
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY IN PRAGUE

P
hD

T
H
E
S
IS

IS
S
N

12
13
-2
36
5

Linear Predictors for Real-time
Object Tracking and Detection

David Hurych

hurycd1@cmp.felk.cvut.cz

CTU–CMP–2014–04

April 14, 2014

Available at
ftp://cmp.felk.cvut.cz/pub/cmp/articles/hurycd1/Hurych-TR-2014-04.pdf

Thesis Advisor: Tomáš Svoboda, Karel Zimmermann

Czech Science Foundation Project P103/10/1585 and CTU Prague
project SGS11/125/OHK3/2T/13,

Research Reports of CMP, Czech Technical University in Prague, No. 4, 2014

Published by

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz

Linear Predictors for Real-time Object
Tracking and Detection

A dissertation presented to the Faculty of Electrical Engineering
of the Czech Technical University in Prague to meet the requirements for
the Ph.D. degree in study programme No. P 2612 - Electrical Engineering
and Information Technology, branch No. 3902V035 - Artificial Intelligence
and Biocybernetics, by

David Hurych

Prague, April 2014

Supervisor: Doc. Ing. Tomáš Svoboda, Ph.D.

Supervisor-Specialist: Ing. Karel Zimmermann, Ph.D.

Center for Machine Perception
Department of Cybernetics

Faculty of Electrical Engineering
Czech Technical University in Prague

Karlovo náměst́ı 13, 121 35 Prague 2, Czech Republic
fax: +420 224 357 385, phone: +420 224 357 465

http://cmp.felk.cvut.cz

Acknowledgments

I would like to express my sincere gratitude to my supervisor Doc. Ing. Tomáš Svoboda,
Ph.D. and to my supervisor-specialist Ing. Karel Zimmermann, Ph.D. It has been a great
pleasure to work with them and to learn from their experience. Their patience and
support guided me through my Ph.D. study. Also I would like to thank to my colleagues
and friends in the Center for Machine Perception with whom I had the pleasure to work
and discuss.

Abstract

The thesis is focused on fast visual object tracking and detection methods. We use the
linear regression to learn a predictor, which forms a mapping from the image data directly
to the tracking parameters. We improve this popular and widely used concept by learning
specific regression functions, which approximate non-linear regression functions and run
extremely fast during tracking. Our method allows to estimate even a complex non-rigid
object deformation from the image data much faster than in real-time. We apply our
method on various problems including real-time object detection. We also show, how to
use the learnable tracker for instant object tracking. Shrinkage of the learning time to
minimum is necessary, therefore only a few training samples may be used. The tracker is
incrementally learned during the tracking procedure in order to improve its robustness.
A method is proposed for automatic selection of only the useful training samples for
incremental learning. Next we demonstrate, that the predictor learned to track one
image patch is also able to track many other image patches. We show how to use the
learned predictor for fast detection of these trackable patches. Thanks to the efficiency
of the proposed non-linear regression functions we may combine any sequential decision
process (e.g. object detector) with our tracker to run in cooperation in real-time. The
regression functions are jointly learned with a state of the art sliding window object
detector on the same set of features collected from training data. The combination of
both methods significantly improves the detection rates, thanks to the ability to align
the detection window on deformed object instances. Since the combined detector is able
to localize the object position and deformation from its close neighborhood, we speed
up the detection process by a search space reduction.

Contents

1 Introduction 1
1.1 Contributions of the Thesis . 3

2 Object Tracking 6
2.1 State of the Art . 6

2.1.1 Lucas-Kanade vs. Linear Predictors 8
2.1.2 Linear Predictors . 9
2.1.3 Increasing the Precision and Complexity Optimization 10
2.1.4 Incremental On-line Learning and Adaptive Tracking 12
2.1.5 Incremental Learning of Predictors 14

3 Automatic Selection of Training Examples for Incremental Learning 17
3.1 Learning, Tracking, Validation and Incremental Learning 18

3.1.1 Incremental Learning of Sequential Linear Predictor 19
3.1.2 Validation by Voting . 21
3.1.3 Stability Measure and Examples Selection for the Incremental Learn-

ing . 22
3.2 Experiments . 24

3.2.1 Incremental Learning Evaluation 25
3.2.2 Results of Detection and Tracking 26

3.3 Summary . 29

4 Instant Object Detection and Tracking 30
4.1 Related Work . 31
4.2 Theory . 32

4.2.1 Ferns-based Object Detector . 32
4.2.2 Sequential Linear Predictors . 35
4.2.3 The Algorithm . 36

4.3 Experimental Results . 37
4.3.1 Detector Evaluation . 41
4.3.2 Tracker Evaluation . 42
4.3.3 Detector and Tracker evaluation 43
4.3.4 Computation Times . 44

4.4 Summary . 45

5 Deformable Object Tracking 46
5.1 Learning of the Piecewise Linear Predictor 49

vii

Contents

5.1.1 Additional Training Samples Generation 53
5.1.2 Features Selection . 53

5.2 Experiments . 54
5.2.1 Feature Space Partitioning . 57
5.2.2 Piecewise Affine, Linear, Constant Functions Evaluation 57
5.2.3 Additional Training Samples Generation 59
5.2.4 Features Selection . 59

5.3 Summary . 62

6 Detection of LP-trackable Patches 63
6.1 Related Work . 63
6.2 Contribution . 66
6.3 Detector of LP Trackable Points . 66
6.4 Experiments . 69
6.5 Summary . 72

7 Cascade Object Detector with Sliding Window Alignment 73
7.1 Related Work . 73
7.2 Theory . 76
7.3 Experiments . 78
7.4 Summary . 80

8 Non-Rigid Object Detection with Local Interleaved Sequential Alignment
(LISA) 82
8.1 Related Work . 83
8.2 SDP with LISA Classification . 88
8.3 Joint Learning of SDP with LISA . 89
8.4 Learning of Weak Classifiers and Alignment Regressors 92

8.4.1 Learning of Weak Classifiers . 92
8.4.2 Learning of Regressors . 93

8.5 Non-rigid Deformation Model . 94
8.6 Implementation Details . 95
8.7 Experiments . 96

8.7.1 AFW Dataset Results . 98
8.7.2 CSV Dataset Results . 98
8.7.3 Haar vs. HoG Features . 100
8.7.4 Regression Functions Evaluation 100

8.8 Summary . 104

9 Conclusions 106

A Linear Predictors with Appearance Parameters 108

B Greedy Support Set Selection 110

viii

Contents

C Gradient Descent and Lucas-Kanade 112

Bibliography 117

Keywords: object tracking, object detection, regression, predictors, machine learning,
real-time, computer vision

ix

Notation and commonly used symbols

a small and bold font denotes a vector
A capital typewriter font denotes a matrix
A capital italic font denotes a set
rj denotes a regressor operating with a j-th feature
γ denotes a predictor, which is a set of regressors
γs denotes a sequential predictor, which is a sequence of pre-

dictors
ai upper index usually denotes a particular training sample

number

(. . .)T
(

...
)

space or coma separated values in parentheses denote a vec-
tor

[. . .] brackets denote a composition of scalars, vectors and matri-
ces into a new matrix

‖ . . . ‖ euclidean norm of a vector
‖ . . . ‖F Frobenius norm of a matrix

x

1 Introduction

We focus on real-time visual object tracking and detection. The goal of object tracking
is to obtain the motion trajectory of some object. The input data is a video sequence,
captured by a digital camera. Apart from the trajectory we may also be interested in
more complex information about the objects’ pose, e.g. the 3D pose and orientation
in space or a relative position of some objects’ parts (like human limbs) etc. This
object pose information may be obtained either by an object detector from every image
separately or by a tracker in a sequence of images. Object tracking is closely connected to
the task of object detection that is why we focus on both and we explore the posibilities
of combining these methods for mutual benefit.

There are numerous applications, where an object tracking is necessary. Popular ap-
plication is augmented reality, where objects or the whole scene needs to be tracked in
order to be augmented. In movie postproduction industry object tracking is needed for
various tasks, like deletion of undesired objects from the scene or object appearance mod-
ification, automatic video cut, etc. Human face tracking is also very frequent application
as a part of face recognition systems or human-computer interaction. In many security
systems motion tracking is used to monitor some area. Another common application is
tracking cars on streets, which enables automatic traffic monitoring or estimating the
speed of cars. For a robot navigation it is necessary to track and model objects at close
to avoid the collision, or tracking objects is needed for robotic arm performing some
tasks, etc.

Visual object tracking is difficult task for various reasons. The key factors are the
lightning conditions in the scene, the geometrical complexity of the tracked object, the
objects’ texture, speed of the motion, camera framerate and many more. For example
tracking of a specific well textured planar object in good lightning conditions is an easy
task and the tracking results may be very accurate. Objects with a simple and known
geometry may be tracked precisely also in 3D and not only in 2D. An example can be
seen on Figure 1.1, where a wired model of a house is fitted into the scene. It fits very
well to the scene geometry thanks to estimated homography of the tracked mousepad.
A more difficult task is to track a generic object – lets say a human face. It is not
possible to learn a specific tracker for every human face in the planet. But it is possible
to take advantage of machine learning methods and to train a generic tracker from
some representative set of human faces images. See Figure 1.1, where a learned generic
face tracker is used to augment different human faces with glasses and another generic
deformable tracker is used to track human eye opening.

1

1 Introduction

Figure 1.1: Examples of our object tracking results. First row: object specific planar
tracking used to estimate homography, which allows to compute 3D position of the object
and augment it with an artifitial object. Second row: object generic tracker is used to
estimate 3D position of human head. Note, that the same tracker is used on different
people. Third row: deformable object generic tracker estimates fully parameterized
deformation of a human eye lids during opening.

Object tracking essentially means estimation of object pose in an image given the pose
in a previous image. By object pose we mean any type of object motion, deformation,
which we want to estimate. Let us define the image data as a mapping I : R2n → Rn

which takes a set of n two dimensional pixels and to each one of them assigns an intensity
value. The number of input pixels n into the image function will vary according to
current needs. The change of object pose between previous image J and current image
I may be described by some transformation ρ(X, t) of each object point in homogeneous
coordinates ∀(xi, yi, 1)T ∈ X, i ∈ {1, 2, . . . , n}. The transformation is parameterized
by a set of parameters t and a set of object points X, called a support set, on which
the transformation is applied. For example the change of object 2D position, change
in in-plane rotation and scale may be parameterized by a vector of parameters ti =
(∆x,∆y,∆α,∆s)T . With these parameters we may build a transformation ρ described
by a matrix

Wi =

 ∆s cos ∆α −∆s sin ∆α ∆x
∆s sin ∆α ∆s cos ∆α ∆y

0 0 1

 , (1.1)

2

1.1 Contributions of the Thesis

and the support set Xj are transformed from a pose in an image J to a pose in an
image I as folows Xi = WXj . The object pose in a current image Ii given an initial
pose in arbitrary preceeding image I0 is then given by a composition of transformations
(. . . ((ρ0 ◦ ρ1) ◦ ρ2) ◦ · · · ◦ ρi). In our example, the composition would be simply a
multiplication of consecutive transformation matrices W = W0W1 . . . Wi The goal of object
tracking is to estimate the transformation vector t = (t1, t2, . . . , tp)T with p parameters.
In order to do this, we first need to extract some image features fi computed over their
support sets Xi which are placed somewhere in the image by a transformation ρ. Then
the parameters vector t is computed from the image data according to

t = γ(f1(I(ρ(X1, ti−1))), f2(I(ρ(X2, ti−1))), . . . , fk(I(ρ(Xk, ti−1)))). (1.2)

Our task is to design the function γ : Rk → Rp, which will be from now on called
predictor. The predictor is a regression function, which is learned from training data.
Before learning itself we need to select appropriate image features fi : Rn → R, i ∈
{1, . . . , k}. fi is a mapping assigning a feature value to n pixels in the pose specified by
parameters ti−1 estimated in the previous image. Each feature fk works with its own
subset of the support set Xk ∈ X. In the simplest case the feature may be directly the
image intensity value in one particular pixel. From many possible ways of designing γ we
use machine learning methods which learns γ from annotated training samples. Feature
functions should be selected specifically for each type of tracked object according to
its visual appearance and with respect to the required computational complexity. The
advantage of predictors is their low computational complexity during runtime and high
tracking precision.

Object detection is a process of localizing a learned object of interest in each image
separately. No initial position is given and no ordering of images is required, but other-
wise the task is very similar to the object tracking. I.e. the goal is to make a decision
about the object presence or absence in every possible pose of the object in an image.
Let Ω ⊂ Rp be a set of discretized pose parameters vectors, defining possible object
poses in the image. Then an object detector Λ : Rk → {TRUE, FALSE} makes a decision
about the object presence for all the poses ∀ti ∈ Ω as

Λ(f1(I(ρ(X1, ti))), f2(I(ρ(X2, ti))), . . . , fk(I(ρ(Xk, ti)))). (1.3)

The result of object detection in a particular image is a set of poses U ⊂ {Ω ∪ ∅} with
the TRUE votes for object presence.

1.1 Contributions of the Thesis

In our work we have contributed to state of the art visual object tracking and detection.
Mainly we focused on machine learning methods which took advantage of off-line learning
from annotated training samples. Once learned, these methods achieve high precision in

3

1 Introduction

tracking and good detection rates, and keep the fast performance during runtime. We
have achieved a real-time performance in tracking of non-rigid objects and estimating
a fully parameterized deformation of the object. We also contribute to real-time object
detection, by improving the sequential decision process (SDP). Our object detector is
built as SDP and is combined with learned predictors. It is able to detect also the
deformed object instances in real-time. As a part product of a positive detection we get
the objects’ deformation parameters. Here we present a summary of our contributions:

• Since the predictor is learned from some training set, it has a limited generaliza-
tion on object appearences, which were not seen in the training set. It is therefore
necessary to incrementally re-learn the predictor for new object appearances. We
propose an approach for automatic selection of the additional training samples
for incremental learning during tracking and a fast loss-of-track detection method
in Chapter 3. This method was published and presented in 2010 on INSTICC
VISAPP international conference [1]. Next we propose an efficient algorithm for
instant object detection and tracking in high resolution images by combining a pre-
dictor with incremental learning together with Ferns based object detector. This
approach was published and presented in 2011 on INSTICC VISAPP international
conference [2].

• We propose to learn a piecewise linear predictor which approximates nonlinear
regression function, but keeps the fast performance of linear predictor during run-
time. We test this approach on real-time estimation of non-rigid object deformation
in Chapter 5. This work has not yet been published and the plan is to submit it
in the year 2014.

• Apart from widely used approach tracking by detection we also show how the
learned predictor may be used for object detection in Chapter 6. We show, that
a learned tracker may be initialized in multiple poses in the image and the object
exact location is then estimated by a voting procedure. This method was published
and presented in 2011 on international Computer Vision Winter Workshop [3].

• The closely related tasks of object detection and tracking may be efficiently com-
bined in a joint learning scheme in order to achieve better precision. In the first
experiments we combine a sliding window cascade classifier with interleaved 2D
alignment in Chapter 7. This approach was published and presented in 2011 on
IEEE ICARA international conference [4].

• We propose to combine a GentleBoost [5] object detector with jointly learned pre-
dictors on common set of features in order to create a real-time deformable object
detector in Chapter 8. The detector is a sequential decision process, which is
evaluating features in defined order and may decide about the object presence or
absence after each evaluated feature. After each feature evaluation both the detec-
tors’ confidence the information about the current object pose are updated. The

4

1.1 Contributions of the Thesis

estimated information about object pose is immediatelly used to align the following
features which better fit the objects’ pose. We have published and presented this
work in 2012 on IEEE ACCV international conference [6] and extended version in
2014 in IEEE TPAMI [7].

The rest of the thesis is divided into two main parts. In the first part (Chapters 2-5) we
focus on the object tracking and the problem of changing object appearance, validation
of the correct trackers’ pose estimate and with speeding-up the tracker for real-time
tracking of deformable objects. The second part of the thesis (Chapters 6-8) focuses
on combining the tracker and the object detector in order to achieve better detection
results and keep the real-time performance.

5

2 Object Tracking

2.1 State of the Art

Many different methods have been developed for object tracking. Probably the most
popular and successful are methods based on gradient descent [8][9], which align a tem-
plate to an image by minimizing their difference. We describe Lucas-Kanade gradient
descent optimisation briefly in 2.1.1 and in detail in Appendix C. A lot of effort has
been devoted to this method. It has many followers and many different derivations have
been developed. In section 2.1.1 we describe the similarities and differences between the
Lucas-Kanade and linear predictors.

Another very popular approach for object tracking are Linear regression-based meth-
ods [10][11][12]. Linear regression is used to find the mapping between image intensities
(features) and the space of pose parameters used for tracking in the least squares sense.
The tracking model formed by this linear mapping is called a linear predictor. Linear
predictors were used for face tracking in [13][14], for acurate perspective patch rectifi-
cation in [12], and object tracking by an optimal sequence of linear predictors has been
proposed in [11]. We describe linear predictors in detail in section 2.1.2. The advantage
of linear predictors is their extremely fast performance and good precision of prediction.
The disadvantage is that linear predictors need a learning phase before tracking. An-
other disadvantage is that the prediction fails for input data, which were not seen in the
training phase. But the predictor could be incrementally trained during tracking [12]
and with optimisation of the learning process and incremental learning these problems
could be reduced.

Using object detectors for tracking is a method which naturally comes to mind. De-
tectors localise the object in every frame and we may keep the sequence of positions
(object states) as trajectory. There are numerous robust, tried-and-tested object detec-
tors which may be used such as boosted cascade of classifiers [15], histogram of oriented
gradients [16], tracking by support vector machine in [17], etc. Tracking by detection
has many advantages. It naturally handles loss and re-appearance of the object and fast
motion. These detectors are often robust enough to handle sudden changes in object
appearance, because they are trained on large datasets, which cover many different ap-
pearances of that type of object. The problem is that to train these detectors we need
large training set and plenty of time for learning. Another problem is the time efficiency
- many object detectors are not fast enough to process a videosequence in real-time [18],
although a lot of effort has been devoted to speeding up the detection process (such as

6

2.1 State of the Art

using the integral image instead of the original image). The detector needs to process
the whole image in different scales, while standard tracking methods usualy work on the
close neighborhood of the last object position. Another approach would be to match ob-
ject region descriptors like SIFT [19], SURF [20] or MSER [21]. These descriptors don’t
need to be trained in advance. Descriptors are simply computed over the whole image
and they are matched with the stored object descriptors. These descriptors are usualy
robust to scale change and rotation and are fast enough to be computed in real-time,
but may fail if the appearance of the object changes. Lately, Hinterstoisser et al. in
[22] proposed fast method for tracking by detection, which is demonstrated on on-line
SLAM application (simultaneous localization and mapping). Each feature point (object)
in the scene is charaterized by a set of mean patches, where each mean is computed by
warping the patch centered on the point over a small range of poses. This approach is
fast enough to be run on-line because they developed very fast method for computing
these mean patches. In the detection phase they match directly the patches of incoming
points to the precomputed database of mean patches. This saves time, because they
don’t need to compute the mean patch for each incoming feature point before matching.
The feature point pose is represented by a homography. After each successful matching
of feature point, they use combination of inverse compositional algorithm [23] and lin-
ear predictors [10] to obtain a fine estimate of homography. On-the-fly learned object
detector and tracker are combined in [24]. Both are not pre-trained and they learn new
object appearances from consecutive images in a video. The object detector is a cascade
classifier: combination of (i) thresholding the patch variance, (ii) the ensemble classifier
estimating a set of posteriors from binary codes and finally (iii) a nearest neighbor clas-
sifier. The median flow tracker collects new object appearances in every frame as well
as image patches of changing background. These examples are used to incrementally
learn the object detector and tracker. When the tracker is lost, or the object runs out
of image, the detector tries to recover its position and restarts the tracker. The detector
is evaluated in every frame of the video and a set of two experts tries to identify the
misclassified examples (P-N learning). The P-expert tries to recognize when the detec-
tor missed the object and the N-expert tries to recognize a false positive detection. The
resulting samples from P-N learning are used to re-learn the detector. In [24] the 2D
position and scale of the object are estimated during tracking.

Kernel-based tracking (mean shift) [25][26][27] is an iterative tracking method, which
measures and minimizes the statistical dissimilarity between the model and the target
candidates. It is often modeled by the object patch colour distribution described by some
kernel function. Shortly described, in each iteration the mean shift algorithm estimates
the kernel probability density function in the position given by last iteration. Then the
algorithm estimates the gradient of the density function and the model is shifted in the
direction of gradient ascent. Thanks to the statistical model of the object, mean shift
tracking is robust to partial occlusions, clutter, camera or object rotations, scale change
and change in camera position. The disadvantage is, that for different object scales we
need to have different kernels. Also, as many other tracking methods, it may converge
to a local maxima instead of a global maxima. Success rate of this method depends

7

2 Object Tracking

mainly on the ability to reliably estimate the probability density function. If the model
is not sufficiently discriminative, than the tracker will drift and fail. This is of course a
common problem of all tracking methods.

2.1.1 Lucas-Kanade vs. Linear Predictors

We explain why we choose to work with predictors rather than Lucas-Kanade algorithm.
For sake of simplicity, we represent the object by a rectangular patch and as the individ-
ual features we use directly the image intensity values within this patch. Therefore we
need only one support set X corresponding to the image patch 2D coordinates. The im-
age patch is usually called template T (xi), where xi ∈ X is a particular pixel coordinate
in 2D. The initial tracking parameters t0 from the previous image encode the previous
object pose. The transformed support set from previous image is X

′
= ρ(X, t0). Now

the goal of tracking in the current image is to find the motion parameters vector t that
minimizes

|X|∑
i=1

[
I
(
ρ
(
x
′
i, t
))
− T (xi)

]2
, (2.1)

where xi ∈ X and corresponding x
′
i ∈ X

′
. The minimization is performed with respect

to t ∈ Ω. Minimizing the expression (2.1) is a non-linear optimization. To optimize
the expression in (2.1), the Lucas-Kanade algorithm assumes that a current estimate of
t is known (in the beginning it is initialized as t ← t0) and then iteratively solves for
increments to parameters ∆t, i.e. the equation (2.1) becomes:

|X|∑
i=1

[
I
(
ρ
(
x
′
i, t + ∆t

))
− T (xi)

]2
(2.2)

and the minimization is performed with respect to ∆t ∈ Ω, which is added to t after
each iteration

t← t + ∆t. (2.3)

Equations (2.2) and (2.3) are iteratively computed until the norm ‖∆t‖ ≤ ε, where ε is
some threshold, or until some number of maximum iterations has been reached. When
performing some algebraic manipulation with (2.2) we get a solution for one iteration of
the Lucas-Kanade algorithm as follows

∆t =
|X|∑
i=1


[
∇I ∂ρ

∂t

]T [
∇I ∂ρ

∂t

]
︸ ︷︷ ︸

hessian


−1 [
∇I ∂ρ

∂t

]T [
T (xi)− I

(
ρ
(
x
′
i, t
))]

, (2.4)

where ∇I denotes the image gradient. One disadvantage of Lucas-Kanade algorithm is
that it needs to recompute the image hessian inverse and the jacobian of transformation

8

2.1 State of the Art

∂ρ
∂t in every iteration. The roles of image and template are switched in [23] and there-

fore the template hessian inverse multiplied by
[
∇T ∂ρ

∂t

]T
may be precomputed. But

this is only possible for some simple transformations ρ the jacobian of which may be
precomputed [23]. In general the image (or template) gradient, inverse hessian and the
transformation jacobian need to be recomputed in every iteration. For more detailed
Lucas-Kanade algorithm description and derivation, please refer to Appendix C.

In contrast the predictor γ solves for t directly in a closed form. The predictor
estimates the parameters by multiplication of a learned regression matrix H and a vector
of image intensities as follows

γ : t = HI(X
′
). (2.5)

The regression matrix H needs to be learned from some training samples before the
tracking starts. The advantage of linear predictor is that it does not need to iteratively
compute the image gradients, inverse hessian or transformation jacobian. On the other
hand Lucas-Kanade algorithm does not require any learning stage before the tracking
starts.

The predictor learning stage may be advantageous in the case of object generic track-
ing. A typical example is a face tracking task. The tracker may be trained on large
datasets and after that it is able to track every human face and is very robust to changes
in appearance. When the predictor is trained it is very efficient during runtime. On
the other hand the learning stage is restrictive in case of the need to track some object
immediately, when there were no sample images available for training. This case is basi-
cally the only disadvantage of predictors when compared to Lucas-Kanade algorithm. In
Chapter 4 we deal with this problem of immediate object tracking by linear predictors.
Apart from this case, predictors are faster in performance equally precise in parameters
estimation and easilly to adapt for new object appearances. In the following chapter we
show how to learn the predictor and how to further improve its performance.

2.1.2 Linear Predictors

Linear predictors estimate the tracking parameters directly from observed image fea-
tures. Such approach requires a supervised learning stage, where pairs of transforma-
tion parameters ti and corresponding observed intensities I(X

′
) are collected, where

X
′

= ρ(X, ti) and a mapping γ : Rk → R, which minimizes the sum of squares of errors
on training data, is estimated as

γ∗ = arg min
γ

∑
ti∈Ω

‖γ
(
I
(
ρ
(
X, ti

)))
− ti‖2, (2.6)

In the tracking stage, the learned mapping γ∗(I(X
′
)) directly estimates motion param-

eters without the necessity of on-line optimization of the criterial function. One can
replace the pseudoinverse operation (see equation (2.4)) by matrix H learned on a set of

9

2 Object Tracking

synthesized examples. Mapping γ then transforms to a linear function between intensi-
ties I

(
X
′
)

and transformation parameters t,

t = γ∗
(
I
(
X
′
))

= HI
(
X
′
)
. (2.7)

In the tracking procedure the transformation parameters t are simply computed as a
linear function of the object intensities Suppose, that the coordinates in X are perfectly
aligned on the current patch position in the image and vector t contains parameters
for identity transformation. With m small random perturbations of parameters in t on
some predefined ranges we get the matrix T = [t1, t2, . . . , tm]. The ranges specify the
magnitude of allowed parameters differences on which we expect the predictor to work
(in a single estimation step). Next the matrix L with image intensity values (stored
columnwise with matrix T) is created as L = [I(ρ(X, t1)), I(ρ(X, t2)), . . . , I(ρ(X, tm))] .
Than the learning task may be formulated as

H∗ = arg min
H
‖HL− T‖2F (2.8)

= arg min
H

trace (HL− T) (HL− T)T (2.9)

= arg min
H

trace
(
HLLTHT − 2HLTT + TTT

)
. (2.10)

We take the derivative of (2.10) with respect to H and set it equal to zero

2H∗LLT − 2TLT = 0 (2.11)

H∗LLT = TLT (2.12)

H∗ = TLT
(
LLT

)−1
(2.13)

H∗ = TL+. (2.14)

The training set construction is demonstrated in Figure 2.1. The parameter estimation
procedure is extremly fast and has been used by numerous authors. For example Cootes
et al. [13] use linear predictors for human face model parameters estimation. The model
is composed from deformable shape model and appearance model. All parameters for
shape and appearance are estimated by one regression function. Their approach proved
to be very robust for tracking non-rigid objects, such as human faces [13].

2.1.3 Increasing the Precision and Complexity Optimization

The complexity C of a predictor γ is represented by the number of used feature values.
The more complex is the regression function, the more precise parameters estimation is
achievable, but more computational time is consumed. We may see, that computational
complexity may be lowered by lowering the number of used template pixels. But how
to select the best subset of pixels X∗ ⊆ X (for the given complexity C lower than
size of X) which minimizes the error on the training data? A heuristic algorithm was

10

2.1 State of the Art

Figure 2.1: Creation of training matrices by random perturbations of the training image.
The ground truth position in the left image is given by the yellow rectangle. For example
to train a linear predictor which estimates 2D motion ∆x,∆y, in-plane rotation ∆α and
scale change ∆s we multiply transform the original image with known motion param-
eters. In each sample we collect the image features in support set points (small yellow
rectangles) and store them in a vector li. Vectors li and known parameters vectors ti
form training matrices L and T.

proposed in [11], see Appendix B. For large ranges, it is usually very difficult to achieve
a good precision of prediction even with the complexity corresponding to the size of
the whole object patch [28]. A sequential predictor γs is proposed in [11], where it is
experimentally shown, that γs with lower complexity achieves higher precision than γ
with higher complexity. γs was also used in [14] for human face tracking.

The γs is in fact a sequence of predictors, which estimate warp parameters one after
another thus improving the result of previous predictor estimation and lowering the
overall error of estimation. γs tracks according to Equation 2.15

t(1) = H(1)I
(
X(1)

)
(2.15)

t(2) = H(2)I
(
ρ
(
X(2), t(1)

))
t(3) = H(3)I

(
ρ
(
X(3), t(1) ◦ t(2)

))
...

t(k) = H(k)I
(
ρ
(
X(k), t(1) ◦ · · · ◦ t(k−1)

))
,

where the final warp parameters vector is

t = t(1) ◦ t(2) ◦ · · · ◦ t(k) (2.16)

and the operator ◦ is a composition of transformation parameters vectors. The complex-
ity of γs is simply the sum of cardinalities of particular support sets in the sequence.

11

2 Object Tracking

The sequential learnable linear predictor is than defined as

γs = |{H(1), X(1)}, {H(2), X(2)}, . . . , {H(k), X(k)}| (2.17)

for k predictors in the sequence. To see how the γs is learned, we need to introduce the
uncertainty region of the predictor γ, as it is called in [11][28]. The uncertainty region is
the smallest p-dimensional region Γ (for p parameters in vector t) within which all the
prediction errors from the ranges lie:

Γ (γ) = {∆t|∆t = t ◦−1 γ (I (ρ (X, t))) ,∀t ∈ R (γ)}, (2.18)

where R (γ) is the p-dimensional range of predictor γ and ∆t is the error vector. Now we
want to show how is the γs learned. The first predictor is trained to work on the original
range specified by the user. The predicotr, which is second in the sequence has got new
range of allowed parameters changes, which is equal to the uncertainty region Λ of the
preceding predictor. It was shown in [11], that range given by the uncertainty region is
inside of (thus smaller than) the original range. The support sets of predictors in the
sequence are independent and may differ. Typically a predictor which is subsequent in
the sequence needs less pixels in the support set X (less features to evaluate), because
it needs to operate on a smaller range than the preceding predictor.

An alternative approach to least-squares learning of the regression matrix has been
also proposed in [11]. The authors used minmax learning method to learn an optimal
sequence of predictors. The learning is composed from two steps. First a set of predictors
is learned by minmax optimization and then a sequence of predictors creating an optimal
γs is selected. The selection of optimal sequence of predictors is formulated as finding
the cheapest path in the graph and is solved using the Dijkstra algorithm.

The varying object appearance usually lowers the precision of tracking parameters
estimation. An interesting approach for updating the regression matrix and adapt it for
varying object appearance was proposed in [28]. See Appendix A for details.

2.1.4 Incremental On-line Learning and Adaptive Tracking

Jepson et al. in [29] proposed WSL tracker - an adaptive appearance model for object
tracking, which deals with partial occlusion and change in object appearance. The im-
age appearance is expressed in terms of the complex-valued coefficients of a steerable
pyramid. It is a wavelet-based model, which allows to maintain a natural measure of
the stability of the observed image structure during tracking. Stable properties of ap-
pearance are weighted more heavily for motion estimation, while unstable properties are
proportionately downweighted. The generative model for appearance is formulated as a
mixture of three components: a stable component that is learned with a relatively long
time-course, a two-frame transient component, and an outlier process. The stable model
identifies the most reliable structure for motion estimation, while the two-frame con-
straints provide additional information when the appearance model is being initialized
or provides relatively few constraints. The parameters of the model are learned effi-
ciently with an on-line version of the EM algorithm. This approach is robust and works

12

2.1 State of the Art

well with slowly changing object appearance, but with a high computational overhead
and may be hardly used for real-time tracking.

One of the current issues of tracking is the choise of object generic or object specific
appearance (or even shape) models for tracking. Generic model should be able to track
all objects of some class (cars, faces, books, etc), which requires usually large training
datasets to cover most of the possible appearances for particular class. Object specific
model is trained to track particular object instance of some class. Object specific model
requires less training data and may be even trained from the more general generic model
[30][31]. One of the comparisons is given by Gross et al. in [32]. The authors compare the
performance of person generic with person specific active appearance models (AAMs).
AAMs [13] are generative parametric models commonly used to model faces. Depending
on the task at hand AAMs can be constructed in different ways. For example, we
might build an AAM to model the variation in appearance of a single person across
pose, illumination and expression. Such a person specific AAM might be useful for
interactive user interface applications that involve head pose estimation, gaze estimation,
or expression recognition. Alternatively, we might attempt to build an AAM to model
any face, including unseen subjects which were not seen in the training set. The most
common use of such a generic AAM would be face recognition. Gross et al. [32] argue
that Person Specific AAMs perform substantially better than generic AAMs. Lee et
al. [31] proposed method for on-line learning of person specific probabilistic appearance
manifold when using the prior off-line learned person generic model. Once the person
specific model was built on-line, the algorithm may use it for more accurate and robust
face tracking. The advantage of this approach is, that appearance sub-manifolds may
be used for face recognition as weel as for tracking. Method tracks well under difficult
conditions and handles well the sudden change in appearance. The main disadvantage
is, that we first need prior off-line learned generic model for one object class (e.g. human
faces).

For template-based trackers the adaptation means continuous update of the tracked
template. Tracking systems with naive updates update the template after every tracking
step [9]. Sub-pixel errors inherent to each match are stored in each update and these
errors gradually accumulate resulting in the template drifting off the feature, but usually
naive update is better than no update. Matthews et al. in [30] propose a strategic
update approach, which trades off mismatch error and drift. It is a simple and effective
extension of the naive update. There are two template models kept during the tracking.
The updating template is used for an initial alignment and the template from the first
frame is than used in the error correction phase after alinment. If the size of correction
is too large, the algorithm acts conservatively by preventing the updating template to be
updated from the current frame. Matthews et al. also show that this template update
can be extended to templates with linear appearance variation (derived in [33]). It is
shown in [30], that this method for template update may be used to convert the person
generic AAM to person specific AAM. This conversion proved to be very useful, because
there is far less appearance variation in the person specific AAM and therefore it requires
far fewer appearance parameters to provide the same representational power.

13

2 Object Tracking

Lately some authors want to get rid of the exhaustive off-line learning stage, which
usually consumes a lot of time and needs large labeled datasets to work with. Purely
on-line learning has been proposed by Ellis et al. in [34], where bank of displacement lin-
ear predictors spatially localised over the object are on-line learned and the appearance
model of the object is learned on-the-fly by clustering sub-sampled image templates.
The templates are clustered using the medoidshift algorithm. The clusters of appear-
ance templates allow to identify different views or aspects of the target and also allow
to choose the bank of predictors most suitable for current appearance. The algorithm
also evaluates the performance of particular predictors. When the performance of some
predictor is too low, it is thrown away and new predictor is learned on-line to replace it.
Similar approach was proposed by Ellis et al. in [35] with different appearance model. A
probabilistic model of appearance is incrementally constructed by partitioning templates
into components. The model is represented as a weighted mixture of components. Again
the partitioning represents views or aspects of the target and is used to choose the right
bank of predictors for tracking. Both approaches [34][35] seem to be robust and out-
perform the Grabners discriminative tracker [36] and Dowson’s simultaneous modeling
and tracking (SMAT) algorithm [37]. Also the TLD tracker proposed in [24], already
mentioned in the beginning of section 2.1, is learned from a single image and during
tracking it collects new samples of object appearance and both the detector and tracker
are incrementally learned.

2.1.5 Incremental Learning of Predictors

It is not possible to train the predictor γ for all object appearances in advance before
tracking. It would be useful to have a method for incremental learning of γ for unseen
object appearances. For incremental learning using equation (2.11) we would need to
keep both training matrices L, T in memory and they would grow with adding new
training examples. But the main difficulty would be the pseudoinverse computation of
growing matrix L. To avoid this, we may use a method for incremental least-squares
update of the matrix H, which has been proposed by Hinterstoisser et al. in [12]. Let
us suppose, that we have regression matrix Hm, which was trained using m training
examples. The authors of [12] introduce matrices Ym = TmLTm and Z = LmLTm and
matrix Hm+1 may be written as

Hm+1 = Ym+1Z
−1
m+1 (2.19)

= Tm+1L
T
m+1

(
Lm+1L

T
m+1

)−1

= [Tm|tm+1] [Lm|lm+1]T
(

[Lm|lm+1] [Lm|lm+1]T
)−1

=
(
TmL

T
m + tm+1lTm+1

) (
LmL

T
m + lm+1lTm+1

)−1

=
(
Ym + tm+1lTm+1

) (
Zm + lm+1lTm+1

)−1

14

2.1 State of the Art

where tm+1 and lm+1 are concatenated to Tm and Lm, respectively to form Tm+1 and
Lm+1. Thus only by storing the constant size matrices Ym and Zm and updating them
as

Ym+1 ← Ym + tm+1lTm+1 (2.20)

Zm+1 ← Zm + lm+1lTm+1, (2.21)

it becomes possible to incrementally learn the predictors without the need to store all
training examples. Since the computation of H has to be done for many locations in each
incoming image and matrix Zm is usually large, it is necessary to avoid the computation
of the inverse Z−1

m for every new training example. Sherman-Morrison formula is applied
to Z−1

m+1 and we obtain

Z−1
m+1 =

(
Zm + lm+1lTm+1

)−1
(2.22)

= Z−1
m −

Z−1
m lm+1lTm+1Z

−1
m

1 + lTm+1Z
−1
m lm+1

. (2.23)

Therefore we need to store Z−1
m instead of Zm. Than incremental learning of one new

training example means updating matrices Ym and Z−1
m using equations (2.20) and (2.22)

respectively and than updating the regression matrix H using equation (2.19). This
approach was used in [12] for incremental learning of new patch appearances, while the
predictor estimates the full perspective transformation parameters.

Incremental learning is recommendable for every tracking system, which has the ability
to do so. The only problem is, how to choose the aditional training examples automati-
cally? New examples could be of course added manually. The disadvantage of supervised
incremental learning is the need of human interaction.

15

2 Object Tracking

Figure 2.2: Here we see another result of our work. The tracker learned from a single
image is marked by green rectangle. There is also the tracked patch warped back placed
under the original patch for visual comparison (marked by red rectangle). Thanks to the
incremental learning running during tracking the tracker is able to handle acute angle
changes and signifficant changes in appearance caused by lower resolution of the tracked
patch.

16

3
Automatic Selection of Training

Examples for Incremental
Learning

Learnable visual trackers have recently proved their wide applicability in object tracking
in video. The tracking poses essentially two main challenges: i) adapting to changing
appearance, ii) detecting tracker failure – loss of track. This chapter addresses both
issues but contributes mainly to the adaptation problem. We propose to solve the adap-
tation problem by an incremental learning, which accommodates changing appearance
whilst tracking. We also suggest a fast method for tracking validation (i.e. loss-of-track
detection) which uses the same model as for tracking and does not need any additional
object model. The predictor needs only a very short (seconds) offline learning stage
before the tracking starts. The tracking itself is then tremendously efficient, much faster
than real-time.

Tracker adaptation and loss-of-track detection have been active topics for many years.
Jepson et al. [29] proposed WSL tracker (3 components - Wandering, Stable and Lost) -
an adaptive appearance model which deals with partial occlusion and change in object
appearance. It is a wavelet-based model, which allows to maintain a natural measure of
the stability of the observed image structure during tracking. This approach is robust
and works well with slowly changing object appearance. However, a high computational
overhead precludes real-time applications. Lim et al. [38] propose an algorithm for
incremental learning and adaptation of low dimensional eigenspace object representation
with update of the sample mean and eigenbasis. Their approach appears to be robust
to sudden illumination changes and does not need offline learning phase before tracking
however, the algorithm speed does not fit our needs.

For template-based trackers the adaptation means continuous update of the tracked
template. Tracking systems with naive updates update the template after every tracking
step [9]. Sub-pixel errors inherent to each match are stored in each update and these
errors gradually accumulate resulting in the template drifting off the feature. Despite
this drawback, naive update is still usually better choice than no update at all. Matthews
et al. in [30] propose a strategic update approach, which trades off mismatch error and
drift. It is a simple but effective extension of the naive update. There are two template
models kept during the tracking. The updating template is used for an initial alignment
and the template from the first frame is than used in the error correction phase after
alignment. If the size of correction is too large, the algorithm acts conservatively by
preventing the template to be updated from the current frame.

Recently, some authors wanted to bypass an exhaustive off-line learning stage. Purely
on-line learning has been proposed by Ellis et al. in [34], where a bank of local linear

17

3 Automatic Selection of Training Examples for Incremental Learning

Figure 3.1: Video browsing procedure.

predictors, spatially disposed over the object, are on-line learned and the appearance
model of the object is learnt on-the-fly by clustering sub-sampled image templates. The
templates are clustered using the medoidshift algorithm. The clusters of appearance
templates allow to identify different views or aspects of the target and also allow to choose
the bank of predictors most suitable for current appearance. The algorithm also evaluates
the performance of particular predistors. When the performance of some predictor is too
low, it is discarded and a new predictor is learned on-line as a replacement. In comparison
to our work, we do not throw away the predictors in sequence, but we incrementally train
them with new object appearances in order to improve their performance.

Our learnable and adaptive tracking method, coupled with a sparsely applied SIFT [19]
or SURF [20] based detector, is applied for faster than real-time linear video browsing.
The goal is to find all object occurrences in a movie. One of possible solutions of video
browsing task would be to use a general object detector in every frame. As it appears
[39], [40], it is preferable to use a combination of an object detector and a tracker in order
to speed up the browsing algorithm and also to increase the true positive detections. We
indeed aim at processing rates higher than real-time which would allow almost interactive
processing of lengthy videos. Our yet preliminary Matlab implementation can search
through videos up to eight times faster than the real video frame rate.

3.1 Learning, Tracking, Validation and Incremental Learning

User initiates the whole process by selecting a rectangular patch with the object of inter-
est in one image. This sample patch is artificially perturbed and a sequential predictor
is learned [41]. Computation of a few SIFT or SURF object descriptors completes the
initial phase of the algorithm, see Figure 3.1. The scanning phase of algorithm combines
predictor based tracking, its validation, and a sparse object detection. The predictor
is incrementally re-trained for new object appearances. Examples for the incremental
learning are selected automatically with no user interaction.

The scanning phase starts with the object detection running every n−th frame (typ-

18

3.1 Learning, Tracking, Validation and Incremental Learning

Figure 3.2: A typical video scan process. Vertical red lines depict frames, where the
object detection was run. Red cross means negative detection or tracking failure. Green
line shows backward and forward object tracking. Green circle means positive object
detection and yellow circle depicts successful validation.

ically with the step of 20 frames) until the first object location is found. The tracker
starts from this frame on the detected position both in backward and forward direc-
tions. Backward tracking scans frames which were skipped during the detection phase
and runs until the loss-of-track or until it reaches the frame with last found occurrence
of the object. Forward tracking runs until the loss-of-track or end of sequence. The de-
tector starts again once the track is lost. Tracking itself is validated every m−th frame
(typically every 10 frames). The scanning procedure is depicted on Figure 3.2.

One object sample represents only one object appearance. The predictor is incre-
mentally re-trained as more examples become available from the scanning procedure.
The next iteration naturally scans only images where the object was not tracked in the
preceding iterations.

Training examples for incremental learning are selected automatically. The most prob-
lematic images-examples are actually the most useful for incremental training of the pre-
dictor. In order to evaluate the usefulness of a particular example we suggest a stability
measure. The measure is based on few extra predictions of the predictor on a single
frame. It means, that we let the sequential predictor track the object in a single static
image and we observe the predictors’ behavior. See Section 3.1.3 for more details.

The sequential linear predictor validates itself. Naturally, an object detector may be
also used to validate the tracking. For example well trained face detector will do the
same or better job when used to validate human face tracking. Motivation for using the
sequential predictor for validation is its extreme efficiency, and robust performance. For
more details about the tracking validation, see section 3.1.2.

3.1.1 Incremental Learning of Sequential Linear Predictor

We extend the sequential linear predictors γs proposed by Zimmermann et al. [41] in
order to predict not only translation but also the affine deformation of the object. Next
extension is the incremental learning of new object appearances. The predictor essen-
tially estimates motion and deformation parameters directly from image intensities. It
requires an offline learning stage before the tracking starts. The learning stage consists
of generating exemplars and estimation of regression functions. We use two γs - first
for 2D motion estimation (2 parameters) and second for affine warp estimation (4 pa-

19

3 Automatic Selection of Training Examples for Incremental Learning

rameters). We have experimentally verified that, especially for low number of training
examples, this configuration is more stable than using just one γs to predict all 6 pa-
rameters at once. Using smaller training set decreases the necessary learning time which
is important for the foreseen applications. Because of speed we opted for least squares
learning of sequential predictors similarly as suggested by Zimmermann et al. in their
any-time learning algorithm [41].

Let denote the translation parameters vector tt = (∆x,∆y)T estimated by the first
sequential predictor, and the affine warp is parameterized by the parameters vector
ta = (α, β,∆sx,∆sy)

T which is estimated by the second sequential predictor. The affine
transformation A(ta) parameterized by vector ta is defined by a 2×2 matrix A computed
as follows

A = RαR−βSRβ , (3.1)

where R are standard 2D rotation matrices parameterized by the angles α, β and S is the
scale matrix

S =
[

1 + ∆sx 0
0 1 + ∆sy

]
. (3.2)

Than the image point x = [x, y]T is transformed between two consecutive images using
estimated parameters accordingly

x′ = Ax + tt (3.3)

= RαR−βSRβx + tt,

Tracking, learning and incremental learning will be explained for sequential predictor
γs with general parameters vector t. Equations are valid for both sequential predictors,
which we use. Predictors in sequence estimate the parameters one after each other,
thus each improving the result of previous predictor estimation and lowering the error
of estimation. γs tracks according to Equation (2.15), let us rewrite this equation here

t(1) = H(1)I
(
X(1)

)
(3.4)

t(2) = H(2)I
(
ρ
(
X(2), t(1)

))
t(3) = H(3)I

(
ρ
(
X(3), t(1) ◦ t(2)

))
...

t(k) = H(k)I
(
ρ
(
X(k), t(1) ◦ · · · ◦ t(k−1)

))
,

In this context the transformation ρ corresponds to Equation 3.3 and is parameter-
ized by both vectors ta and tt. I (X) is a vector of image intensities collected at
image coordinates X. The final result of prediction is the vector t which combines
results of all predictions in the sequence. Operation ◦ means composition of two con-
secutive vectors with tracking parameters. Two affine parameters vectors t(i−1)

a , t(i)
a

20

3.1 Learning, Tracking, Validation and Incremental Learning

are composed to one using ◦ as A
(
t(i−1)
a

)
t(i)
a and two translation vectors t(i−1)

t , t(i)
t

are composed as A
(
t(i−1)
a

)
t(i)
t + t(i−1)

t . The model of a sequential predictor γs is

γs =
∣∣{H(1), X(1)

}
,
{
H(2), X(2)

}
, . . . ,

{
H(k), X(k)

}∣∣. Matrices H(i) are linear regression
matrices which are learned from training data.

In our algorithm, each γs is learned from one image only and it is incrementally re-
learned after each video scan. A few thousands of training examples are artificially
generated from the first image using random perturbations of parameters in vector t,
transforming the support set accordingly and collecting the image intensities. Each
regression matrix in the sequential predictor is trained using the least squares method
defined earlier in Equation 2.19. The initial learning phase takes 5 or 6 seconds on a
standard PC.

More images (around 400) are selected for incremental learning from all images gath-
ered during last scanning iteration. From each of the additional exemplars 10 training
examples are generated. This procedure provides additional 4000 training examples after
each video scan iteration. It is worth to note that this process is completely automatic,
no user interaction is required. Incremental learning comprises update of regression
matrices Hi according to Equations (2.19), (2.20) and (2.23).

3.1.2 Validation by Voting

To validate the tracking (i.e. detecting loss-of-track) we use the same sequential linear
predictor as for tracking. We utilize the fact that the predictor is trained to point to the
center of this object when initialized in a close neighborhood. On the contrary, when
initialized on the background, the estimation of 2D motion is expected to be random.

We initialize the predictor several times on a regular grid (validation grid - depicted by
red crosses in Figure 3.3) in the close neighborhood of current position of the tracker. The
close neighborhood is defined as 2D motion range, for which the predictor was trained.
In our case the range is ± (patch width/4) and ± (patch height/4). The validation grid
is deformed according to estimated parameters. Then we observe the 2D vectors, which
should point to the center of the object, i.e. current tracker position in the image.
When all (or sufficient number of) the vectors point to the same pixel, which is also the
current tracker position, we consider the tracker to be on its track. Otherwise, when
the 2D vectors are pointing to some random directions, we say that the track is lost, see
Figure 3.3.

A threshold value is needed in order to recognize if the sum of votes, which point
to the center of object, is big enough to pass the validation. The threshold is set
automatically from examples collected during the video scan. At first iteration, when
no threshold is available, first few (tens) validations are done by the object detector and
γs simultaneously. When the detector votes for positive validation, also the current sum
of votes is taken as positive example. Negative examples (sums of votes) are collected
by placing the validation grid on other parts of the image, where the object does not
appear. Gaussian distributions are fitted into positive and negative examples and the

21

3 Automatic Selection of Training Examples for Incremental Learning

Figure 3.3: Example of predictor validation. The first row shows successful validation
of clock tracking. Second row shows loss-of-track caused by a sudden scene change
just after a video cut. Red crosses depict pixels, where the predictor was initialized -
validation grid. Right column of pictures illustrates the idea of validation using linear
predictors and the middle column shows the collected votes for the center of the object
in normalized space.

classical Bayes threshold is found. Both negative and positive cases are considered to
appear equally likely. In subsequent iterations, the additional training examples are also
used for threshold update.

3.1.3 Stability Measure and Examples Selection for the Incremental
Learning

Selecting only relevant examples for training may speed up the learning as well as increase
the performance. Clearly relevant examples are those which contain the object but were
not included in the previous training examples. The predictor has of course problems to
handle new object appearances and it is likely, that it will loose the track. It is reasonable
to presume, that these new difficult (and useful) examples should appear near frames,
where the loss-of-track was detected. We need to examine the object occurrences, which
appeared near loss-of-track frames, in order to capture the most interesting examples
for incremental learning. We propose the stability measure for evaluation of these object
occurrences.

When we let the predictor track object on a single frame, we would expect the tracker
to stay still in objects’ position with no additional change of parameters. However, due to

22

3.1 Learning, Tracking, Validation and Incremental Learning

Figure 3.4: Blue bars depict sorted stability numbers. The left most clock image was
used for predictor training. The other occurrences obtained during tracking were au-
tomatically evaluated as more difficult examples for the tracker. Clearly, the higher
stability measure, the more difficult case for the predictor.

inherent noise in the data the predictor predicts non-zero parameters even when initiated
on the correct position. The parameters changes are accumulated and their sum-of-
squares is computed after 10 tracking steps. Let t be the vector of parameters estimated
during tracking and pi vector of parameters obtained in i−th step of this single frame
tracking. The stability number s for current frame is computed as s =

∑10
i=1 ‖ t−pi ‖2 .

Clearly, the higher value the more difficult example, see Figure 3.4. Parameters changes
in both vectors are made relative to particular ranges, in order to obtain stability number,
which is not dependent on different parameters units. Using this stability number we
may evaluate how useful (difficult) is the examined object occurrence.

We use this stability number to select a fixed number of additional training examples
from each interval obtained during one video scan. Each interval is a continuous subse-
quence of images from the whole video sequence (one interval is depicted as a green line
in Figure 3.2).

We search for the best additional training examples near the borders of each interval.
We go through fixed number of images from the start of the interval forwards and
backwards from the end of the interval, while computing the stability number on tracker
positions. Finally, the algorithm selects the examples with high stability number for
incremental learning. Tracker positions in these images have also passed validation and
we expect them to be well aligned to the object. The procedure of examples selection is
depicted in Figure 3.5.

23

3 Automatic Selection of Training Examples for Incremental Learning

Figure 3.5: Illustration of examples selection for incremental learning. Green line depicts
one interval - subsequence of video frames, where the object was found during scanning
procedure. Only few images near the beginning and end of the interval are examined.
Yellow circles mean successful validation. The black curve depicts computed stability
measure on particular frames. The examples with stability number above the blue line
are considered as useful for incremental learning. Selected examples are marked by red
arrows.

3.2 Experiments

Real sequences used in experiments includes an episode from Fawlty Towers series (33
minutes, 720× 576), and Groundhog Day movie (1 hour 37 minutes, 640× 384). Several
objects were tested, see Figure 3.6. The ground truth data for the Groundhog Day were
kindly provided by Josef Šivic and they are the same as in [42]. We have manually
labeled ground truth for two tested objects in Fawlty Towers. Third tested sequence
captures a human moving in front of the camera (2 minutes 50 seconds, 640× 480), see
Figure 3.7. Matlab implementation of the algorithm was used for all experiments. SIFT
and SURF object detectors are publicly available MEX implementations. Mostly, the
standard precision and recall are used to evaluate the results. Let TP denote the true
positives, FP denote the false positives and FN denote the false negatives. Than the
precision and recall are computed accordingly

precision =
TP

TP + FP
(3.5)

recall =
TP

TP + FN
. (3.6)

The experiments are organized as follows. The first experiment (Section 3.2.1) shows
the effect of incremental learning on resulting precision and recall. In Section 3.2.2 we
evaluate the overall performance of the algorithm. Next we compare tracking validation
by SIFT and by γs. Finally Table 3.3, Table 3.4 and Table 3.5 show comparison of SIFT
detection in every frame with one iteration of our algorithm.

24

3.2 Experiments

Figure 3.6: First row of pictures shows 2 tested objects from Fawlty Towers series and
second row shows 3 tested objects from Groundhog Day movie.

precision recall cumulative time
iter 0 0.86 0.61 13 min 42 sec
iter 1 0.81 0.63 23 min 18 sec
iter 2 0.81 0.64 32 min 21 sec

Table 3.1: Incremental learning evaluation for the clock object from the Fawlty towers
episode. The video scan was running 76 frames per second in average.

3.2.1 Incremental Learning Evaluation

This experiment shows the improvement gained by the automatic incremental learning.
At first we run one iteration of video scan using sequential predictor trained on one
image only (in Table 3.1 denoted as iter 0). Next, we evaluate results after first and
second incremental learning (iter 1 and iter 2). Two objects were tested. First was
the picture object in Fawlty Towers video (see Figure 3.6 top right image). The SURF
based detector was used for picture detection with step n = 20 and sequential predictor
for validation with step m = 10. Incremental learning improves the recall while keeping
high precision, see Table 3.1.

Second tested object was a human face (see Figure 3.7). In this case the object was
difficult to track with γs learned only from one image, because the appearance of the
face changed significantly during the sequence. The lighting conditions were challenging
and the human face undergoes various rotations and scale changes. We have chosen
this sequence in combination with the face detector (instead of SIFT/SURF) to see how

25

3 Automatic Selection of Training Examples for Incremental Learning

Figure 3.7: Here you may see examples of human face data used in experiment. All im-
ages are extracted from one video sequence. Note significant deformations and variations
in illumination.

precision recall cumulative time
iter 0 0.99 0.70 4 min 5 sec
iter 1 0.98 0.79 5 min 2 sec
iter 2 0.98 0.81 5 min 27 sec

Table 3.2: Incremental learning evaluation for human face. The first iteration of video
scan was running 21 frames per second in average. Browsing time was increased by using
the face detector instead of SURF.

the incremental learning helps to improve tracking results on complex non-rigid object.
In this case incremental learning also improved the performance of the tracker. See
Table 3.2 for results.

The high precision obtained in the face experiment was caused by flawless face detec-
tion, which did not return any false positive. You may see a few images of γs tracker
aligned on human face on Figure 3.8.

3.2.2 Results of Detection and Tracking

One iteration of the algorithm in Fawlty Towers series runs 3−times faster than real-
time and more than 8−times faster for the Groundhog Day movie. The detector was
run every n = 20 frames and validation every m = 10 frames while tracking. In the
sequence with human face the browsing time was almost twice the real-time, even for
detection step n = 40. It was caused by the face detector which runs much slower than
SURF. The difference in browsing times in Fawlty Towers and Groundhog Day is caused
mainly by the different video resolution. Processing of higher resolution images and more
complex scenes is slown down by the object detector. Even shorter browsing times may

26

3.2 Experiments

Figure 3.8: Examples of face tracking results. Red rectangle depicts γs tracker aligned
on human face.

be achieved by increasing the detection interval n. Selecting the right interval depends on
our expectation of the shortest time interval, where the object may appear. Reasonable
values for detection interval are between 20 and 60 frames. Increasing the validation
interval m to more than 10 generates more false positives and since the validation runs
very fast, it is not necessary to validate with a bigger step.

Next we compare the performance of predictor validation with SIFT validation. The
average time of one SIFT validation was 179 milliseconds and average time of one pre-
dictor validation was 33 milliseconds. The resulting recall of video browsing for clock
object was 0.58 with SIFT and 0.61 with predictor validation, while the precision was
0.9 for SIFT validation and 0.86 for γs validation. Recall for the picture object was 0.94
with SIFT validation and 0.95 with predictor, while the precision was 0.84 for both.
Predictor validation gives comparable precision and recall in much shorter time, which
also saves time in the whole scanning iteration. Tables 3.3, 3.4 and 3.5 show the results
for 5 tested objects obtained in one scanning iteration. The results of the video browsing
algorithm are compared to the results produced by the SIFT detector only.

The SURF detection on every frame was tested too, but the results contained large
number of false positives. Recall was comparable to SIFT detector, but precision was
very low. We are using the SURF detector because it runs much faster than SIFT, but
we need to use predictor validation after every positive detection because of the large
number of false positives.

Table 3.3, Table 3.4 and Table 3.5 show comparison of SIFT detection in every frame
with one iteration of our algorithm. The results demonstrate that even after a single
iteration the algorithm gives results comparable with the SIFT detection only. Any

27

3 Automatic Selection of Training Examples for Incremental Learning

clock (FT) picture
SIFT detector on every frame - without tracking
browsing time 32 h. 56 m. 33 h. 29 m.
scanning speed (fps) 0.4 0.4
obtained occurrences 2440 2140
true positives 2411 1996
false positives 29 144
precision 0.99 0.93
recall 0.43 0.89
SURF detect., γs track. and valid.
browsing time 13 m. 42 s. 11 m. 40 s.
scanning speed (fps) 61 71
obtained occurrences 4026 2520
true positives 3462 2131
false positives 564 389
precision 0.86 0.85
recall 0.61 0.95

Table 3.3: Comparison of SIFT object detection only and one iteration of our algorithm
on Fawlty Towers - clock and picture.

alarm clock clock (GhD)
SIFT detector on every frame - without tracking
browsing time 48 h. 43 m. 48 h. 13 m.
scanning speed (fps) 0.8 0.8
obtained occurrences 1888 855
true positives 1811 801
false positives 77 54
precision 0.96 0.94
recall 0.37 0.29
SURF detect., γs track. and valid.
browsing time 16 m. 46 s. 12 m. 48 s.
scanning speed (fps) 144 189
obtained occurrences 1345 2034
true positives 1125 1520
false positives 220 514
precision 0.84 0.75
recall 0.23 0.55

Table 3.4: Comparison of SIFT object detection only and one iteration of our algorithm
on Groundhog Day - alarm clock and clock.

28

3.3 Summary

PHIL sign
SIFT detector on every frame - without tracking
browsing time 48 h. 7 m.
scanning speed (fps) 0.8
obtained occurrences 2597
true positives 2293
false positives 304
precision 0.88
recall 0.72
SURF detect., γs track. and valid.
browsing time 15 m. 15 s.
scanning speed (fps) 159
obtained occurrences 4038
true positives 2361
false positives 1677
precision 0.58
recall 0.74

Table 3.5: Comparison of SIFT object detection only and one iteration of our algorithm
on Groundhog Day - PHIL sign.

subsequent scanning iterations would improve the results, as shows the experiment in
Section 3.2.1.

3.3 Summary

We have shown that an incremental learning of sequential predictor significantly improves
its robustness. It increases the recall while keeping high precision. Proposed method
for collecting additional training examples is completely automatic and requires no user
interaction. Stability number well describes the condition of the tracker on particular
image and prooves to be good criteria for training examples selection. Validation by
clustering of γs responses works reliably and very fast.

When coupled with a sparsely applied object detector the system can search for ob-
jects through videos several times faster than real-time. The complete system for video
browsing works very well with simple objects. Performance for more complex 3D objects
(when using SIFT/SURF for detection) are not yet entirely satisfactory. It is mainly
the detector that hinders the recognition rate. The tracker itself may be incrementally
learned for new appearances of the object and it works better with every iteration. This
was verified on face tracking where a robust face detector was applied.

29

4 Instant Object Detection and
Tracking

This chapter focuses on the problem of real-time object detection and tracking in a se-
quence of high-resolution omnidirectional images. The idea of combining a detector and
fast alignment by a tracker has already been used in several approaches [43, 12]. The
frame rate of commonly used detectors naturally depends on both the scene complexity
and image resolution. For example, the speed of ferns [44], SURF [20] and SIFT [19]
detectors depends on the number of evaluated features, which is generally proportional
to the scene complexity (e.g. number of harris corners) and image resolution. The speed

Figure 4.1: Omnidirectional high resolution image (12 Mpx) captured by Ladybug 3
camera. Three objects are marked.

of Waldboost [45] (or any cascade detector) depends on the number of computations
performed in each evaluated sub-window. In contrast, most of the trackers are indepen-
dent of both the scene complexity and image resolution. This guarantees stable frame
rate however, once the tracker is lost it may never recover the object position again.
Adaptive trackers can follow an object which is far from the training set and cannot be
detected by the detector. We propose to combine a detector and a tracker to benefit from
robustness (ability to find an object) of detectors and locality (efficiency) of trackers.

Ferns-based detector (also used by [12] for 10 fps tracking-by-detection) is one of
the fastest object detectors because of the low number of evaluated binary features on
detected harris corners. The speed makes the ferns detector ideal for the purpose of
object detection in large images.

One of the most popular template trackers is the KLT tracker [9], which uses the Lucas-

30

4.1 Related Work

Kanade gradient descent algorithm [8]. The algorithm has become very popular and has
many derivations [46]. The gradient descent is a fast algorithm yet, it has to compute the
image gradient, the Jacobian and inverse Hessian of the modeled warp in every frame.
For some simple warps, the Jacobian may be precomputed [47], [48]. One may also get
a rid of the inverse Hessian computation by switching the roles of the template and
image [46]. Nevertheless we always need to compute the image gradients and in general
case also the Jacobian and inverse Hessian of the warp. An alternative for template
tracking are regression-based methods [10], [11]. They avoid the computation of image
gradient, Jacobian and inverse Hessian by learning a regression matrix from training
examples. Once learned they estimate the tracking parameters directly from the image
intensities. If the regression function is linear, it is called linear predictor. The training
phase is the biggest disadvantage of linear predictors, because the tracking cannot start
immediately. Nevertheless, the regression matrix (function) may be estimated only from
one image in a short time (few seconds). The training examples are generated by random
warpings of the object template and collecting image intensities. This regression matrix
may be updated by additional training examples during tracking [12].

Recently, it has been shown [44], [12], that taking advantage of the learning phase,
greatly improves the tracking speed and makes the tracker more robust with respect
to large perspective deformations. A learned tracker is able to run with fragment of
processing power and estimates object position in complicated or not yet seen poses.
However, once the tracker gets lost it may not recover the object position.

To fulfill the real-time requirements, we propose a combination of a robust detector and
a very efficient tracker. Both, the detector and the tracker, are trained from image data.
The tracker gets updated during the tracking. The tracker performance is extremely fast
and as a result of that, faster than real-time tracking allows for multiple object tracking.

4.1 Related Work

We use a similar approach to [12], who also use a fern object detector and a linear
predictor with incremental learning for homography estimation. The detector is used
for object localization and also for a rough estimation of patch transformation. The
initial transformation is further refined by the linear predictor, which predicts full 2D
homography. The precision of the method is validated by inverse warping of the object
patch and correlation-based verification with the initial patch. The detector is run in
every frame of the sequence of 0.3 Mpx images processing 10 frames per second (fps).
This approach however, would not be able to perform in real-time on 12 Mpx images.
We use the fern detector to determine tentative correspondences and we run RANSAC
on detected points to estimate the affine transformation. After a positive detection we
apply the learned predictor in order to track the object for as many frames as possible.
[12] use an iterative version of linear predictor similar to the one proposed by [10], while
we use the sequential predictor γs instead. γs proved [11] to be faster than the iterative
version, while keeping the high precision of the estimation. Our tracker is incrementally

31

4 Instant Object Detection and Tracking

updated during tracking [12, 43]. We validate the tracking by the updated tracker itself
(see Section 4.2.2), which is more precise, than correlation-based verification by a single
template in case of varying object appearance.

Recently [49] used adaptive linear predictors for real-time tracking. Adaptation is done
by growth or reduction of the tracked patch during tracking and update of the regression
matrices. However, this approach is not suitable for our task, because of the need to keep
in memory the large matrix with training examples, which is needed for computation of
the template reduction and growth. This training matrix grows with additional training
examples collected for on-line learning, which is undesirable for long-term tracking.

[43] use linear predictors in the form of locally weighted projection regressors (LWPR)
as a part of self-tuning particle filtering (ISPF) framework. They approximate a non-
linear regression by a piece-wise linear models. In comparison we use γs similar to [41],
which uses the result of previous predictors in sequence as the starting point for another
predictor in a row. In [43] the partial least-squares is used for data dimension reduction.
We use a subset of template pixels spread over the object in regular grid, which proved to
be sufficient for dimensionality reduction, while keeping the high precision and robustness
of tracking.

In Section 4.2 you find the formal descriptions of used ferns detector and sequential
predictor tracker and in Section 4.2.3 the outline of our algorithm. In Section 4.3 we
present the general evaluation of our algorithm. A detailed evaluation of the detector
and tracker are given in Sections 4.3.1 and 4.3.2. In the last two sections of this chapter
we discuss the computational times of the algorithm.

4.2 Theory

The method combines a fern-based detector and a tracker based on sequential linear
predictors. Both the detector and the tracker are trained from the image data. The
tracker has its own validation and is incrementally re-learned as the tracking goes. The
detector locates the object in case the tracker gets lost.

4.2.1 Ferns-based Object Detector

Object is modeled as a spatial constellation of detected harris corners on one represen-
tative image. In a nutshell: the fern detector first estimates similarity between harris
corners detected in the current frame and harris corners on the model. The thresholded
similarity determines tentative correspondences, which are further refined by RANSAC
selecting the largest geometrically consistent subset (i.e. set of inliers). In our approach
object was modeled as a plane. Since we observed that the estimation of full homog-
raphy transformation was often ill-conditioned, because of both insufficient number of
detected corners and non-planarity of the object, the RANSAC searches for the affine
transformation, which showed to be more robust.

Detailed description of the similarity measure is in [44]. In the following, we provide
just short description for the sake of completeness. The similarity measures probability

32

4.2 Theory

p(V(v),w) that the observed appearance of the neighbourhood V(v) of the detected
corner v corresponds to the model corner w. The appearance is represented as a sequence
of randomly selected binary tests, i.e. given the corner v and sequence of n point
pairs {(x1,y1), (x2,y2), . . . (xn,yn)}, the appearance of the v is encoded as binary code
Vk(v) = I(v + xk) > I(v + yk), where I(v + xk) is the image intensity.

On one hand, it is insuficient to model probabilities of binary tests independently,
i.e. assuming that p(V(v),w) =

∏n
k=1 pk(Vk(v),w). On the other hand, modeling

p(V(v),w) = p(V1(v), . . . , Vn(v),w) is ill-conditioned, since we would have to estimate
probability in 2n bins, where n is usually equal to several hundreds. Therefore, we
divide the sequence of n binary tests into N = n/m subsequences with length m ≈
8 − 11. Subsequences are selected by N membership functions I(1) . . . I(N) and we
denote hk = card(Ik), k = 1 . . . N . Finally, we consider these subsequences to be
statistically independent and model the probability as:

p(V(v),w) =
N∏
k=1

pk(VIk(1)(v), . . . , VIk(hk)(v),w) (4.1)

The proposed detector requires an off-line training phase, within which the subsequent
probabilities are estimated. Once the probabilities are pre-computed, we use them on-
line to determine the tentative correspondences. In the following both phases are de-
tailed. Offline training phase: First n binary tests are randomly selected and divided

(a) (b)

Figure 4.2: Ferns learning procedure. (a) Random perturbations of patch around par-
ticular harris corner go through the binary tests and increase the corresponding bins
values for particular class. (b) Another harris corner random perturbations and the
same binary tests fill the probabilities for another class.

33

4 Instant Object Detection and Tracking

into N subsequences, see Figure 4.3. The model is estimated from one sample image,
where harris corners are detected within delineated object border. Appearance of each
corner’s neighbourhood is modeled by N hk-dimensional binary hyper-cubes, with 2hk
bins, representing joint probability pk(VIk(1)(v), . . . , VIk(hk)(v),w). To estimate values
of the probability, each corners neighbourhood is L-times perturbated within the range
of local deformations we want to cope with. For each perturbed training sample and
each subsequence, binary tests are evaluated and correspoding bin is increased by 1/L,
see Figure 4.2. Note that different harris corners are modeled via different probabilities
but the same binary tests, which allows significant improvement in the online running
phase, since the computational complexity of the similarity computation is almost inde-
pendent of the number of harris corners on the model. Online running phase: Given

Figure 4.3: Detection procedure for one patch depicted on top. The patch goes through
a series of binary tests. Each set of tests results in one probability distribution over the
learned classes. The probability distributions are multiplied according to Equation 4.1.
The patch is assigned to the class with the highest probability.

an input image, harris corners are detected. For each corner v, binary tests are evalu-
ated and similarity to each model corner is computed via Equation 4.1, see Figure 4.3.
Similarities higher than a chosen threshold determine tentative correspondeces. Even-
tually, RANSAC estimates affine transformation between model and the given image.
Confidence of the detection is equal to the number of inliers.

34

4.2 Theory

4.2.2 Sequential Linear Predictors

We use basically the same sequential predictor as was used in the previous Chapter 3.
The 2 − γs tracker is used to track the desired objects. The main difference is in the
transformation estimation. Here the first sequential predictor also estimates 2D trans-
lation of the object patch, but the second one estimates homography transformation
parameters (8 parameters) instead of affine transformation parameters as in the previ-
ous Chapter. The homography is parameterized by position of 4 patch corners. Knowing
the corners position and having the reference coordinates, we compute the homography
transformation for the whole patch. First the translation is roughly estimated by first
sequential predictor and than a precise homography refinement is done.

We denote the translation parameters vector tt = (∆x,∆y)T , estimated by the first
γs, and the homography parameters vector ta = (∆x1,∆y1, . . . ,∆x4,∆y4)T , estimated
by the second sequential predictor which represents the motion of 4 object corners ci =
(xi, yi)

T , i = 1, . . . , 4. The object point x = (x, y)T from previous image is transformed
to corresponding point x′ in current image accordingly

p = A

([
x
1

]
+
[

tt

0

])
(4.2)

x′ = (px/pz, py/pz)
T , (4.3)

where p are homogeneous coordinates. The 3 × 3 homography matrix A is computed
from 4-point correspondences via least squares method. The used correspondences are
the shifted object corners ci + tt from previous image and the current corners positions
ci + tt +

(
ta2i−1, t

a
2i

)T
, i = 1, . . . , 4 estimated by the 2− γs tracker.

Each sequential predictor estimates the parameters according to Equation (2.15). The
transformation ρ is here defined by Equation 4.2. Each regression matrix in the sequen-
tial predictor is trained using the least squares method defined earlier in Equation 2.19.
Here again we use an incremental learning of regression matrices as it was defined in
Chapter 2 in Equations (2.19), (2.20) and (2.23). The only difference in incremental
learning with respect to the one in Chapter 3 is that the local perturbations, which
generate additional training samples, are made by homography transformation.

The tracking procedure needs to be validated in order to detect the loss-of-track.
When the loss-of-track occurs, the object detector is started instead of tracking. To
validate the tracking we use the first sequential predictor, which estimates 2D motion
of the object. We utilize the fact that the predictor is trained to point to the center
of learned object when initialized in a close neighborhood. On the contrary, when
initialized on the background, the estimation of 2D motion is expected to be random.
We initialize the predictor several times on a regular grid (validation grid - depicted
by red crosses in Fig. 4.4) in the close neighborhood of current position of the tracker.
The close neighborhood is defined as 2D motion range (of the same size as the maximal
parameters perturbation used for learning), for which the predictor was trained. In our
case the range is ± (patch width/4) and ± (patch height/4). We let the γs vote for the

35

4 Instant Object Detection and Tracking

Figure 4.4: Validation procedure demonstrated in two situations. The first row shows
successful validation of tracked blue door, the second row shows loss of track caused by
a bad tracker initialization. First column shows the tracker position marked by green.
The third column depicts the idea of validation - i.e. a few initializations of the tracker
(marked by red crosses) around its current position and the collection of votes for object
center. When the votes point to one pixel, which is also the current tracker position (or
close enough to the center), the tracker is considered to be well aligned on the object.
When the votes for center are random and far from current position the loss-of-track is
detected. In the second column we see the collected votes (blue dots), the object center
(red cross) and the motion range (red rectangle) normalized to < −1, 1 >, for which was
the γs trained.

object center from each position of the validation grid and observe the 2D vectors, which
should point to the center of the object, in the case, when the tracker is well aligned
on the object. When all (or sufficient number of) the vectors point to the same pixel,
which is also the current tracker position, we consider the tracker to be on its track.
Otherwise, when the vectors point to some random directions, we say that the track is
lost, see Fig. 4.4. The same approach for tracking validation was suggested in [1]. The
next section describes in detail the algorithm used in our system, which combines the
ferns detector and 2− γs tracker.

4.2.3 The Algorithm

Our algorithm combines the ferns detector and 2−γs tracker together. In order to achieve
real-time performance, we need to run the detector only when absolutely necessary. The
detection runs when the object is not present in the image or the tracker loses its track.

36

4.3 Experimental Results

As soon as the object is detected, the algorithm starts tracking and follows the target
as long as possible. Since tracking requires only fragment of computational power,
computational time is spared for other tasks. The on-line incremental update of the
regressors helps to keep longer tracks. When the validator decides that the track is
lost, the detector is started again until next positive detection is achieved. To lower
the number of false detections to minimum, we run the validation after each positive
response of the detector. The pseudo-code shown in algorithm 4.5 should clarify the
whole process.

4.3 Experimental Results

The foreseen scenario for the use of our method is a visual part of mobile rescue robot
navigation system. The operator selects one or more objects in the scene and the robot
(carying a digital camera) should navigate itself through some space, by avoiding tracked
obstacles to localized object of interest. The experiments simulate the foreseen use.
Several objects were selected in one frame of particular sequence and from this starting
frame they were tracked and detected.

Three types of experiments were performed. First we run the ferns detector itself
in every frame without tracking. Second we run the 2 − γs tracker with validation
without the recovery by detector. And finally, we run the combination of both. In all
experiments were both the detector and the tracker trained from a single image. The
detector and the tracker perform best on planar objects, because of the modeled 2D
homography transformation. We tested our algorithm also on non-planar objects (lying
human, crashed car) to see the performance limits and robustnes of our solution, see
Section 4.3.3. Algorithm was tested on 8 objects in 4 videosequences. The ladybug
camera provides 8 fps of panoramic images captured from 6 cameras simultaneously.
Five cameras are set horizontaly in a circle and the sixth camera looks upwards, see
Fig. 4.6. The panoramic image is a composition of these 6 images and has resolution
of 5400×2248 pixels (12 Mpx). Fig. 4.1 and Fig. 4.7 show examples of the composed
scenes and tested objects. Appearance changes for few selected objects are depicted in
Fig. 4.8. Notice the amount of non-linear distorsion caused by the cylindrical projection.
The objects of interest are relatively small in comparison to the image size. In average
the object size was 400×300 pixels. The ground-truth homography for each object was
manually labeled in each frame. For evaluation of the detection/tracking performance
we provide ROC curves for each tested object. The ROC curve illustrates false positive
rate versus false negative rate.

• False positive (FP) is a positive vote for an object presence in some position, but
the object was not there.

• False negative (FN) is a negative vote for an object presence in some position,
where the object actually was present.

37

4 Instant Object Detection and Tracking

1: Select object
2: model fern← learn fern detector
3: model tracker ← learn 2− γs tracker
4: lost← true
5: i← 0
6: while next image is available do
7: get next image
8: i← i+ 1
9: if lost then

10: detected← detect object
11: if detected then
12: initialize tracker
13: estimate homography
14: valid← validate position
15: if valid then
16: lost← false
17: continue
18: end if
19: end if
20: else
21: track object
22: if i mod 5 == 0 then
23: valid← validate position
24: if valid then
25: model tracker ← update tracker
26: else
27: lost← true
28: continue
29: end if
30: end if
31: end if
32: end while

Figure 4.5: Detection and Tracking

In ROC diagrams we want to get as close to the point (0, 0) as possible. Each point
in the curve of ROC diagram is evaluated for one particular confidence threshold c. In
our system the confidence r for one detection is given by the number of affine RANSAC
inliers after positive detection. The tracker keeps the confidence from last detection until
the loss-of-track. With growing confidence we get less false positives, but also more false
negatives (we may miss some positive detections). For one particular c we compute the

38

4.3 Experimental Results

Figure 4.6: Ladybug 3 with 5 cameras placed horizontaly in circle and one camera
looking upwards for capturing omnidirectional images.

Figure 4.7: Example images with tracked objects marked by red rectangles.

39

4 Instant Object Detection and Tracking

Figure 4.8: Four of eight tested objects under different view angles and appearances.

diagram coordinates as follows:

FP (c) =
n∑
j=1

(FP,where rj > c) /n (4.4)

FN (c) =
n∑
j=1

(FN,where rj > c) /n, (4.5)

where n is a number of frames in sequence. To draw the whole ROC curve we compute
the coordinates for a discrete number of confidences from interval < 0, 1 > and use linear
interpolation for rest of the values.

In Fig. 4.9 we show three different ROC curves. Each curve corresponds to one method
used to search for the object position in sequences. In order to make the evaluation less
dependent on a particular object, we computed mean ROC curves over all tested objects
for different methods. The green curve depicts the performance of the tracker itself, run
on every object from the first frame until the loss-of-track without the recovery by the
detector. The blue curve shows results obtained by the fern detector itself run on every
frame of all sequences. And finally the red curve shows results, when our algorithm was
used. We may observe, that our algorithm performance is better (curve is the closest
to point (0, 0)) than both individual methods. The separate ROC curves for individual
objects may be seen in Fig. 4.10 and Fig. 4.12. The experiments are organised as follows.
The ferns detector is evaluated in Section 4.3.1, the performance of tracker is examined in
Section 4.3.2. The algorithm 4.5, which combines both is evaluated in Section 4.3.3. And
finally in Section 4.3.4 we provide computation times of all main parts of the algorithm.

40

4.3 Experimental Results

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
COMPARISON OF METHODS

F
N

FP

tracking only
detection only
detection + tracking

Figure 4.9: Each curve corresponds to results of one method computed as mean ROC
curve over all objects.

4.3.1 Detector Evaluation

Using only the detector (tracking by detection) would be too slow for desired real-time
performance in sequence of large images. Nevertheless we evaluate the performance of
the detector itself to see how the adition of γs tracker lowers the false positive and false
negative rate (see Section 4.3.3).

In this experiment the detector was run with slightly different set of parameters than
in the experiment which combines it with the tracker. This was necessary in order
to achieve the best detection performance. For example here it was not possible to
aditionally validate the positive detection by the validator. So we needed to increase the
threshold for number of RANSAC inliers necessary for positive detection to lower the
number of false positives.

It was also necessary to adjust the detector parameters according to expected object
scale and rotation changes. In average the detector was searching for the object in 3
scales and it was able to detect objects under ±20 degrees rotation. In Fig. 4.10, the
ROC curves are depicted for detector run in every frame for different objects. The
results show that some objects were detected in almost all cases correctly, while some
other objects, like the door, with poor results. Door was the most complicated object
for harris corners-based detector, since only 21 keypoints were detected over the object,
which were spread mostly in the central part of the door. That is why there was almost
always a low number of inliers comming out of the RANSAC algorithm. This object
was lately successfuly tracked by the tracker. Another complicated object was the car,
due to its reflective surface and vast visual angle changes. Finally, the human lying

41

4 Instant Object Detection and Tracking

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DETECTION ONLY

F
N

FP

windows
building
blue_door
wall
car
white_blocks
human
door

Figure 4.10: Each curve corresponds to detection results for one object.

on the floor was also a challenging object due to its non-planarity. As you will see in
Section 4.3.3, the integration of tracking to the algorithm lowers the number of FP and
FN and significantly speeds up the algorithm, see Section 4.3.4.

4.3.2 Tracker Evaluation

This experiment shows performance of the tracker without the recovery by the detector.
The tracker is composed of 2 sequential predictors (for translation and homography).
Each sequential predictor has 3 predictors in sequence with support set sizes |X1| = 225,
|X2| = 324 and |X3| = 441. The support set coordinates were spread over the object in
regular grid. The tracker was incrementaly learned and validated during tracking until it
lost its track or until the end of sequence. The tracking was manually initialized always
in the first image of sequence (different form training image), where the object appeared.
Some objects were tracked through the whole sequence. Some objects were lost after few
frames, when there was fast motion right in the beginning. In Fig. 4.11 you may see the
lengths of successful tracking until the first loss-of-track. In case of partial occlusion the
tracker sometimes jitters or even fails. Nevertheless, when it is incrementally learned, it
is able to handle the occlusion as a new object appearance. Incremental learning itself
is very helpful for increasing the robustness of the tracker [12], [1]. The estimation of
homography is very precise for planar objects.

Tracked objects appear in images as patches in resolutions varying from 211 × 157
(33 127 pixels) to 253× 919 (232 507 pixels). Both sequential predictors work only with
the subset of all patch pixels (same subset size for all objects). When tracking, each γs
needs to read only 990 intensity values, which is given by the sum of support set sizes

42

4.3 Experimental Results

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

7

8

9
TRACK LENGTHS

O
B

JE
C

T
S

FRAMES

windows
building
blue_door
wall
car
white_blocks
human
door

Figure 4.11: Each horizontal line depicts the length of track for one object until the first
loss-of-track. The red vertical lines show the last frame of particular subsequence, where
the object was fully or partially visible.

of predictors in sequence. This brings another significant speed-up for the learning and
tracking process.

4.3.3 Detector and Tracker evaluation

Final experiment evaluates the performance of algorithm described in Section 4.2.3. The
combination of the detector and the tracker improves the performance of the algorithm
(lowers FP and FN), as may be seen in Fig. 4.12 and Fig. 4.9. This is caused by their
complementarity in failure cases. Tracker is very robust even under extreme perspective
deformations, while the detector is not able to recognize these difficult object poses. On
the other hand the detector is robust to partial occlusion, where the tracker usually fails
and needs to be recovered and re-learned. In comparison with the detector (see Fig. 4.10),
our algorithm in average significantly improves the results. Only few objects, which
were perfectly detected by the detector (e.g. white blocks and blue door) have a little
worse results with our algorithm. This was caused by the tracking validation, which was
running not every frame, but only every 5 frames, which means, that the tracker was lost
a few frames just before loss-of-track detection by validation and received a few FPs and
FNs. This small error could be eliminated by running the validation in every frame. The
extreme efficiency of sequential predictors allows tracking much faster than real-time,
which provides enough computational time for validation and incremental learning of
the tracker. Running validation after each positive detection allows us to make the ferns
detector more sensitive. We lower the threshold which specifies the number of neccessary

43

4 Instant Object Detection and Tracking

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DETECTION + TRACKING

F
N

FP

windows
building
blue_door
wall
car
white_blocks
human
door

 non−planar objects

 planar objects

Figure 4.12: Each curve corresponds to results of one object detection and tracking.
The ROC curves fit more to the left side of the diagram. This is caused by the high
confidence of detections and tracking. The high confidence is actually valid, because of
the very low number of false positives, as we may observe.

inliers, which allows more true positive, but also more false positive detections. After
each detection, which has small number of inliers, we initialize the tracker in detected
pose, let the tracker vote for homography and run the validation. Validation eliminates
possible false positive detections and let pass the true positives.

The most difficult object for our algorithm was the crashed car, the appearance of
which was changing signifficantly during the sequence, due to its reflective surface, non-
planar shape and vast changes in visual angle. Detection and tracking of lying human
was successful in high percentage of detected occurences and low FP and FN. But the
precision of homography estimation was quite poor as expected, because of its non-planar
geometry. Nevertheless the incremental learning kept the tracker from loosing its track
too often. The robust detector and incremental learning of the tracker allows for tracking
of more complex (non-planar) objects, but high precision homography estimation can
not be expected. Planar or semi-planar objects were detected and tracked with high
accuracy.

4.3.4 Computation Times

The algorithm was run on standard PC with 64 bit, 2.66 GHz CPU. The object de-
tector was implemented in language C and run in the system as MEX. The RANSAC,
2 − γs tracker and the rest of the algorithm were implemented in Matlab. When we

44

4.4 Summary

pretermit the high resolution images, the PC memory requirements were minimal. The
computation times for 12 Mpx image sequences are following:

(implementation in language C)

• detector learning: 2 sec for 200 classes, i.e. 10 ms per class (50 ferns with depth
11 and 500 training samples per class).

• detection: 0.13 ms for evaluation of 1 harris point with 50 ferns and 200 classes.
The computational time changes linearly with the number of classes. For one image
with 5350 harrises, which passed the quality threshold, it took 0.7 sec. Usually we
run the detector in 3 scales.

(implementation in Matlab)

• learning of the γs trackers: 6 sec for the translation tracker with 1500 training
samples and 9 sec for the homography tracker with 3500 training samples.

• tracking: 4 ms per image. This computational time is summed for both γs trackers.

• validation: 72 ms per one validation. In our experiments, the validation was run
every 5 frames during tracking.

• incremental learning: 470 ms together for 10 samples for the translation tracker
and 10 samples for the homography tracker. Incremental learning was triggered
every 5 frames after successful validation.

Average amount of harris points in one image was around 50000, from which around
5300 passed the harris quality threshold [9] and were evaluated by ferns detector. The
use of object detector is neccessary, but its runtime needs to be reduced to a minimum
because of the high computational time. The tracker runs very fast, which allows for
multiple object tracking, incremental learning and tracking validation.

4.4 Summary

In this chapter we combined ferns-based object detector and 2−γs tracker in an efficient
algorithm suitable for real-time processing of high resolution images. The amount of
streamed data is huge and we need to avoid running the detector too often. That is
why we focused on updating the 2 − γs model during tracking, which helped to keep
the track even when the object appeared under serious slope angles and with changing
appearance. In comparison with the detector run on every frame, our algorithm runs
not only much faster, but also lowers the number of false positives and false negatives.

45

5 Deformable Object Tracking

In this chapter we focus on real-time deformable object tracking. Non-rigid deformations
are difficult to model. We can’t model the deformation by independent motion of every
point of the object, because such a high dimensional model would prone to overfitting.
We tackle the problem of low dimensional modelling by the principal component analysis
(PCA).

impossible to manually design a transformation, which simulates the deformation real-
istically. The individual object points form a grid (xi, yi)T ∈ G, where ∀i ∈ 1, . . . , n. The
grid is a subset of image pixels and it is hard to parameterize their motion, eventhough
we may see, that the motion of individual pixels is not independent. When we forget
about the mutual pixel motion dependency, we may parameterize the transformation by
the displacement of each point in the grid G by two numbers. The number of parameters
of such a transformation would be very high. The probability of tracking failure grows
with the number of estimated parameters. Also every additional parameter increases the
number of pose space dimensions and the number of necessary training samples grows
exponentially.

The individual object points in an image form a grid (xi, yi)T ∈ G, where ∀i ∈ 1, . . . , n.
Each grid point brings two parameters to the model. Nevertheless when we have got
enough annotated training samples, we may extract the pixel deformation dependencies.
We compute the PCA over all the training samples, which allows us to identify the
principal components of the deformation and parameterize it with only a few parameters.
This way we achieve a significant dimensionality reduction of the pose space. The last
problem arises with the ground truth annotation of the training samples. We need
to annotate every point of the deformed grid on every training sample. This would be
extremely difficult and time consuming, since usually a few thousands of training samples
are necessary for learning of an object generic tracker. To overcome this limitation we
annotate only a few keypoints in each training sample and we use the displacement of
these keypoints to drive an automatic flexible deformation of the remaining points in the
grid, see Figure 5.1. We test our approach on human face deformation and a deformation
of a human eyelid when blinking, as may be seen on Figure 5.1. To deform the grid we
use the thin plate splines [50] method.

For the sake of completeness we derive the equations for thin plate splines for elastic
deformation, which we use to deform the grids on training data. If you are not interested
in the thin plate splines method, please skip the text and continue reading right after
the Equation 5.6.

First we compute the mean position of m keypoints from all training samples anno-

46

Figure 5.1: Generating ground truth points deformation. Yellow markers are the control
points used in the thin plate splines method for the whole grid deformation. The blue
dots correspond to the deformed grid points (x

′
i, y
′
i)
T ∈ G′ .

tations P1 = (x1, y1)T , . . . , Pm = (xm, ym)T . Lets denote the same keypoints positions
after the displacement in one sample as P

′
1 = (x

′
1, y

′
1)T , . . . , P

′
m = (x

′
m, y

′
m)T . Next we

define the distance between two keypoints as dij = ‖Pi − Pj‖ and a kernel function
k(d) = d2 ln(d2). We will also need matrices

K =


0 k(d12) . . . k(d1m)

k(d21) 0 . . . k(d2m)
...

...
. . .

...
k(dm1) k(dm2) . . . 0

 , (5.1)

A =


1 x1 y1

1 x2 y2
...

...
...

1 xm ym

 , (5.2)

B =
[

K A
AT O

]
, (5.3)

where O is 3 × 3 zero matrix. The elastic transformation coefficients for computing the

47

5 Deformable Object Tracking

new x coordinate of arbitrary grid point are obtained as


wx

a1x

axx
ayx

 = B−1



x
′
1
...
x
′
m

0
0
0


, (5.4)

and the coefficients for computation of the new y coordinates are


wy

a1y

axy
ayy

 = B−1



y
′
1
...
y
′
m

0
0
0


, (5.5)

where wx = (w1x, w2x, . . . , wmx)T and similarly for wy. Now we may finally define the
elastic transformation of each point of the grid (xi, yi)T ∈ G to the transformed point
(x
′
i, y
′
i)
T ∈ G′ via thin plate splines method as

(
x
′
i

y
′
i

)
=

 a1x + axxxi + ayxyi +
∑m

j=1wjxk
(√

(xi − xj)2 + (yi − yj)2
)

a1y + axyxi + ayyyi +
∑m

j=1wjyk
(√

(xi − xj)2 + (yi − yj)2
)  . (5.6)

According to the non-linear Equation (5.6) we generate the deformed grid (depicted at
Figure 5.1). The parameters for every image sample are the 2D displacement vectors
between the regular grid and the deformed grid. The number of parameters is two times
the cardinality of the set G. To avoid the prediction of so many parameters at once we
perform the principal component analysis (PCA) to linearize (5.6) and for dimensionality
reduction. First we compute the mean parameters vector from all the training samples
and store them in one vector

m = (m1,m2, . . . ,m2n)T =
1
p

p∑
i=1

(
xi1, y

i
1, x

i
2, y

i
2, . . . , x

i
n, y

i
n

)T
,

where the upper index i denotes the training sample number and not the exponent.
Then all the deformed points from each grid Gi (from each of p training samples, ∀i ∈
{1, . . . , p}) with subtracted parameters means are put as a single column vector into the

48

5.1 Learning of the Piecewise Linear Predictor

matrix P of size 2n× p, as follows

P =



x1
1 −m1 x2

1 −m1 . . . xp1 −m1

y1
1 −m2 y2

1 −m2 . . . yp1 −m2

x1
2 −m3 x2

2 −m3 . . . xp2 −m3

y1
2 −m4 y2

2 −m4 . . . yp2 −m4
...

...
. . .

...
x1
n −m2n−1 x2

n −m2n−1 . . . xpn −m2n−1

y1
n −m2n y2

n −m2n . . . ypn −m2n


. (5.7)

Then the PCA is performed via the singular value decomposition of the parameters
matrix as [U S VT]← svd(P). The orthogonal matrix with the left singular vectors U may
be used to project the original parameters matrix P to another matrix T = UTP. In order
to reduce the number of parameters we take only the first g columns of matrix U and
store them in another matrix U

′
= [u1, . . . ,ug]. Now we may get the reduced matrix with

projected parameters accordingly T
′

= U
′TP. The approximation of the matrix P ≈ P̃

may be computed according to P̃ = U
′
T
′
. The original matrix P of size 2n× p has been

reduced to size g × p of new training matrix T
′
. In practise g is a small number ranging

from 1 to 10 depending on the deformation complexity. In our experiments we use g = 1
for the eye opening and g = 4 for the facial deformation estimation. The transformation
ρ of the j−th grid point is then defined as

ρ :

(
x
′
j

y
′
j

)
=
[
u2j−1,1 . . . u2j−1,g

u2j,1 . . . u2j,g

]
t +

(
m2j−1

m2j

)
. (5.8)

I.e. we take two rows of the matrix U
′

corresponding to the j-th grid point coordinates,
multiply it by the vector of parameters t and add the corresponding mean parameters
values.

5.1 Learning of the Piecewise Linear Predictor

Given the preprocessed training data we need to train a sequential predictor γs, which
will predict the object deformation in real-time from the image data. Here m−th predic-
tor γ in the sequence is basically a set of jointly learned regressors rmj . Each regressor
is a function of one particular feature fj ∈ Fm, where Fm is a set of features used by
the m−th predictor. As image features we use the differences of two image pixels. To
the j−th feature area assigned two selected grid coordinates {Pj,1, Pj,2} ⊂ G, where the
feature value v is computed with the feature function fj : v = I(ρ(Pj,1, t))−I(ρ(Pj,2, t)).
The set of regressors (one predictor) are learned to lower the residual alignment error
(ti − ai) of the preceding predictor in sequence, where ti is one column of the training
matrix T

′
and ai is the accumulated parameter vector estimated by all the previous

predictors in the sequence for i−th sample. We rewrite the learning Equation (2.6) for

49

5 Deformable Object Tracking

bin 1 . . . bin U
param. 1 ω = 0.621, λ = −0.045 . . . ω = 0.573, λ = 0.122
param. 2 ω = 0.544, λ = 0.194 . . . ω = 0.250, λ = −0.174

Figure 5.2: Example of a piecewise affine regressor rmj for two tracking parameters. Each
cell contains the learned slope and intercept parameters of the fitted affine function into
one bin.

the m−th predictor in sequence over its individual regressors as

arg min
rmj

p∑
i=1

∥∥∥ J∑
j=1

(
rmj(fmj(Ii,ai))

)
− (ti − ai)

∥∥∥2
, (5.9)

where ti is the correct parameters vector and J is the number of features in set Fm used
by one predictor in sequence. The non-linear regression usually yields higher precision
than the linear one, yet we need to keep the fast performance. That is why we approx-
imate fitting a non-linear function by binarization of each features’ space (dividing the
feature space into U bins), where into each bin u ∈ {1, . . . , U} we fit a linear function.
We also experiment with fitting three different functions: piecewise linear, affine and
constant:

tik = ωjufj
(
Ii,ai

)
, (5.10)

tik = ωjufj
(
Ii,ai

)
+ λju, (5.11)

tik = λju. (5.12)

where k ∈ {1, . . . , g} is the index of a particular deformation parameter. Each regressor
rmj is a series of g piecewise functions of type (5.10) or (5.11) or (5.12) working with a
j−th feature value. We may write the the regressor rmj as a table with the piecewise
functions coefficients for individual bins in columns and tracked parameters in rows, see
Figure 5.2. The optimal coefficients of group of regressors solving (5.9) are estimated by
a least squares method. Let us denote L =

[
l1l2 . . . lp

]
the matrix of training samples,

where each vector li = (. . . , fj−1(Ii,ai), fj(Ii,ai), fj+1(Ii,ai), . . .)T contains the values
of features fj ,∀j ∈ J of training sample i. The second training matrix with the ground
truth deformation parameters T

′
stored columnwise according to L is already prepared.

The least squares solution of (5.9) may be written in a compact form as T
′
L+, where +

denotes the Moore-Penrose pseudo inverse of a matrix [51]. The same equation is used
for learning of all three types of tested piecewise linear functions with any number of
bins. The only difference is in the composition of vectors of training samples li in the
training matrix L. Normally each row of matrix L corresponds to the values of a single
feature over all training examples. We extend the number of rows corresponding to each
feature to U (the number of bins), where the feature value fills only the position of the
corresponding bin in each training example. Lets suppose, for example, that we want

50

5.1 Learning of the Piecewise Linear Predictor

to partition the feature space into three bins. Than the row of L corresponding to one
feature fj over all training examples expands into 3× p matrix

Ωj =

 0 fj(I2,a2) 0
fj(I1,a1) 0 . . . 0

0 0 fj(Ip,ap)

 . (5.13)

When we want to use the intercept parameter λju in the regression functions (5.11) and
(5.12), we also need the expansion

Λj =

 0 1 0
1 0 . . . 0
0 0 1

 . (5.14)

The training matrices used for learning of the regression functions (5.10), (5.11) and
(5.12) are extended as follows

L(5.10) =

 Ωj1
Ωj2
...

 , L(5.11) =


Ωj1
Λj1
Ωj2
Λj2
...

 , L(5.12) =

 Λj1
Λj2
...

 . (5.15)

The individual regressors learned with different piecewise functions are visualized in
Figure 5.3. The piecewise constant function (5.12) is significantly faster in runtime than
the other two. In order to estimate the motion contribution from one feature value, we
just need to read a constant value from particular bin. For a reasonable number of bins
the function (5.12) quickly reaches the alignment precision of functions (5.10) and (5.11),
see section 5.2.2.

51

5 Deformable Object Tracking

parameter 1 parameter 2

Figure 5.3: Fitted piecewise functions into the values of one feature collected over all
training samples. The grey value heatmap is a 2D histogram showing the distribution of
training samples in the space. Green - piecewise affine function, yellow - piecewise linear
function, red - piecewise constant function. Notice, that the first parameter change is
well encoded by the feature value, while the second parameter is not. Thanks to the
non-linearity of the fitted functions we may exploit at least some dependency of the
second tracking parameter on this feature value.

52

5.1 Learning of the Piecewise Linear Predictor

5.1.1 Additional Training Samples Generation

The object generic tracker requires relatively high number of training samples. The more
instances of a particular object (e.g. more different people for face and eye tracking)
the better the tracker generalizes for object instances, which were not seen during the
training process.

Ideally every pose in the pose space (combination of tracking parameters) should be
seen in every instance of the object. But this is usually not the case. We work with
limited amount of training images, where there are only a few observation conditions
for one object instance (few images with different poses and appearances of one human)
or in most cases only one observation for one instance. In order to cover the pose
space when the number of training samples is lower than necessary, we may generate
additional training samples from the existing ones by random perturbation of the initial
vector of parameters. This way we create multiple starting positions for every training
sample which increases the number of the training samples and helps to cover the pose
space with training samples more densely. When applied carefully, this approach is very
efficient and helps to lower both the training and testing error.

Also when the tracker is learned strictly from the annotated data without the artifi-
cially generated training samples, the tracking gets into trouble in situations, where it
is initialized in the current image with parameters vector different from zeros. Lets say
we initialize the tracker with the right parameters for appearing object deformation and
the parameters update should be a zero vector. Then the tracker may estimate non-zero
parameters update, since it has not yet seen this type of appearance paired with the
zero parameters vector in the training set, see Figure 5.4. This is valid also for other
non-zero parameters initializations, which is used during the continuous tracking, where
in the current image is the tracker initialized with the parameters vector estimasted in
the previous image. When generating the artificial perturbations, we want the generator
to perform conservatively and we need to respect the parameters ranges. We take the
well aligned tracker with the ground truth parameters vector ti and then we add a per-
turbation vector ∆t the values of which range from plus to minus half of the parameters
range. The starting position for each generated training sample is ai = ti + ∆t This
way we generate multiple training samples (cca 10) from each training image.

5.1.2 Features Selection

An important part of the learning process is the feature selection. For every predictor
in the sequence we generate a pool of features, from which we greedily select the ones,
which lower the training error the most and then we relearn the predictor jointly over all
the number of C selected features. The feature selection process is a little bit different
from the support set selection algorithm B.1 proposed earlier. Let us extend the feature
selection algorithm from [11] (see Appendix B) here for our feature functions fj , where
F ∗ denotes the resulting set of selected features.

53

5 Deformable Object Tracking

Figure 5.4: Left - well aligned tracker with the deformed grid (deformed by 4 tracking
parameters). Right - rectified image using the estimated deformation. As you may
see, even when the tracker is well aligned, the appearance of the object looks different
from the real face images. The difference in visual appearance is caused partially by
the imprecisesly simulated deformation and partially by the self-occlusion of some parts
of the object - missing visual data, e.g. when it is covered by the nose. That is why
generating artificial image perturbations is helpful even when we have enough training
data.

5.2 Experiments

For our experiments we use two datasets with manually annotated ground truth data.
The first one contains consecutive images of opening eyes. There are 32 different people
captured and the dataset consists of 7638 images. We will call this dataset EyeData and
we model the deformation of each eyelid during the eye opening process. Each eye in the
dataset was manually labelled with 8 points positioned on the eyelids edges. The images
come from a high framerate camera (420 fps), where the process of eye opening is well
visible. The images are in low resolution, very noisy and suffer from strong compression
artefacts. The average width of each eye is only about 16 pixels. See Figure 5.6 with a
few samples from EyeData. In order to obtain more annotated points we fit a 2D spline
function into the upper eyelid and lower eyelid edges separately and along the spline we
generate 10 points The second dataset contains individual images of human faces from
the Labeled Faces in the Wild dataset [52] with 12007 images and 7-point ground truth
annotations per image. We will call this dataset FaceData, see Figure 5.7 with a few
samples. In this dataset we model the nonrigid deformation of human face caused by
out-of-plane rotation a different facial expressions.

We flip each image along the vertical axis to get twice as much data. Then we split

54

5.2 Experiments

1: F ← generate random features // Fill the feature pool
2: F ∗ ← {∅} // Initialize the set of selected features
3: T̂← T

′ −
[
a1, . . . , ap

]
4: init Test and fill with zeros

5: for i← 1; i ≤ C; i← i+ 1 do
6: εmin ←∞,
7: for j ← 1; j ≤ |F|, j ← j + 1 do
8: fj ∈ F // Take the j−th feature from the pool

// t1
est , . . . , t

p
est are columns of Test

9: L←
[
fj(I1,a1 + t1

est), . . . , fj(I
p,ap + tpest)

]
10: H← T̂L+

11: Ttmp ← HL
12: if

(
εmin > ‖T̂− Ttmp‖F

)
then

13: fjmin ← fj
14: εmin ← ‖T̂− Ttmp‖F
15: T∗ ← Ttmp

16: else
17: continue
18: end if
19: end for
20: F ∗ ← F ∗ ∪ {fjmin}
21: F ← F\{fjmin}
22: Test ← Test + T∗

23: T̂← T̂− T∗

24: end for

Figure 5.5: Feature selection algorithm for one predictor

55

5 Deformable Object Tracking

both datasets into training and testing parts. No person from the testing set was present
in the training set. Each individual is present either in the training set or in the testing
set. The training part of each dataset consists from 70% of the images and the testing
part contains the remaining 30%.

Figure 5.6: Example images from the EyeData dataset with the manually annotated
points (red) and with the points generated from the fitted spline function (yellow) which
are used as the keypoints driving the thin plate splines elastic deformation of the grid
during initial training data preparation. Lower row - example images from the FaceData
dataset with the manually annotated points (red) which were directly used as keypoints
for the elastic deformation of the grid.

Figure 5.7: Example images from the FaceData dataset (lfw [52]) with the manually an-
notated points (yellow) which were directly used as keypoints for the elastic deformation
of the grid. The dataset consists of images of frontal faces automatically collected from
the internet by a face detector.

To evaluate the trackers’ performance in each experiment we compute the mean regres-
sion error (MRE) of one predictor in sequence over either the training data or the testing

56

5.2 Experiments

data. The MRE over the training set for M predictors in sequence and J regressors in
each predictor is computed as

MRE =
1
p

p∑
i=1

∣∣∣∣∣∣
∣∣∣∣∣∣
M∑
m=1

 ∑
∀fj∈Fm

rmj(fj(Ii,ai))

− ti

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(5.16)

and similarly for the testing set. ti denotes the ground truth parameters vector. We use
|Fm| = 10 features per predictor in all our experiments. In the following experiments
we draw several graphs, where there is a discrete variable on the x−axis and continuous
variable MRE on the y−axis. Since we draw many results in each graph, we will draw
the results as continuous lines instead of bars for better clarity.

5.2.1 Feature Space Partitioning

Here we evaluate the performance of the γs learned with different numbers of bins,
which divide each feature space. To generate the results in this experiment we used
the piecewise constant functions (5.12) as regressors. The more bins we use, the better
precision we may get. But the number of training samples is limited and we need
to prevent overfitting. In this experiment we learned the sequential predictors on the
EyeData training set with 10 generated samples from each training image. In Figure 5.8
you may see the dependence of MRE on the groving number of predictors in the sequence
for different numbers of bins used during learning. With the groving number of predictors
in sequence, the testing error continually decreases. Also notice in Figure 5.8 that the
training error continually decreases with the growing number of bins. But the testing
error shows, that the best performing are γs with 9 bins per feature, while γs with
higher number of bins are overfitted. Another Figure 5.9 better shows the overfitting
with higher number of bins than 9.

5.2.2 Piecewise Affine, Linear, Constant Functions Evaluation

In this experiment we compare the performance of different functions (5.10)-(5.12) used
in regressors. In Figure 5.10 we may see the results of individual piecewise functions
for different numbers of predictors in sequence and different numbers of bins. When
we compare the best performing sequential predictors of each type we may see, that
the lowest testing error is achieved by the piecewise affine functions. For number of
bins higher than 3 the piecewise constant function performs surprisingly well. When we
use more than 7 predictors in sequence we get better results than the piecewise linear
functions. The piecewise constant function is a perfect choise in the case, when low
computational complexity is needed, since the parameters estimation by one predictor
costs just J additions, while with the piecewise affine it would be J multiplications plus
J additions. When the highest tracking precision is necessary we would use the piecewise
affine functions.

57

5 Deformable Object Tracking

0 2 4 6 8 10 12 14 16 18 20

0.01

0.02

0.03

0.04

0.05

0.06

predictors in sequence

tr
ai

ni
ng

 M
R

E

3 bins
5 bins
7 bins
9 bins
11 bins
13 bins
15 bins
17 bins
19 bins
21 bins
23 bins
25 bins

0 2 4 6 8 10 12 14 16 18 20
0.01

0.02

0.03

0.04

0.05

0.06

predictors in sequence

te
st

in
g

M
R

E

3 bins
5 bins
7 bins
9 bins
11 bins
13 bins
15 bins
17 bins
19 bins
21 bins
23 bins
25 bins

Figure 5.8: The mean regression error over the training and testing parts of the EyeData
in dependence on the groving number of predictors in γs. Each curve connects sequential
predictors learned on the same number of bins.

58

5.2 Experiments

3 5 7 9 11 13 15 17 19 21 23 25
0

0.005

0.01

0.015

number of bins

tr
ai

ni
ng

 M
R

E

predictor #3
predictor #8
predictor #13

3 5 7 9 11 13 15 17 19 21 23 25
0.01

0.015

0.02

0.025

0.03

0.035

0.04

number of bins

te
st

in
g

M
R

E

predictor #3
predictor #8
predictor #13

Figure 5.9: The training and testing errors in dependence of the growing number of
bins. Three sequential predictors are tested - the blue curve corresponds to γs with 3
predictors, the red with 8 predictors and green to γs with 13 predictors. We may see,
that the training error of all sequential predictors is decreasing, but the testing error
shows, that for more than 9 bins every γs becomes overfitted.

5.2.3 Additional Training Samples Generation

Generating the additional training samples is usefull only in case, when we are able
to generate the deformation from existing samples realistically. When we have enough
training samples, the additional samples generation has only a small effect. Yet with
the low number of training samples, the artificially generated samples help a lot. See
Figure 5.11, where for the γs with 8 predictors in sequence the artificially generated
samples on EyeData helped to reduce the testing error almost about 50%. Piecewise
constant functions (5.12) were used as regressors in this experiment. In the case of
EyeData the original number of training samples was, including the flipped images,
10694 and with the artificially generated samples 106940. The original training set size
for the FaceData was 16810 and with artificially generated samples 168100.

5.2.4 Features Selection

This experiment shows that the feature selection process significantly increases the preci-
sion of tracking. The same testing error is reached with much lower number of predictors
in sequence, thus with less evaluated features, than with randomly generated features.
Of course the greedy feature selection process requires additional learning time which
brings a trade-off between the learning time and tracking precision. In our experiments
each predictor in the sequence uses 10 features selected out of 2000 in the feature pool.
In Figure 5.12 you may see, that the feature selection algorithm signifficantly lowers the
testing errors on both datasets. Again the piecewise constant regressors were used in
this experiment.

59

5 Deformable Object Tracking

piecewise affine piecewise linear

0 2 4 6 8 10 12 14 16 18 20

0.02

0.04

0.06

0.08

0.1

predictors in sequence

te
st

in
g

M
R

E

1 bin
3 bins
5 bins
7 bins
9 bins
11 bins
13 bins
15 bins

0 2 4 6 8 10 12 14 16 18 20

0.02

0.04

0.06

0.08

0.1

predictors in sequence

te
st

in
g

M
R

E

1 bin
3 bins
5 bins
7 bins
9 bins
11 bins
13 bins
15 bins

piecewise constant comparison

0 2 4 6 8 10 12 14 16 18 20

0.02

0.04

0.06

0.08

0.1

predictors in sequence

te
st

in
g

M
R

E

1 bin
3 bins
5 bins
7 bins
9 bins
11 bins
13 bins
15 bins

0 2 4 6 8 10 12 14 16 18 20

0.02

0.04

0.06

0.08

0.1

predictors in sequence

te
st

in
g

M
R

E

best piecewise linear
best piecewise affine
best piecewise constant

Figure 5.10: EyeData testing errors for different regressors, numbers of predictors in
sequence and numbers of bins.

60

5.2 Experiments

EyeData FaceData

0 2 4 6 8 10 12 14 16 18 20

0.02

0.04

0.06

0.08

0.1

predictors in sequence

te
st

in
g

M
R

E

original training data
generated additional
training samples

0 2 4 6 8 10 12 14 16 18 20

0.02

0.04

0.06

0.08

0.1

predictors in sequence
te

st
in

g
M

R
E

original training data
generated additional
training samples

Figure 5.11: Testing errors for both datasets are compared when no artificial training
samples were generated (blue curves) and when we generated 10 samples from each
training sample (red curves).

EyeData FaceData

0 2 4 6 8 10 12 14 16 18 20

0.02

0.04

0.06

0.08

0.1

predictors in sequence

te
st

in
g

M
R

E

random features
selected features

0 2 4 6 8 10 12 14 16 18 20

0.02

0.04

0.06

0.08

0.1

predictors in sequence

te
st

in
g

M
R

E

random features
selected features

Figure 5.12: Testing errors for both datasets are compared when random features were
used (blue curves) and when we used our feature selection algorithm 5.5 (red curves).

61

5 Deformable Object Tracking

5.3 Summary

In this chapter we proposed a method for real-time deformable object tracking. The PCA
was used to reduce the dimensionality of the pose space. We proposed to learn the piece-
wise affine, linear or constant regressors, which approximate non-linear regression and
allow for more precise parameters estimation. Also an artificial training samples genera-
tor was presented, which helped to cover the pose space with training samples. And finaly
a greedy feature selection algorithm was proposed. Thanks to all the improvements, the
precision and speed of the tracker were increased, which was also experimentally verified
on two datasets.

62

6 Detection of LP-trackable
Patches

Many computer vision techniques (e.g. 3D reconstruction, simultaneous localization and
mapping) and applications (e.g. surveillance, robot’s visual navigation) require real-
time, reliable and accurate tracking algorithms. The most natural approach to tracking
is scanning around the last known position for the maximum response of a criterion
function. Since an exhaustive scanning through the whole image is time consuming, the
search space is often restricted. If it is known, that the last position is not too far from
the current position, a local estimation methods, like steepest descend methods [53, 54]
or regression-based methods [55] are often used. Unfortunately, locality of such methods
is unavoidable. Each method has a limited range within which it works. The range
is usually determined by the maximal inter-frame object displacement. A detector is
essentially needed for any tracking application in order to resolve cases when the track is
lost. For example the Lucas-Kanade tracker usually re-starts on features that are good
to track [9].

Linear predictor is one of the simplest yet powerful regression-based tracking method.
Linear predictor (LP) is a linear regression function which maps observed image inten-
sities to motion parameters. It has been shown in [11] that LPs outperform steepest
descend method in both the size of the basin-of-attraction and the speed of tracking.
However, the off-line learning stage limits their practical usage as a general tracker in
an open world environment. To avoid this drawback we propose to pre-train a database
of LPs and equip each LP by a detector that finds trackable patches. A naive solu-
tion, which would check the neighbourhoods of all image points for LP convergence,
would make the usage of LPs prohibitively time consuming. We propose a way how
to build the LP-structure-based detector, which detects all LP trackable points, rejects
most of the other points and preserves computational cost comparable with standard
appearance-based detectors.

The rest of the chapter is organized as follows: Section 6.1 introduces state-of-the-
art in linear predictors, Section 6.3 explains the functionality and construction of the
detector and finally Section 6.4 shows experimental evaluation of the method.

6.1 Related Work

In this chapter the predictor γ will estimate only the two translation parameters. Given
the initial position parameterized by a 2D parameters vector s0 ∈ S, where S is the set

63

6 Detection of LP-trackable Patches

of all 2D coordinates in the current image I, a tracker estimates motion1 t of the object
by some function γ:

t = γ(I(ρ(X, s0))). (6.1)

where X ⊂ S is the set of pixels called support set (pixels coordinates spread over the
object) and ρ is the transformation, which uses the motion parameters vector and applies
it to the object support set points ρ : ∀xi ∈ X, x

′
i = xi + s0. The most common way of

tracking is repeated minimization of some image similarity (criterion) function f(t; I, s0)
given an image I and previous object position s0

t∗ = argmin
t

f(t; I, s0) = γ(I(ρ(X, s0))), (6.2)

where t∗ is the estimate of the object’s motion. Criterion f(t; I, s0) includes implicit
or explicit model of object’s possible appearances and optionally some relation to s0.
Criterion f could be for example obtained as a similarity function as well as a classifier
or foreground/background probability ratio learned from training examples.

By optimization-based tracking we understand an on-line optimization technique solv-
ing problem (6.2). While some approaches [56, 17, 57, 20] exhaustively search for object
in a subset of object positions S with a classifier approximating f(t; I, s0), another ap-
proaches [53, 54, 58, 9] use a gradient optimization of some criterion.

Regression-based tracking methods attempt to model explicitly the relationship be-
tween image observations and the optimal motion t∗ without the necessity of defining
criterion f(t; I, s0). They learn function γ (used in equation (6.1)) in a supervised way
from synthesized training data [55, 59, 60]. We outline main principle of the regression-
based methods.

The regression-based methods [59, 55, 60] estimate the motion t directly from locally
observed intensities on the support set X instead of optimizing the criterion function
f(t; I, s0). Such an approach requires a learning stage. Pairs of motions t and corre-
sponding vector of image intensities I(ρ(X, t)), observed in coordinates X moved by a
vector t, are collected and a mapping γ minimizing some error on these examples is
estimated, see Figure 6.1,

γ∗ = argmin
γ

∑
ti∈Ω

‖γ
(
I
(
ρ(X, t)

))
− t‖, (6.3)

where Ω ∈ S is a set of 2D poses in a close neighborhood of the true object pose.
Notice that Lucas-Kanade tracker [53] solves a similar optimization task in each frame,

where it needs to compute the image gradient, Jacobian of the warp and pseudo-inverse
of the Hessian, see Appendix C for details.. This process can be replaced by using a
regression matrix H learned on a set of synthesized examples. Matrix H forms a linear
mapping between intensities I(ρ(X, t)) and motion t,

t = γ (I(ρ(X, t))) = H (I(ρ(X, t))− I(X)) , (6.4)
1For simplicity, we talk about 2D position and 2D motion but the method also generalizes to more

complex transformations.

64

6.1 Related Work

(t o X)2

(t o X)1

X

γ()= (0, 0)> γ()= (25, 25)>

γ()= (0, 15)>γ()= (−15, 0)>

Figure 6.1: Learning of a linear mapping between image intensities and motion
parameters. The synthetically created training examples (image patches) are collected
in a close neighborhood of the object’s position under known set of motions. A linear
mapping γ between these image samples and motion parameters is than computed using
the least squares method.

In the following, the least squares learning of the linear predictor γ is described.
Let us suppose we are given template J = I(X) and collected training pairs (Ii =

I(ρ(X, ti)), ti), i ∈ {1 . . . d} of observed vectors of intensities Ii and corresponding
motion parameters ti, which aligns the object with the current frame, see Figure 6.1.
Then the training set is an ordered pair (I, T), such that I = [I1 − J, I2 − J, . . . Id − J]
and T = [t1, t2, . . . td]. Given the training set, LP’s coefficients minimizing the square of
Euclidean error on the training set are computed as follows:

H∗ = T I>(II>)−1︸ ︷︷ ︸
I+

= TI+. (6.5)

Since the regression method is very effective it is widely applied in tracking. In particular,
Cootes et al. [59, 61] estimate the parameters of Active Appearance Model (AAM) - i.e.,
deformable model with the shape and appearance parameters projected into a lower

65

6 Detection of LP-trackable Patches

dimensional space by the PCA. In [59] a linear predictor (6.4) learned by the least
squares method (6.5) estimates all parameters of the AAM. Since the linearity holds
only for a small range of parameters, the solution is iterated. Iterations are computed
with the same matrix but the length of the optimization step is locally optimized.

This approach was later adapted by Jurie et al. [55] for tracking of rigid objects. Unlike
Cootes et al. [59], Jurie’s linear predictors estimate local 2D translations only. The global
motion is estimated from local motions by the Ransac algorithm, showing the method
to be very efficient and robust. Williams et al. [60] extended the approach to the non-
linear motion predictors learned by Relevance Vector Machine [62] (RVM). Agarwal and
Triggs [63] used RVM to learn the linear and non-linear mapping for tracking of 3D
human poses from silhouettes. Another extension was suggested by Zimmermann et
al. [11] who proposed an optimal way to concatenate several regression functions into a
sequential predictor. Different learning techniques have also been proposed, e.g. Drucker
et al. [64] search for the regression function that has at most certain deviation from the
actually obtained poses. Zhou et al. [65] proposed greedy learning for additive regression
functions, using weak regressor formed of a linear combination of binary functions.

6.2 Contribution

We show that an LP allows to track many points it has not been trained for, for examples
see Figure 6.2. Notice, that appearance of the set of LP trackable patches are very
discrepant from the set of training patches. Such points could not be detected by any
standard detector trained on the appearance of training examples – simply because the
trackability rather stems from the structure of the LP than from the appearance of the
training samples.

We propose an efficient detector of LP trackable points which (i) does not require
any time consuming learning (ii) detects all trackable points and (iii) has computational
costs comparable with standard appearance based detectors. The detector construction
is described in the following section.

6.3 Detector of LP Trackable Points

Different forms of LPs provide different sensitivity to object appearance - the more
degrees of freedom, the more general the LP is, but the longer learning is needed. Two
following forms of LPs are studied:

Basic LP: t = HI(ρ(X, t)), (6.6)

Extended LP: t = H(I(ρ(X, t))− I(X)). (6.7)

The basic LP uses directly the vector of observed image intensities I(ρ(X, t)) whereas
the extended LP substracts the object template I(X) from I(ρ(X, t)). The extended
version allows the tracker to be more variable, as will be seen in Section 6.4. Note, that

66

6.3 Detector of LP Trackable Points

All training patches Some of the trackable patches

LP1

LP2

Figure 6.2: Examples of patches used for learning (middle column) and some of
trackable patches (right column) for 2 different LPs are shown for visual comparison.
You may notice, that the trackable patches, which were found by our detector, are not
visually similar to the patches used for training.

although we speak about Linear predictors (because of historical reasons), huge class
of possible non-linear extensions is at hand (e.g. polynomials can be treated as linear
combinations of monomials).

The simplest way to detect the a trackable point would be to build a naive detector
which evaluates LP’s convergence (see Figure 6.3a) at every single point (rotation and/or
scale) in the image. Let us consider that we want to check convergence of a simple LP
with coefficients (regression matrix) H and support set X. Convergence of the LP means
that each row h>i of H and corresponding element tji of every local perturbation tj from
the considered neighbourhood R = {t1, t2, . . . , tn} has to satisfy

∀j h>i I(ρ(X, tj)) = tji + h>i I(X) + ∆j (6.8)

for reasonably small prediction errors ∆j , where I(ρ(X, tj)) is a vector of intensities
collected in the support set X transformed by local perturbation tj . For the sake of
simplicity, row index i is further omitted.

This approach is, however, reasonably applicable just for LPs in the basic form and it
can easily become prohibitively time consuming. Therefore, we propose sufficiently fast
detection method of LP trackable points, applicable for more general forms of LPs, e.g.
Equation (6.7) or other [66].

Main idea is based on the fact that checking the convergence of an LP on some region
is almost equivalent to checking whether the mean and variance of the prediction errors

67

6 Detection of LP-trackable Patches

(a) Convergence of the LP (b) Terminology

X

Y
(t o X)

(t o X)

(t o X)

(t o X)

(t o X)

1

2

3

4

5

Figure 6.3: (a) Convergence of the LP from a neighbourhood of a single point (pre-
dictions are depicted by green arrows). Arrows point from the LP’s initial position to
the predicted object center. Left - depicts only a few of used votings for better visual-
ization. Right - shows all the votings from the neighborhood R used in our algorithm.
When all the arrows point to one pixel (or close enough), which is also the currently
evaluated point, than the point is trackable. When the arrows point to some random
directions, the point is not trackable by particular LP. (b) Terminology: X is the
set of 2D coordinates, called support set. (ρ(X, tj)) is the support set transformed by
local motion perturbation tj and Y is union of all perturbations of the support set, i.e.
Y =

⋃
tj∈R(ρ(X, tj)).

∆j are close to zero. We first introduce the set of all pixels

Y =
⋃

tj∈R

(ρ(X, tj)), (6.9)

used in linear system (6.8), see Figure 6.3b. Then the Equation (6.8) is rewritten to the
intensity independent form as follows:

∀j h>I(ρ(X, tj)) = f j>I(Y) = tj + h>I(X) + ∆j , (6.10)

where f j consists of suitable permutations of elements of h> and zeros. Since I(Y)
contains all elements of I(X) we can express prediction error in the following form

∆j = [f j>I(Y)]− [tj + h>I(X)] = wj>I(Y)− tj . (6.11)

If the point is trackable then the prediction errors ∆j has distribution F(µ, σ) with both
mean µ(∆) and variance σ2(∆) close to zero which is further denoted as µ(∆), σ2(∆) ≈ 0.
If µ(∆) or σ2(∆) gets far from zero, then there exist local perturbation(s) around the
selected point, which cannot be compensated by the LP. It means, that to reject the
hypotheses that the point is trackable by a given LP, it is not necessary to check all the

68

6.4 Experiments

linear equations in system (6.10), but we can easily check necessary but not sufficient
condition:

µ =
1
n

∑
j

∆j =
(1
n

∑
j

wj>
)

︸ ︷︷ ︸
w>

I(Y)−
(1
n

∑
j

tj
)

︸ ︷︷ ︸
b

= w>I(Y)− b ≈ 0, (6.12)

the computational cost of which is the same as the computational cost of just one
equation of the linear system (6.10). This condition will be insufficient for example in
the case, where all LP predictions has got flipped signs or in the case where I(Y) is
constant (i.e. gradient is zero). While the first case is very rare, the second case is quite
often. Image areas with constant (or almost constant) intensity function are inherently
not trackable and can be eliminated in advance.

Similarly the variance σ2(∆) can be expressed as the following sparse quadratic form:

σ2 = E((∆j)2)− E(∆j)2 =
1
n

∑
j

(
w>j I(Y)− tj

)2 − µ2

= I>(Y)
(1
n

∑
j

wjwj>
)

︸ ︷︷ ︸
A

I(Y)−
(2
n

∑
j

wj>tj
)

︸ ︷︷ ︸
b>

I(Y) +
(1
n

∑
j

(tj)2
)
− µ2

︸ ︷︷ ︸
c

= I(Y)>AI(Y)− b>I(Y) + c ≈ 0, (6.13)

where A is a sparse, positive-semidefinite and symmetric matrix, b> is a vector and c is
a scalar. Sparsity of A, which is crucial for the computational efficiency, depends on the
set of considered local perturbations R. We observed that around 80% of its elements
are equal to zero. All the coefficients needed for µ-test, i.e. Equation (6.12), and σ-
test, i.e. Equation (6.13), are off-line directly created from the elements of H, the on-line
detection means only a few hundreds of scalar multiplications per point.

The point trackability is determined by the resulting µ and σ, which should not be
bigger than corresponding threshold values Θµ and Θσ. If none of the values (µ or σ
respectively) is bigger than threshold (Θµ or Θσ respectively), than the point is trackable
by a particular LP, othervise it is not trackable. Note, that in our experiments 99.8%
of not trackable points were already filtered by the µ-condition and the σ-condition was
usually evaluated on only a few points. Note, that the same detector can be constructed
for the basic LP by omitting term h>I(X) in Equation (6.11).

6.4 Experiments

Experiments were performed on two video sequences, 1548 frames and 2595 frames long.
Moving camera captured walls with windows, see Figure 6.4 for few example frames.
Ground-truth inter-frames homographies were computed from manually labeled 4-point
correspondences in both sequences, in order to be able to detect the loss-of-track of tested

69

6 Detection of LP-trackable Patches

Figure 6.4: Example images from tested sequences. The sequences contained mainly
2D translations with small scale changes and rotations. The tracked objects were mainly
planar walls, windows or doors.

LPs. The LPs used in our experiments predicted 2D motion only. The tested sequences
contain mainly 2D motion with small scale changes and small in-plane rotations to see
the robustness of tested LPs. We demonstrate the results of experiments by graphs of
average track length L on horizontal axis for particular number of trackable patches
N on vertical axis. Changing the thresholds [Θµ,Θσ] for detector changes the number
and quality of detected and tracked points, which than generates various points in these
NL−diagrams. We evaluate the results for one (Figs. 6.6 and 6.6) up to six LPs (Fig. 6.5)
trained on different patches for various [Θµ,Θσ] thresholds.

Comparison of the basic and extended linear predictor: µ and σ conditions are in
practice evaluated with respect to some thresholds Θµ and Θσ. The higher thresholds the
more points are accepted but the lower is the average length of the track because of the
worse local convergence of the LP. Figure 6.5 shows the threshold combinations for basic
LPs (in blue) and extended LPs (in red). The results show the average LP performance

70

6.4 Experiments

(a) Basic LP (b) Extended LP

500 1000 1500
0

10

20

30

40

50

60

L − avg track length

N
 −

 a
vg

 n
um

 o
f t

ra
ck

ed
 p

at
ch

es

Θ σ = 0.6

Θ σ = 0.55

Θ σ = 0.5

Θ σ = 0.45

Θ σ = 0.4

Θ σ = 0.35

Θ µ=0.7

Θ µ=0.65

Θ µ=0.6

Θ σ=0.7

Θ σ=0.65

0 200 400 600 800
0

500

1000

1500

2000

2500

L − avg track length

N
 −

 a
vg

 n
um

 o
f t

ra
ck

ed
 p

at
ch

es

Θ σ=0.7

Θ σ=0.65

Θ σ=0.6

Θ σ=0.55

Θ σ=0.35
Θ σ=0.3

Figure 6.5: Comparison of the (a) Basic LP and (b) Extended LP: Lines con-
nect threshold combinations with fixed Θµ, pareto-optimal threshold combinations are
emphasized by the thick lines. Both predictor versions have different properties. The
basic LP is able to track lower number of patches for more frames, while the extended
LP is able to track a lot of patches, but looses the track more frequently.

computed from six distinct LPs over 2 sequences. Lines connect combinations with fixed
Θµ. The ideal LP with ideal detector would have all threshold pairs on the most right
vertical line, since it would allow to track all the points for as long as possible. The
pareto-optimal threshold combinations, which are emphasized by the thick line show
the best performance, which may be obtained with particular set of patches for two
tested sequences. Both predictor types have different properties. The extended LP is
alowes to track a high number of patches for a smaller number of frames (when averaged)
than the basic LP, which tracks a lower number of patches for higher number of frames.
The higher adaptibility of the extended LP on possible patch appearances, caused by
the template I(X) substraction in equation 6.7. On the other hand the extended LP
has zero mean on image regions with constant intensities (zero image gradient), which
requires to compute the time consuming σ-test in more image points, than for the basic
LP. So for the extended LP, it usually takes a little longer to detect the trackable points.

Using one or more patches to train the LP: On Figure 6.6 you may see the compar-
ison of performance of LP trained for one patch (object) and the same LP, which was
incrementally trained for another two patches. Adding a few training examples improves
the LP’s generality.

The numbers of patches for learning of the LPs used in our experiments vary from one
to five. Some LPs (used in all experiments) were trained on patches, which appear in
the tested sequences, but most of them were trained on completely different patches and
objects, which do not appear in the tested sequences. The aditional training patches

71

6 Detection of LP-trackable Patches

LP trained on 1 patch and 3 patches µ-test vs (µ & σ)-test

0 500 1000 1500 2000
0

50

100

150

200

L − avg track length

N
 −

 a
vg

 n
um

 o
f t

ra
ck

ed
 p

at
ch

es

0 200 400 600 800
0

100

200

300

400

500

600

700

800

L − avg track length

N
 −

 a
vg

 n
um

 o
f t

ra
ck

ed
 p

at
ch

es

Figure 6.6: Left: Single versus multiple patch learning. Comparison of the performance
of single LP trained for one image patch (blue) and the same LP which was incremen-
tally trained for another two patches. The aditional two training patches improved the
predictor performance although the right number of training patches and the criteria
for their selection is still not solved. Right: NL-diagram of the points detected only
by the µ-condition (in red) and points detected by both conditions with pareto-optimal
thresholds (in green) for single LP.

were selected manually and generally contained some distinctive visual features (e.g.
harris corners or well textured areas). The automatic selection of training patches (and
their number) for the most general LP is clearly an important issue and it will be the
focus of our future work.

Importance of the σ-test: In this experiment, we show the importance of the σ-test.
We compare NL-diagram of the points detected only by the µ-condition (i.e., with Θσ =
∞) and points detected by both conditions with pareto-optimal thresholds, showing that
σ-test yields important improvement. Results are summarized in Figure 6.6.

6.5 Summary

We have designed a simple method for detection of LP trackable points. Depending
on the µ and σ thresholding, one linear predictor may successfully track around 100
different patches, for which the LP was not trained. The detector is very efficient and
does not slow down the learing phase, because it is constructed directly from the learned
LP. An interesting opened question is how to select the proper patches in the off-line
training phase. For the moment we select examples manually.

72

7 Cascade Object Detector with
Sliding Window Alignment

State of the art real-time object detectors use a sliding window to evaluate different
positions in image. With the growing image resolution grows the number of pixels,
which need to be evaluated often in more scales, in which the object might appear, see
Figure 7.1. Due to the framerate requirements we must evaluate only a sparser grid of
pixels, so the sliding window moves with some step larger than one. We simply rely
that the detector is robust enough to deal with this small perturbations in position. The
sparsity, however, causes weaker responses on positive samples, see Figure 7.2(a). We
observed, that if a sliding window on the sparse grid is aligned prior to the detection,
higher response in terms of both confidence (i.e. the output of the classifier) and score
(i.e. number of multiple detections) is achieved, see Figure 7.2(b). This approach conse-
quently decreases the number of False Negatives (FNs) for a fixed detection threshold.

Unfortunately, windows containing negative samples are aligned in the way which
increases the chance of detector’s positive response increasing thus also the number of
False Positives (FPs). Nevertheless, we show that if the alignment is invoked after few
detection stages in the classifier cascade, i.e. only on the surviving fraction of detection
windows, significantly better results are achieved.

7.1 Related Work

Among other detection methods (SVM, Ferns, SIFT, etc.) we choose cascade of Ad-
aBoost classifiers. In comparison with other object detectors it is more universal and
achieves impressive results in many real-world applications. An extensive overview of
boosting algorithms and AdaBoost extensions may be found in [67], [68] and [69].
Adaptive boosting (AdaBoost) is a machine learning algorithm that creates one strong
classifier from a large number of user-provided weak classifiers. AdaBoost is adaptive in
the sense that subsequent classifiers are tweaked in favor of those instances misclassified
by previous classifiers. Freund and Schapire’s AdaBoost [70] algorithm for classifica-
tion has attracted much attention in the machine learning community. Brieman [71]
[72] showed, that the AdaBoost algorithm can be represented as a steepest descent al-
gorithm in function space which is called functional gradient descent. Friedman et al.
[73] explained the AdaBoost algorithm from a statistical perspective. They showed that
AdaBoost algorithm is a Newton method for optimizing a particular exponential loss
function. They propose Real AdaBoost (based on [74]) in which each weak estimator
returns a class probability estimate to construct real-valued contributions. They also

73

7 Cascade Object Detector with Sliding Window Alignment

Figure 7.1: Our rescue robot with Ladybug3 omnidirectional digital camera on board.
The camera has six 2Mpix chips and we want, among other tasks, to detect cars in five
of them in real-time.

propose a Gentle AdaBoost algorithm. The Gentle AdaBoost is a modified version of
Real AdaBoost by using Newton stepping instead of exact optimization at each step of
classifier learning. In this work we use a Cascade of Gentle AdaBoost detectors. Ratsch
et al. [75] find that AdaBoost asymptotically achieves a hard margin distribution, i.e.
the algorithm concentrates its resources on a few hard-to-learn patterns, which is a
sub-optimal strategy in the noisy case. They propose several regularization methods
to achieve soft margins to deal with the outliers in training data. Some authors [76]
[68] modified the loss function to use AdaBoost for regression. Perrotton et al. [77] use
Gentle Adaboost with a different families of descriptors and soft cascade structure [78].
They also modify the way of building the weak classifiers in order to build multi-view
object detector. At each boosting level they choose multiple weak classifiers allowing
to encode multiple object views (appearances). [79] present a On-line Multi-Class Lin-
ear Programming Boost, where they try to maximize the multi-class soft-margin of the
samples. To solve the on-line linear programming problem, they perform a variant of
convex programming.

The classifier cascade [80][18][81][82][83] evaluates a candidate window by applying a
sequence of learned classifiers. To accept evaluated sample, all the classifiers must vote
for positive detection. This gives the opportunity for rejecting many candidates in early
stages making thus the detector very effective. Also we might use the knowledge that

74

7.1 Related Work

(a) detection (b) detection with alignment

conf: 4.79, score: 5 conf: 6.58, score: 14

Figure 7.2: Fundamental idea: First line shows detected windows, second line shows
results after non-maxima-suppression.

last stages are evaluated much less often, and place the more time consuming classifiers
close to the end of the cascade.

In our experiments we test two different motion estimators. First is a sequential linear
predictor γs similar to Zimmermann et al. [11]. The sequential predictor is learned from
multiple training images to estimate 2D motions of specified class of objects. As a
second motion estimator we use Ferns classifier similar to [44], where different classes
correspond to discrete 2D motions. Linear predictors are widely used for tracking [10] [13]
[34]. Incremental on-line learning was proposed by Hinterstoisser et al. [12]. Recently,
linear predictors were used by Holzer et al. [49] for adaptive template tracking. The
tracked template was enlarged or reduced on-line, when necessary (e.g. due to partial
occlusion). Very similar method to the original [11] is [84], where they also use a sequence
of pose regressors to estimate object’s position, only they replace the linear predictors
in sequence with a random Ferns regressors. Hinterstoisser et al. [12] use Ferns to
detect planar objects and linear predictors to estimate the homography transformation
for precise alignment. Recently, Villamizar et al. [85] used boosted random Ferns for
rotation invariant object detection.

We did not find any similar work, which would try to improve the performance of
the detector by aligning the detection window, as we do. We try to reduce the search
space, get higher confidence on true positives, lower confidence on false positives and

75

7 Cascade Object Detector with Sliding Window Alignment

reject the false positives in an earlier detection stage. From the point of view of search
space reduction our work may be compared with Felzenschwalb [18], where they use a
partial hypothesis pruning with a sequence of thresholds. They show, that the sequence
of thresholds provides a theoretical guarantee on the performance of cascade method.
They use a part-based model and achieve another speed-up by detecting the root part of
the object first and finding the best configuration of the remaining parts later, instead
of detecting every part separably.

7.2 Theory

We assume a detector which comprises a cascade of 25 Gentle AdaBoost classifiers [73].
Each classifier in the cascade evaluates a particular example (window candidate). The
example is accepted, i.e. classified as a positive match if and only if all the classifiers in
the cascade accept it. Each classifier has its own fixed position in the cascade. We call
this position the cascade stage.

To align the sliding window we test two different methods. The sequential linear
predictor [11], which is a sequence of linear mappings between intensities and motions.
Second motion estimator is Ferns [44] which is a randomized tree-like classifier learned to
distinguish several discretized positions. Both motion estimators as well as the detector
and are learned off-line on multiple training images and work with rectangular Haar
features. The Haar features are computed as a difference of sums of image intensities over
two (or more) image areas. This type of features became popular thanks to Viola-Jones
face detector [15]. Rectangular Haar features are sensitive to horizontal and vertical
structures in the image, which is in our case suitable to the car detection task for our
experiments. The rectangular feature shape may be computed very efficiently using
the integral image (summed area table). The motion estimators, adapted to work with
Haar features, are able to localize the object from its local neighborhood (learned motion
range). But when they are initialized on some random patch in the image, their response
is unpredictable. The motion estimators are learned on positive examples only. They
have no information about the background, or other objects in the scene, unlike the
detector, which is trained on both positive and negative examples. The detector and
motion estimator may be combined in several different ways. We might run the sliding
window alignment just before every detection, but this would significantly slow down the
entire detection procedure, because of the large number of evaluated windows in image.
It is around 250 000 candidate windows for resolution 640 × 480 and detection step 3
pixels in both directions. To keep the detection fast we let the first few classifiers in the
cascade to filter out most of evaluated positions, than we align the sliding window and
evaluate the remaining classifiers on a changed position, see Figure 7.3.

We observed that the cascade stage after which the alignment is invoked (we further
address to this stage as the alignment stage) is crucial: while running the alignment at
the very beginning or the very end of the detection process yields negligible improvement,
an alignment invoked after approximately 50−60% of detection stages yields significantly

76

7.2 Theory

(a) alignment (b) increasing score

Figure 7.3: (a) Alignment: Sliding window is centered only on a sparse grid of pixels
(red crosses). First few stages of the detector cascade are evaluated on this initial position
(red rectangle). Than the motion estimator votes for object center position, where the
detection window is moved (blue rectangle). Here the remaining stages of the detector
cascade are evaluated and the result of detection is assigned to the aligned position (blue
cross). (b) Increasing score: When we use the sliding window alignment we get higher
score (number of overlapping detections) on positive sample (blue rectangle), see Figure
7.2(b). Higher score on positive sample is caused by sliding window alignment on its
position from multiple initial positions around it.

better results. In addition to that, the detection speed is preserved, since the alignment
is computed only on less than 0.05%1 of rectangles.

In general, we observe that the higher the alignment stage, the fewer the false positives
(FPs) but the more the false negatives (FNs). To explain this phenomena, we define
detection complexity of a negative sample as the last stage at which the sample is accepted
by the cascade of classifiers. If a negative sample is accepted by all detection stages, i.e.
it is false positive, the detection complexity is equaled to the number of cascade stages.

First we discuss why is the number of FPs a decreasing function of the alignment
stage, see Figure 7.4 (left). Aligning of a simple negative sample (i.e. sample with a low
complexity), often yields more FPs than aligning of a hard negative sample (i.e. sample
with a high complexity). The reasons are two-fold: (i) there are many more simple
negative samples than hard ones2 and (ii) most of the hard negative samples are often
already aligned in the worst possible way and further alignment makes them often less
complex.

1Actually, for alignment stage 15 it is 0.615 = 0.00047, because the rejection rate per stage is 60%.
2Simply because the cascade is trained in the way, that the first stage rejects 60% negative samples,

the second stage rejects 36% (i.e. 0.62 · 100) of negative samples etc.

77

7 Cascade Object Detector with Sliding Window Alignment

−2 0 2 4

−2

−1

0

1

2

3
12

14

16

18

20

22

24

Figure 7.4: Left: FP as a function of the alignment stage: Graph shows that
FP are decreasing function of the alignment stage. Number of FP of the not aligned
detector is denoted by red line. This graph is valid for one particular confidence, i.e.
for one point on ROC curves (see Figure 7.5). Similar graphs may be drawn for other
confidence values. Right: Average positive samples rejection stage (i.e. FN
only) as a function of displacement from the correct position (0, 0).

We also observed that only a minority of positive samples were rejected in the first
stages due to their bad alignment. Figure 7.4 (right) shows the average rejecting stage
on positive samples as a function of the spatial alignment (similar effect can be observed
in scale). We can observe that the smallest rejection stage is around 12 - far from the
early decision stages. This in conjunction with the diminishing FP amount (shown in
Figure 7.4), explains why early alignment does not pay off. Second, we justify that the
number of FNs is an increasing function of the alignment stage. The higher the alignment
stage, the fewer not-well-aligned positive samples survive and therefore the fewer positive
samples are correctly aligned and the detector has the fewer chances to detect them with
sufficiently high confidence. This means that too late alignment does not help neither.
The above mentioned claims are experimentally validated in Section 7.3.

7.3 Experiments

The system is evaluated on the car rear detection problem, see Figure 7.6 for a few
examples. We have created a dataset of 1800 images of cars with manually labeled
bounding boxes. We divided the dataset into 900 training and 900 testing images.
Training images were used for learning of the detector as well as for learning of both
motion estimation methods. We have used another set of images not containing any cars
as the negative samples for the detector learning. The results, we present, were obtained
by evaluation of the method on the testing images only.

78

7.3 Experiments

The detector consists of a cascade of 25 Gentle AdaBoost classifiers. The alignment
is trained within the range of 6 pixels (no scale, rotation or even non-rigid alignment
is considered). The alignment is estimated either by the γs (with three predictors in
sequence) running on approximately 1000 randomly selected haar features, or by the
Ferns classifier (consisting of 50 randomized trees with depth 11) distinguishing classes
corresponding to discretized translations with 1 pixel accuracy.

We evaluate detector (blue), detector with the linear predictor (red) and detector with
the Ferns (green) with the alignment stage equal to 5, 10, 15 and 20. Figure 7.5 shows
ROC curves for this four cases. To demonstrate the influence of the alignment stage,
the corresponding points (with the same confidence threshold) on different ROC curves
are outlined by black asterisk and black triangle symbol.

As we can see, Figure 7.5(a), the early alignment yields

• fewer FNs, because most of not-well-aligned positive samples are correctly aligned
before they are rejected,

• more FPs, because the earlier the alignment the higher the FPs as shown in
Figure 7.4.

Too late alignment, Figure 7.5(d), works the other way around. The positive samples,
which pass up to the high cascade stage are of two kinds. Either easy samples, which
don’t need to be well aligned for positive detection or hard samples, which are very
sensitive to precise alignment, which brings

• more FNs, because in the high cascade stage the hard positive samples may
be paradoxically damaged by the motion estimator, which also has some small
estimation error on positive samples. Even one pixel error in alignment causes
final rejection of those hard samples and rises the FNs.

• fewer FPs, because more potential FPs are incorrectly aligned. I.e. the motion
estimator drifts away and FPs are rejected.

The best trade-off of above mentioned effects is achieved with the alignment stage in
between 10-15, see Figure 7.5(b,c). We can see that the Ferns outperforms the sequential
predictor, especially in higher alignment stages. In addition to that, when looking at
Ferns ROC curves, one can notice that the Ferns alignment exhibits very desirable
property of incorrectly aligning hard negative samples, which yields good results even
for the high alignment stage. We assume, that this could be caused by significantly
higher degrees of freedom of the Ferns with respect to the sequential predictor. On
the other hand motion estimation by Ferns is more time costly (approximately 3 times
slower) than by the sequential predictor.

The question of time complexity is also important. In a real-time application it would
not be possible to align every candidate window. Although the alignment is very fast (0.5
ms per one window by γs implemented in Matlab), the candidate windows are simply
too many (around 250 000 per image). While after lets say 15 stages of the cascade we

79

7 Cascade Object Detector with Sliding Window Alignment

(a) alignment stage = 5 (b) alignment stage = 10

(c) alignment stage = 15 (d) alignment stage = 20

Figure 7.5: ROC curves for different alignment stages. Particular points of ROC curves
are computed for different confidence thresholds. With growing confidence we are getting
more to the top left corner of the ROC curves. Points with the same confidence threshold
are depicted by star and triangle. The closer we get to point (0, 0) the better.

have only some 0.615 · 250000 ≈ 118 windows left, since in average we reject in every
stage 60% of candidates. For this small number of windows, the motion estimator is well
applicable in real-time.

7.4 Summary

In this chapter we focused on improving the detectors based on cascade of classifiers. We
found out, that aligning the detection window in the middle of the cascade improves the
detector performance, while keeping the efficiency. Sliding window alignment before the
detection, or after first few stages of the detection process lowers the FNs, but increases
the FPs. The number of FPs is higher thanks to many potential FP window candidates,

80

7.4 Summary

Figure 7.6: Examples of testing images.

which are sometimes aligned by the motion estimator to position, which makes it even
more difficult (similar to object of interest) for the detector to reject it. On the other
hand alignment in one of the last detection stages yields more FNs, where only the
already well aligned candidate windows pass the earlier stages of the detector and the
motion estimator would be no more useful. While in the middle stages the tracker
significantly lowers the number of both FPs and FNs and at the same time needs to
evaluate only a small portion of all candidate windows. We have experimentally verified
our method on a practical problem of car detection.

81

8
Non-Rigid Object Detection

with Local Interleaved
Sequential Alignment (LISA)

Detection of objects with appearance altered by pose variations (including non-rigid
deformations and viewpoint changes) is more difficult than the detection of objects in
a single pose [86, 87]. If the detection time is constrained, exhaustive search over the
space of possible poses with a single pose detector is intractable.

An ample amount of work has been devoted to the detection of objects deformed by
pose variations. Many approaches partition the positive training samples into clusters
with similar poses, see Figure 8.1b. Some of them [88, 89] first estimate the pose cluster
and then use pose-specific classifier to decide about the object presence. Others [90, 91]
estimate pose cluster simultaneously with the detection process. A fine partitioning of
the pose space is desirable to achieve good detection performance. However, the finer
the partitioning, the fewer training samples fall into each cluster and therefore immense
training sets are often needed [90]. In contrast to these approaches, recent work [86] uses
simple pose estimators which align some detection features. These pose estimators help
to detect objects in an arbitrary pose without training set partitioning.

(a) objects in a single
pose

(b) partitioning into pose
clusters

(c) our approach–aligning
features

Figure 8.1: Simplified sketches of positive (red circles) and negative (blue crosses) sam-
ples in 2D feature space. (a) objects in a single pose exhibit smaller scatter than objects
deformed by pose variations, (b) scattered samples are often partitioned into pose clus-
ters with a small number of training samples, (c) our approach aligns features during the
detection to compensate for object deformation consequently making positive samples
less scattered.

Our feature alignment remedies the partitioning of the training set. In contrast to [86]
which finds simple local deformations (e.g. inplane rotations) and aligns each feature
independently, we rather estimate a global non-rigid alignment of all the features. Im-
portantly, the alignment is estimated solely from the features used for detection by

82

8.1 Related Work

pre-trained regressors. The alignment estimation is reduced to reading a value from a
look-up table which costs negligible time. On the other hand, our approach requires
annotated data for learning. Nevertheless, the use of our method does not prevent the
use of [86], thus the frameworks are complementary.

In our system the features are evaluated sequentially; each one reveals a certain amount
of object deformation, see Figure 8.2. Features are successively aligned to the observed
deformation which makes the positive class less scattered and easier to detect, see Fig-
ure 8.1(c). The training set is not partitioned and the number of necessary training
samples remains relatively low, even for large deformations.

We demonstrate the sequential alignment idea on a Sequential Decision Process (SDP)
similar to Waldboost [45], where the successive nature of feature evaluation allows for
efficient application of the estimated alignment. In the SDP a classifier cumulatively
estimates a confidence about the object presence or absence in a given detection window.
Once the confidence is sufficiently low, the window is rejected. We extend the SDP by
exploiting the same features that were used for the confidence computation to estimate
the alignment. The alignment is then applied on the subsequent features and the process
continues with more appropriately aligned features. In consequence, both the confidence
and the alignment are estimated more efficiently as it is then easier to distinguish the well
aligned positive samples from the background and to estimate the alignment from a closer
neighbourhood. The process continues until the rejection or acceptance is reached as in
the classical SDP. Note that the confidence and alignment updates are encoded by the
same feature values, therefore in comparison with the classical SDP the computational
complexity of SDP with alignment is almost preserved. We call the proposed scheme
Sequential Decision Process with Locally Interleaved Sequential Alignment (SDP with
LISA).

The contribution is threefold: (i) we show that features evaluated in the sliding window
detection process also contain knowledge about the correct alignment of the evaluated
window on the observed object deformation; (ii) we propose very efficient piecewise
linear regression functions which are jointly learned with the classifier. This facilitates
estimating the alignment during the detection process; (iii) we show that the estimated
alignment speeds up the detection process by reducing the search space and improves
the detection rates.

8.1 Related Work

Great progress has been made in the detection of objects under varying poses and defor-
mations [86, 16, 92, 93]. The predominant strategy is to combine a collection of classifiers,
each dedicated to a single pose or deformation [87, 94, 95, 96, 97, 98]. To train multiple
classifiers, either the training data need to be separated into disjoint clusters [90, 95], or
the features in training samples need to be registered to lie in correspondence [86, 96],
or both strategies are combined [87].

The clustering of training data imposes the need to collect large amounts of data for

83

8 Non-Rigid Object Detection with Local Interleaved Sequential Alignment (LISA)

Figure 8.2: Local Interleaved Sequential Alignment (LISA): Left: The first feature
always has the same position. The deformation of the local coordinate system is outlined
by the blue mesh. Features evaluated during the detection process contribute to both
(i) confidence and (ii) non-rigid deformation. The second column shows how features
are aligned after 30 evaluated features. A non-aligned feature position is delineated by
the red rectangle; the aligned feature is green. The last column shows alignment of the
last evaluated feature.

learning each classifier separately. Some authors try to reduce the amount of training
data by sharing some features across multiple views [95, 94]. To avoid the clustering of
training data, some methods [95, 96, 97, 98] align the object features in each training
sample (before or during the training process) to lie in correspondence. This task usually
requires a precise labelling of object features correspondence.

Other methods avoid the necessary labelling and try to align the features automatically
[87, 86] before their evaluation. Usually, the feature positions and low level deformations
are estimated first, e.g. by computing the dominant edge orientation in some part of
the detection window and using pose-indexed features [86, 96]. The automatic feature
alignment keeps the training set less scattered, and improves the detection rates but
lacks interpretation. We model the alignment for a specific class of objects, and as a
side product of the detection we obtain a parametrized alignment of the whole model.

Detection of deformable objects

Recently, Ali et al. [86] proposed to use pose indexed features coupled with dominant
edge orientation estimation, in different scales and positions in the detection window, for
feature alignment. By the feature alignment, they forgo the need to train a collection of
detectors for different object poses and learn a single deformable detector. The dominant
edge orientation is partitioned into 8 bins in 14 poses (1 pose in the largest scale, 4 in

84

8.1 Related Work

smaller scale and 9 in the smallest scale) and needs to be computed for every candidate
position in order to estimate the features poses. For alignment estimation they need
to evaluate additional 8 · 14 = 112 features apart from the detection features which
is considerably more than the average number of features needed for classification in
our system. We interleave object detection and alignment by regression. The detector
runs on increasingly better aligned features, which consequently groups together the
training samples in the feature space, as shown in Figure 8.1(c). Thanks to the design of
regression functions and the re-use of detection features, a negligible number of additional
computations are needed (reading the alignment parameters from a look-up table and
moving the features) and the computational complexity grows with the dimension of the
alignment space only very gently. The approach of [86] does not require the training data
labelling while our method does. However, our method allows having the pose space not
discretized.

In general, SDP with LISA outperforms the standard SDP’s [45, 70, 67, 68, 69, 78]
in both the speed and detection performance. In [87] the authors argue that the sliding
window-based object detectors work best when trained on examples that come from a
single coherent group with well aligned features, e.g. frontal faces. Our improvement
in performance is caused by the ability to locally align on the displaced, rotated, and
deformed object instances. The gain in speed is obtained by the search space reduction.
From the point of view of 2D translation search space reduction (sparser detection grid)
has already been shown for a cascade of classifiers in [4] and for SDP in [6]. Here we show
that we can effectively reduce a high dimensional search space of non-rigid deformation.

Recent deformable part-based object detectors [18, 95, 96] achieve excellent detection
rates, but are far from the real-time performance. The computational complexity of
part-based object detectors is given governed by the detection of model parts and by
the estimation of globally optimal parts configuration. Model parts are usually detected
by an SVM-based [18, 95] or AdaBoost [96] classifier. The root-part of the object is
detected first [18, 96], which allows reducing the search space for the remaining parts.
After estimating the candidate positions of the parts, the globally optimal configuration
of the model parts (or for multiple models for multiple views [95]) is found by using
the dynamic programming. Our method may be compared from the computational
complexity point of view with [16]. Their classifier is an SVM working with HoG features
which similar to [95] for one-view model as well as for the root part of the part-based
model in [18]. In [16] N denotes the number of possible locations in multiple scales and
V the number of evaluated features in each subwindow. For an SVM-based detector,
VN multiplications are needed. Since the SDP with LISA may learn to compensate
2D translation [6], the number of poses N may be significantly reduced to M and we
may run the SDP with LISA on a sparser detection grid. Here we compensate non-rigid
deformation of high dimensionality and M � N . Our method requires 4VM additions
in the worst case (all features being evaluated without the early rejection), where 4 is the
number of additions needed to transform each evaluated feature according to estimated
alignment (see Section 8.5 for details). For performance comparison with [18, 95] and
the running times of different methods see Section 8.7.

85

8 Non-Rigid Object Detection with Local Interleaved Sequential Alignment (LISA)

The Patchwork of Parts [99] builds a statistical model for detection of objects with
multiple parts. The detection process loops through the image locations (positions and
scales) and evaluating the classifier for every part (class) in every location. Model de-
formations are modelled as shifts of object parts which are than recombined using a
patchwork operation. The algorithm is able to classify 100 subwindows per second
which is not fast enough a real-time performance.

Search space reduction

A speeding-up of the original part based model [18] was addressed in [100]. The
authors argue that the cost of detection is dominated by the cost of matching each part
of the model to the image and not by the cost of computing the optimal configuration of
parts. They propose to learn a multi-resolution hierarchical part based model. The parts
are tested sequentially and image locations are discarded as soon as a partial detection
score falls under some threshold. The resulting algorithm achieves almost the same
detection accuracy as the original algorithm and runs twice as fast.

The search space reduction for detection speed-up has been approached also in Ef-
ficient Subwindow Search (ESS) [101]. ESS is reducing the search space by a branch
and bound algorithm. It defines multiple sets of rectangles (sets of candidate windows)
in the image. After evaluation of all the features in the image the algorithm computes
the upper bound (highest possible detection score) that the score function could take
on any of the rectangles in each set. The authors propose an efficient scheme for going
hierarchically through all the possible rectangles (scales and translations) without the
need to exhaustively evaluate the detection score for all possible rectangles. Many rect-
angle sets are rejected as soon as the upper bound is under some acceptance threshold.
The disadvantage is the need for evaluating all the features in the image first. This
is well applicable for the approaches which use a bag of features or some shared low
level features, usually for multiview and part-based object detection [97, 95]. After the
features evaluation, the detectors need to evaluate a non-trivial score function (usually
SVM-based classifiers) of all the features which fall into each particular rectangle, and
here ESS brings significant speed-up [97]. A sliding window-based SDP does not need
to evaluate all the features in all the positions and scales thanks to the early rejection
stages. Here, ESS would actually slow down the process by the necessary evaluation of
all features first. Also, in the SDP the rejection thresholds are already known in ad-
vance for each stage and no other bounds need to be computed. From the search space
reduction point of view, ESS reduces the number of candidate window translations as
well as scales, but does not take into account other object deformations.

The recently proposed Crosstalk Cascades [102] assume that adjacent subwindows
responses at nearby locations and scales are correlated. As soon as the classification score
for some location reaches some threshold, all points in the detection grid in the close
neighbourhood start to be evaluated as well (excitatory cascades). When the ratio of
score in the current position and in at least one position in the close neighbourhood goes
under some stage specific threshold the evaluation of remaining stages in actual position
stops (inhibitory cascades). Training the classifier needs perturbing each training sample

86

8.1 Related Work

Figure 8.3: Classification: Three steps of SDP with LISA are depicted. Left: In the
initial position, only feature 1 is evaluated. From its value the first alignment a1 and
confidence c1 are computed. Middle: the alignment a1 is applied on features 2 and 3.
Note that the applied alignment a2 is updated by contribution of two regressors, not
just one. Also note that the alignment a1 was not applied on feature 4. Right: the last
feature is moved from its initial position by the accumulated alignment a2.

by small 2D shifts to ensure the correlation of classifier answers at nearby positions. This
perturbing corrupts the performance of the cascaded detector. We approach the problem
from an opposite direction. We are aligning the detection window to a pose at which
it fits the object better. It does not require corrupting the training samples by adding
shifts to positive samples. The detection of well aligned samples is easier and needs to
evaluate fewer features to reach the decision. From the point of view of search space
reduction, the Crosstalk Cascades reduce the 2D sliding window translation and scale
as well as [101]. Nevertheless, they still need to look at every position in the detection
grid but the number of evaluated features is reduced. Our method yields the detection
grid reduction because our detector is able to move and deform.

Non-rigid alignment estimation

We mention only few of the most relevant papers in this area, since our method focuses
more on improvement of object detection, than on precise alignment estimation.

State of the art methods specialized in alignment of deformable models are now able
to cope with quite large object deformations [103, 104, 105]. In [103] authors train a
cascade of regressors for non-rigid face deformation estimation. Every regressor in the
cascade is a Fern. Each Fern separates the training set into subsets (one for each leaf),
where within one subset there are samples with a similar type of deformation. Therefore
each Fern basically divides the space of possible deformations. This makes the alignment
task easier for regressors trained on subsets in each leaf and allows coping with larger
deformations. On the other hand, it is necessary to cluster the training data to learn
the regressors. In comparison, our method does not need to cluster the training data
for learning. We transform only the features which is faster than inversely transforming
the whole image patch as in [103].

87

8 Non-Rigid Object Detection with Local Interleaved Sequential Alignment (LISA)

In the Boosted Appearance Model (BAM) [105] the authors propose to train a clas-
sifier which recognizes well aligned deformable model from those not well aligned. The
classifier is then used in a criterial function which includes a parametrized shape of the
object. The goal is to find the shape parameters that maximize the score of the learned
strong classifier. The problem is solved iteratively by gradient ascent optimization. The
follow-up to BAM is Boosted Ranking Model [104] (BRM). In BRM given 2 image
patches a classifier is trained to recognize the better aligned image patch from the worse
aligned. The shape in both BAM and BRM is a set of 2D points and the displacement
of each of the points is parametrized by a 2D vector. The number of parameters is
reduced by projection to a low dimensional space via PCA similarly to our approach. In
comparison, we model the shape deformation by deforming the whole grid which covers
the object patch. This allows us to efficiently transform the features instead of inversely
transforming the whole image patch. We obtain a transformation for every pixel in the
grid and not only for the control points of the shape as in [103, 104].

A Sequence of Learnable Linear Predictors for learning a fixed sequence of linear pre-
dictors (weak regressors) that estimate the object alignment was proposed in [11]. Each
predictor in the sequence is learned on the estimation error of the previous predictor. A
similar idea was later proposed in [84], only they use Ferns instead of linear predictors
as the weak regressors. Our work uses weak regressors proposed in [6]. Instead of using
simple linear functions we propose a non-linear regression and approximate it by piece-
wise linear (or piecewise constant) functions which improves the alignment and keeps
the fast performance of linear predictors.

8.2 SDP with LISA Classification

We divide the classification process into K stages. In each stage k, only one feature is
evaluated. The value of this feature contributes to the confidence and the alignment.
Contributions are determined by (i) a detection function dk : R → R, which maps the
feature value to a contribution to the confidence, and (ii) a regression function rk :
R→ Rm, which assigns an m-dimensional contribution to the alignment vector a using
the same feature value. Both the confidence and the alignment are accumulated from
evaluated features. Then there is a threshold θk ∈ R (estimated during the learning),
which allows to reject windows with the so far accumulated confidence lower than θk.
In each stage, the feature can potentially be aligned. This is determined by a binary
value qk, which is estimated by boosting during the training stage. If qk is TRUE, this
will invoke aligning of the feature, while qk = FALSE means that the non-aligned feature
will be used.

The alignment estimated from a single feature may be inaccurate, therefore it must
be accumulated over multiple features. We keep the last valid alignment, denoted as aω,
where index ω corresponds to the stage at which the alignment was estimated. Besides
that, we also accumulate alignment updates from all evaluated features. This alignment
is updated in each stage k and we denote it by ak. Hence, there are two alignments: (i)

88

8.3 Joint Learning of SDP with LISA

1: Initialize a0 = 0, c0 = 0, k = 1, ω = 0.
2: while k ≤ K do
3: if qk = TRUE then // use alignment
4: Estimate the value of feature v = fk(I,aω)

with alignment aω.
5: else
6: Estimate the value of feature v = fk(I,0) without alignment.
7: end if
8: Update confidence ck ← ck−1 + dk(v).
9: if ck < θk then

10: reject the window and break,
11: end if
12: Estimate alignment ak = ak−1 + rk(v).
13: if zk = TRUE then // alignment is valid
14: update ω ← k
15: end if
16: k ← k + 1
17: end while
18: Accept the window.

Figure 8.4: Classification algorithm: Classification of a single window by SDP with
LISA

accumulated up to stage k denoted by ak and (ii) valid, which is applied on features,
denoted by aω. The stage at which the index ω is updated is determined by a binary
value zk = TRUE; zk is again estimated by boosting during the training stage).

We define a feature function fk : (I ×Rm)→ R as a mapping which assigns a feature
value to a window with image data I ∈ I and m-dimensional alignment vector a ∈ Rm.
For the sake of simplicity, we refer to the feature function as the feature and to image
data in the sliding window as the window. Based on the above introduced notation, we
define the strong classifier as a collection:

H = [f1, q1, d1, θ1, r1, z1, . . . , fK , qK , dK , θK] . (8.1)

The classification Algorithm (Figure 8.4) summarizes how the SDP with LISA decides
about object presence or absence in a given window I with the given strong classifier
H. See also Figure 8.3 for illustration. In the algorithm, we denote ck as the confidence
and ak as the alignment, both accumulated up to stage k.

8.3 Joint Learning of SDP with LISA

The expected output from learning is the strong classifier H, Equation (8.1), inputs are
training and validation sets. At the beginning of each training stage, the training set

89

8 Non-Rigid Object Detection with Local Interleaved Sequential Alignment (LISA)

with the following structure is available:

T = {(I1, t1, y1), . . . , (Ip, tp, yp), (Ip+1, yp+1), . . . , (IN , yN)},

where I1, . . . , Ip are positive image data, Ip+1, . . . , IN are negative image data, y1 . . . yN

are labels such that y1 = · · · = yp = 1, yp+1 = · · · = yN = −1 and t1 . . . tp are correct
alignments of positive data. The validation set V and the testing set W1 have the same
structure.

The learning algorithm uses the following notation: [[Ψ]] is a binary function equal
to 1 if a statement Ψ is TRUE and 0 otherwise, and [Υ Ξ] is concatenation of Υ and
Ξ. We introduce the error of the strong classifier H on validation data V denoted as
E(H,V) =

∑
i[[H(Ii) 6= yi]], ∀(Ii, yi) ∈ V. For the sake of completeness we define:

E(∅,V) = ∞. To simplify the notation, we also denote a weak classifier wck to be the
following foursome wck = [fk qk dk θk].

The joint learning of SDP and LISA, see Figure 8.5, successively builds a strong
classifier H. The current stage is denoted by the lower index k, the training samples
are indexed by the upper index i. Since we allow the alignment to be accumulated over
multiple stages without direct application on features, we also keep the index ω of the
last valid alignment.

The algorithm (Figure 8.5) first constructs two weak classifiers: ŵck, that use features
either aligned by ak−1 or not aligned at all, and wck, that use features either aligned by aω
or not aligned at all (lines: 4-5). Then the validation errors of [Hk wck] (strong classifier
Hk concatenated with wck) and [Hk ŵck] (strong classifier Hk concatenated with ŵck) are
compared, and the one with the lower error is selected and denoted as Hk (lines: 6-11).
If the alignment ak−1 is used (i.e. ŵck is used and q̂k = TRUE), then ω is set to k − 1,
which makes ak−1 to be the valid alignment from now on. After that, we jointly re-learn
regression functions rω+1 . . . rk to estimate the alignment from features fω+1 . . . fk, i.e.
those features which have not yet been used for the alignment (lines 12-13). Please note,
that in case where the alignment ak−1 is used, the re-learning reduces on the learning of
the new regression function rk, which will be used in the following stages.

Eventually, training weights are updated in line 14 and training data T are updated
(line 15) by the new negative samples. Negative samples are collected as the false
positive detections of the current strong classifier Hk. The algorithm continues until the
validation error starts to increase.

The rest of the chapter continues as follows: Learning of weak classifiers and alignment
regressors for the group of features is described in section 8.4. The non-rigid deformation
model is summarized in Section 8.5. Implementation details are explained in Section 8.6.

90

8.4 Learning of Weak Classifiers and Alignment Regressors

1: input: T , V, F
2: k = ω = 1, H0 = ∅, wi = 1/N, i = 1 . . . N .
3: while E(Hk,V) ≤ E(Hk−1,V) do

//Build two weak classifiers: wck that use aω and ŵck that use ak−1.
4: wck = learn weak cls(T ,F , Hk,a1

k−1 . . .a
N
k−1)

5: ŵck = learn weak cls(T ,F , Hk,a1
ω . . .a

N
ω)

//Comparison of validation errors determine, whether to start using ak−1 from
stage k or not.

6: if E([Hk wck], V) > E([Hk ŵck], V) then
7: Hk ← [Hk ŵck]
8: if q̂k = TRUE then ω ← k − 1 end if
9: else

10: Hk ← [Hk wck]
11: end if

//Learn regressors estimating alignment from features fω+1 . . . fk.
12: [rω+1 . . . rk]← learn regressors(T , fω+1, . . . , fk)

//Update regressors rω+1 . . . rk in the strong classifier
13: Hk =

[
Hω [wcω+1 rω+1 zω+1] . . . [wck rk]

]
//Update weights of training samples

14: wi = exp(−yiHk(Ii)), i = 1 . . . N

//Collect new negative samples as FPs of Hk

15: T ← update negative samples(Hk)
16: [a1

ω . . .a
n
ω a1

k . . .a
N
k]← update alignment(T)

17: k ← k + 1
18: end while

Figure 8.5: Learning of SDP with LISA:

91

8 Non-Rigid Object Detection with Local Interleaved Sequential Alignment (LISA)

feature value

no
rm

al
iz

ed
 p

ar
am

et
er

 r
an

ge

−0.25 0 0.25 0.5 0.75 1

1

0.5

0

−0.5

−1

feature value

no
rm

al
iz

ed
 p

ar
am

et
er

 r
an

ge

−0.25 0 0.25 0.5 0.75 1

1

0.5

0

−0.5

−1

Figure 8.6: Examples of tested piecewise linear regression functions: The density
of the training data for one feature (depicted as grayscale heatmap) with fitted regression
functions. The left image corresponds to non-proportional partitioning and the right
image to the proportional partitioning of the feature space. Green is a piecewise affine
function (i), yellow corresponds to a piecewise linear function (ii) and red is a piecewise
constant function (iii).

8.4 Learning of Weak Classifiers and Alignment Regressors

8.4.1 Learning of Weak Classifiers

In our approach, the weak classifier dk is a piecewise constant function of feature fk ∈ F
dividing feature values into U bins with sizes proportional to the training data density2.
To simplify the notation, we define a bin assigning function δj : R → N which assigns
corresponding bin u to feature value v = fj

(
Ii,aiω

)
for the i-th training sample and j-th

feature. Given training samples weights wi, the constant response κku of dk in bin u is
computed as follows:

κku = arg min
κ

∑
i∈Iu

wi(κ− yi)2 =

∑
i∈Iu w

iyi∑
i∈Iu w

i
(8.2)

where Iu = {i | δ(fj(Ii,aiω)) = u} is the set of training samples indexes, which fell to bin
u.

In the weak classifier estimation the same procedure is performed for each bin and each
feature from the feature pool. Finally, we use the feature (and corresponding classifier
dk) which yields the lowest weighted error. Such approach is coincident with Gentleboost
technique [5]. Rejection thresholds θk and θ̂k are set in order to preserve the required
maximum number of false negatives (FN) per learning stage. The FN limit is defined
by the user to achieve the required running time similarly to [78].

1Sets T and V are used during the learning phase and testing setW is used for experimental evaluation.
2except the size of border bins which are [−∞, min value] and [max value, +∞]

92

8.4 Learning of Weak Classifiers and Alignment Regressors

Figure 8.7: Example data from the LFW and CSV datasets. The red crosses are ground
truth labels. Yellow crosses depict the mean of labelled positions for each dataset and the
blue points are the deformed grid. The deformed grid is obtained by thin plate splines
non-rigid deformation using the correspondences between the yellow and red points.

8.4.2 Learning of Regressors

As already noted in section 8.2, the use of a regressor, learned on a single feature, may
inaccurately align some positive samples and cause the lower detection rate. During the
learning we do not immediately apply the estimated alignment on the feature, but we
wait for the right number of features, for which jointly learned regressors yield better
alignment and consequently lower the validation error of the detector.

In the learning algorithm (Figure 8.5, line 12), regressors rω+1, . . . , rk are jointly
learned to compensate the residual alignment error ∆ti = (ti − aiω) of preceding re-
gressors r1, . . . , rω. ti is the vector of ground truth parameters of alignment. We search
for regressors rω+1, . . . , rk which are the solution of the following problem:

arg min
r̃ω+1...r̃k

p∑
i=1

∥∥∥(k∑
j=ω+1

r̃j(fj(Ii,aiω))
)
−∆ti

∥∥∥2

F
. (8.3)

For simplicity we explain only one dimensional alignment estimation, i.e. with ∆ti

being only a scalar for each sample instead of a vector. The higher dimensional align-
ment is learned for each dimension independently, therefore the following equations are
valid for multiple alignment parameters estimated by each regressor. To solve the prob-
lem (8.3) we propose to learn a piecewise affine function by the least squares method.
The feature space is divided into U bins, where each bin gives an affine response, see
green lines in Figure 8.6.

The response of a regression function r(v) is then computed as follows:

r(v) = ϕj,δ(v)v + λj,δ(v), (8.4)

where ϕj,δ(v) and λj,δ(v) are scalar coefficients. We considered (i) full affine function
with ϕj,δ(v) ∈ R, λj,δ(v) ∈ R, (ii) linear function ϕj,δ(v) ∈ R, λj,δ(v) = 0 and (iii) con-
stant function with ϕj,δ(v) = 0, λj,δ(v) ∈ R. Since we experimentally verified that all
three functions yield similar results for a sufficient number of bins (see experimental
evaluation in section 8.7.4), we used the piecewise constant function to speed up the

93

8 Non-Rigid Object Detection with Local Interleaved Sequential Alignment (LISA)

alignment estimation process. Therefore problem (8.3) is reduced to search for coeffi-
cients [λω+1,1 . . . λk,U]. We substitute Equation (8.4) with ϕj,δ(v) = 0 into problem (8.3)
to obtain the corresponding least squares problem:

arg min
λ̃η,u∈ R

p∑
i=1

∥∥∥ k∑
j=ω+1

λ̃j,δ(fj(Ii,aiω)) −∆ti
∥∥∥2
. (8.5)

To write the solution of (8.5) in a compact form, we further introduce a binary matrix

[A]i,(ju) =
〈

1 if δ(fj(Ii,aiω)) = u
0 otherwise

(8.6)

where index i determines the row and indexes (ju)3 determine the column. We also
introduce vector λ̃ = [λ̃ω+1,1 . . . λ̃k,U]>, which is concatenation of all unknown lambdas
from all bins and all features. Finally, we form the vector ∆g = [∆t1 . . .∆tp]> with all
the residual alignments. The solution of problem (8.5) is then

λ = arg min
λ̃

∥∥∥Aλ̃−∆g
∥∥∥2

= A+∆g, (8.7)

where A+ denotes Moore-Penrose pseudo-inverse [51] of matrix A.
Two types of feature space partitionings were tested: (i) non-proportional partitioning,

which divides the space into bins of equal sizes and (ii) proportional partitioning, which
divides the space into bins of sizes inverse proportional to the training data density, where
each bin contains the same number of training samples. See Figure 8.6 for example of
partitioning into 7 bins with all three tested functions fit into the training data of one
feature.

8.5 Non-rigid Deformation Model

We work with two types of alignments. The first is a simple two dimensional displacement
and the second is a non-rigid deformation parametrized via PCA [106]. We define the
feature as function P : (I × R2 × R2 × N) → R, the value of which is computed from
image I ∈ I on the position specified by its left-upper corner α ∈ R2 and right-bottom
corner β ∈ R2 with type ξ ∈ N. We experimented with HoG features [102] (where ξ
denotes orientation of edges) and Haar features [107] (where ξ stands for the feature
type).

The alignment encoding the two dimensional displacement is given by two dimensional
vector a = (∆x, ∆y)T . Then, feature function f(I,a) of the feature specified by {α, β, ξ}
aligned by the two dimensional displacement a is

f(I,a) = P (I, α+ a, β + a, ξ). (8.8)
3(ju) denotes a linear combination of indexes j and u.

94

8.6 Implementation Details

The non-rigid alignment deforms the position of every corner point α (resp. β) by
m-dimensional vector a = [a1 . . . am]T as follows:

α(a) = α+ a1w1
α + · · ·+ amwm

α , (8.9)

where w1
α . . .w

m
α are 2D Eigenvectors corresponding to deformations modelled in point

α. Eigenvectors of the non-rigid deformation are obtained by PCA. Training of PCA
is detailed in the next paragraph. Feature function f(I,a) of the feature specified by
{α, β, ξ} aligned by the non-rigid deformation a is

f(I,a) = P (I, α(a), β(a), ξ). (8.10)

To train the PCA, we use the position of a few manually selected keypoints in each
bounding box from the training set, see the red points in Figure 8.7. Given these key-
points, we compute the elastic transformation by thin plate splines transformation [50]
of an orthogonal pixel grid within the bounding box for each training sample, see blue
grids in Figure 8.7. The elastic transformation assigns a two-dimensional displacement
vector to each pixel from the orthogonal grid in each bounding box. Finally, we concate-
nate these displacements for each training sample into one column vector and project
them into the lower dimensional space by PCA.

The alignment may be applied either by deforming the features and placing them in
the right position in the image or by inversely deforming the image. The latter would
require the image deformation after each applied alignment update. Unfortunately,
this is unthinkable for the real-time performance of the detector as we would need to
transform the image (or part of it) multiple times for each candidate window. Hence we
transform the features.

We need to keep the features in a rectangular shape to take advantage of the fast
evaluation on integral images. Therefore the deformation of each feature is only approx-
imated by anisotropic scaling, see Figure 8.2 for example. The non-rigid transformation
is applied on the upper left and lower right corner of each feature. This gives us the
correct positions of both corners for each feature and determines the new width and
height of each feature, see Figure 8.2. This feature transformation costs 8 additions per
feature and is very efficient. This type of feature transformation is used in the learning
as well as in the detection process.

8.6 Implementation Details

Both the weak classifier dk and the weak regressor rk in stage k are implemented as
a single lookup table (see Table 8.1 for an example); both confidence and alignment
updates are read by a single look-up. The only additional cost during the classification
for the alignment is its application to the features positions. For a rigid alignment by
translation, application of the alignment means only two scalar additions per evaluated
stage since both corners move identically and the feature’s height and width are pre-
computed. In non-rigid deformations, we precompute an alignment lookup table, where

95

8 Non-Rigid Object Detection with Local Interleaved Sequential Alignment (LISA)

bins of feature fk dk rk

(−∞,−0.42) −1 0 0
〈−0.42,−0.27) 0 0.05 −0.37
〈−0.27,−0.19) −0.32 −0.07 −0.39
〈−0.19,−0.11) 0.91 −0.09 0.02

...
...

...
...

Table 8.1: A part of a lookup table encoding the confidence and 2D translation updates
for one feature in stage k. Bin sizes and values of the first regression column correspond
to the function shown in red in the right image in Figure 8.6.

a1 . . . am
f1 . . .

fk
α1 β1 αk βk

0 0 (3,7) (5, 25) (51, 61) (12, 18)
0 . . . 0.1 (4,7) (6, 26) . . . (51, 61) (11, 18)
...

...
...

...
...

...

Table 8.2: A part of a lookup table encoding corner positions of particular features for
all possible alignments.

each alignment vector a = [a1 . . . am] is assigned with both position corners αi, βi for
all features fi, see Table 8.2. To speed-up the m-dimensional indexing, we compute a
1-dimensional index from a1 . . . am by bit-shifting. As a consequence, application of the
non-rigid alignment costs four additions plus one access to the lookup table per stage.
The size of the lookup table is reasonable. We usually use m = 3 and feature corners
positions are integer values, that can be encoded by one byte. Denoting: D to be the
number of discrete values of aj and F to be the total number of features, the size of the
alignment lookup table is 4FDm (e.g. for D = 100, m = 3 and F = 300, the size is
1.2GB).

8.7 Experiments

The results of the experiments demonstrate the importance of (non-rigid and rigid) LISA
for SDP. Section 8.7.1 and 8.7.2 describes experiments with non-rigid LISA on Annotated
Faces in the Wild dataset (AFW [108]) and Car Semi-profile View dataset (CSV). Our
negative data consist mostly of Google street-view images without cars and faces in
total amount of 15Gpxl. Experiments with rigid LISA are detailed in [6]. Section 8.7.4
evaluates performance of different regression functions.

We apply our feature alignment method on SDP similar to Waldboost [45]. We refer to
our method applied on SDP as SDP+LISA, reimplementation of the alignment method
proposed by Ali et al. [86] applied on SDP is referred to as SDP+Ali [86]. Besides

96

8.7 Experiments

SDP SDP+LISA SDP+Ali SDP+LISA+Ali Zhu DPM
AFW 0.129 0.041 0.081 0.047 0.069 0.115
CSV h.-view 0.038 0.001 0.042 0.003 − 0.001

Figure 8.8: Experiment summary: Comparison of FN rates for fixed number of FP
per 1Mpxl equal to 10−2. Results corresponds to ROC curves in Figures 8.10 and 8.12

Method SDP+LISA SDP+Ali [86] Zhu [95] DPM [98]
Running time on VGA 33ms 41ms 17.2s 10.5s

Figure 8.9: Running time: Comparison of running time on Intel core i7 Q700, 1.7GHz.
Methods SDP+LISA, SDP+Ali [86], Zhu [95] run on single core, DPM [98] uses 4 cores.
We used publicly available MATLAB/MEX implementation of DPM [98] and Zhu [95],
while SDP+LISA and SDP+Ali [86] is measured on our C++ implementation with
image resolution known in advance and the nearest neighbour image rescaling (ROC
curves correspond to the linear interpolation when rescaling images). Time reported
in [86] for AdaBoost+Ali is 30ms for 120 × 190 images and probably only one scale.
Nevertheless, we reimplemented their feature alignment method and use it in our SDP,
which is significantly faster than the AdaBoost used in [86] due to early rejections.

that we also evaluate SDP+LISA+Ali [86]. This method allows to combine non-aligned
features with features aligned by either the Ali [86] method, LISA method, or by both
methods simultaneously. The alignment method of each particular feature is determined
by boosting during the training stage. In addition to that, we also show baseline given
by pre-trained, publicly available models: (i) Deformable Part based Models (DPM) [98]
on a CSV and AFW dataset and (ii) Zhu’s and Ramanan’s [95] face detector on AFW
dataset. In section 8.7.4 we also compare the precision of our alignment to the one of
Zhu [95]. Section 8.8 discusses advantages, drawbacks, and limitations of the proposed
method.

Ground truth annotations contain positions of several manually annotated keypoints.
AFW has 7 keypoints and CSV has only 3 keypoints (upper left, lower right for bounding
box and one vertical edge point), see Figure 8.7. All experiments are conducted with
HoG features. Detection rates are summarized in Figure 8.8. Section 8.7.3 justifies the
choice of HoG over Haar features by comparing detection rates on CSV dataset.

In all experiments where sequential decision process is involved, detected windows
are filtered by Non Maxima Suppression (NMS). NMS is set to suppress all detections
which have mutual coverage (union of bounding boxes divided by their intersection)
bigger than 0.6. Criterion for correct detection is that the detected bounding box and
ground truth bounding box have mutual coverage bigger than 0.3.

97

8 Non-Rigid Object Detection with Local Interleaved Sequential Alignment (LISA)

8.7.1 AFW Dataset Results

The AFW dataset is a publicly available dataset of face images obtained by random
sampling of Flicker images. We use ground truth data which specify positions of 7
manually chosen keypoints (2 for each eye, 1 for the nose and 2 for the mouth corners).
Note that a considerable amount of publicly available annotations have very low accuracy
of keypoint positions (errors corresponding to 15% of the face size are not an exception).
Even though such annotations make it difficult to train any accurate regression function
(especially in L2-norm), we use them directly. Since our approach does not contain any
decision tree, which could split frontal and profile images, we focused only on frontal
images captured within the range of approximately ±45 degrees (in-plane and out-of-
plane rotations).

Figure 8.10 shows ROC curves of SDP, SDP+LISA, SDP+Ali [86], SDP+LISA+Ali [86]
trained on the first part of the AFW dataset. We can see that LISA outperforms
Ali’s [86] method. However, Ali’s [86] method still yields significant improvement with
respect to the pure SDP. It is also worth emphasizing that the SDP+Ali [86] method
only needs annotated bounding boxes, while SDP+LISA also needs annotated keypoints
to learn the regressors estimating non-rigid deformation. We can also see that the
SDP+LISA+Ali [86] method, which combines features aligned by Ali [86] and LISA
methods, has almost the same results as the SDP+LISA method. For comparative pur-
poses the results of publicly available pre-trained models of Zhu’s and Ramanan’s [95]
detector and Felzenszwalb’s DPM detector [98] are shown. We do not retrain their de-
tector and use publicly available model p146 small and the same DPM model from [95]
using 10 mixtures learned for faces and kindly provided to us by Xiangxin Zhu. Unlike
our detector, Zhu’s and Ramanan’s detector is designed to detect high-resolution faces
only (bigger than 80 × 80 while our detector works with 40 × 40 pixels). To make the
comparison fair, we evaluated all methods only on faces which are bigger than 80× 80.

Since AFW was captured by random sampling of Flicker images, training and testing
sets are independent. Nevertheless, we also show that if we train on a subset of the BIOID
dataset and a small fraction of the LFW dataset (faces already detected by Viola-Jones
detector), we achieve almost the same results (see Figure 8.11 for the comparison of SDP
and SDP+LISA trained on different datasets).

8.7.2 CSV Dataset Results

The CSV dataset consists of 1600 images of cars taken from a semi-profile view ranging
from almost pure rear view to the almost pure side view. Images are taken from a human
view angle. We use 1200 images for training (training and validation sets) and 400 for
testing. As the ground truth three points were marked: upper left, lower right, and a
rear vertical edge point. The rear edge point corresponds to the imaginary intersection
of the lower side windows line and the rear edge. The bounding box has a fixed aspect
ratio. The parameters which were estimated by the regressors were selected by PCA,

98

8.7 Experiments

10
−3

10
−2

10
−1

10
0

10
10

0.05

0.1

0.15

0.2

FP per 1Mpxl

F
N

SDP
SDP+LISA
SDP+Ali[1]
SDP+LISA+Ali[1]
DPM[15]
Zhu [12]

Figure 8.10: AFW-AFW ROC curves: Comparison of different methods on the AFW
dataset. SDP, SDP+LISA, SDP+Ali [86], SDP+LISA+Ali [86] trained on the first part
of AFW. All methods were tested on the second part of AFW (images were captured by
random sampling of Flicker images, therefore training and testing sets are independent).
False positives are measured per 1 Mpxl of background data, false negatives per dataset.

as described in section 8.5, for both modelled non-rigid deformations in the AFW and
CSV datasets.

Figure 8.12 shows ROC curves of SDP, SDP+LISA, SDP+Ali [86], SDP+LISA+Ali [86]
and publicly available DPM [98] pre-trained from VOC 2007 data. Figure 8.12 shows
corresponding ROC curves. LISA outperformed Ali’s [86] method. Actually, Ali’s [86]
method did not yield any significant improvement in the detection rate, because the
deformations in this dataset probably could not be well modelled by the pose estimators
of [86] (mainly estimating dominant edge orientation) since there is almost no in-plane
rotation present in the CSV dataset. We can also see that DPM slightly outperforms
SDP+LISA in human view-point images, however we still preserve real-time perfor-
mance, see running time summary in Figure 8.9.

99

8 Non-Rigid Object Detection with Local Interleaved Sequential Alignment (LISA)

10
−3

10
−2

10
−1

10
0

10
10

0.05

0.1

0.15

0.2

FP per 1Mpxl

F
N

SDP trn:AFW
SDP+LISA trn:AFW
SDP trn:BIOID
SDP+LISA trn:BIOID

Figure 8.11: AFW-BIOID ROC curves: Comparison of (i) SDP, SDP+LISA trained
on first part of AFW (solid lines) and (ii) SDP, SDP+LISA trained on BIOID dataset
(office environment images) and small fraction of LFW (dashed line). All methods were
tested on the second part of AFW. False positives are measured per 1 Mpxl of background
data, false negatives per dataset.

8.7.3 Haar vs. HoG Features

We also demonstrate the influence of the choice of feature type. Figure 8.13 shows ROC
curves of SDP and SDP+LISA methods evaluated on the CSV dataset captured from
the human-view angle for (a) Haar features and (b) HoG features. While the relative
improvement coming from using LISA is preserved, HoG features exhibit much better
detection rates than Haars.

8.7.4 Regression Functions Evaluation

In this experiment we evaluate the performance of piecewise regression functions in all
three variants of equation (8.4): (i) affine function with ξ and λ, (ii) linear function with
ξ only and (iii) constant function with λ only (used in LISA). We learn the regression
functions for different numbers of bins in combination with two types of feature space
partitionings.

Here the regression functions are learned separately from the detector on their own
features. In line 12 of the Learning Algorithm in Figure 8.5 multiple regressors are jointly
learned at once. The number of jointly learned regressors is estimated automatically by
observing the error on validation data. Five regressors are jointly learned on average.
Therefore for performance evaluation, we also jointly learn 5 regressors.

100

8.7 Experiments

10
−3

10
−2

10
−1

10
0

10
10

0.05

0.1

0.15

0.2

FP per 1Mpxl

F
N

SDP
SDP+LISA
SDP+Ali[1]
SDP+LISA+Ali[1]
DPM [15]

Figure 8.12: CSV ROC curves: False positives are measured per 1 Mpxl of background
data, false negatives per dataset.

10
3

10
2

10
1

10
0

10
1

0

0.1

0.2

0.3

0.4

FP per 1Mpxl

F
N

SDP (HOGs)
SDP+LISA (HOGs)

SDP+LISA
SDP (Haar)

(Haar)

Figure 8.13: ROC curves (Haar vs HoG features): False positives are measured
per 1 Mpxl of background data, false negatives per dataset.

As a criterion for selection of the best performing function and feature space parti-
tioning we use the mean regression error (MRE) of the alignment parameters (selected

101

8 Non-Rigid Object Detection with Local Interleaved Sequential Alignment (LISA)

Figure 8.14: Detections: with the SDP+LISA detector. Upper row shows some faces
from AFW testing set. The last image in the upper row shows FP detection. The
bottom row shows semi-profile cars from robot view angle on CSV testing images.

by PCA) estimation with respect to the parameters computed from the deformed grids
computed from ground truth annotations, depicted in Figure 8.7. Each features’ regres-
sor estimates all m = 3 alignment parameters. In this section we denote rkj a part of the
j−th regressor, which estimates single alignment parameter k. The MRE of the positive
samples in the testing set is then computed as follows

MRE =
p∑
i=1

 m∑
k=1

 5∑
j=1

rkj (vij)−∆tki

2

/m

 /p, (8.11)

where p is the number of positive image samples, vij is the j−th feature value of sample
i and tki is the samples’ k−th ground truth parameter.

The resulting MREs on testing data for all variants of tested regression functions
dependent on the number of bins are depicted in Figure 8.15. The MREs are normalized
by the initial MRE of the testing set when no alignment is applied. The results in
Figure 8.15 correspond to non-rigid alignment estimation on the testing part of the
LFW dataset. The results for other datasets are similar.

The important observation here is that MREs of the third function (piecewise constant
- dark and light red bars in Figure 8.15) decrease very quickly with the growing number
of bins. At approximately 15 bins it reaches the testing error of the first two types of
functions with the slope parameter ξ. Also the proportional partitioning variants (bars
in light tones) perform better than the non-proportional ones (bars in dark tones). In
our algorithm we use the piecewise constant function with the proportional partitioning

102

8.7 Experiments

(light red bars). It achieves a good alignment precision and is extremely fast to evaluate.

Figure 8.15: Mean Regression Error (Equation. 8.11) as a function of the
number of bins for LFW alignment learned on 5 features. Please note that
piecewise constant function (dark and light red bars) quickly reaches the testing error of
the first two functions, which use the slope parameter ξ. Also note that the proportional
partitioning of the feature space yields better results than the non-proportional one.
MREs are normalized, with 1 being the testing set error when no alignment is estimated.

In the last experiment we evaluate the precision of estimated alignment and we com-
pare our results to [95] on facial features. Alignment precision is evaluated on a testing
part of the AFW dataset. Our model was trained on the training part of the AFW
dataset. The same model was used to generate red curve in Figure 8.10. The publicly
available model p146 small from [95] works with faces larger than 80× 80. That is why
we made a selection of images with faces appearing in larger resolution. We took the
positive detections of [95], which corresponded to one of 7 frontal face models (out of
13). The remaining are side-view models, which do not contain all the facial features
necessary for comparison with our model. From this selection we made an intersection
of true positive detections of both our method and the one of [95] in order to evaluate
the alignment on the exact same images. A total of 338 images from the testing set were
selected for this experiment. The computed errors are Euclidean distances of estimated

103

8 Non-Rigid Object Detection with Local Interleaved Sequential Alignment (LISA)

10
−2

10
−1

10
0

10
1

10
20

0.1

0.2

0.3

0.4

FP per 1Mpxl

F
N

DPM
SDP+LISA
SDP+LISA+DPM

Figure 8.16: SDP+LISA+DPM pipeline: Comparison of SDP+LISA,
SDP+LISA+DPM and DPM on a hard face dataset with wide range of poses, illu-
minations and occlusions.

facial features positions from ground truth facial features positions relative to face size
(to compensate for different face scales). 7 facial features were used: 4 eye corners, 1
nose tip and 2 mouth corners. The resulting mean error of [95] is 0.0513, median 0.0441
with variance 0.0012. I.e. for a face of size 100×100 pixels, there is a mean error of 5.13
pixels for each facial feature. The resulting mean error of our method is 0.0472, median
0.0410 with variance 0.0009. For the same face size, we achieve a lower mean error of
4.72 pixels for each facial feature.

8.8 Summary

The proposed local interleaved sequential alignment improves the sequential decision
process. The main competitors are the SDP itself and local pose estimators proposed
by Ali [86], which may be combined with the SDP as well.

The SDP is favorable for its high detection speed, see running time comparison in
Figure 8.9. On the other hand, it is known that the greedy learning suffers from lower

104

8.8 Summary

generalization when compared to SVM based approaches like [95, 98]. Notice that in
the previous experiments we used publicly available models of [95, 98] to show the
baseline. When the DPM with 4 components [98] and SDP+LISA are trained on the
same dataset and tested on a harder face dataset with wide range of poses, illuminations
and occlusions, then the detection rate of DPM is indeed better, see Figure 8.16. To
achieve both high speed of SDP+LISA and high detection rate of DPM, we propose
a combined SDP+LISA+DPM pipeline. The SDP+LISA step reduces the number of
possible sub-windows and the strong but slow DPM runs only on the remaining small
fraction of all sub-windows. In this experiment, the SDP+LISA leaves only 15 sub-
windows per 1MPxl image in average for additional DPM evaluation, while only 2% of
true positives are rejected. Remaining 15 sub-windows are finally evaluated by the DPM
in a negligible time.

LISA is based on regression functions, which sequentially compensate deformation of
the object in the evaluated sub-window. The advantage of the regression functions is
that the computational complexity grows only linearly with the dimensionality of the
pose space. However, accurate regression is usually possible only for a limited range of
local deformations.

Main drawbacks of the proposed method are: (i) inherently limited generalization of
SDP methods, (ii) limited range of deformations and (iii) keypoint annotations needed
for learning. The main advantages are: (i) high detection speed, (ii) better detection rate
than other SDP methods, (iii) global object deformation is estimated as a side-product
of the detection process.

105

9 Conclusions

In this thesis we focused on real-time object detection and tracking. We improved
the performance of the standard methods, while keeping their fast performance during
runtime. The summarized contribution follows here:

• We proposed an automatic selection of training samples for incremental learning,
which was suitable for situations, when no user input was allowed and when the
computational time was limited. When the time is limited, we can not incremen-
tally train the predictor from every single image. The regression function may
also be overfitted without the proper selection of the additional training samples.
Our method delivers only the useful additional training samples for the incremen-
tal learning and requires no user input. The slowly changing object appearance
is successfuly re-learned. Still in some situations the algorithm may fail, mainly
because of sudden appearance changes. The object position needs to be validated
before it is incrementally learned. We proposed a method for fast tracker position
validation. When the appearance suddenly changes the validation detects the loss-
of-track. This approach proved to be very useful in practical applications, when it
was combined with a robust Ferns classifier or SURF keypoint descriptor used as
an object detector.

• We showed how to learn a regressor which approximated non-linear regression
function and kept the computational complexity of a linear predictor. This method
was used for the real-time non-rigid object tracking. It allows to achieve a better
precision in motion parameters estimation with less evaluated features. We also
proposed a tracker learning scheme for objects undergoing a non-rigid deformation.
We tested our approach on two tasks. First we estimated the deformation of human
faces under different facial expressions and second we tracked the deformation of
eye lids during blinking.

• We have proposed a method for the detection of LP-trackable points. We found
out that multiple image patches may be tracked by a predictor learned only from
a single image patch. By observing the trackers’ local convergence properties we
may determine the trackability of an image patch by this tracker. We proposed an
efficient filter built from the learned predictor which performed in real-time. This
filter may be used to find the LP-trackable points in the scene. The advantage of
this approach is that no learning of the predictor is necessary. The trackable points
may be tracked immediately. This method may be also used as a preprocessing

106

step for more complex object detection methods. Lets say, that we want to detect
human faces. Then we may also learn a predictor for the task of face tracking
and create an image filter. The filter quickly delivers small amount of potential
candidate positions for some more complex face detectors.

• In the final part of the thesis we focused on combination of learned regressors
with an object detector (or generally with any sequential decision process). We
worked with sliding window detector since it was the state of the art approach in
the real-time object detection. We proposed to align the sliding window, or even
individual features, during the detection process. First we tried to combine the
linear regressors and the non-linear Ferns with a cascade of classifiers. This early
work was a proof of concept which showed, that combining a sliding window align-
ment with a standard object detection methods pays off. We have achieved better
false positive and false negative rates. Finally we proposed an efficient scheme for
joint learning of the gentleBoost object detector and the speeded-up regressors for
non-rigid object detection. The detectors’ confidence and the information about
correct alignment was accumulated during the evaluation of individual features.
The updated alignment was immediatelly applied on the following features. Thus
the features were better and better aligned on the object. This approach signifi-
cantly improved the false positive and the false negative rates and it also speeds-up
the detection process. Thanks to the local sliding window alignment the detector
did not need to search through the pose spase so densely.

107

A Linear Predictors with
Appearance Parameters

Encoding the object appearance variation is a desirable property of each tracking system.
Cootes in [13] used linear predictors to model the human face shape and appearance at
the same time. One regression matrix was used to estimate both shape and appearance
parameters together. An interesting approach was proposed by Zimmerman in [28],
where the object appearance was used to update the regression matrix H. In [28], such
a linear predictor is called parameter-sensitive learnable linear predictor (PLLiP).

Besides the regression matrix H, the PLLiP has got another regression matrix G - so
called appearance encoder. The matrix G is trained in an unsupervised way. Besides the
training matrices T, L another training matrix J = [j1, . . . , jm] with m object appearances
is introduced. The matrix J is similar to L, and vectors of training examples intensities
j1, . . . , jm are collected on the expected uncertainty region of predictor. It means that the
size of uncertainty region needs to be estimated before learning of PLLiP. The ordered
triplet L, J, T forms the training set for PLLiP. With regressor H = (H0, . . . , Hd) and given
number d of appearance parameters in the vector θ = (θ1, . . . , θd)T , the PLLiP tracks
according to

t = (H0 + θ1H1 + · · ·+ θdHd) I (X) , (A.1)

where the appearance parameters vector θ is computed as

θ = Gj. (A.2)

The dimensions of matrices G and H are d × n and p(d + 1) × n respectively, where
n is the number of pixel coordinates in support set and p is the number of tracked
parameters. The tracking is than ordered triplet X, H, G - support set, regresor of the
predictor, regresor of appearance encoder. The prediction error e (H, G) of the system
X, H, G is

e(H, G) =
m∑
i=1

∥∥∥∥∥∥∥
H0 +

(
gT1 ji

)︸ ︷︷ ︸
θ1

H1 + · · ·+
(
gTd ji

)︸ ︷︷ ︸
θd

Hd

 I (X)− ti

∥∥∥∥∥∥∥ , (A.3)

where d is a number of appearance parameters. Optimal tracking system with respect
to training set L, J, T is than

(H∗, G∗) = arg min
H,G

e (H, G) . (A.4)

108

1: Randomly initialize matrix G0

2: while ek−ek−1

ek
≥ ε do

3: Find Hk = arg minH e
(
H, Gk−1

)
.

4: Find Gk = arg minG e
(
Hk, G

)
.

5: Recompute error ek = e
(
Hk, Gk

)
.

6: end while
7: H∗ = Hk, G∗ = Gk, stop.

Figure A.1: Learning with appearance parameter.

The goal of the learning algorithm is to find matrices H∗ and G∗. This is an unconstrained
optimization problem, where bilinear function is fitted in the least squares sense into a
high dimensional data. Zimmerman [28] shows that this problem has a closed-form
solution in H (respectivelly G) if G (respectivelly H) is fixed. Therefore the solution is
searched by an exact line-search method, which successively computes more and more
exact solutions, see algorithm A.1. The number ε is some chosen threshold for desirable
minimal error of learning. The description of the PLLiP given here is not sufficient for
perfect understanding of the learning phase (searching for matrices (H∗G∗)). Detailed
description of PLLiP learning and experiments with parameter sensitive predictor can
be found in [28].

Tracking with appearance parameters makes the estimation much more robust and
lowers the estimation error [28]. Since each appearance parameter adds another degree
of freedom to the system, exponentially more training examples must be added to the
learning process. Also the tracking system may fail for appearances which were not seen
in the training set. Anyway according to our experience from experiments the usage of a
few (1 or 2) appearance parameters for tracking by linear predictors is recommendable.

109

B Greedy Support Set Selection

A greedy least-squares algorithm for the support set selection was proposed in [11].
Suppose, that the support set coordinates in X cover the whole object template, i.e.
has the maximal complexity Cmax. The algorithm starts with empty support set X∗

and pixels coordinates are selected and added to X∗ one after each other. The currently
selected pixel coordinate xi ∈ X is the one that minimizes error ε on training data
ε = ‖Test − T‖F for some precomputed matrix T of randomly perturbed parameters,
where Test is matrix of parameters estimated by linear predictor trained for the support
set X∗ ∪ {xi}, see algorithm B.1. The output of the algorithm is a support set X∗. It
was experimentally shown in [11], that using X∗ yiealds lower error on training data,
than random selection of support set pixels. The disadvantage of proposed method for
support set selection is the high computational cost of the algorithm.

Such a subset selection method, which does not lower the precision of prediction,
we may lower the computational complexity of the linear predictor, which is the main
contribution of this algorithm. It would be also intersting to try to select template pixels
which are the most discriminative for particular parameter estimation.

Another approach for lowering the predictor complexity was used in [13], where the
principal component analysis has been applied to the training set of image intensities and
from all principal components were used only those with the high eigenvalues. After PCA
the eigenvectors with small eigenvalues were ommited thus reducing the dimensionality of
data. For 100 face images, each with approximately 10 000 intensity values for the facial
region, only 55 parameters from the appearance model were used after PCA. These 55
parameters explained 95% of the appearance variation. This approach slightly increases
the time complexity of the tracking, because PCA needs to be applied in each tracking
step, while the greedy algorithm for support set selection [11] precomputes the support
set before the tracking phase.

110

1: Initialize X∗ ← {∅}, A← {1, 2, . . . , Cmax}
2: for i← 1; i ≤ C; i← i+ 1 do
3: Set B ← A, amin ← −1, εmin ←∞,
4: for j ← i; j ≤ |A|, j ← j + 1 do
5: Xtmp ← X∗ ∪ xb, b ∈ B
6: B ← B\{b}
7: L← I (W (Xtmp, T)), H← TL+, Test ← HL
8: if (εmin > ‖T− Test‖) then
9: amin ← b, εmin ← ‖T− Test‖

10: else
11: continue
12: end if
13: end for
14: X∗ ← X∗ ∪ {xamin}
15: A← A\{amin}
16: end for

Figure B.1: Support set selection algorithm

111

C Gradient Descent and
Lucas-Kanade

Image alignment consists of moving, and possibly deforming, a template to minimize
the difference between the template and an image. Since the first use of image align-
ment in the Lucas-Kanade optical flow algorithm [8], it has become one of the most
widely used techniques in computer vision. Besides the optical flow, some of its other
applications include tracking [9][22], medical image registration [109], and face coding
[110][111]. Since the Lucas-Kanade algorithm was proposed in 1981 image alignment
has become one of the most widely used techniques in computer vision. Numerous al-
gorithms have been proposed and a wide variety of extensions have been made to the
original formulation. Great work has been done by Simon Baker, Iain Matthews, Ralph
Gross, Takahiro Ishikawa, et. al. in [23][112][33][113][114], where the overview of image
alignment methods and most of the extensions of Lucas-Kanade algorithm are described.

The goal is to align a template image T (x) taken in time t to an input image I(x)
taken in time t+ 1. The template T is extracted sub-region (e.g. window 7× 7 pixels)
from the image at time t, where x = (x, y)T is a column vector containing the pixel
coordinates. Let W(x; p) denote set of allowed warps, parameterized by the vector of
parameters p = (p1, p2, . . . , pn)T .. The warp W takes the pixel x in the coordinate frame
of the template T and maps it to the sub-pixel location W(x; p) in the coordinate frame of
the image I. For a small template T it is reasonable to use affine warp [9] (6 parameters
in vector p) or homography [22] etc. In general, the number of parameters in p may be
arbitrarily large and W can be arbitrarily complex.

The goal of the Lucas-Kanade algorithm is to minimize the sum of squared error
computed over all pixels x of the patch T :∑

x

[I (W (x; p))− T (x)]2 , (C.1)

the minimization is performed with respect to p ∈ Ω where Ω is n−dimensional space of
parameters. Minimizing the expression in equation (C.1) is a non-linear optimization.
To optimize the expression in (C.1), the Lucas-Kanade algorithm assumes that a current
estimate of p is known and then iteratively solves for increments to the parameters ∆p,
i.e. the equation (C.1) becomes:∑

x

[I (W (x; p + ∆p))− T (x)]2 (C.2)

and the minimization is performed with respect to ∆p ∈ Ω. We will call this approach

112

aditional (to distinguish it from compositional defined later) because of the aditive pa-
rameters update

p← p + ∆p. (C.3)

Equations (C.2) and (C.3) are iteratively computed until the norm ‖∆p‖ ≤ ε, where ε
is some threshold, or until some number of iterations has been reached.

Derivation of the Lucas-Kanade algorithm

The Lucas-Kanade algorithm is in fact a Gauss-Newton gradient descent non-linear
optimization. The non-linear expression in equation (C.2) is linearized by performing a
first order Taylor expansion on I (W (x; p + ∆p)):

∑
x

[
I (W (x; p)) +∇I ∂W

∂p
∆p− T (x)

]2

, (C.4)

where ∇I =
(
∂I
∂x ,

∂I
∂y

)
is the gradient of image I evaluated at W (x; p). We neglected the

high order terms of the Taylor expansion, so the equation (C.4) is only an approximation
of equation (C.2). The term ∂W

∂p is the Jacobian of the warp. Minimizing the expression
in equation (C.4) is a least squares problem and has a closed from solution which can
be derived as follows. The partial derivative of the expression in equation (C.4) with
respect to ∆p is:

2
∑
x

[
∇I ∂W

∂p

]T [
I (W (x; p)) +∇I ∂W

∂p
∆p− T (x)

]
, (C.5)

where ∇I ∂W∂p is called the steepest descent [23]. Setting this expression to equal zero and
solving gives the closed form solution for the minimum of the expression in equation
(C.4) as:

∆p = H−1
∑
x

[
∇I ∂W

∂p

]T
[T (x)− I (W (x; p))] , (C.6)

where H is the n× n (Gauss-Newton approximation to the) Hessian matrix:

H =
∑
x

[
∇I ∂W

∂p

]T [
∇I ∂W

∂p

]
. (C.7)

Equation (C.6) then expresses the fact that the parameter updates ∆p are the steepest
descent parameter updates multiplied by the inverse of the Hessian matrix. We will
call this approach forward aditional in order to distinguish it from inverse compositional
defined later in C. The Lucas-Kanade algorithm then consists of iteratively applying
equations (C.6) and (C.3). Denoting G = ∇I ∂W∂p and combining the equations (C.6) and
(C.7) we obtain

∆p =
∑
x

(
GTG

)−1
GT [T (x)− I (W (x; p))] , (C.8)

113

C Gradient Descent and Lucas-Kanade

where
(
GTG

)−1
GT = G+ is the pseudoinverse of matrix G, which needs to be recomputed

in every step. For some simple warps such like the translations and the affine warps the
Jacobian ∂W

∂p can sometimes be constant [23] and precomputed, which saves computa-
tional time. In general, however, not only the image gradient ∇I and Hessian but also
the Jacobian must be recomputed in every iteration. Hager in [47] and Dellaert in [48]
show some classes of warps, for which the Jacobian can be precomputed.

Selecting the points to track

An issue in tracking is the selection of features (image points) which are well suited
for the particular tracking algorithm. A method for selecting good features for Lucas-
Kanade tracking algorithm was proposed in [9]. The proposed method is based on Harris
corner detector principle. It computes the local autocorrelation function, which measures
local appearance changes between two slightly translated image patches. Let X be the
set of pixels positions distributed over the current patch centered on image point (x, y).
With the small 2D motion vector (∆x,∆y) the autocorrelation function for point (x, y)
defined as

c (x, y) =
∑

(x,y)∈X

[I (xi, yi)− I (xi + ∆x, yi + ∆y)]2 . (C.9)

We may then approximate the shifted image I (x+ ∆x, y + ∆y) by Taylor expansion:

I (xi + ∆x, yi + ∆y) ≈ I (xi, yi) + [Ix (xi, yi) Iy (xi, yi)]
[

∆x
∆y

]
, (C.10)

where Ix and Iy are partial derivatives. Combining equations (C.9) and (C.10) we obtain

c (x, y) =
∑
X

(
[Ix (xi, yi) Iy (xi, yi)]

[
∆x
∆y

])2

(C.11)

=
[

∆x ∆y
] [∑

X I
2
x

∑
X IxIy∑

X IxIy
∑

X I
2
y

] [
∆x
∆y

]
=

[
∆x ∆y

]
C (x, y)

[
∆x
∆y

]
.

Shi and Thomasi [9] showed that good measure for detecting the corner is

min (λ1, λ2) > ε,

where λ1, λ2 are eigenvalues of matrix C (x, y) and ε some chosen threshold value. When
both eigenvalues are close to zero, than the local autocorelation function is flat and no
distinctive feature is present. When one of eigenvalues is small and other is big, than we
found an edge, which is also not a good feature to track because of the aperture problem
[115]. But if both eigenvalues are big enough, than there is a corner at the image point
(x, y) which is a distinctive feature for the local neighborhood.

114

In the original Lucas-Kanade paper [8] the authors suggest, that for small template
and small motion between 2 consecutive images it is sufficient to estimate only trans-
lation parameters. In [9] the authors argued and experimentaly verified, that better
tracking results were achieved, when after 2D motion estimation the affine transforma-
tion of the patch was estimated as a second tracking step. Another observation from
[9] is that smaller templates are better for tracking, because they suffer less for depth
discontinuity. On the other hand it is more difficult to estimate the affine transforma-
tion for small templates. Small template (with a low number of sampled pixels) contains
less information, than some larger template. When both templates undergo the same
transformation we will get more precise estimation when using the larger template than
the smaller one.

Dealing with the Fast Motion

Until now, we suggested that the template motion is small and it is sufficient to work
with some small neighborhood of the previous feature position. But what if the motion
between two consecutive images is too large? Than standard Lucas-Kanade tracking al-
gorithm fails. The solution is to use pyramidal implementation of Lucas-Kanade tracker,
which makes the tracking much more robust for large motion, see [116]. The trick is to
start tracking in subsampled images, where the image and template resolutions are lower
and by lowering the resolution the motion size is reduced too. After the LK algorithm
convergence in the low-res image we use another image with higher resolution, where
the template position is refined by another few LK iterations. This way we continue
till the original image and template size and the final 2D motion is composed during
passing through pyramid floors . The idea of subsampling both image and template is
reasonable, when we track good features [9]. For a complete derivation of the pyramidal
algorithm see [116].

Inverse Compositional Algorithm

Aditive parameters update specified in section C may be replaced compositional param-
eters update derived in [23]. This approach to parameters update was used for example
in [117] or [110]. The compositional algorithm minimizes the equation∑

x

[I (W (W (x; ∆p) ; p))− T (x)]2 , (C.12)

This equation is minimized with respect to ∆p in each iteration and then update the
estimate of warp as

W (x; p)← W (x; p) ◦ W (x; ∆p) , (C.13)

i.e. the compositional approach iteratively solves for an incremental warp W (x; ∆p)
rather than an additive update to the parameters ∆p. The compositional and additive
approaches are proved to be equivalent in [23].

115

C Gradient Descent and Lucas-Kanade

The disadvantage of Lucas-Kanade tracking method is the fact, that even if we have
a simple warp, the Jacobian of which may be precomputed, we still need to recompute
the Hessian (C.7) in every iteration as has been pointed out e.g. in [48][47][117]. The
key to avoid time consuming Hessian computation is to use the inverse compositional
algorithm [23]. The main idea is to switch the roles of image and the template. A
restricted version of the inverse compositional algorithm was proposed for homographies
in [48]. The inverse compositional algorithm minimizes expression∑

x

[T (W (x; ∆p))− I (W (x; p))]2 (C.14)

with respect to ∆p and than updates the warp

W (x; p)← W (x; p) ◦ W (x; ∆p)−1 . (C.15)

The only difference from the update in the forwards compositional algorithm in equation
(C.13) is that the incremental warp W (x; ∆p) is inverted before it is composed with the
current estimate. Performing the Taylor expansion on (C.14) gives∑

x

[
T (W (x; 0)) +∇T ∂W

∂p
∆p− I (W (x; p))

]2

. (C.16)

The least-squares solution to this problem is

∆p = H−1
∑
x

[
∇T ∂W

∂p

]T
[I (W (x; p))− T (x)] , (C.17)

where the I in former Hessian matrix is replaced replaced with T :

H =
∑
x

[
∇T ∂W

∂p

]T [
∇T ∂W

∂p

]
. (C.18)

Now there is nothing in Hessian that depends on p, it is constant across iterations and
can be precomputed.

There are many extensions of the Lucas-Kanade algorithm. The possible linear ap-
pearance variation was used in [111] and derived in [33]. It is recomendable to use the
appearance model, since it highly increases the robustness of tracking, but an off-line
learning phase is needed with more than one training image to capture enough appear-
ance variation. The choise of the error function is discussed (L2 norm, robust error
function) in [112], adition of priors on the warp and appearance parameters [113], etc.
Different gradient descent approximations are tested in [23], specifically Gauss-Newton
(traditionally used), Newton, Steepest-Descent, Gauss-Newton Diagonal, Newton Di-
agonal and Levenberg-Marquardt. The result is, that Gauss-Newton and Levenberg-
Marquardt are the most efficient and successful in convergence rate. The linear and
quadratic subset of template pixels was proposed by Benhimane in [118] to improve the
tracking performance by reducing the computational time and improvement of conver-
gence properties. This pixel subset selection method is very useful for tracking large
patches, for small templates it has no signifficant.

116

Bibliography

[1] D. Hurych and T. Svoboda, “Incremental learning and validation of sequential
predictors in video browsing application,” in VISIGRAPP 2010: International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory
and Applications, vol. 1, May 2010, pp. 467–474.

[2] D. Hurych, K. Zimmermann, and T. Svoboda, “Fast learnable object tracking and
detection in high-resolution omnidirectional images,” in Proceedings of VISAPP,
International Conference on Computer Vision Theory and Applications, Setubal,
Portugal, March 2011, pp. 521–530.

[3] ——, “Detection of unseen patches trackable by linear predictors,” in Computer
Vision Winter Workshop, February 2011, pp. 107–114.

[4] K. Zimmermann, D. Hurych, and T. Svoboda, “Improving cascade of classifiers
by sliding window alignment in between,” in IEEE International Conferencer on
Automation, Robotics and Applications, December 2011, pp. 196–201.

[5] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a statis-
tical view of boosting,” Annals of Statistics, vol. 28, pp. 337–407, 1998.

[6] K. Zimmermann, D. Hurych, and T. Svoboda, “Exploiting features – locally inter-
leaved sequential alignment for object detection,” in IEEE Asian Conference on
Computer Vision, November 2012, pp. 196–201.

[7] ——, “Non-rigid object detection with local interleaved sequential alignment
(lisa),” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36,
no. 4, pp. 731–743, April 2014.

[8] B. Lucas and T. Kanade, “An iterative image registration technique with an ap-
plication to stereo vision,” in International Journal of Computer Vision, August
1981, pp. 674–679.

[9] J. Shi and C. Tomasi, “Good features to track,” in IEEE Conference on Computer
Vision and Pattern Recognition, 1994, pp. 593 – 600.

[10] F. Jurie and M. Dhome, “Hyperplane approximation for template matching,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp.
996–1000, July 2002.

117

Bibliography

[11] K. Zimmermann, J. Matas, and T. Svoboda, “Tracking by an optimal sequence of
linear predictors,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 31, no. 4, pp. 677–692, 2009.

[12] S. Hinterstoisser, S. Benhimane, N. Navab, P. Fua, and V. Lepetit, “On-line learn-
ing of patch perspective rectification for efficient object detection,” in Conference
on Computer Vision and Pattern Recognition, 2008, pp. 1–8.

[13] T. Cootes, G. Edwards, and C. Taylor, “Active appearance models,” IEEE Trans-
action on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681–685,
June 2001.

[14] D. Hurych, T. Svoboda, J. Trojanova, and Y. US, “Active shape model and linear
predictors for face association refinement,” in The IEEE International Workshop
on Visual Surveillance held at IEEE International Conference on Computer Vi-
sion, Kyoto, Japan, 2009, pp. 1193–1200.

[15] P. Viola and M. J. Jones, “Robust real-time face detection,” International Journal
of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[16] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2005, pp. 1–8.

[17] S. Avidan, “Support vector tracking,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 26, no. 8, pp. 1064–1072, 2004.

[18] P. Felzenszwalb, R. Girshick, and D. McAllester, “Cascade object detection with
deformable part models,” in IEEE Conference on Computer Vision and Pattern
Recognition, june 2010, pp. 2241–2248.

[19] D. Lowe, “Distinctive image features from scale-invariant keypoints,” International
Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[20] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in
IEEE European Conference on Computer Vision, Graz Austria, May 2006, pp.
346–359.

[21] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide baseline stereo form
maximally stable extremel regions,” in Brittish Machine Vision Conference, Lon-
don, UK, 2002, pp. 384–393.

[22] S. Hinterstoisser, O. Kutter, N. Navab, P. Fua, and V. Lepetit, “Real-time learning
of accurate patch rectification,” in IEEE Conference on Computer Vision and
Pattern Recognition, Miami, Florida, USA, 2009, pp. 2945 – 2952.

[23] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying framework, part
1,” Carnegie-Mellon University, Robotics Institute, Tech. Rep. CMU-RI-TR-02-16,
July 2002.

118

Bibliography

[24] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection.” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 7, pp.
1409–1422, 2012.

[25] C. D., R. V., and M. P., “Real-time tracking of non-rigid objects using mean shift,”
in IEEE Conference on Computer Vision and Pattern Recognition, vol. 2. Hilton
Head Island, SC: IEEE Computer Society, 2000, pp. 142–149.

[26] A. Leung and S. Gong, “Mean-shift tracking with random sampling,” in British
Machine Vision Conference, 2006, pp. 729–738.

[27] C. D., R. Visvanathan, and P. Meer, “Kernel-based object tracking,” in IEEE
Transactions on Pattern Analysis and Machine Intelligence, May 2003, pp. 564–
575.

[28] K. Zimmermann, “Fast learnable methods for object tracking,” in Ph.D. Thesis.
Czech Technical University in Prague, 2008.

[29] A. Jepson, D. Fleet, and T. El-Maraghi, “Robust on-line appearance models for vi-
sual tracking,” in IEEE Conference on Computer Vision and Pattern Recognition,
vol. 1, 2008, pp. 415–422.

[30] I. Matthews, T. Ishikawa, and S. Baker, “The template update problem,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 6, pp.
810–815, 2004.

[31] K.-C. Lee and D. Kriegman, “On-line learning of probabilistic appearance mani-
folds for video-based recognition and tracking,” in IEEE Conference on Computer
Vision and Pattern Recognition, June 2005, pp. 852–859.

[32] R. Gross, I. Matthews, and S. Baker, “Generic vs. person specific active appearance
models,” Image and Vision Computing, vol. 23, no. 11, pp. 1080–1093, November
2005.

[33] S. Baker, R. Gross, and I. Matthews, “Lucas-kanade 20 years on: A unifying
framework, part 3,” Carnegie-Mellon University, Robotics Institute, Tech. Rep.
CMU-RI-TR-03-35, November 2003.

[34] L. Ellis, J. Matas, and R. Bowden, “On-line learning and partitioning of linear dis-
placement predictors for tracking,” in British Machine Vision Conference, Septem-
ber 2008, pp. 33–42.

[35] L. Ellis, N. Dowson, J. Matas, and R. Bowden, “Linear predictors for fast si-
multaneous modelling and tracking,” in International Conference on Computer
Vision, Workshop on Non-rigid Registration and Tracking Through Learning, Oc-
tober 2007, pp. 1–8.

119

Bibliography

[36] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking via on-line boost-
ing,” in British Machine Vision Conference, vol. 1, 2006, pp. 47–56.

[37] N. Dowson and R. Bowden, “N-tier simultaneous modelling and tracking for arbi-
trary warps,” in British Machine Vision Conference, vol. 2, 2006, pp. 569–578.

[38] D. Ross, J. Lim, R. Lin, and M. Yang, “Incremental learning for robust visual
tracking,” International Journal of Computer Vision, vol. 77, no. 1-3, pp. 125–
141, May 2008.

[39] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM Computing
Surveys (CSUR), vol. 38, no. 4, pp. 13–36, December 2006.

[40] E. Murphy-Chutorian and M. Trivedi, “Head pose estimation in computer vi-
sion: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 31, no. 4, pp. 607–626, April 2009.

[41] K. Zimmermann, T. Svoboda, and J. Matas, “Anytime learning for the NoSLLiP
tracker,” Image and Vision Computing, Special Issue: Perception Action Learning,
vol. 27, no. 11, pp. 1695–1701, October 2009.

[42] J. Sivic and A. Zisserman, “Efficient visual search of videos cast as text retrieval,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 4,
pp. 591–606, April 2009.

[43] M. Li, W. Chen, K. Huang, and T. Tan, “Visual tracking via incremental self-
tuning particle filtering on the affine group,” in IEEE Conference on Computer
Vision and Pattern Recognition, June 2010, pp. 1315–1322.

[44] M. Özuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast keypoint recognition using
random ferns,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 3, pp. 448–461, March 2010.

[45] J. Šochman and J. Matas, “Waldboost - learning for time constrained sequential
detection,” in IEEE Conference on Computer Vision and Pattern Recognition,
2005, pp. 150–157.

[46] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying framework,”
International Journal of Computer Vision, vol. 56, no. 3, pp. 221–255, 2004.

[47] G. D. Hager and P. N. Belhumeur, “Efficient region tracking with parametric
models of geometry and illumination,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 20, no. 10, pp. 1025–1039, 1998.

[48] F. Dellaert and R. Collins, “Fast image-based tracking by selective pixel inte-
gration,” in IEEE International Conference on Computer Vision, Workshop of
Frame-Rate Vision, 1999, pp. 1–22.

120

Bibliography

[49] S. Holzer, S. Ilic, and N. Navab, “Adaptive linear predictors for real-time tracking,”
in IEEE Conference on Computer Vision and Pattern Recognition, June 2010, pp.
1807–1814.

[50] F. L. Bookstein, “Principal warps: Thin-plate splines and the decomposition of
deformations,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 2, no. 6, pp. 567–585, 1989.

[51] R. Penrose, “A generalized inverse for matrices,” Mathematical Proceedings of the
Cambridge Philosophical Society, vol. 51, no. 3, pp. 406–413, 1955.

[52] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the
wild: A database for studying face recognition in unconstrained environments,”
University of Massachusetts, Amherst, Tech. Rep. 07-49, 2007.

[53] B. D. Lucas and T. Kanade, “An iterative image registration technique with an
application to stereo vision.” in International Joint Conference on Artificial Intel-
ligence, 1981, pp. 674–679.

[54] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying framework,” in
International Journal of Computer Vision, vol. 56, 2004, pp. 221–255.

[55] F. Jurie and M. Dhome, “Real-time robust template matching,” in British Machine
Vision Conference, 2002, pp. 123–131.

[56] M. Özuysal, V. Lepetit, F. Fleuret, and P. Fua, “Feature harvesting for tracking-
by-detection,” in European Conference on Computer Vision, vol. 3953. Springer,
2006, pp. 592–605.

[57] H. Grabner and H. Bischof, “On-line boosting and vision,” in IEEE Conference
on Computer Vision and Pattern Recognition, Washington, DC, USA, 2006, pp.
260–267.

[58] L. Vacchetti, V. Lepetit, and P. Fua, “Stable real-time 3d tracking using online
and offline information,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 26, no. 10, pp. 1385–1391, 2004.

[59] T. Cootes, G. Edwards, and C. Taylor, “Active appearance models,” in European
Conference on Computer Vision, vol. 2, London, UK, 1998, pp. 484–498.

[60] O. Williams, A. Blake, and R. Cipolla, “Sparse bayesian learning for efficient vi-
sual tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 27, no. 8, pp. 1292–1304, 2005.

[61] D. Cristinacce and T. Cootes, “Feature detection and tracking with constrained
local models,” in British Machine Vision Conference, 2006, pp. 929–938.

121

Bibliography

[62] M. E. Tipping, “Sparse bayesian learning and the relevance vector machine,” Jour-
nal of Machine Learning Research, vol. 1, pp. 211–244, 2001.

[63] A. Agarwal and B. Triggs, “Recovering 3d human pose from monocular images,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 1,
pp. 44–58, 2006.

[64] H. Drucker, C. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Support vector
regression machines,” Advances in Neural Information Processing Systems, vol. 9,
pp. 156–161, 1996.

[65] S. K. Zhou, B. Georgescu, X. S. Zhou, and D. Comaniciu, “Image based regression
using boosting method,” in IEEE International Conference on Computer Vision,
vol. 1, Washington, DC, USA, 2005, pp. 541–548.

[66] K. Zimmermann, T. Svoboda, and J. Matas, “Adaptive parameter optimization for
real-time tracking,” in Workshop on Non-rigid Registration and Tracking Through
Learning, Rio de Janeiro, Brazil, 2007.

[67] R. Schapire, “The boosting approach to machine learning: An overview,” in Lec-
ture Notes in Statistics, Nonlinear Estimation and Classification, vol. 171, 2003,
pp. 149–171.

[68] D. L. Shrestha and D. P. Solomatine, “Experiments with adaboost.rt, an improved
boosting scheme for regression,” Neural Computation, vol. 18, pp. 1678–1710, 2006.

[69] P. Bühlmann and T. Hothorn, “Boosting algorithms: Regularization, prediction
and model fitting,” Statistical Science, vol. 22, no. 4, pp. 477–505, 2007.

[70] Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm,” in
Machine Learning, 1996, pp. 148–156.

[71] L. Breiman, “Arcing classifiers (with discussion),” Annual Statistics, vol. 26, pp.
801–849, 1998.

[72] ——, “Prediction games and arcing algorithms,” Neural Computation, vol. 11, pp.
1493–1517, 1999.

[73] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a sta-
tistical view of boosting,” The Annals of Statistics, vol. 28, no. 2, pp. 337–407,
2000.

[74] R. E. Schapire and Y. Singer, “Improved boosting algorithms using confidence-
rated predictions,” Machine Learning, vol. 37, pp. 297–336, 1999.

[75] G. Rätsch, T. Onoda, and K.-R. Müller, “Soft margins for adaboost,” Machine
Learning, vol. 42, no. 3, pp. 287–320, 2001.

122

Bibliography

[76] D. Solomatine and D. Shrestha, “Adaboost.rt: a boosting algorithm for regression
problems,” in International Joint Conference on Neural Networks, July 2004, pp.
1163–1168.

[77] X. Perrotton, M. Sturzel, and M. Roux, “Implicit hierarchical boosting for multi-
view object detection,” in IEEE Conference on Computer Vision and Pattern
Recognition, june 2010, pp. 958 –965.

[78] L. Bourdev and J. Brandt, “Robust object detection via soft cascade,” in IEEE
Conference on Computer Vision and Pattern Recognition, vol. 2, 2005, pp. 236–
243.

[79] A. Saffari, M. Godec, T. Pock, C. Leistner, and H. Bischof, “Online multi-class
lpboost,” in IEEE Conference on Computer Vision and Pattern Recognition, june
2010, pp. 3570 –3577.

[80] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, “Multiple kernels for object
detection,” in IEEE International Conference on Computer Vision, 2009, pp. 606–
613.

[81] H. Harzallah, F. Jurie, and C. Schmid, “Combining efficient object localization
and image classification,” in IEEE International Conference on Computer Vision,
2009, pp. 237–244.

[82] C. Lampert, “An efficient divide-and-conquer cascade for nonlinear object detec-
tion,” in IEEE Conference on Computer Vision and Pattern Recognition, june
2010, pp. 1022 –1029.

[83] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, “Fast human detection using a
cascade of histograms of oriented gradients,” in IEEE Conference on Computer
Vision and Pattern Recognition, vol. 2, 2006, pp. 1491 – 1498.

[84] P. Dollar, P. Welinder, and P. Perona, “Cascaded pose regression,” in IEEE Con-
ference on Computer Vision and Pattern Recognition, june 2010, pp. 1078 –1085.

[85] M. Villamizar, F. Moreno-Noguer, J. Andrade-Cetto, and A. Sanfeliu, “Efficient
rotation invariant object detection using boosted random ferns,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition, june 2010, pp. 1038 –1045.

[86] K. Ali, F. Fleuret, D. Hasler, and P. Fua, “A real-time deformable detector,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 2,
pp. 225–239, 2012.

[87] B. Babenko, P. Dollár, Z. Tu, and S. Belongie, “Simultaneous learning and align-
ment: Multi-instance and multi-pose learning,” in Workshop on Faces in Real-Life
Images: Detection, Alignment, and Recognition held at European Conference on
Computer Vision, 2008.

123

Bibliography

[88] P. Viola and M. Jones, “Fast multi-view face detection,” in Mitsubishi Elestric
Research Laboratories - Technical Report, August 2003.

[89] J. Zhang, S. Zhou, L. McMillan, and D. Comaniciu, “Joint real-time object detec-
tion and pose estimation using probabilistic boosting network,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2007, pp. 1–8.

[90] C. Huang, H. Ai, Y. Li, and S. Lao, “Vector boosting for rotation invariant multi-
view face detection,” in International Conference on Computer Vision, 2005, pp.
446–453.

[91] S. Li and Z. Zhang, “Flatboost learning and statistical face detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp.
1112–1123, 2004.

[92] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-based object detection in
images by components,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 23, no. 4, pp. 349–361, 2001.

[93] P. Viola, M. Jones, and D. Snow, “Detection pedestrians using patterns of motion
and appearance,” in International Conference on Computer Vision, 2003, pp. 734–
741.

[94] A. Torralba, K. Murphy, and W. Freeman, “Sharing visual features for multiclass
and multiview object detection,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 29, no. 5, pp. 854–869, 2007.

[95] X. Zhu and D. Ramanan, “Face detection, pose estimation, and landmark lo-
calization in the wild,” in IEEE Conference on Computer Vision and Pattern
Recognition, June 2012, pp. 2879–2886.

[96] F. Fleuret and D. Geman, “Stationary features and cat detection,” Journal of
Machine Learning Research, vol. 9, pp. 2549–2578, 2008.

[97] I. Kokkinos, “Rapid deformable object detection using dual-tree branch-and-
bound,” in Advances in Neural Information Processing Systems, 2011, pp. 2681–
2689.

[98] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Object detection
with discriminatively trained part-based models,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.

[99] Y. Amit and A. Trouvé, “Pop: Patchwork of parts models for object recognition,”
International Journal of Computer Vision, vol. 75, no. 2, pp. 677–692, 2007.

[100] M. Pedersoli, A. Vedaldi, and J. Gonzàlez, “A coarse-to-fine approach for fast de-
formable object detection,” in IEEE Conference on Computer Vision and Pattern
Recognition. IEEE Computer Society, 2011, pp. 1353–1360.

124

Bibliography

[101] C. H. Lampert, M. B. Blaschko, and T. Hoffmann, “Efficient subwindow search:
A branch and bound framework for object localization,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 31, no. 12, pp. 2129–2142, 2009.

[102] P. Dollár, R. Appel, and W. Kienzle, “Crosstalk cascades for frame-rate pedestrian
detection,” in European Conference on Computer Vision, 2012, pp. 645–659.

[103] X. Cao, Y. Wei, F. Wen, and J. Sun, “Face alignment by explicit shape regres-
sion,” in IEEE Conference on Computer Vision and Pattern Recognition. IEEE
Computer Society, 2012, pp. 2887–2894.

[104] H. Wu, X. Liu, and G. Doretto, “Face alignment via boosted ranking model,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8.

[105] X. Liu, “Generic face alignment using boosted appearance model,” in IEEE Con-
ference on Computer Vision and Pattern Recognition, 2007, pp. 1–8.

[106] K. Pearson, “On lines and planes of closest fit to systems of points in space,”
Philosophical Magazine, vol. 2, no. 6, pp. 559–572, 1901.

[107] P. Viola and M. Jones, “Robust real-time face detection,” in IEEE International
Conference on Computer Vision, vol. 2, 2001, pp. 747–757.

[108] M. Koestinger, P. Wohlhart, P. M. Roth, and H. Bischof, “Annotated facial land-
marks in the wild: A large-scale, real-world database for facial landmark localiza-
tion,” in IEEE International Workshop on Benchmarking Facial Image Analysis
Technologies, 2011.

[109] G. Christensen and H. Johnson, “Image consistent registration,” IEEE Transac-
tions on Medical Imaging, pp. 568–582, July 2001.

[110] S. Baker and I. Matthews, “Equivalence and efficiency of image alignment algo-
rithms,” in IEEE Conference on Computer Vision and Pattern Recognition. IEEE
Computer Society, 2001, pp. 1090–1097.

[111] I. Matthews and S. Baker, “Active appearance models revisited,” International
Journal of Computer Vision, vol. 60, no. 2, pp. 135–164, November 2004.

[112] S. Baker, R. Gross, T. Ishikawa, and I. Matthews, “Lucas-kanade 20 years on: A
unifying framework, part 2,” Carnegie-Mellon University, Robotics Institute, Tech.
Rep. CMU-RI-TR-03-01, February 2003.

[113] S. Baker, R. Gross, and I. Matthews, “Lucas-kanade 20 years on: A unifying
framework, part 4,” Carnegie-Mellon University, Robotics Institute, Tech. Rep.
CMU-RI-TR-04-14, February 2004.

125

Bibliography

[114] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying framework, part
5,” Carnegie-Mellon University, Robotics Institute, Tech. Rep. CMU-RI-TR-04-64,
November 2004.

[115] B. Horn and B. Schunck, “Determining optical flow,” Artificial Intelligence Labo-
ratory, Massachusetts Institute of Technology, Tech. Rep., 1981.

[116] J. Bouguet, “Pyramidal implementation of the lucas kanade feature tracker de-
scription of the algorithm,” Intel Corporation Microprocessor Research Labs, Tech.
Rep., 2000.

[117] H.-Y. Shum and R. Szeliski, “Construction of panoramic image mosaics with global
and local alignment,” International Journal of Computer Vision, vol. 36, no. 2,
pp. 101–130, July 2000.

[118] S. Benhimane, A. Ladikos, V. Lepetit, and N. Navab, “Linear and quadratic sub-
sets for template-based tracking,” in IEEE Conference on Computer Vision and
Pattern Recognition, September 2007, pp. 1–6.

126

