
Master’s thesis

Czech
Technical
University
in Prague

Faculty of Electrical Engineering
Department of Measurement

FPGA Based Robotic Motion
Control System

Bc. Martin Meloun

June 2014
Supervisor: Ing. Pavel Píša Ph.D.

Acknowledgement
I would like to express my gratitude to Ing. Pavel Píša Ph.D. for supervision, useful com-
ments, remarks and support for this master thesis. Furthermore I would like to thank Ing.
Tomáš Pajdla Ph.D. for permission to publish my research report supervised by him as an
appendix of this thesis.

Declaration
I declare that I worked out the presented thesis independently and I quoted all used sources
of information in accord with methodical instructions about ethical principles for writing
academic thesis.

V

Abstrakt
Diplomová práce se zabývá zpracováním přehledu použitelných kombinací CPU a FPGA
pro centralizované řízení až 4 PMSM motorů a dále návrhem samotných periferií v FPGA
pro samotné řízení. Prvně je zpracován přehled možných kombinací CPU a FPGA, i s
možností použití jenom FPGA a v něm syntetizovaný procesor, a to vzhledem k výkonu
a ceně. Dále je popsáno oživení FPGA na zvolené platformě a komunikace mezi CPU a
FPGA. Poté pokračuje odvozením periferií pro řízení PMSM motorů. Samotné motory pak
řídí výkonový modul, který je propojen s řídícím modulem přes vlastní typ sběrnice, pro
kterou byla navržena odpovídající periferie. Diplomová práce využívá předchozích projektů
systémů pro řízení motorů, konkrétně PXMC knihovny a sysless frameworku jako podklad
pro embedded aplikaci na CPU, oboje od firmy PiKRON . Cílem práce je připravit platformu
k produktizaci.

Klíčová slova
CPU, FPGA, LPC1788, Spartan6, LX_CPU1, PMSM motor, syntetizovatelný procesor,
robot, řízení polohy, Tumbl, PXMC, sysless

VI

Abstract
This master thesis presents a platform research about possible CPU and FPGA combina-
tions for centralized control system for up to 4 PMSM motors, alongside with design of the
FPGA peripherals needed for the actual controller. At the beginning a platform overview
is presented, including the option to use a synthesized controller inside FPGA, with perfor-
mance and cost of each platform in mind. Then there is a description on how to configure
FPGA on the chosen platform and how to communicate between CPU and FPGA. Then
peripherals for PMSM motor controller are derived. The motors themselves are controlled
by power stage module, which is connected with the control module using a custom bus,
for which a relevant peripheral was designed. This thesis bases on previous PMSM motor
control systems, namely PXMC library and sysless framework as a base for an embedded
application on CPU, both developed by PiKRON. The goal of this thesis is to ready the
platform for productization.

Keywords
CPU, FPGA, LPC1788, Spartan6, LX_CPU1, PMSM motor, synthesized controller, robot,
motion control, Tumbl, PXMC, sysless

VII

Contents

1. Introduction 1
1.1. PMSM Motor Controller . 2
1.2. Planning . 2

2. Platform 4
2.1. Choosing A Platform . 4
2.2. Sysless Framework . 6
2.3. Synthesized CPU Cores . 7
2.4. The Platform . 8
2.5. Spartan-6 Wiring And Configuration . 11
2.6. Slave Memory Controller . 12
2.7. Power Stage Module . 14

3. FPGA Peripherals Analysis 15
3.1. Parallelism . 15
3.2. Selecting A Synthesized Processor . 18
3.3. IRC Peripheral . 18
3.4. Power Stage Module Communication . 20

4. Tumbl Co-processor Core 21
4.1. Overview . 21
4.2. Minimalization Of The Core . 22
4.3. Co-processor Modifications . 23
4.4. Core Modifications . 24

4.4.1. Conditional Execution . 25
4.4.2. Branching With Link . 26
4.4.3. Count Leading Zeroes . 28
4.4.4. Instruction Binary Encoding Changes 28
4.4.5. Assembler Changes . 28

4.5. Processor Pipeline . 29
4.5.1. Instruction Fetch . 29
4.5.2. Instruction Decode . 30
4.5.3. Execution . 30
4.5.4. Memory And Writeback . 31
4.5.5. General Purpose Register File . 31
4.5.6. Core Component . 32
4.5.7. Top Module . 32

4.6. Division . 32
4.7. External Memory Interface . 32
4.8. C lanugage support . 33
4.9. Pipeline Balance . 33

5. Tumbl Co-processor Implementation 34
5.1. Enumerations . 34
5.2. Records . 37
5.3. Entities . 42

5.3.1. Instruction Fetch . 42
5.3.2. Instruction Decode . 43

VIII

5.3.3. Execution . 43
5.3.4. Memory And Writeback . 44
5.3.5. Core Component . 44

5.4. Platform Entities . 45
5.4.1. General Purpose Registers File . 46

5.5. Top Module . 46

6. Other FPGA Peripherals 48
6.1. IRC Co-processor . 48

6.1.1. Operation . 48
6.2. LX Master . 49

6.2.1. Operation . 50

7. FPGA Simulation 52
7.1. ModelSIM Setup . 52
7.2. Tumbl Simulations . 52

7.2.1. Processor Core . 54
7.2.2. Cycle Counting . 54
7.2.3. Tumbl External Memory Interface Collisions 57

7.3. IRC Co-processor . 57
7.4. LX Master Transmission . 57
7.5. Master CPU Online Debugging . 59

8. Conclusion 60

Appendices

A. Inverse Kinematics For A General 6R Manipulator 62
A.1. Introduction . 65
A.2. Inverse Kinematics Task . 66

A.2.1. Formulation . 66
A.2.2. Raghaven and Roth Solution . 66
A.2.3. Modified Manocha and Canny Optimization 69

Elimination of c1, s1, c2, s2 . 69
Sylvester Dialytic Elimination Method 70
Solving x4 and c5, s5 . 72

A.2.4. Solving remaining variables . 73
A.3. Implementation . 73

A.3.1. Symbolic Preprocessing . 73
A.3.2. Numerical Substitution . 74
A.3.3. Verification . 77
A.3.4. Conclusion . 79

A.4. Documentation . 80
A.4.1. Platform . 80
A.4.2. Numerical Optimization . 80
A.4.3. Doxygen . 81

B. Tumbl Technical Reference Manual 82
B.1. General Purpose Registers . 82
B.2. Condition Evaluation . 82
B.3. Special Registers . 83

IX

B.4. Interrupts . 83
B.5. Instruction Set . 83

C. Tumbl C lanugage support 88
C.1. binutils . 88
C.2. gcc . 88
C.3. newlib . 89

D. Memory Map 90
D.1. Master CPU Memory Map . 90
D.2. Tumbl Memory Map . 91

Bibliography 93

X

Abbreviations
MCU Micro-processor unit
CPU Central processor unit
FPGA Field-programmable gate array
PMSM Permanent Magnet Synchronous Motors, formerly called BLDC (brush-less

DC motors)
BRAM Xilinx FPGA primitive, dual-port block RAM
DSP48 Xilinx FPGA primitive, DSP48 slice consists of a multiplier followed by an

adder,

XI

Chapter 1
Introduction

Electrical motors are widely used in many machines, starting from trivial tasks in toys to
task demanding high accuracy level, such as space vehicles or factory robotic manipulators.
PMSM motors, formerly called BLDC motors, are a popular type of electrical motors for their
performance and durability but bearing a disadvantage of requiring a sophisticated controller
implemented in a microprocessor. The microprocessor main task is to implement a control
loop to substitute a brush commutator in a standard DC motor. This task was implemented
in PXMC library [9] for a voltage driven controller [8], distributed under GPL license. Many
applications use more than one motor. However today’s microprocessors don’t have the
needed peripherals to control more than one motor which needs one IRC input, 3 PWM
outputs and a A/D converter (to be multiplexed for all axes) per motor. One way to control
more than one PMSM motor is to use a distributed system with multiple microprocessors
and one central processor unit. In this case you have to face synchronization challenges
and increased cost of the components. The other option is to use FPGA to implement
peripherals for more PMSM motors in a centralized system, lifting off all synchronization
issues and being more budget friendly. This effort was started in [7]. This thesis first
aims to find out the best platform for a control board of such centralized control system
supporting up to 4 PMSM motors, with later possible extension up to 8 PMSM motors. The
control board is connected to a power stage module, designed by PiKRON, through FPGA
using a custom bus. The platform thus consists of a CPU, handling common tasks such as
communication through USB, Ethernet etc. and possibly running an operating system, and
FPGA to extend its peripherals to accommodate the need for multiple IRC inputs and a
peripheral for the custom bus to the power stage module. The PWMs are sent through the
custom bus to the power stage module which in return sends current or voltage readings.

CPU FPGA
Power Stage

Module

Figure 1.1. Platform overview

A PMSM controller for 4 motors however turns out to be too demanding task for the CPU.
Such controller has a slow control loop, which sets up the speed reference, and a fast control
loop, which substitutes a brush commutator, for example by using block commutation. The
slow control loop isn’t a demanding task and may stay in the CPU. The demanding task
is the fast control loop and has to be offloaded to FPGA. This is the main goal of this
thesis. To design FPGA peripherals for a PMSM controller, alongside peripherals for 4 IRC
inputs with easy later extension to 8 IRC inputs and a communication peripheral. The

1

PMSM Motor Controller 1.1

PMSM controller is described in section 1.1. At the end we intend to have a platform with
necessary FPGA peripherals designed and tested (either on the board or in simulation) and
making the platform ready for productization.

1.1 PMSM Motor Controller
Aside from voltage driven controller from PXMC library, a more advanced current driven
controller can be used with an advantage of being able to control based on momentum
reference. The fast control loop of a current driven controller is shown on figure 1.2.

IRC

IRC BASE
/360°

+/-

< 0; IRC BASE)

x

PT SCALE

Ia

Ib

Ic

a, b, c

to

α, β

α, β

to

d, q

+

-

-

0

ENE

+

PIDd

PIDq

d, q

To

α, β

α, β

to

a, b, c

PWMa

PWMb

PWMc

Figure 1.2. Fast control loop of a current driven PMSM motor controller

The concept is based on control theory used in [11]. An overview of the controller: first,
it converts from 3-phase currents Ia, Ib, Ic to vector coordinates of stationary reference
frame α, β using Park transformation. These are further converted to vector coordinates
of rotating reference frame d, q using Clarke transformation, resulting in Id (direct-axis
current) and Iq (quadrature-axis current), orthogonal to each other. The property of Id
and Iq is that they are DC variables, not changing in time based on the current phase of
the rotor. These two currents are then regulated by PID controllers based on the reference
of the momentum, resulting in two voltages Ud and Uq, which are then converted back to
3-phase system voltages Ua, Ub, Uc using inverse transformations. They are sent to power
stage module as PWMs.

1.2 Planning
Appendix A presents my research report for general 6R (6 rotating joints) robotic manipu-
lator inverse kinematics task, which is still a non-trivial task today. The inverse kinematics
task is solved algebraically as a set of polynomial equations with focus on numerical ac-
curacy. It can be used with the product to extend support of trajectory planning for 6R

2

1 Introduction

manipulators of general geometry, which is still a very uncommon feature.

3

Chapter 2
Platform

This chapter describes analysis leading to selection of core components for a developed
motion control platform. Chapter starts with analysis of available components and concepts
which is followed by their actual use and interconnection used on circuit board.

2.1 Choosing A Platform
The motion control application requires processing power and more motor interfacing spe-
cific peripherals: incremental encoder (IRC) signals processing, multi-phase power stages
PWM and current control etc.. Then processing power is required for digital signal process-
ing (DSP). The control loops for winding current, speed and positional control as well ass
trajectory planing demands different minimal sampling frequencies for smooth operation.
There exist many DSP based systems on chip for single or two axis control but chips for
integrated systems for complex multiple axes controllers are seldom. Such system can be
build by combining general purpose CPU and discrete IRC and PWM peripheral chips. But
such design is inflexible and does not allow to integrate application specific functions (i.e.
exact position triggered outputs control, etc.). With that in mind, the other option is to
combine CPU and FPGA. We start with looking on possible combinations based on their
performance and cost:

n Synthesized CPU in FPGA chip: Further develop ideas from [7] and use a synthe-
sized CPU. The advantages of this solution is saving board space by having to use
only one chip, however the smallest Spartan-6 chips (non-BGA package) do not have
an SDRAM memory controller. This means we have to use a larger, more expensive,
Spartan-6 chip in a BGA package which in contrary raises the on the board design
(generally more layers than boards with no BGA packaged chip on them) and also
soldering side. Synthesized CPU generally offers less performance than a dedicated
CPU chip. All additional controllers for peripherals such as USB or ethernet etc., need
to be implemented in FPGA. A PHY for such peripherals is usually needed with a
dedicated CPU chip as well.

Synth.

CPU

Controller

FPGA

Power Stage

Module
PSM Bus

Figure 2.1. Synthesized CPU in FPGA chip

4

2 Platform

n Dedicated CPU chip interconnected with FPGA: Use a dedicated master CPU
to handle the common tasks (USB, Ethernet, other communication peripherals) and
interconnect it with the FPGA through its external memory interface. An example
master CPU would be ARM Cortex-M3 preferably in a non-BGA package for budget
friendliness. The sysless framework, see section 2.2 for more information, already
supports LPC17xx ARM Cortex-M3 processors from previous projects, thus making
it a good choice from both software support and budget perspective.

Controller

Spartan6

Power Stage

Module

ARM CPU

Embedded

Application

PSM Bus

Figure 2.2. Dedicated CPU chip interconnected with FPGA:

n Xilinx Zynq: Xilinx Zynq is a dual-core ARM Cortex-A9 processor with FPGA in a
single chip with the smallest ones being for a reasonable price. The second core could
be used for the fast control loop (for Zynq PMSM motor controller would cease being
a heavy duty task, since it operates on 667 MHz (the smallest one), more than 10
times higher than more budget friendly solution). There would be additional costs due
to BGA packaging on board and soldering side. This would seem a good choice for a
more high-end platform which it would be relatively budget friendly for. Still expected
price for the board and components would still be still three to five times higher than
with ARM Cortex-M3 with Spartan-6 in non-BGA package.

5

Sysless Framework 2.2

Xilinx Zynq

Power Stage

ModuleARM Core 1

Operating

System

FPGA

PSM Bus

ARM Core 2

Controller

Figure 2.3. Xilinx Zynq

Given our low-cost intention, we chose the second option, concretely ARM Cortex-M3 core
LPC1788 and Spartan-6 FPGA, XC6SLX9-2TQG144, which is the largest Spartan-6 in
non-BGA package, providing us with sufficient amount of logic cells. Both can be upgraded
to ARM Cortex-M4F core LPC4088 and a Spartan-6 with a better speed grade XC6SLX9-
3TQG144. As for the other two options, using synthesized core in a single FPGA chip has
been abandoned in favor of Xilinx Zynq on both performance and price end. Xilinx XST
from Xilinx ISE will be used for synthesis. Table 2.1 shows reference pricing of several
components:

Component Reference Price[17]
XC6SLX9-2TQG144 $15.69
Spartan-6 FPGA (small, non-BGA, speed grade 2)
XC6SLX9-3TQG144 $17.22
Spartan-6 FPGA (small, non-BGA, speed grade 3)
XC6SLX75-2CSG484C $94.56
Spartan-6 FPGA (medium, BGA, speed grade 2)
LPC1788FBD208 $13.09
ARM Cortex-M3 CPU chip
LPC4088FBD208 $13.53
ARM Cortex-M4F CPU chip
XC7Z010-1CLG225C $54.86
Xilinx Zynq (2x ARM Cortex-A9 CPU, medium size FPGA)

Table 2.1. Pricing of relevant components

The first development kit for the platform contains LPC1788 and XC6SLX9-2TQG144
chips and was named LX_CPU1.

2.2 Sysless Framework
sysless framework [18], or System-less framework, is PiKRON’s and its partners solution to
have common infrastructure for building bare metal applications for multiple MCU architec-
tures. It uses ulboot as a bootloader, able to boot from flash or USB, making development
more comfortable, and written in order to be easily reflashable by toggling a hardware

6

2 Platform

jumper. This framework also contains a set of tools for the host machine to upload images
of the software and generally to communicate through USB or serial link. For the chosen
platform, sysless framework received a few patches:

n Platform Support: Support for LPC1788 MCU, which contains some changes
against other processors in its family, and board definition files for LX_CPU1.

n Toolchain Support: Support for arm-eabi toolchain instead of obsolete arm-elf.

n Improved USB: Support for using USB to send commands to PXMC library com-
mand processor and to send custom calls, used for Spartan-6 FPGA configuration and
communication.

Sysless framework works as a state machine, periodically polling each of its component
(peripheral handlers, such as USB, and virtual components, such as PXMC controller).

2.3 Synthesized CPU Cores
Part of the platform study were synthesized CPU cores. Generally it doesn’t pay off to use
synthesized CPU cores in an FPGA chip due to lower performance and price per gate than
their ASIC counterparts. They are used in cases requiring an FPGA for other reason and
offer sufficient performance or as co-processors. In [7] two cores were studied:

n OpenMSP[14]: This is a minimal MSP430 Texas Instruments processor core. It is
well documented 16-bit Harward architecture CPU with hardware multiplier.

n Plasma MIPS[15]: A more robust 32-bit core, yet it’s declared to run only on 25 MHz,
which is a red flag. It’s Von Neumann architecture, supports hardware multiplier and
barrel shifts. It additionally supports restricting access to memory space and caches
with external memory support.

Both of the above cores have performance issues. OpenMSP is 16-bit, thus slowing down
operations with numbers above 16-bit such as division. Plasma MIPS declares only 25 MHz
as maximum frequency therefore being too slow. Thus additionally to that, another other
two synthesizable cores were studied:

n MicroBlaze[10]: Closed source 32-bit CPU core provided by Xilinx and optimized for
their FPGA with MMU support, caching support and extensible through FSL for multi-
cycle cores. It is supported by many operating systems (both normal and realtime).
Supports hardware division, taking up to 32 cycles. However it’s requires license
fee for Xilinx EDK and been designed and optimized for larger cores, while minimal
MicroBlaze core would take roughly similar amount of LUTs as the other cores,
generally configured for usage up to 3 times more LUT usage.

n MB-Lite+[13]: An open-source implementation of MicroBlaze processor, support-
ing basic set of instructions including barrel shifter and hardware multiplier, able to
run about at 60 MHz on Spartan-6 (when synthesized without any additional com-
ponents). It has a 4 stage pipeline and was created in mind with primitives found on
Xilinx FPGA and consumes similar amout of LUTs like OpenMSP. It supports JTAG
debugging, FSL bus and Wishbone.

7

The Platform 2.4

n SecretBlaze:[16] A more robust MicroBlaze processor implementation, supporting
caching, external memories etc; making it more suitable to run a real-time operating
system. Then it supports multi-cycle instructions, used for multiplying for a shorter
critical path and allowing to run on higher frequency.

Out of these, MB-Lite+ seems as a good start point for a minimal CPU core while Secret-
Blaze would be a good start point for running a more robust core on a smaller Spartan-6.
Full MicroBlaze becomes an option if we’re using larger Spartan-6 in a BGA package. We
would want to use hardware multiplier and barrel shift, with having some support for divi-
sion (doesn’t necessarily have to be hardware) and keep it about 1500 LUTs for a minimal
CPU core and 2500 LUTs for a more robust core (for a reference, XC6SLX9-2TQG144
Spartan-6 has 5720 LUTs).

2.4 The Platform
We assumed LX_CPUn naming scheme for our chosen platform, with n being the revision.
This section describes the connected peripherals on it. LX_CPU1 is the initial prototype
followed by LX_CPU2[22], which is just a revision of the prototype. Both platforms
consists of:

n LPC1788 as ARM Cortex-M3 master central processor unit containing small internal
flash and SRAM memories

n XC6SLX9-2TQG144 as Spartan-6 FPGA, connected through external memory con-
troller for both SelectMap configuration and normal opertaion

n 32 MB SDRAM connected to master CPU

n 4 MB NOR flash memory connected to master CPU

n 4 IRC differential signals receivers for 5V I/O on signals side, connected to Spartan-6
FPGA

n General purpose 3.3 V CMOS I/Os for both ARM master CPU and Spartan-6 FPGA

n Ethernet PHY connected to master CPU

n USB PHY for a slave and host controller connected to master CPU

n One dedicated I2C port on master CPU

n One dedicated LCD display port connected to master CPU

n One dedicated UART port on master CPU

n One dedicated RS-232 port with RS-485 and uLan extension connected to CPU

n One dedicated CAN port on master CPU

n One dedicated SPI port on master CPU

8

2 Platform

n One configurable port for TTL I/O, or SPI, or UART on TTL levels on master CPU

n 50 MHz clock source, another clock source configurable by master CPU

The board can be powered from USB or dedicated power supply, depending on a jumper
configuration. LX_CPU2 revision fixes wiring for ethernet PHY as a major fix and adds a
missing pull-up resistor for Spartan-6 FPGA, and changes the position of SD and USB host
connectors. Photo of the board can be seen on 2.4 with board layout on 2.5.

9

The Platform 2.4

Figure 2.4. Top view of the LX_CPU2 board

7
4
L
V
C
1
G
8
6

U
1
9

LX_CPU2ANALOG IN

CAN term.

JTAG CPU

BOOT

USB PWR

USB
host

I2C

SERIAL

SD
ETH IRC4IRC3IRC2IRC1

100n
C91

7
4
H
C
1
G
0
8

U
2
3

7
4
H
C
1
G
0
8

U
2
4

C
8
9

100n
C88

4
7
K

R
1
3

A
D
U
M
1
2
0
1

I
O
4

A
D
U
M
1
2
0
1

I
O
1

1
u

C
8
7

MBR0530
D8JP14

1
0
0
n

C
7
9

L
E
D
-
O

D
7

L
E
D
-
R

D
6

L
E
D
-
B

D
5

SMBJ5.0A
D4 100n

C70

CN19

R126

74HCT04

U21

C
N
1
8

100u
C63

C
5
9

1
0
0
n

CN17CN16

3
2
.
7
6
8
K
-
C
F
P
X
2
1
7

X
2

22R
R121

JP7

JP6

7
4
L
V
C
1
G
8
6

U
2
0

74LVC112
U18

2
4
C
6
4
-
O
T

U
1
7

CN15

CN14

M25P32
U16 J

P
4

1
0
0
n

C
4
7

1
0
u

C
4
3

C37
100n

2
2
u

C
3
6

1
n

C
3
5

M
C
P
1
6
1
2

U
1
5

2
2
u

C
3
3

D
L
J
4
0
1
8
-
4
.
7

L
4

22u
C32

100n
C30

MCP1612
U14

JP3

2
2
R

R
8
3

2
2
R

R
3
7

R
7
0

R
6
9

R60 R48

R46

R43

T
L
C
2
7
2

I
O
3

22R
R117

C
N
1
2

L
M
3
5
2
6
M
-
L

U
1
3

100u
C24

1
0
u

C
2
2

1
0
0
n

C
2
1

1
0
0
n

C
2
0

MT48LC4M32B2P
U2

J
P
2

2
2
K

R
9
5

10R
R93

CN10

A
M
2
6
L
V
3
2
C
D

U
1
2

R
8
1

CN9

A
M
2
6
L
V
3
2
C
D

U
1
1

2
2
R

R
7
2

R
7
1

CN8

A
M
2
6
L
V
3
2
C
D

U
1
0

CN7

A
M
2
6
L
V
3
2
C
D

U
9

R
4
7

R
4
5

R44

R42 R41

R
4
0

R39

R
3
8

XC6SLX9-2TQG144

U8

C
N
6

T
J
A
1
0
5
0

U
7A
D
U
M
1
2
0
1

I
O
2

CN5

LED-Y
D3

LED-G
D2

CFPS-39-50M
U6 10u

C16

DP83848I

U5

4
K
8
7

R
2
5

50R
R24

50R
R23

50R
R22
50R
R21

CN4

BSS83P
T2

CN3

12.00M-SMDXT324

X1

10K
R18

1
K
5

R
1
7

BSS138
T1

1
0
0
n

C
3

C
N
2

CN1

22u
C2

68K
R4

22K
R3

DLJ4018-4.7
L2

J
P
1

LPC1788

U1

RS-232

uLAN
RS-485

CAN

SPI
TTL I/O

or UART
or SPI

USB
device

LCD
display

Figure 2.5. Layout of the LX_CPU2 board

10

2 Platform

2.5 Spartan-6 Wiring And Configuration
Spartan-6 is wired on master CPU external memory controller for chip selects 0 and 1, pins
CS_XC0 and CS_XC1, and using BLS[3:0] pins for writing (4 pins for active byte selec-
tion), RD pin for reading, DATA[31:0] pins for writing a 32-bit word and ADDRESS[15:0]
pins for 16-bit addressing per 32-bit word, giving us 18-bit address space. Additional pins
wired from master CPU to Spartan-6 are a clock output (configured to the same clock as
is the CPU clock), a pin used to reset Spartan-6 and initiate configuration, another pin for
toggling low power state (toggled also on configuration failure) and a pin to assert data
transmission when configuring Spartan-6. A pin is wired from Spartan-6 back to the master
CPU as a response during configuartion steps and another one to signal successful end of
the configuration.

Master CPU communicates with Spartan-6 using memory transactions. All signals are low-
level active. At first, chip select is asserted. After a small defined delay, either is address
is asserted when reading or address and data are asserted when writing. Finally either RD
is asserted when reading, or BLS[3:0] is asserted when writing. The signal are then kept
asserted for a configurable delay. The delays between assertion of chip select and asserting
address or data, or any other step. See [19] for details about read and write cycles.

On power up, master CPU initiates configuration and utilizes the writing cycle to send the
configuration bitstream. This is achieved by common data signals interconnection for FPGA
configuration phase and their reuse for operational system mode for peripherals / slave ac-
cess data bus. Spartan-6 is configured using SelectMap interface [20] with master CPU as
the master entity. This is either 8-bit or 16-bit line. Data are sent when RDWR_B pin is
asserted and received by Spartan-6 on positive edge of CCLK signal. This signal is wired
to BLS[0], which is asserted in both 8-bit and 16-bit write. The configuration line is only
active when CSI_B is asserted. It is wired to CS_XC0, in order prevent interference from
transactions with other peripherals using the external memory controller, such as reading
the configuration bitstream from SDRAM memory. An overview of steps used for FPGA
configuration follows. An overview of the actual configuration of the FPGA:

n Setup external memory controller on master CPU: given small amount of data to
transfer, use largest possible delays for the transaction, make sure any buffering is off
and that the memory is strongly ordered (i.e. the transactions on the bus come in the
same order as are in the processor code)

n Setup directions of the general purpose I/O pins: On master CPU side XC_INIT_PIN,
XC_DONE_PIN are inputs and XC_SUSPEND_PIN, XC_PROGRAM_PIN,
XC_RDWR_PIN are outputs.

n Assert XC_PROGRAM_PIN to initiate programming and XC_SUSPEND_PIN
to make sure it’s not suspended.

n Hold XC_PROGRAM_PIN for at least 500 ns, then release it and wait for Spartan-6
to be ready for programming state/condition, signalled by asserting XC_INIT_PIN.
In case of timeout, release XC_SUSPEND_PIN and exit with an error.

n We’re now ready to begin data transmission. Assert XC_RDWR_PIN and write a

11

Slave Memory Controller 2.6

LPC1788 Spartan6

XC_SUSPEND_PIN

XC_INIT_PIN

XC_PROGRAM_PIN

XC_RDWR_PIN

XC_DONE_PIN

CS0_XC

BLS[0]

SUSPEND_B

PROGRAM_B

INIT_B

RDWR_B

DONE_B

DATA[0:15]

CSI_B

CCLK

D[0:15]

Figure 2.6. Configuration signal mapping

16-bit word on any address mapped to the external memory controller for any chip
select with correct configuration done in the first step. The data to write is the
generated bitstream from Xilinx tools. It will contain transfer mode, device ID check
and CRC. If it was generated for 8-bit transfer, then write it as 8-bit word.

n Periodically through the data transmission (once every 128 writing cycles) it’s a good
idea to check if XC_INIT_PIN has been released by Spartan-6, flagging an error.

n Release XC_RDWR_PIN when you sent all data and wait for Spartan-6 to assert
XC_DONE_PIN. In case of timeout, release XC_SUSPEND_PIN and exit with
an error. In case of success, make at least 8 writing transactions again (could be any
data) to issue start-up clocks.

n At this stage Spartan-6 will release most of the configuration pins for general purpose
use (except XC_SUSPEND_PIN, XC_PROGRAM_PIN and XC_DONE_PIN).
It’s a good idea to issue reset signal and wire it to XC_INIT_PIN. Make sure the
FPGA design in Spartan-6 is using XC_INIT_PIN pin as it’s reset input and assert
it for several cycles.

n Finally reconfigure external memory controller to its normal running state (such as
delays, possibly not needing strong ordering).

2.6 Slave Memory Controller
In order to transfer data between Spartan-6 and master CPU we need to create a slave
memory controller. The subsystems interconnection is shown on figure 2.7. On the left-
hand side of the slave controller, there are ADDRESS[15:0], BLS[3:0] and RD as inputs
and DATA[31:0] as tri-state input / output and connected to master CPU on the other
side. On the right-hand side, there are slave peripherals in FPGA, each with I_CE, sig-

12

2 Platform

nal for chip enabling, I_BLS[3:0] asserted alongside I_CE if we are writing, optionally
I_ADDRESS[n:0] if the peripheral has its own address space and I_DATA_I[31:0] as
input data. There are no tri-state signals inside FPGA and thus chip enabling as well
as data output of the peripherals is multiplexed. The multiplexer decodes It provides
I_ADDRESS[15:0] and asserts I_CE for the corresponding module. In a read cycle it
will then transfer output data from the enabled peripheral back to I_DATA_O[31:0]. All
internal Spartan-6 data transactions are limited to a single cycle duration for performance
and inability to set master CPU external memory controller for variant delays based on the
address of the transaction. Spartan-6 runs the slave memory controller on 50 MHz while
master CPU runs on 72 MHz asynchronously. Due to that all driving signals BLS[3:0],
RD and ADDRESS[15:0] have to be filtered, to prevent incorrect sampling but requiring
master CPU to use a longer delay before releasing the signals.

We also need to know what is the minimum sufficient delay before master CPU can release
the signals to ensure that the transactions are completed properly. This is started by mea-
suring the delay for reading. It is implemented using a pair of read-only registers holding
constants, where bitwise and of those constants is zero. The measurement is a series of
readings of the read-only registers, cycling between them. Thus every bit DATA[31:0]
has to flip in all transactions. We start with the minimum delay and keep increasing it
until the series of transactions is completed successfully. If the maximum possible delay is
exceeded, we assume that either there is a problem with hardware or with the slave con-
troller in Spartan-6. Then the delay for writing is measured with a similar process using
two read-write registers. Two values (again bitwise and of those is zero) are chosen. The
measurement is a series of writings, where one constant is written to the first register and
immediately after that the other constant is written to the second register. Then the reg-
isters are read. Since reading is already measured and considered working properly, if we
exceed the maximum possible delay, we know there is a problem with writing (again either
in the hardware or with the slave controller).

Spartan6

Slave

Memory

Controller

Peripheral 1

I_ADDRESS[N:0]

I_BLS[3:0]

I_DATA_I[31:0]

I_PER1_DATA_O[31:0]

Peripheral 2

MultiplexerI_DATA_O[31:0]

I_ADDRESS[15:0]

I_ADDRESS[N:0]

I_BLS[3:0]

I_DATA_I[31:0]

I_PER2_DATA_O[31:0]

I_CE

I_CE

ADDRESS[15:0]

CS

RD

BLS[3:0]

DATA[31:0]
Master CPU

External

SRAM

Controller

Figure 2.7. Spartan-6 slave memory controller entity

13

Power Stage Module 2.7

Lastly, memory reading (not writing) can happen rapidly, by keeping RD asserted but chang-
ing just ADDRESS[15:0]. This is how ADDRESS[15:0] can be a controlling signal and
requires filtering.

2.7 Power Stage Module
Power stage module, called LX_PWR, is the module powering up to 4 PMSM motors and
connected using a custom bus. This is a single-master, multi-slave bus, meaning that more
power stage modules can be connected to a single control board. The bus in described in
section 3.4. The control board is sending PWM settings for each axis (as well as enabling
and disabling the bridges) and receives back current in each axis of each motor. IRCs is
wired separately.

14

Chapter 3
FPGA Peripherals Analysis

In section 1.1 we described a PMSM controller whose fast control loop needs to be imple-
mented in FPGA. Alongside that we need to implement a peripheral to communicate with
power stage module and to read up to 4 IRC inputs.

3.1 Parallelism
When designing FPGA cores, the first thing to determine is how much parallel the design
should be, i.e. how much tasks each part of the chip should do. The fastest options,
however very demanding in terms of the chip size, is to dedicate each part of the task to
a different part of the chip. These are then connected sequentially into stages, each stage
doing its part of the task and passing the data to the next stage in one or more clock cycles,
depending on the design. This is designed in mind that when each stage completes, the
previous stage provides new data every time for it (in our case it would be data for another
PMSM motor) and thus the pipeline doesn’t have to idle and maximizes the utilization
of the chip. Thus in ideal state, we would be able to run the controller on frequency by
dividing the source clock (50 MHz) with number of clock cycles needed for the slowest
stage. This implies that the maximum performance is achieved with balanced pipeline,
when each stage needs exactly the same amount of clock cycles as the other ones. Let’s
see if we can design a pipeline like that, best is to start with resource usage: In the fastest

IRC

IRC BASE
/360°

+/-

< 0; IRC BASE)

x

PT SCALE

Ia

Ib

Ic

a, b, c

to

α, β

α, β

to

d, q

+

-

-

0

ENE

+

PIDd

PIDq

d, q

To

α, β

α, β

to

a, b, c

PWMa

PWMb

PWMc

Figure 3.1. Resource usage analysis of the controller

scenario, each motor has it’s own controller. Let’s see how much resources would need
the highlighted parts in figure 3.1. Assuming 32-bit numbers, each multiplication needs

15

Parallelism 3.1

3 DSP48 slices (because it is 18-bit multiplier). So a single PID controller would need
9 DSP48 slices and 3 more would be need for multiplications prior PID controller entry.
This is 21 DSP48 slices per motor, meaning that we need astonishing 84 DSP48 slices
with 4 PMSM motors. And there are only 16 DSP48 slices available on our Spartan-6.
To reduce that, there could be just a single PMSM controller for all motors, running four
times per iteration. However integral part of PID requires an accumulator and derivative
part of the PID needs previous values of the deviation, in other words, they have state
variables. Therefore a context switching is necessary. This is shown on figure 3.2. This

Motor PID d

Context

PID

d

PMSM

Selector

I STATE

D STATE

Motor PID q

Context

PID

q

I STATE

D STATE

PMSM

d / q

Multiplexer Output

Figure 3.2. One PID in the controller

would save 63 DSP48 slices. This means that we still need 21 DSP48 slices, which is still
too much. So lets consider using just one PID for both d and q axes, running twice and
needing twice more cycles to complete. The PID controller part would change slightly, see
figure 3.3. This would save another 9 DSP48 slices, meaning that we need 12 DSP48

PMSM & d / q

selector
PID Output

PID

Context

SHIFT

d / q

I STATE

D STATE

Figure 3.3. One controller for all motors

slices, which are finally available. Let’s take a look on the other parts of the controller:
Which means we are faced with more multiplications and even division. This is a full stop

16

3 FPGA Peripherals Analysis

IRC

IRC BASE
/360°

+/-

ADDITION, MULTIPLICATION,
DIVISION

x

PT SCALE

Ia

Ib

Ic

a, b, c

to

α, β

α, β

to

d, q

+

-

-

0

ENE

+

PIDd

PIDq

d, q

To

α, β

α, β

to

a, b, c

PWMa

PWMb

PWMc

ADDITION, MULTIPLICATION,
DIVISION

< 0; IRC BASE)

Figure 3.4. Further resource usage analysis of the controller

even for a partially parallel design due to lack of resources. Therefore we primarily need to
save resources and use a much more sequential design. Consider using just a single 32-bit
multiplier multiplier, using 3 DSP48 slices, and let’s try to wire it to make it used by all
parts of the pipeline. And let’s try to do the same for adding because that occurs frequently
as well. With that, there has to be an entity commanding these two, that is accepting an
instruction and decoding it, another entity passing the actual values and finally one more
entity to pass the value to next stage. It’s visualized on figure 3.5: In other words, for the

x

+Instruction

Operands

Resultant Writeback

Figure 3.5. Pipeline with single ALU for all operations

first entity, we need an instruction fetch and decoding, then reading operands for the second
entity, then do an actual operation and then write it somewhere. So we get something very
close to a 5-stage RISC processor pipeline. 5-stage RISC processor pipeline consists of
instruction fetch, instruction decode (during which registers are read), execution, memory
and writeback. Oftenly, writeback is merged with memory access, making it into a 4-stage
pipeline (note that it’s oftenly still called 5-stage pipeline). Now we need to check if this
is going to have sufficient performance. We have 4 PMSM motors, 50 MHz frequency and
required 20 kHz frequency for control for each motor, giving us 80 kHz frequency in total.

17

Selecting A Synthesized Processor 3.2

Instruction

Fetch

Instruction

Decode
Execute Memory Writeback

Figure 3.6. 5-stage RISC pipeline

50 MHz / 80 kHz is 625 cycles for controlling a single PMSM motor.

3.2 Selecting A Synthesized Processor
If we need to use a processor structure, best way is to start from an existing processor
and adapt it for our needs. In section 2.3 we conducted a study for synthesized processor
cores with the intention of using them as a master CPU. Let’s reconsider their use again,
with the intention of using a minimal CPU core serving as a co-processor. We also know
some requirements obvious from above - hardware multiplier, which is supported by all cores
presented there, however we want a multiplier with 32-bit result, ruling out OpenMSP.
Plasma MIPS was red flagged for low frequency, 25 MHz, halving available cycles for out
control here - and thus is not a good option either. MicroBlaze would be ruled out here
for being optimized for larger cores, which means we have two options left: SecretBlaze
and MB-Lite+. In that section we concluded that MB-Lite+ would rather be a candidate
for a minimal CPU core over SecretBlaze. And so we chose MB-Lite+ as the starting
point.

From the first moment it became obvious we would need to modify the core for various
reasons, described in the next chapter, and so decided to call our core Tumbl (as that’s
what MB-Lite+ is sometimes referred as). The first test was made immediately - to check
how many instructions a simple PID controller would need (with pre-computed tables etc.),
which ended up to around 60 - 70 cycles for 3 axes and without any code to obtain the
current from sensors (expected to require no more than a hundred of cycles). This in
total would leave another 400 cycles for additional measures, such as anti-windup effect,
thresholds for maximum current provided to the motor. With possible later extension to
8 PMSM motors, there would be still about 100 cycles for additional operations. For
a reference, some additional operations above bare controller will be necessary, such as
prevention from windup effect and for security (checking for limits on both required current
to move the motor for a collision check, or simply check the positional limit switches in
case of a robotic arm). Chapter 7 talks about FPGA simulations, which were used to find
out the amount of cycles needed to run the core of a PID controller.

3.3 IRC Peripheral
Aside from the main controlling peripheral, we also need to capture the current motor
position using incremental encoder. IRC signals are shown on figure 3.7. Two main signals
for encoding, A, B, which are shifted by a quarter of signal period, to be able to encode
increment and decrement. IDX is used to find base value, generally in log. 1 on zero value,
periodically occurring when motor fully rotates and MARK signal to know which way to

18

3 FPGA Peripherals Analysis

find nearest IDX (MARK is not accurate, you will need to use IDX afterwards to find the
actual base or zero value). All these are already handled in delivered quad counter entity.

IRC AIRC A

IRC BIRC B

IDXIDX

MARKMARK

Figure 3.7. IRC signals

The only problem arises that the quad counter, counting the pulses on A and B, needs fair
size of the chip due to need to implement sufficiently large counter (we decided to keep 32-
bit counter, minimum could be around 20-bit counter, depending on the motor resolution),
and that for all 4 IRCs (or all 8 IRCs if extended further). Like with the controller task, IRC
handling doesn’t require to run on 50 MHz frequency, generally 1 MHz is sufficient (this
depends on maximum speed of the motors and their resolution). Thus there is again the
idea of using a processor structure, yet specialized as the task here is very simple.

Let’s reduce the counter to 8-bit, and try to find a way how to extend it to 32-bit, when
using a single accumulator for all IRCs. Consider Q is the 32-bit accumulated value, C is
the 8-bit counter on the IRC, and s(X,n) as a signed extension of value X to n bits. You
can outline the process as:

Qs = s(C, 32)−Q
Qs = s(Qs[7 : 0], 32)
Q = Q+Qs

(3.1)

where we introduce Qs as intermediate result to be able to distinguish between increment
or decrement, effectively being able to increment by 127 pulses or decrement by -128 pulses
in a single iteration. The equations can be slightly altered to

Qs = s(C, 32) +Q+ 1
Qs = s(Qs[7 : 0], 32)
Q = Q+Qs

(3.2)

to simply use an addition or written as a one-liner

Q = Q+ s((s(C, 32) +Q+ 1)[7 : 0], 32) (3.3)

which basically says to: subtract Q from C, which is signed extended to 32-bits and store
just the lowest 8 bits into Qs, then sign extend it and add back to Q. Now we also need
to capture the value of index. When IDX is asserted, IRC quad counter will save the lower
8 bits and that IDX was asserted. Then the operation to count the index is identical, just
C is the value when IDX was asserted. We only have to reset it, so it doesn’t add it again
in next iteration.

A requirement for this to work is that there is no overflow in the 8-bit counter, which is

19

Power Stage Module Communication 3.4

running on full 50 MHz. If IRC is supposed to catch a pulse at 1 MHz frequency, it can fill
up 127 pulses in 127 microseconds, or with around 8 kHz. So it’s likely we can further reduce
the 8-bit counter to save more chip space. The IRC peripheral, called IRC co-processor,
is detailed in section 6.1.

3.4 Power Stage Module Communication
The communication between the control board and the high performance board is using
custom bus, type single-master and multi-slave, where the target slave is determined from
the first data in the protocol. The protocol itself is not yet fully finalized (on both con-
trol board and power stage module) and thus for this thesis we only designed master to
slave communication peripheral. The bus uses three pins: MOSI, "master out, slave in",
transmits the actual data; SYNC is in log. 0 when there is data transmission, otherwise in
log. 1, CLK are the reference clocks passed from mater to slaves for synchronous timing.
Each transmission ends with 8-bit CRC to validate the transaction. Timing diagram of the
transaction is on 3.8:

DATA CRC MOSIMOSI

SYNCSYNC

CLKCLK

Figure 3.8. Power stage module bus transaction

At the beginning, SYNC is asserted along with MOSI with the first data bit, data trans-
action starts with LSB. With each clock, data is shifted by one bit. At the end of the
data transmission, CRC follows immediately with SYNC still being asserted. SYNC is only
released after one the last bit of CRC is sent and has to remain in log. 1 for at least one
cycle before new transmission can begin. The whole transmission cycle is periodical, with
frequency around 20 kHz.

The data for transmission are stored in dual-port BRAM in a specified format. First we need
to be able to store two buffers, so that we can set them up without having to potentially
interrupt transmission. Second, the messages may have variant length. After transmitting
one message, the transmitting side needs to be navigated to the address of the next mes-
sage or signalled it just transmitted the final message. The word size is 16 bits and we
won’t likely need more than 256 words (which can be easily extended if needed) therefore
with two buffers we need 1 kiB memory (on Spartan-6 this will use one 9 kib BRAM). The
communication peripheral, in direction from master to slaves, is called LX Master and is
detailed in section 6.2.

20

Chapter 4
Tumbl Co-processor Core

This chapter describes Tumbl co-processor core in detail and does summarize the features
and structure of the core along with it state vectors. However it’s necessary to know the
structure of it’s predecessors, namely MicroBlaze in [10], MB-Lite in [12], and MB-Lite+
in [13]. This chapter will not describe parts and peripherals of the core that were not altered
from its predecessor and expect familiarity with MicroBlaze assembler.

4.1 Overview
Tumbl processor is a RISC Harward architecture core with 4-stage pipeline, divided into in-
struction fetch, instruction decode, execution and pipeline. All instructions except branching
take 1 cycle whereas branching takes 2 or 3 cycles depending on whether delay slot was
used or not. The processor core is derived from MB-Lite+ (which is derived from MicroB-
laze) but has been mainly simplified by removing unnecessary peripherals and modified to
be used as a co-processor. The core is scalar, meaning that waiting at any stage of the
pipeline automatically halts entire core. The instruction set is a reduced set of MicroBlaze
instructions but several new instructions were added and their binary encoding has been
altered in some cases. The core flow is visualized on the following figure:

Instruction

Fetch

Instruction

Decode
Execute Memory

Core

Registers

Figure 4.1. Tumbl co-processor pipeline

The following is an overview of changes of MB-Lite+:

n FSL: Fast-Simplex link is an interface to connect additional cores to MicroBlaze in
a way that doesn’t interfere with the processor’s critical path and is commanded with
special instructions. The CPU writes on the bus in the first cycle and then either in
the next cycles or several cycles later reads the result from the core. This means it can
execute other instructions should the core need many cycles to finish but all has to
be optimized manually. In our case on Tumbl CPU however, we don’t need such link
as we simplify the core as much as we can. Therefore FSL support has been removed
completely.

21

Minimalization Of The Core 4.2

n Wishbone: A popular bus connected to the processor as external memory interface
used by many cores. Unlike with FSL, a core requiring a lot of cycles to execute the
request will halt the processor. Regardless, as with FSL, we simplify the core as much
as possible and thus Wishbone bus has been removed and the address space is used
for generic external memory interface.

n JTAG: JTAG is a debugging interface standard for ASIC CPUs to get information
about the state of CPU peripherals. On-chip debugging is done by master CPU in our
application and we can simulate the behavior of the Tumbl processor in a simulator,
eliminating the need for JTAG. Therefore JTAG has been omitted.

n External memory interface: Originally MB-Lite+ includes a "data memory bus
selector", an interface to optimize slow cores connected to external memory. Not only
this is a duplication towards FSL (and worse, because you can’t control the waiting on
slow cores in any way) but our application is not going to support more than one-cycle
read / write operations. External memory bus has been trimmed of this "selector" and
it’s interface has been changed to match Master CPU’s interface so they can share it.

n Instruction encoding: Since we are not using all MicroBlaze instructions we changed
binary encoding of several instructions, namely CMP, CMPU to allow more variants for
the instructions.

n Delay slot: Some branching in MicroBlaze exists only in a variant with a delay slot,
such as branching with link. Tumbl adds a variant of such branching without delay
slot. With that in mind, instructions for returning from interrupt and subroutine have
also a variant without delay slot and have been fixed to jump on the correct address
whether the branching was with delay slot or not.

n Conditional execution instructions: New instructions IT – if-then, ITT – if-then-
then and ITE – if-then-else have been added to optimize code fragments and do not
require branching in order to skip one or two instructions. Up to 100 % performance
gain possible in specific cases.

n Assembler changes: This doesn’t belong to the core directly but conditional branch-
ing instructions’ assembler syntax was changed to have operands similar to conditional
execution instructions.

n Synchronization: New HALT instruction was added causing the CPU to halt and wait
for further commands from the master CPU.

n Bugfixes: Several errors in MB-Lite+ implementation were fixed, such as machine
status register being implemented as a latch.

4.2 Minimalization Of The Core
Minimalization of the core is basically removing unnecessary peripherals that are very unlikely
to be used in applications of the core (our own or possible other applications) and then
defining several LUT expensive parts of the core as a generic option. Our Spartan-6 has
only 5720 LUTs, from which Tumbl has roughly 800 - 1200 LUTs in our application with

22

4 Tumbl Co-processor Core

current configuration. Same goes for DSP blocks, where we use 3 out of 16 for hardware
multiplier. It’s hard to estimate the actual number of LUTs used for the core, as it depends
on it’s configuration and wiring of other peripherals. As explained in the overview FSL,
JTAG and Wishbone peripherals have been removed because they won’t be needed.

4.3 Co-processor Modifications
Generally co-processor modifications can be described as the means of a master unit to
control the co-processor and feedback from the co-processor for synchronization. Then
you also need to provide means of master unit to be able to debug the co-processor. The
following figure illustrates the wiring of Tumbl on master CPU memory bus and peripherals
on Tumbl external memory bus.

Master

CPU
Tumbl

Instruction

Memory

Data

Memory

Tumbl

Controller

RESET
HALT, TRACE

Registers

External

Memory

IRC

Co-processor

LX Master

(PSM bus)

Figure 4.2. Tumbl core interconnection

We’re using dual-port BRAMs for Tumbl’s instruction and data memory, one port goes to
master CPU and the other port to Tumbl. Thus master CPU is responsible for uploading
firmware for Tumbl and the data memory can be used as registers accessible both to master
CPU and Tumbl through a fast and independent interfaces. These can be used for direct
data transfer between the two cores. Master CPU has two registers, one to set reset, inter-
rupt, halt and tracing for debugging, the other one to toggle step for tracing. See appendix
D for a detailed registers overview. For synchronization purposes, Tumbl was equipped with
HALT instruction with 5-bit exit code, causing the core to halt on that instruction until the
halt state is reset. Tumbl core cannot resume itself without the help of external unit if it
was halted. The exit code is an output of the core alongside with the halt state, thus this
can be either wired to interrupt the master unit or wait for the master unit until it polls
Tumbl core etc. based on the exit code. Alternatively you can wire it to a timer unit which
would automatically resume it after a certain period has passed. HALT instruction is detailed
in section B.5 and the signals for tracing and halting the core are described in section 5.5.

Tumbl co-processor core does support interrupts but it isn’t designed for scheduling in-
terrupts. Thus there is no interrupt status register nor a way to provide "reason" for the
interrupt, which right now can be an enity wired to it’s external memory or master CPU.

23

Core Modifications 4.4

Interrupt support is only present to deal with an unexpected state and should be forwarded
to master CPU.

External memory interface is wired in a manner so it is accessible for both master CPU
and Tumbl. This was done in order to provide means of debugging the output of Tumbl
core and allowing master CPU to take over Tumbl to deal with unexpected scenarios re-
quiring immediate intervention from master CPU. On the external memory interface Tumbl
is seen as a slave unit, thus in a collision between master CPU and Tumbl in using the
bus it will wait a cycle for master CPU transaction to finish. External memory interface
is designed so all transactions are taking only a single cycle, while the interface itself can
support multiple cycle read and write opeartions for Tumbl side (at a cost of performance
penalty) master CPU would have to access it under a different chip select with timings set
for slower transactions. External memory interface signals were changed to mirror master
CPU signals wired to the FPGA so it can be shared. Address space was reduced just to
64 kB as it’s more than sufficient when we are not using external RAM memory for Tumbl
code. External memory interface is detailed in section 4.7.

4.4 Core Modifications

Initially we were not satisfied with the core design as timing on Tumbl core is critical
and there are certain patterns that have a performance penalty that could be fairly easily
eliminated. From previous analysis we are aiming for up to 4 PMSM motors each to be
serviced at 20 kHz frequency, with planned extension to 8 PMSM motors. That gives
us 160 kHz frequency in total and with 50 MHz clock on Tumbl we have 312 cycles to
service each DC motor. If we were able to use 72 MHz clock we would have up to 450
cycles. However when synthesizing MB-Lite core on Spartan-6 with barrel shift enabled
and multiplier enabled, the maximum frequency with plain processor core was around 60
MHz, ruling out 72 MHz frequency as a possibility with the current design as hardware
multiplier is necessary (frequent multiplications occur with PID compensators). Thus the
aim is to look on likely used code fragment and try to optimize them to achieve more
performance. We will also need some form of division, which is described in section 4.6, for
which we need to count the leading zeroes, resulting in a new instruction. This ended up
with modifying three things:

n Conditional execution: Code snippets like if-then-else end up with a severe perfor-
mance penalty.

n Count leading zeroes: A new instruction, counting the leading zeros of the passed
unsigned value.

n Branching with link: All branching with link instructions, and return from subroutine
or interrupt instructions are only in a variant with a delay slot.

Then additionally to that, aside from HALT introduced above for synchronization, CMP and
CMPU instructions encoding was changed to allow CMPI and CMPUI variants with immediate
value as source operand b. See chapter 4 of [10] to get familiar with MicroBlaze assembler.

24

4 Tumbl Co-processor Core

4.4.1 Conditional Execution

Conditional execution primarily improves performance on branching over one or two instruc-
tions as branching takes 3 cycles in total or two cycles with delay slot. Assume the following
C pseudocode.

i f (R10 < 0x128)
R11 = 0x10 ;

e l s e
R11 = 0x20 ;

Such code would be translated to the following assembler code.

ADDI R19 , R0 , 0 x128
CMP R12 , R19 , R0
BLTI R12 , l e s s e r
BRID common
ADDI R11 , R0 , 0x20

l e s s e r :
ADDI R11 , R0 , 0x10

common :
. . .

Now let’s walk through it. Each instruction takes one cycle. When R4 < 0x128 the branch-
ing take extra 2 cycles to flush the pieline and skips two instructions. So in that case this
snippet takes 6 cycles. In the other case one of the jumps acts as NOP and the other jump
takes extra cycle as it’s with delay slot. One instruction is skipped so we get 6 cycles again.
We chose to use approach similar to the one on ARM processors in Thumb mode and
created three instructions.

; If-Then instruction - evaluates Cnd(Ra, Rb) and
IT Cnd, Ra, Rb
; evaluates this instruction if true, otherwise acts as NOP
ADDI R10, R0, #0x1

; If-Then-Then instruction - evaluates Cnd(Ra, Rb) and
ITT Cnd, Ra, Rb
; evaluates this instruction if true, otherwise acts as NOP
ADDI R10, R0, #0x1
; evaluates this instruction if true, otherwise acts as NOP
ADDI R11, R0, #0x2

; If-Then-Else instruction - evaluates Cnd(Ra, Rb) and
ITE Cnd, Ra, Rb
; evaluates this instruction if true, otherwise acts as NOP
ADDI R10, R0, #0x1
; evaluates this instruction if true, otherwise acts as NOP
ADDI R10, R0, #0x2

The flow is illustrated in the tables above. IT instruction, if-then, will execute the following
instruction only if the condition it evaluates is true, otherwise flushes the next instruction

25

Core Modifications 4.4

with NOP. Similarly, ITT instruction, if-then-then, will execute the two following instruc-
tions only if the condition is true, whereas ITE instruction, if-then-else, if the condition is
true, it will execute the following instruction and flush the instruction afterwards. In the
other case it will flush the first instruction and execute the instruction following it and thus
works as "if condition, then the next instruction, else the following instruction". All IT,
ITT, ITE instructions have variants for unsigned comparison and allowing Imm operand b
instead of Rb. So in total there is 12 new instructions: IT, ITT, ITE, ITU, ITTU, ITEU,
ITI, ITTI, ITEI, ITUI, ITTUI, ITEUI where U suffix means unsigned comparison, I suffix
means Imm as source operand b and UI suffix means both. Conditional execution has one

exception, which is when IMM instruction is one of the conditionally executed. Because IMM
instruction is implicitly added by binutils, the conditional execution core will see an IMM
instruction and the following instruction as one. For example the following snippet for the
assembler to compile

ITE LT , R12 , 0 x128
ADDI R11 , R0 , 0 x20000000
ADDI R11 , R0 , 0 x10000000

will in fact be

ITE LT , R12 0x128
; −−−

IMM 0x2000
ADDI R11 , R0 , 0x0

; −−−
IMM 0x1000
ADDI R11 , R0 , 0x0

but either ADDI R5, R0, #0x20000000 or ADDI R5, R0, #0x10000000 will be executed.
Now if we use the new assembler on the original pseudocode

ITEI LT , R12 , #0x128
ADDI R11 , R0 , #0x10
ADDI R11 , R0 , #0x20

we can see we’re able to do it in 3 cycles and get a 100 % performance boost. We also need
to use just two registers instead of three. See B.5 to see conditional execution instructions
encoding.

4.4.2 Branching With Link

Branching with link on MicroBlaze does not have a variant with no delay slot and the
reason for it most likely is that all variants of branching with link instructions will pass the
current PC in execution stage. Branching with link is used for subroutines.

sub :
ADD R3 , R5 , R6
RTSD R15 , 0x8
NOP

. . .
main :

ADDI R5 , R0 , 0x10

26

4 Tumbl Co-processor Core

ADDI R6 , R0 , R19
BRLID R15 , sub
NOP

In C language ABI, R15 is used as link register. So at BRLID R15, sub, current PC is
stored into R15, then NOP is executed and then finally we are in "sub" subroutine. Now
RTSD, return from subroutine with delay slot, has to jump on PC + 8 because instruction at
PC + 4 was executed in the delay slot. So assume you want to add variant to MicroBlaze
with no delay slot (originally MicroBlaze had only branching with delay slot) and keep
compatibility with currently compiled code. So you’d have to pass PC - 4 when branching
which would complicate the core a bit. So what we do here is to fix the PC passing in order
to create branching with link without delay slot. Simply if you branch with link with no
delay slot PC is passed whereas if you branch with link with a delay slot, PC + 4 is passed,
which in the core is forwarded from decode stage. We had to change C ABI a bit however
but the code above would now be a little simpler.

sub :
ADD R3 , R5 , R6
RTS R15 , 0x4

. . .
main :

ADDI R5 , R0 , 0x10
ADDI R6 , R0 , R11
BRLI R15 , sub

In fact the correct way here would be to utilize the delay slots here, it would save two cycles.

sub :
RTSD R15 , 0x4
ADD R3 , R5 , R6

. . .
main :

ADDI R5 , R0 , 0x10
BRLID R15 , sub
ADDI R6 , R0 , R11

Notice that RTSD still passes #0x4. We also added a version with no delay slot for returning
instructions. Thus in total the following instructions were created: RTS, RTI, BRL, BRLI,
BRAL, BRALI.

While from performance point of view it’s better to use delay slot where possible the problem
comes that in the core it’s not part of the processor’s state. It’s really just that the instruction
is already loaded in the pipeline and not getting flushed. Therefore you cannot branch in
a delay slot (would not make sense anyway) or use delay slot branching with conditional
execution instructions introduced above (which actually served as a motivation add these),
other limitations are not being able to interrupt the core at the moment or improper behavior
if IMM instruction is in delay slot (this would be propagated for the instruction where we
branched to and omitted from instruction located after IMM instruction. Then many times
delay slot has to be filled with NOP because the actual branching is in a sequence with the
previous instruction.

27

Core Modifications 4.4

4.4.3 Count Leading Zeroes

A simple instruction, cheap in hardware, providing an easy and effective way of counting
leading zeroes. Instruction is labeled as CLZ and 31 − ceil(log2(n)), in which we assume
ceil(log2(0)) = −1. An example: CLZ returns 32 for value 0, 31 for value 1, 30 for value
2 and 21 for value 1024 (bit 10 is 1). This can be used with more advanced division
algorithms.

4.4.4 Instruction Binary Encoding Changes

Given that many MicroBlaze instructions were removed, binary encoding of CMP and CMPU
instructions was changed to add CMPI and CMPUI variants, where source operand b is an
immediate value. Originally CMP was encoded as a special case of RSUB, see table 4.4.4.
Since we have a few more empty identifiers in 0-5 bits we changed it to the following with

Directive 0-5 6-10 10-15 16-20 21-31
RSUB Rd, Ra, Rb 000001 Rd Ra Rb 00000000000
CMP Rd, Ra, Rb 000001 Rd Ra Rb 00000000001
CMPU Rd, Ra, Rb 000001 Rd Ra Rb 00000000011

Table 4.1. Original CMP and CMPU binary encoding

source operand b as a register, see table 4.4.4. And then we set bit 3 to indicate immediate

Directive 0-5 6-10 10-15 16-20 21-31
CMP Rd, Ra, Rb 010010 Rd Ra Rb 00000000000
CMPU Rd, Ra, Rb 010010 Rd Ra Rb 00000000000

Table 4.2. New CMP and CMPU binary encoding

value as source operand b, see table 4.4.4. See section B.5 for the nomenclature used and

Directive 0-5 6-10 10-15 16-31
CMPI Rd, Ra, Imm 010010 Rd Ra Imm
CMPUI Rd, Ra, Imm 010010 Rd Ra Imm

Table 4.3. New CMPI and CMPUI binary encoding

the semantics of the instructions.

4.4.5 Assembler Changes

Conditional branch instructions syntax has been adapted to the syntax of conditional execu-
tion instructions. This is summarized in table 4.4.5. See section B.5 for the nomenclature
used and the semantics of the instructions.

28

4 Tumbl Co-processor Core

Old Syntax New Syntax
BEQ{I}{D} Ra, Rb/Imm BRC{I}{D} EQ, Ra, Rb/Imm
BNE{I}{D} Ra, Rb/Imm BRC{I}{D} NE, Ra, Rb/Imm
BLT{I}{D} Ra, Rb/Imm BRC{I}{D} LT, Ra, Rb/Imm
BLE{I}{D} Ra, Rb/Imm BRC{I}{D} LE, Ra, Rb/Imm
BGT{I}{D} Ra, Rb/Imm BRC{I}{D} GT, Ra, Rb/Imm
BGE{I}{D} Ra, Rb/Imm BRC{I}{D} GE, Ra, Rb/Imm

Table 4.4. Conditional branching assembler changes

4.5 Processor Pipeline
Tumbl processor pipeline is divided into 4 stages, each runs for a single cycle. It’s visualized
on the following figure 4.1. The stages are:

n Instruction fetch: Loads an instruction from instruction memory and stores the
current program counter.

n Instruction decode: Decodes an instruction binary into context for execution, such
as ALU operation, where to take source operands from etc.

n Execution: Evaluates an instruction based on its context description.

n Memory and Writeback: Performs all memory operations - reading from and writing
to memory (whether internal data memory or external memory) or registers.

Apart from that, the core contains two other components.

n General Purpose Registers File: A storage for registers, allowing up to reading 3
registers at once and storage for 31 registers, each 32-bit width (R0 is always zero)

n Core Component: This is the interconnect holding the pipeline components state.

n Top Module: Top level interconnect providing interconnection of the core to other
components and wires instruction and data memory alongside with registers.

The following subsections overview pipeline, detailed documentation for the structures and
signals is in chapter 5.

4.5.1 Instruction Fetch

Instruction fetch is the component of the pipeline responsible for PC register. It schedules
reading from instruction memory using the current PC as an address. If we are branching,
sets the next PC from branching input otherwise increments PC by 4. Note that no check
is performed whether the read operation is valid or not. The width of program counter is
fixed to 32 bits regardless of the actual address space. Instruction fetch also passes the
current program counter to instruction decode.

29

Processor Pipeline 4.5

4.5.2 Instruction Decode

Decode is nothing but a parser of the bytecode. It creates a context for execution, which
consists of:

n Program counter: Program counter for the currently parsed instruction is passed to
decode to process branching etc.

n Operands: Which register is the destination operand and which registers are source
operands or the immediate value for source operand b.

n ALU context: What kind of operation ALU should do (add, subtract, multiply, etc.)
also the type ALU operands (register or immediate value).

n Conditional execution: Whether we are doing conditional execution (if-then type
instructions) and what is the condition (this is also used for conditional branching).

n Memory operation: Type of memory operation, whether we’re writing to a register
or data memory etc. and size of the writing. Then also reading from data memory or
external memory.

n Co-processor synchronization: Whether we should halt the core on next instruction.

4.5.3 Execution

Execution is the stage of pipeline which performs the actual operation in a single cycle.
Execution is able to perform:

n Addition: Sums values of two operands with support of using and storing carry bit.
Note that subtraction is solved as adding negated value and one.

n Comparison: Compares two operands. The result is either stored to a destination
register for CMP and derived instructions or used immediately for IT, ITT, ITE and
derived instructions.

n Logical operations: Performs AND, OR, XOR operations (and negates source operand
b for ANDN).

n Simple shift: Shifts to the right by one for SRA, SRL, SRC instructions.

n Barrel shift: Performs parametrized shift to left or right for barrel shift instructions.
Configurable by a generic.

n Special purpose register access: Read and write to special registers, in our case
only it’s only carry and interrupt enable bit for machine status register.

n Extensions: Register extensions for SEXT8 and SEXT16 instructions.

30

4 Tumbl Co-processor Core

n Multiplication: Hardware multiplication for MUL and derived instructions. This part
has the longest critical path. Configurable by a generic.

n Count leading zeroes: Hardware implementation of CLZ instruction.

Aside from instruction context, execution input is also values of up to three registers from
general purpose register file. It outputs context to memory and writeback. There is also a
hazard context where execution forwards data back to itself. It deals when in two subsequent
instructions the first instruction destination register is used as a source operand in the second
instruction. There is also a similar hazard where such sequence happens within 2 cycles.
Example of the hazardous situation is:

ADDIK R10 , R0 , 0 x100
ADDIK R11 , R0 , 0 x200
MUL R12 , R10 , R11

MUL instruction needs both R10 and R11 value. R10 is being written at the moment to
general purpose register file, as memory and writeback has just processed it. So it has to be
taken from the writing port right away. However R11 is not even yet processed by memory
and writeback. So it has to be forwarded back from the execution itself so it can be used
right away in next cycle. However note that when you want to load data from memory and
then use it in next instruction then you cannot forward them as it doesn’t previously come
from execution. In this case the core stalls for a cycle for the data to load. This applies
both to data memory and external memory.

4.5.4 Memory And Writeback

Memory and writeback performs writing to registers, data memory and external memory.
Addresses with first n bits low (configurable) are considered data memory, the other ad-
dresses are considered external memory. Data memory is intended to consist only from
block ram memory, all registers and other modules are meant to be part of the external
memory. This entity is also responsible for read operations from data and external memory.

4.5.5 General Purpose Register File

General purpose register file is just a storage for 32 32-bit registers, which needs a 9 kiB
dual-port BRAM per bank. As up to three simultaneous reads can occur at once, there are
3 register banks, with shared writing on one port and the other port open for reading. To
handle hazard situations, described in subsection 4.5.3, it checks if the register to be read
is being written to at the moment and decides whether to read it from the reading side or
whether to forward it from the writing side. This is accomplished with dual-port BRAM in
write-first mode. General purpose register file is seen more as a custom component of the
core and interconnected using the top module, because it is directly dependent on Xilinx
BRAM. General purpose register file also holds state of the processor and is wired to secure
that when reset signal is asserted, R0 register is set to 0.

31

Division 4.6

4.5.6 Core Component

Core component is mainly an interconnect between the stages of the pipeline and a driver
for clock signal. It stores state variables, such as machine status register, pipeline flushing
whether partial, which occurs during conditional execution or branching and schedules in-
terrupts, and full, which occurs during reset. Synchronization and debugging is also handled
by the core component, providing a single clock when being traced upon request or releasing
the core from halting (whether it occurs from inside Tumbl or externally).

4.5.7 Top Module

Finally top module packs it all together and provides instruction and data memory, im-
plemented as dual-port block RAM. The second port is accessible for master CPU. Top
module also wires general purpose register file and provides signals, such as whether Tumbl
is halted, being traced or its current program counter.

4.6 Division
Integer division is provided through calculating inverted number using a lookup table, then
multiplying and shifting the result. The lookup table can be defined for n bit width divider
with m bit width remainder, were m > n is recommended for a reliable result. The table is
then pre-calculated as:

d = floor((1 << n)/r) (4.1)

where r is the number to be inverted and d is the resulting table entry. Then store d as
rth element in a table. When wanting to divide online, lookup d and calculate the inverse
number y as:

y = floor((d ∗ r) >> m) (4.2)

For 12-bit divider and 16-bit remainder, you get 98.7 % success rate when dividing a 12-bit
number by a 12-bit divider. In the other cases the result differs only by 1. This lookup table
would require 8 kiB of memory. Depending on how wide the division needs to be, Tumbl
data memory would have to be adjusted to accommodate both division lookup table and
general purpose data memory.

4.7 External Memory Interface
Tumbl external memory interface provides access to peripherals. It is mapped on addresses
above data memory and shared with master CPU, where master CPU has priority. In case
of a collision, Tumbl stalls until master CPU doesn’t release the bus. The wiring is shown
on figure 4.3. In addition other peripherals can issue interrupt through external memory
interface.

32

4 Tumbl Co-processor Core

External

Memory

Interface

Tumbl

Master CPU

I_ADDRESS[14:0]

I_DATA_I[31:0]

I_BLS[3:0]

I_DATA_O[31:0]

XMEMB_O.ADDRESS[14:0]

XMEMB_O.DATA_I[31:0]

XMEMB_O.BLS[3:0]

XMEMB_I.DATA[31:0]

XMEMB_I.CLKEN

Figure 4.3. Tumbl external memory interface

4.8 C lanugage support
Custom processor core needs custom binutils to translate assembler code to bytes and gcc to
compile C code into assembler code, alongside with port for libgcc to provide functions not
supported by platform hardware and newlib as a basic C library. MicroBlaze is nowadays
supported by upstream of all binutils, gcc and newlib and support for our processor is made
from recent stable versions: binutils 2.23.2, gcc 4.7.3 and newlib 2.0.0. See appendix C
for building the toolchain.

4.9 Pipeline Balance
We made a small study regarding balance of the pipeline to determine critical path in various
configurations. It was determined that without hardware multiplier and without barrel shift,
our design is currently able to run on about 79 MHz or 82 MHz with compatibility mode, or
50 MHz with hardware multiplier on (regardless of the other configurations). In an attempt
to make 2 cycle multiplication (with particular modification of other elements of the core),
it was determined that the core would be able to run around 60 MHz. This effort was
however abandoned for the moment due to heavy core modifications needed to handle all
kinds of hazardous situations and mainly due to 50 MHz being sufficient for this application.
It however shows that pipeline is not very well balanced and that the problem should be
acknowledged later on when the processor core is to be optimized.

33

Chapter 5
Tumbl Co-processor Implementation

This chapter details FPGA implementation of Tumbl co-processor, the actual structure
of the pipeline entities and all state and interconnection vectors. Tumbl co-processor is
implemented in VHDL and with inferred operations and entities, maintaining compatibility
for other than Xilinx platforms. We first describe enumerations and records, then follow up
with the actual entities for each pipeline stage.

5.1 Enumerations

n ALU_ACTION_Type: Type specifying action for ALU in execution:

TYPE ALU_ACTION_Type IS (
A_NOP,
A_ADD,
A_CMP,
A_CMPU,
A_OR,
A_AND,
A_XOR,
A_SHIFT ,
A_SEXT8 ,
A_SEXT16 ,
A_MFS,
A_MTS,
A_MUL,
A_BSLL ,
A_BSRL,
A_BSRA,
A_CLZ

) ;

ALU operation switch. See instruction set for mathematical representation of the
relevant instructions in appendix B.

n ALU_IN1_Type: Source operand a for ALU:

TYPE ALU_IN1_Type IS (
ALU_IN_REGA,
ALU_IN_NOT_REGA,
ALU_IN_PC ,
ALU_IN_ZERO

) ;

34

5 Tumbl Co-processor Implementation

Which is either a value in a register (ALU_IN_REGA), or negated value in a register
(ALU_IN_NOT_REGA), or current program counter value (ALU_IN_PC) otherwise unused
(ALU_IN_ZERO).

n ALU_IN2_Type: Source operand b for ALU:

TYPE ALU_IN2_Type IS (
ALU_IN_REGB,
ALU_IN_NOT_REGB,
ALU_IN_IMM,
ALU_IN_NOT_IMM

) ;

Which is either a value in a register (ALU_IN_REGB), or negated value in a register
(ALU_IN_NOT_REGB), or immediate value (ALU_IN_IMM), or negated immediate value
(ALU_IN_NOT_IMM).

n ALU_CIN_Type: Carry bit wiring for instructions using it as an input:

TYPE ALU_CIN_Type IS (
CIN_ZERO ,
CIN_ONE,
FROM_MSR,
FROM_IN1

) ;

In the execution stage, instructions varying just with usage of carry bit (such as ADD
and ADDC) and fixed value are merged into a single small "core" and only their input
wiring is changed. The four options are CIN_ZERO for forcing 0, CIN_ONE for forcing
1, FROM_MSR for using the actual carry bit from MSR and FROM_IN1 for using the most
significant bit as carry bit.

n MSR_ACTION_Type: Output from execution stored to MSR:

TYPE MSR_ACTION_Type IS (
UPDATE_CARRY,
KEEP_CARRY

) ;

From section B.3 we know that MSR has two bits: carry bit and interrupt enable
bit. The meaning of interrupt enable bit inside MSR is only whether we are servicing
interrupt at the moment and thus such state is fully implicit and rather controller
by instruction fetch rather than execution. Thus execution only controls carry bit
and has two operations, whether to keep its current state (KEEP_CARRY) or update
it (UPDATE_CARRY). How is carry bit calculated is detailed in the technical reference
manual.

n BRANCH_ACTION_Type: What kind of branching should execution do:

TYPE BRANCH_ACTION_Type IS (
NO_BR,
BR,
BRL

) ;

35

Enumerations 5.1

Which either is NO_BR for no branching, BR for branching, this is also used for return
from subroutine or interrupt and BRL for branching with link, storing the current PC
or PC + 4, depending on whether delay slot is used, into the destination register.

n COND_Type: Condition type for conditional instructions, see table B.2 for explana-
tion.

TYPE COND_Type IS (
COND_ALL,
COND_EQ,
COND_NE,
COND_LT,
COND_LE,
COND_GT,
COND_GE

) ;

Condition type COND_ALL is the default value for not doing any condition checks. The
other possibilities are only used for BRC, IT, ITT, ITE and derived instructions.

n IT_ACTION_Type: If-then opreation type:

TYPE IT_ACTION_Type IS (
NO_IT ,
IT ,
ITT ,
ITE

) ;

Which either is NO_IT for no conditional execution, IT for if-then conditional execution,
ITT for if-then-then and ITE for if-then-else. See section 4.4.1 for conditional execution
explanation.

n WRB_ACTION_Type: Write back to register file type, it is input to memory and
writeback:

TYPE WRB_ACTION_Type IS (
NO_WRB,
WRB_EX,
WRB_MEM

) ;

This is NO_WRB for instructions with no destination register, or WRB_EX for the
value to be written to a register is a result of operation in execution, or WRB_MEM
if the value to be written to a register is loaded from data or external memory.

n MEM_ACTION_Type: Memory and writeback input for reading or writing from
data or external memory

TYPE MEM_ACTION_Type IS (
NO_MEM,
WR_MEM,
RD_MEM

) ;

36

5 Tumbl Co-processor Implementation

NO_MEM is for no memory action, WR_MEM is for writing and RD_MEM is for reading.

n TRANSFER_SIZE_Type: Size of the transaction for loading and storing instruc-
tions:

TYPE TRANSFER_SIZE_Type IS (
WORD,
HALFWORD,
BYTE

) ;

Obviously this is WORD for 32-bit transation, HALFWORD for lower 16 bits, BYTE for least
significant 8 bits. Used with SW, SH, SB for storing to memory and LW, LHU, LBU for
loading from memory.

n SAVE_REG_Type: Type to store information about possible hazard state, when a
instruction uses the resultant of the previous instruction as a source operand:

TYPE SAVE_REG_Type IS (
NO_SAVE,
SAVE_RA,
SAVE_RB

) ;

This will command the execution to take use previous instruction destination operand
as a source operand a (SAVE_RA) or source operand b (SAVE_RB), or otherwise obtain
source operands normally (NO_SAVE).

5.2 Records

n ID2EX_Type: Interconnection between instruction decode and execution, with gen-
eral purpose register file being wired between them:

TYPE ID2EX_Type IS RECORD
program_counter : STD_LOGIC_VECTOR (31 DOWNTO 0) ;
rd ix_rA : STD_LOGIC_VECTOR (4 DOWNTO 0) ;
rd ix_rB : STD_LOGIC_VECTOR (4 DOWNTO 0) ;
curr_rD : STD_LOGIC_VECTOR (4 DOWNTO 0) ;
a lu_Act ion : ALU_ACTION_Type ;
alu_Op1 : ALU_IN1_Type ;
alu_Op2 : ALU_IN2_Type ;
a lu_Cin : ALU_CIN_Type ;
IMM16 : STD_LOGIC_VECTOR (15 DOWNTO 0) ;
IMM_Lock : STD_LOGIC ;
msr_Action : MSR_ACTION_Type ;
branch_Act ion : BRANCH_ACTION_Type ;
i t_ Ac t i on : IT_ACTION_Type ;
mem_Action : MEM_ACTION_Type ;
t r a n s f e r _ S i z e : TRANSFER_SIZE_Type ;
wrb_Action : WRB_ACTION_Type ;

37

Records 5.2

c o n d i t i o n : COND_Type ;
h a l t : STD_LOGIC ;

END RECORD;

Summary of the signals:

n program_counter: Program counter of the instruction being parsed.

n rdix_rA: Register number for operand Ra - wired to execution to check for
hazard state.

n rdix_rB: Register number for operand Rb - wired to execution to check for
hazard state.

n curr_rD: Register number for operand Rd - certain instructions like SW, SH, SB
use 3 source operands, because the value is stored on address in Rd

n alu_Action: Operation type for ALU in execution.

n alu_Op1: First ALU operand type, see section 5.1 for explanation.

n alu_Op2: Second ALU operand type, see section 5.1 for explanation.

n alu_Cin: Carry bit source, see section 5.1 for possible inputs.

n branch_Action: Whether this instruction is a branching instruction or not.

n it_Action: Whether this instruction is a conditional execution instruction or not.

n mem_Action: Memory and writeback operation.

n condition: Conditional operand, if this instruction is conditional.

n halt: Halt the core upon execution of this instruction.

n ID2GPRF_Type: Interconnection between instruction decode and general purpose
register file:

TYPE ID2GPRF_Type IS RECORD
rd ix_rA : STD_LOGIC_VECTOR (4 DOWNTO 0) ;
rd ix_rB : STD_LOGIC_VECTOR (4 DOWNTO 0) ;
rd ix_rD : STD_LOGIC_VECTOR (4 DOWNTO 0) ;

END RECORD;

Here we only need to know which registers to read: rdix_rA for operand Ra, rdix_rB
for operand Rb, rdix_rD for operand Rd.

n ID2CTRL_Type: Interconnection between instruction decode and core component:

TYPE ID2CTRL_Type IS RECORD
d e l a y B i t : STD_LOGIC ;
i n t_busy : STD_LOGIC ;

END RECORD;

38

5 Tumbl Co-processor Implementation

delayBit is set when the decoded instruction is branching with delay slot, including
returns from subroutines or an interrupt. int_busy is set when the state of MSR
(which is fed back from core component) has interrupts disabled and unset when we
are returning from an interrupt using RTID instruction.

n INT_CTRL_Type: General interconnection for interrupt handling:

TYPE INT_CTRL_Type IS RECORD
se tup_ i n t : STD_LOGIC ;
r t i _ t a r g e t : STD_LOGIC_VECTOR (31 DOWNTO 0) ;
i n t_busy : STD_LOGIC ;

END RECORD;

int_busy has the same meaning as in ID2CTRL_Type. rti_target is the address
to which we are supposed to return after the interrupt service routine is finished.
setup_int is used to propagate to peripherals, namely instruction fetch and decode,
to setup an interrupt.

n GPRF2EX_Type: Data transmission between general purpose register file and exe-
cution:

TYPE GPRF2EX_Type IS RECORD
data_rA : STD_LOGIC_VECTOR (31 DOWNTO 0) ;
data_rB : STD_LOGIC_VECTOR (31 DOWNTO 0) ;
data_rD : STD_LOGIC_VECTOR (31 DOWNTO 0) ;

END RECORD;

data_rA is the value of operand Ra, data_rB is the value of operand Rb and data_rD
is the value of operand Rd.

n IMM_LOCK_Type: Provides state for immediate value instructions:

TYPE IMM_LOCK_Type IS RECORD
locked : STD_LOGIC ;
IMM_hi16 : STD_LOGIC_VECTOR (15 DOWNTO 0) ;

END RECORD;

IMM_hi16 is set by a previous IMM instruction and is valid for a one cycle. locked
is set depending on whether the previous instruction was IMM or not.

n MSR_Type: Machine status register type:

TYPE MSR_Type IS RECORD
IE : STD_LOGIC ;
C : STD_LOGIC ;

END RECORD;

In Tumbl, there is only support for interrupts, IE holds whether interrupts are enabled
(or rather, if we are not servicing interrupt request), C is current carry bit.

n EX2IF_Type: Execution to instruction fetch interconnect:

TYPE EX2IF_Type IS RECORD
take_branch : STD_LOGIC ;
b ranch_ta rge t : STD_LOGIC_VECTOR (31 DOWNTO 0) ;

END RECORD;

39

Records 5.2

Basically tells instruction fetch whether to take branch and what is the destination
address, by setting take_branch to 1 when branching and branch_target to the
destination address. This is set when any kind of branching occurs.

n EX2CTRL_Type: Execution to core component interconnect:

TYPE EX2CTRL_Type IS RECORD
f l u s h _ f i r s t : STD_LOGIC ;
f l u sh_se cond : STD_LOGIC ;
i g n o r e _ s t a t e : STD_LOGIC ;

END RECORD;

Provides 3 bits, all used for conditional execution. flush_first and flush_second tells
core component whether to flush execution in next cycle or cycle after that (i.e. IT
will set flush_first to 1 when its condition is met). If there is subsequent conditional
execution instruction, while we are executing one (such as two IT in a sequence),
then ignore_state is set to 1 to signal core component to ignore current conditional
execution state and directly adopt the new one.

n HALT_Type: General halt state interconnect, for halting from within Tumbl:

TYPE HALT_Type IS RECORD
h a l t : STD_LOGIC ;
ha l t_code : STD_LOGIC_VECTOR (4 DOWNTO 0) ;

END RECORD;

Where halt is whether we are halted (or requesting to halt) and halt_code is the
code passed from HALT instruction.

n EX2MEM_Type: Execution to memory and writeback interconnect:

TYPE EX2MEM_Type IS RECORD
mem_Action : MEM_ACTION_Type ;
wrb_Action : WRB_ACTION_Type ;
e x e q _ r e s u l t : STD_LOGIC_VECTOR (31 DOWNTO 0) ;
data_rD : STD_LOGIC_VECTOR (31 DOWNTO 0) ;
byte_Enable : STD_LOGIC_VECTOR (3 DOWNTO 0) ;
wrix_rD : STD_LOGIC_VECTOR (4 DOWNTO 0) ;

END RECORD;

This is a bit more complicated interconnect, serving both for memory operations and
writeback. For memory operations, mem_Action states what operation happens on
the data or external memory and wrb_Action states what happens with registers.
Instructions LW, LH, LB and derived will use both, as you are loading from memory and
saving to a register. Otherwise one of the actions is always set to no operation type.
exeq_result is the result from execution unit. data_rD is populated for memory load
operations to be written to a register, again for instructions LW, LH, LB and derived.
When writing to a memory, byte_Enable is used for whether we are writing a word,
half-word or a byte. With writeback to a register, wrix_rD states which register is to
be written to.

n WRB_Type: Writeback type, interconnect between memory and general purpose
register file:

40

5 Tumbl Co-processor Implementation

TYPE WRB_Type IS RECORD
wrb_Action : WRB_ACTION_Type ;
wrix_rD : STD_LOGIC_VECTOR (4 DOWNTO 0) ;
data_rD : STD_LOGIC_VECTOR (31 DOWNTO 0) ;

END RECORD;

wrb_Action is writeback operation, wrix_rD is register to be written to and data_rD
is the actual data to write.

n HAZARD_WRB_Type: Hazard writeback type, which execution forwards to itself,
with help of memory and writeback component:

TYPE HAZARD_WRB_Type IS RECORD
hazard : STD_LOGIC ;
save_rX : SAVE_REG_Type ;
data_rX : STD_LOGIC_VECTOR (31 DOWNTO 0) ;
data_rD : STD_LOGIC_VECTOR (31 DOWNTO 0) ;

END RECORD;

hazard means there is a hazard situation, as resultant of the previous instruction is
going to be used in the current instruction. This is set by execution by checking what
memory and writeback is doing. save_rX states with operand is saved, either Ra or
Rb, otherwise none if no hazard occurs. Now two separate data storages: data_rX
for hazards over Ra or Rb and data_rD for hazard over Rd. Example of a hazard over
Rd:

ADDI Rd , Ra , Imm
SWI Rd , Ra , Imm

Here, Rd value is calculated in previous instruction and immediately after used as an
address to memory.

n MEM_REG_Type: Subset of EX2MEM_Type, holds the necessary information by
one cycle, when we cannot writeback right away:

TYPE MEM_REG_Type IS RECORD
wrb_Action : WRB_ACTION_Type ;
e x e q _ r e s u l t : STD_LOGIC_VECTOR (31 DOWNTO 0) ;
byte_Enable : STD_LOGIC_VECTOR (3 DOWNTO 0) ;
wrix_rD : STD_LOGIC_VECTOR (4 DOWNTO 0) ;

END RECORD;

See EX2MEM_Type for explanation of the members.

n MEM2CTRL_Type: Memory and writeback interconnect with core component:

TYPE MEM2CTRL_Type IS RECORD
c l k e n : STD_LOGIC ;
i n t : STD_LOGIC ;

END RECORD;

clken states whether core component should enable clock in the next cycle or is held by
slower memory operations. int is an interrupt request from external memory interface.

41

Entities 5.3

n CORE2DMEMB_Type: External memory interface type, for transaction from core
to peripherals:

TYPE CORE2DMEMB_Type IS RECORD
rd : STD_LOGIC ;
addr : STD_LOGIC_VECTOR (14 DOWNTO 0) ;
b l s : STD_LOGIC_VECTOR (3 DOWNTO 0) ;
data : STD_LOGIC_VECTOR (31 DOWNTO 0) ;

END RECORD;

Matches LPC1788 interface, address was limited to 64 kiB. rd is asserted for read
operation, bls is asserted for write operation (per byte). addr and data are the address
and the data.

n DMEMB2CORE_Type: External memory interface type, transaction from periph-
erals back to the core and interrupt support:

TYPE DMEMB2CORE_Type IS RECORD
c l k e n : STD_LOGIC ;
data : STD_LOGIC_VECTOR (31 DOWNTO 0) ;
i n t : STD_LOGIC ;

END RECORD;

clken signal is used for slow memory transactions, in our case it’s only used when
master CPU is actually using the bus. Interrupt support for peripherals is not used
(int signal, unrelated to memory transaction). data is loaded with the actual data
during read transaction and unused otherwise.

5.3 Entities
Entities for the pipeline stages are documented in the form of input ports, output ports,
their types and with description of their operation. Three common generics:

n USE_HW_MUL_g: Whether to add support for hardware multiplier instructions.

n USE_BARREL_g: Whether to add support for barrel shifting instructions.

n COMPATIBILITY_MODE_g: Whether to be compatible with MicroBlaze code
and not use any enhancements made (such as conditional execution).

n IMEM_ABITS_g: Instruction memory bus size for 32-bit words

n DMEM_ABITS_g: Data memory bus size for 32-bit words

5.3.1 Instruction Fetch

Input ports:

p rog_cnt r_ i : IN STD_LOGIC_VECTOR (31 DOWNTO 0)
inc_pc_i : IN STD_LOGIC
EX2IF_i : IN EX2IF_Type

42

5 Tumbl Co-processor Implementation

Output ports:

IF2ID_o : OUT IF2ID_Type

Increments program counter each cycle, driven by inc_pc_i. If requested, branches to a
new address. Program counter within IF2ID_o is to be wired as a address to an instruction
memory, which is enabled and set to read operation permanently when the core is not halted.

5.3.2 Instruction Decode

Generics:

USE_HW_MUL_g : BOOLEAN := TRUE
USE_BARREL_g : BOOLEAN := TRUE
COMPATIBILITY_MODE_g : BOOLEAN := FALSE

Input ports:

IF2 ID_i : IN IF2ID_Type
imem_data_i : IN STD_LOGIC_VECTOR (31 DOWNTO 0)
INT_CTRL_i : IN INT_CTRL_Type

Output ports:

ID2GPRF_o : OUT ID2GPRF_Type
ID2EX_o : OUT ID2EX_Type
ID2CTRL_o : OUT ID2CTRL_Type

Decodes instruction binary into ALU action, source operands, carry bit source, MSR action
etc., all are part of ID2EX_o interconnect. Additionally sets reading addresses on general
purpose register file and informs core component about coming delay slot bit or if we are
leaving interrupt service routine using RTI instruction.

5.3.3 Execution

Generics:

USE_HW_MUL_g : BOOLEAN := TRUE
USE_BARREL_g : BOOLEAN := TRUE
COMPATIBILITY_MODE_g : BOOLEAN := FALSE

Input ports:

IF2 ID_i : IN IF2ID_Type
ID2EX_i : IN ID2EX_Type
d e l a y B i t _ i : IN STD_LOGIC
GPRF2EX_i : IN GPRF2EX_Type
EX_WRB_i : IN WRB_Type
MEM_WRB_i : IN WRB_Type
HAZARD_WRB_i : IN HAZARD_WRB_Type
IMM_LOCK_i : IN IMM_LOCK_Type
MSR_i : IN MSR_Type

Output ports:

43

Entities 5.3

EX2IF_o : OUT EX2IF_Type
EX2CTRL_o : OUT EX2CTRL_Type
HALT_o : OUT HALT_Type
EX_WRB_o : OUT WRB_Type
HAZARD_WRB_o : OUT HAZARD_WRB_Type ;
IMM_LOCK_o : OUT IMM_LOCK_Type
MSR_o : OUT MSR_Type
EX2MEM_o : OUT EX2MEM_Type

The main stage of the pipeline, doing the actual arithmetic and logic operation. It is
flushed during conditional execution, in case the current instruction is supposed to be
skipped. Passes memory and writeback information to following stage. IMM_LOCK_i
and HAZARD_WRB_i are directly fed back from the outputs once cycle ago, because
they are valid in the next instruction.

5.3.4 Memory And Writeback

Input ports:

EX2MEM_i : IN EX2MEM_Type
DMEMB_i : IN DMEMB2CORE_Type
MEM_REG_i : IN MEM_REG_Type

Output ports:

DMEMB_o : OUT CORE2DMEMB_Type
MEM_REG_o : OUT MEM_REG_Type
MEM_WRB_o : OUT WRB_Type
MEM2CTRL_o : OUT MEM2CTRL_Type

Memory and writeback is the last stage in the pipeline. It is responsible to write and read
data from memory and write back to registers. In some cases it can be seen as 2 stages in
the pipeline, because in case of loading data from memory and saving it to a register takes
two cycles. However any other operation takes just 1 cycle (excluding waiting for external
memory interface to be ready). Wires back two important signals to core component in
MEM2CTRL_o: interrupt request from a peripheral and clock enabling signal: while it’s
only intended for slow memory transactions it can be used to halt the core at any time.

5.3.5 Core Component

Generics:

IMEM_ABITS_g : p o s i t i v e := 9
COMPATIBILITY_MODE_g : BOOLEAN := FALSE

Input ports:

c l k _ i : IN STD_LOGIC
r s t _ i : IN STD_LOGIC
h a l t _ i : IN STD_LOGIC
i n t _ i : IN STD_LOGIC
t r a c e _ i : IN STD_LOGIC
t r a c e _ k i c k _ i : IN STD_LOGIC

44

5 Tumbl Co-processor Implementation

IF2ID_REG_i : IN IF2ID_Type
ID2EX_REG_i : IN ID2EX_Type
EX2IF_REG_i : IN EX2IF_Type
EX2CTRL_REG_i : IN EX2CTRL_Type
exeq_ha l t_ i : IN STD_LOGIC
EX2MEM_REG_i : IN EX2MEM_Type
MEM_REG_i : IN MEM_REG_Type
ID2CTRL_i : IN ID2CTRL_Type
EX_WRB_i : IN WRB_Type
HAZARD_WRB_i : IN HAZARD_WRB_Type
IMM_LOCK_i : IN IMM_LOCK_Type
MSR_i : IN MSR_Type
MEM2CTRL_i : IN MEM2CTRL_Type

Output ports:

core_c lken_o : OUT STD_LOGIC
imem_addr_o : OUT STD_LOGIC_VECTOR ((IMEM_ABITS_g−1) DOWNTO 0)
imem_clken_o : OUT STD_LOGIC
pc_ct r l_o : OUT STD_LOGIC
IF2ID_REG_o : OUT IF2ID_Type
ID2EX_REG_o : OUT ID2EX_Type
de l ay_b i t_o : OUT STD_LOGIC
gpr f_c lken_o : OUT STD_LOGIC
EX2IF_REG_o : OUT EX2IF_Type
EX2MEM_REG_o : OUT EX2MEM_Type
MEM_REG_o : OUT MEM_REG_Type
INT_CTRL_o : OUT INT_CTRL_Type
EX_WRB_o : OUT WRB_Type
HAZARD_WRB_o : OUT HAZARD_WRB_Type
IMM_LOCK_o : OUT IMM_LOCK_Type
MSR_o : OUT MSR_Type

Core component holds state variables and is the only component in the pipeline that works
with clock signals and feeds back previous states of the pipeline as they request it (such
as when dealing with hazards). It stores special machine status register. From the con-
trol signals, exeq_halt_i is asserted when execution stage is executing HALT instruction,
causing the core to disable clock for the pipeline. It can be resumed by externally asserting
trace_kick_i. Similarly asserting trace_i will cause the core to enable clock only when
trace_kick_i is asserted. halt_i is seen as external halt and when asserted the core will
disable clock regardless of other signals. Asserting int_i will cause an interrupt, when it’s
enabled in machine status register.

5.4 Platform Entities

The following entities are specific to a platform.

45

Top Module 5.5

5.4.1 General Purpose Registers File

Input ports:

c l k _ i : i n s t d _ l o g i c
r s t _ i : i n s t d _ l o g i c
c l k e n _ i : i n s t d _ l o g i c
ID2GPRF_i : i n ID2GPRF_Type
MEM_WRB_i : i n WRB_Type

Output ports:

GPRF2EX_o : out GPRF2EX_Type

General purpose registers file is stores registers and is responsible for setting up R0 to
zero upon reset and dealing with hazardous situation for subsequent register usage within
2 cycles, which is solved by forwarding the data from the write port. Its clock input is
controlled by core component.

5.5 Top Module
Generics:

IMEM_ABITS_g : p o s i t i v e := 9
DMEM_ABITS_g : p o s i t i v e := 10
USE_HW_MUL_g : boo l ean := t r u e
USE_BARREL_g : boo l ean := t r u e
COMPATIBILITY_MODE_g : boo l ean := f a l s e

Input ports:

c l k _ i : i n s t d _ l o g i c
r s t _ i : i n s t d _ l o g i c
h a l t _ i : i n s t d _ l o g i c
i n t _ i : i n s t d _ l o g i c
t r a c e _ i : i n s t d _ l o g i c
t r a c e _ k i c k _ i : i n s t d _ l o g i c
imem_clk_i : i n s t d _ l o g i c
imem_en_i : i n s t d _ l o g i c
imem_we_i : i n s t d _ l o g i c _ v e c t o r (3 downto 0)
imem_addr_i : i n s t d _ l o g i c _ v e c t o r (8 downto 0)
imem_data_i : i n s t d _ l o g i c _ v e c t o r (31 downto 0)
dmem_clk_i : i n s t d _ l o g i c
dmem_en_i : i n s t d _ l o g i c
dmem_we_i : i n s t d _ l o g i c _ v e c t o r (3 downto 0)
dmem_addr_i : i n s t d _ l o g i c _ v e c t o r (9 downto 0)
dmem_data_i : i n s t d _ l o g i c _ v e c t o r (31 downto 0)
xmemb_i : i n DMEMB2CORE_Type

Output ports:

pc_o : out s t d _ l o g i c _ v e c t o r (31 downto 0)

46

5 Tumbl Co-processor Implementation

ha l ted_o : out s t d _ l o g i c
halt_code_o : out s t d _ l o g i c _ v e c t o r (4 downto 0)
imem_data_o : out s t d _ l o g i c _ v e c t o r (31 downto 0)
dmem_data_o : out s t d _ l o g i c _ v e c t o r (31 downto 0)
xmemb_sel_o : out s t d _ l o g i c
xmemb_o : out CORE2DMEMB_Type

The top module. Wires all stages of the pipeline with the core component and adds general
purpose register file and instruction and data memory. See core component in subsetion
5.3.5 for explanation for halt_i, int_i, trace_i and trace_kick_i. Additionally access for
instruction and data memory map is provided along with a few state variables: pc_o for
current program counter in execution stage, halted_o and halt_code_o to see if the core
was halted with HALT instruction. External memory interface interconnect is provided to
wire peripherals (this is done in the top module of the whole design). See appendix D on
how to access the controlling signals and state variables from master CPU.

47

Chapter 6
Other FPGA Peripherals

This chapter describes implementation of other FPGA peripherals, namely IRC co-processor
and LX Master.

6.1 IRC Co-processor
IRC co-processor handles IRC inputs for all axes and saves up to 8% chip space with 4
IRCs (which is about 400 LUTs) contrary to using 32-bit quad counters for every axis. It is
divided into three parts:

n Quad counter: Low-level entity directly handling IRC inputs. Increments and decre-
ments the IRC count based on decoding IRC A and IRC B signals and works with
the lowest 8 bits of the count. Stores also lowest 8 bits of the count for index when
IDX is asserted. There is one quad counter per axis.

n Instruction fetch & decoder: The co-processor uses primitive instructions, which
are decoded into operation type and axis number. Instructions are generated by in-
crementing a counter and resetting it back to 0 in the last step.

n Execution: Reads current IRC count from memory, does the operation from section
3.3 and writes it back to memory. Each step has its own instruction, divided into two
types of operations and two stages of each operation.

Block diagram is on figure 6.1.

6.1.1 Operation

The co-processor services one IRC input in four cycles, with one cycle used for the calculation
of the IRC count, another one for calculation of the index, one more for setup for the next
axis and one is used for idling. From section 3.3 we know there is the same operation
form calculating both the current IRC count and the index. There is one difference in
count and index calculation which is whether index event has actually occurred (IDX was
asserted in the meantime). The counts and indexes are sequentially stored in a no-change
BRAM addressed by instruction. This is an overview of the operation, the instruction is
incremented by one during each step:

48

6 Other FPGA Peripherals

IRC

Co-processor

Instruction Fetch /

Decode

AXIS

OP

Quad counter

Axis 1

Quad counter

Axis 2

Quad counter

Axis 3

Quad counter

Axis 4

IRC count

32 bits

IRC count

8 bits

IRC count

8 bits

IRC count

8 bits

IRC count

8 bits

IRC A, B, IDX

IRC A, B, IDX

IRC A, B, IDX

IRC A, B, IDX

Figure 6.1. IRC handling block diagram

n Reset: Set BRAM address to 0b00 00 and enable reading, so that data is ready for
first instruction.

n Instruction 0b00 00: Current Q is ready on the BRAM output port, from address
0b00 00. Calculate new Q as described in section 3.3 and write it back on 0b00 00.

n Instruction 0b00 01: Current Q is still on the BRAM output port. Check if there is
index event, if so, calculate new Q for the index with C being the 8 bit count for the
index event. Reset the index event and write it to address 0b00 01.

n Instruction 0b00 10: Schedule reading Q for the next axis on address 0b00 02.

n Instruction 0b00 11: No operation, reserved.

Next instruction 0b01 00 would do the same as instruction 0b00 00 but for the next axis
and starting with address 0b01 00. So the instruction encoding is that bits 1-0 determine
the operation and the upper bits determine the axis (bits 3 - 2 with 4 axes).

6.2 LX Master
LX Master implements master side of the power stage module bus, described in section
3.4. It periodically sends one or more messages stored in its buffer. Double buffering is
supported to allow work with the buffers without having to interrupt potentially ongoing
transmission. The buffers are stored in a dual-port BRAM, as 16-bit words. There are 256

49

LX Master 6.2

words per buffer, giving 512 words with two buffers and thus 9-bit address width. The
first bit of the address is reserved for the active buffer. The messages are stored as plain
data, preceded by message length, which is either at the beginning of the buffer for the first
message or right after the last data of the previous message. Addresses 0x000 and 0x100
act as read-write registers and are explained table 6.1:

Address Description
0x000 Bit 15: Determines which buffer is used, write 0 to use the first buffer address

space 0x0xx or 1 to use address space 1x0xx
Bits 14:8: Reserved
Bits 7:0: Length of the first message in the first buffer in words, write 0 for

no messages to transmit
0x100 Bits 15:8: Reserved

Bits 7:0: Length of the first message in the second buffer in words, write 0 for
no messages to transmit

Table 6.1. LX Master registers

Addresses 0x000 or 0x100 are followed by data of the first message. Another register stored
after the data of the first message specifies the address of the next message and its length.
In the register, bits 15:8 are the lower 8 bits of the address of the next message (highest
bit is set by active buffer) and bits 7:0 are the length of that message. End of transmission
is assumed when the length of the message is 0. An example transmission of two messages
is shown on table 6.2.

Address Data Description
0x000 0x0004 First buffer, 4 words in the first message
0x001 0xC0CC Data
0x002 0xC199 Data
0x003 0xC266 Data
0x004 0x0333 Data
0x005 0x1002 Next message is on address 0x010 and has 2 words
0x010 0x83F0 Data
0x011 0x3525 Data
0x012 0x0000 Last message, stop transmission

Table 6.2. LX Master sample messages

6.2.1 Operation

LX Master works as a state machine, described below. Each state switches to the one
below it unless stated otherwise:

n ST_BEGIN: Initial state. Sets up reading register at 0x000 from BRAM to find out
which buffer to use. Takes 1 cycle.

n ST_DECIDE: Based on register at 0x000 sets up reading either register at 0x100
from BRAM or does nothing. Takes 1 cycle.

50

6 Other FPGA Peripherals

n ST_PREINIT: Increments address by one to schedule reading of the first data from
BRAM . Takes 1 cycle.

n ST_INIT: Sets up message length, as we just got it even if we were reading it from
0x100. Takes 1 cycle.

n ST_READY: First data is available, and prepared to be sent to the bus in the coming
cycle, alongside with assertion of SYNC. Takes 1 cycle.

n ST_XFER: Transfers the data. When needed, advances to next words of the message,
until it reaches the last word. Takes 16n cycles, where n is message length in words.

n ST_CRC: Transfers 8-bit CRC, SYNC remains asserted. During transmission, reads
the word behind the last data and parses it. If there is another message to be sent,
loads the first word from BRAM and goes again to state ST_READY, releasing
SYNC for one cycle. Otherwise goes to ST_END and releases SYNC.

n ST_END: Inactive state, waits till the end of the period per iteration.

51

Chapter 7
FPGA Simulation

With any FPGA design it is very important to simulate the behavior of the cores. It is
many times the only way to actually see the state of the signals inside the cores and with
larger cores much faster way for their basic validation. It doesn’t include any routing and
timing, therefore it is still possible to successfully simulate a non-synthesizable core. This
can sometimes turn out as an advantage, as you can make a preliminary check if it’s
actually desirable to "fix" the core into synthesizable state (i.e. passing timing checks) or
whether that would be a wasted effort. Choosing a good FPGA simulator is critical; aside
from performance of the simulator, it’s necessary to make sure it will correctly simulate
primitives on the chosen platform (such as PLLs). For our project, we chose ModelSIM
from Mentor Graphics. Interface is show on figure 7.1.

7.1 ModelSIM Setup
ModelSIM only needs to have the primitives simulation set up in order to simulate Xilinx
FPGA. There are two ways of simulating Xilinx primitives:

n Use inferred code: You can create an inferred core for the primitive, such as dual-
port block RAM (any type, read-first, write-first, no-change), as a template and use
that in your cores. This way synthesizer will optimize the inferred code into a Xilinx
primitive – the dual-port block RAM – and the simulator will optimize it into its own
primitive. In both ways you have secured matching logic of both optimized primitives
as they have to match the VHDL or Verilog descriptor. This is the solution with the
best performance and doesn’t require any specific platform setup.

n Use compiled primitives: In some cases, such as PLL core or other DCM primitives,
you are not able to simulate them with inferred design of your own (it would be
too complicated, such as simulating reset of PLLs). For this case, follow ModelSIM
manual [21] on how to compile the primitives from Xilinx ISE.

Other than that, you of course need to have a test bench module, generally at least with
a driven clock signal and stimulus process to reset the core. Then compile all cores in
ModelSIM (packages go first in the compile order). It is generally better to use a ModelSIM
script for the actual reset than a stimulus process, as that simulates what will happen with
the real hardware.

7.2 Tumbl Simulations
All simulations of low-level parts, such as simulating conditional execution instructions, were
done in ModelSIM by checking every related signal in the waveform. In the subsections we
present some of the more important simulations in detail.

52

7 FPGA Simulation

Figure 7.1. ModelSIM
53

Tumbl Simulations 7.2

7.2.1 Processor Core

First and the most testing was done for Tumbl, by checking every instruction working
correctly and the hazard states are being properly handled, alongside with all custom in-
structions. To achieve that, we wrote a small utility to convert assembly to mem file format
accepted by ModelSIM. The code also needs a linker script:

ENTRY(_main)

MEMORY
{

imem (x) : ORIGIN = 0x00000000 , LENGTH = 2k
dmem (ar ! x) : ORIGIN = 0x00000000 , LENGTH = 4k

}

SECTIONS
{

. = 0 x00000000 ;

. = ALIGN (4) ;

. t e x t : { ∗ (. t e x t) ∗ (. t e x t . ∗) } > imem

. = 0 x00000000 ;

. = ALIGN (4) ;
_sdata = . ;
. data : { ∗ (. data) ∗ (. data . ∗) } > dmem

. = ALIGN (4) ;

. b s s : { ∗ (. b s s) ∗ (. b s s . ∗) } > dmem
_edata = . ;

}

Many instructions were tested using compiled common C code, such as addition, changing
a value in memory etc.. New instructions not supported by gcc were tested using test
benches shown in chapter 4 as examples.

7.2.2 Cycle Counting

From chapter 3 we know we need to service each PMSM motor in 625 cycles (for 4 motors)
or 310 cycles (for 8 motors). We have created a skeleton of a PID controller (a voltage
driven controller with 3 PIDs) and ran it through the simulator. In the code there is a
variable that increments by one with every iteration, which was traced in ModelSIM wave
form. Use objdump to create a disassembly of the code:

1 e4 : e880002c l w i r4 , r0 , 44
1e8 : 30840001 add ik r4 , r4 , 1
1 ec : f880002c sw i r4 , r0 , 44

Then find the program counter in ModelSIM wave form. This happens on 4610 ns as
shown on figure 7.2 and next time on 5990 ns as shown on figure 7.3. Subtracting them
we get 1380 ns, which divided by 20 ns (period of frequency is 50 MHz) results in 69 cycles

54

7 FPGA Simulation

Figure 7.2. The first occurrence of the increment

(including the increment, which needs 4 cycles), so clean result is 65 cycles. This satisfies
our requirements well enough and leaves securely enough instructions even for 8 PMSM
motors (over 200 cycles), that we didn’t conduct further timing tests as the controller
developed from voltage driven controller to current driven controller.. Note that this code
wasn’t optimized as well.

55

Tumbl Simulations 7.2

Figure 7.3. The second occurrence of the increment

56

7 FPGA Simulation

7.2.3 Tumbl External Memory Interface Collisions

Another major test was checking collision between master CPU and Tumbl on external
memory interface. We ran a simple code on Tumbl:

cyc :
LWI R10 , R0 , 0 x2800
ADDI R10 , R10 , 1
SWI R10 , R0 , 0 x2800
BRI cyc

This accesses 0x2800 address, mapped on the external memory. Concurrently to that,
periodically run reading from master CPU using a ModelSIM script simulating a write
operation:

f o r c e − f r e e z e −c a n c e l 112 ns cs0_xc 0
f o r c e − f r e e z e −c a n c e l 112 ns b l s 0000
f o r c e − f r e e z e −c a n c e l 112 ns a d d r e s s $1
f o r c e − f r e e z e −c a n c e l 112 ns data $2
run 168 ns

Parameter address is anything wired to Tumbl external memory space, such as 16#8000,
and with parameter data is random each iteration. Eventually these two will collide (if they
happen to have the same periods then just add extra waiting on master CPU side). When
they collide, check if clken is not asserted during master CPU write cycke and that during
that address and data are set accordingly to what to be is written from master CPU side.
The next cycle after that, make sure that clken is asserted back and that address and data
are restored to what is read or written on Tumbl side.

7.3 IRC Co-processor
IRC co-processor basics can be checked by watching the loop and toggling their A and B
signals to see if it updates the count correctly alongside with writing it to BRAM. In the
simulator, we mainly check if error state is and is reset properly, by toggling A and B at
once and then simulating the write transaction for the reset. When this is done, it’s perhaps
easiest to see that it works on a real hardware. Plug in a PMSM motor to an IRC input
and rotate it manually, while monitoring IRC changes. Check if IDX works by rotating the
motor back and forth around the place where it’s asserted. It’s a little harder to see the
current IRC value is absolutely correct, because that needs at least hundreds of rotations,
this is perhaps best checked back in the simulator by simulating a movement by n pulses
in one direction and then seeing it the IRC counter incremented or decremented by n.

7.4 LX Master Transmission
LX Master transmission was also one of the more intense tests. We loaded the following
streams into its BRAM. First check is a transmission of a single message in mem file format:

@0 0008 ; 1 s t b u f f e r , l e n g t h 8
@1 c0cc

57

LX Master Transmission 7.4

@2 c199
@3 c266
@4 0333
@5 83 f0
@6 0000
@7 0000
@8 0000
@9 0000 ; end
Then a transmission of two messages:
@0 0008 ; 1 s t b u f f e r , l e n g t h 8
@1 c0cc
@2 c199
@3 c266
@4 0333
@5 83 f0
@6 0000
@7 0000
@8 0000
@9 0a02 ; 2nd st ream on @a , l e n g t h 2
@a 1111
@b 3525
@c 0000 ; end
Then a check if the second buffer works:
@0 8000 ; 2nd b u f f e r
@100 0000 ; l e n g t h 0
Lastly a transmission from the second buffer:
@0 8000 ; 2 s t b u f f e r ,
@100 0008 ; l e n g t h 8
@101 c0cc
@102 c199
@103 c266
@104 0333
@105 83 f0
@106 0000
@107 0000
@108 0000
@109 0a02 ; 2nd st ream on @10a , l e n g t h 2
@10a 1111
@10b 3525
@10c 0000 ; end
Keypoints of the testing are:

n Initialization: A check that initialization works, correct buffer is selected and the
component is initialized to transmit the data.

n CRC: A check that CRC is properly reset, generated and transmitted after the last
bit.

58

7 FPGA Simulation

n Next stream: A check that the core finds and correctly selects the next stream or
stops transmitting if it is at the end.

n SYNC signal assertion: A check that SYNC signal is not asserted at least for a
cycle when starting to transmit a new stream.

7.5 Master CPU Online Debugging
Certain things, such as PMSM motor itself, are too hard to simulate. This means there
is a need of online debugging and the main reason why everything Tumbl can control is
still accessible to master CPU, completely omitting the need of JTAG interface for Tumbl.
Instruction and data memories are accessible permanently without blocking Tumbl and can
be monitored. Since external memory interface may block Tumbl, best is to find out when
Tumbl is idling (which is going to happen for a long time with just a single motor), such
as creating a register in Tumbl data memory on a specified address and checking when it
was changed from "active" to "inactive" mode and then dumping LX Master buffers.

59

Chapter 8
Conclusion

In this thesis we have selected a combined CPU / FPGA budget platform as ARM Cortex-
M3/4F CPU with Spartan-6 FPGA. We designed FPGA peripherals necessary for creating
a current driven PMSM controller, supporting up to 4 PMSM motors, with possible later
extension to 8 PMSM motor. Slave memory controller inside Spartan-6 was designed for
memory transactions between master CPU, including a peripheral to measure the required
delays. It was determined that the best way to control PMSM motors is to use synthesized
processor as a co-processor due to resource usage. After a research of available synthesized
processors we chose to start off with MB-Lite+. It was further modified, in order to
correct errors in the architecture, change its role to a co-processor and to minimize the
core by removing unneeded peripherals. Then we found out some ways how to improve
performance, which resulted in conditional execution. And then we verified it has enough
performance to satisfy the task to control PMSM motors using simulations. The core is
named Tumbl. Given the changes in instruction set, we patched binutils, gcc and newlib
to maintain C language and assembler support. Further research was made for division,
which is generally costly on both cycles and chip space, where at this point we chose to use
a lookup table to calculate an inverse number of the divider and multiply with it. We have
also designed an IRC co-processor to save chip space when handling multiple IRCs (saves
up to 400 LUTs for 4 IRCs). Finally a communication peripheral with power stage board
was designed, albeit only the transmitting side, given that the protocol of the bus is still in
development. The other cores are ready for productization.

For this project, 50 MHz was assumed as a minimum frequency on which Tumbl co-processor
has to run. Further improvements to the core and for it to run on higher frequency would
be to modify execution stage to be multi-cycle, to relax the critical path on barrel shifter
and multiplier. Additionally a few improvements in the instruction sets could be made:

n Removal of IMM instruction: IMM instruction can be fully substituted by loading from
memory generally at no performance cost (requires optimization in gcc, otherwise costs
one extra cycle). Simplifies the core and doesn’t remove any feature.

n Use of 21-31 bits: Instructions with Rb operand may use the remaining 10 bits for
small arithmetic operations or shifting.

n Hardware division: If multi-cycle execution unit is implemented, see possibilities of
division implementation.

n Shared instruction and data memory: This is rather experimental. Merge instruc-
tion and data memory into one 64-bit memory. Instruction fetch would read 2 words
at once leaving one cycle for data access. A store buffer is needed to solve collisions
between program counter leads and data.

Lastly, Inverse kinematics task for a 6R manipulator, presented in appendix A, can be used
in the product for movement planning to allow using the final product for a wider range of

60

8 Conclusion

robotic manipulators.

61

Appendix A
Inverse Kinematics For A General 6R Manipulator

The following report written by Martin Meloun and Tomáš Pajdla, published as [23],
describes an analytic solution of the inverse kinematics task for a general 6R manipulator and
its implementation using BLAS and LAPACK libraries. Our approach was to secure and tune
algorithm accuracy by minimizing the significance of poor conditioning in matrix operations
while keeping the performance on an industrial level. The algorithm involves symbolic
preprocessing in multiple steps, then the multivariate problem is reduced through matrix
decompositions to a single univariate polynomial which is further reduced to a generalized
eigenvalue problem.

62

A Inverse Kinematics For A General 6R Manipulator

CENTER FOR
MACHINE PERCEPTION

CZECH TECHNICAL
UNIVERSITY IN PRAGUE

RE
SE

AR
CH

RE
PO

RT

IS
SN

12
13

-2
36

5
Inverse Kinematics for a General

6R Manipulator
Martin Meloun
Tomáš Pajdla

meloumar@cmp.felk.cvut.cz
pajdla@cmp.felk.cvut.cz

CTU–CMP–2013–29

Available at
ftp://cmp.felk.cvut.cz/pub/cmp/articles/meloun/Meloun-TR-2013-29.pdf

This work was supported by PRoViDE-FP7-SPACE-3/2377 and
SGS12/191/OHK3/37/13.

Research Reports of CMP, Czech Technical University in Prague, No. 29, 2013
Published by

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz

63

A Inverse Kinematics For A General 6R Manipulator

A.1 Introduction
The problem of the inverse kinematics task for a 6R manipulator is that unlike for common
3-2-1 manipulators (a manipulator in which axes of 4th, 5th and 6th joints intersect in a
single point) there is no plain and simple solution using just its geometric properties. It still
remains a non-trivial task requiring matrix decompositions and numerical optimizations with
symbolic construction of the matrices. This report is uses analytic solution first presented
by [2] and then later improved by [4] for industrial applications. It was further optimized in
[5] by adding numerical analysis. Later on there was further optimization suggested by [6]
to reduce the degree of polynomials at the cost of having to do a matrix inversion which
however is not acceptable as there is no way to solve that if the matrix to be inverted is poorly
conditioned or even singular. This report builds mainly on [5] but uses a different approach
in numerical optimization. We chose to optimize the intermediate results from the matrix
decompositions rather than perfecting the input matrices in terms of their conditioning.
The algorithm was modified to allow such approach.

Figure A.1. 6R Manipulator Schematics

65

Inverse Kinematics Task A.2

A.2 Inverse Kinematics Task

A.2.1 Formulation

Every joint of the robot is described using Denavit-Hartenberg notation[1] as a series of
translations and rotations in specific order. The notation is minimizing the number of
parameters needed to describe the manipulator kinematics. The transformations in Denavit-
Hartenberg notation are in the following order: rotation around z axis by parameter θ,
translation along z axis by parameter d, translation along x axis by parameter α and
rotation around x axis by parameter a. In a general 6R manipulator, θ is considered to be
the control variable. Consider Rz to be the rotation around z axis, Rx to be the rotation
around x axis, Tz to be the translation along z axis and Tx to be the translation along x
axis. The set of transformations can be represented by matrices as

Mi = Rz(θi)Tz(di)Rx(αi)Tx(ai)

= MiAMiB

=


ci −si 0 0
si ci 0 0
0 0 1 di
0 0 0 1




1 0 0 ai
0 λi −µi 0
0 µi λi 0
0 0 0 1


(A.1)

in which ci = cos(θi), si = sin(θi), λi = cos(αi) and µi = sin(αi). The end-effector pose
is described as a transformation towards the base as

MH =


lx mx nx rx
ly my ny ry
lz mz nz rz
0 0 0 1

 (A.2)

The problem of the general 6R inverse kinematics task is to calculate the control variables
θ1, θ2, θ3, θ4, θ5 and θ6 from the equation

M1M2M3M4M5M6 = MH (A.3)

The left hand side entries of the matrices are functions of the sines and cosines of the
control variables. Given the structure of the matrices, last row produces no equations which
means there are only 12 equations. Furthermore, since the first 3 columns and first 3 rows
represent rotation which is orthonormal, then there is only 6 linearly independent equations
for solving 6 variables.

A.2.2 Raghaven and Roth Solution

Raghaven and Roth solution [2] reduces the above multivariate problem into solving a 16-
degree polynomial in θ3

2 . They use the property that inversion matrix of Mi remains linear
and reduce the degree of the polynomials in the (A.3) by rearranging the matrices as

M3M4M5 = M−1
2 M−1

1 MHM−1
6 (A.4)

66

A Inverse Kinematics For A General 6R Manipulator

Furthermore, if we take a look on matrix M−1
6

M−1
6 = M−1

6B M−1
6A

=


1 0 0 −a6
0 λ6 µ6 0
0 −µ6 λ6 0
0 0 0 1




c6 s6 0 0
−s6 c6 0 0

0 0 1 −d6
0 0 0 1


(A.5)

Notice that c6, s6 are only in the first two columns of M−1
6A . Take the equations only for the

last two columns (marked red) to get rid of c6, s6 at a cost of 6 equations. The system
now looks like

M3(c3, s3)M4(c4, s4)


c5 −s5 0 0
s5 c5 0 0
0 0 1 d5
0 0 0 1




0 a5
−µ5 0
λ5 0
0 1

 =

M−1
2 (c2, s2)M−1

1 (c1, s1)MH


1 0 0 −a6
0 λ6 µ6 0
0 −µ6 λ6 0
0 0 0 1




0 0
0 0
1 −d6
0 1

 (A.6)

As a result there are 6 equations for 5 variables.

The above reduction has also a geometric interpretation (not mentioned in [2]). Consider
the end-effector pose to be described with Cartesian coordinates and Euler angles using a
convention in which the last rotation is around z axis (e.g. z − x′ − z′′ convention). The
coordinates of the pose in such convention would be

H = (xH , yH , zH , αH , βH , γH)> (A.7)

Let’s look back on the initial equation (A.3) and expand M6 from (A.1)

M1(θ1)M2(θ2)M3(θ3)M4(θ4)M5(θ5)Rz(θ6)Tz(d6)Rx(α6)Tx(a6) = MH (A.8)

and consider a point W defined by transformation matrix MW as right hand side of

M1(θ1)M2(θ2)M3(θ3)M4(θ4)M5(θ5)Rz(θ6) = MHTx(−a6)Rx(−α6)Tz(−d6) (A.9)

i.e.
MW = MHTx(−a6)Rx(−α6)Tz(−d6) (A.10)

Similarly to point H, point W can be also defined using Cartesian coordinates and Euler
angles using the same convention

W = (xW , yW , zW , αW , βW , γW)> (A.11)

Notice that in (A.9), MW can be calculated from the right hand side and then converted
to the coordinates of point W . The left hand side however ends with rotation around z
axis,Rz(θ6). Because we decided to use a convention ending in rotation around z axis, it only
changes γW . Therefore the first 5 parameters xW , yW , zW , αW and βW depend only on
the first 5 control variables. This is the geometric interpretation of the step done in (A.6).
Notice that for special manipulators (for instance a 3-2-1 manipulator), the reduction can go

67

Inverse Kinematics Task A.2

even further (for 3-2-1 manipulator only the first three variables, the Cartesian coordinates,
depend only on the first three control variables θ1, θ2 and θ3).

Back to (A.6), Raghaven and Roth then simplify the equations by multiplying from the left
with U2M2B where

U2 =


1 0 0 0
0 −1 0 0
0 0 1 d2
0 0 0 1

 , M2B =


1 0 0 a2
0 λ2 −µ2 0
0 µ2 λ2 0
0 0 0 1


and label each equation as


l1 p1
l2 p2
l3 p3
0 1

 = U2M2BM3(c3, s3)M4(c4, s4)


c5 −s5 0 0
s5 c5 0 0
0 0 1 d5
0 0 0 1




0 a5
−µ5 0
λ5 0
0 1



= U2M−1
2A (c2, s2)M−1

1 (c1, s1)MH


1 0 0 −a6
0 λ6 µ6 0
0 −µ6 λ6 0
0 0 0 1




0 0
0 0
1 −d6
0 1

 (A.12)

and form two vectors P =
(
p1 p2 p3

)>
and L =

(
l1 l2 l3

)>
as a polynomial

ideal (the p1, p2, p3 and l1, l2, l3 are both left and right hand sides of the equations). This
polynomial ideal has a few interesting properties. The following operations form new equa-
tions which are not linear combination of the current equations and yet do not add new
monomials:

n P>P (1 equation)

n P>L (1 equation)

n P× L (3 equations)

n
(
P>P

)
L−

(
2P>L

)
P (3 equations)

This adds another 8 equations in total. In these new equations the additional monomials
generated by the operations are truncated due to the geometric properties of the original
6 equations. Therefore in total there are 14 equations for 5 variables. The equations can
now be written in matrix form as

P14×9(c3, s3)



s4s5
s4c5
c4s5
c4c5
s4
c4
s5
c5
1


= N14×8



s1s2
s1c2
c1s2
c1c2
s1
c1
s2
c2


(A.13)

68

A Inverse Kinematics For A General 6R Manipulator

or in short as P p = N n, with p and n being the vectors of the monomials. All constants
were moved to the left hand side, c3, s3 were placed inside the matrix P rather than the
vector p and matrix N contains just plain numbers. Further steps were altered by Manocha
and Canny.

A.2.3 Modified Manocha and Canny Optimization

Elimination of c1, s1, c2, s2

Raghaven and Roth continued further with splitting the matrices into two: one with 8 rows
and the other one with 6 rows. The purpose of such step was to form a square sub-matrix
of N and eliminate right hand side variables using it’s inversion. Unfortunately in case the
sub-matrix of N was poorly conditioned or even singular, such method would produce no
results there.

Manocha and Canny suggest to use SVD decomposition instead to deal with the above
problem and secure good conditioning. Matrix N is decomposed with SVD as

P14×9 p9×1 = U14×14Σ14×8V>8×8 n8×1 (A.14)

in which U is a unitary matrix and can be moved to the left hand side

U>14×14P14×9 p9×1 = Σ14×8V>8×8 n8×1 (A.15)

and Σ contains singular values on it’s diagonal. Thus last (14 − rank(Σ))>6 rows contain
just zeroes and right hand side of the corresponding equations is equal to zero. Let r be
the rank of Σ. The equation above can be written as(

U>a r×14Pa r×9
Z(14−r)×9

)
p9×1 =

(
Σr×8

0(14−r)×8

)
V>n8×1 (A.16)

and so, assuming N has full rank
Z6×9 p9×1 = 0 (A.17)

and therefore c1, s1 and c2, s2 have been eliminated. If matrix N is singular, use just the
first 6 rows of matrix Z (which are the best conditioned).

There is however yet a different approach. Decompose matrix N with QR algorithm instead

P14×9 p9×1 = Q14×14R14×8 n8×1 (A.18)
Matrix R is triangular and contains the desired property that its 6 bottom rows contain just
zeroes. However unlike SVD, QR decomposition is not rank revealing but the rank can be
estimated by checking for non-zero elements on the diagonal. For now assume that matrix
R has full rank. Move matrix Q to the left hand side. Given that matrix R is triangular, we
get

Q>14×14P14×9 p9×1 =
(

R8 8×8
06×8

)
n8×1 (A.19)

As last 6 rows of matrix R are just zeroes, the right hand side for the last 6 equations is
equal to zero. (

U>a 8×14Pa 8×9
Z6×9

)
p9×1 =

(
R8 8×8
06×8

)
n8×1 (A.20)

69

Inverse Kinematics Task A.2

and we get (A.17) again.

Should matrix R be singular (or rather, in cases when it cannot be guaranteed that matrix
R is regular) then it is necessary to decompose it further with SVD

R8 8×8 = U8 8×8Σ8 8×8V>8×8 (A.21)

Form the U and Σ matrices

U14×14 =
(

U8 8×8 08×6
06×8 I6×6

)
(A.22)

Σ14×8 =
(

Σ8 8×8
06×8

)
(A.23)

The above is a property of QR decomposition, i.e: for any real matrix X decomposed by
QR, the resulting triangular matrix has the same singular values as the original matrix.
Substitute back to (A.19) to get

U>14×14Q>14×14P14×9 p9×1 = Σ14×8V>8×8 n8×1 (A.24)

in which the bottom (14 − rank(Σ)) > 6 equations have zero on right hand side. Further
steps to obtain matrix Z are identical to Manocha and Canny approach.

Sylvester Dialytic Elimination Method

To summarize the previous steps, the variables on the right hand side c1, s1 and c2, s2 were
eliminated and there are 6 equations in

Z6×9(c3, s3)



s4s5
s4c5
c4s5
c4c5
s4
c4
s5
c5
1


= 0 (A.25)

Notice that the vector of the monomials is always non-zero, regardless of the values of
the goniometric functions (because the last row is equal to 1). This means that matrix Z
does not have full rank when there is a solution. To use such property we have to convert
the system to a square system which is done in the next two steps. First step involves
parametrizing ci, si using tangents to convert two bounded variables into one variable xi

xi = tan
(
θi
2

)
(A.26)

si = 2xi
1 + xi2

, ci = 1− xi2

1 + xi2
(A.27)

70

A Inverse Kinematics For A General 6R Manipulator

Notice that xi will converge to infinity when θi = π. Substitute c4, s4 with x4 and multiply
all equations with common denominator (1 + x4

2) to get

Z′6×9(c3, s3)



x4
2s5

x4
2c5
x4

2

x4s5
x4c5
x4
c5
s5
1


= 0 (A.28)

Second step is to multiply all equations with x4. This will add 6 new equations but only 3
new monomials

Z′′12×12(c3, s3)



x4
3s5

x4
3c5
x4

3

x4
2s5

x4
2c5
x4

2

x4s5
x4c5
x4
c5
s5
1



= 0 (A.29)

Unlike in Raghaven and Roth approach (adopted by Manocha and Canny), do not substitute
c5, s5 with x5. From (A.25) we know that Z′′ has to be a singular matrix, therefore

|Z′′(c3, s3)| = 0 (A.30)

which is a polynomial in c3, s3 with degree of 24. To make it univariate, substitute c3,
s3 with x3 and multiply it by common denominator (1 + x3

2) to get a polynomial in one
variable x3.

|Z′′′(x2
3, x3)| = 0 (A.31)

This polynomial is divisible by (1+x2
3)4 (proof in [2]) and thus 8 solutions are known apriori

(±i, i =
√
−1, both of algebraic multiplicity 4). The polynomial is however too expensive

to expand symbolically and Manocha and Canny reduce the problem into solving generalized
eigenvalue problem. Write Z′′′ as

Z′′′(x2
3, x3) = Ax2

3 + Bx3 + C (A.32)

in which A, B and C are 12× 12 matrices with plain numbers. Consider p′′ as the vector of
the monomials in (A.29). The equation now looks like

(Ax2
3 + Bx3 + C)p′′ = 0 (A.33)

Rearrange it a bit
(x3(Ax3) + (Bx3) + C)p′′ = 0 (A.34)

71

Inverse Kinematics Task A.2

and then expand p′′ as
(

p′′

x3p
′′

)
and transform the above equation into

[
x3

(
I 0
0 A

)
+
(

0 −I
C B

)](
p′′

x3p
′′

)
= 0 (A.35)

Lastly, consider λ = x3 and solve the generalized eigenvalue problem for

(
I 0
0 A

)
λ−

(
0 I
−C −B

)
(A.36)

The matrices are sized 24 × 24 so there is up to 24 solutions. This method, generalizes
the companion matrix method with matrices as its entries. It is fully described and proven
in [5] for any polynomial matrix equation. Given that only real eigenvalues are consider-
able to be a solution and there is at least 8 complex eigenvalues (those we know apriori)
there can be up to 16 solutions. The generalized eigenvalue problem may be reduced to a
normal eigenvalue problem when the two matrices in (A.36) are not a singular pencil, by
either making inversion of one of the matrices or substituting λ to form linear combination
of the matrices when they both happen to be singular (but together contain the entire
linear space). Furthermore, QR decomposition can be used to get rid of the eigenvalues
known apriori, by using double-shift algorithm as the eigenvalues are complex. While this
optimization saves some computation time in general cases, it significantly degrades nu-
merical accuracy. Practically, λ has to be substituted in nearly all cases (the substitution is
randomly providing linear combinations of the original matrices, limited by the number of
iterations) to provide sufficient conditioning for the matrix inversion. For this reason, the
optimization was abandoned in our implementation, as solving the generalized eigenvalue
problem meets our speed requirement.

Solving x4 and c5, s5

There are two ways to solve x4 and c5, s5. One way, as presented by Manocha and Canny,
is to use the eigenvector from the previous eigenvalue decomposition. Consider υ as an
eigenvector corresponding to a chosen eigenvalue (x3). Given (A.35), the vector p′′ is a
linear combination of all eigenvectors for the corresponding eigenvalue. When the geometric
multiplicity of the eigenvalue is equal to 1 then it can be written as

υ24×1 =
(

v12×1
x3v12×1

)
= k

(
p′′

x3p
′′

)
, k ∈ R (A.37)

and we use the eigenvector to solve x4 and c5, s5. It is expensive to determine the geometric
multiplicity of the eigenvalue and the method looses accuracy for eigenvalues with higher
algebraic multiplicity. Thus when the algebraic multiplicity is higher and 1, i.e. all cases in
which geometric multiplicity may be higher than 1, use the other way to solve x4 and c5,
s5. The condition for the geometric multiplicity is missing in Manocha and Canny paper.
There are two possible scenarios, depending on whether x4 converges to infinity, this is

72

A Inverse Kinematics For A General 6R Manipulator

determined based on whether v12 member is non-zero:

v1/v12 x4
3s5

v2/v12 x4
3c5

v3/v12 x4
3

v4/v12 x4
2s5

v5/v12 x4
2c5

v6/v12 = x4
2 x4 ∈ R

v7/v12 x4s5
v8/v12 x4c5
v9/v12 x4
v10/v12 s5
v11/v12 c5

1 1





v1/v3 s5
v2/v3 c5

1 1
0 s5/x4
0 c5/x4
0 = 1/x4 x4 →∞
0 x4s5/x4

2

0 x4c5/x4
2

0 1/x4
2

0 s5/x4
3

0 c5/x4
3

0 1/x4
3



(A.38)

This part is simplified by removing the substitution of c5, s5 by x5 because we don’t have
to deal with cases when x5 would be converging to infinity.

The other way, as presented by Raghaven and Roth, is to solve x4 just like x3. In (A.28),
matrix Z′ is now plain numbers. Rearrange it so polynomials in x4 are inside the matrix

F6×3(x2
4, x4)

 s5
c5
1

 = 0 (A.39)

Use the first three equations (for best conditioning) and solve x4 as a generalized eigenvalue
problem. After that solve c5, s5 as a set of linear equations.

A.2.4 Solving remaining variables

After solving θ3, θ4 and θ5 head back to (A.19) in which the left hand side is now plain
numbers. As matrix R is triangular, c1, s1 and c2, s2 are solved directly from the equation
without the need of decomposing it any further

t5
t6
t7
t8

 =


R55 R56 R57 R58
0 R66 R67 R68
0 0 R77 R78
0 0 0 R88



s1
c1
s2
c2

 (A.40)

where t14×1 is
t = Q>P p (A.41)

The last variable to solve, θ6, is solved as a set of linear equations from (A.4) using LU
decomposition.

A.3 Implementation

A.3.1 Symbolic Preprocessing

The algorithm performs symbolic preprocessing, treating the entries of MH as input variables
and the Denavit-Hartenberg notation of the manipulator as parameters. The symbolic

73

Implementation A.3

preprocessing is done in MAPLE, for derivation and simplification of the expressions. There
are several stages of symbolic preprocessing:

n Generation of P and N matrices. Symbolically calculates P and N matrices using MH
and Denavit-Hartenberg notation of the manipulator. Since P contains polynomials in
c3, s3, it is expressed as

P = PAs3 + PBc3 + PC (A.42)

where PA, PB and PC are matrices containing plain numbers.

n Generation of matrices for resolving the generalized eigenvalue problem. It starts off
matrix Z which is calculated online from current PA, PB, PC and N and creates the
matrices A, B and C to be used for solving generalized eigenvalues.

n Raghaven and Roth way to solve x4 and c5, s5. Again starts off matrix Z and transforms
it into matrix F which is expressed as

F = FAx
2
4 + FBx4 + FC (A.43)

and matrices FA, FB and FC are used just like matrices A, B and C in the generalized
eigenvalue problem.

n Matrices for c1, s1 and c2, s2. No further preprocessing is made, triangular matrix R
in its form is sufficient.

n Matrices for solving c6, s6. Two matrices M6L 6×2 (left hand side) and M6R 6×1 (right
hand side) are symbolically expressed from (A.4).

The symbolic preprocessing is done offline as it is independent on the end-effector pose.
In particular, parameters ai, di and λi, µi are substituted with manipulator values into
matrices PA, PB, PC and N.

A.3.2 Numerical Substitution

Given the pose of the end-effector MHV, substitute it into PA, PB, PC and N matrices. Consider
the corresponding numerical matrices to be PAV, PBV, PCV and NV. Calculate QR decompo-
sition of NV, let it be expressed as

NV = QVRV

and check diagonal of RV. As noted above, QR decomposition is not rank revealing but it
can be safely estimated that matrix RV has full rank by checking its diagonal whether it has
non-zero elements

|Rii| > εQ, i ∈ {1, 2, ..., 8} (A.44)

in which εQ is a user defined constant to test rank deficiency. Please note that this constant
should be based on observing the actual values of RV. Choosing a bigger value here leads
to more end-effector poses being further decomposed by SVD to determine the rank and
therefore to a valid result at a performance loss, unlike choosing insufficient value would
cause the potential results to be discarded on failed integrity checks. When we are unsure
about RV having full rank, decompose RV with SVD, let it be expressed as

RV = UVΣVVV
>

74

A Inverse Kinematics For A General 6R Manipulator

and again check for rank deficiency in ΣV

σi =
{

ΣVii, x > εS
0, otherwise , i ∈ {1, 2, ..., 8} (A.45)

in which εS is another user defined constant for testing rank deficiency. Usually the same
constant can be used for εS and εQ.

Further numerical problems arise when solving x3, x4 and c5, s5 and the generalized eigen-
value problem. Consider the following generalized eigenvalue problem E1λ − E2. The
accuracy decreases in the following cases

n Eigenvalues with greater algebraic multiplicity are calculated with worse accuracy (the
greater multiplicity, the worse accuracy). This usually results in two or more eigenval-
ues very close to each other on either the real or the imaginary axis.

n Matrices E1 and E2 may form a singular pencil and then some of the generalized
eigenvalues cannot be defined (in Schur decomposition both aii and bii are equal to
0).

n "Infinite" generalized eigenvalue when E1 has at least one eigenvalue equal to 0. This
will cause the eigenvector for the "infinite" eigenvalue to be less accurate.

Additionally calculating x4 and c5, s5 from the eigenvector cannot be used if the geometric
multiplicity is greater than 1. A few user defined constants are used to deal with the
situation

n A constant to check whether the eigenvalue is real or complex. Consider λ = λR+λii
where i =

√
−1. Then define the constant εI as

λ′ =
{
λR + λIi, |λI | > εI
λR, otherwise (A.46)

and discard all λ′s that are complex.

n A constant to check for greater algebraic multiplicity. Consider two eigenvalues λ′1
and λ′2. Define a constant εR such as two λ′1 and λ′2 are considered as a single
eigenvalue with algebraic multiplicity of two when

|λ′1| − |λ
′
2| < εR (A.47)

More than two eigenvalues can be clustered this way. It is safer to use the actual
eigenvalues and treat them as if they had greater algebraic multiplicity each. Do not
add arithmetic mean of the clustered eigenvalues as it will be ill-conditioned if there
were two very close eigenvalues that were not completely equal and still got clustered.
There is an optimization step later fixing the case of one eigenvalue with greater
multiplicity.

n A constant is to determine whether the eigenvalue is to be considered infinite. Define
εF such as λ′ is considered infinite when

1
|λ′|

< εF (A.48)

75

Implementation A.3

Another numerical problems occur when calculating x4 and c5, s5 from the eigenvector.
From (A.37) we know that eigenvector looks like

υ =
(

v
x3v

)
Depending on whether |x3| > 1, pick the part with greater numbers for better numerical
accuracy. Furthermore it’s needed to check whether x4 is infinite or not. From (A.38)
check whether |v12| < εF which is true when x4 converges to infinity. Obtain c5, s5 given
the way in (A.38). Check integrity of c5, s5 over their square values. They are valid when

|(c2
5 + s2

5)− 1| < εP (A.49)

in which εP is a user defined constant for perturbation. It is not necessary to use square
root over the sum of the square of sine and cosine but the constant should reflect that.
Then check the integrity of the result by comparing numerical values of v vector with the
newly calculated x4 and c5, s5 for the other rows (e.g. check if v6 = x2

4 etc.). If there is a
mismatch in any check, use the Raghaven and Roth way to calculate x4 and c5, s5.

When using Raghaven and Roth way to calculate c5, s5 and further when calculating c1,
s1, c2, s2 and c6, s6 we have a set of equations with two bounded variables. Consider the
general structure of such set of equations as(

a11 a12
a21 a22

)(
si
ci

)
=
(
b1
b2

)

s2
i + c2

i = 1

(A.50)

This set of equations is solved using LU decomposition from the upper equation, using εS as
a constant to test rank deficiency. Given the rank of the system there may be either infinite
number of solutions (rank is equal to 0), two solutions (rank is equal to 1 but we are bounded
by the second equation, in this case there is either ci given and si = ±sin(arccos(ci)) or
vice versa) or one solution for full rank. Verify the integrity using the second equation with
perturbation constant εP . When solving c1, s1 and c2, s2, member a21 in (A.50) is equal
to zero and LU decomposition is not needed (it’s a sub-matrix over the diagonal of RV, see
(A.40)).

Methods used in solving x4 and c5, s5 may produce numerical error large enough to make
the rest of the algorithm fail in solving the remaining variables in poorly conditioned cases.
In order to minimize the impact of these numerical errors we use Newton optimization over
(A.25). Given that Z(ci, si) can be converted to Z′(x2

i , xi), the local convergence is quadratic
and a few steps are usually enough to minimize the error. The Newton optimization can be
speeded up by approximating the sine and cosine functions of the increment

sin(x+ x0) = sin(x)cos(x0) + cos(x)sin(x0)

cos(x+ x0) = cos(x)cos(x0)− sin(x)sin(x0)

sin(x0) ≈ x0

cos(x0) ≈ 1− x02

2

(A.51)

76

A Inverse Kinematics For A General 6R Manipulator

and define εR as a limit to recalculate the sine and cosine when |x0| > εR. Furthermore
define εN as a tolerance limit for the optimization. The εR and εN should correspond to
each other, in a manner that the error when approximating sine and cosine should be lower
than the optimization tolerance. Use εS to test rank deficiency of the Jacobian in the
Newton optimization.

Finally, numerical accuracy is severely ill-conditioned when using the general 6R algorithm
on more constrained systems, such as 3-2-1 manipulator, especially in their singular con-
figurations. The constrains on such manipulators can be used to simplify the algorithm
however.

A.3.3 Verification

The implementation was verified over several thousand of end-effector poses, with portion
being completely random poses and the other portion being poses in which the algorithm
is poorly conditioned (i.e. choosing values to make xi converge to infinity, singular config-
urations, using more constrained manipulator with some of the axes being parallel or with
two following joins having intersecting axes, while keeping the manipulator general 6R).
We studied the accuracy of the algorithm, classifying it either as poor accuracy or invalid
result, given the deviation between the requested transformation matrix and transformation
matrix obtained through direct kinematics of the returned joint coordinates. Furthermore
we studied that poses generated through direct kinematics are returning the original coordi-
nates and runtime of the algorithm, for both normal and singular configurations. We used
MotoMidMan MA1400, Denavit-Hartenberg notation on table A.1, to test the algorithm
on.

Joint α [◦] a [mm] θ [◦] d [mm]

1. −90 150 0 450

2. 180 614 270 0

3. −90 200 0 0

4. 90 0 0 −640

5. 90 30 270 0

6. 0 0 0 200

Table A.1. MotoMidMan MA1400 Denavit-Hartenberg Notation

An example run of the verification algorithm can be seen on table A.2. The difference
between the requested and the obtained transformation matrix is divided into three groups.
If the difference is lower than 0.01 mm in location and 0.001 in rotation matrix (square
root of the sum of squares of the elements) then it’s considered accurate. If the difference
is higher than 1 mm or 0.1 in rotation matrix then it’s considered incorrect. Everything in
between is considered inaccurate.

77

Implementation A.3

Standard Positions

Correct solutions 13222

Inaccurate solutions 164

Incorrect solutions
from which detected as unreachable

0
0

Solutions not returning original DKT coordinates 0

Total successfulness
including inaccurate results

98.77 %
100.00 %

Singluar Positions

Correct solutions 11205

Inaccurate solutions 61

Incorrect solutions
from which detected as unreachable

0
0

Solutions not returning original DKT coordinates 2

Total successfulness
including inaccurate results

99.46 %
100.00 %

Unreachable Positions

Unreachable positions correctly detected 1000

Non-existing solutions found by mistake 0

Positions turned out to be reachable 0

Inaccurate reachable positions 0

Total successfulness
including inaccurate results

100.00 %
100.00 %

Statistics

Poses requiring Newton optimization 15978

Poses ineligible for eigenvector method 7936

Singular poses 3998

IKT runtime
for singular poses

1.30 ms
1.17 ms

Total

Total tested poses 25652

Total correct solutions 25427

Total correct inaccurate solutions 225

Total correct incorrect solutions 0

Total successfulness
including inaccurate results

99.12 %
100.00 %

Table A.2. Inverse Kinematics Verification

78

A Inverse Kinematics For A General 6R Manipulator

A.3.4 Conclusion

In this report we presented a description and an implementation of the general 6R manipula-
tor inverse kinematics task. The algorithm starts with several steps of symbolic preprocessing
and uses matrix decompositions to reduce the problem to generalized eigenvalue problem.
The numerical accuracy of the algorithm was well analyzed and a couple of user defined
constants were defined to accomplish the required accuracy and keep the performance on
industrial level. The algorithm was extensively tested on various end-effector poses including
poorly conditioned ones. Average runtime of the algorithm was 1.2 ms. This algorithm can
be directly extended on any general 6R manipulator, with the exception of more constrained
manipulators, such as 3-2-1 manipulator, which require further simplification of the process
due to persistent poor conditioning in the general 6R algorithm.

79

Documentation A.4

A.4 Documentation

A.4.1 Platform

The algorithm was implemented in C using LAPACK and BLAS libraries. The manipulator
specific matrices are prefabricated inside MAPLE and exported to C environment, using
milimeters for the distance and radians for the angles. The implementation intends to
provide accurate result for every possible end-effector pose rather than keeping the runtime
as low as possible, it was also left in easily readable state for matrix indexing and to easen
potential further modifications or improvements. The current runtime is around 1.2 ms
which is sufficient enough for practical usage. The implementation will work on Windows,
Linux (both 32-bit and 64-bit) and other platforms, provided they are supported by LAPACK
and BLAS. Please note that LAPACK is written in Fortran and uses column major order in
matrix indexing.

A.4.2 Numerical Optimization

Numerical optimization and tolerance of the method is recommended to be relevant to the
actual manipulator accuracy and repeatability. Given the usual manipulator repeatability to
be around 0.02 mm, the default values for numerical optimization were set to give a result
with maximal error around 0.001 mm in the distance and 0.0001 in the angles represented
by rotation matrix (the error is calculated as a square root of the sum of squares of the
elements). The numerical optimization setup is represented by the following structure in
the algorithm:

typedef s t ruc t
{

double p e r t u r b a t i o n ;
double i m a g i n a r y _ t o l ;
double r o o t _ t o l ;
double e i g e n v a l u e _ s a f e t y ;
double e i g e n v a l u e _ i n f i n i t e _ l i m i t ;
double o p t i m i z a t i o n _ t o l ;
i n t opt im iza t i on_max_steps ;
double o p t i m i z a t i o n _ b i g d i f f _ t o l ;
i n t o p t i m i z a t i o n _ b i g d i f f _ e x t r a _ s t e p s ;
double o p t i m i z a t i o n _ r e c a l c _ l i m i t ;
double d u l p i c a t e _ s o l u t i o n _ t o l ;
i n t t e s t _ j o i n t _ l i m i t s ;

} g e n 6 r i k t _ l i m i t s _ t ;

The members of the gen6rikt_limits_t structure have the following meaning:

n perturbation is used as εQ, εS and partly as εP i.e. to test rank deficiency and numer-
ical error in all intermediate results that have already passed numerical optimization.

80

A Inverse Kinematics For A General 6R Manipulator

n imaginary_tol is εI i.e. the constant to determine whether the eigenvalue is real or
complex

n root_tol is εR i.e. the constant for clustering eigenvalues into one with greater
multiplicity

n eigenvalue_safety is used as εP for solving x4 and c5, s5 from the eigenvector in
order to verify the integrity of the eigenvector

n eigenvalue_infinite_limit is εF i.e. the constant to check whether the eigenvalue is
considered finite or not

n optimization_tol is εN i.e. the tolerance for the Newton optimization, below which
it will not optimize further

n optimization_max_steps defines the maximum number of steps in the Newton op-
timization

n optimization_bigdiff_tol is used to determine whether the deviation in the Newton
optimization is considered too high and allows more steps in the optimization

n optimization_bigdiff_extra_steps is the number of extra steps in the Newton op-
timization if there is a high deviation

n optimization_recalc_limit is εR i.e. the constant to determine whether in the New-
ton optimization we should recalculate sine a cosine for some of the arguments

n dulpicate_solution_tol is a tolerance in joint coordinates to determine duplicate
solutions, this may usually occur when there is an eigenvalue with greater algebraic
multiplicity

n test_joint_limits is just for debugging purposes, whether to use the manipulator
joint limits to discard invalid solutions

A.4.3 Doxygen

Doxygen documentation describing the functions and other structures in detail is provided
separately along with the implementation in C.

81

Appendix B
Tumbl Technical Reference Manual

This chapter contains an overview of Tumbl registers, interrupts and instruction set. Pe-
ripherals wired in memory space are described in appendix D.

B.1 General Purpose Registers
The following table overviews the convention of general purpose registers, alongside whether
it belongs to hardware enforcement or is up to the convention.

Registers Enforcement Description
R0 HW Always has a value of zero, writings are discarded
R1 SW Stack pointer
R2 SW Read-only small data area anchor
R3 - R4 SW Returning values
R5 - R10 SW Passing parameters
R11 - R12 SW Temporaries
R13 SW Read-only small data area anchor
R14 HW Return address for interrupt
R15 SW Return address for subroutines
R16 - R17 SW Local stack, must be saved across function calls.
R18 SW Reserved for assembler
R19 - R31 SW Local stack, must be saved across function calls.

Table B.1. General purpose registers overview

B.2 Condition Evaluation
The following table overview condition evaluation.

Name Semantics Evaluation
EQ a = b Rd = 0
NE a 6= b Rd != 0
LT a < b Rd[31] = 1
LE a ≤ b Rd[31] = 1 or Rd = 0
GT a > b Rd[31] = 0 and Rd != 0
GE a ≥ b Rd[31] = 0

Table B.2. Condition Evaluation

82

B Tumbl Technical Reference Manual

B.3 Special Registers
The only special available register is the machine status register, MSR:

Bit Code Description
31 - 3 N/A Reserved
2 C Carry bit
1 IE Interrupt enable bit
0 N/A Reserved

Table B.3. Machine status register

B.4 Interrupts
Tumbl only supports single interrupt request type, branching to address 0x0000 0010 and
setting interrupt enable bit in machine status register to 0. It has a designated instruction
RTID to return from interrupt, setting the interrupt enable bit back to 1. R14 is a register
used to assign the returning address and the core executes branching with link operation.
There is no banking support, and thus all registers have to be saved, this also includes
carry-bit in MSR, which has to be manually saved using MTS instruction and then restored
using MFS instruction.

B.5 Instruction Set
All Tumbl instructions have fixed length of 32 bits and most of them keep the same binary
encoding as with original Microblaze processor. Table B.5 describes the nomenclature used
in the semantics of each instruction. The instruction set is on table B.5.

Symbol Description
Ra R0-R31, General purpose register, R0 is always 0, source operand a
Rb R0-R31, General purpose register, R0 is always 0, source operand b
Rd R0-R31, General purpose register, R0 cannot be written to, destination operand 1
Sd Special purpose destination register
Sa Special purpose source operand register
Cnd Conditional operand, used for conditional branching and if-then instructions, see table B.2
Cnd(Ra) Conditional operant evaluation
Cnd(Ra,Rb) Assume Rd := Ra + Rb + 1 and then see Cnd(Rd)
Imm 16-bit signed immediate value operand b, can be extended with IMM instruction to 32 bits
Imm5 5-bit unsigned immediate value operand b, cannot be extended
MSR Machine status register
C Carry bit from machine status register
Addr Memory contents of Addr (32-bit aligned)
x Bit inverted value of x
:= Assignment operation
= Equality comparison
!= Inequality comparison
> Greater than comparison

83

Instruction Set B.5

Symbol Description
>= Greater than or equals comparison
< Lesser than comparison
<= Lesser than or equals comparison
+ Arithmetic add
* Arithmetic multiply
<< x Bit shift right x bits
>> x Bit shift left x bits
and Logic and
or Logic or
xor Logic exclusive or
& Concatenation
signed Operation performed on signed integer datatype, this is the default mode unless specified otherwise
unsigned Operation performed on unsigned integer datatype

Table B.4. Tumbl Instruction Nomenclature

Directive 0-5 6-10 11-15 16-20 21-31 Semantics
ADD Rd, Ra, Rb 000000 Rd Ra Rb 00000000000 Rd := Ra + Rb

RSUB Rd, Ra, Rb 000001 Rd Ra Rb 00000000000 Rd := Ra + Rb + 1

ADDC Rd, Ra, Rb 000010 Rd Ra Rb 00000000000 Rd := Ra + Rb + C

RSUBC Rd, Ra, Rb 000011 Rd Ra Rb 00000000000 Rd := Ra + Rb + C

ADDK Rd, Ra, Rb 000100 Rd Ra Rb 00000000000 Rd := Ra + Rb
C := Rd[32]

RSUBK Rd, Ra, Rb 000101 Rd Ra Rb 00000000000 Rd := Ra + Rb + 1
C := Rd[32]

ADDKC Rd, Ra, Rb 000110 Rd Ra Rb 00000000000 Rd := Ra + Rb + C
C := Rd[32]

RSUBKC Rd, Ra, Rb 000111 Rd Ra Rb 00000000000 Rd := Ra + Rb + C
C := Rd[32]

MUL Rd, Ra, Rb 010000 Rd Ra Rb 00000000000 Rd := Ra * Rb

BSRL Rd, Ra, Rb 010001 Rd Ra Rb 00000000000 Rd := 0 & Ra >> Rb[4:0]

BSRA Rd, Ra, Rb 010001 Rd Ra Rb 01000000000 Rd := Ra >> Rb[4:0]
arithmetic shift

BSLL Rd, Ra, Rb 010001 Rd Ra Rb 10000000000 Rd := Ra << Rb[4:0] & 0

CMP Rd, Ra, Rb 010010 Rd Ra Rb 00000000000 Rd := Ra + Rb + 1
Rd[0] := 0 if Rb >= Ra else
Rd[0] := 1

CMPU Rd, Ra, Rb 010011 Rd Ra Rb 00000000000 Rd := Ra + Rb + 1
Rd[0] := 0 if Rb >= Ra else
Rd[0] := 1, unsigned

IT Cnd, Ra, Rb 010100 00 & Cnd Ra Rb 00000000000 Cnd(Ra,Rb)
if-then conditional execution

ITT Cnd, Ra, Rb 010100 01 & Cnd Ra Rb 00000000000 Cnd(Ra,Rb)
if-then-then conditional execution

ITE Cnd, Ra, Rb 010100 10 & Cnd Ra Rb 00000000000 Cnd(Ra,Rb)
if-then-else conditional execution

ITU Cnd, Ra, Rb 010100 00 & Cnd Ra Rb 00000000000 Cnd(Ra,Rb), unsigned
if-then conditional execution

ITTU Cnd, Ra, Rb 010100 01 & Cnd Ra Rb 00000000000 Cnd(Ra,Rb), unsigned
if-then-then conditional execution

ITEU Cnd, Ra, Rb 010100 10 & Cnd Ra Rb 00000000000 Cnd(Ra,Rb), unsigned
if-then-else conditional execution

84

B Tumbl Technical Reference Manual

Directive 0-5 6-10 11-15 16-20 21-31 Semantics
OR Rd, Ra, Rb 100000 Rd Ra Rb 00000000000 Rd := Ra or Rb

AND Rd, Ra, Rb 100001 Rd Ra Rb 00000000000 Rd := Ra and Rb

XOR Rd, Ra, Rb 100010 Rd Ra Rb 00000000000 Rd := Ra xor Rb

ANDN Rd, Ra, Rb 100011 Rd Ra Rb 00000000000 Rd := Ra and Rb

CLZ Rd, Ra 100100 Rd Ra 00000 00000000000 Rd := 31 - ceil(log2(Ra))
Rd := 32 when Ra = 0

SRA Rd, Ra 100100 Rd Ra 00000 00000000001 Rd := Ra >> 1
Rd[31] := Ra[31], C := Ra[0]

SRC Rd, Ra 100100 Rd Ra 00000 00000100001 Rd := Ra >> 1
Rd[31] := C, C := Ra[0]

SRL Rd, Ra 100100 Rd Ra 00000 00001000001 Rd := Ra >> 1
Rd[31] := 0, C := Ra[0]

SEXT8 Rd, Ra 100100 Rd Ra 00000 00001100000 Rd := Ra[24:31]
signed extension

SEXT16 Rd, Ra 100100 Rd Ra 00000 00001100001 Rd := Ra[16:31]
signed extension

MTS Sd, Ra 100101 00000 Ra 11 & Sd Sd := Ra
MSR is the only supported Sd

MFS Rd, Sa 100101 Rd 00000 10 & Sa Rd := Sa
MSR is the only supported Sa

BR Rb 100110 00000 00000 Rb 00000000000 PC := PC + Rb

BRL Rd, Rb 100110 Rd 00100 Rb 00000000000 PC := PC + Rb
Rd := PC

BRA Rb 100110 00000 01000 Rb 00000000000 PC := Rb

BRAL Rd, Rb 100110 Rd 01100 Rb 00000000000 PC := Rb
Rd := PC

BRD Rb 100110 00000 10000 Rb 00000000000 PC := PC + Rb
Uses delay slot

BRLD Rd, Rb 100110 Rd 10100 Rb 00000000000 PC := PC + Rb
Rd := PC + 4
Uses delay slot

BRAD Rb 100110 00000 11000 Rb 00000000000 PC := Rb
Uses delay slot

BRALD Rd, Rb 100110 Rd 11100 Rb 00000000000 PC := Rb
Rd := PC + 4
Uses delay slot

BRC Cnd, Ra, Rb 100111 00 & Cnd Ra Rb 00000000000 if Cnd(Ra) then
PC := PC + Rb

BRCD Cnd, Ra, Rb 100111 10 & Cnd Ra Rb 00000000000 if Cnd(Ra) then
PC := PC + Rb
Uses delay slot

LBU Rd, Ra, Rb 110000 Rd Ra Rb 00000000000 Addr := Ra + Rb
Rd[0:23] := 0
Rd[24:31] := *Addr[0:7]

LHU Rd, Ra, Rb 110001 Rd Ra Rb 00000000000 Addr := Ra + Rb
Rd[0:15] := 0
Rd[16:31] := *Addr[0:15]

LW Rd, Ra, Rb 110010 Rd Ra Rb 00000000000 Addr := Ra + Rb
Rd := *Addr

SB Rd, Ra, Rb 110100 Rd Ra Rb 00000000000 Addr := Ra + Rb
*Addr[0:7] := Rd[0:7]

SH Rd, Ra, Rb 110100 Rd Ra Rb 00000000000 Addr := Ra + Rb
*Addr[0:15] := Rd[0:15]

SW Rd, Ra, Rb 110100 Rd Ra Rb 00000000000 Addr := Ra + Rb
*Addr := Rd

85

Instruction Set B.5

Directive 0-5 6-10 11-15 16-31 Semantics
ADDI Rd, Ra, Imm 001000 Rd Ra Imm[15:0] Rd := Ra + Imm

RSUBI Rd, Ra, Imm 001001 Rd Ra Imm[15:0] Rd := Ra + Imm + 1

ADDCI Rd, Ra, Imm 001010 Rd Ra Imm[15:0] Rd := Ra + Imm + C

RSUBCI Rd, Ra, Imm 001011 Rd Ra Imm[15:0] Rd := Ra + Imm + C

ADDIK Rd, Ra, Imm 001100 Rd Ra Imm[15:0] Rd := Ra + Imm
C := Rd[32]

RSUBIK Rd, Ra, Imm 001101 Rd Ra Imm[15:0] Rd := Ra + Imm + 1
C:= Rd[32]

ADDIKC Rd, Ra, Imm 001110 Rd Ra Imm[15:0] Rd := Ra + Imm + C
C := Rd[32]

RSUBIKC Rd, Ra, Imm 001111 Rd Ra Imm[15:0] Rd := Ra + Imm + C
C:=Rd[32]

MULI Rd, Ra, Imm 011000 Rd Ra Imm[15:0] Rd := Ra * Imm

BSRLI Rd, Ra, Imm5 011001 Rd Ra 00000000000 & Imm5 Rd := 0 & Ra >> Imm5

BSRAI Rd, Ra, Imm5 011001 Rd Ra 00000010000 & Imm5 Rd := Ra >> Imm5
arithmetic shift

BSLLI Rd, Ra, Imm5 011001 Rd Ra 00000100000 & Imm5 Rd := Ra << Imm5 & 0

CMPI Rd, Ra, Rb 011010 Rd Ra Imm[15:0] Rd := Ra + Imm + 1
Rd[0] := 0 if Imm >= Ra else
Rd[0] := 1

CMPUI Rd, Ra, Rb 011011 Rd Ra Imm[15:0] Rd := Ra + Imm + 1
Rd[0] := 0 if Imm >= Ra else
Rd[0] := 1, unsigned

ITI Cnd, Ra, Imm 011100 00 & Cnd Ra Imm[15:0] Cnd(Ra,Imm)
if-then conditional execution

ITTI Cnd, Ra, Imm 011100 01 & Cnd Ra Imm[15:0] Cnd(Ra,Imm)
if-then-then conditional execution

ITEI Cnd, Ra, Imm 011100 10 & Cnd Ra Imm[15:0] Cnd(Ra,Imm)
if-then-else conditional execution

ITUI Cnd, Ra, Imm 011100 00 & Cnd Ra Imm[15:0] Cnd(Ra,Imm), unsigned
if-then conditional execution

ITTUI Cnd, Ra, Imm 011100 01 & Cnd Ra Imm[15:0] Cnd(Ra,Imm), unsigned
if-then-then conditional execution

ITEUI Cnd, Ra, Imm 011100 10 & Cnd Ra Imm[15:0] Cnd(Ra,Imm), unsigned
if-then-else conditional execution

ORI Rd, Ra, Imm 100000 Rd Ra Imm[15:0] Rd := Ra or Imm

ANDI Rd, Ra, Imm 100001 Rd Ra Imm[15:0] Rd := Ra and Imm

XORI Rd, Ra, Imm 100010 Rd Ra Imm[15:0] Rd := Ra xor Imm

ANDNI Rd, Ra, Imm 100011 Rd Ra Imm[15:0] Rd := Ra and Imm

IMM Imm 101100 000000 000000 Imm[31:16] Sets Imm[31:16] valid for next
instruction only

RTS Ra, Imm 101101 00000 Ra Imm[15:0] PC := Ra + Imm

RTI Ra, Imm 101101 00001 Ra Imm[15:0] PC := Ra + Imm
MSR[IE] := 1

RTSD Ra, Imm 101101 10000 Ra Imm[15:0] PC := Ra + Imm
Uses delay slot

RTID Ra, Imm 101101 10001 Ra Imm[15:0] PC := Ra + Imm
MSR[IE] := 1
Uses delay slot

86

B Tumbl Technical Reference Manual

Directive 0-5 6-10 11-15 16-31 Semantics
BRI Imm 100110 00000 00000 Imm[15:0] PC := PC + Imm

BRLI Rd, Imm 100110 Rd 00100 Imm[15:0] PC := PC + Imm
Rd := PC

BRAI Rb 100110 00000 01000 Imm[15:0] PC := Imm

BRALI Rd, Imm 100110 Rd 01100 Imm[15:0] PC := Imm
Rd := PC

BRID Rb 100110 00000 10000 Imm[15:0] PC := PC + Imm
Uses delay slot

BRLID Rd, Imm 100110 Rd 10100 Imm[15:0] PC := PC + Imm
Rd := PC + 4
Uses delay slot

BRAID Imm 100110 00000 11000 Imm[15:0] PC := Imm
Uses delay slot

BRALID Rd, Imm 100110 Rd 11100 Imm[15:0] PC := Imm
Rd := PC + 4
Uses delay slot

BRCI Cnd, Ra, Imm 100111 00 & Cnd Ra Imm[15:0] if Cnd(Ra) then
PC := PC + Imm

BRCID Cnd, Ra, Imm 100111 10 & Cnd Ra Imm[15:0] if Cnd(Ra) then
PC := PC + Imm
Uses delay slot

LBUI Rd, Ra, Imm 110000 Rd Ra Imm[15:0] Addr := Ra + Imm
Rd[0:23] := 0
Rd[24:31] := *Addr[0:7]

LHUI Rd, Ra, Imm 110001 Rd Ra Imm[15:0] Addr := Ra + Imm
Rd[0:15] := 0
Rd[16:31] := *Addr[0:15]

LWI Rd, Ra, Imm 110010 Rd Ra Imm[15:0] Addr := Ra + Imm
Rd := *Addr

SBI Rd, Ra, Imm 110100 Rd Ra Imm[15:0] Addr := Ra + Imm
*Addr[0:7] := Rd[0:7]

SHI Rd, Ra, Imm 110100 Rd Ra Imm[15:0] Addr := Ra + Imm
*Addr[0:15] := Rd[0:15]

SWI Rd, Ra, Imm 110100 Rd Ra Imm[15:0] Addr := Ra + Imm
*Addr := Rd

HALT Imm5 111111 00000 00000 00000000000 & Imm5 HaltCode := Imm5
Halts processor with code Imm5

Table B.5. Tumbl instruction set

87

Appendix C
Tumbl C lanugage support

This chapter overviews building the pieces of Tumbl toolchain. The target was named
mbtumbl-elf and throughout configuration choose the same path for prefix and system
root for all tools, with placeholders as /path/to/prefix and /path/to/sysroot.

C.1 binutils
binutils were patched for customized instruction and providing disassembled code. You can
build them as:

> c o n f i g u r e −−with−gnu−as −−with−gnu−l d −−d i s a b l e−n l s
−−t a r g e t=mbtumbl−e l f −−with−s y s r o o t=/path / to / s y s r o o t
−−p r e f i x =/path / to / p r e f i x
> make
> make i n s t a l l

Note that binutils by default do not clean up redundant IMM instructions, unless you pass
-relax as a parameter.

C.2 gcc
gcc was patched with Tumbl machine descriptor for its C compiler and libgcc. Building it
is a little bit more complicated:

> c o n f i g u r e −−t a r g e t=mbtumbl−e l f −−with−pp l=no −−with−c l oog=no
CFLAGS_FOR_TARGET=−O2 CFLAGS_FOR_BUILD=−O2 −−d i s a b l e−sha r ed
−−d i s a b l e−t h r e a d s −−d i s a b l e−m u l t i l i b −−with−new l i b
−−enab le−l a nguage s=c −−d i s a b l e−l i bquadmath −−d i s a b l e−l ibgomp
−−d i s a b l e− l i b s s p −−d i s a b l e− s j l j −e x c e p t i o n s −−d i s a b l e−n l s
−−with−s y s r o o t=/path / to / s y s r o o t −−p r e f i x =/path / to / p r e f i x
> make a l l −gcc
> make i n s t a l l −gcc
copy new l i b f o l d e r
> make a l l −t a r g e t− l i b g c c
> make i n s t a l l −t a r g e t− l i b g c c

As you can see, many things were disabled due to missing support or generally not being
needed. There are few more thing to note: no optimization has been made and gcc
doesn’t support conditional execution instructions, IT, ITT, ITE and derived instructions.
CLZ instruction is also not supported. As of now, any optimization has to be made by
hand, however given that MicroBlaze is a synthesized core and not mainstream, no real
optimization was ever made for it, unlike for ARM and x86. The reason why newlib has

88

C Tumbl C lanugage support

to be built in the middle is that libgcc relies on it’s header files. You may also need to
manually create /path/to/sysroot/usr/include.

C.3 newlib
newlib was patched slightly, to deal with assembler changes. You can build it as:

> c o n f i g u r e −−t a r g e t=mbtumbl−e l f −−p r e f i x =/path / to / s y s r o o t / u s r
−−d i s a b l e−m u l t i l i b −−d i s a b l e−newl ib−s u p p l i e d−s y s c a l l s
−−d i s a b l e−sha r ed CFLAGS_FOR_TARGET=’ ’−g −O2 − f f u n c t i o n−s e c t i o n s
−fda ta−s e c t i o n s ’ ’
> make
> make i n s t a l l

You may need to move the headers from mbtumbl-elf subdirectory up one level after
installing.

89

Appendix D
Memory Map

This chapter is a summary of registers available and memory spaces for both master CPU
and Tumbl.

D.1 Master CPU Memory Map

Master CPU memory space covering FPGA peripherals is 0x8000 0000 - 0x8003 FFFF.

Register Address Type Description
Tumbl Control 0x8000 3000 RW Bits 31:5: reserved
Register Bit 4 (R): Tumbl is halted using HALT

instruction
Bit 3 (RW): Toggles trace mode
Bit 2 (RW): Write 1 to halt Tumbl (externally)
Bit 1 (RW): Toggles interrupt, must be unset

manually
Bit 0 (RW): Toggles reset, must be unset

manually
Reset value: 0x0000 0001

Tumbl Trace Kick 0x8000 3004 W Write 1 to pass one clock cycle to Tumbl,
resumes execution when Tumbl is halted with
HALT instruction

Tumbl Program 0x8000 3008 R Tumbl program counter
Counter
Tumbl Halt Code 0x8000 300C R Halt code when Tumbl is halted with HALT

instruction
Measurement RD 1 0x8000 7FF0 R Returns constant value 0xAAAAAAAA,

used to test memory reading
Measurement WR 1 0x8000 7FF4 RW Used to test memory writing
Measurement RD 2 0x8000 7FF8 R Returns constant value 0x55555555,

used to test memory reading
Measurement WR 2 0x8000 7FFC RW Used to test memory writing

Table D.1. Master CPU registers

Start Address End Address Description
0x8000 0000 0x8000 07FF Tumbl instruction memory
0x8000 1000 0x8000 1FFF Tumbl data memory

Table D.2. Master CPU memory spaces

90

D Memory Map

D.2 Tumbl Memory Map
All Tumbl registers are available as well to master CPU. Tumbl external memory space is
covered in address range 0x8002 0000 - 0x8003 FFFF with 0x8002 0000 as the base
address.

Register Tumbl Address Type Description
Master CPU Address

IRC 1 Count 0x0000 2000 RW IRC 1 count
0x8002 2000

IRC 1 Index 0x0000 2004 RW IRC 1 index count
0x8002 2004

IRC 2 Count 0x0000 2008 RW IRC 2 count
0x8002 2008

IRC 2 Index 0x0000 200C RW IRC 2 index count
0x8002 200C

IRC 3 Count 0x0000 2010 RW IRC 3 count
0x8002 2010

IRC 3 Index 0x0000 2014 RW IRC 3 index count
0x8002 2014

IRC 4 Count 0x0000 2018 RW IRC 4 count
0x8002 2018

IRC 4 Index 0x0000 201C RW IRC 4 index count
0x8002 201C

IRC 1 Status 0x0000 2020 RW Bits 31:2: reserved
0x8002 2020 Bit 1 (RW): Read error decoding A and B

signals in quad counter, write
1 to reset it

Bit 0 (R): IRC 1 Mark
IRC Reset 0x0000 2024 RW Bits 31:1: reserved

0x8002 2004 Bit 0: Write 1 to reset IRC
peripherals, defaults to 1,
must be cleared manually

IRC 2 Status 0x0000 2028 RW Bits 31:2: reserved
0x8002 2028 Bit 1 (RW): Read error decoding A and B

signals in quad counter, write
1 to reset it

Bit 0 (R): IRC 2 Mark
IRC 3 Status 0x0000 2030 RW Bits 31:2: reserved

0x8002 2030 Bit 1 (RW): Read error decoding A and B
signals in quad counter, write
1 to reset it

Bit 0 (R): IRC 3 Mark
IRC 4 Status 0x0000 2038 RW Bits 31:2: reserved

0x8002 2038 Bit 1 (RW): Read error decoding A and B
signals in quad counter, write
1 to reset it

Bit 0 (R): IRC 4 Mark

Table D.3. Tumbl registers

91

Tumbl Memory Map D.2

Tumbl Start Address Tumbl End Address Description
Master CPU Start Address Master CPU End Address

0x0000 2400 0x0000 25FF LX Master memory, 16-bit word
0x8002 2400 0x8002 25FF size, upper 16 bits set to 0

when reading and discarded
when writing

Table D.4. Tumbl memory spaces

Tumbl instruction memory is wired on 0x0000 0000 - 0x0000 07FF address range (on
instruction fetch bus, cannot be used for data) and data memory is wired on 0x0000 0000
- 0x0000 0FFF address range.

92

Bibliography
[1] J. Denavit and R. S. Hartenberg, A kinematic notation for lower-pair mechanisms based

upon matrices, J. App. Mechanics, 77, pp. 215-221, 1955.

[2] M. Raghavan and B. Roth, Kinematic analysis of the 6R manipulator of general geom-
etry, Int. Symp. Robotics Res., pp. 314-320, Tokyo, 1989.

[3] M. Raghavan and B. Roth„ Inverse kinematics of the general 6R manipulator and related
linkages, Trans. ASME J. Mech. Des, pp 502-508, 1993.

[4] J. Manocha and J. F. Canny, Real time Inverse Kinematics for General 6R Manipulators,
IEEE International Conference Robotics and Automation pp. 383-389, 1992.

[5] J. Manocha and J. F. Canny, Efficient Inverse Kinematics for General 6R Manipulators,
IEEE Transactions on Robotics and Automation, Vol. 10, No. 5, pp. 648-657, October
1994.

[6] Songguo Liu and Shiqiang Zhu, An Optimized Real Time Algorithm for the Inverse Kine-
matics of General 6R Robots, IEEE International Conference Robotics and Automation
pp. 2080-2084, 2007.

[7] V. Burian, Control of brush-less DC motors with use of FPGA device, Bachelor Thesis
CTU FEE, 2011.

[8] K. Skup, Motion Control for Mobile Robot, Bachelor Thesis CTU FEE, 2007.

[9] PiKRON Ltd., PXMC library, http://pxmc.org/, 2001-2014.

[10] Xilinx, Inc., MicroBlaze Processor Reference Guide, http://xilinx.com/, UG081.

[11] Freescale Semiconductor, Inc., PMSM Vector Control with Quadrature Encoder on
Kinetis, http://freescale.com/, 2012.

[12] T. Kranenburg, MB-Lite, http://opencores.org/project,mblite,overview, 2012.

[13] H. J. Lincklaen Arriëns, MB-Lite+, http://ens.ewi.tudelft.nl/ huib/vhdl/mb-
lite_plus.php, April 2012.

[14] O. Girard, openMSP430, http://opencores.org/project,openmsp430, 2014.

[15] S. Rhoads, Plasma - most MIPS I(TM) opcodes, http://opencores.org/project,plasma,
2013.

[16] L. Barthe and L. V.Cargnini and P. Benoit and L. Torres, The SecretBlaze: A Config-
urable and Cost-Effective Open-Source Soft-Core Processor, IEEE International Sym-
posium on Digital Object Identifier, pp. 310-313, 2011.

[17] Digi-key Corporation, http://www.digikey.com/, 2014.

[18] System-less framework, http://rtime.felk.cvut.cz/hw/index.php/System-
Less_Framework, 2014.

93

Bibliography

[19] NXP Semiconductors, Inc., LPC17xx User Manual, August 2010.

[20] Xilinx, Inc., Spartan-6 FPGA Configuration, 2013.

[21] Mentor Graphics, ModelSim User’s Manual, 2012.

[22] PiKRON Ltd., LX_CPU, http://pikron.com/pages/products/cpu_boards/lx_cpu.html,
2014.

[23] M. Meloun and T. Pajdla, Inverse Kinematics For A General 6R Manipulator, Research
Reports of CMP, Czech Technical University in Prague, CTU–CMP–2013–29, 2013,

94

	Introduction
	PMSM Motor Controller
	Planning

	Platform
	Choosing A Platform
	Sysless Framework
	Synthesized CPU Cores
	The Platform
	Spartan-6 Wiring And Configuration
	Slave Memory Controller
	Power Stage Module

	FPGA Peripherals Analysis
	Parallelism
	Selecting A Synthesized Processor
	IRC Peripheral
	Power Stage Module Communication

	Tumbl Co-processor Core
	Overview
	Minimalization Of The Core
	Co-processor Modifications
	Core Modifications
	Conditional Execution
	Branching With Link
	Count Leading Zeroes
	Instruction Binary Encoding Changes
	Assembler Changes

	Processor Pipeline
	Instruction Fetch
	Instruction Decode
	Execution
	Memory And Writeback
	General Purpose Register File
	Core Component
	Top Module

	Division
	External Memory Interface
	C lanugage support
	Pipeline Balance

	Tumbl Co-processor Implementation
	Enumerations
	Records
	Entities
	Instruction Fetch
	Instruction Decode
	Execution
	Memory And Writeback
	Core Component

	Platform Entities
	General Purpose Registers File

	Top Module

	Other FPGA Peripherals
	IRC Co-processor
	Operation

	LX Master
	Operation

	FPGA Simulation
	ModelSIM Setup
	Tumbl Simulations
	Processor Core
	Cycle Counting
	Tumbl External Memory Interface Collisions

	IRC Co-processor
	LX Master Transmission
	Master CPU Online Debugging

	Conclusion
	Inverse Kinematics For A General 6R Manipulator
	Introduction
	Inverse Kinematics Task
	Formulation
	Raghaven and Roth Solution
	Modified Manocha and Canny Optimization
	Elimination of c1, s1, c2, s2
	Sylvester Dialytic Elimination Method
	Solving x4 and c5, s5

	Solving remaining variables

	Implementation
	Symbolic Preprocessing
	Numerical Substitution
	Verification
	Conclusion

	Documentation
	Platform
	Numerical Optimization
	Doxygen

	Tumbl Technical Reference Manual
	General Purpose Registers
	Condition Evaluation
	Special Registers
	Interrupts
	Instruction Set

	Tumbl C lanugage support
	binutils
	gcc
	newlib

	Memory Map
	Master CPU Memory Map
	Tumbl Memory Map

	Bibliography

