. assumptions on user behavior related to the
preceding documents. RBP [33] is re�ecting the user browsing behavior and their persistence
in looking through the ranked list. It means that less persistent user will look only through
limited amount of elements in the list while more persistent user will thoroughly explore
almost all the list. RBP, similarly to MAP, is also designed only for binary relevance labels.
RBP is de�ned as follows,

RBP (f ;D,Y ) = (1− p)×
n∑
i=1

(
y(dπf (i))× pi−1

)
, (3.6)

where y(dπf (i)) is a relevance grade of the document ranked at i-th position and p is a
persistence coe�cient of a user.

3.3.2.7 Expected Reciprocal Rank (ERR)

ERR is a state-of-the-art performance measure proposed by [11]. Similarly to RBP, ERR is
also re�ecting cascade user behavior model which is the extension of position model. First,
we need to de�ne R as a mapping from relevance grades to probability of relevance. R is a
subject of choice but in our case we will use the gain function that is usually used for DCG.

R(g) :=
2g − 1

2gmax
, g ∈ {0, . . . , gmax} (3.7)
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ERR :=
n∑
r=1

1

r

r−1∏
i=1

(1−Ri)Rr. (3.8)

Unfortunately, a naive way how to compute ERR has the complexity of O(n2), but as
shown in [11] it can be easily adjusted to be computed in O(n).

3.3.2.8 Probability of User Satisfaction (p-found)

pFound [35] is a measure designed by Yandex company which is similar to ERR measure
proposed by [11].

pFound =

n∑
r=1

(1− pBreak)r−1pRelr

r−1∏
i=1

(1− pReli), (3.9)

where pBreak is a probability of abandonment at each position, pRel is a probability of
user satisfaction at a given position and pFound meaning is explained as probability of an

answer to be found. This performance measure has not been used in any of the research
works which have been examined. However, it is important to compare a measure used in
the search engines industry to those being used in the research.

3.3.2.9 Seznam Rank (Seznam.cz)

The performance measure used by Seznam.cz company. From now on, it will be called Sez-

nam Rank and often abbreviated as SR in the following text. The measure takes into account
only the top 20 documents for each query, i.e. it is SR@20 by default. The performance
score for each query is given by following equation:

SR = min

(
1,

20∑
k=1

wpos(k) · wrel(y
(
dπf (k)

)
)

)
, (3.10)

where wpos(k) is the weight given by the position k (specifying that top document are

more important than bottom documents), y
(
dπf (k)

)
is a relevance grade of the document

ranked at the kth position and wrel(y) is the weight according to the relevance grade y. The
values given by (3.10) are summed over the top 20 documents and the lower value is saved
- either 1 or the result of the summation. The weights wpos and wrel are constants provided
by Seznam.cz in range < 0.0; 1.0 >.

SeznamRank4 (SR4) Please note, that SeznamRank is originally de�ned for the rel-
evance labels in the range < 1; 5 >. In contrast to SR, the other measures that allow
multi-level relevance grading also involve 0 relevance label. To facilitate the comparison of
the results and the measures, SeznamRank4 (SR4) measure was derived. It is exactly the
same measure, only the mapping of relevance labels is shifted by 1. Therefore, the relevance
labels range of SR4 is < 0; 4 > and the weights have been shifted accordingly.
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3.3.2.10 Top K documents (@k)

There are measures (e.g. ERR, NDCG) that can be computed based only on top k elements
of the ranked list. This type of setting can be marked by @k at the name of the measure,
specy�ng that measure will be computed based just on the �rst k elements. For example,
ERR@20 would be then

ERR@20 :=
20∑
r=1

1

r

r−1∏
i=1

(1−Ri)Rr. (3.11)

Those cut-o� @k measures can be used especially in the cases when the model is trained
for a speci�c use. For example, when only the top three documents will be displayed - it is
important to learn such a model that returns relevant documents at the top three positions
and the relevance of the documents ranked below does not really matter.

The following section Measures Analysis will cover the analysis of the aforementioned
performance measures.

3.3.3 Measures Analysis

In order to analyze the characteristics of listed measures, a few experiments were performed.
Two sets of documents are introduced for the purpose of the experiments.

D1 = {y1, y2, y3, y4} = {4, 3, 2, 1},

where yi denotes a relevance label of a document di in a set of documents D1. And then

D2 = {y1, y2, y3, y4, y4} = {1, 1, 1, 0, 0},

with same notation as the previous set of documents. All possible permutations of documents
on both sets were generated. The duplicate lists of labels for D2 were removed.

Relevance Scores Comparison All the ranked lists, that had been generated, were
evaluated by appropriate performance measures. D1 includes multi-level relevance grades,
while D2 uses only binary relevance labels. Therefore, NDCG, ERR and SR11 measures
were used to evaluate the permutations of D1 and WTA, RBP and MAP were used for D2

permutations. Results of the evaluation of D1 permutations can be observed in Tab. 3.2 and
results given by the measures evaluated on D2 permutations are presented in Tab. 3.3.

Measures Correlation The following experiment is focused on the correlation of the
measures. The outcomes of the measures for di�erent lists were used to calculate correlation
coe�cients. The coe�cients for both groups of performance measures are provided in Ta-
ble 3.4. The table on the left presents the correlation coe�cients computed for WTA, RBP
and MAP measures, while the table on the right shows the coe�cients for NDCG, ERR and
SR measures.

11SR4 modi�ed version of SR was used in the experiment (see Sec. 3.3.2.9 for more information.))
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List NDCG ERR SR4 List NDCG ERR SR4

(4,3,2,1) 1.00000 0.95382 0.91935 (2,4,3,1) 0.76800 0.57621 0.41874

(4,3,1,2) 0.99351 0.95345 0.91611 (2,4,1,3) 0.74851 0.57462 0.41226

(4,2,3,1) 0.97547 0.95121 0.89586 (2,3,4,1) 0.71893 0.50850 0.36915

(4,2,1,3) 0.95598 0.94962 0.88938 (2,3,1,4) 0.67347 0.47518 0.35583

(4,1,3,2) 0.95671 0.94954 0.86913 (2,1,4,3) 0.66265 0.45613 0.31569

(4,1,2,3) 0.94372 0.94832 0.86589 (2,1,3,4) 0.63667 0.42440 0.30885

(3,4,2,1) 0.86169 0.70382 0.59559 (1,4,3,2) 0.71466 0.51204 0.23865

(3,4,1,2) 0.85519 0.70345 0.59235 (1,4,2,3) 0.70167 0.51082 0.23541

(3,2,4,1) 0.78809 0.63350 0.52251 (1,3,4,2) 0.66559 0.43392 0.18906

(3,2,1,4) 0.74262 0.60018 0.50919 (1,3,2,4) 0.62662 0.40096 0.17898

(3,1,4,2) 0.76933 0.62142 0.49578 (1,2,4,3) 0.62807 0.39363 0.16233

(3,1,2,4) 0.73036 0.58846 0.48570 (1,2,3,4) 0.60209 0.36190 0.15549

Table 3.2: Measure scores for lists consisting of multi-level relevance labels.

List WTA RBP MAP

(1,1,1,0,0) 1.00000 0.87500 1.00000

(1,1,0,1,0) 1.00000 0.81250 0.91667

(1,1,0,0,1) 1.00000 0.78125 0.86667

(1,0,1,1,0) 1.00000 0.68750 0.80556

(1,0,1,0,1) 1.00000 0.65625 0.75556

(1,0,0,1,1) 1.00000 0.59375 0.70000

(0,1,1,1,0) 0.00000 0.43750 0.63889

(0,1,1,0,1) 0.00000 0.40625 0.58889

(0,1,0,1,1) 0.00000 0.34375 0.53333

(0,0,1,1,1) 0.00000 0.21875 0.47778

Table 3.3: Measure scores for lists consisting of binary relevance labels.

To further illustrate the correlations of the measures, Figure 3.3 demonstrates scores
given by the measures. Please note, that the �gure can be slightly confusing, as there is
no natural ordering de�ned among the lists. On the other hand, the permutations of the
labels were ordered in descending order (to create a self-ordered set) and we can assume that
the scores are likely to decrease. The correlation computation is inspired by [11], where the
authors used correlation to prove and compare the quality and adequacy of freshly proposed
Expected Reciprocal Rank.

The correlation coe�cients and the �gure con�rmed our expectations. WTA is clearly
di�erent from RBP and MAP, on the other hand RBP and MAP are similar to each other.
MAP seems to be more linear than RBP, but it is important to keep in mind that RBP can
be in�uenced by the persistence coe�cient. The results for the measures allowing multi-
level relevance grading are more interesting. Although the correlation coe�cients show that
NDCG and ERR are more similar to each other, the coe�cients for SR are also high. The
biggest di�erence (which can also be observed in Fig. 3.3a) is between NDCG and SR. There
are two points to be noted in the �gure. The �rst interesting point is the step between 6th

and 7th lists. It is caused by the fact that the most relevant document was moved to 2nd
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WTA RBP MAP

WTA 1.00000 0.89821 0.84704

RBP 0.89821 1.00000 0.98810

MAP 0.84704 0.98810 1.00000

(a) WTA, RBP and MAP measures -
binary relevance grading

NDCG ERR SR4

NDCG 1.00000 0.99063 0.97431

ERR 0.99063 1.00000 0.98545

SR4 0.97431 0.98545 1.00000

(b) NDCG, ERR and SR4 measures -
multi-level relevance grading

Table 3.4: Correlation matrices of performance measures
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Figure 3.3: Learning curves of LambdaMART for 3 di�erent tree depths

position, which really in�uenced ERR and SR. The second interesting point is between 18th

and 19th positions. NDCG and ERR re�ect the fact that the most relevant document moved
up, while SR measure considered other changes in the lists worse than the improvement of
the position of the most relevant document.

What does in�uence the measures? This experiment focused on the measures allowing
multi-level relevance grading, i.e. NDCG, ERR and SR. p-found is not considered as it is
similar to ERR and it depends on a particular setting of the probability coe�cients.

SeznamRank (Sec. 3.3.2.9) does not consider the above mentioned points that are typical
for cascade model. It takes into account only the position and relevance of the document.
Although, the metric is re�ecting the relevancy of the documents in the list, as demonstrated
later, it does not implicitly consider correct ordering.

To illustrate the issue, several lists of labels are introduced: π1, π2, π3, π4, π5, π6, π7. The
lists are further de�ned in Tab. 3.5.

SeznamRank measure leads to similar results as when using other measures, e.g. NDCG
or ERR. The maximum (optimized) value of SeznamRank measure is reached when the list
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Lists Relevance lists NDCG ERR SR4

π1 (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4) 1.000000 0.968078 1.170000

π2 (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) 1.000000 0.385664 0.550000

π3 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 0.000000 0.000000 0.000000

π4 (4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0) 1.000000 0.968077 1.112841

π5 (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4) 0.492727 0.103546 0.017379

π6 (2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3) 0.816360 0.391034 0.626500

π7 (2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4) 0.723180 0.391040 0.340290

π8 (2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 1.000000 0.367744 0.450380

Table 3.5: Comparison of performance scores of NDCG, ERR and SR

is perfectly ranked (π1 and π4) and the most relevant documents are on the top of the list.
All the measures return the same score for π3 and very similar for π5. NDCG returns higher
score though, which is caused by the fact that particular subparts are ordered in the correct
order (e.g. the subpart of relevance grades 2). The main issue we want to point out is the
di�erence between π5 and π8. Although π8 is perfectly ranked list and π6 is ranked in the
worst possible way, ERR and SR4 prefers π6. The consequence of this issues is that the lists
are incomparable and does not re�ect the fact whether the list is correctly ranked.

To sum it up, on the one hand NDCG re�ects the correctness of the order, on the other
hand it does not take into account the relations among documents according to relevance.
Although ERR calculates with the relevances of preceding documents, it does not re�ect the
correctness of the order. SR4 does not calculate neither with the preceding documents nor
take into account the correct order. But SR4 is the one which is easiest to be calculated
and it also modi�es the score according to whether the list contains the perfectly relevant
document (i.e. relevance grade 4) which can be observed in the di�erence between π6 and
π7.

Last but not least, it is very complicated and almost impossible to compare the perfor-
mances measured on two di�erent datasets, even though originating from the same proba-
bility distribution. The numbers and the distributions of particular relevance grades di�ers
a lot and thus, for example, ERR@20 is totally incomparable, as the score depends on the
relevance labels in the list.

A few suggestions are provided, however the ideas have not been neither veri�ed nor
tested. NDCG and ERR both went through math experiments and analysis in several
research papers and such a veri�cation would be beyond the scope of this work. It could be
good idea to use a normalized version of ERR which could help to re�ect the correctness
of a list ordering. ERR seems to be the one corresponding to the expected users' behavior,
however, the idea of p-found to use coe�cients to adjust the measure could move it closer
to the reality and to the real-world behavior of users.

Please, take a �nal note, that none of the measures are bad or good. All three of the
analyzed measures put a pressure on the relevant documents to be moved up the list and
thus maximize the score of the performance measure. In the ideal case, all three measures
would retrieve the perfectly ranked list. However, the issue remains the same. Which of the
incorrectly ranked lists do we prefer?
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3.3.4 Summary

The choice of the evaluation measure is very important, because a performance measure is
used to determine the quality of a ranking model. The main point of the decision should
be the purpose and the use of the ranking model. A recommendation system, a question
answering system or a search engine will most likely use di�erent measures. User interaction
models will be di�erent and also the number and the structure of displayed results will play an
important role when choosing the measure. Finally, also the training dataset could in�uence
the choice of the particular algorithm and eventually the cut-o� position (@k position).

It is usually clear how to select a evaluation (objective) function in regression and clas-
si�cation tasks. A objective (loss) function which is dependent on the distance between
predicted and target values is selected in regression tasks, while in classi�cation tasks, a
objective (loss) function which is dependent on a number of misclassi�ed samples is selected.
The selection of a proper measure for LTR task is much more challenging. It is easy to de-
termine when the documents (elements of the list) are perfectly ranked and the performance
is 100% successful. However, it is not so clear, how to evaluate and compare losses caused
by a few misranked documents. An example is provided to make the problem clear.

Example: Issue of ranked lists comparison Consider the following case. Let

S = {(di, yi)} = {(d1, 0); (d2, 0); (d3, 1); (d4, 1)}

be the list of documents to be ranked, yi be a relevance label of the document di and
yi ∈ {0, 1} (0 means irrelevant, while 1 represents relevant). Now, compare two di�erent
rankings π1 and π2 of the list S, where the �rst element of the permutation is the top ranked
document.

π1 = ((d1, 0); (d3, 1); (d4, 1); (d2, 0)) ;π2 = ((d3, 1); (d1, 0); (d2, 0); (d4, 1)) .

It is di�cult to compare the quality of the rankings. Both rankings can be changed to per-
fectly ranked lists only in two steps (i.e. moving d1 two positions down in π1 or moving d4

two positions up in π2). From this point of view, π1 and π2 are equally good. But what
if the relevance of the top ranked document is more important than the relevance of the
documents ranked at lower positions, as it happens in search engines? Then π2 is ranked in
a better way than π1 because there is a relevant document at the top position in π2. And
what if the relevance of the �rst three documents is equally important while the relevance
of 4th document is not important (e.g. when the result of the ranking is used to recommend
a relevant product in an electronic shop and only the top three positions of the ranked list
are displayed)? π1 is clearly more appropriate than π2, because the top three elements of
the ranked list π1 contain more relevant documents.

There is no best evaluation measure. In order to properly compare the rankings and de-
cide which one is better, it is necessary to fully understand the background and all the
consequences of the problem that is being solved. Since the choice of the best model de-
pends on the performance of the model, the choice of the evaluation measure is essential,
e.g. WTA and MAP can point at di�erent models when selecting the best model. WTA will
be used in the cases when only the top ranked document is crucial for the performance of
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our algorithm, while for example NDCG@10 could be used in the cases when top 10 ranked
documents are important or ERR and p-found could be preferred in search engines.

User behavior analysis This part of the issues is out of the scope of this work, however,
it can be considered being an interesting potential direction of future research. As it was
emphasized above, it is necessary to fully understand the problem and the data, in order
to select the proper evaluation measure. The evaluation measure should re�ect the desired
ideal result. But how could it be considered what the ideal result is? Although, it is simple
to specify what the perfect ranking (resp. 100% success) means, it is challenging to de�ne
the quality of imperfect rankings. As the main objective is to satisfy the user, the user
should be the one who decides which of the imperfectly ordered lists is the one he prefers.
The user cannot be asked to evaluate the imperfectly ordered lists but his `opinion' could be
deduced from his behavior in the system. The user behavior data can be utilized to create
or to adjust one of the existing performance measures (e.g. re-weight the importance of the
positions of the list).

The analysis and the use of the user behavior data in LTR is a whole research issue. It is
challenging to discover a useful information in the user behavior data and handle all the issues
as bias, noise or behavior signi�cance. There are several works on the topic: [10, 16, 46, 48].
And there are also approaches using correlation between user behavior statistics and LTR
evaluation measure to verify the quality of a measure [11].

3.4 Algorithms

There are plenty of algorithms available to solve Learning to Rank problems. The di�erences
among them are not often signi�cant because some of them di�er only in loss functions (e.g.
while one algorithm uses logistic loss function, the other algorithm uses hinge loss function).

First, an issue of direct optimization will be referred in this section. Then the catego-
rization of algorithms will be explained and �nally the chosen algorithms will be listed and
described. As there is a lot of algorithms, often di�erent only in small details, only the
important and frequently referred algorithms have been chosen to be included in the list.
Not the same amount of information is provided for all algorithms. The algorithms that are
a good educative example, an important milestone in the research or a frequently used and
referred algorithms have got a special attention and have been described thoroughly.

3.4.1 Direct Optimization Issue

A machine-learning method generally aims to minimize or maximize a given objective func-
tion, which usually amounts to direct minimization of a loss function.

There are several performance measures, that are commonly used in IR, e.g. MAP,
NDCG, ERR (described in Sec. 3.3). Note that the evaluation measures can be easily
transformed into a loss function, e.g. LMAP = 1−MAP . Unfortunately, it is very challenging
to directly optimize the evaluation measures because the measures are usually non-smooth
and non-di�erentiable. Therefore, it is not possible to optimize a value given by the measure
in a straightforward manner, e.g. by gradient descent.



30 CHAPTER 3. LEARNING TO RANK

The methods can be therefore divided by the approach to the optimization. There are
generally two possibilities.

Direct optimization The �rst approach is to `directly' optimize an original loss function.
It means that an original loss function (resp. evaluation measure) is optimized by the means
of upper or lower bounds, or by the optimization of the function itself which is challenging
and nowadays not usually used (as the functions are non-smooth and non-di�erentiable). A
smooth and di�erentiable upper-bounding (resp. lower-bounding) function is usually de�ned
and then optimized by the algorithm. This approach is applied, for example, applied by
AdaRank. The authors of [45] and [12] analyzed and proved the relations between the loss
functions and the performance measures and pointed out many facts, e.g. that the regression
based pointwise loss is an upper bound of (1-NDCG). Several important loss functions will
be given below. Lambda algorithms, such as LambdaRank or LambdaMART, deal with the
problem in an innovative way which allows to directly optimize the measure (not a bounding)
and will be described in following text.

Indirect optimization The second possibility is to use a surrogate formulation of the
problem and approximating the original loss function. The advantage of this approach is
the smoothness and di�erentiability of the surrogate functions that are usually used. For
example, the problem can be then de�ned as a classi�cation problem on pairs of the query-
document pairs or a regression problem trying to predict relevance labels of the documents.
This approach is applied for example by RankBoost that minimizes a loss function based on
classi�cation error in document pairs.

3.4.2 Categorization of algorithms

One possible approach to the categorization has been already mentioned in Sec. 3.4.1. The
second categorization is based on the approach to data samples.

There are three main categories of algorithms, i.e. point-wise, pair-wise and list-wise
approaches. The main di�erence among the algorithms is the way how they approach the
problem and the data samples.

• Point-wise approach handles the problem by transforming ranking into regression or
classi�cation of single objects. The model then takes only one sample at a time and
either it predicts its relevance score or it classi�es the sample into one of the relevancy
classes (e.g. a class of slightly relevant documents).

• Pair-wise approach tackles the problem as a classi�cation of object pairs, i.e. deciding
whether the pair belongs to the class of the pairs with the more relevant document at
the �rst position or vice versa.

• List-wise handles the problem directly, by treating a whole document list as a learning
sample. For example, by using all the relations among all the documents belonging to
one particular query and not only by comparing pairs or single samples.

More detailed characteristics of the approaches will be given in the dedicated sections -
Sections 3.4.4, 3.4.5 and 3.4.6.
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3.4.3 Loss functions

As mentioned before, the performance measures can be easily transformed into loss functions.
However, the loss functions used in the algorithms are typically bounding functions of the
original loss function or loss functions based on a surrogate formulation of the problem. Each
of the LTR approaches (point-wise, pair-wise, list-wise) use speci�c loss functions appropriate
to the particular approach.

Please note, that a loss function (resp. evaluation measure) used during the learning and
a evaluation measure used to evaluate the performance of the model can be two completely
di�erent functions. Although there is a lot of di�erent loss functions used by various algo-
rithms, the performance measures described in Section 3.3.2 are commonly used for the �nal
evaluation and the comparison of the performances of di�erent algorithms.

To provide a better understanding what is meant by surrogate loss function, an example
is provided. Let D = d1, . . . , dm be m documents to be ranked, then let G = g1, . . . , gK be
K-level relevance grades and let Y = y1, . . . , ym be the known labels of the documents D,
where yj ∈ {0, 1, . . . ,K−1}. The aim of the LTR algorithm is to search for the best ranking
function f , optimizing the given loss function. In this particular example, the ranking
function f predicts the relevance grade of the document di and the algorithm minimizes
mean squared error (MSE) between the predicted values and the values given by yi, as it can
be seen in (3.12). This approach belongs to the class of point-wise algorithms that de�ne
the loss function on the basis of single objects.

L(f ;D,Y ) =

m∑
i=1

(f(di)− y(di))
2. (3.12)

More examples of surrogate functions appropriate for particular approaches will be given
in the following paragraphs. Clearly, it is not possible to cover all possible loss functions but
representative and important functions according to [12] will be mentioned.

3.4.3.1 Loss functions for point-wise methods

The best example of loss function for point-wise methods has already been used in the
previous text in (3.12). Classi�cation error could be another example of the loss function for
point-wise methods.

L(f ;D,Y ) =

∑m
i=1(I {f(di) = y(di)})

m
, (3.13)

where I{·} denotes an indicator function.

3.4.3.2 Loss functions for pair-wise methods

In this case, the problem is approached on the basis of pairs of objects. For example,
RankBoost or RankNet use this approach. The general form of the loss function is following:
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L(f ;D,Y ) =

m−1∑
s=1

m∑
i=1,y(di)<y(ds)

φ(f(ds)− f(di)), (3.14)

where φ represent one of the following functions which are used by di�erent algorithms.

• Hinge function φ(z) = (1− z)+ (used by RankingSVM )

• Exponential function φ(z) = exp−z (used by RankBoost)

• Logistic function φ(z) = log(1 + exp−z) (used by RankNet)

3.4.3.3 Loss functions for list-wise methods

In the list-wise approach, the loss function is de�ned on all the samples of the document
list. The problem can be formalized as a classi�cation problem on permutations (used by
ListMLE in [43]). There are then three di�erent functions on the basis of permutations:

• Likelihood loss

L(f ;D,Y ) =

n−1∑
s=1

(
−f(dπ(s)) + ln

(
n∑
i=s

exp(f(dπ(i)))

))
,

where dπ(i)) gives a document ranked at i-th position in the ranked list π.

• Cosine loss
L(f ;D,Y ) =

1

2

(
1− g(d)T · f(d)

‖g(d)T ‖ · ‖f(d)‖

)
,

where g(d) is a score vector of the ground truth and f(d) denotes a score vector
evaluated by the ranking function f on the vector of documents d.

• Cross entropy loss As the de�nition is more complicated than the previous de�-
nitions, for the de�nition of cross entropy loss function on the permutations in LTR
problem, we refer to [43] and [8]. Cross entropy loss is used, for example, in ListNet.

A list of algorithms and their description will be provided in the following sections.

3.4.4 Point-wise approach

Methods applying the point-wise approach handle ranking as a regression or classi�cation of
single objects. The advantage of this approach is that regression and classi�cation belongs
to well-known and well-explored methods and there is a lot of background theories available.
On the other hand, it does not model the problem in a natural straightforward way which
is also con�rmed by the authors of [43]. Another issue is that the queries do not contribute
to the loss function with the same part. The weight of a query depends on the number
of documents related to the query. This can be problem especially when the counts of
documents for di�erent queries vary a lot. Moreover, such loss function cannot re�ect the
position of the document in the list.
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3.4.4.1 PRank

PRank algorithm proposed by [13] approaches the problem similarly to RankNet (see Sec-
tion 3.4.5.1) by using a neural net. They construct a ranker based on a perceptron, which
maps each sample (feature vector) to a real number. The output is then f(di) = ~wT · ~xi,
where ~w is the vector of weights, i.e. the representation of the model, ~xi denotes a feature
vector of a document di and f(·) is a ranking function. It is also necessary to train the
thresholds of the rank level intervals, as the �nal prediction of a relevance label is based on
the intervals of ranking scores. It is a problem of ordinal regression. There is an advantage
in e�ciency of PRank, as it is trained on single samples and not on pairs, it uses only O(m)
iterations.

3.4.4.2 McRank

The authors of McRank [28] treat the problem as multiple ordinal classi�cation. The ap-
proach is inspired by the fact that perfectly classi�ed documents result in perfect DCG scores
and the DCG errors are bounded by classi�cation errors. The class probabilities are learned
using a gradient boosting tree algorithm. The authors claim that McRank can improve
LambdaRank in terms of NDCG. The authors also present instructions how to implement
an e�cient boosting tree algorithm.

3.4.4.3 Random Forest

Random Forest [2] is a kind of ensemble learning algorithm which combines predictions
from an ensemble of random trees. Bagging is used to reduce the correlation between each
pair of random trees in the ensemble. As the Random Forest method is an approach using
regression, it belongs to the point-wise methods. Each of the trees in the ensemble votes for
the output value. The �nal output is then determined by all the trees in the ensemble. As
the regression is used, it is possible to use Random Forest even for multi-graded relevance
ranking.

3.4.4.4 MART

MART [21] (which stands for Multiple Additive Regression Trees, or also known as Gradient
boosted regression tree) is an approach utilizing a boosted tree model in which the output
of the model is a linear combination of the outputs of a set of regression trees. According
to [5], MART is considered a class of boosting algorithms that may be viewed as performing
gradient descent in function space, using regression trees. MART can be trained to minimize
any general cost (classi�cation, regression, ranking), however, underlying model upon which
MART is build is the least squares regression tree.

Since MART belongs to the family of boosting algorithms, it runs a several rounds of
boosting and in each step there is a regression tree added and it's weight is determined. The
�nal scoring (ranking) function is de�ned as follows (in (3.15)).

FN ( ~xj) =

N∑
i=1

αifi( ~xj), (3.15)
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where fi(·) is a ranking function of a single regression tree, αi is a weight coe�cient (or
learning rate) and ~xj is obviously the feature vector of document dj .

3.4.4.5 RC-Rank

RC-Rank is an algorithm provided by Seznam.cz. As not all the details are publicly available,
we can provide only a brief basic description of RC-Rank. RC-Rank belongs to the category
of methods applying point-wise approach. To the best of our knowledge, the algorithm works
on the similar basis as MART algorithm, i.e. it is a boosting algorithm that is using the
idea of multiple additive trees. However, the major di�erence is in the type of decision trees
that are used by the algorithm. While MART uses regression trees, RC-Rank makes use of
oblivious decision trees.

Oblivious Decision Trees Oblivious decision tree is a type of a decision tree similar to
a regression tree. However, there is a restriction - all nodes at the same level of a particular
tree use the same feature and the same split. Oblivious trees are usually built by a greedy
algorithm. More details on oblivious trees can be found in [38].

3.4.5 Pair-wise approach

LTR methods using the pair-wise approach take document pairs as learning instances and
formalize the problem as a classi�cation task on pairs, i.e. for each pair of documents, it
returns a label determining relative relevance of the pair, whether the �rst document should
be ranked above the second one or vice versa. [8] There are advantages, such as it is possible
to utilize and directly use existing methodologies on classi�cation. It's much easier to obtain
relative pair-wise preferences than whole ranked list. A disadvantage is that the number of
document pairs can be di�erent for di�erent queries and thus the result can be biased in
favor of queries with more document pairs. This is a similar issue to the one of the point-
wise approach. Moreover, pair-wise approach is usually worse in e�ciency than point-wise
methods because it requires O(m2) iterations to consider all the pairs.

RankNet algorithm will be described more in detail as it is one of important milestones
in the research of LTR.

3.4.5.1 RankNet

RankNet, proposed by [4], employs a simple probabilistic cost function (relative entropy), as
a loss function and gradient descent as an algorithm to train a neural network model. They
use the idea of [25] (RankSVM) to train the model on pairs. However, the trained ranking
function maps to reals, since it would be computationally slow to rank items on the pair
basis. It means, that document pairs are used as learning instances but then only single
documents are evaluated during the ranking process. The approach can be used with many
underlying algorithms. [4] used neural networks because of its �exibility ([32] claims that
two layer neural network can approximate any bounded continuous function) and e�ciency
in a test phase (compared to kernel methods).
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Let (A,B) be a pair of samples, P̄AB a target probability of sample A being ranked higher
than sample B, oi = f(xi) and oij = f(xi)− f(xj), the cross entropy cost (loss) function is
then de�ned in (3.16).

Cij = C(oij) = −P̄ij − (1− P̄ij) log(1− Pij) (3.16)

Mapping from the outputs to probabilities is provided by a logistic function (3.17).

Pij =
eoij

1 + eoij
(3.17)

And thus resulting function Cij becomes

Cij = −P̄ijoij + log(1 + eoij ) (3.18)

This cost function (slightly modi�ed for the neural net purposes) is then optimized by
the means of neural networks, i.e. back-propagation and forward-propagation. The ranking
model is then represented by a vector of weights (parameters of a neural net) which have
been learned.

[25] approaches the problem as ordinal regression, i.e. learning the mapping of an input
vector to a member of an ordered set of numerical ranks (intervals on real numbers). The
loss function used in their method depends on pairs of examples and their target ranks. It
is complicated to �nd the interval thresholds, though.

3.4.5.2 RankBoost

RankBoost [20] is a boosting algorithm based on AdaBoost idea proposed by [19]. RankBoost
employs pair-wise approach. It trains weak learners using distribution Dt de�ned over X ×X
at time stage t. The algorithm works over pairs of documents. There is a weight de�ned
for each of the document pairs which changes after each of the iterations and the algorithm
learns weak rankers that minimize the number of incorrect pairwise orderings.

As the weak learners, either feature values or thresholds are used. Using the feature
values is straightforward. Using thresholds, let x be a document, h(x) is 1 when a value of
feature fi(x) is greater than threshold Ω and h(x) is 0 otherwise. Many theoretical properties
of RankBoost can be inherited from AdaBoost.

3.4.5.3 RankSVM

RankSVM (sometimes called RankingSVM) is an algorithm proposed by [25]. It is another
algorithm applying pair-wise method, classifying pairs of documents and determining their
relative relevance. RankSVM approaches the ranking as ordinal regression and therefore the
thresholds of the classes have to be trained as well. RankSVM employs minimization of
hinge loss function. It also allows direct use of kernels for non-linearity. RankSVM was one
of the �rst algorithms with pair-wise approach to the problem.
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3.4.6 List-wise approach

List-wise methods approaches the whole lists as the instances in learning. The advantage
is that the approach is natural and straightforward and it utilizes all information about
the documents including their position in a particular list. The disadvantage is that it is
challenging and complicated to optimize a function de�ned on the whole list. As already
mentioned before, there are two main branches. The algorithms can directly optimize one
of IR performance measure (or a function correlating with the measure) or it can minimize
a surrogate loss function, e.g. a probability loss function de�ned on permutations.

As the algorithms in this section often employ novel ideas and approaches which are
di�erent from classi�cation or regression tasks, a few algorithms will be described in details.
One of the �rst list-wise algorithms is AdaRank. Since, we �nd this algorithm very educative
and it is a good example of the main ideas of list-wise approach in LTR, such as the bounding
of performance measures, AdaRank will be thoroughly described even including the pseudo-
algorithm.

3.4.6.1 AdaRank

AdaRank [44] is a method which employs the list-wise approach. It repeatedly constructs
weak rankers which are then linearly combined to get the �nal ranking model. AdaRank
utilizes, inspired by AdaBoost [19], boosting which means a method that is iteratively con-
structing weak rankers and re-weighting training samples in order to improve performance
of the ensemble of the weak rankers, which if combined, can provide one strong ranker:
f(~x) =

∑T
t=1 αtht(~x), where ht(~x) is a weak ranker, αt is the weight and T is the number of

iterations.

It minimizes an exponential loss function that is upper bounding the basic loss function
(see de�nition of basic loss function (3.27)). It means that it directly optimizes the given
evaluation measure. Since there is also a lower bound of the performance on the training data
speci�ed, the performance of the method can be continuously improved during the training
process.

As the AdaRank algorithm is easy to implement and contains many interesting parts, it
will be described in detail (see Algorithm 1).

At the beginning the weights P1(i) are equal. However, during the iteration the weights
are updated in order to make the queries, which were not ranked well, more important. A
weak ranker ht(~x) is constructed each iteration based on its weighted performance that is
given by Eq. 3.19. Although, the weak rankers can be constructed in many ways, [19] uses
single features as weak rankers.

E(ht(~x)) =

m∑
i=1

Pt(i)E(π(qi,di, ht),yi), (3.19)

where ht(~x) is a weak ranker at iteration t, m is number of queries, π(qi,di, ht) denotes
a list (permutation) π of documents di related to query qi ranked by a weak ranker ht.
E(πi,yi) is a performance evaluated on the basis of the ranked list π and related vector of
relevance labels yi.
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Algorithm 1 AdaRank algorithm
Inputs

1: Input S = (qi,di,yi) - dataset
2: Input E - evaluation measure
3: Input T - number of iterations
Initialization P1(i) = 1/m
Iteration:

1: for t = 1, . . . , T do

2: Create weak ranker ht, with weighted distribution Pt on training data S.
3: Choose αt.

αt =
1

2
· ln

∑m
i=1 Pt(i){1 + E(π(qi,di, ht),yi)}∑m
i=1 Pt(i){1− E(π(qi,di, ht),yi)}

(3.20)

4: Create ft.

ft(~x) =

t∑
k=1

αkhk(~x) (3.21)

5: Update Pt+1

Pt+1(i) =
exp{−E(π(qi,di, ft),yi}∑m
j=1 exp{−E(π(qj ,dj, ft),yj}

(3.22)

6: end for

The objective of the algorithm is to maximize the ranking performance measure on the
training data (see Eq. 3.23), where E is a general performance measure (MAP, NDCG,
WTA).

max
f∈F

m∑
i=1

E(π(qi,di, f),yi) (3.23)

It can be said that it is equivalent to minimization of the loss function de�ned as you
can see in Eq. 3.24.

min
f∈F

m∑
i=1

(E(π∗(qi,di, f),yi))− E(π(qi,di, f),yi)) =

= min
f∈F

m∑
i=1

(1− E(π(qi,di, f),yi)),

(3.24)

where π∗(qi,di, f) is a perfectly ranked permutation. However, Eq. 3.24 is not a contin-
uous smooth function. Thus, it is necessary to �nd a surrogate continuous function which is
approximating Eq. 3.24 well. An upper bounding function is used instead. As it holds that
e−x ≥ 1− x we can use following upper bound.

min
f∈F

m∑
i=1

exp (−E(π(qi,di, f),yi)) (3.25)
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The objective of the algorithm is then to minimize loss L(ht, αt):

min
ht,αt

L(ht, αt) =
m∑
i=1

exp (−E(π(qi,di, ft−1 + αtht),yi)), (3.26)

where αt is a positive weight of the weak ranker ht and ft−1 is the ensemble of the
weak rankers constructed so far. Values of αt and ~Pt+1 are chosen in order to minimize the
denominator of (3.22).

According to the experiments in [44], AdaRank provides signi�cantly better results than
Ranking SVM, RankBoost and BM25. However, according to our experiments in Chapter 5,
it generally performs worse than the algorithms using trees, such as MART, LambdaMART
or RC-Rank.

3.4.6.2 Coordinate Ascent

Coordinate Ascent is an algorithm proposed by [31]. The algorithm applies list-wise approach
and it is based on the idea that the ranking scores are calculated as weighted combinations
of the feature values. The algorithm then descends through the space of weights' values and
optimizes a chosen performance measure. The algorithm restarts several times at di�erent
positions of the space of weights and then is descending for a given number of iterations.
Although, this algorithm returns decent results, its e�ciency is rather low and therefore
(according to our experiments) and therefore we consider other list-wise algorithms being
better choice - as the other algorithms (i.e. LambdaMART) provides consistently better
results and it is also faster to learn the model.

3.4.6.3 PermuRank

PermuRank [45] minimizes the hinge loss function which is upper bounding the basic loss
function. The basic loss is de�ned as follows:

L(f) =
m∑
i=1

(E(π∗(qi,di, f),yi))− E(π(qi,di, f),yi)) =

=
m∑
i=1

(1− E(π(qi,di, f),yi)),

(3.27)

where πi is the permutation selected for query qi by ranking model f , π∗i is the optimal
permutation. The de�nition expects E(π∗i ,yi) being equal to 1. The authors employ the
SVM technique to minimize the regularized hinge loss function, i.e. to optimize the upper
bounding of the basic loss in a greedy way. It is not possible to optimize the basic loss
because it is non-smooth and non-di�erentiable and therefore it is necessary to use the
upper bounding.
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3.4.6.4 SVMmap

SVMmap [47] is an SVM based method that directly optimizes MAP measure and employs
list-wise approach. It globally optimizes a hinge-loss relaxation de�ned on MAP information
retrieval performance measure. The hinge-loss function upper bounds the basic loss function
based on Average Precision. The authors showed in the experiments that SVMmap can
outperform other conventional SVM methods. It has been proven that SVMmap works in
polynomial time.

3.4.6.5 ListMLE

ListMLE [43] uses list-wise approach to LTR, using the whole list of documents as the learn-
ing instance. ListMLE employs likelihood loss function while RankCosine and ListNet (see
Section 3.4.6.6) use cosine loss and cross entropy loss functions. Let X be a space of sets
of objects to be ranked and Y be a space of resulting permutations. Then the probability
distribution of P (X,Y ) is unknown. Therefore it is necessary to construct an empirical ex-
pected loss function (3.28) based on training samples. The �nal ranking function is given by
a sum of weighted weak learners. Weak rankers can be chosen as

RS(h) =
1

m

m∑
i=1

l(h(xi),yi), (3.28)

where l(h(xi),yi) is a 0 − 1 loss function. It equals 0 when the predicted permutation
is the same as the ground truth ranking and it equals 1 otherwise. And also h(xi) can
be de�ned as h(xi) = sort(g(xi1), . . . , g(xini)), where g(·) is a scoring function and m is
the number of queries. However, as sort(·) function and 0 − 1 loss function are used, the
expected loss function is non-di�erentiable. As in other cases, the algorithm uses surrogate
loss function φ. The objective is then to minimize new expected loss function (3.29).

RφS(h) =
1

m

m∑
i=1

φ(g(xi),yi), (3.29)

As mentioned before, ListMLE proposes using likelihood loss function as a surrogate loss
function. The likelihood loss function is de�ned as:

φ(g(x),y) = − logP (y|x;g)

P (y|x;g) =

n∏
i=1

exp (g(xy(i)))∑n
k=i exp (g(xy(k)))

,
(3.30)

Likelihood loss is proofed by [43] to be consistent, sound, continuous, di�erentiable,
convex and it is also possible to compute the loss e�ciently in linear O(n) time, where n is
a number of objects. Stochastic Gradient Descent (SGD) is used for minimization. Neural
Network, parameterized by ω is then used as a ranking model which is maximizing sum over
all the queries:
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m∑
i=1

logP (yi|xi;g) (3.31)

The authors of ListMLE claim that ListMLE leads to better experimental results in
comparison to RankCosine and ListNet algorithms and that it also provides better properties.

3.4.6.6 ListNet

ListNet [8] is a method applying the list-wise approach in which lists of objects are used
as training instances. The paper uses two probabilistic models for listwise loss function
de�nition - permutation probability and top k probability. [8] proposes transforming both
the lists of relevance marks assessed by humans and the scores given by ranking model into
probability distributions. It is possible to use almost any metric between two probability
distributions. However, permutation probability and top k probability are used in the paper.
The paper makes use of gradient descent algorithm and neural network model, similarly to
[4]. The permutation probability is proposed in the following form:

Ps(π) =
n∏
j=1

Φ(sπ(j))∑n
k=j Φ(sπ(k))

, (3.32)

where sπ(j) denotes the score of object at position j of permutation π and Φ(sπ(j)) is
increasing and strictly positive function. Let Ωn be a set of all possible permutations, it
holds that Ps(π) > 0 and

∑
π∈Ωn

Ps(π) = 1. Given two permutations we can calculate the
probability distributions and then use any metric between the distributions as a list-wise
loss function. As there are so many possible permutations, it is intractable to calculate all
the distributions and thus the second approach, top k probability, is applied.

Let G(j1, j2, . . . , jk) be a subgroup containing all the permutations in which the top k
objects are exactly (j1, j2, . . . , jk), in this order. The number of possible subgroups decreased
to n!

(n−k)! . The probability of the subgroup is just a sum of the probabilities of its members.
However, it is possible to further improve the e�ciency of the calculations. In fact, the
probability function can be de�ned as in (3.33).

Ps(G(j1, j2, . . . , jk)) =

k∏
t=1

Φ(sjt)∑n
l=t Φ(sjl)

(3.33)

ListNet then uses Cross Entropy as a metric between two probability distributions and
Φ(sπ(j)) is substituted by an exponential function. Gradient is then calculated based on the
scores and loss function de�nition with respect to ω parameter. Linear Neural Network was
then used for modeling. Similarly to RankNet.

According to authors, ListNet can outperforms other methods, namely Ranking SVM,
RankBoost and RankNet.
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3.4.6.7 RankCosine

RankCosine [36] is a coordinate descent algorithm utilizing cosine similarity between the
predicted ranking and the ground truth to create a generalized additive ranking model. The
authors of [36] emphasize the importance of query-level loss functions. They claim that SVM,
RankBoost or RankNet do not use a suitable loss functions, as the queries do not have the
same importance in the loss functions. It can be a problem in the cases when the number of
documents relevant to each query varies a lot. They named what the properties of a correct
loss function should be. It is: a) Insensitivity to number of document pairs, b) Importance
to rank top results correctly, c) Loss function is upper bounded, i.e. loss function should not
be easily biased by di�cult queries with high loss. The de�nition of cosine loss function is
de�ned in Sec. 3.4.3.3.

The authors employed a stage-wise greedy search strategy and used a generalized addi-
tive model as the �nal ranking function. The �nal ranking function is then determined by
weighted sum of weak learners.

The experiments performed by the authors showed that RankCosine can outperform
RankNet, RankBoost, RankSVM and BM25 on OHSUMED and Gov (see Section 3.2.3.1
and Table 3.1) datasets.

3.4.6.8 LambdaRank

LambdaRank [6] is a method based on RankNet algorithm (see section 3.4.5.1). It also uses
neural nets. While RankNet is optimizing for a smooth, convex approximation to the number
of pairwise errors and therefore using gradients derived from the de�ned cost, LambdaRank
is rather specifying the gradients directly. That is, specifying gradient based on the ranks
of the documents and not based on the information retrieval measure. The performance
measure is used only for the purpose of test evaluations and as a stopping criterion on a
validation set.

Lambdas (λ's) can be understood as rules de�ning how to change the ranks of documents
in a ranked list in order to optimize the performance. Other approaches just de�ne how to
change the ranks of documents based on the performance measure (which can be a problem
using certain measures, e.g. WTA). The gradients (i.e. the rules giving how to change the
ranks) are used for changing weights (parameters) in neural nets. The size of the step is then
speci�ed by a value of learning rate η which is usually a small number. Performing smaller
steps then the steps which would maximally reduce the cost is a form or regularization for
the model that can signi�cantly improve test accuracy, as claimed in [5]. To explain the
idea of lambdas once again in a more simpli�ed way. They skip the issue and calculate the
gradient on already ranked lists, de�ning rules that could be understood as `How should we
change the ranking scores12 of particular documents in order to improve the performance of
the model?', which is di�erent from `How should we change the weights or the parameters
of the model to make the ranking scores change in order to improve the performance of the
model?'.

12Ranking score is the number which is the value returned by the model for a particular document which
is then used for sorting.
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3.4.6.9 LambdaMART

LambdaMART[5, 42] is a method combining MART (section 3.4.4.4) and LambdaRank
(section 3.4.6.8). It uses the idea of λ's according to LambdaRank and boosted regression
trees according to MART. As the authors of [5] claim, `it is a perfect marriage' (of ideas
from MART and LambdaRank). Since MART models derivatives, and since LamdaRank
works by specifying the derivatives at any point during training, the two algorithms works
together well.

In comparison to LambdaRank, LambdaMART is capable of decreasing the utility of
some queries in order to increase the overall utility (performance). It is caused by the way
how the weights are updated.

As we consider this algorithm to be the state-of-the-art algorithm with big potential, it
will be described more in detail. The description will be mainly inspired by equations and
algorithms from [5].

The explanation of lambdas was also outlined in Sec. 3.4.6.8. Since IR performance
measures are non-smooth and non-di�erentiable it is challenging to directly optimize them.
As it it cannot be di�erentiated, it is not possible to easily compute gradients. It is based
on the idea that it is not necessary to derive the gradients from a cost directly, when we
can directly specify the desired gradients. By gradients we still mean gradients of cost (with
respect to the model scores) but not directly computed from the cost and rather speci�ed by
some rules. This solution skips the issue introduced by sort function in most IR measures by
calculating the gradients after the documents were ordered. The key underlying observation
is, that in order to train a model, we need only gradients and not the exact cost.

Lambda λ are considered being gradients with contributions from all other documents
(relevant to a given query) that have di�erent relevance label. If document d1 is more relevant
than document d2 then it will be pushed by the force λ1,2 upwards, while if the document
d1 is less relevant than document d2 then d1 will be pushed by the force λ1,2 downwards.

All necessary equations are available in [5], therefore only the most important equations
will be provided.

Lambda `force' between document di and dj is de�ned as follows:

λij =
|∆Zij |

1 + e(si−sj)
, (3.34)

where si is a ranking (model) score given to the document di by a ranking model, |∆Zij |
denotes the di�erence in a performance measure generated by swapping the rank positions of
di and dj , and Z is a chosen performance measure that is being optimized. The summation
of all the forces pushing document di is then:

λi =
∑

j:{i,j}∈I

λij −
∑

j:{j,i}∈I

λij =
∑
{i,j}
I

λij , (3.35)

where λij is de�ned in (3.34) and I is a set of all pairs (x, y) where document dx is more
relevant than dy and then we introduce simpli�ed form of the sum equation. The equation
sums up both, downward forces and upward forces.
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Figure 3.4: Scheme of the iteration of LambdaMART algoritmh.

Note, that
∂C

∂si
=

∑
{i,j}
I

λij , (3.36)

and then for Newton step calculation we have:

∂2C

∂s2
i

=
∑
{i,j}
I

|∆Zij | ·
−λij
|∆Zij |

·
(

1− −λij
|∆Zij |

)
. (3.37)

Having both, (3.36) and (3.37) de�ned, it is then easy to determine the Newton step size
for further calculations.

In very simpli�ed way, the algorithm can be described as follows. When the ranking scores
of documents are obtained from the current model, the documents are ranked according to
the scores. Then based on the scores and the measure, the lambda gradients are calculated
determining, how the scores of the documents should change in order to improve the overall
performance. The most important part of the idea is then that the tree is built in order to
predict the lambdas (i.e. changes of the scores, not the actual scores or relevance labels).
The trees are gathered into an ensemble of trees. For a particular sample, the trees represent
a collection of changes (gradients) to be applied to the score (which is initially zero). This
description aimed to describe the algorithm in an understandable way and to point out the
important parts, for detailed description with all deductions and the pseudo-algorithm, see
[5].

3.4.7 Combining rankers

Let say, we have two available datasets S1 and S2 and two rankers F1 and F2. It can happen
that ranker F1 outperforms F2 on the dataset S1, while F2 outperforms F1 on the dataset
S2. Then it is hard to choose which ranker is the better one because there is a possibility
that the results of the selected ranker will be worse that the results we reached during the
training and testing.

This problem can be approached by combining rankers that performed well during the
training and testing. The diversi�cation caused by the combination of rankers minimizes the
chance of achieving poor results because of one single ranker. Therefore, it can be suggested
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to linearly combine the results of selected ranking functions. The combined ranking function
of L rankers is then (3.38).

FL(x) =

L∑
i=1

αiFi(x), (3.38)

where Fi(x) is a single ranker, x is a feature vector, and αi is a weight coe�cient of
ranker Fi(x).

3.5 Public Contests

First of all, please note that this section is not concerning neither our own models nor our
algorithms. It is mainly a suggestion of a useful source of both, information and comparisons.

As the research on LTR is hot and rapidly evolving topic, it can be highly challenging to
compare the methods based only on papers or publicly available datasets. However, there
have been a few competitions involving LTR that can help comparing the approaches and
methods. The competitions have asked for solutions of real-world problems and providing
real-world datasets. Since there are usually tens or hundreds of competing teams, it is highly
probable that the winning solutions propose high-performance and state of the art algorithms
and models.

Nowadays, a lot of competitions concerning LTR are held by Kaggle13. Apart from Kaggle
challenges, there were also competitions self-organized by Yahoo or Yandex14 in recent years.
In the following section, an interesting challenge will be brie�y described and the basic idea
of the winning solutions will be provided.

3.5.1 Expedia Hotel Searches

Expedia is the world's largest online travel agency (OTA). It provides a search engine for
the customers to �nd a perfectly matching hotel. Providing the high-quality ranking is a
way how to succeed in this very competitive market. Expedia provided a 3.6Gb dataset
containing shopping and purchase data and also information on price competitiveness. The
data are in the form of search result impressions, clicks and hotel room purchases. For each
hotel, it's characteristics and location attractiveness are provided as well as user's aggregate
purchase history and competitive OTA information. NDCG@38 was used as the evaluation
metric. Hotels for each user query are labeled with relevance marks: 0 - the hotel was
neither purchased nor clicked, 1 - the user clicked the hotel, 5 - a room at the hotel was
purchased. The �nal rankings of the hotels should recommend hotels in order from the
hotels with the highest chance of a room purchase to the rooms with the lowest probability
of a room purchase. The interesting part of the training dataset is that the part of the
impressions comes from search results that were randomly ordered. The randomly ordered
search results were used in order to remove the bias of the impression statistics, as the results

13Kaggle (www.kaggle.com) is a platform for predictive modeling and analytics competitions employing
crowdsourcing approach.

14Both, Yahoo and Yandex are search engines. Yahoo originates in USA, while Yandex is based in Russia.
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Position NDCG@38 Position NDCG@38

1st 0.53984 6th 0.53033

2nd 0.53839 7th 0.52989

3rd 0.53366 8th 0.52925

4th 0.53102 9th 0.52924

5th 0.53069 10th 0.52787

Table 3.6: Final leaderboard of Expedia Hotel Searches challenge

at the top positions are more probable to be viewed/clicked than the results at the lower
positions. There were di�erent categories of features in the dataset: search criteria, static
hotel characteristics, dynamic hotel characteristics, visitor information, competitive OTA
information (availability and prices in other OTAs) and other.

The contest lasted 2 months and 337 teams participated, therefore it can be expected
that the solutions of the top three teams (i.e. winners) should be of a high-quality and
proofed in a real-world challenge. As noted before, NDCG@38 was used as the evaluation
measure and the performance evaluations of the �rst ten teams is provided in Tab. 3.6.

1st place The �rst place was reached by Owen Zhang (NY, USA). First, he added new fea-
tures as averages of numerical features, composite features15, EXP features16 and estimated
position. Zhang used an ensemble of 26 gradient boosting machines (GBM) as his model.
He was using NDCG evaluation measure and he utilized R17 GBM implementation18.

2nd place J. Wang and A. Kalousis coming from Switzerland were placed as the second.
This team focused on models that can easily handle nonlinearity because of categorical
(discrete) features. They utilized LambdaMART model since it can handle nonlinearity
and it is computationally e�cient. Similarly to the previous solution, they reasonably used
NDCG evaluation measure. Their feature engineering was concentrated on features with
monotonic utility with respect to the target variable and features that are discriminative.
Another important element of their success was feature normalization in order to remove the
scaling factors (e.g. prices depends on the location and the time). Their �rst experiments
were based on linear models as linear regression or RankSVM. However, LamdaMART was
proven to outperform the linear models. This solution does not use any ensembles of models.

4th place The solution of the third team was not published, thus the solution of 4th

place will be described. First, the data preprocessing. They used the �rst quartile value
to represent the missing data, they used only 10% of data, they balanced the number of
positive and negative data. Second, the feature engineering - the authors found out that
di�erent features �t di�erent models and added new composite features. Then the authors

15The features as di�erence between hotel price and recent price and order of the price within the same
search are meant.

16Categorical features converted into numerical features.
17The R Project for Statistical Computing - http://www.r-project.org/
18http://cran.r-project.org/web/packages/gbm/gbm.pdf



46 CHAPTER 3. LEARNING TO RANK

experimented with many di�erent models (using all three approaches - pointwise, pairwise,
listwise). The best performance was reached by Gradient Boosting Machine, LambdaMART,
Random Forest and Logistic Regression. They also experimented with Factorization Machine
but it took a long time to train the model and a lot of feature engineering work was required.
The authors also mentioned the use of Deep Learning. However, they found the approach
not useful in this case. Their suggestions for the further investigation were interesting. They
think about using Bayesian Database to deal with the missing data, try using Deep Neural
Network in pairwise and listwise approach and try utilizing Representation learning.

3.5.2 Summary

Apart from Expedia Hotel contest at Kaggle, other contests were examined and it was
observed that LambdaMART is the algorithm that is used by the winning teams most often
and it is very often the main topic of the discussions (and boosting trees generally). It
was also observed that the most of the solutions uses ensembles of models which usually
performs better than a single model. To sum it up, the interesting source of state-of-the-
art comparisons was introduced - high-quality contests, such as Kaggle. And according to
the results of this contest and according to other contest that have been examined, it has
been proven that algorithms using trees and boosting are state-of-the-art algorithms which
deserves attention.

More information about LambdaMART was provided in Section 3.4.6.9 and for more
details about ranker combining see Section 3.4.7.



Chapter 4

Implementation

When we were preparing the assignment of this thesis, RankLib1 library with the imple-
mentation of many algorithms was not known to us. The aim of our own implementation
was initially to provide us with a tool which could be used for the experiments and for the
analysis of datasets and measures and besides, it was meant to help us to fully understand
the main ideas of LTR and of a chosen algorithm.

However, during the work on the thesis, we fortunately found out that there is an existing
implementation called RankLib, containing more implemented algorithms than we could have
hoped. Moreover, it provides the implementation of the basic performance measures, such
as ERR or NDCG. Above all, RankLib was obviously developed by an skillful programmer
and experienced researcher, as the implementations of particular algorithms and measures
include many di�erent mathematical `tricks' increasing e�ciency of the computations that
have been published, such as the e�cient way how to calculate the matrix of changes in
ERR performance measure for the purpose of LambdaMART algorithm. Moreover, the
implementation itself provides very e�cient code as the library pre-computes and re-uses
as many values as possible. There are also methods in RankLib to handle the splitting of
datasets and of validation sets (this functionality was not used almost at all) and for each
of the algorithms, there were many parameters that could be modi�ed.

Under the new circumstances, the importance of our own implementation decreased and
at the same time, it enabled us to perform so many di�erent experiments. In spite of this, we
still found the implementation of our own algorithm being important. Own implementation
of an algorithm provides better insight and also a useful tool for further visualizations,
prototyping etc.

In the following paragraphs, our own implementation of LambdaMART will be described
and then a comparison to RankLib implementation will be presented.

4.1 Own implementation of LambdaMART algorithm

LambdaMART is an algorithm with a lot of successes in contests like Kaggle.com (see
Sec. 3.5). Besides, it is an algorithm that provides a way how to directly optimize arbi-
trary IR performance measure and it belongs to the category of the list-wise methods. We

1A brief description of RankLib library can be found in Section 5.1.1
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consider LambdaMART algorithm being state-of-the-art algorithm that worth attention, as
it o�ers a novel methods how to solve the problem and it employs more straightforward
approach than most algorithms that try to reformulate the problem and solve a surrogate
task.

Now, we can also con�rm that the choice was right, as LambdaMART performed well in
the experiments (see Chapter 5) and together with MART algorithm usually showed one of
the best results. Our implementation was based mainly on [5], [7] and [11].

4.1.1 Python and NumPy

Our implementation of LambdaMART algorithm was programmed in Python. Python is a
dynamic object-oriented scripting language. There are many advantages of Python. Among
others, the readability of the code is really good (one of the main advantages of Python),
it is also easy to program a prototype in Python and Python is built based on C language,
and therefore most native functions are very fast and e�cient. Python further provides,
for example, list comprehensions and generators, which can improve the e�ciency of many
operations that would be much slower in other languages. In short, Python was chosen for
it's readability, for the e�ciency of implementation and it's speed.

Moreover, NumPy module was used for many operations. NumPy provides classes and
methods for computing with multi-dimensional arrays and matrices. NumPy provides a
user with many functions comparable to MATLAB. Because array operations in NumPy are
optimized and well-coded, it was our intention to use the advantages of this module as much
as possible.

4.1.2 RankPy

RankPy, how we called the package involving the implementation of LambdaMART algo-
rithm, consists of many scripts and tools. It provides tools for evaluation of performances, it
involves a module for data processing (loading, splitting and modifying of datasets), further,
there is a script converting .csv result �les to LATEX(.tex ) tables. Moreover, RankPy involves
a few tools for plotting and analyzing the results of experiments and also a logging support
that enables us to store many values and array from the process of learning or testing and
analyze (or plot) them after the experiments are �nished.

LambdaMART in RankPy worked as follows. As already mentioned, our purpose was
to prepare an e�cient implementation of LambdaMART and NumPy was used to compute
many values and also there was a set of arrays that have been precomputed and in the further
iterations only updated.

First, the algorithm generates a Base Model scores, determining what the scores what
the documents with no model are. Then the lambda gradients are computed based on the
current score. When the lambda gradients are known, a regression tree is built.

In order to further improve the e�ciency of the implementation, we decided to use scikit
module that provides methods for learning regression decision trees. scikit is a well-known
module with high-quality and good e�ciency for many machine learning tasks. However,
in order to make scikit fully useful for our purpose, it was necessary to adjust the class of
Regression tree because in the next step, it was necessary to manually recalculate and set



4.1. OWN IMPLEMENTATION OF LAMBDAMART ALGORITHM 49

new values of leaves of the tree. Once the tree is learned, the model scores are recalculated
and the training measure is evaluated.

We did compare the performance of RankPy to RankLib implementation. The compar-
ison was a proof that RankLib is programmed in a very e�cient way and that it is hard
to compete the speed and e�ciency of RankLib implementation. Despite the fact, that we
used high-quality and e�cient implementation of decision trees from scikit and we also used
a proper and e�cient way how to recalculate the performance measures during the training,
RankLib was still much more e�cient. As we have already mentioned, RankLib is extremely
optimized implementation of LambdaMART algorithm that precalculates and re-use all pos-
sible computations. This is con�rmed by the fact, that during our comparison experiments,
RankLib consumed almost three times more memory.

We can provide an example which is available on the attached CD. When the perfor-
mance was compared on the given datasets (which are smaller versions of MSLR10k dataset)
RankLib consumed up to 700MB of RAM, while RankPy needed only 230MB. On the other
hand, RankPy needed much more time to perform the experiment. The experiment was
performed 3 times and the times were averaged. The training time of the model in Rankpy
was 4 hours and 22 seconds, while the training time of the model in RankLib was 2 minutes
and 10 seconds. Even when compared to the training of RC-Rank models, it took longer to
train RC-Rank models than it took to train similar models for LambdaMART in RankLib.
Moreover, the testing time of a model was 3.4 seconds in RankLib, while in RankPy, it was
2minutes and 58 seconds. As RankLib proved to be surprisingly e�cient and fast, and also
providing other advantages mentioned above it was therefore used for the experiments in
Chapter 5.

Although the performance of RankPy implementation is not as good as the implemen-
tation of RankLib, there are still many advantages of having own implementation. We have
got a very valuable insight thanks to the implementation. Thanks to Python programming
language, it is also easy to extend the code in order to add an extension of the algorithm
or apply a new idea and it allows us to further improve the implementation and prototype
potential ideas in the future work.

Besides, during the implementation, there were a few visualization tools created and
therefore RankPy implementation can be used as a subject of research on smaller datasets
where e�ciency is not the issue and it can provide educative visualization to further under-
stand the rules and the dependencies and relations.

A few examples of visualizations are provided. In Fig. 4.1, we can see how the documents
with di�erent relevance labels change their positions in the ranked list during the time. Note,
that there are more queries (and documents lists) and therefore the position of irrelevant
document in the top half of the list is perhaps caused by the in�uence of a di�erent list with
higher importance.

Next, in Fig. 4.2, there are curves visualizing how the values of lambdas for each document
change during the time. We can see the changes in the lambda values as there were also
changes in the relevance label lists. Note, that changes in lambdas can be also caused
only by changes in ranking scores which does not have to be projected to the order of the
documents. It is obvious that the top relevant document is still being pushed up the list
while other documents are pushed down or ownly slightly up. As this �gure is not easy to
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Figure 4.1: Visualization of relevance labels of a ranked list of documents evolving in time
(50 iteration). The more red the color is, the less relevant the document is and vice versa.

0 10 20 30 40 50
−2

0

2

4

6

8

10
Lambdas in time

Figure 4.2: Visualization of lambdas of a list of documents evolving in time (50 iteration).

understand without a further insight and realization what is happening with the values, it
is a good example of the purpose of those visualization and RankPy implementation.

The last Fig. 4.3 is very similar to the previous one. This time, it presents the values
of ranking scores, which are the scores that are used as the keys to rank the documents
afterwords. It can be observed that the di�erence among the documents is still increasing
throughout the time.

It is obvious that although LambdaMART algorithm is not di�cult to understand on
the abstract level, it is challenging to understand all the underlying forces and rules that
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Figure 4.3: Visualization of ranking scores of a list of documents evolving in time (50 itera-
tion).

can be applied on the values and the document lists. From this point of view, the own
implementation is very valuable even though it's e�ciency is worse in comparison to RankLib
implementation.
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Chapter 5

Experiments

This section presents several experiments mainly comparing algorithms from RankLib library
to RC-Rank, analyzing the characteristics of datasets and algorithms and searching for the
best parameter settings. Each of the section contains a description of an experiment with
the setting and a speci�cation which dataset, performance measure and algorithm were used.
The results are commented and presented as �gures or tables.

5.1 General setting

5.1.1 Implementation of LTR algorithms

In the most of the experiments, RankLib library was used. It supports several important
LTR algorithms and the most popular performance measures. Apart from the learning
algorithms, it also provides tools for testing learned models and for evaluating the models
by the given performance measures. An existing LTR implementation was used because the
correctness of the implementation has already been proven by the community and it would
also be very complicated and in a few cases (e.g. poor performing algorithms) unproductive
and ine�cient to implement all the algorithms by ourselves.

Since RankLib is an open-source Java library, all the source codes are publicly available
and it was possible to modify the code for our purpose. This was very helpful because it
was necessary to implement, for example, the performance measure used by Seznam.cz and
it was also possible to tweak the code for our purposes.

RC-Rank was provided as a binary �le and its performance was evaluated by a Python
script.

5.1.2 Available hardware and memory requirements

All the experiments were performed on a machine with following hardware and operating
system: Ubuntu 64bit operating system, 8x Intel(R) Core(TM) i7-3770K CPU @ 3.5GHz
and 32GB RAM. A few additional experiments were run on a similar machine: Ubuntu 64bit,
4x Intel(R) Core(TM) i7-3770K CPU @ 3.5GHz and 15GB RAM.

53
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The maximal required memory during the experiments was 4GB. Most experiments used
around 2GB RAM, which was average memory use in the experiments with bigger datasets.
Java Virtual Machine (JVM) for RankLib library experiments used 4GB as the heap size.

5.2 Comparison of the algorithms

Since there are a lot of papers concerning LTR available, there have been a lot of di�erent
experiments carried out and documented. However, authors of the experiments use various
datasets, most of which are not even public. The results are therefore often unveri�able and
sometimes the results are not consistent. Even the novel algorithms are sometimes compared
to old algorithms (e.g. RankBoost) and therefore there is no mutual comparison of state of
the art algorithms. The comparison of the algorithms and the approaches is thus not very
clear.

In order to get an overview and a proper comparison of algorithms, several experiments
were carried out. The experiments aimed to compare chosen algorithms using available
datasets and implementations. The results of the experiment provided a basic informa-
tion about the performance of the algorithms and performances on di�erent datasets were
compared.

5.2.1 Experiment setting

Algorithms and parameters For our initial comparing and analyzing experiments Learn-
ing to Rank library called RankLib [14] was used. All the available algorithms provided
by RankLib were used, i.e. LambdaMART, MART, Coordinate Ascent, Random Forest,
RankNet, ListNet, AdaRank and RankBoost. There were three experiments for each of the
algorithms performed (with di�erent parameters) and the result of the best one is presented.

Besides the algorithms provided by RankLib library, we utilized also RC-Rank algorithm
(see Sec. 3.4.4.5) which is an algorithm used and provided by Seznam.cz1 RC-Rank was run
with two di�erent sets of parameters. The �rst parameter setup, labeled RC-Rank baseline,
is a default setting of the algorithm. The second parameter setup is marked as RC-Rank

enhanced. This is a parameter setup recommended by experts from Seznam.cz. The en-

hanced setting of the algorithm manipulates with the relevance labels and pre-calculates a
small forest of so-called context trees which is then used to improve the learning.

There are also two arti�cial rows added to each of the result tables, Best Ranker and
Worst Ranker. The rows represent what would be the performance of the best (or the worst)
possible ranker on a given dataset. The performance values of both `rankers' were obtained
in the following way. A perfectly ranked permutation of documents is created for each of the
queries in the given dataset. The perfectly ordered lists (permutations) are then evaluated
by the chosen performance measure. The Worst Ranker values are calculated in a similar
way. The di�erence is in the opposite order of the lists. Therefore, the performance scores
are based on the document lists ordered in the worst possible way.

1For more information about Seznam.cz, see Section 2.4.
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Performance measures There were three performance measures chosen for the evaluation
of the algorithms' performance - i.e. NDCG@20, ERR@20 and the evaluation measure
provided by Seznam.cz (Seznam Rank or SR from now on). NDCG and ERR were chosen
because those are the measures that are used throughout the community most frequently.
Both measures, unlike MAP, can also be used for multi-level relevance grades. SeznamRank
was then chosen to see whether it correlates with the performances measured by NDCG and
ERR and also because it is a measure used by Seznam.cz. SeznamRank was used only in the
experiments on Seznam data and MSLR dataset, where �ve-level relevance grading is used.

Result table Each of the result tables consists of 5 columns - the algorithm's name,
performance scores and a special averaged value called AV GNorm (see below). Although,
there were three runs for each algorithm, only the best performing model is recorded. In
order to compare the performance of the algorithms using all three evaluation measures
(NDCG@20, ERR@20 and SeznamRank), a new value called AV GNorm is introduced. The
value of AV GNorm is calculated on the following basis. The performance scores of the
models evaluated by the particular measures are �rst normalized, i.e. each score given by
the measure is mapped to the 〈0; 1〉 range (based on maximal and minimal values of the
performance measure reached by any of the models). AV GNorm is then the average value of
all three normalized evaluation measures' scores.

AV GNorm =
n(EERR@20) + n(ENDCG@20) + n(ESR)

3
, (5.1)

where n(·) is the normalization function, i.e. n(x) = x−min
max−min and E is an evaluation

measure of a given type. Clearly, in the experiments where only two performance measures
were used, AV GNorm is averaged only over NDCG and ERR.

Data In order to compare the algorithms and their performance on di�erent datasets, there
were 4 di�erent datasets used in the experiment. Namely, LETOR 4.0, MSLR10k, WCL2R
and also the dataset provided by Seznam.cz search engine2(see Sections 3.2.3.1, 3.2.3.2, 3.2.3.5
and 3.2.3.6 respectively). For more information on the characteristics of the datasets see Ta-
ble 3.1. Only the datasets with no unde�ned values were used.

5.2.2 Experiments' details and results

5.2.2.1 Comparison using MSLR10k dataset

MSLR10k dataset(see Sec. 3.2.3.2) created by Microsoft was used during the experiment.
The original split of the dataset was kept3. The proportions of the splits are 60%, 20% and
20% (for the trainset, the validation set and the testset respectively), i.e. 6000, 2000 and
2000 queries present in the splits. Please note that MSLR10k was the biggest dataset which
was used during the experiments.

As MSLR10k is the biggest dataset from the sets that were used, a smaller variance
error can be expected as proven by [1]. The algorithms loses the tendency to over�t. From

2http://search.seznam.cz/
3Named as Fold1 in the downloaded MSLR10k dataset �les.
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Algorithm NDCG@20 ERR@20 SR4 AVG Norm

Best Ranker 0.9640 0.5896 0.6403 1.0000

RC-Rank enhanced 0.4928 0.3684 0.3271 0.5470

RC-Rank baseline 0.4945 0.3578 0.3307 0.5435

LambdaMART 0.4606 0.3581 0.3385 0.5359

MART 0.4696 0.3484 0.3312 0.5297

Coordinate Ascent 0.4402 0.3346 0.3116 0.5014

Random Forests 0.4496 0.3274 0.3058 0.4976

ListNet 0.4258 0.3238 0.2969 0.4826

AdaRank 0.4026 0.3009 0.2718 0.4485

RankBoost 0.3786 0.2402 0.2074 0.3722

RankNet 0.3597 0.2205 0.1865 0.3435

Worst Ranker 0.0091 0.0012 0.0005 0.0000

Table 5.1: Performance of various algorithms (RankLib algorithms and RC-Rank) on
MSLR10k dataset. NDCG@20, ERR@20 and SeznamRank44 were measured. Best Ranker
and Worst Ranker `dummy' rows contain the best and the worst possible performance score.

this reason, the experiment was performed only once and the results were not averaged over
several runs.

It is obvious that RC-Rank, LambdaMART and MART prevail the others. RankBoost
and RankNet are signi�cantly worse than the rest of the algorithms in this case. Interesting
relation can be observed between enhanced and baseline versions of RC-Rank. RC-Rank
enhanced was better only when measured by ERR@20. When measured by NDCG and
SR4, RC-Rank baseline was better than enhanced version, however the di�erence was not
so obvious to overcome the di�erence in ERR measure. This result shows that although the
measures more or less correlates, there can be minor di�erences that can in�uence the �nal
choice of the algorithm or the choice of parameters. From this reason, it is necessary to
choose a proper performance measure.

5.2.2.2 Comparison using Seznam.cz dataset

The dataset provided by Seznam.cz(see Section 3.2.3.6) was used for the purpose of this
experiments. The dataset was randomly split into three parts. Each query and related
documents list was considered as a single sample when being split. Therefore all documents
related to a query are always present in only one of the splits. The �rst part used as a
training set consists from 60% of samples, the second part and the third part, each consists
from 20% of samples are used a validation set and a testing set, respectively.

The experiments were performed using the algorithms from the implementation of RankLib
library and RC-Rank algorithm. See the results in Tab. 5.2. This dataset can also be con-
sidered a large dataset and therefore no repeated runs were averaged, either.

Similar results to the results from the experiments on MSLR dataset could be observed.
The tree algorithms as RC-Rank, MART and LambdaMART prevailed the others. MART
and LambdaMART show again the di�erences in the measures. While MART performs
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Algorithm NDCG@20 ERR@20 SR Avg Norm

Best Ranker 1.0000 0.7296 0.8654 1.0000

RC-Rank enhanced 0.8874 0.6658 0.7445 0.7918

RC-Rank baseline 0.8861 0.6647 0.7422 0.7887

MART 0.8814 0.6611 0.7359 0.7789

LambdaMART 0.8780 0.6630 0.7361 0.7770

Coordinate Ascent 0.8682 0.6564 0.7246 0.7577

RankBoost 0.8692 0.6536 0.7223 0.7557

Random Forests 0.8688 0.6536 0.7225 0.7554

RankNet 0.8575 0.6430 0.7060 0.7297

ListNet 0.8541 0.6443 0.7049 0.7267

AdaRank 0.8436 0.6335 0.6917 0.7032

Worst Ranker 0.6543 0.2229 0.1660 0.0000

Table 5.2: Performance of various algorithms (RankLib algorithms and RC-Rank) on Sez-
nam.cz's dataset. NDCG@20, ERR@20 and SeznamRank were measured. Best Ranker and
Worst Ranker `dummy' rows contain the best and the worst possible performance score.

better when measured by NDCG, LambdaMART beat MART when measured by ERR or
SR.

RC-Rank enhanced overcame RC-Rank baseline in all three measures. This can be caused
by the fact that the parameters of RC-Rank enhanced were tuned by the experts using this
particular dataset.

5.2.2.3 Comparison using LETOR 4.0 dataset

The experiment used LETOR 4.0(see Section 3.2.3.1) dataset. This dataset is much smaller
than the previous datasets. And because our initial experiments showed that the variance
of the results would be too high and the results would not be representative, 5 di�erent runs
using 5 di�erent fold splits were performed and then averaged.

Both subparts MQ2007 and MQ2008 were joined together to create a bigger dataset.
Then the dataset was split into 5 parts. 4 di�erent parts were joined and one was left out
for the testing phase - this process was repeated 5 times and there was always a di�erent
part left out. This created 5 di�erent data folds. Each fold then consisted of 80% training
data and 20% testing data. During the learning phase, a quarter of training set was used
as a validation set. Approximate sizes of the training, validation and testing sets were 60%,
20% and 20% respectively. The �nal result in the table is a testing performance averaged
over all 5 runs.

As the maximal relevance grade of LETOR 4.0 dataset is 2, it was not possible to use
SeznamRank (see Sec. 3.3.2.9) which is designed for 5-level relevance grades (or 6-level in
the case when unlabeled documents are included). See the results in Tab. 5.3.

Note that the best possible NDCG@20 score is not 1.0 as we would expect (because
NDCG is a normalized value). This is caused by the fact that LETOR 4.0 includes a few
queries containing only documents annotated by zero relevance grades. Then there is no
order among the documents and moreover there is no information about `what is an actual
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Algorithm NDCG@20 ERR@20 Avg Norm

Best Ranker 0.8407 0.5238 1.0000

RC-Rank enhanced 0.5348 0.3400 0.6097

RC-Rank baseline 0.5302 0.3325 0.5990

Random Forest 0.5036 0.3148 0.5634

MART 0.5026 0.3145 0.5624

LambdaMART 0.5042 0.3123 0.5613

ListNet 0.5055 0.3102 0.5600

Coordinate Ascent 0.5011 0.3106 0.5575

RankBoost 0.5037 0.3086 0.5572

AdaRank 0.4986 0.3023 0.5475

RankNet 0.4950 0.3037 0.5464

Worst Ranker 0.0988 0.0249 0.0000

Table 5.3: Performance of various algorithms (RankLib algorithms and RC-Rank) on
LETOR 4.0 dataset. NDCG@20 and ERR@20 were measured. Best Ranker and Worst
Ranker `dummy' rows contain the best and the worst possible performance score.

characteristic of a relevant document' (as there is none). It is questionable how to deal with
this issue, but we have adopted approach of the author of RankLib library. The author
assigns NDCG = 0.0 to such queries where there are no documents with a label di�erent
from zero. Another possible approach would be to skip such a query and leave it out of the
performance measuring or pre-process the data and delete the queries. However, the deletion
is not a proper solution as documents carrying information would be deleted. For example,
point-wise algorithms would utilize even this kind of queries and the algorithms would use
such query to learn `what is the characteristic of an irrelevant document'.

It is obvious that tree algorithms, such as RC-Rank, Random Forest, MART and Lamb-

daMART prevail. RC-Rank appeared to be the best algorithm in this experiment. As the
size of the dataset is rather small, the models can tend to over�t, although the validation
was used to choose the model which was simple enough to avoid the over�tting. As in the
previous experiments, RC-Rank bene�ts from the use of Oblivious trees, as it can serve
as another mean of regularization. This characteristic of RC-Rank can be very valuable,
especially for smaller datasets.

5.2.2.4 Comparison using WCL2R dataset

WCL2R dataset(see Sec. 3.2.3.5) was used to compare the algorithms in this experiment.
The same way of data splitting was used in the experiment The original data were split into
5 folds and then combined into 5 di�erent folds. During the learning, a quarter of training
set was used as a validation set. This dataset can be considered really small. Therefore,
even when the experiments averaged over 5 runs, it is necessary to evaluate the experiment
and the results keeping the data size in your mind.

RC-Rank performed well and was again the best algorithm in the experiment with a huge
di�erence to other algorithms. This success can be again explained by the fact that RC-
Rank uses Oblivious trees that o�ers a higher regularization. LambdaMART and MART
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Algorithm NDCG@20 ERR@20 Avg Norm

Best Ranker 1.0000 0.7543 1.0000

RC-Rank enhanced 0.6515 0.6548 0.7598

RC-Rank baseline 0.6501 0.6260 0.7400

RankNet 0.5908 0.5661 0.6707

AdaRank 0.5704 0.5686 0.6621

ListNet 0.5759 0.5586 0.6583

Random Forests 0.5679 0.5610 0.6557

LambdaMART 0.5159 0.5683 0.6347

Coordinate Ascent 0.5452 0.5441 0.6332

MART 0.5503 0.5384 0.6320

RankBoost 0.5434 0.5350 0.6263

Worst Ranker 0.0000 0.0000 0.0000

Table 5.4: Performance of various algorithms (RankLib algorithms and RC-Rank) on
WCL2R dataset. NDCG@20 and ERR@20 were measured. Best Ranker and Worst Ranker
`dummy' rows contain the best and the worst possible performance score.

performed not as good as in the previous experiments. The setting of the tree depth of
the regression trees could be one of the explanations. The trees built by both algorithms
were probably too deep. Unfortunately, to avoid this, it would be necessary to perform this
experiment with many di�erent parameter settings and search for the best possible setting.
The validation set served only to cut the tree in order to prevent over�tting. However, this
aim of this experiment was to provide further comparison of the algorithms, not to �nd the
best possible parameter settings for small datasets.

5.2.3 Summary

The experiments were summarized in the sections dedicated to the particular experiments.
RC-Rank performed best in all performed experiments. Oblivious trees could be the reason
for that, as the trees improve the regularization of the algorithm. Other tree algorithms,
as MART and LambdaMART, proved that can also successfully learn the ranking model
(except for the last experiment on WCL2R dataset). As MART algorithm is very similar
to RC-Rank (as explained in Sec. 3.4.4.5) and both, MART and RC-Rank, apply the point-
wise approach, LambdaMART could be the way to go and how to improve the results.
LambdaMART uses multiple additive regression trees that have proved to be successful and
it also applies list-wise approach to the ranking problem.

LambdaMART was considered being the algorithm with the best potential and worth
further analysis. Therefore, the further experiments will be mainly focused on LambdaMART
algorithm.

5.3 Time e�ciency of the algorithms

When commercially used, the performance score of the algorithms is not the only decision
factor. It also depends on the e�ciency of the algorithms. To compare the time e�ciency
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Algorithm MSLR Seznam AvgNorm

AdaRank 3412376 684319 0.000

RankBoost 4615198 1410637 0.033

ListNet 10697162 1721900 0.122

MART 10637105 2549840 0.140

LambdaMART 15058219 3771462 0.227

RankNet 19677988 2272570 0.255

Random Forest 17696045 4149453 0.271

Coordinate Ascent 40676951 22473891 1.000

Table 5.5: Execution time of training on Seznam and MSLR datasets. The time is in
milliseconds.

of the algorithms, the results from the previous experiments were employed. This section
presents the comparison of average times needed for training and testing phase.

5.3.1 Experiment setting

Algorithms For the purpose of this experiment, we used all the algorithms available in
RankLib library.

Performance measures This time, the quality was not evaluated by a performance mea-
sure. The analysis was performed comparing the running time of the algorithms in millisec-
onds.

Data The execution times of the training and testing were obtained from the experiments
that had been previously carried out on Seznam dataset and MSLR10k dataset.

5.3.2 Experiment results

The �rst, Tab. 5.5, provides the times of training on MSLR and Seznam datasets. The
second, Tab. 5.6, provides the times of testing. The times are in milliseconds averaged over
several runs in experiment in Sec. 5.2. AvgNorm value is an average of normalized value on
both datasets (similarly to (5.1)).

Even though the time values were averaged over several runs of the algorithms, we can
see that the variance of the times is quite high. The times are dependent on many factors,
such as the complexity of the model, the size of the dataset etc. We can observe two main
�ndings. Tree models are generally slower in the testing phase than other models represented,
for example, by a vector of feature weights or by weights of neural network, which is cause
by the general complexity of tree models. Also the training phase of the algorithms using
trees is slower than, for example, AdaRank. Note, that there are algorithms e�cient in the
testing phase thanks to the simplicity of the model, while the training phase is really slow.
Lastly, also the particular implementation can in�uence the e�ciency of the algorithm and
its testing.
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Alg MSLR Seznam AvgNorm

AdaRank 5951 3404 0.000

Coordinate Ascent 6122 3496 0.005

RankNet 6151 3720 0.008

Random Forest 16934 9800 0.294

LambdaMART 6485 30923 0.327

ListNet 28728 3554 0.459

RankBoost 30836 3780 0.504

MART 6560 46845 0.512

Table 5.6: Execution time of testing on Seznam and MSLR datasets. The time is in mil-
liseconds.

5.4 Over�tting analysis of LambdaMART algorithm
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Figure 5.1: Over�tting curves - example

Over�tting analysis of LambdaMART al-
gorithm was performed in order to �nd
out, whether the algorithm tends to over-
�t. A typical over�tting behaves as shown
in Fig. 5.1, i.e. in the case in the �gure, the
choice of proper complexity would be crucial
because from the marked point, the testing
error rises. In this section, an experiment
will be performed to �nd out to which ex-
tent LambdaMART proves the same over�t-
ting tendencies.

5.4.1 Experiment setting

Algorithms For the over�tting analysis
experiment, only LambdaMART algorithm
(implementation from RankLib library) was
used, as it was evaluated as the the best al-
gorithm and a potential competitor for RC-
Rank (see Sec. 5.2 for the experiments related to this decision).

However, due to the similarity of LambdaMART, MART and RC-Rank algorithms, it
can be expected that the results are applicable to all algorithms using additive tree boosting.

Three di�erent parameter setups of LambdaMART were examined. The models used
trees with 5, 10 and 15 leaves, respectively. As further explained, data were split into 5 folds
and then each experiment ran 5 times and the results were averaged.

Performance measures As demonstrated in Section 3.3, the measures correlate and it
is su�cient to evaluate the experiment using only one of the measures. Please note, that
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unlike in the example in Fig. 5.1, this experiment does not use error5 or loss function, but
it uses ERR@20 evaluation measure, i.e. the higher the value is, the better the algorithm
performs.

Data In order to compare the algorithms and their performance on di�erent datasets, there
were 4 di�erent datasets used in the experiment. Namely, LETOR 4.0, MSLR10k, WCL2R
and also the dataset provided by Seznam.cz search engine6(see Sections 3.2.3.1, 3.2.3.2, 3.2.3.5
and 3.2.3.6 respectively). For more information on the characteristics of the datasets see Ta-
ble 3.1. Only the datasets with no unde�ned values were used.

5.4.2 Experiment results
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Figure 5.2: Learning curves of LambdaMART for 3 di�erent tree depths

For the results of this experiment see Fig. 5.2. Two plots are provided. The �rst plot
provides results for all three parameter setups averaged over 5 runs, containing both, training
and testing performance. The second plot presents testing performances of single runs when
the parameter of number of leaves was set to 10. To make it clear, the averaging of the curves
from the second plot served as a source for one of the curves in the �rst plot. According to
the plots, there is no major tendency to over�t on larger datasets. A rapid increasing of both,
training and testing performances, can be observed at the beginning of the learning, during
the �rst 100 iterations (trees). Up to 200 trees, the performance is still clearly increasing.
However, once 200 trees were reached, the growth of the performance decreases.

This experiment proves that any signi�cant over�tting is not the issue here. Ensemble
sizes above 1000 trees were not examined as for the real-world use of the models, it is
necessary to keep the size of the models on a reasonable e�cient level.

5Do not confuse ERR as a performance measure with ERR as an abbreviation for error. ERR performance
measure is used in the experiment.

6http://search.seznam.cz/
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Please note, it is not claimed that it is not necessary to keep the model as simple as
possible and that there is no need for regularization. This experiment only proves that the
importance of aforementioned is not so high.

5.5 Dataset size analysis

The experiments in this section aimed to analyze the relation between the size of the dataset
and the performance of the model. As proved by the authors of [1], the bigger the dataset is,
the small the variance error is. Throughout the experiment, the size of the training dataset
was being continuously reduced, and the quality of the ranking models trained on the smaller
datasets were evaluated.

This experiment consists of two di�erent subparts. The �rst part of the experiment
analyzed the relation between the dataset size and the performance on 4 di�erent datasets.
The second part of the experiment then used only one dataset, but the experiment was
performed using di�erent algorithms.

5.5.1 Analysis using di�erent datasets

5.5.1.1 Experiment setting

Algorithms For this part of the analysis, only LambdaMART algorithm was evaluated.
The algorithm was chosen as a representative of multiple additive boosting trees algorithms.
Regression trees had 10 leaves and the learning coe�cient was set to 0.1.

Performance measures Similarly to the previous experiment, ERR@20 evaluated the
performance of models. The results using NDCG and SR would correlate with the results of
ERR (see Section 3.3 for more information on performance measures and their correlation).
Please, note again, that ERR is meant to be maximized (it is not a loss function).

Results The results are presented in a �gure. The �gure presents performance of Lamb-
daMART on the datasets of di�erent sizes. X-axis is plot in logarithmic scale.

Data This experiment was performed on 4 di�erent datasets that have been used also in
previous experiments. Namely, MSLR10k, MQ2007 (subpart of LETOR 4.0), Seznam and
WCL2R datasets. For more information on datasets, see Sec. 3.2.3 and Tab. 3.1.

Each of the datasets went through the same procedure. It was �rst split into trainset
(64% of dataset), validation set (16%) and testset (20% dataset). Then there were several
smaller datasets generated from the trainset (the sizes ranged usually from 1% of trainset
to 100% of trainset). Then there was a model trained on the prepared datasets and each of
the models was then evaluated by the performance measures.
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Figure 5.3: Performance of LambdaMART algorithm based on the size of the training set.
Comparison of Seznam dataset, MSLR10k, WCL2R and MQ2007 subpart of LETOR 4.0.

5.5.1.2 Experiment results

For the results of the experiment, see Fig. 5.3. WCL2R dataset is very small and therefore
the variance of the results of the experiment is high. Because of the small size of WCL2R
dataset, even the size of the test set is small which further supports the variance in the results.
This phenomenon could be partially eliminated by repeatedly running the experiment using
di�erent folds of the data as it was done in the experiment in Sec. 5.2.2.4. However, as
WCL2R dataset is not important for us (because of its size and source), we decided not to
perform the experiments repeatedly. MQ2007 is a similar case, however the variance of the
results is not so high.

The interesting part of the experiment is the comparison of MSLR and Seznam datasets.
While Seznam dataset seems to perform reasonably well with less than 10000 samples, MSLR
dataset struggles even when 100000 documents are available. Around 600000 documents
seems to be the minimal number for MSLR dataset. Of course, even the performance of
models trained on Seznam dataset increases with increasing number of document, but from
about 5000 documents, the growth is not signi�cant.

There is a possible explanation for the di�erence between the curves. Both, MSLR and
Seznam's datasets are datasets originating from commercial search engines but while Seznam
dataset uses carefully chosen features that were really in use, MSLR dataset uses a set of
features that were computed especially for the dataset release according to a set of features
that are believed to be important from point of view of research community. Therefore, we
can assume that the set of features provided in Seznam dataset is of higher quality and it is
much easier to �nd dependencies among the feature values and the relevance labels.

It is likely that if MSLR dataset used the same set of features as Seznam dataset, the
performance curves would be similar.
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5.5.2 Analysis using di�erent algorithms

5.5.2.1 Experiment setting

Algorithms Unlike the previous part of the experiment, this part uses also other algo-
rithms than LambdaMART. It uses the algorithms provided by RankLib implementation.
AdaRank, MART, RankBoost, LambdaMART and Random Forest were chosen for the ex-
periment.

Performance measures Same as in the previous part of the experiment.

Results A �gure demonstrating the relation between the dataset size and the performance
evaluation of a model. Again, logarithmic scale was used for X-axis.
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Figure 5.4: Performance of LambdaMART algorithm based on the size of the training set.
Comparison of various algorithms.

Data We used the same procedure of data generation as in the previous experiment. How-
ever, only Seznam dataset was used for the purpose of this experiment.

5.5.2.2 Experiment results

For the results of the experiment, see Fig. 5.4. It can be observer, that the performance curves
of di�erent algorithms behave similarly. However, AdaRank proved a strange behavior, when
the performance did not really depend on the data size and the variance of results was high.
Unfortunately, we are not able to explain this phenomenon, however we can guess that it
is caused by reaching some point of local optimum and that the algorithm struggled to
get through. AdaRank's unexpected curve would be probably better if the experiment was
repeated more times on di�erent folds.
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Concerning the other curves, It seems that Random Forest algorithm performs well even
when only small amount of data is available, while MART algorithm seems to be one that
de�nitely needs more data to construct a proper high-quality model. Once there is enough
data, LambdaMART and MART outperform the other algorithms.

5.6 Relevance label noise sensitivity
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Figure 5.5: Performance of LambdaMART and MART algorithm based on the amount of
the relevance labels with noise. Seznam dataset was used.
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Figure 5.6: Performance loss based on the noise in the training set labels. How many percent
of performance the model lost is presented by Y-axis. When 50% of relevance labels were
noised, the performance dropped only by less than 4.5%.

As mentioned before, the relevance labels are assessed by trained annotators. The issues
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of this process are that a decision of a human being is in�uenced by his subjective point of
view, humans tend to make mistakes etc. This experiment aimed to simulate the mistakes
of the annotators and the in�uence of their subjective point of view by addition of a random
noise to the labels of a training set. Several training datasets with the same data samples
were generated. Then each of the datasets was noised by a di�erent amount of noise. The
performance of the models trained on the noised datasets were then compared.

The results obtained from the experiment were really interesting and surprising. The
results will be presented in Section 5.6.1.1.

5.6.1 Experiment setting

Algorithms For this analysis, LambdaMART and MART algorithms were used and com-
pared. Both coming from RankLib implementation.

Performance measures The models obtained from this experiment were evaluated by
ERR@20, NDCG@20 and SR measures.

Data Seznam dataset was used in this experiment. The dataset was �rst split into 80%
training set and 20% testing set. Then there were several training datasets generated each
of them containing di�erent amount of noise. There was no noise added to the testing set
and the same set was used to evaluate all the ranking models. 20 di�erent training sets with
the noise amount from the range 〈0.05%; 50.00%〉 were used to analyse the sensitivity to the
noise. Note, that the noise was added only to relevance labels. There is no arti�cially added
noise among feature values.

The noise was generated as follows. An adequate part of a dataset was chosen and than
each of the labels from the chosen part was randomly changed to one of the valid labels. The
probability of change was same for all the relevance labels (uniform distribution) and it was
not possible to keep the same label, i.e. the relevance label had to be changed.

5.6.1.1 Experiment results

The results of this example were more than surprising. Let M1 be a model learned on the
original dataset and M2 be a model learned on the dataset with 50% of randomly changed
relevance labels. In Fig. 5.6, we can see that the performance of M2 was worse only by less
than 4.5% in comparison to M1.

When observing the in�uence of the noise, it is necessary to note, that 50% of noise
does not have to necessarily mean that 50% of information is wrong. For example, when
we change relevance label of document di from yi = 3 to yi = 5, the relative order among
documents with relevance labels lower than 3 and di is still the same. The generation of
noise can be also interpreted in the way that in average 10% of dataset was added as noisy
data to a collection of documents of a given relevance label and there were still enough data
to �nd the dependencies among data and relevances.

This phenomenon would deserve further attention and research, which would be out of
the scope of this work. However, this �nding is pointing towards the theory that the amount
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of data and its general quality (e.g. good feature selection) can be more important than
precise high quality labeling of the documents.

It was also observed that when there is a little amount7 of noise added to the trainset,
the performance of a model actually increases. This can be caused by the fact that addition
of a small amount of noise can serve as a form of regularization during the learning phase.

5.7 LambdaMART - parameter search

There are several parameters that can in�uence LambdaMART algorithm during the learn-
ing. The parameters are: number of trees, number of leaves in a tree, learning rate. The
number of trees does not have to be exactly set, as the appropriate ensemble size can be
chosen with the help of validation set. The number of leaves in�uence the depth of trees
that are in the ensemble. When the number is too low, the descriptive power of the trees
can be insu�cient and when the number of leaves is too high, the model can tend to over�t.
The learning rate then in�uences a weight of each tree in the �nal ensemble of trees.
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Figure 5.7: Performance of LambdaMART based on learning rate and number of leaves in a
tree.

The appropriate parameters' setting can vary for each dataset. This experiment was
performed in order to tune the setting of the algorithm on Seznam data and �nd out if the
improvement based on parameter tuning could help LambdaMART to perform better than
RC-Rank.

5.7.1 Experiment setting

Algorithms Since this experiment focuses only on the parameter tuning of LambdaMART,
thus only LambdaMART algorithm was employed.

7It means about 0.5% of the relevance labels changed in the training dataset
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Figure 5.8: Performance of LambdaMART based on learning rate and number of leaves in a
tree. Two plots focusing on single parameter. The optimal values seem to be with parameters
set to number_of_leaves = 15 and learning_rate = 0.16

Data The dataset provided by Seznam.cz was used in this experiment. There was following
split of dataset used - 80% train set and 20% test set. However, two di�erent splits were
generated in order two create two folds and use them for repeated run.

Performance measures The performance of a model was evaluated by ERR@20, NDCG@20
and SeznamRank measures. LambdaMART used ERR@20 for optimization during the train-
ing. As there were two runs of the experiment using di�erent data folds, the �nal result is
the average of both runs. The �nal evaluation was performed based on a value de�ned as
follows:

NormPerformance(m) =

∑
z∈Z z(m)/maxk∈M z(k)

|M |
,

where M is a set of all models that have been trained, m is the current model, Z is a set of
measures, i.e. NDCG@20, ERR@20 and SR and z(·) is the measure function.

5.7.1.1 Experiment results

As the resulting performance measure scores are related to both parameters, learning rate
and number of leaves in a tree, it was necessary to plot a 3D scatterplot. First, Fig. 5.7
displays the performances based on both parameters in 3D overview, and then Fig. 5.8
introduces two scatterplots focusing only on one of the parameters.

It can be observed that the optimal performance was reached with the parameters set
to the values around: learning_rate = 0.18 and number_of_leaves = 15. However, it
is necessary to note, that when using such a big dataset, with a big ensemble of trees, the
di�erences in the performance are rather small.
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To demonstrate the small di�erences in the performance, the di�erence between the worst
performing and the best performing models are: ∆NDCG@20 = 0.0025, ∆ERR@20 =
0.0028 and ∆SR = 0.00415. It can be concluded that the parameter tuning for Lamb-
daMART serves rather to in�uence the process of learning (e.g. faster convergence) then the
�nal performance of a model. However, it is important to keep in mind that it is important
to keep the parameter values in reasonable ranges and that both, learning rate and number
of leaves in a tree, can server as a mean for regularization.

5.8 LambdaMART - ERR@k cut-o� position analysis

Constant k and cut-o� position related to performance measures were already discussed in
Sec. 3.3.2.10. It is clear what the purpose of the cut-o� position is when talking about a
performance evaluation on a testset. For example, it is reasonable to use ERR@10 when only
top 10 documents are displayed. However, LambdaMART allows us to directly optimize a
performance measure. A question rises - what is the in�uence of the cut-o� position on the
learning phase. Is it better to keep the same cut-o� position for both, training and testing
evaluation measure? Or is it better to use bigger k constant and try to �nd dependencies on
further positions in the list? This experiment was performed in order to outline the answer
for the questions.

5.8.1 Experiment setting

Algorithms As mentioned in the introduction, only LambdaMART algorithm will be
used in the experiment. LambdaMART allows us to directly optimize a given performance
measure.

Performance measures Although, LambdaMART will be optimized using ERR@k (with
k within the range 〈2; 50〉), the following performance measures will be used to evaluate the
model: ERR@20, NDCG@20 and SR.

Data For the purpose of this experiment, MSLR dataset was used. The dataset was split
into 80% and 20% for trainset and testset, respectively. Two di�erent folds were generated
for two di�erent runs. The results for both runs were then averaged.

5.8.1.1 Experiment results

The results in Tab. 5.7 demonstrates that there is no signi�cant relation between constant
k (specifying cut-o� position of the training performance measure) and the performance.
Which partially con�rms the results from Sec. 5.6. The dataset is big enough and the
model is robust enough to provide the model with the dependencies even when there is no
importance put on the further positions of the list. Moreover, the importance of the lower
positions is really low and therefore its in�uence and the information provided is really small
in comparison to the positions at the top of a ranked list.



5.8. LAMBDAMART - ERR@K CUT-OFF POSITION ANALYSIS 71

k NDCG@20 ERR@20 SR Norm Perf

14 0.57815 0.6321 0.32215 0.989224005

18 0.5824 0.63165 0.32445 0.99375603

44 0.58075 0.63295 0.3254 0.994465052

20 0.5828 0.6319 0.32485 0.994522863

40 0.58265 0.6322 0.3254 0.99515527

48 0.5808 0.6342 0.32575 0.99550532

30 0.58085 0.63455 0.32575 0.995717206

10 0.5831 0.6332 0.3256 0.996139661

26 0.5824 0.6346 0.3258 0.996678023

50 0.5847 0.632 0.32665 0.997493577

38 0.58165 0.6362 0.32655 0.997853407

34 0.5829 0.63575 0.32695 0.998738058

Table 5.7: Performance based on cut-o� position
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Chapter 6

Conclusions

Even though, LTR and IR are hot research topics, there is still a long way to go. It may seem
that everything have been solved already but when comparing the results from Sec. 5.2.2.1,
where the best performing algorithm reached only about 50% of potentially best score, it
appears that there is still a space for improvements. Many state-of-the-algorithms still solve
the issue buy reformulation of the problems without a straightforward approach and there
is still a lot of theory missing and waiting to be developed.

Besides, concerning the search engines, there are many sub problems that emerge recent
years. Very interesting problems concerning LTR in the search engines are, for example,
the issue of click logs utilization and the creation of click models and automatic relevance
label assessment. Further, there is a whole branch of issues related to Sponsored search
which is also very important for the moder search engines. Moreover, the possibilities of
diversi�cation and personalization of the topics are also in the center of the attention.

As it was explained in Chapter 1, this thesis aimed to thoroughly analyze the current
state of the art of Learning to Rank. In Chapter 2, the description of the background of the
topic and this work was �rst proposed. Then, Chapter 3 covered the theoretical analysis and
the listings of LTR in the current state. The description of the general framework of LTR
task is �rst introduced, followed by the description of available datasets and their statistics.
After several applicable performance measures were listed and their characteristics were
analyzed, a thorough list of LTR algorithms and their categorization to point-wise, pair-wise
and list-wise algorithms is presented. At the end of the chapter, we also suggest public LTR
contests, as a very useful source of information and state-of-the-art algorithm comparisons.

In Chapter 4 describes the circumstances of the development of our own implementation.
According to our �ndings from the previous chapters and also according to the initial exper-
iments, LambdaMART was chosen as the potentially best state-of-the-art LTR algorithm.
A description of our implementation and the comparison to an existing implementation is
also presented. Finally, the chapter also suggests using our own implementation as a good
tool for analysis and getting better insight, mainly thanks to good properties of Python pro-
gramming language as a good prototyping language and also because of visualization tool we
developed in order to examine LambdaMART algorithm and the forces that can be found
inside the algorithm.

Chapter 5 starting on page 53 provides several experiments o�ering interesting and some-
times surprising conclusions about the datasets and algorithms. To sum up the experiments
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that were performed:

• A thorough analysis of performance of LTR algorithms on various datasets. This
analysis proved that RC-Rank was the best performing algorithm that was available
to us. However, MART and LambdaMART algorithm were not much worse.

• The algorithms were compared by the means of time e�ciency during the training and
testing.

• LambdaMART (as a representative of the algorithms using tree boosting) was exam-
ined how high is its tendency to over�t.

• Further, the analysis of the performance of a model based on a training dataset size
was performed which showed that the necessary amount of data depends mainly on a
particular dataset.

• Very interesting results were observed when the sensitivity of a model to a noise in
relevance labels was examined. We discovered that even when 50% of labels are noised,
the performance of the model decreases only by less than 5%.

• As LambdaMART was chosen as a potentially best state-of-the-art algorithm, a search
for a best parameter setting was performed.

• And lastly, the role and the in�uence of k cut-o� position of a training measure was
examined on LambdaMART algorithm. Coming up with the �nding that the in�uence
of k constant is really small.

The results of particular experiments are introduced in self-standing sections in Chap-
ter 5. However, it is necessary to mention that RC-Rank was consistently the best per-
forming algorithm from all the tested algorithms. As MART and LambdaMART algorithms
performed also well, it can be assumed that employing an algorithm using gradient boosting
of decision trees is a key to the success. The main di�erence between MART and RC-Rank
is that RC-Rank uses oblivious trees and therefore the use of oblivious decision trees could
improve even the performance of LambdaMART which is a good idea for a further research
and work in this topic.

As it was already mentioned in the Introduction, to the best of our knowledge, there
is no thorough analysis of available algorithms comparing them to each other on the same
datasets. The contributions of this thesis are mainly the exhaustive state-of-the-art analy-
sis and description in Chapter 3 which could be used as a self-standing catalogue of LTR
methods. The chapter also suggests several datasets with their statistics which can be very
useful for anybody who search for a optimal dataset for his experiments. The thesis then
provides a comprehensive set of experiments o�ering a lot of interesting dependencies among
LTR subjects (datasets, algorithms and even performance measures) and lastly our own
implementation of LambdaMART algorithm was suggested and compared to an existing
implementation of LTR algorithms.

There is still a lot of open and unsolved questions (issues) in Learning to Rank and
Information Retrieval and as the amount of data is growing as well as the demands of users,
the importance of this branch can only rise. This thesis can then serve as a guide to any
researcher interested in this topic, providing him with essential knowledge and experiments.
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Appendix A

List of Abbreviations

CSV Comma Separated Values, a �le format

ERR Expected Reciprocal Rank

GBM Gradient Boosting Machine

IDC International Data Corporation

IR Information Retrieval

LTR Learning to Rank

MART Multiple Additive Regression Trees

NDCG Normalized Discounted Cumulative Gain

RBP Rank Biased Performance

SERP Search Engine Results Page

SR SeznamRank - evaluation measure provided by Seznam.cz

WTA Winner Takes All
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Appendix B

Contents of CD and Instructions

B.1 Setup of the environment

It is necessary to have Java installed and also Python on your computer. Preferably Unix
operating system.

RankPy implementation further requires:

• NumPy (python-numpy package)

• MatplotLib (python-matplotlib package)

• SciPy (python-scipy package)

• SciPy (python-scipy package)

• Scikit (scikit_learn package)

B.2 Contents of CD

The following list characterize the folder hierarchy and the description.

• example/

• � data/ - contains three example datasets generated from MSLR10k

• � log/ - empty folder which is used for storing the logs from RankPy

• � model/ - empty folder which is used for storing the models from RankPy and RankLib

• � RankLib/ - �les necessary to run RankLib experiments

• � RankPy/ - �les necessary to run RankPy experiments (can be used as a self-standing
Eclipse project)

• � example_ranklib.sh - a �le containing script running a demonstrative example using
RankLib
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• � example_rankpy.sh - a �le containing script running a demonstrative example using
RankPy

• text/

• � Modry-thesis-2014.pdf - the �le containing PDF �le with the thesis text

• � src/ - folder containing TeX source �les

B.3 Further instructions

It is necessary to �rst copy all the �les from example folder to your local hard drive or any
other space where you have the proper rights.
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