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Chapter 1

Introduction

A general and brief definition of a metamaterial that covers all its variants and its whole scope would be
almost impossible. However, a metamaterial is most commonly understood as an artificial medium with
macroscopic electromagnetic characteristics (permittivity, permeability, conductivity), i.e. constitutive
parameters, that are not attainable in natural materials. Particular examples of great importance are
materials with negative values of their constitutive parameters. These materials have attracted a lot
of attention among physicists and electrotechnical engineers. From a general perspective, however, a
metamaterial should be seen as a material with effective parameters that can be set to almost any value
at almost any frequency.

Metaterials have brought important new concepts into classical electromagnetism. Firstly, they have
shown that electrodynamics of complex media (particularly with negative material parameters) is far
from being satisfactorily explored. Secondly, they have led to proposals for interesting new devices.

One of these was the perfect lens [2], which consists of an isotropic slab of thickness djens with
material constants €3, and p;, surrounded by another isotropic material with parameters €,¢ and frout-
If the materials are chosen [2] in such a way that e,y = —€in and fiout = —fin, the slab behaves as a
perfect lens that transfers all plane waves, including all evanescent harmonics, from the source plane at
a distance dsource in front of the lens, to the image plane, which is situated at a distance dimage behind
the lens, provided that the distances are chosen such that k2"'dsource + kg“tdimage = k;“dlens, where k, is
a wavenumber component perpendicular to the slab.

A second interesting device is an electromagnetic cloak [3-5], which consists of a shell of complex
material that makes the inner part of the shell completely invisible to electromagnetic radiation. The
basic idea behind the cloak is to deform the coordinates so that a given region is completely excluded
and to transform this deformation into a flat space filled with an inhomogeneously distributed complex
medium. This idea is in fact not completely novel, as it is well known in general relativity [6] that within
classical electromagnetism a given gravitational field can always be negated by a properly distributed
complex material. The merit of recent works on cloaks thus lie mostly in the awareness of the fact that
complex materials of this kind are now available thanks to the development of metamaterials. Currently,
the idea of an electromagnetic cloak is becoming a particular case of the broader topic of transformation
optics [7] which is extensively developed further.

In brief, metamaterials are nowadays an indivisible part of the classical electromagnetic field theory.
Its fundamental theory and its detailed history can be found in several eminent textbooks, see for example
[8-10].

(b)

Fig. 1.1: (a) A capacitivelly loaded metallic ring as depicted in [11], (b) A Split Ring Resonator as
depicted in [12].



1.1 Metamaterials Made of Resonant Rings

An important category of metamaterials are artificial materials offering diamagnetic permeability pu, < 1
(artificial diamagnetics). The idea of creating artificial diamagnetics is in fact more than a century old.
It goes back to the work of Weber [13], who realized that a closed metallic loop exhibits diamagnetic
properties. However, the magnitude of the magnetic polarizability of a simple closed loop is very limited,
due to its unavoidable self-inductance. In order to overcome this difficulty, Schelkunoff and Friis [11]
proposed to add a lumped capacitor into the loop (see Fig. 1.1a), creating a resonant system in which the
diamagnetic properties are greatly enhanced in the vicinity of the resonance frequency. This preliminary
design was improved by Hardy and Whitehead [14] using a distributed capacitance, and was later made
popular by Pendry [12] in planar technology (see Fig. 1.1b). From that point, artificial diamagnetics made
of resonant rings became one of the core topics in metamaterials and various designs were systematically
studied [9]. Resonant rings are the topic that permeates this thesis.



Chapter 2

A Planar Ring Resonator

This chapter will review some basic properties and designs of planar resonant rings and will deal solely
with isolated rings placed in a vacuum. It should also be noted that the word “planar” will be used in
a loose sense in this section. Any design with one dimension that is much smaller than the other two
dimensions will be called planar.

2.1 Polarizability of a Capacitivelly Loaded Ring

Before presenting practical designs, it is instructive to review the simplest case of a capacitivelly loaded
ring (CLR), originally proposed in [11]. For this purpose imagine the ring (see Fig. 2.1a) is excited by
a time-varying, but almost uniform, electric or magnetic field. The ring is assumed to be significantly
smaller than the operation wavelength (kr < 1), which is a necessary condition for being a component of
homogenizable material, and its polarization can be well described by the induced electric dipole moment
p and the magnetic dipole moment m. Following the standard notation [15], these dipole moments are
connected to exciting fields via the polarizability tensors as

b= [o] B+ [o] B

(2.1)
m = [af}] B+ [af"] B
where within the defined coordinate system
oy, 00 00 0
i)~ | 0 e 0| faglx |0 0 0
o™
0 0 O 0 0 0 (2:2)
[ag? ]~ | 0 0 ag el ~ |0 0 0
0 0 O 0 —ayr O
and where the reciprocity theorem [16] has been used to equate a7, and —aj7'. The form of the electric

polarisability ;s and magnetic polarisability a;;™ is quite intuitive, and the magnetic polarizability can
in fact be easily estimated from Faraday’s law as
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Fig. 2.1: A metallic ring loaded by one (a) or two (b) capacitances.
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Fig. 2.2: Split Ring Resonator (a) Broadside-Coupled Split Ring Resonator (b) Non-Bianisotropic Split
Ring Resonator (¢) and the corresponding current and charge densities excited by an axial magnetic field.

where L is the self-inductance of the closed loop and C'is the loading capacitance. The form of magnetic
polarizability also shows that the ring resonance can be seen as the resonance of a serial resonance circuit
in which the inductance is given by the ring, while the majority of the capacitance is concentrated inside
the gap. Unlike the electric and magnetic polarisabilities, the presence of magnetoelectric polarizabilities
agf, g’ (or in other words the presence of bianisotropy) is less evident and in fact poses a problem for
many applications. Fortunately, there is an easy way to remove them. The method for removing them lies
in the geometrical properties of these quantities, which should be more precisely named pseudo-tensors.
Having this property in mind, it is straightforward to show that magnetoelectric polarizabilities will
identically vanish once the structure exhibits inversion symmetry. This is easily achieved by adding a
second capacitor, as shown in (see Fig. 2.1b). The magnetic and electric polarizabilties are practically
unaffected by this change, with the only exception that the resonance frequency will be approximately
V/2-times higher, as the capacitances are added in series. It is worth noting that the growing electrical
size caused by growing symmetry is a general property of ring resonators, as will be seen also in other
designs in the following text.

2.2 Resonant Rings with Distributed Capacitance

The fundamental idea leading to present-day resonant rings is to exchange the lumped gap capacitance
for a properly distributed capacitance. A major advantage of this step is that it can be fabricated by
printed circuit board methods, and can also be extended to higher frequencies. The basic design following
this line is the so-called Split Ring Resonator (SRR) [12,14], depicted in Fig. 2.2a. Its working principle is
equivalent to an ordinary CLR, as can be seen from the depicted current and charge distribution excited
at resonance by an axial magnetic field. As was shown in [17], the circuit model of the magnetic resonance
of SRR also consists of a serial resonant circuit, where the capacitance is a serial connection of the top
and bottom halves of the SRR. This paper also contained an ingenious modification of SRR depicted in
Fig. 2.2b (commonly abbreviated as BCSRR), which exhibits identical magnetic resonance, but due to
its inversion symmetry precludes magnetoelectric coupling. A strictly planar modification of BCSRR was
proposed in [18], see Fig. 2.2¢, and is commonly abbreviated as NBSRR (Non-Bianisotropic Split Ring
Resonator).

It will be shown in the next chapter that topologies with higher symmetry than those of SRR, BCSRR
or NBSRR are sometimes desired. The geometries shown in Fig. 2.3 were developed for this purpose [19%,
see Appendix 2], [20*, see Appendix 3]. As mentioned in Sec. 2.1, the price to pay for higher symmetries
is bigger electrical size.

Apart from purely geometrical changes, there are also important modifications of the resonant rings
that bring whole new functionalities. To begin with, it is for example very interesting to ask how an
ordinary SRR would perform at optical frequencies, where the magnetic response is practically impossible
to find in natural substances. A pioneering work [21] showed that when real metals can no more be
considered as perfect conductors at optical frequencies, a novel phenomenon of frequency and amplitude
saturation of the magnetic resonance emerges. The reason for this phenomenon is the presence of so-
called kinetic inductance [21], which can also be seen as a negative capacitance represented by the negative
permittivity of the metal constituting the ring. This kinetic inductance scales differently than the regular
inductance, giving rise to the saturation phenomenon. A detailed model of several variants of an optical
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Fig. 2.3: Ring Resonators with various degrees of symmetry.

resonant ring, see Fig. 2.4, was developed in [22%*, see Appendix 4] and it was shown that the saturation
can (quite counter-intuitively) be postponed by adding additional ring splits. The resonance frequency of
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Fig. 2.4: Optical Ring Resonators.
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the three designs depicted in Fig. 2.4 is shown in Fig. 2.5. The delayed saturation of the multi-gap rings is
evident from the figure. The results unfortunately also suggest that no strong magnetic response can be
expected from resonant rings in visible range, which in fact corresponds well with fundamental energetic
reasoning [23] concerning the questionable existence of magnetic properties at optical frequencies.
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Fig. 2.5: Resonance frequency saturation of the three Optical Ring Resonators from Fig. 2.4 for w =
h=0.3r, g=0.1r, w, #22-10' s71 fo~1.2-10™ s

Playing with a possible material composing the body of the resonant ring, a very interesting possibility
emerges, resulting in so-called Dielectric Ring Resonator [24*, see Appendix 5], which consists of a
toroidal ring made of a high permittivity dielectric, see Fig. 2.6. This structure can exhibit exactly the
same quasi-static magnetic resonance as metallic resonant rings. The reason for this behavior lies in the
equality of the conduction and polarization currents within Ampere’s Law, and the necessity to modify
the classical definition for the magnetic dipole moment [15] and self-inductance to take into account not
only the conduction currents but also the polarization currents [24*, see Appendix 5|. The presence of
the capacitance in the gap-less ring may be less intuitive, but careful consideration [24*, see Appendix 5]
shows that it is uniformly distributed within the dielectric material of the ring.
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Fig. 2.6: Dielectric Ring Resonator.

Another interesting modification of the regular ring resonator involves exploiting the commonly un-
wanted magnetoelectric couplings, and leads to the so-called Chiral Split Ring Resonator [25%, see Ap-
pendix 6], [26%, see Appendix 7], see Fig. 2.7. A careful look reveals that its structure is a simple

z

X

Fig. 2.7: Chiral Split Ring Resonator.

modification of NB-SRR from Fig. 2.2c, and that the current and charge distribution will also necessar-
ily be equal. This results (as expected) in a resonant magnetic polarizability o™™. The fundamental
difference with respect to NB-SRR however is that the induced charges do not lie in the same plane,
and in fact all positive/negative charges lie on the top/bottom, or vice versa. This evidently results
in resonant electric dipolar polarizability oS and magnetoelectric polarizability a$}' which, curiously,
all have the same tensor orientation. Furthermore, it is possible to design the ring in such a way that
2o = ¢ |a®| = oM™, which leads to a so-called balanced design [27], [25%, see Appendix 6], [26*,
see Appendix 7], which can be used as a basic unit of a bi-isotropic medium transparent for circularly
polarized waves, while at the same time exhibiting negative refraction for them [27,28].

The last presented modification of a resonant ring follows a recent trend in metamaterials to include
active elements in order to mitigate the losses and the strong dispersion that are inherent properties of
any resonant electrically small system. The simplest idea is to use an active load in the CLR design
of Fig. 2.1 instead of just a passive capacitor. One way is to use negative resistance circuits [29%, see
Appendix 8], which have a simple hand-made practical design for low RF range as shown in Fig. 2.8.
Based on both the measured data and the theoretically predicted data, the magnetic polarizability of such
a system shows a positive imaginary part, i.e. a gain, which also brings into play interesting questions
on the stability of the active medium [29%, see Appendix 8].
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Fig. 2.8: (a) Scheme of a ring loaded by a negative resistance transistor circuit (b) and a photograph of
a realistic implementation. The ring is actually a four-turn coil made of thin wire.



Chapter 3

Isotropic Ring Resonators

The resonant rings presented in the previous chapter all provide a strongly anisotropic response. This
can be useful for certain applications, but isotropic materials are generally of wider use. This is also true
for one of the key ideas of metamaterials, the perfect lens [2], which also assumes an isotropic medium.
Before treating the full bulk medium, it is instructive to study stand-alone, but isotropic resonators.
The first step in this direction was already taken in [12], where the cubic arrangement depicted in Fig. 3.1a
was proposed. However, this proposal is incorrect [20*, see Appendix 3], and does not in fact exhibit

(a) (b)

Fig. 3.1: (a) A cubic resonator made of SRRs, as depicted in [12] (c) A 2D isotropic spherical resonator,
as depicted in [30] (¢) A 3D isotropic spherical resonator, as depicted in [19%, see Appendix 2].

isotropic behavior. The first correct design, though only 2D isotropic, was proposed four years later,
in [30], see Fig. 3.1b, but the true isotropic resonator was not proposed until 2006 [19*, see Appendix 2],
see Fig. 3.1c. The key point of the design is the use of point groups of symmetry to establish the minimum
symmetry requirements on a single ring resonator to be useful for a 3D isotropic design. Through this
method it was shown [20*, see Appendix 3] that an ordinary SRR [12] does not exhibit enough symmetry
and some more symmetrical designs have to be used, see Sec. 2.2.

The design shown in Fig. 3.1c is theoretically very appealing, and is even superior in several parameters
to its successors. Its major drawback, however, is its fabrication complexity, which makes mass-production
practically impossible (it should be pointed out that practical metamaterial devices would easily contain
thousands of resonators of this kind). In order to remove this drawback, the point groups of symmetry
has been used for the original proposal [12], with the aim to set symmetry requirements on the rings
that are used. It was shown [20*, see Appendix 3] that only designs following the geometries depicted
in Fig. 3.2 are possible candidates for isotropic resonators. Consulting these requirements with the
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Fig. 3.2: Schematic representation of isotropic cubic resonators with the designation of the corresponding
point groups of symmetry, following the Schéenflies notation.

planar rings presented in Sec. 2.2, the resonators shown in the inset of Fig. 3.3¢,d were developed and
extensively analyzed [20%, see Appendix 3] both theoretically and experimentally. For an experimental



characterization, the resonators were introduced in the center of a mono-mode rectangular waveguide
(see Fig. 3.3a) and the transmittance was measured. The resonance of the cube then corresponds to a
transmission dip, which should be independent from the rotation of the cube for isotropic designs. The
results for the cubic resonator from [12] and two novel designs proposed in [20*, see Appendix 3] are
shown in Fig. 3.3b,c,d. The isotropy of the novel resonators is evident from the invariance of the resonant
dip. It is also apparent that the cube made of original SRRs [12] is anisotropic. The resonance is not
invariant, and, in addition, there are resonances that were not present in stand-alone planar resonators
(these resonance can even be of electric type [20%, see Appendix 3]). In order to explain these results,
a detailed analytical model was developed in [20*, see Appendix 3] that predicts even the finest details
observed in the experiment.
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Fig. 3.3: (a) Waveguide-coaxial transition used for measurements with the inserted cubic resonator
(b,c,d) Results of the transmittance measurement for three cubic resonators.

The symmetry pattern depicted in Fig. 3.2 is of general validity, and is not restricted to purely
magnetic resonators. In fact, as will be shown in the following sections, it has also been successfully used
for chiral resonators [25%, see Appendix 6], [26*, see Appendix 7] (see Fig. 3.4a) and for a combination
of dielectric resonators with a so-called dielectric wire medium [24*, see Appendix 5] (see Fig. 3.4b).
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Fig. 3.4: (a) A cubic resonator made of chiral resonant rings (b) A cubic unit cell made of dielectric
resonators and a mesh of dielectric wires.
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Chapter 4

An Artificial Medium Made of
Resonant Rings

4.1 An Unbounded Medium

The previous chapters were devoted to stand-alone resonators. While they are interesting systems on
their own, the ultimate goal of metamaterials is to create a medium out of them. This opens whole new
degrees of freedom, and metamaterial homogenization has in fact not yet been fully solved, see [31,32] and
the references therein. The reason lies in the macroscopic dimensions of the constituting unit cells (e.g.
the ring resonators), which can hardly have an electric size as small as that of building blocks of natural
media (atoms and molecules), for which the classical homogenization schemes [15,33] were developed.
The metamaterials should thus better be denoted as mesoscopic systems with considerably more complex
homogenization [31,32]. Fortunately, some of the core ideas of solid state physics (e.g. Lorentz’s sphere,
Bloch’s theorem) are of general validity, and can also be used for metamaterials.

The first serious attempt to homogenize resonant ring metematerials was made as early as in 2002 [34].
The homogenization presented there is purely static and is thus of limited applicability. However, it
showed some important routes for future development. For example, it used an approximation of a real
resonant ring by an ideal structure-less current loop with certain internal impedance. This approximation
by an “extended” magnetic dipole was latter shown [20*, see Appendix 3] to be in fact very precise, and
has been used in all the successors of [34]. Two notable examples are [35%, see Appendix 9] and [36%,
see Appendix 10], which extended the static homogenization into a fully dynamic homogenization with
spatial dispersion effects.

2.5
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Fig. 4.1: (a) Full wave dispersion diagram of an isotropic material made of double gap SRRs (b) Sketch
of the unit cell.

In order to give an idea of what to expect from a resonant ring material, a particular result is shown
in Fig. 4.1a, see [35*, see Appendix 9] for more details. The figure shows a dispersion diagram of an
isotropic material made of double gap SRRs (see Fig. 4.1b). Notable branches are denoted by «, 3, v. A
sketch of an effective permeability corresponding to such a dispersion is shown in Fig. 4.2a. The branch
« starts as a light-line along which the resonators exhibit only their static polarizabilites. This light-line
starts to bend before the resonance of the rings, preceding a complete band-gap, the most important
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region in which the permeability of the system becomes negative [35*, see Appendix 9]. Above the band-
gap, two dispersion lines emerge. The [-line is in fact a continuation of « and it begins at the point of
zero permeability. The ~-branch does not have any image in the local permeability from Fig. 4.2a, as it
belongs to a so-called magneto-inductive wave [37,38], which is a longitudinal wave that does not couple
to the propagative planewave spectrum. This magneto-inductive wave can be considered analogous to
plasmons existing in metals at plasma frequency. The isotropy suggested by the symmetry of the unit cell
(see Chap. 3) can be checked by plotting the dispersion along different directions, as is done in Fig. 4.2b.
The isotropy is clearly visible in the region of allowed homogenization, i.e. not close to the Brillouin
boundary.
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Fig. 4.2: (a) Sketch of the effective permeability corresponding to the dispersion diagram of Fig. 4.1a
(b) Dispersion diagrams of the double gap SRR medium along three important directions.

Resonant ring materials can also be combined with other systems to make different functionalities.
The most notable of these is the combination of rings with a system offering negative permittivity, in which
case one obtains a medium with a negative index of refraction, the key component of a perfect lens [2].
Isotropic negative permittivity is commonly obtained by an orthogonal mesh of connected wires [39,40]. A
particular example of a combined ring-wire system is shown in the inset of Fig. 4.3a, which depicts a unit
cell containing dielectric rings and a dielectric wire medium [24*, see Appendix 5]. The corresponding
band diagram is shown in Fig. 4.3a, in which the backward-wave band is marked. At this point it is
important to mention an interesting feature of dielectric ring resonators, which is the ability to coexist
with the true homogeneous negative permittivity medium (ordinary resonant rings cannot do this due
to the short-circuiting of their capacitance). A medium of this kind can for example be represented
by conductors or semiconductors below their plasma frequency, see [24*, see Appendix 5] for a more
extensive discussion. The last representative of a bulk resonant ring medium that will be mentioned here
is the balanced chiral composite [25*, see Appendix 6], [26*, see Appendix 7]. Its dispersion diagram and
constituting unit cell are depicted in Fig. 4.3b. This is another example of an important class of isotropic
media supporting backward waves, in this case working for circularly polarized waves [25%, see Appendix
6], [26*, see Appendix 7].

4.2 Finite Material Samples

The previous section considered unbounded lattices of resonant rings, as is common in classical ho-
mogenization schemes. Ultimately, however, all practical metamaterials have to be of finite size. For
conventional materials, it is well known [41] that at the boundaries of the material body a transition
layer is formed, with properties different from those of the bulk. For large enough samples, this transition
layer does not have a significant effect on the overall macroscopic properties. The case of metamaterials
is more tricky, since they are constructed with a much smaller number of elements than any macroscopic
piece of conventional matter. At the same time, metamaterial elements are usually densely arranged.
Finally, metamaterials commonly exhibit negative material parameters which, when combined with sharp
edges, may give rise to surface resonances [42].

Possible issues with finite metamaterial samples were addressed in [43* see Appendix 11], where the
surface geometry of a sample was treated. T'wo possible geometries of a cube made of resonant rings were
studied, see Fig. 4.4, and were compared with the cube filled with a homogeneous medium corresponding

13
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Fig. 4.3: (a) Dispersion diagram of a combined ring-wire system with a unit cell depicted [24*, see
Appendix 5] (b) Dispersion diagram of an isotropic balanced chiral medium with a unit cell depicted [25%,
see Appendix 6], [26%, see Appendix 7]. Both dispersion diagrams are valid for one of the Cartesian
directions.
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Fig. 4.4: Scheme of a finite cube of resonant ring material with two possible configurations: “flat” (a)
and “ragged” (b).

to the homogenized resonant ring metamaterial [35% see Appendix 9]. The results clearly showed a
strong preference for a “ragged” design (Fig. 4.4b) the behavior of which was quite close to that of a
homogeneous cube. On the other hand, the “flat” design (Fig. 4.4a) suffered from undesired surface
resonances, making this surface treatment inadvisable.
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Chapter 5

Systems Made of Resonant Rings

Apart form a purely theoretical contribution to physics, any topic should finally propose some application.
The metamaterials are no exception and two selected systems will be presented in this chapter.

5.1 Quasi-Static Magnetic Lenses

A perfect lens [2] is an obvious first choice for an application. Unfortunately, the design of a perfect lens is
extremely challenging, as it requires both the permittivity and the permeability to be negative and tuned
to particular values. At the same time, the lens should operate within a reasonable bandwidth. These
problems in combination virtually put a usable perfect lens into the realm of science fiction. However,
there are imaging applications that are not so demanding. There are for example applications that need
to perform imaging solely within the near-field of the imaged source, where its electric and magnetic fields
are still reasonably decoupled. In such a case it was shown [2] that within the near-field, a magnetic source
(TE waves along the optical axis) can be imaged using only negative permeability, while an electric source
(TM waves along the optical axis) can be imaged using only negative permittivity. This is a considerable
simplification and in fact resonant ring metamaterials presented in this thesis could serve as building
blocks for magnetic imaging system of this kind.

(a)

source

[~==

Fig. 5.1: (a) Sketch of a source coil imaging through the magnetic lens (b) Sketch of a realistic magnetic
lens made of resonant rings (single split rings loaded by a lumped SMD capacitor are used) (¢) Photograph
of a fabricated lens.

Near-field magnetic imaging is a key point in image acquisition through nuclear magnetic resonance,
which is a technique of eminent importance in medical diagnostics. In this method, the magnetic field
generated in spin transitions is usually picked up by simple resonant coils, which are tuned to a specific
frequency of the spin transition. In order to mitigate the thermal noise, the tuning is made very selective.
This is in fact a very favorable property for resonant and thus narrow-band systems such as resonant
ring metamaterials. The major issue in nuclear resonance imaging is the signal-to-noise ratio, the low
value of which is mostly given by the very low signal coming from the imaged tissue. The reason for
this is twofold. First, the source it-self (a cube of properly magnetized tissue) is very weak. Second, the
radiating piece of tissue does not lie on the surface of the body, since it is also necessary to image the
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internal part of the body. This means that the source of the radiation is located at some distance from
the pick-up coil, and the coil generally losses its sensitivity with growing distance. There is practically
no cure for the first these problems. The second problem can however be solved by using an imaging
device that will virtually shift the pick-up coil to within the tissue - i.e. using magnetic lens [44], [45%,
see Appendix 12].

An ideal lens for magnetic resonance imaging is a slab of isotropic negative permeability u, = —1
that exactly copies the magnetic field in the source plane to the image plane. According to perfect lens
theory [2] the source plane lies half of the thickness of the lens in front of the lens and the image plane lies
half of the thickness of the lens behind the lens, see Fig. 5.1a. A lens of this type has been designed [45%,
see Appendix 12] from a two unit cells thick slab of cubic ring resonators, see Fig. 5.1b,c. Although
a two unit cell thick slab clearly cannot be considered as made of a homogenous medium, the real life
performance of this lens has been very good [45%, see Appendix 12], see Fig. 5.2. In order to understand
the lens in greater details, a proper homogenization scheme taking into account its small thickness has
been developed [46*, see Appendix 13]. The results surprisingly showed that within the realm of quasi-
static TE waves the lens can in fact be approximated by a slab of homogeneous medium, which explained
its performance. Subsequently, the lens has been tested in various scenarios [47*, see Appendix 14], both
experimentally and theoretically, by means of the detailed discrete model [48* see Appendix 15]. Usage
of the lens in connection with the parallel imaging technique [47*, see Appendix 14] also opened the
question of the transversal resolution of the lens. In accordance with the theory, a detailed study [49%,
see Appendix 16] did indeed show that the lens resolution can be deeply subwavelength, reaching a size
around six unit cells, i.e. around A\/50, with lambda being the operation wavelength (compare with
diffraction limit A/2).

(b)

Fig. 5.2: (a) Imaging of knees - a comparison of the same scenario with the lens (right) and without
the lens (left), as depicted in [45*, see Appendix 12] (b) Imaging of ankles - a comparison of the same
scenario with the lens (bottom) and without the lens (top), as depicted in [47*, see Appendix 14].

5.2 Isotropic Frequency Selective Surface

For propagative waves, a slab of a negative permeability behaves as a reflector. This, in connection with
isotropic cubic resonators, see Chap. 3, and their natural frequency selectivity, evoked the idea of creating
an angle-independent frequency selective surface [50*, see Appendix 17]. An implementation of a surface
of this kind is depicted in Fig. 5.3a. An experimental characterization of this surface did indeed confirm
the presumed angle and polarization independence, see Fig. 5.3b, which results from the ability of cubic
resonators to excite a magnetic moment that exactly follows the incident field. Outside the resonance
band such a surface would be almost transparent, which makes it a possible candidate for multi-reflector
antennas. In connection with this kind of application it can be expected that a curved surface would
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work as well as the flat surface, since the major response comes from the cubic resonators themselves.
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Fig. 5.3: (a) Photograph of a planar frequency selective surface made of isotropic ring resonators (b)
Measured transmission coefficient through the surface for several incidence angles and several polariza-
tions.
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Chapter 6

Conclusions

The emergence of metamaterials stimulated a wave of interest in classical electromagnetism, even though
at that time this area of physics had been considered to be almost exhausted. The major reason was
that, in the past, the importance of material properties was often underestimated, or materials were even
taken as parasitic components needed only to support metallic structures. Metamaterials have however
shown that constitutive parameters are extremely valuable and extremely flexible degree of freedom which
can bring whole new functionalities in even the simplest geometries, e.g. a simple slab behaving as a
perfect lens [2] or a simple spherical layer behaving as perfect cloak [3-5]. Furthermore, the development
of metamaterials brought schemes for the actual design of complex materials, whose properties could,
within some fundamental constraints, be designed almost at our will. Finally, metamaterials has shown
that classical homogenization concepts developed for natural media are not of general validity, and are
not necessarily usable for mesoscopic or strongly dispersive systems.

One of the major branches of metamaterials deals with materials made of resonant rings which aim to
manipulate the magnetic properties. This thesis has recapitulated the main lines of research carried out
in this area. The presentation started with simple planar resonators, continuing through various modi-
fications of these resonators towards the three-dimensional isotropic systems, including a homogenizable
magnetic medium, and ending with selected systems made of this kind of material. As presented here,
this topic might seem to be fully solved. However, this is only partly true and there are still some core
problems that are waiting to be solved. The most eminent issues for future work are: materials made
of randomly-oriented rings (amorphous materials) and materials made of active rings that mitigate the
dispersion.
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Bulk Metamaterials Made of

Resonant Rings

The realization of 3-D magnetic metamaterials at microwave frequencies is

discussed in this paper and an exciting application of such materials is

described.
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ABSTRACT | In this brief review, we present the fundamentals
of bulk resonant ring metamaterial (RRM) theory. Metamater-
ials made of resonant rings are discussed, and some basic de-
sign rules are provided. Homogenization (including spatial
dispersion) of 3-D resonant ring latices is reviewed, with em-
phasis in isotropic designs. Edge effects in finite size metama-
terial samples are discussed. Finally, possible applications and
future trends are briefly reviewed.
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I. INTRODUCTION

Diamagnetic properties of closed inductive loops were well
known in the past (see, for instance, [1]). It was also
known that this effect can be enhanced by adding a chip
capacitor [2] to the ring. However, it was not until recent
years that these effects were systematically studied in
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order to develop artificial media (or metamaterials) with
negative magnetic permeability [3], which may be
eventually combined with conducting plates or wires [4]
in order to provide a medium with simultaneously negative
magnetic permeability and permittivity [5], i.e., the
negative refractive index (NRI) medium predicted many
years ago [6], [7]. After these seminal works, metamaterial
theory became a “hot” scientific topic, with thousands of
published scientific papers (for RRM specifically see, for
instance, [8], [9], and references therein). Although other
alternatives besides resonant rings have been proposed for
negative 1 metamaterial design, resonant ring technology
can be still considered as the “standard” approach to this
goal, at least up to optical frequencies, where the
combined effects of the kinetic inductance of electrons
[10] and high frequency dissipation [11] introduce severe
limitations to this approach. In this paper, we will shortly
review the fundamentals of resonant ring metamaterial
(RRM) theory, with emphasis in isotropic 3-D effective
media design. The paper ends with a short discussion on
possible applications and future trends for bulk metama-
terial technologies.

IT. RESONANT RINGS FOR
METAMATERIAL DESIGN

A. Resonant Ring Basic Concepts

A closed conducting ring of inductance L and resistance
R provides a magnetic moment m = —(jwr?r*/Z)B,
where ris the ring radius, B is the external magnetic field
component perpendicular to the ring, and Z = jwL + R is
the ring impedance. Since L ~ o, this magnetic moment,
though opposite to the magnetic field, is not sufficient for
providing a negative effective permeability [8]. This effect
can be enhanced if the ring impedance Z = jwL + R is

0018-9219/$26.00 ©2011 IEEE



modified by the presence of a series connected capacitance
C [2], so that Z = jwL 4+ R + 1/(jwC) and

m=cawB, =—

— B 1
L w?—u?+jwR/L )

where wg = 4/1/(LC) is the frequency of resonance.
Lumped capacitors are available at radio and microwave
frequencies. However, attaching a lumped capacitor at
microwave frequencies may not be a very practical ap-
proach because of some unavoidable parasitic inductance,
which cannot be neglected. For this reason, lumped capa-
citors are rarely used except at radio frequencies. At higher
frequencies, it may be advantageous to use conventional
printed circuit techniques and substitute the lumped capa-
citor by a distributed capacitance. This leads to the split
ring resonator (SRR), already known and used for some
specific applications [12], but first proposed as metama-
terial element in [3].

In order to simplify the analysis, avoiding magneto-
electric couplings (see below), the geometry proposed in [12]
is used in the following. This structure (see Fig. 1) is a
broadside-coupled SRR (BC-SRR). As has been shown in [13],
near the resonance, the total current (i.e., the sum of the
current flowing on both rings) is almost uniform, forming a
closed current loop. This current flows from the upper to the
lower ring and vice versa through the gap between them, as an
electric displacement current. Therefore, the total capaci-
tance of the resonator is the series connection of the
capacitances through both resonator halves. The resonator
inductance can be approximated by the inductance of a single
ring (assumed closed) and the magnetic polarizability is still
given by (1).

A main advantage of the BC-SRR over the design
proposed in [3] is that broadside coupling provides a much
higher capacitance than edge coupling, thus allowing for a
much smaller electrical size at resonance [13]. The price to
pay for this advantage is a more complicated fabrication

Fig. 1. Broadside-coupled SRR (BC-SRR). The supporting dielectric
board is in light gray, whereas metallic parts are in white (upper ring)
and dark gray (lower ring).
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process, which includes two levels of metalization.
Another important advantage (for most applications) of
the BC-SRR is the aforementioned absence of magneto-
electric coupling. Magneto-electric coupling appears in
many SRR designs due to the simultaneous excitation of an
electric and a magnetic dipole at resonance. According to
reciprocity, the excitation of an electric dipolar moment by
an external magnetic field implies the excitation of a mag-
netic dipolar moment by an external electric field. There-
fore, magneto-electric coupling makes the metamaterial
bi-anisotropic [14]. Magneto-electric coupling is not pre-
sent if the SRR is invariant by spatial inversion, as it
happens in Fig. 1. In addition to the reported resonant
magnetic (or magneto-electric) polarizability, SRRs also
show a nonresonant electric polarizability, which can be
approximated as the polarizability of a metallic disk of the
same radius [15]. Besides the aforementioned edge-
coupled and broadside-coupled SRRs, many other SRR
designs have been proposed, aimed to specific applica-
tions. The interested reader is referred to [8] for a de-
scription of some of these proposals. Finally, it may be
worth to mention that high permittivity dielectric rings
also show a resonant magnetic polarizability similar to (1)
[16], due the combined effects of the electric field
confinement inside the ring and the internal capacitance,
both associated to the high value of the dielectric constant.

Closely related to resonant rings, there are other reso-
nant structures useful for metamaterial design, which
deserve some comments. One of them is the “swiss roll,”
also proposed in [3], which provides a very strong magne-
tic response at very low frequencies, thus being useful for
applications in the megahertz range (see Section IV).
Another interesting structure is the complementary SRR
(CSRR), proposed in [17]. This resonator is the comple-
mentary screen of any planar SRR, whose properties can be
related to those of the SRR using Babinet theorem: mag-
netic and electric polarizabilities are interchanged. How-
ever, it must be emphasized that the polarizabilities of the
CSRR are only “effective,” having opposite sign at both
sides of the resonator [17]. This fact makes this element
useless for 3-D metamaterial design (although certainly
very useful for 2-D metamaterial design).

B. SRRs at Optical Frequencies

Upon the success of SRRs at radio and microwave
frequencies, such metamaterial elements were studied for
operation at terahertz [18] and infrared frequencies [19].
At few terahertz, metals still behave as good conductors.
However, at frequencies in the infrared and the visible
range, metals are better described as solid plasmas with a
complex permittivity approximated by

_ wp
F=e { e —ifc)} @
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where ¢; is the permittivity of the ionic background, w, is
the angular plasma frequency, and f, is the frequency of
collision of electrons. For metamaterial design, the elec-
trical size of the SRR should be substantially smaller than
the wavelength, and the SRR details (for instance, the wire
section) even smaller. Therefore, the characteristic lengths
of the SRR become of the same order as the mean free path
of electrons—which for good conductors is of several
tenths of nanometers—and collisions with the SRR boun-
daries become important [20]. This effect dramatically
increases f, and, therefore, losses, as it has been analyzed
in [11] and [21]. Other effects, such as interband electron
transitions and surface roughness, also contribute to an
increase of metal losses at optical frequencies [11].

Even more important than losses are the effects of the
kinetic inductance of electrons L, [10]. This effect can be
also understood as the effect of the negative permittivity of
the metal [8], which provides a negative internal capa-
citance associated with the displacement current inside
the metallic ring. This negative internal capacitance is, in
fact, equivalent to a positive extra inductance

27r
L= == xS (3)

where r is the ring radius and S is the wire section. This
additional kinetic inductance must be added to the mag-
netic inductance L in the expressions for the polarizability
of the SRR (1). When the SRR is scaled down in order to
achieve resonance at optical frequencies, the kinetic in-
ductance (3) scales as L, ~ 1/r, whereas the magnetic
inductance scales as L ~ r. Therefore, the kinetic induc-
tance becomes dominant and the frequency of resonance
saturates to the constant value w, = +/1/L,C (the
capacitance C scales down as C ~r). In addition, the
amplitude of the magnetic susceptibility scales as
Xm ~ Na, where N~1/r and « is given by (1).
Therefore, X ~ r/L; ~ r?. That is, the amplitude of the
susceptibility decreases dramatically when the SRR is
scaled down. Since the magnetic inductance varies as
L =~ por with the ring radius r, from (3) follows that the
kinetic inductance becomes dominant when the section of
the SRR wire becomes of the same order as the plasma
wavelength of the metal [8]. For good conductors this
effect appears when the wire section approaches to several
tens of nanometers. Therefore, both effects analyzed in
this section appear simultaneously, making the SRRs
useless below these dimensions.

ITI. THREE-DIMENSIONAL RESONANT
RING METAMATERIALS

There is a very high variety of phenomena that may appear
in 3-D arrays of resonant rings, even if the analysis is
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restricted to homogenizable mixtures. In order not to
make the analysis endless, we will restrict ourselves to the
important case of isotropic RRM, which has been ad-
dressed in [22], [23], and [24] among others. Most of the
concepts developed for isotropic designs can be extended
to more complex structures, and the reader interested in
such composites is referred to the available bibliography

(8], [9].

A. Lorentz Homogenization Theory for Cubic
Lattices of Resonant Rings

Let us consider an isotropic cubic lattice of electri-
cally small resonant rings, as is sketched in Fig. 2(a). We
will consider rings with only magnetic polarizability (1),
so that magneto-electric coupling is not considered. We
will also neglect the details of the ring design, assuming
that the rings can be described by a closed current loop
with some internal inductance, capacitance, and resis-
tance (the conditions for the validity of such assumptions
have been discussed in [24]). Lorentz homogenization
theory of cubic crystals is based on the well-known
relation [25] H; = H + M /3 between the local magnetic
tield Hj, the macroscopic magnetic field H, and the
macroscopic magnetization M. This relation is valid for
cubic lattices of point magnetic dipoles. However, in
cubic lattices of resonant rings of radius r comparable to
the lattice constant a, the interaction between the closest
rings cannot be approximated as the interaction between
two magnetic dipoles. In this case, the local field
component normal to the ring H;, is better approxi-
mated by

a’ 1
72(4MC + 2Ma) +§ M, 4

H, =H +
fho (71

where M, and M, are the mutual inductances between
parallel coplanar and co-axial nearest rings, respectively
(couplings between rings placed over perpendicular planes
cancel each other). Taking into account the exact mutual

Fig. 2. (a) The unit cell of an ideal cubic Iattice of resonant rings of
self-inductance L, self-capacitance C, and resistance R. (b) Unit cell
of a NRI medium made by a combination of BC-SRRs and wires.



inductance between more distant neighbors [26] does not
significantly change the result for a cubic lattice. From (4),
the magnetic susceptibility of the lattice can be readily
found as a function of the ring polarizability cv. For « given
by (1), this expression is

W oo/ (a®)
w3 —w?[1 + 2M, /L+4M,/L+pocg/ (3a3)]+jwR /L
5)

x(w) =

where ap = 7r* /L is the magnitude of the polarizability
of an ideal lossless (R = 0) and nonresonant (wp = 0)
ring.

B. Magneto-Inductive Waves in Resonant
Ring Metamaterials

In addition to electromagnetic TEM waves with phase
constant k = w, /1€, lattices of resonant rings also support
magneto-inductive waves [27]. These waves appear at
frequencies near the ring resonance and come from the
inductive coupling between rings. For a linear chain of
rings, with periodicity a, the general dispersion equation
for these waves is [27]

2 00
Wy M, ] 'R
u? =142 E TCOb(nka) — ]uz (6)

n=1

where M, is the mutual inductance between two rings
separated by a distance na. In the nearest neighbors ap-
proximation, (6) reduces to

wZ

M .
w—g:1+Tcos(ka)—]E. (7)

For an accurate quantitative analysis, (6) must be used,
and the summation taken up to the appropriate conver-
gence. However, in order to capture the most salient fea-
tures of these kind of waves, (7) is sufficient [27].
Therefore, we will use this approximation in our analysis.
For a linear chain of co-axial rings, M; = M, > 0, and the
dispersion relation (7) shows that the magneto-inductive
wave is a forward wave. However, for a linear chain of
coplanar rings, M; =M, <0, and (7) shows that the
magneto-inductive wave is a backward wave. Equation (7)
also shows that magneto-inductive waves have a narrow
bandwidth Aw/wg ~ M;/L around the frequency of
resonance wy.

It is also possible to induce magneto-inductive waves in
unbounded lattices of resonant rings, the general formula
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for these waves being a straightforward generalization of
(6) [27]. It is however interesting to explicitly write these
expressions for the cubic lattice shown in Fig. 2(a). If we
restrict our analysis to waves propagating along a main
axis, namely the z-axis of Fig. 2(a), we can distinguish two
branches, corresponding to “longitudinal” waves with
axial coupling between the rings, and to “transverse”
waves with coplanar coupling between rings. For longitu-
dinal waves, we have

2
w? M, M. R
— =14 2—cos(k 4——j— 8
o~ 2 coska) 47— ®)
and for transverse waves
Wy M M, M, R

0—142= k 2—S 4t~ 9
2= L2 peos(ka) 22427 o (9)

From the signs of M, and M, it comes out that longi-
tudinal waves are forward and transverse waves are
backward.

C. Connection Between Magneto-Inductive
Waves and Electromagnetic Waves.
Spatial Dispersion

Magneto-inductive and TEM electromagnetic waves
are both present in 3-D lattices of resonant rings. More-
over, the interesting region of negative permeability is very
close to the frequency of resonance of the rings, where
magneto-inductive waves also appear. Therefore, it is cru-
cial to elucidate which are the connections between
magneto-inductive and TEM electromagnetic waves. This
connection was first investigated in [28] using a transmis-
sion line model. Subsequently, it was investigated for a
cubic lattice of rings in [29]. In this section, we will mainly
follow the analysis reported in [29], which has been
adapted to our present purpose. Other approaches to spa-
tial dispersion in metamaterial structures, which provide
similar results in many cases, can be found in the literature
[30], [31].

Let us consider, for simplicity, a z-polarized magnetic
wave propagating along one of the main axis of the
structure shown in Fig. 2(a), with propagation constant k,
macroscopic magnetic field H, = Hp,exp(—jk - r), and
magnetization M, = Mo exp(—jk -r), associated to a
distribution of currents on the rings oriented perpen-
dicular to the z-axis Iy . =Io exp(—ja(ken, + kyn, +
k.n.)). In the nearest neighbors approximation, and for
propagation along one of the main axes, couplings
between rings located on orthogonal planes cancel.
Thus, a straightforward generalization of (4) leads to the
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following equation for the current Iy on the ring at
ne=mn, =n, =0:

2
Wo R Z
2 a4 T

<w2 +J wL) 0

q)ext
L

7Tr2 03
=Ty
L o (7r?)

X [2M, cos(kyx) 4 2M, cos(kyy)

1
+ 2M, cos(k,z)|Mo . + §M0,2}~ (10)

The macroscopic wave equation for the magnetiza-
tion is

(W o — K*)Hy + (W poe — kk-)Mg = 0 (11)

where ¢ is the macroscopic effective dielectric constant of
the lattice. By combining (10), (11), and My, = 7Tr210/a3,
the wave equation for the currents on the rings is obtained.
For waves propagating along the z-axis, we obtain
“longitudinal” waves with the dispersion equation

w? M, M, )
w_g: 1+2Tacos(kza) +4TC————]—

and for waves propagating along the x-axis (or y-axis), we
obtain “transverse” waves with the dispersion equation,
shown at the bottom of the page, where k,, = W+/Eflo. Of
course similar results can be obtained for the currents on
rings oriented perpendicular to the x- and y-axis of
Fig. 2(a). Therefore, both branches of longitudinal and
transverse waves coexist along any main axis of the
structure.

Equation (12) corresponds to the longitudinal magneto-
inductive wave (8) slightly modified by the presence of
the volume magnetization. In the long wavelength limit,
where cos(kea) & 1, substitution of (12) into (5) leads to
x(w) = —1, i.e., p(w) = 0. Therefore, longitudinal mag-
neto-inductive waves in cubic lattices of resonant rings are
the short wavelength continuation of the longitudinal
magneto-plasmons that appear in continuous media when

w=0.

Regarding the long wavelength limit of (13), it corre-
sponds to the transverse electromagnetic waves propagat-
ing in a medium of 1 = pio(1 + xm(w)), with xm(w) given
by (5). In the short wavelength limit, when k2 >> k2, (13)
reduces to

2

wi 2M, 2(Mg +M,)  poag R

— =1 cos(k —j—.

w? + (k) + L 3a3 J wL
(14)

Equation (14) corresponds to the transverse magneto-
inductive waves (9) slightly modified by the effect of the
volume magnetization. Therefore, transverse magneto-
inductive waves in cubic lattices of resonant rings are the
short wavelength continuation of transverse electromag-
netic waves. Equation (13) also provides the spatially
dispersive magnetic susceptibility x,(ky,w) for transverse
plane waves propagating along the x-axis of the lattice (and
actually along any other main axis). The general expression
for X, (k,w) for any value of k becomes much more
involved, because the mutual inductances between rings
lying on orthogonal planes do not cancel. These expres-
sions can be found in [29], where the reported theory was
also checked by careful numerical computations. Finally, it
may be worth to mention that, when spatial dispersion is
present, the magnetic susceptibility becomes a tensor [29],
even if the conditions for an isotropic behavior in the long
wavelength limit [24] are fulfilled, thus destroying the
isotropic behavior of the metamaterial.

In order to illustrate the typical behavior of TEM elec-
tromagnetic and magneto-inductive waves in RRM, the
dispersion diagrams for longitudinal (12) and transverse
(13) waves along a main axis of Fig. 2(a) are shown in
Fig. 3 (solid lines) for some realistic values of the structure
parameters. For positive values of the macoscopic permit-
tivity €, a negative 1 forbidden band gap can be clearly
appreciated near the resonance w = wyp. As is expected
from its magneto-inductive nature, the longitudinal branch
presents a flat dispersion curve. The transverse branch
behaves as a nondispersive TEM electromagnetic wave at
low frequencies, and as a slightly backward magneto-
inductive wave when the frequency approaches the
forbidden band gap (the reason for which this backward
behavior is not clearly seen in the figure is because (14)
corresponds to the limit k, — 0o and, in practice, ky
reaches the end of the first Brillouin zone long before this
limit).

W oag/d®

= = 1= Xm(ke,w) =
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Fig. 3. Dispersion diagrams for longitudinal (12) and transverse (13)
waves in the lattice of rings sketched in Fig. 2(a), for two different
values of the macoscopic permittivity of the metamaterial. Solid lines:
¢ = 2.5¢0. Dashed lines: : = —<, [longitudinal waves (12) are not
affected by the macroscopic permittivity]. Structural parameters are
a = \o/20, where ), is the wavelength at the frequency of resonance
wos I = 0.453, M. /L = 0.02,M,/L = —0.015, L = 11102, and R /wL — O.
The macroscopic permittivity = = 2.5z, approximately corresponds
to the background static permittivity of the lattice of rings.

D. Negative Refractive Index Metamaterials
Equation (11) is the wave equation in a medium with
E = D and magnetization M, regardless of the relation
between H and M. Therefore, ¢ in (11) is the macroscopic
permittivity of the metamaterial, which may be different
from the permittivity of the host medium. If this permit-
tivity is negative, then k,, = w,/€1g in (13) becomes imag-
inary, and a backward passband appears in the regions of
negative magnetic permeability. This effect is illustrated in
Fig. 3 where the dashed line shows the dispersion equation
for transverse waves when € = —¢(. The question arising
now is how to make negative the macroscopic permittivity
without affecting the permeability of the metamaterial.
The simplest possibility, at least conceptually, is to
place the resonant rings in a continuous host medium of
negative dielectric permittivity (assuming that such
medium is available). This strategy works for rings loaded
by a chip capacitor or for dielectric resonant rings [16].
However, for SRRs, the presence of a host medium of
negative dielectric permittivity drastically affects the SRR
capacitance, making it negative, and therefore equivalent
to an inductance. Then, the resonance disappears as well
as the negative polarizability. In order to avoid this effect
(and also because negative ¢ media are not easily available
at radio frequencies) arrays of metallic wires [4], [5] are
commonly used to complement SRR lattices. However, it
must be taken into account that not any combination of
SRRs and wires provides a left-handed behavior [31], [32].
For this purpose, both sublattices must be combined in
such a way that the quasi-static properties (like inductance
and/or capacitance) of the elements of each sublattice are
not substantially affected by the presence of the comple-
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mentary ones. An example of such configurations is shown
in Fig. 2(b) [33]. Finally, it may be worth to mention that
NRI without wires can be achieved in some specific bi-
isotropic SRR cubic lattices [34].

E. Quasi-Static Resonances in Finite Size
Resonant Ring Metamaterials

Until now we have focused our analysis on unbounded
lattices of resonant rings. However, practical metamater-
ials must have a finite size, and scattering by the edges may
lead to the appearance of eigenmodes that would not be
excited in unbounded metamaterials. Actually, even homo-
geneous finite size negative € or p samples present quasi-
satic resonances that are excited at the edges and corners
of the structure (see [35] and references therein). More-
over, realistic metamaterials are mesoscopic systems,
made of a finite number of elements much smaller than
the number of atoms in any macroscopic sample. There-
fore, it is not clear if the resonances that may appear in
finite samples of metamaterials will even correspond to the
resonances that may appear in the corresponding homog-
enized samples of a hypothetical continuous medium with
the Corresponding effective parameters.

In order to take into account these effects, we have
recently developed a code able to solve large (but finite)
samples of RRM under arbitrary excitations [36]. This code
is based on the computation of the whole impedance
matrix for all rings, which is then solved for the specific
external excitation [27], [36]. Our preliminary results [37]
reveal that indeed extra resonances appear in finite sam-
ples of RRM, when they are illuminated by a TEM plane
wave. These resonances emerge even when realistic losses
are taken into account, and are observed in structures up to
at least 10 000 elements. The frequency dispersion of the
polarizability of finite samples is qualitatively different
from that of samples of continuous media under similar
excitation. Therefore, although the homogenization theory
of unbounded RRM is now quite well established (at least
for the simplest lattices), the behavior of finite samples in
the region of negative effective permeability (which is
usually the region of interest) is far from being fully
understood. Further research is necessary on this topic, of
key importance for practical applications [38].

IV. APPLICATIONS AND
FUTURE TRENDS

Metamaterial is a relatively new concept, which has pro-
vided in the recent years new ideas for the design of old
devices such as antennas, frequency selective surfaces, and
microwave circuits and filters. Some of these applications
of RRM can be seen in [8] and references therein. How-
ever, 3-D metamaterial technology itself, that is, the tech-
nology for the development of bulk effective artificial
media providing new electromagnetic effects, such as
super-resolution or cloaking, is still in a very initial stage.
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PRUEBA COIL
4

Fig. 4. MRI images of two human knees obtained without (left) and with (right) the help of a ;. = —1 metamaterial lens. The lens is located
between both knees (black region the image). Reprinted with permission from [40]. Copyright 2008, American Institute of Physics.

Therefore, it is not strange if practical applications of bulk
metamaterials are still far from being developed. At the
present stage of the technology, low-frequency narrow-
band applications—for instance, in magnetic resonance
medical imaging (MRI) using “swiss rolls” [39], and
resonant rings [40]-[43] 3-D metamaterials—seem to be
the most promising ones. An example of this kind of
applications is shown in Fig. 4, where the enhancement of
the image of two human knees obtained using a = —1
RRM lens can be seen. Other examples can be seen in [43],
where 1 — 0 and ¢ — oo RRM slabs are used in order to
enhance the sensitivity of MRI surface coils.

Applications of bulk RRM in microwave and millimeter
wave technology can also be envisaged, with the techno-
logical obstacles related to the fabrication process, which
may imply the assembling of thousands of micro- or nano-
structured elements. Applications at optical frequencies
are more challenging, due to the effects analyzed in
Section II-B.

From a theoretical point of view, the properties of bulk
RRM still present important challenges, mainly with regard
to the analysis and characterization of realistic finite sam-
ples, which should probably be analyzed using the theore-
tical tools of the physics of mesoscopic systems. B
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These proposals are validated by electromagnetic simulations and experiments. The reported results
are likely to have applications in the design of devices such as negative refractive index materials,

superlenses, and metasurfaces with isotropic response. © 2006 American Institute of Physics.
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After the first practical demonstration of a medium hav-
ing simultaneously negative permittivity and permeability,
also called lef-handed medium (LHM),' a great wave of
interest was generated in the scientific community due to the
unique physical properties of such LHM.*? Once the feasi-
bility of such media was shown, practical isotropic two-
dimensional designs based on well known printed circuit
technologies came soon.*® However, the practical imple-
mentation of a truly isotropic LHM still remains an open
question. Isotropic artificial media with negative permittivity
can be made, in principle, by assembling a three-dimensional
array of connected wires.”” Proposals for isotropic artificial
media having negative Permeability include cubic arrays of
split ring resonators'®!" [SRRs; see Fig. 1(a)] and Omega
particles,12 as well as isotropic spherical combinations of
SRRs." More recently, a cubic array of modified SRRs and
connected wires has been proposed for the implementation
of artificial LHM." Regarding cubic arrays of SRRs and
Omega particles,lo’12 the couplings between these elements
should be investigated before postulating isotropy. Regarding
spherical combinations of SRRs, it is well known that they
only provide isotropy in two dimensions." Finally, the re-
cently proposed cubic array of modified SRRs and wires'*
clearly provides an isotropic medium, since the unit cell is
invariant under all the transformations of the group of sym-
metry of a cube, i.e., the group generated by the transforma-
tions {I,—1,Cy,,Cy,,Cy,} (or the O, group in Schonflies no-
tation). However, the proposed structure is difficult to
implement in practice. First of all, very high permittivity
dielectrics are involved in its design. Secondly, different
from other previously proposed combinations of SRRs and
metallic strips,4 it is made of bulk metallic parts that cannot
be manufactured by using standard printed circuit technolo-
gies. The aim of this letter is to propose and analyze some
practical ways to artificial negative permeability media made
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by using modified SRR particles and standard printed circuit
technologies (eventually, such structures could be combined
with printed strips to produce LHM). First, the minimum
group of symmetry providing isotropic behavior will be in-
vestigated. Then, it will be shown through experiments that
some previous proposals lacking this symmetry do not pro-
duce an isotropic response. Finally, some practical proposals
possessing such symmetry will be analyzed.

To begin with, let us consider the subgroup of symmetry
generated by the two noncommutative products of 90° rota-
tions around two coordinate axes: {I,Cy,- Cy,,Csy-Cyyf (ice.,
the T group in Schonflies notation). After some cumbersome
but straightforward calculations, it is readily shown that any
second order tensor invariant by this group of symmetry
should be, in fact, a scalar. Nevertheless, this fact does not
guarantee that the medium can be characterized by some
scalar permittivity € and permeability w. In fact, magneto-
electric couplings (see, for instance, Ref. 15) may cause the
medium to be bi-isotropic, or chiral.'® To ensure that the
medium is not a chiral medium, it must be invariant by the
inversion, —1."” Thus, to ensure both isotropy and nonchiral-
ity, the medium basic units should remain invariant by the
symmetry group {I,—I,Cy,-Cyy,Cyy- Cy,} (or the T), group in
Schonflies notation).

To illustrate the effects of breaking this symmetry, we
will consider the basic unit shown in the inset of Fig. 2. It is
a cubic array of SRRs, where the SRRs are arranged in such
a way that the whole array satisfies inversion symmetry, so

(@ ®)

FIG. 1. (a) Split ring resonator (SRR). (b) Nonbianisotropic SRR.
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FIG. 2. Plots of the transmission coefficient (|S,,|) of a rectangular wave-
guide with a cubic array of SRRs (see the inset) placed inside at different
orientations. The waveguide is a rectangular R22 waveguide, with dimen-
sions of 109X 55 mm?. The dimensions of the SRRs are (see Fig. 1) ryy
=7 mm, w=1.25 mm, d=0.5 mm, and g=1 mm. The substrate where the
SRRs were printed is ARLONC 250-LX-0193-43-11, with dielectric con-
stant €,=2.43 and thickness 7=0.49 mm. The size of the cube is a
=20 mm. Solid line corresponds to the cube oriented with the z axis along
the waveguide axis and the y axis along the electric field of the fundamental
TE;, waveguide mode (the only one excited in the experiment). Dashed and
dash-dot lines correspond to rotations Cs,, and Cg,-Cs. of the cube, respec-
tively. Due to the couplings between different SRRs, the original resonance
frequency of each single SRR, f=2.321+0.002 GHz, changes and splits into
several resonances depending on the orientation.

that chirality is forbidden. It has been shown that if the cou-
plings among the SRRs are neglected, such basic unit has an
isotropic response.11 However, the analyzed basic unit is not
invariant by the {I,—1,Cy,- Cyy,Cy,- C4,} group of symmetry.
In particular, it is not invariant after the transformation
Cy4,- Cy,, as it can be easily realized by inspection. In fact, it
can be also realized by inspection that it is impossible to
build up a cubic combination of SRRs invariant by the afore-
mentioned group of symmetry. The basic unit shown in Fig.
2 has been fabricated and placed at different orientations in a
rectangular waveguide, in order to measure its response. Be-
fore measuring the whole structure, the frequencies of reso-
nance of the different SRRs forming the structure were mea-
sured. All of them were found to be inside the interval f
=2.321+£0.002 GHz. No other resonances appeared in the
TE;, monomode range of the utilized waveguide, i.e., from
1.7 to 2.6 GHz. As it can be seen in the figure, the analyzed
basic unit presents an anisotropic response, which cannot be
justified by tolerances in the SRR fabrication process. This
experiment shows that couplings between adjacent elements
destroy the isotropy when the basic unit do not have the
appropriate symmetry, as in this case. Splitting of the origi-
nal resonance of single SRRs into several resonances is also
observed. Similar experimental results were obtained for the
cubic array of Omega particles proposed in 12. In that case
the response also changes with the orientation, and the reso-
nance is split into four resonances.

In order to overcome the aforementioned difficulties, a
modification of the previous structure was analyzed. This
modification substitutes the SRRs by the nonbianisotropic
SRRs reported in 17, and shown in Fig. 1(b). The resulting
structure, which is shown in the inset of Fig. 3, is invariant
under the symmetry group {7, Cy,-Cyy,Cyy- Cyy}, Without the
inversion. The isotropy of the response has been checked by
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FIG. 3. Plots of the transmission coefficient (|S,;|) of a rectangular wave-
guide with a cubic array of nonbianisotropic SRRs (see the inset) placed
inside at different orientations. The waveguide size, the dimensions of the
SRR, and the substrate characteristics are as in Fig. 1 (the frequency of
resonance of the isolated nonbianisotropic SRRs was found to be in the
interval f,=2.385+0. 002 GHz). The analyzed orientations are the same as
in Fig. 1. The transmission coefficient for the cross-polarized wave is also
shown.

experiments similar to those reported in Fig. 2. The results
are shown in Fig. 3, where an isotropic behavior can be
clearly seen. As it was already mentioned, the analyzed
structure has no inversion symmetry. Therefore, media made
with these basic units may show bi-isotropy. In order to
check this possibility the rotation of the plane of polarization
of the light by this structure has been investigated experi-
mentally. In the experiment, the structure was placed inside a
rectangular waveguide and the cross-polarized transmission
coefficient was measured by using appropriate detectors (two
orthogonal input and output dipole antennas). The result is
also shown Fig. 3, where a chiral behavior (expressed in the
rotation of the plane of polarization of the transmitted wave)
is clearly observed. Interestingly, it is known that each non-
bianisotropic SRR forming the analyzed structure does not
show bianisotropy by itself."” Therefore, the chirality of the
structure comes from the couplings between the SRRs form-
ing the array.

If chirality was not desired, the design must be invariant
under the  whole group of  symmetry {I,
—1,Cyy- Cyy,Cyy-Cyyt, including inversion. Two magnetic
resonators having this symmetry are shown in Fig. 4. Figure
4(a) shows a spherical arrangement of two-split SRRs, which
is a modification of the spherical resonator proposed in Ref.
13. Figure 4(b) shows a cubic array of broadside-coupled
double-split SRRs (the design of each SRR is a modification
of a previous proposal reported in Ref. 15). This structure
has the same symmetries as the resonator shown in Fig. 4(a).
In order to illustrate the isotropy of the structure proposed in

FIG. 4. (a) Spherical isotropic magnetic resonator. (b) Isotropic cubic array
of broadside-coupled SRRs possessing the same symmetries as the structure
shown in (a).
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FIG. 5. Plots of the transmission coefficient (|S,,|) for the spherical resona-
tor shown in Fig. 4(a) placed inside a rectangular waveguide at different
orientations. The waveguide is a standard R9 waveguide with dimensions of
218X 124 mm?. The dimensions of the resonator are re,=20 mm, w
=4 mm, d=3 mm, and g=8 mm. The dielectric filling the space between the
broadside-coupled strips has €,=4. Solid line corresponds to the resonator
with the z axis along the waveguide axis and the y axis along the electric
field of the fundamental TE;, waveguide mode. Dashed and dash-dotted
lines correspond to rotations Cyy, and Cg,- Cs, of the resonator, respectively.

Fig. 4(a), its response when it is placed inside a rectangular
waveguide has been simulated by using the commercial elec-
tromagnetic solver CST MICROWAVE STUDIO. The results of
this simulation are shown in Fig. 5. The same transmission
coefficient was obtained for all the simulated orientations
(the small differences can be attributed to numerical toler-
ances of the simulation process). Similar results are expected
for the structure of Fig. 4(b), since it has the same symmetry
as the analyzed spherical resonator.

In summary, the possibility of designing isotropic three-
dimensional magnetic resonators by properly arranging
modified SRRs has been verified. It has been also verified
that the couplings between the different SRRs cannot be ig-
nored in such design. Therefore, the array must show the
appropriate structural symmetry in order to achieve an iso-
tropic response. It has been shown that the group of symme-
try generated by the transformations {I,Cy,-Cyy,Cyy-Cyyt

Appl. Phys. Lett. 88, 134108 (2006)

(the T group in Schonflies notation) is enough to ensure an
isotropic response of the design. However, if a non-bi-
isotropic response is desired (for instance, in order to design
an effective medium fully characterized by some scalars €
and u), the inversion symmetry must be added to this group
(thus forming the T}, group in Schonflies notation). Starting
from this analysis, some specific designs of bi-isotropic and
non-bi-isotropic resonators have been proposed and tested by
experiments and numerical simulations.

This work has been supported by the Spanish Ministry
of Education and Science under project Contract No.
TEC2004-04249-C02-02, and by the Grant Agency of Czech
Republic under project 102/03/0449. The authors also thank
Esperanza Rubio for manufacturing the resonators used in
the experiments.
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Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point
groups of symmetry
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In this paper, a systematic approach to the design of bulk isotropic magnetic metamaterials is presented. The
roles of the symmetries of both the constitutive element and the lattice are analyzed. For this purpose, it is
assumed that the metamaterial is composed of cubic split ring resonators (SRRs) arranged in a cubic lattice.
The minimum symmetries needed to ensure an isotropic behavior are analyzed, and some particular configu-
rations are proposed. Besides, an equivalent circuit model is proposed for the considered cubic SRRs. Experi-
ments are carried out in order to validate the proposed theory. We hope that this analysis will pave the way to
the design of bulk metamaterials with strong isotropic magnetic response, including negative permeability and

left-handed metamaterials.

DOI: 10.1103/PhysRevB.76.245115

I. INTRODUCTION

Metamaterials are artificial media exhibiting exotic elec-
tromagnetic properties not previously found in nature.
Among them, media showing simultaneously negative elec-
tric permittivity and magnetic permeability in some fre-
quency range, or “left-handed” metamaterials, are of particu-
lar interest. The striking properties of left-handed
metamaterials, including backward-wave propagation, nega-
tive refraction, and inverse Cerenkov and Doppler effects
were first reported by Veselago! in 1968. However, the real-
istic implementations of left-handed metamaterials came
several decades later, as a combination of split ring resona-
tors (SRRs) and metallic wires.> SRRs are small planar reso-
nators exhibiting a strong magnetic response, which were
proposed in 1999 by Pendry et al.? as suitable “atoms” for
the development of negative magnetic permeability metama-
terials. One year later, Smith ef al. demonstrated the possi-
bility of making up a left-handed medium by periodically
combining metallic wires—which provide an effective nega-
tive permittivity at microwaves*—and SRRs.? In subsequent
works, other SRR designs were proposed,”™® in order to re-
duce electrical size and/or cancel the bianisotropic behavior
of the original Pendry’s design. However, all the aforemen-
tioned implementations of negative permeability and left-
handed metamaterials are highly anisotropic—or even
bianisotropic’—providing only a uniaxial resonant magneti-
zation, while isotropy is needed for many interesting appli-
cations of metamaterials, as, for instance, the “perfect lens”
proposed by Pendry.’

The aforementioned implementations are, in fact, a com-
bination of two separate systems, one providing the negative
magnetic permeability (the SRR system) and the other pro-
viding the negative electric permittivity (the wire system).
How both subsystems can be combined in order to obtain a
new system, whose electromagnetic properties were mainly
the superposition of the magnetic and the electric properties
of each subsystem, is an interesting and controversial
issue!®!! that is, however, beyond the scope of this paper. In
what follows, we will assume that it is possible to find some
combination of two isotropic subsystems, one made of me-
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tallic wires (or other elements providing a negative electric
permittivity) and the other made of SRRs, whose superposi-
tion gives a left-handed metamaterial, and will focus our
attention on the design of isotropic systems of SRRs. Actu-
ally, since isotropic media with negative magnetic permeabil-
ity are not found in nature, an isotropic system of SRRs
providing such property in some frequency range will be an
interesting metamaterial by itself. These metamaterials could
provide the dual of negative electric permittivity media, with
similar applications (in imaging,” for instance). They would
be also of interest for magnetic shielding and other practical
applications.

A first attempt to design an isotropic magnetic metamate-
rial was carried out by Gay-Balmaz and Martin,'?> who de-
signed a spherical magnetic resonator—formed by two SRRs
crossed in right angle—which is isotropic in two dimensions.
This result was later generalized in Ref. 13, where a fully
isotropic spherical magnetic resonator was proposed. How-
ever, from a practical standpoint, it is usually easier to work
with cubic designs. A first attempt on such direction was
made by Simovski and co-workers in Refs. 14-16, where
cubic arrangements of planar SRRs and omega particles were
proposed [see Figs. 1(a) and 1(b)]. If only the magnetic
and/or electric dipole representations of the SRRs and/or
omega particles are considered, these arrangements are in-
variant under cubic symmetries. However, it has been
shown'?!7 that this invariance is not enough to guarantee an
isotropic behavior since couplings between the planar reso-
nators forming the cubic arrangement can give rise to an
anisotropic behavior, even if its dipole representations sug-
gest an isotropic design. The first isotropic metamaterial de-
sign fully invariant under the whole group of symmetry of
the cube was proposed and simulated in Ref. 18. It is formed
by volumetric square SRRs with four gaps, in order to pro-
vide 90° rotation symmetries about any of the cube axes.
However, this design is unfortunately very difficult to imple-
ment in practice because it cannot be manufactured by using
standard photoetching techniques, as previous SRR
designs,>*3-813-17 and the gaps of the SRR have to be filled
with a high relative permittivity dielectric (about 100). The
idea of using spatial symmetries to design isotropic metama-

©2007 The American Physical Society
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FIG. 1. Cubic constitutive elements for isotropic metamaterial
design. Cubes (a) and (b) were studied in Refs. 14-16. Their hidden
faces are arranged in such a way that the cube satisfies the central
symmetry to avoid magnetoelectric coupling. Cubes (c) and (d)
were proposed in Ref. 13 as truly three-dimensional (3D) isotropic
cubic resonators.

terials was further developed in Refs. 13, 17, and 19 leading
to the structures depicted in Figs. 1(c) and 1(d).

A second group of attempts to design isotropic metama-
terials is developed in Ref. 20 and 21. In these works, lattices
of dielectric and/or paramagnetic spheres with very high re-
fractive index are proposed. If the refractive index of the
spheres is high enough, the internal wavelength becomes
small with regard to the macroscopic wavelength, and Mie
resonances of the spheres can be used to produce the nega-
tive effective permittivity and/or permeability. Since the
metamaterial “atoms” are spheres, the isotropy is ensured by
simply placing them in a cubic lattice. However, practical
difficulties to implement such proposals are not easy to over-
come. First of all, lossless media with the very high refrac-
tive index needed for the spheres are difficult to obtain. Sec-
ondly, the system has a very narrow band.?!

All the previously reported proposals for isotropic mag-
netic metamaterial design use a “crystal-like” approach. That
is, they are based on the homogenization of a system of
magnetic resonators which, according to causality laws, ex-
hibit a strong diamagnetic response above resonance. There
is, however, another approach widely used in the microwave
community which is based on the transmission line analogy
to effective media. Initially proposed for two-dimensional
metamaterial design,?? it was recently generalized to three-
dimensional isotropic structures.?3-?6 The main advantage of
this approach is its broadband operation, since no resonators
are necessary for the design. However, it also presents dis-
advantages with regard to crystal-like approaches. The trans-
mission line approach to metamaterials does not seem to be
applicable beyond the microwave range, whereas a signifi-
cant magnetic response of the SRR has been shown in the
terahertz range and beyond.?”-?® In addition, the coupling to
free space of the reported transmission line metamaterials
seems to be difficult and sometimes needs an additional spe-
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cific interface (e.g., an antenna array25), whereas this cou-
pling is direct in crystal-like metamaterials.

Finally, regarding isotropic left-handed metamaterial de-
sign, it should be mentioned that some recent proposals
based on random arrangements of chiral particles>*° have
the advantage of providing simultaneously both electric and
magnetic negative polarizabilities. This approach can be
straightforwardly extended to the design of SRR magnetic
metamaterials, by simply considering random arrangements
of such elements. There is, however, a major difficulty with
this approach: the constitutive elements in a random compos-
ite have to be very small in comparison with the macroscopic
wavelength to show a true statistical behavior, but it is not
easy to design a SRR much smaller than one-tenth of the
wavelength. Due to this fact, periodic arrangements will be
considered in what follows.

The main aim of this paper is to present a systematic
approach to the design of metamaterial structures based on
periodic arrangements of SRRs. The first section is focused
on the spatial symmetries which are necessary to ensure an
isotropic behavior in the metamaterial. Cubic arrangements
of SRRs placed on cubic lattices are considered, and the
minimum symmetry requirements for both the individual
resonators and the lattices are investigated. The second sec-
tion is devoted to a deeper analysis of the isotropic cubic
SRRs forming the basis of the crystal structure. In the third
section, an equivalent circuit model for such cubic SRRs is
developed and applied to some specific examples. The fourth
section is focused on the experimental verification of the
analysis developed in the previous ones. Finally, the main
conclusions of the work are presented.

II. ROLE OF CUBIC SYMMETRIES

Let us assume that constitutive elements and the unit cell
of the material are much smaller than the operating wave-
length. In such a case, the interaction of electromagnetic field
with the material is described by means of constitutive rela-
tions. Besides, the material is supposed to be linear, so the
most general way to express those relations between electro-
magnetic intensities and electromagnetic flux densities is®!

D=¢-E+& H,

B={ E+pu-H, (1)

where &, p are second rank constitutive tensors and &, £ are
second rank constitutive pseudotensors. In order to get a
macroscopic isotropic behavior, all constitutive tensors and
pseudotensors €, m, & and { must become scalars or pseu-
doscalars.

Let us now address the problem of forcing the tensors (or
pseudotensors) in Eq. (1) to be scalars (or pseudoscalars) for
the specific case of a periodic structure. It is well known3>33
that there are 32 symmetry point groups for periodic crystals
which can be classified in 7 crystallographic systems. It is
also known that the cubic system is the only one that forces
any second rank tensor (or pseudotensor) to be a scalar (or a
pseudoscalar).’? Since any material satisfying the linear con-
stitutive relations [Eq. (1)] and being invariant under the cu-
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FIG. 2. Objects with the symmetries of the five cubic point
groups.

bic symmetries exhibits an isotropic macroscopic behavior,
this section will be focused on the analysis of such cubic
symmetries. It is clear that any structure invariant under all
the symmetry transformations of the cube must be isotropic,
as already proposed by Koschny et al.'® Furthermore, the full
symmetry group of the cube contains four different sub-
groups also belonging to the cubic system and, thus, provid-
ing an isotropic macroscopic behavior. Since a less symmet-
ric design is subjected to less structural constraints, it may be
guessed that using these subgroups—instead of the whole
symmetry group of the cube—may have practical advan-
tages. Keeping this in mind, we will first give a short over-
view on the five cubic point groups. Next, we shall connect
these point groups with some real structures made of planar
resonators commonly used in metamaterials. This will be
done in two parts: the study of the symmetries of the consti-
tutive element, or the basis, and the analysis of the suitable
periodic arrangements, or the lattice. At the end of the sec-
tion some practical isotropic structures will be specifically
analyzed.

A. Cubic point groups

The five cubic point groups are schematically represented
in Fig. 2. Following Schoenflies’ notation and ordering by
degree of symmetry, these groups and their generators are as
follows:

(1) T=({1,4,-4,.4,-4,})=proper rotations of the regular
tetrahedron (12 operations);

(2) T,=({1,-1.4,-4,.4,-4,})=T expanded by the inver-
sion (24 operations);

(3) 7,=({1,-2,.4,-4,.4,-4,})=proper and improper rota-
tions of the regular tetrahedron (24 operations);

(4) 0=({1,4,.4,})=proper rotations of the cube (24 op-
erations);

(5) 0,=({1,-1.4,.4,})=full symmetry group of the cube
(48 operations).

We have used a widely used notation for symmetry trans-
formations, 1 being the identity operator, —1 the inversion,
n, an n-fold rotation axis about the p axis, and -n, the n-fold
axis about the p axis followed by the inversion. For example,
the operator —2, is the rotation through 180° about the x axis
followed by the inversion.

PHYSICAL REVIEW B 76, 245115 (2007)

B. Cubic basis

In order to simplify the problem, the symmetries can be
separately imposed on the basis and the lattice of the struc-
ture. For the sake of simple fabrication, we will assume that
the basis is formed by six planar resonators placed over the
faces of an inert rigid cube, as in Fig. 1. If the crystal was
diluted enough, then the coupling between two neighboring
cubes would be much weaker than the coupling between the
six SRRs of the same cube and thus each cube could be seen
as a single cubic resonator (CR) electromagnetically coupled
to others. Such consideration implies that the interaction be-
tween the CRs forming the material can be described by
dipole-dipole interactions, higher order multipole interac-
tions being negligible. In such approximation, all the CRs are
properly described by second rank polarizability tensors con-
necting the external field, E“ and B*", with the dipolar mo-
ments, p and m, induced in the CRs,?!3*

_ ext ext
p_aee'E +aem'B s

m=a,, - Bext _ a’rem . Eext, (2)

where a,,, @,,,, and «,,, are the electric, magnetic, and mag-
netoelectric polarizability tensors, and the superscript ¢
means transpose operation. The constitutive tensors in Eq.
(1) can be derived from these polarizabilities and from the
lattice structure by applying a homogenization technique.

In what follows, different kinds of CRs will be named by
its cubic group symmetry followed by the acronym CR
(group-CR). In order to design an isotropic CR, we have to
find suitable planar resonators and place them correctly over
the cube so as to fulfill the necessary symmetries. Obviously,
the planar resonators have to be invariant under certain sym-
metry transformations of the square. To classify all different
possibilities, a list of the symmetry subgroups of the square
is shown in Table I, as well as their geometrical representa-
tions, and some examples of planar resonators commonly
used in metamaterial design and obeying these symmetries.
This table also provides a systematic terminology for planar
resonators by using the symbol of the symmetry group fol-
lowed by the term SRR (group-SRR). In what follows, we
will use the term SRR in a general sense covering any type
of geometry derived from the SRR and the omega particle.

By direct inspection on Fig. 2, it can be seen that any of
the five cubic point groups contains three twofold rotation
axes (180° rotations) parallel to the edges of the cube. Thus,
only resonators belonging to the last five rows of Table I are
appropriate for designing isotropic CRs. At this point, it may
be worth mentioning that Pendry’s SRRs? as well as Omega
particles® are not appropriate for such purpose because they
correspond to the C-SRR and D;-SRR topologies. In sum-
mary, in order to get an isotropic CR, we have to choose six
identical SRRs pertaining to the classes C,-, D,-, Cy4-, or
D,-SRR and arrange them according to one of the cubic
point groups T, T, T}, O, or O, shown in Fig. 2.

Although all five cubic point groups mentioned above are
equally useful to achieve isotropic CRs, a specific choice
may strongly affect the properties of an isotropic metamate-
rial. For instance, using isotropic CRs of low symmetry may
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TABLE 1. Classification of SRR types based on the symmetry subgroups of the square. The second
column shows Schoenflies’ notation and the generator of groups. The symbols of transformations are 1
=identity; 4=90° rotation; 2=180° rotation; —4=-90° rotation; m ., m,=line reflections respect to the x and
y axes, respectively; m, ,, m,_ ,=line reflections respect to both die{gonals of the square. Each group is
schematically represented by the objects in the second column which can be replaced by the planar resonators

shown in the third column.

SRR types | Symmetry subgroups of the square | (SOReRed | XA of
C1-SRR Ci= 11 — Ol ©
Dy ={l,m; — @ G

Dy = {1,m,)} T Q| 1O

Pr-SRR Dyy= {1 my) / Ol (O
Dy = {1, my} N Q| |O

C>-SRR C=11,2) — O ©
Do=Dyy= (1 m, m,. 2} > T RO

DR =D~ tLmm, ) N S O
C+-SRR Ci={1,4,2, -4} + O ©
D4-SRR | Dy=1{1,4,2,-4,m,m,m,,,m,} + {9 @)

be quite advantageous since the electrical size of the CRs can
be made smaller. This fact can be justified in terms of the LC
circuit models for the SRRs>~® because the effective capaci-
tances of low symmetry SRRs are usually higher than those
of high symmetry SRRs,? thus providing a smaller resonance
frequency. Following these considerations, the best choice of
basis would be a 7-CR made of six planar resonators of the
C,-SRR type. A good candidate among all possibilities is the
cube shown in Fig. 1(c) made of six nonbianisotropic SRRs
(NB-SRRs),%% a configuration already proposed in Refs. 13
and 17. Furthermore, it was shown in Ref. 13 that this con-
figuration shows a bi-isotropic behavior, due to the lack of
inversion symmetry of the cubic arrangement. However,
sometimes, an effective isotropic medium without bi-
anisotropy (&, £=0) is desired. Since £ and ¢ are pseudoten-
sors, the invariance of the CR under inversion is required in
order to avoid such property. In this case, the lowest symme-
try group is the 7}, group. A CR invariant under the last group
of symmetry can be made by using planar resonators of the
D,-SRR type as, for instance, the symmetric SRR*’ or the
modified double-slit broadside coupled SSR (BC-SRR)
shown in Fig. 1(d).!? However, as will be shown in the fol-
lowing, such symmetry requirements can be relaxed if the
lattice symmetries are properly chosen.

C. Cubic lattices

Above findings give precise instructions for choosing
suitable geometries for isotropic metamaterial constitutive
elements. The next step is to create an isotropic metamaterial
with these elements. The cubic shape of the considered con-
stitutive elements suggests that the best periodical arrange-
ments are the simple cubic (sc), body centered cubic (bcc),
and face centered cubic (fcc) lattices shown in Fig. 3. All
these lattices obey the full symmetry group of the cube, O,
Therefore, the whole metamaterial (lattice plus basis) retains
the cubic point group symmetries and the macroscopic iso-
tropic behavior.

Although all previously mentioned lattices can provide
isotropic metamaterials, it is convenient to look deeply into
the possible structures because some particular choices may
offer interesting advantages. Regarding Fig. 3, a is the edge
size of the CR and b is the edge size of the cubic unit cell. In
order to describe CR interactions as dipole-dipole interac-
tions, b must be chosen much larger than a, so that the
metamaterial properties can be deduced from Eq. (2) and the
appropriate homogenization procedure. However, usually,
we are also interested in a high density of dipoles in order to
get a strong electromagnetic response. Therefore, » should
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FIG. 3. Cubic Bravais’ lattices. Their top views are also depicted
for the particular case of b=2a. Black and gray small cubes repre-
sent cubic resonators on successive planes.

be as small as possible. However, decreasing b may lead to a
failure of the aforementioned homogenization procedure.
However, in any case, the combination of a basis and a lat-
tice with the appropriate symmetries will provide an isotro-
pic metamaterial, regardless of the homogenization proce-
dure. Finally, there are some practical limitations to the
values that @ and b can reach as, for instance, the obvious
inequality b=a, derived from the fact that CRs are supposed
to be impenetrable.

Additional limitations appear for each specific structure.
In the case of a sc lattice with T-, T/, or O-CRs, the lack of
inversion symmetry implies that opposite sides of a CR are
not oriented in the same way. Thus, the constrain b>a is
necessary in order to avoid a mutual short circuit between
the SRRs of neighboring CRs. To allow the minimum dis-
tance b=a, the noncentrosymmetric CRs in the sc lattice
must be replaced by T,- or 0,-CRs, so that the SRRs on
contacting sides of neighboring CRs exactly overlap. In the
case of a bec lattice, the contact between corners implies that
the inequality b=a must be fulfilled for any type of CR.
Finally, for the fcc lattice, the contact between edges of
neighboring CRs establishes the harder condition b =2a.

The particular case of an fcc lattice with the minimum cell
size, b=2a, deserves a specific analysis. When T)- or
0,-CRs are used as the basis of the fcc lattice, the structure
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turns into an sc lattice with the highest possible compactness,
i.e., b=a, because the holes between each eight neighboring
CRs have the same shape as the CRs forming the basis. The
case of an fcc lattice with a T-, T4, or O-CR basis is even
more special and interesting because each hole exactly cor-
responds with the inversion of the CR of the basis. There-
fore, although the basis of the structure is not invariant under
inversion, the fcc structure is brought into coincidence with
itself by inversion centered at the center of a CR, followed
by a translation of length a through any of the cube axes.
Since the wavelength of the signal illuminating the structure
is supposed to be much larger than a, the system can be
considered as macroscopically invariant under inversion and,
therefore, any bi-isotropic behavior must disappear. Thus, we
conclude that a very interesting choice in order to obtain an
isotropic metamaterial is the fcc lattice with b=2a and with a
basis formed by T-CRs [example in Fig. 1(c)] because of its
high compactness, non-bi-isotropic macroscopic behavior,
and low degree of symmetry. It is worth recalling here that
T-CRs have the lowest symmetry among all the possibilities
shown in Fig. 2, which helps to reduce the electrical size of
the unit cell, as explained above.

III. RESONANCES AND POLARIZABILITIES OF CUBIC
RESONATORS

Until now, only the symmetry of CRs and cubic lattices
useful for isotropic periodic metamaterials were analyzed.
However, in order to have a complete characterization of the
metamaterial, polarizabilities and couplings between indi-
vidual SRRs must be considered. In dilute crystals, the ap-
proach of weak coupling between CRs, but strong coupling
between the SRRs of each CR, is valid. Then, the metama-
terial characterization involves two separate problems: ob-
taining the polarizability tensors in Eq. (2) for a single CR
and applying the appropriate homogenization procedure to
obtain the constitutive parameters for the whole structure.
For dense packages, the aforementioned approach is not
valid since couplings between SRRs of different CRs can be
stronger than SRR couplings inside each individual CR.
However, even in these cases, the analysis of the isolated CR
resonances and polarizabilities still provides useful informa-
tion on the behavior of the metamaterial. For instance, it
allows to elucidate if the coupling between SRRs in a prac-
tical low symmetry CR can be neglected or not. In case they
could be neglected, all the analysis in Sec. II B would be-
come irrelevant because the SRRs could be substituted by its
equivalent dipoles (as it was assumed in Refs. 14-16), with-
out more considerations on the SRR structure. Therefore, the
analysis in this section is necessary in order to justify the
practical relevance of the analysis developed in Sec. II. Fur-
ther, in Sec. IV, an experimental validation of this analysis
will be provided.

Let us assume that the CR size is much smaller than the
operating wavelength. Thus, an RLC circuit model is valid
for describing the behavior of single Pendry’s SRRs,? as well
as for any type of modified SRRs>® or omega particles.’®
Furthermore, if the resonators are not too close (so that the
interaction energies are small with regard to the self-energy
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FIG. 4. Definition of the sign of currents in the circuit model for
a 3D cubic magnetic resonator.

of each SRR), then the CR can be considered as six RLC
circuits coupled through mutual impedances. The positive
directions of the electric currents on each loop are arbitrarily
defined in Fig. 4. The relation between currents and electro-
motive forces exciting the CR can be written as

Z-1=F, (3)

where Z is a 6 X 6 square impedance matrix, I is a column
matrix whose ith component is the current flowing over the
ith SRR, and F is a column matrix whose ith component is
the external electromotive force acting on the ith SRR. The
diagonal components of the impedance matrix are the self-
impedances of each SRR, i.e., Z;=R+jwL+1/(jwC), with
R, L, and C being the resistance, self-inductance, and self-
capacitance of a single SRR.® The nondiagonal components
Z;; are the mutual impedances between the ith and jth SRRs.
From the reciprocity theorem,* we know that the impedance
matrix must be symmetric, i.e., Zii=Z;. This reduces the
number of independent elements of Z to 21. This number can
be further reduced by applying the geometrical symmetries
of the CR, as shown in the next paragraph.

The application of any symmetry operation changes the
components of I according to the rule I' =S-1, where S is the
corresponding operator of symmetry. It is well known that
any symmetry operation S of the cubic point groups can be
expressed as some combination of the three orthogonal four-
fold rotations and the inversion, whose matrix representa-
tions, in the six-dimensional space defined by I, are

10
0 0
0 1
0 -1
4, = 0| o :
-1 0
0
0 0
01
10
0 0
1
10
4,= 0 0 ,
: 01
0 -1
0| o
-1 0
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0 -1
0 0
-1 0
10
4ZE 0 0 P
0 1
1
0 0
0 1
0 1
0 0
1
1= 0010 (4)
N 10 '
0 1
0 0
10

They are unitary matrices with the well known property
S~'=S'. It can be straightforwardly demonstrated that F fol-
lows the same rule of transformation: F'=S-F. Therefore,
both I and F can be considered as vectors. In what follows, I
and F will be called the “current” and the “excitation” vec-
tors, respectively. Therefore, the impedance matrix Z is a
second rank tensor, following the transformation rule Z'
=S-Z-S". If the CR remains invariant by the transformation
S, then

Z=S-7-S'. (5)

This equation gives some relations between the components
of Z, which can reduce the number of independent compo-
nents of Z.

Although the current vector I can be directly solved by
multiplying both sides of Eq. (3) by Z~!, in order to identify
the different resonances of the CR, it is convenient to expand
the solution in terms of the eigenvectors of Z. The eigen-
value problem corresponding to Eq. (3) is

Z-v;,=2zv;, (6)

where z; are the eigenvalues, v; the eigenvectors, and the
index i=1,...,6. The impedance matrix Z can be expanded
in a sum of two terms as

) 1
Zij=(R+JwL+jw_C)5[’j+Zij(1—5,‘/), (7)

where §;; is Kronecker’s delta. The first term is the self-
impedance of a single SRR multiplied by the identity, while
the second term is the symmetric matrix of mutual imped-
ances. These mutual impedances are purely imaginary num-
bers since, in the frame of a quasistatic model, they cannot
contain a resistive term. Thus, the second term in Eq. (7) is a
purely imaginary symmetrical matrix. Therefore, its eigen-
vectors can be chosen in such a way that they form a com-
plete and orthogonal basis that diagonalizes this matrix. Fur-
thermore, since the first summand in Eq. (7) is actually a
scalar, the eigenvectors of Z;; are actually the same as those
of Z;;(1-5;). Therefore, the eigenvectors of Z can be chosen
in such a way that they form an orthogonal basis for the
considered six-dimensional space. Thus, the current and ex-
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citation vectors can be expanded as a summation of such
eigenvectors,

I= E @-v)v, F= E (F-vy)v;. (8)

By substituting both expressions into Eq. (3) and applying
Eq. (6), we get

ivi. 9)

Therefore, both F and I can be expanded in a set of orthogo-
nal modes having mutually proportional excitation and cur-
rent vectors.

From Eq. (7), we can also obtain information about the
structure of the eigenvalues z;. These eigenvalues must have
the form

) 1 ) w(z) R
z(w) =R+ joL + ]w_C +z.(w)=joL| 1 - ek ]E
+ Zc‘,i(w) ’ (10)
JjwL

where w, is the resonance frequency of an isolated SRR
(wj=1/LC), and z. () the eigenvalues of the second sum-
mand in Eq. (7), which are related to the coupling between
SRRs. It can be seen in Eq. (9) that the ith mode resonates
when its eigenvalue approaches zero (z;=~0). Therefore, the
frequency of resonance of the ith mode is given by the rela-
tion z;(wy;)=0. If losses and couplings between SRRs are
not too strong (R, z. ;< jwL), the frequencies of resonance of
the CR can be approximated as

Zc,i(wo)

2jL (1

Wy, = W —

In what follows, we will apply this equivalent circuit model
to the determination of the resonances and polarizabilities of
two CRs made from two well known SRRs: Pendry’s SRR?
and NB-SRR.®

A. Analysis of an anisotropic cube

Let us now consider the CR shown in Fig. 1(a), made of
Pendry’s SRRs. In this section, we are going to get some
analytical approximation for its resonances and polarizabil-
ities. Note that the cube possesses inversion symmetry and,
thus, magnetoelectric coupling is forbidden, so that a,,,=0 in
Eq. (2). It can also be seen by inspection that the considered
CR is invariant under the rotation 4,-4,. By applying this
spatial symmetry, the impedance matrix is reduced to the
form
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TABLE II. Eigenvalues and a complete set of orthonormal
eigenvectors of the impedance matrix [Eq. (12)] corresponding to
anisotropic cubic resonators with symmetries —1 and 4,-4,, as, for
instance, the structures shown in Figs. 1(a) and 1(b).

Eigenvalues z; Eigenvectors v;

1
~(-1,-1,1,1,0,0
5 )

Even Zy+Zipy—Zi3—2Z4 |
modes —=(1,1,1,1,2,2)
(magnetic) 23
1
Z“+le+2213+2214 ?(_1,_1,_1,_17131)
\
1
—=(1,-1,-2,2,1,-1)
2V3
Odd Zy—Zp—Zi3+ 72y i
modes —-(1,-1,0,0,-1,1)
(electric) 2

1
Z1\=Z+27213-2Z)4 Tg(—l,l,—l,l,—l,l)
v

Zy  Zyn Ziz Ziy —Zuy —Zi
Zin Zy Zu Ziz —Ziz —Zy
Zis Ziy Zu Zyp —Zy —Zp

7 = , (12)
Ziy Ziz Zin Zn —Ziz —Zy

—Zy —Ziz 2y —Ziz Zuy  Zp
—Zis —Ziyy —Zis —Ziuu Zin Zy

where there are only four independent components. The cor-
responding eigenvalues and its orthonormal eigenvectors are
shown in Table II. It is worth noting that the eigenvectors can
be classified in even and odd modes: for even (odd) modes,
the currents I, ; and I,, are parallel (antiparallel).

Once the eigenvalue problem is solved, the next step is to
write an explicit expression for the excitation vector F and
introduce this expression in Eq. (9), in order to get the cur-
rents over the SRRs. To begin with, we will assume that the
CR is excited by a homogeneous external magnetic field
Be'=(B{",By",BS™), and there is no external electric field.
Then, the excitation vector is written as

Fm — _ij (B)e(xt’B)ecxt’B;xt’B;xz’Bixz’BixZ) , (13)

where A is the effective area of the SRR. By introducing Eq.
(13) into Eq. (9), the current vector I is calculated. Finally,
the magnetic dipole components of the CR are obtained from
m=(I,+1)A, my=(I3+1,)A, and m_=(Is+1c)A. The resulting
expression for the magnetic polarizability tensor is
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FIG. 5. Electric excitation of the cubic resonator made of Pen-
dry’s SRRs.

2 -1 1
. 52 1
af’”m:—]wAgz 7 -1 2 1
+ - -
e L 1 2
. 1 1 -1
+ I =1][. (14)
Zi+Zn+2Z3+27, { 11

This magnetic polarizability tensor is anisotropic and exhib-
its two resonances, at those frequencies where Z,;+Z,
—Z13—Zl4z0 or Z11+212+2Z13+2Zl4%0. Only the even
resonances of Table II appear in Eq. (14) because the exci-
tation vector and the odd eigenvectors are orthogonal, i.e.,
F,-v/*=0 in Eq. (9). Just in the limit of no coupling be-
tween SRRs (Z;;=0 for i # j), both resonances converge to
the single SRR resonance and «,,,, becomes a scalar, as men-
tioned in Refs. 14—16. However, it will be shown in the Sec.
IV that this coupling cannot be neglected in most practical
configurations.

Apart from the magnetic excitation studied above, it is
well known that Pendry’s SRR can be excited by an external
electric field.>%0 Therefore, an electric response is also ex-
pected for this particular CR. The electric excitation of the
rings on the cube is sketched in Fig. 5. The external electric
field E“’ can excite an SRR only if it has a nonvanishing
component contained in the plane of the particle and or-
thogonal to the imaginary line passing through the slits of the
rings.>®% Therefore, only two SRRs are excited by each
Cartesian component of E“?. Thus, for an external and ho-
mogeneous electric field of arbitrary direction, the excitation
vector has the form

Fe o (ECXI _ E;)C[’_ Ein’E)ECXt,_ E;.X[’E;Xl)‘ (15)

z 0

Taking into account the sign of the charges induced over the
rings, it is clear that the electric dipole has to be proportional
to
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;-1
px|ls-1I | (16)
L-1

The proportionality constants of Eq. (15) and (16) are given
in the Appendix, Egs. (A2) and (A9). Finally, from Eq. (A9)
of the Appendix, we get the following analytical formula for
the electric polarizability tensor:

, 2 1 -1
32d%, 1
oo 2 1 -2 -1
3]‘1)77'2 Zn-Zyn—Zi+Zy
-1 -1 =2
-1 -1 1
1
+ 1 -1 1 ||, an
Zi—Zin+223-22y, | -1

where d, is an effective distance between the metal strips
on each SRR.>® Clearly, this electric polarizability tensor is
anisotropic and exhibits two resonances, at those frequencies
where le _ZIZ_ZI3+Z14 ~(0 or le —le+ 2Z13—2214 ~=(.
Only the odd resonances of Table II appear in Eq. (17) be-
cause the excitation vector and the even eigenvectors are
orthogonal, i.e., F,-v{"*"=0 in Eq. (9).

In summary, it has been shown that the coupling between
the faces of the CR made of Pendry’s SRRs shown in Fig.
1(a) splits the original resonance of a single SRR in four new
resonances. Besides, both magnetic and electric polarizabil-
ity tensors are anisotropic, as can be seen from Egs. (14) and
(17). Finally, it is worth mentioning that the even modes can
also be called magnetic modes because they have a resonant
magnetic moment and can be only excited by an external
magnetic field but not by an external electric field. Similarly,
the odd modes are electric modes because they present a
resonant electric dipole, which can be only excited by an
external electric field. The reported conclusions are quite rel-
evant for our analysis because they show that a cubic ar-
rangement of Pendry’s SRRs will not be only anisotropic but
it will also show several different resonances around the iso-
lated SRR resonance, thus destroying any possibility of a
single-resonance Lorentzian behavior of the metamaterial.

B. Analysis of an isotropic cube

It was already shown in Sec. II B that, in order to ensure
an isotropic behavior, the CR has to be invariant at least
under the tetrahedron symmetry group 7={(1,4,-4,,4,-4,)}.
The T-CR shown in Fig. 1(c), made of six NB-SRRs,*!3 is a
good example of particle obeying this symmetry. By using
the symmetry transformations and the rule [Eq. (5)], its im-

pedance matrix can be significantly reduced to

Zy Zyn Ziz —Ziz Ziz —Zi3
Zin Zy —Ziz Zizs —Zi Zs
Z -7 V4 Z V4 -7
7| 4 13 Zi 12 13 5 (1)

—Ziz 2z Zipn Zy —Ziz Zy
Zis —Ziz Ziz —Ziz Zin  Znp
-Zis Ziz -Zizs Ziz Zip Zp

where there are just three independent components. All ei-
genvalues and a complete set of orthonormal eigenvectors of
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TABLE 1II. Eigenvalues and a complete set of orthonormal
eigenvectors of the impedance matrix [Eq. (18)] corresponding to
isotropic cubic resonators symmetric under the tetrahedron group
T={(1,4,-4,.4,-4,)}, as, for instance, the structure shown in Fig.

1(c). “

Eigenvalues z; Eigenvectors v;
1
—=(0,0,1,1,0,0)
V2
Even 1
modes Zn+Zip ?(0,0,0,0,1,1)
V2
1
—(1,1,0,0,0,0)
V2
1
—=(1,-1,-2,2,1,-1)
243
Zn—Zp-2Z3
Odd 1
modes 5(1,—1,0,0,—1,1)
1
Z\—Zp+4Z3 Tg(—l,l,—l,l,—l,l)
v

this matrix are shown in Table III. If we compare Tables III
and II, we immediately find some similarities. In both cases,
the eigenvectors can be classified into even and odd types,
and the eigenvalues in Table III can be obtained from those
of Table II by making Z;,=—Z,3. Furthermore, the odd and
even subspaces are kept, and only the two subspaces of the
even eigenvectors are unified into a single subspace due to
the eigenvalue degeneration induced by the additional rota-
tion symmetry 4,-4,.

Let us now analyze the resonances and polarizabilities of
the T-CR by following the procedure developed in the pre-
vious subsection. By considering a homogeneous external
magnetic excitation, the corresponding excitation vector [Eq.
(13)] can only excite the even modes, thus leading to the
isotropic magnetic polarizability tensor

mm

_ —2jwA?

= , (19)
Zin+Zp

[
S = O
- O O

which, in fact, corresponds to the substitution Z;,=-Z;3 in
Eq. (14). The self-impedance in Eq. (19) is given by Z;,
=R+jwL+(joC)™', with R, L, and C being the resistance,
self-inductance, and self-capacitance of a single NB-SRR.®
The mutual impedance in Eq. (19) can be approached as
Zi,=~joM,, where M, is the mutual inductance between
two NB-SRRs placed on opposite sides of the CR. This ap-
proximation is reasonable since the electric field is concen-
trated inside the gap of the NB-SRR, while the magnetic
field created by a NB-SRR spreads out in space. Using these
relations, the frequency of resonance of the CR can be cal-
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culated as ®,,,=[C(M,+L)]""?, while the magnetic polar-
izability tensor takes the form

2w CA?
1 - w*(L+M,)C+ jowRC

" ~ (20)

S O =
S = O
- o O

This formula shows a Lorentzian-like magnetic response,
similar to that of the single planar NB-SRR but isotropic in
three dimensions.

With regard to the behavior of the considered CR under
an external electric excitation, since the NB-SRRs cannot be
excited by an external electric field,® the present theory pre-
dicts the absence of any resonant response to this excitation
(of course, the CR will exhibit a nonresonant electric polar-
izability due to the static electric moments induced on each
ring, which is of no interest in the frame of the present dis-
cussion). However, experiments reported in Ref. 13 have
shown that the considered CR exhibits a weak magnetoelec-
tric coupling at the same resonant frequency, w,,,=[C(M,,
+L)]7"2, as in Eq. (20). Therefore, this phenomenon does not
affect neither the isotropy nor the single-resonance behavior
of the considered CR. Since the tetrahedron symmetry group,
T, does not include the inversion transformation, this result is
not forbidden for 7-CRs. Although the origin of this effect
will be qualitatively explained below in Sec. IV, it can be
advanced that it is basically due to a second order electric
interaction between SRRs, which is ignored in the equivalent
circuit approximation developed in this section. Actually, the
presence of this second order effect near the CR resonance
shows how important the analysis of the spatial symmetries
is in order to predict the behavior of metamaterial resonators:
it seems that any effect not forbidden by symmetry will ac-
tually appear in practice, regardless of the equivalent circuit
models. It is worth recalling here that this magnetoelectric
coupling disappears if the 7-CRs are arranged in an fcc lat-
tice with b=2a, as explained at the end of Sec. II B.

IV. EXPERIMENTS

For the experimental verification of the theory developed
in the previous sections, some anisotropic and isotropic CRs
were manufactured. Each CR was inserted into a standard
WR430 waveguide, as shown in Fig. 6. The testing proce-
dure starts from the fact that the particle is isotropic if their
polarizability tensors are invariant by any rotation. There-
fore, all CRs were subjected to several rotations and the
transmission coefficient through the waveguide was mea-
sured using a network analyzer HP-8510. If the measured
CR were isotropic, then the measured transmission coeffi-
cient would remain invariant after rotations.

Namely, two anisotropic cubes made of Pendry’s SRRs
and omega particles and two isotropic cubes made of
C,-SRRs (actually NB-SRRs®) and C,-SRRs (see insets in
Fig. 7) were implemented. All SRRs were etched on Arlon
250-LX substrate with dielectric constant £,=2.43, loss tan-
gent tan 6<<0.002, and thickness r=0.49 mm. In order to
check the similarity between the SRRs belonging to the same
CR, their resonance frequencies were measured by placing
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FIG. 6. (Color online) Experimental setup for checking the isot-
ropy of cubic resonators. In the illustration, a cubic resonator made
of Pendry’s SRR is placed inside a pair of standard waveguide-
coaxial transitions WR430 connected to a network analyzer HP-
8510-B. The transversal dimensions of the waveguide are 109
X 55 mm? and its frequency range is 1.7-2.6 GHz. The cube is
held by a piece of electromagnetically inert foam at an arbitrary
orientation.

each one in the E plane of the waveguide, obtaining the
following values: f5e"¥""s SRR=(2.321+0.002) GHz, fi!
=(2.216+0.002) GHz, f5*5*"=(2.399+0.001) GHz, and
ﬂ;’B'SRR=(2.38510.002) GHz. These results show that sig-
nificant deviations from these values (of more than
0.002 GHz) in the measured resonances of the transmission
coefficients for the CRs must be interpreted as a resonance
splitting due to SRR couplings, and not due to fabrication
imprecision. The SRRs were assembled over a cube of iso-
tropic dielectric (ROHACELL 71 HF, ¢,=1.07, tan§
<0.0002) of size 2X2X2 cm?’. More details on the prepa-
ration of the experiments are given in Ref. 41.

A. Anisotropic cubes

First, the CRs not satisfying the necessary spatial symme-
tries for isotropy were tested. Figure 7(a) shows the trans-
mission coefficient through the waveguide loaded with the
CR made of Pendry’s SRRs. Two observations are apparent:
there are three major resonance peaks and none of them stays
invariant under rotations of the cube. Therefore, this CR is
anisotropic, as theoretically predicted by the symmetry
theory in Sec. I B. However, the circuit model developed in
Sec. IIT A predicts the presence of four different resonances,
but not three, as can be observed in Fig. 7(a). Although this
fourth resonance is not clearly visible in Fig. 7(a), the dip at
the lowest frequency is split into two dips for the other dif-
ferent orientation shown in Ref. 42, thus recovering the
agreement with the theory. Furthermore, in Ref. 42, the na-
ture of each resonance is identified as electric or magnetic.

The cube composed of omega particles was also experi-
mentally tested. This cube has symmetry properties identical
as the cube made of Pendry’s SRR, i.e., it is invariant under
the inversion and the rotation 4,-4,. The transmission coef-
ficient for this measurement is depicted in Fig. 7(b), where
similar results as for the SRR cube can be observed. Namely,
the original resonance of a single omega particle now ap-
pears split in several resonances and the transmission coeffi-
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FIG. 7. Transmission coefficient (|S,;|) through a waveguide
containing a cubic resonator made of (a) Pendry’s SRRs, (b) Omega
particles, (c) C4-SRRs, or (d) C»-SRRs (or NB-SRR). Solid line: the
particle is oriented with its axes (x,y,z) parallel to the waveguide
axes (X,Y,Z) shown in Fig. 6. Dashed line: the first orientation is
rotated by 45° along the Y axis. Dash-dot line: the first orientation is
rotated by 45° along the Z axis and 45° along the Y axis. The size of
all cubes is 2X2 X2 cm?. Dimensions of Pendry’s SRRs: external
radius r,,,=7 mm, width of the strip w=1.25 mm, distance between
strips d=0.5 mm, and size of split gap g=1 mm. Dimensions of (:
Foy=8.5 mm, w=1 mm, g=1 mm, and the length of “legs” !/
=8 mm. Dimensions of C4-SRR: r,,=9.25 mm, w=1.25 mm, d
=0.5 mm, and g=1.5 mm. Dimensions of C,-SRR: external radius
Tony="7 mm, width of the strip w=1.25 mm, distance between strips
d=0.5 mm, and size of split gap g=1 mm.

cient changes for different orientations. However, the num-
ber of resonance dips in Fig. 7(b) is 5 instead of 4, as
previously predicted in Sec. III A. This failure of the model
can be attributed to a strong electric coupling between the
legs of two neighbors. In fact, it can be expected from the
CR depicted in Fig. 7(b) that the electric field between legs
of two omega particles on adjacent sides of the CR is com-
parable to the internal electric field in each omega particle.
Thus, the CR should be seen as an inseparable particle in-
stead of six RLC circuits, as assumed in Sec. III.

An important result of the reported measurements is that
the relative frequency deviations between the different reso-
nances of the CRs made of Pendry’s SRRs and omega par-
ticles (10% or more with regard to the central frequency) are
of the same order that the bandwidths reported for most SRR
or omega based negative-u metamaterials. Therefore, as ad-
vanced in Sec. III, it can be guessed that any metamaterial
made from such configurations will show multiple reso-
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FIG. 8. Simulated transmission coefficient (|S,;|) through the
cross polarization waveguide setup filled by 7-CRs made of circular
(solid line) and square NB-SRRs (dashed line). Dimensions of the
circular NB-SRR: external diameter 2r,,=20 mm, width of the
strip w=2 mm, distance between strips d=1 mm, and size of split
gap g=1.6 mm. The square NB-SRRs have similar dimensions and
the same external perimeter. Cube edge was 24 mm long.

nances inside the expected negative-u frequency band, thus
destroying any single-resonance Lorentzian behavior.

B. Isotropic cubes

In order to show the usefulness of spatial symmetries to
provide isotropic resonators, the cubes made of C4-SRRs and
C,-SRRs [see insets in Figs. 7(c) and 7(d)], satisfying the
octahedron group O and the tetrahedron group 7, respec-
tively, have been tested. As shown in Sec. II B, both cubes
are symmetric enough to be isotropic. The transmission co-
efficients for these CRs are shown in Figs. 7(c) and 7(d). It
can be observed that the transmission does not depend on
their orientations, thus demonstrating their isotropy. Besides,
it can be seen that only one peak appear in both measure-
ments, as predicted in Sec. III B. It is worth noting that a
similar result will be obtained for any CR satisfying any one
of the five cubic symmetry point groups (T, T}, T, O, and
0Oy).

The cubes analyzed in this section have no inversion sym-
metry and, as mentioned at the end of Sec. III, they could
exhibit a bi-isotropic behavior. However, from the experi-
mental curves, it is impossible to see whether the analyzed
CRs are bi-isotropic or not. To examine this possibility, elec-
tromagnetic simulations of a square waveguide loaded with
T-CRs were made. The input port was fed by the TE;; mode,
while the TE,;; mode with orthogonal polarization was mea-
sured on the output port. The resulting cross-polarization
transmission coefficient is shown in Fig. 8. The nonzero
transmission means that the incident electric field can excite
not only a parallel electric dipole but also a parallel magnetic
dipole. From reciprocity, it is also clear that an incident mag-
netic field can excite both magnetic and electric dipoles par-
allel to the exciting field. This result clearly shows the bi-
isotropic behavior of the C,-SRR cube. In order to show that
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FIG. 9. Illustration of the bi-isotropic behavior of a 7-CR made
of NB-SRRs driven by an external magnetic field.

the bi-isotropy can be avoided by including the inversion
symmetry in the configuration, a similar simulation was car-
ried out for the T},-CR shown in Fig. 1(d), already proposed
in,!3 which possesses an inversion symmetry. The transmis-
sion coefficient, not depicted here, was almost zero and of
the same order as the transmission through the waveguide
without any resonator, thus showing that this last configura-
tion is not bi-isotropic.

As already reported, the bi-isotropy of the 7-CR cannot be
explained by the circuit model proposed in Sec. III. The ex-
planation of this effect seems to rely on the electric coupling
between the edges of two SRR on adjacent faces of the cube.
To understand this in a qualitative way, let us assume that the
cube is driven by an external magnetic field feeding only two
resonators in the cube, as shown in Fig. 9. This figure also
depicts the current and corresponding charges induced by the
external field on each NB-SRR. Due to the inversion sym-
metry of the NB-SRR, the electric dipole generated by the
excited resonators is zero.> However, Fig. 9 also shows how
the induced resonant charges polarize the other (not excited)
rings. These are polarized in such a way that the CR acquires
a net electric dipole, as sketched in the figure. This dipole
does not excite an extra net current on the NB-SRR since the
polarization charge symmetrically flows on both halves of
the resonator. Therefore, this effect is not taken into account
by the circuit model reported in Sec. III. However, it intro-
duces a nonzero magnetoelectric polarizability that cannot be
extracted from that model. According to the above explana-
tion, it is expected that magnetoelectic coupling will increase
if the electric coupling between the edges of neighboring
resonators grows. To check this hypothesis, the cross-
polarized transmission was also computed for square rings
(see dashed line in Fig. 8). The enhancement of the magne-
toelectric coupling can be clearly observed in this case.

At the end of Sec. II, it was mentioned that this bi-
isotropic behavior would disappear in an fcc cubic lattice
with b=2a (see Fig. 3). In that section, this behavior was
predicted on the basis of the particular symmetry of this spe-
cific lattice. The illustration in Fig. 9 of the bi-isotropy of an
isolated CR made of six identical NB-SRRs also provides a
qualitative physical interpretation of such result: if additional
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SRRs were added to Fig. 9 in order to make an fcc cubic
lattice, it becomes apparent that the induced charges on the
nonresonant additional SRRs will cancel the total electric
dipole shown in the figure.

V. CONCLUSIONS

A systematic approach to the design of isotropic magnetic
metamaterials by using isotropic cubic magnetic resonators
in a cubic lattice has been developed. For this purpose, cubic
magnetic resonators obeying some cubic point groups of
symmetry (T, Ty, Ty, O, or O,) placed in cubic Bravais’
lattice (sc, bee, or fec) were analyzed. Special care has been
taken in the study of the symmetry of the constitutive ele-
ments (also called cubic resonators or CRs). For practical
reasons, CRs made of six modified SRRs assembled over the
surface of a cube were considered. The connection between
the orientations of these SRRs over the cube and the cubic
point groups of symmetry has been analyzed. Starting from
this analysis, some particular examples of anisotropic and
isotropic CRs were analyzed, manufactured, and measured.
It was analytically and experimentally shown that the lack of
the necessary symmetry leads to an anisotropic response. In
experiments, the transmission through a waveguide loaded
with the manufactured CRs was measured, getting a strong
dependence of this parameter on the orientation for aniso-
tropic CRs, while the transmission was invariant with respect
to the orientation for isotropic CRs. Furthermore, the split-
ting of the isolated SRR resonances into several resonances
was observed in anisotropic CRs. This effect is absent in
isotropic CRs, which always show a single resonance. Most
of these effects were theoretically explained by using an
equivalent circuit model, which takes into account the elec-
tromagnetic couplings between the SRRs making the ana-
lyzed CRs.

From a practical standpoint, we have found that using
some low symmetry CRs, pertaining to the tetrahedral group
T or T}, placed in a cubic Bravais lattice is enough to provide
isotropy in three dimensions. Using CRs with lower symme-
try results in an anisotropic behavior, even if the dipole rep-
resentation of the SRRs suggests an isotropic behavior. In
general, using cubic resonators pertaining to a symmetry
group which does not include inversion (such as the symme-
try group T) produces a bi-isotropic behavior, even if the
isolated SRRs making the metamaterial do not present mag-
netoelectric coupling. However, this bi-isotropy can be
avoided by a proper choice of the lattice. In particular, it has
been shown that cubic resonators pertaining to the aforemen-
tioned 7" group placed in an fcc lattice with the appropriate
periodicity can produce a purely magnetic isotropic behavior.

We hope that the reported results will pave the way to the
design of isotropic three-dimensional periodic metamaterials
with a resonant magnetic response, including negative per-
meability and left-handed metamaterials.
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APPENDIX: ELECTRIC EXCITATION OF THE CUBIC
RESONATOR MADE OF PENDRY’S SPLIT RING
RESONATOR

Let us assume a single SRR placed in the xy plane with its
two slits along the x axis. The electromotive force can be
approximated by averaging the path integral of the external
electric field through the gap along the circumference of the
particle, so that

1 o
emf=(E“" - d,(¢)) = ZE;’“deff; f cos(@—m/2)do
0

4

= :Tdef,E;’“. (A1)
It is worth noting that the two halves of the SRR are polar-
ized in the same direction,>® so that it justifies the factor 2 in
front of the integral and its integration domain (0, 7). Now,
let us generalize the electromotive force of Eq. (Al) to get
the “excitation vector” for the CR made of Pendry’s SRRs
shown in Fig. 1(a). Taking into account the sketch of the
excitation shown in Fig. 5, it easy to get the following elec-
tric excitation vector:

4 .
F,= —d(E ~ E&— E&E™ - EE™).  (A2)

¢ T
In what follows, for simplicity, the superscript ext will be
avoided. By introducing Eq. (A2) in Eq. (9), we get the
associated currents

I E.+E, +2F,
L 4 ~E.~E,-2E,
I 3l ~2E,+E,-E.
I |~ Zi-Zi- 2+ 21| 2E.-E,+E,
I E,-2E,~E.
I -E.+2E,+E;

~E,—E,+E.

4 . E,+E,—E,

N 37 -E.-E+E,

Zy - Z1+2Z13-2Z| E,+E,—E,

~E,—E,+E.

E,+E,—E,

(A3)

The electric dipole for a single SRR can be expressed in
terms of a linear charge density \ as>®
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ks

0

cos(¢@ — 7/2)de = 4Nrod, s,

where d, is an effective distance between the two metallic
strips forming the SRR. The charge density on the inner, 7,
and outer rings, /,, of the SRR can be calculated by means of
the charge conservation law as follows:

i,0 . 1 dIio
—— =jwr\jg=>Njg="T"—"-".
’ Y jor df

(A5)

Since the SRR size is much smaller than one wavelength, we
can suppose a linear variation of /; , respect to the angle ¢,
taking its maximum value, I, at the center of the metal strip
and zero at its ends, as in Refs. 4 and 5. Then,

Y

N =—" (A6)

jor

Although [; and I, are not uniform through ¢, the sum of

both, I;,+1,, is approximately constant and equal to the cur-

rent /, which is actually the effective current associated with
the averaged loop. By Egs. (A4) and (A6), we obtain
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d o
—<. (A7)
wTT

="
Pyl =",
=
Now, we can calculate the total electric moment of the SRR
cube by adding the six moments. By considering Eq. (A7)
and taking into account the signs of the charges shown in
Fig. 5, we obtain the electric dipole

P
— -1,
jom

L-1

p= (A8)

Finally, by substituting the currents of Eq. (A3) into Egq.
(A8), we get the electric dipole in terms of the components
of the external electric field,

) —2E +E,—E.
3242, I v
P= S| Zi—zZn—zintz| A
o 7 _
J 11 12 13 14 _Ex_Ey_ZEZ
1 ~E,~E,+E,
+ -E.—E,+E, (A9)
Zi—Zin+223-22y, ’
E+E,—E,
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Abstract

The article proposes an LC-circuit model for single split ring resonators (SRRs) operating at far infrared and optical frequencies.
Taking the effects of magnetic and kinetic inductances as well as gap and surface capacitances into account, we obtain analytical
expressions for the resonant frequency of the singly, doubly, and quadruply split SRRs. Comparing the analytical results with
numerical simulations, we show that the numerical simulations agree better with the present model than with the models reported
previously. We also discuss a size dependent correction to the electron collision frequency which takes into account electron collisions

with SRR walls.
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Since the seminal work of Pendry et al. [1] split ring
resonators (SRRs) have been intensively used for the
design of metamaterials from microwaves to terahertz
frequencies [2]. Due to technological constraints, the
original design evolved to a single ring design for oper-
ation in the far infrared [3] and, eventually, the optical
range. SRRs have the intrinsic advantage of a potentially
very small electrical size at resonance, provided a strong
gap and surface capacitances (see below) can be tech-
nologically achieved. The main drawback of SRRs for
operation at high frequencies (far infrared and optics)
is the saturation of the frequency of resonance and the
simultaneous decrease of polarizability [4]. The main
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1873-1988/$ — see front matter © 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.metmat.2009.03.001

aim of this article is to develop an analytical model for
the description of single ring SRRs operating at infrared
and optical frequencies. This model will be useful as a
first step in the design, in order to identify the most rel-
evant physical effects at such frequencies, as well as to
provide insight on the potentialities of single ring SRRs
for operation in the aforementioned frequency range.

The single ring SRR is shown schematically in Fig. 1,
where r is the mean radius, /4 is the height, w is the
width, and g is the gap width. The resonant properties of
a metallic SRR depend on its geometry and the complex
permittivity of the metal. At high frequencies, the per-
mittivity of bulk metals is commonly approximated by a
Drude model
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Fig. 1. Geometry of the singly split single SRR.

o
l

is the plasma frequency, and fc(o) is the electron colli-
sion frequency. These parameters have a well defined
physical meaning and are often assumed to be inde-
pendent of frequency. However, actual behavior of the
permittivity can substantially deviate from this model.
These effects can be formally introduced in formula (1)
by means of a phenomenological frequency dependent
background permittivity €; which includes effects such
as the interband transitions of electrons [5,6], as well
as a phenomenological frequency of electron collision

fc, which may differ from the generic values ¢? and

14

C(O), while being of the same order of magnitude. Fur-
thermore, when SRR is scaled down for operation at far
infrared and optical frequencies, its effective permittiv-
ity becomes substantially different from the bulk metal
permittivity. Although this topic has been widely studied
in the past (see, for instance [7] and references therein),
these studies had small impact in metamaterial theory. In
metamaterial context, these effects have been studied in
[9] as applied to nanorods, some experimental observa-
tions were reported in [8] with regards to U-resonators,
but have not been discussed specifically for SRRs. The
dielectric permittivity of small size metamaterial par-
ticles depends on the size, shape, surface roughness,
environment and polarization of incident light [9]. The
classical approach for the analysis of the size and shape
dependence of the permittivity assumes that the effective
electron collision frequency must be corrected through
the equation [10,11]:

fc/:fc+A

where ¢; * is the background permittivity of the ions, @y

UF
Leff

2

where A is a dimensionless parameter usually close to
unity, vr is the Fermi velocity and L.g an effective mean
free path which takes into account the size and shape of
the particle. For spherical particles, both the classical and
the quantum approaches confirm the general dependence
Legr~ R, where R is the radius of the sphere (see [11] and
references therein). For particles of complex shape, such

15
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Fig. 2. Evolution of the effective electron collision frequency for a
typical SRR as a function of the SRR size. The rings are made of gold
(dashed line) and silver (solid line).

as the SRR, rigorous analysis is more involved and yields
the expression:
4v

Letr = 5 3)

where V is the volume of the particle, and S is the area
of its surface [11]. Using this equation, and considering
the SRR as made of a metallic wire of cross section w x
h and length 277 > w, h we obtain the size-dependent
correction to the electron collision frequency in the form

1 1
'~ fo+ A — + —
fer Je °F <2w 2h>

(LA A 4)
“U\L T aw T

where /. the mean free path of electrons in the unbounded
metal. In Fig. 2 the correction to the collision frequency
for SRRs made of silver and gold is plotted against the
SRR radius for w = & = 0.3r, which may be consid-
ered a reasonable aspect ratio. In this figure it has been
assumed that A = 1 and that the frequency of collision
and the mean free path are given by its low frequency
values, i.e. fo = C(O) =273THz, I, = léo) = 52 nm for
silver, and f, = £ = 40.8 THz, I. = I = 38 nm for
gold. Fig. 2 shows that the frequency of collision grows
dramatically for particle radius below 100nm (i.e. for
wire sections roughly of the same order as the mean
free path of electrons). For larger sizes this effect is
less important. There are other effects that may affect
the effective frequency of collision of metamaterial ele-
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ments, such as the aforementioned interband transitions,
surface roughness and matrix environment (see, e.g. [9]
and references therein). However, the size, and shape
effects summarized in Eq. (2) usually outweigh all other
factors when the structural details of the particle become
smaller than the mean free path of electrons [11].

Once the frequency, size and shape dependence of
the metal permittivity has been discussed, our aim is
to develop an analytical circuit model for the SRR,
including all relevant effects at far infrared and opti-
cal frequencies. Specifically, we will develop a closed
expression for the resonant frequency of the SRR. When
the dimensions of the ring’s cross section approach
the plasma wavelength (also tens of nanometers for
most metals), inertia of conduction electrons becomes
important. The inertia can be characterized by a kinetic
inductance [12,13]. The kinetic inductance scales as
1/r, whereas the magnetic inductance scales as r. For
small rings, the kinetic inductance dominates over the
magnetic one, and the resonant frequency of the SRR
becomes independent of its size [4]. To explain the
saturation of the resonant frequency of the SRRs at
optical frequencies, several LC circuit models have
been proposed that included the kinetic inductance in
addition to the magnetic inductance and the gap capaci-
tance [4,14,15]. The latter characterizes the parallel-plate
capacitor formed by the gap. The charges in the gap,
however, are not the sole source of the ring’s capaci-
tance. The charges on the ring’s surfaces will also play a
role. A recent study [16] took these charges into account
by introducing a surface capacitance in addition to the
gap capacitance. At microwave frequencies, the surface
capacitance can significantly contribute to the resonant
frequency of the single SRR. The question that arises
now is whether the surface capacitance also plays a role
at optical frequencies, and, still more important, whether
the addition of this effect is enough to accurately charac-
terize the behavior of the SRR. To answer this question,
we obtain in this article an analytical expression for the
resonant frequency of the SRRs taking into account all
four contributions: the kinetic and magnetic inductance
and the gap and surface capacitance. We will show that
including the surface capacitance significantly improves
the agreement between the analytical results and numer-
ical simulations. Subsequently, we will further extend
this analysis to doubly and quadruply split rings.

At far infrared and optical frequencies, we can still
assume that [€| > €g€;, see Eq. (1). From the continu-
ity of the normal component of D = jwéE at metal-air
interfaces follows that the electric field lines are strongly
confined inside the ring. Therefore, we can define a total
current inside the ring as I} & jwéE,S, where E, is the

electric field inside the ring, and S is the area of the ring’s
cross section. This current includes both conduction and
displacement currents and, due to the confinement effect,
is approximately uniform along the ring (provided that
the gap is small relative to the ring’s circumference:
g K 2nr). We can, therefore, take the magnetic induc-
tance as that of a closed ring with the mean radius r (see,

e.g. Ref [17])
8r B 1} 5)

h+w 2

Lmag = por |:10g

Because the electric field is well confined inside the ring,
ithas mainly the azimuthal component. Therefore, taking
Eq. (1) into account, the electromotive force along the
ring can be approximated by

1
&= ]{Edl ~ (ijkin +—+ R> I, (6)
JjoC

where Ly, the kinetic inductance, C is the total capac-
itance of the SRR, which includes both the gap and the
surface capacitances, and R is the ohmic resistance of
the ring. Because the SRR radiates, the total resistance of
the ring is the contribution of ohmic and radiation losses.
Howeyver, in bulk metamaterials the radiation resistance
of the elements does not play a significant role due to the
cancellation between the radiation fields of the different
metamaterial elements. Therefore, we are only interested
in the correction to ohmic losses and we will not take
care of radiation losses. The ring ohmic resistance can
be approximated by

2 _ /
ro Cmr—8f @
Sw%so
and the kinetic inductance by [13]
Q2nr — g)
Lyin = 3 § (®)
Swpé‘o

As shown in Ref. [16], the total capacitance of the
SRR can be presented as a sum of the gap, Cgap, and the
surface, Cgyf, capacitances

hw
and

(10)

2e0(h + w) 4r
Court = — log —.

The final expression for the total current inside the
ring is
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Jo(Lmag + Lxin) + +R| I

jw(Cgap + Courf)
. (an

where @y is the external axial magnetic flux through
the SRR, and the term jwLmag Iy accounts for the internal
magnetic flux through the SRR. The resonant frequency
is

1
\/(Lmag + Lkin)(Cgap + Csurf) .

At optical frequencies, both the magnetic and kinetic
inductances should be taken into account. However,
when the ring is sufficiently small, the kinetic induc-
tance dominates, and the resonant frequency saturates to
the value

12)

wy =

1
\/ Lkin(Cgap + Csurf) .

In Fig. 3 the analytically calculated values of the
resonant frequency, Eq. (12), are compared with CST
simulations for two different geometries. Since fc(o) <
w/2m in the frequency range of interest, the permittivity
of aluminum is mainly real. Therefore, it is not expected
that the corrections to the frequency of collisions will
considerably affect the resonant frequency of the SRR.
Nevertheless, in order to be sure of this assumption, the

simulated data were obtained using the low frequency

collision frequency fc(o) = 121.9 THz, the corrected fre-
quency of collision given by Eq. (4), and three times
this value' without obtaining any meaningful devia-
tion between them. As seen from Fig. 3, the agreement
between the analytical and numerical results is much bet-
ter when the surface capacitance is taken into account.
For the rings of Fig. 3a, the mean difference between
the analytical and numerical calculations is 55% without
the surface capacitance and 13% with the surface capac-
itance. For the rings of Fig. 3b, the difference between
the analytical and numerical results is 59% without the
surface capacitance and 8% with the surface capaci-
tance. Therefore, including the surface capacitance in
the model improves considerably the agreement between
the analytical and numerical results. The importance of
the surface capacitance at optical frequencies is also con-
firmed by the numerical simulations of the ring’s electric
field distribution near the resonance. As shown in Fig. 4
for the ring with r = 40 nm, the electric field is strong

13)

Wg

! Note that for aluminum, internal photoelectric effect occurs at
wavelengths below 8 pum (see Ref. [5,6]). This requires an additional
correction to calculate the dissipation properly.
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Fig. 3. Scaling of the resonant frequency of singly split SRRs: analyt-
ical calculations with the surface capacitance (solid line), without the
surface capacitance (dashed line), and numerical simulations (circles).
The analytical results agree much better with the numerical simulations
when the surface capacitance is taken into account. The parame-
tersare w, = 27 - 3570 THzand f£” = 121.9THz; () w = h = 0.3,
g=0.Irand(b) w=0.1r,h =r, g=0.1r.
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Fig. 4. Electric field distribution provided by CST simulation. The
field is confined in and around the gap.
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Fig. 5. Geometry of the doubly (a) and quadruply (b) split resonators.

outside the gap. This effect is taken into account by the
surface capacitance.

The agreement between the numerical calculations
and the analytical model with the surface capacitance is
surprisingly good taking into account the nature of the
approximations used to derive the expression for the sur-
face capacitance, Eq. (10). This expression was obtained
in Ref. [16] from analytical expressions for the voltage
and surface charge distributions of an infinitely long thin
cylinder with an infinitesimal gap [18]. It was further
assumed that the surface charge distribution will be the
same for a finite SRR if the SRR is sufficiently high. As
can be seen in Fig. 3, the analytical results agree better
with the numerical simulations for the higher and thinner
ring.?

The expression for the surface capacitance derived in
Ref. [16] is for singly split SRRs. In this paper, we extend
the model by deriving expressions for the resonant fre-
quency of doubly and quadruply split rings shown in
Fig. 5. Multiply split rings, due to their high symmetry,
could be used to mitigate bi-anisotropic effects [13]. As
previously, we assume that the width of the gaps is small
comparable to the rings’ circumference. Consequently,
both the magnetic and the kinetic inductances are the
same as for the singly split rings, Egs. (5) and (8). Simi-
larly, the gap capacitance of each gap is the same as for
the singly split rings, Eq. (9). The surface capacitance is,
however, different. Taking the expressions for the elec-
tric field distributions of multiply split cylinders from
Ref. [18] and following the approach of Ref. [16], we
can derive the expressions for the surface capacitances
associated with each gap of a multiply split SRR. For the
doubly split rings, we obtain

C(z gap) 2e0(h + w) log g

i - ’
surf T

(14)

2 Note that another contribution to the capacitance has been recently
considered for SRRs at optical frequencies [19]. For the rings consid-
ered here, we found, however, that including this capacitance in the
model lead to insignificant changes in the resonant frequency.
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Fig. 6. Scaling of the resonant frequency of doubly (a) and quadru-
ply (b) split SRRs: analytical calculations with the surface capacitance
(solid line), without the surface capacitance (dashed line), and numeri-
cal simulations (circles). The parameters are w, = 27 - 3570 THz and
fe=1219THz; w=h =0.3r, g = 0.1r.

and for the quadruply split rings, we obtain

4 2e0(h + w) r
cler) e (15)

The gap and surface capacitances associated with
each gap are connected in series, so that the total capac-
itance of the doubly split SRR is

(2 gap)

@gap) _ Caap + Coury
Coal = ) . (16)

The total capacitance of the quadruply split ring is

ctzm - Cot Cai” an

To check the predictions of the analytical model,
we performed numerical simulations. The results are
shown in Fig. 6a for a doubly split SRR, and in Fig. 6b
for a quadruply split SRR. Analogously to the singly
split rings, including the surface capacitance improves
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greatly the agreement between the numerical and analyt-
ical results. In fact, the difference between the analytical
and numerical results for the quadruply split rings is only
1% when the surface capacitance is taken into account,
whereas it is about 24% when the surface capacitance is
ignored.

In summary, we have developed an analytical cir-
cuit model which takes into account the most relevant
effects in single ring SRRs at far infrared and optical
frequencies, including size and shape dependence of the
metal permittivity, kinetic and magnetic inductances, and
surface and gap capacitances. We have obtained simple
analytical expressions for all these quantities for singly,
doubly and quadruply split SRRs, and it has been shown
that including these expressions in the model improves
greatly the agreement between analytical results and
numerical simulations. The accuracy of our model in
determining the resonant frequency of SRRs is typically
around a 10%.
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Abstract

It is shown that artificial magnetism with relatively large frequency bandwidth can be obtained
from periodic arrangements of dielectric rings. Combined with dielectric rods, dielectric rings
can provide 3D isotropic left-handed metamaterials which are an advantageous alternative to
metallic split ring resonators (SRRs) and/or metallic wires when undetectability by low
frequency external magnetic fields is desired. Furthermore it is shown that, unlike conventional
SRRs, dielectric rings can also be combined with natural plasma-like media to obtain a

left-handed metamaterial.

1. Introduction

Metamaterials, that is, artificial effective media with properties
not found in Nature, such as negative magnetic permeability
and/or permittivity, have recently been the subject of a big
wave of scientific interest due to the unique new physical
properties and promising applications (see, e.g., [1] and
references therein). For the present state of the art, the
most common way to artificial magnetism uses metallic
rings loaded either with a lumped capacitor [2] or with a
distributed capacitance [3]. This last configuration—the so
called split ring resonator (SRR)—is by far the most common
configuration due to its easy manufacturing by means of
standard photo-etching techniques.

There can be, however, other possibilities for obtaining
artificial magnetism, and, in particular, intensive research has
been recently aimed at the substitution of metallic particles
by purely dielectric resonators in order to reduce losses
and/or minimize interactions with low frequency external
magnetic fields. The overwhelming majority of these dielectric
resonators are based on Mie resonances of variously shaped
dielectric/plasmonic bodies such as long cylinders [4-6],
cubes [7-9] and spheres [10-15].

Throughout this paper we will show that uniform
dielectric rings (DRs) present unconventional LC quasi-static
magnetic resonances, which can be advantageously used in
the design of negative permeability effective media. It will

0953-8984/10/025902+06$30.00

also be shown that connected networks of dielectric rods
(DRos) can be used for the design of negative permittivity
media, and that a combination of the two designs provides
a left-handed behavior. The advantages of these approaches
over conventional designs using dynamic Mie resonances will
be discussed. The paper is organized as follows. First it
will be shown that high permittivity DRs present magnetic
resonances that can be described using an LC quasi-static
model, in a rather similar way to that for capacitively loaded
rings and/or SRRs. Then, the usefulness of these resonances
for the design of negative permeability effective media will
be proven and discussed. The possibility of designing left-
handed metamaterials by combining DRs with other elements
will also be investigated. In particular, it will be shown that
combinations of DRs with a network of connected DRos,
similar to conventional combinations of SRRs and wires, can
provide a left-handed behavior. Finally, the effective medium
properties of a combination of DRs with natural plasma-like
media will be analyzed.

2. The dielectric ring

To show the principle of operation of the DR, let us assume
a ring of mean radius @ made of a ‘dielectric wire’ of radius
b, as sketched in figure 1(a). Let the permittivity of the
ring be ¢ = &'(1 +itand) and let the ring be placed in a

© 2010 IOP Publishing Ltd  Printed in the UK
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Figure 1. (a) Sketch of the proposed dielectric particle.
(b) Equivalent circuit model.

homogeneous time varying magnetic field directed along the
ring axis. For high enough permittivities, ¢, it can be assumed
that the electric field is strongly confined inside the ring due to
the boundary condition E-n = ¢y/¢Eq-n & 0 (see figure 1(a)).
Therefore, assuming a uniform distribution of the electric field
inside the ring, an axial magnetic field will induce an uniform
displacement current in the ring given by

I = —iwsAE,, ey

where A = mb? is the cross-section of the wire and E,
is the angular component of the electric field, which can be
determined from Faraday’s law:

2naE, = iw(@™ + ¢, 2

where ¢™ = LI is the internal magnetic flux due to the self-
inductance of the ring and ¢*' is the external driving magnetic
flux. Substituting (1) into (2) we obtain

2ra
iweA
In (3) the first term in the bracket can be easily recognized as

the impedance Z = (1/R — iwC)~! coming from the parallel
combination of a capacitor C and a resistor R:

+ iwL) I = —iwp™. (3)

g A
C=—;
2ma

_ 2ma
" Awe'tan$

“)

which formally are the capacitance and the resistance of an
ideal parallel plate capacitor of plate surface equal to the wire
cross-section and the distance between plates equal to the
circumference of the ring. Equation (3) leads to the equivalent
circuit shown in figure 1(b), where L can be evaluated as [16]

L = poalln(8a/b) — 7/4]. 5)

Equation (3) can also be used to calculate the axial magnetic
polarizability of the particle:

_ (I +itand)(wa®)?/L

al” . , (6)
(% —1—1itan)

[0}

where wy = 1/+/LC. Therefore, the electrical size of the DR
at resonance is

2a V2 a/b 1
Ha_Nve . (7
ro 7w /IIn(8a/b) —T/4] \/e]

[5,2]

—>
|y =
I S
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Figure 2. Transmittances through a square TEM waveguide of lateral
size 4a loaded with a dielectric ring resonator with @ = 15 mm and
€, = 250 for several a/b ratios. Curves come from numerical
simulations. Arrows show the resonances predicted from the reported
analytical model.

From (7) it follows that in order to reduce the electrical size
of the DR, high permittivity dielectrics and/or low a/b ratios
must be used. Since losses should increase with permittivity,
it will be advantageous to use a/b ratios that are as small as
possible. Assuming a/b = 3, we can see that in order to
achieve an electrical size a/Ag ~ 0.1, the real part of the ring
permittivity must be ¢ ~ 100gp, which is a quite achievable
value at microwave and THz frequencies.

To check our analytical results, several DRs with different
a/b ratios have been designed and simulated using CST
Microwave Studio®. To obtain the resonance frequency and the
field distribution at resonance, an ideal square TEM waveguide
(with upper and lower perfect electric conducting walls, and
lateral perfect magnetic conducting walls) was loaded with a
dielectric ring, and the scattering parameters were calculated.
The dielectric ring was placed at the center of the TEM
waveguide, with its axis along the incident magnetic field
direction. With this configuration, any resonance of the
dielectric ring will appear as a sharp dip in the transmission
coefficient. =~ Figure 2 shows the simulated transmission
coefficients and the resonances predicted by our analytical
model for several values of the a/b ratio. A very good
agreement can be observed, even for a/b ratios as small as
a/b = 3. The higher order DR resonances which appear in the
figure for the smaller a /b ratio are electric resonances, whose
description is outside the scope of our model. The electric
field simulations shown in figure 3 also confirm the hypothesis
underlying the model, particularly the uniformity of the field
along the ring. Besides the dielectric nature, a noticeable
advantage of the proposed DR is that it allows for the design of
unit cells exhibiting full cubic symmetry (Oy, group symmetry),
thus being able to form isotropic metamaterials [17]. Such an

3 In the case of figures 2, 3, 9 the time domain solver (FDTD) has been used.
The structure was fed by TEM waveguide ports. In the case of figures 7
and 8 the eigensolver with the Jacobi—Davidson computation scheme has been
used. In both simulations the PEC or PMC walls have been used on allowed
symmetry planes. The mesh used globally 20 mesh cells per wavelength and
local refinement in the rings/wires with 15 mesh cells along the wire diameter.
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SRR

Figure 3. Vector and contour plot of the electric field intensity in the
vicinity of the dielectric ring resonance. The incident wave is the
TEM waveguide mode with the magnetic field along the axis of the
ring. The contour plot shows the absolute value of the field. The ring
and waveguide parameters are the same as in figure 2.

(This figure is in colour only in the electronic version)

isotropic composite, whose unit cell is shown in the inset of
figure 4, can be described using the homogenization model
developed in [18, equation 13] combined with the magnetic
polarizability (6), which leads to the local effective magnetic
permeability

Wi =1t o ®
w? L L 3p3

where p is the lattice constant, a)(z)c = a)g /(1 +itané),
oo = po(ra®)?/L and M, and M, are the mutual inductances
of the closest rings of the same orientation, placed in the
coplanar and the axial directions, respectively. Equation (8)
is depicted in figure 4. The theoretical relative bandwidth of
the negative permeability region shown in figure 4 is about
10%, whereas the simulated bandwidth is about 14% (see
figure 7, below), more than one order of magnitude larger than
in other previous designs of dielectric negative permeability
media using Mie resonances of dielectric rods, cubes or spheres
in free space [4—15]. The reason for this enhanced bandwidth
may be the strong confinement of current in the periphery of
the DR, which results in a stronger magnetic moment.

3. Dielectric rods

The high symmetry of DRs also suggests the possibility of
designing a 3D isotropic left-handed medium by combining
them with a connected network of metallic wires [19].
Actually, the field confinement concept underlying DR theory
can also be applied in the design of a fully dielectric and
isotropic left-handed metamaterial by substituting the metallic
wires with dielectric rods (DRos). To keep the explanation as
simple as possible, we will stick to the parallel plate waveguide
model of the cubic wire medium [1, section 2.2.2]. In the
framework of this model, the unit cell of such a medium is
equivalent to the circuit depicted in figure 5, where L/p = g
is the per unit length inductance of ‘vacuum’, C/p = ¢ is the
per unit length capacitance of ‘vacuum’, Zy, is the impedance
of a wire section of length p, and p is the lattice constant. In a
metallic wire medium the wire exhibits an inductance that can

Re(u,) |

relative permeability

AL Lo =

I
(o)}
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frequency / GHz
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Figure 4. Effective permeability of an isotropic magnetic medium
composed of DRs. The geometrical ring parameters are ¢ = 15 mm
and a/b = 5. The material is a commercially available dielectric,
denoted as K-250, from TCI Ceramics, with €, = 250 and

tané = 0.005. The lattice constant is 45 mm.

Z, =-ioL

Z.=-1/i0C

)2

Figure 5. Equivalent circuit model of the unit cell of the connected
wire medium with a cubic lattice of periodicity p.

be approximated as [19]

Z, = 2P 1y (P ) 405075, 9)
2 2Ty

where r, is the wire radius. However, as shown at the
beginning of this paper, if the wires are substituted by high
permittivity DRos, they also exhibit an additional capacitance
and resistance (4) which result in the impedance

—p

Z = 5
iwemry

(10)

which must be added to the impedance (9). Now, the resulting
effective permittivity is

1
v =1 (1)
o T em
where
) 1
Wl = —— (12)
i [1n (52-) +0.5275)

is the plasma frequency of the ordinary metallic wire medium.
From (11) it can be seen that the presence of the additional
wire capacitance shifts the resonance of the metallic wire
medium from zero frequency to the higher frequency w, =
pwp/(ry+/€m). The permittivity (11) is plotted in figure 6
for some realistic structural parameters.
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Figure 6. Effective permittivity of a connected dielectric wire
medium. The geometrical parameters are p = 45 mm and

ry = p/15. The material is commercially available dielectric SrTiO;
with €, = 500 and tan 8 = 0.01. The unit cell is shown in the inset.

4. The combined ring and rod medium

By combining the DR and DRo media of figures 4 and 6,
the isotropic DR 4+ DRo medium with the unit cell depicted
in the inset of figure 7 is obtained. The band diagram
along the I'-X direction of this medium calculated using
CST Microwave Studio is shown in figure 7, along with the
band diagram for the DR medium only (losses were omitted
in this calculation). A backward-wave pass band with a
relative bandwidth of about 14% can be clearly observed
for the DR 4+ DRo medium. This pass band appears quite
approximately at the negative permeability frequency band of
the DR medium shown in figure 4. The forward pass band for
the DR 4+ DRo medium located at lower frequencies coincides
almost exactly with a similar pass band for the DRo medium
alone, which corresponds to the region of positive dielectric
permittivity below the resonance frequency ;. The small
numerical discrepancies in the location of the pass bands and
stop bands between figures 7, 4 and 6 can be attributed to the
effect of spatial dispersion, not considered in our analytical
model. It should be mentioned, however, that these effects
could be included in the model using the general formalism
developed in [18].

5. Dielectric rings in a dielectric background

An interesting property of DRs is, that, in principle, the
reported expression for capacitance (4), as well as for the
magnetic polarizability (6), and the results for the magnetic
permeability, are independent of the characteristics of the
host medium. Increasing the permittivity of the host medium
however implies a smaller jump of the dielectric constant
across the ring interface, and therefore a weaker field
confinement, a feature that may affect the results in practice.
On the other hand, as suggested in [11], the introduction of a
permittivity background can lead to increased bandwidth of the
negative permeability region, making such trials worthwhile.
In order to test this hypothesis we have introduced the DR

1.25

1.00 7

0.757

0.50 7

frequency / GHz

0.257

0.00 T T T T ; :
0.0 0.5 1.0 1.5 2.0 2.5 3.0

kp

Figure 7. The band diagram of the DR + DRo medium (solid lines)
with the unit cell shown in the inset and the band diagram of the DR
medium alone (dashed lines). The structural parameters are the same
as in figures 4 and 6; however the losses were omitted in the
band-structure calculation. Note that the flat longitudinal mode in the
DR band diagram will also appear in the combined structure, but has
been omitted to retain the clarity of the figure.
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Figure 8. Band diagram of the DR medium immersed in the host
material with permittivity € = 5¢y. The structural parameters are
equal to those of figure 7.

lattice into the host medium with ¢ = 5¢gq and calculated
the band diagram using CST Microwave Studio. The result
is depicted in figure 8. As can be observed, the material still
exhibits the expected stop band at around 1 GHz and indeed its
fractional bandwidth increased to approximately 27%. Further
increase in the background permittivity (the value of 12¢( has
been tested) starts to change the band structure considerably,
revealing for example a left-handed pass band in the region
of previous stop band. The reason for such unexpected
features can however be easily explained. Although the
high permittivity background does not greatly affect the ring
capacitance, it considerably enlarges the electrical size of unit
cell (with respect to the wavelength of the host) and we are thus
in the realm of photonic crystals rather than of homogenizable
media. This analysis thus shows that the addition of a positive
dielectric background can enlarge the negative permeability
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Figure 9. Transmittance through a five unit cells thick slab of DRs
combined with homogeneous plasma. The plasma frequency has
been set to @, = 277 10°+/2s~! and the collision frequency to

f¢ = w,/1000. The gray-shaded area shows the region of the stop
band in figure 7 arising from negative permeability. The structural
parameters are the same as for figure 4.

bandwidth. However, unless the electrical size of the DR
is very small, the presence of the host dielectric may lead
to strong spatial dispersion or even prevent any attempt at
homogenization.

The use of a low permittivity background also raises
the question of whether negative permittivity can be used.
In this case however another issue may appear. It is well
known [20, 21, 1] that mixing two composites of negative
permittivity and permeability does not ensure a left-handed
behavior. In particular, an array of SRRs immersed in a
homogeneous negative permittivity medium does not provide a
left-handed metamaterial, because the capacitance distributed
along the SRR becomes negative (that is, in fact inductive)
due to the negative permittivity of the host medium [1].
Fortunately, as mentioned in the previous paragraph, the
capacity of the DR should be independent of the surrounding
medium. In order to further study this property of DR
composites, the transmittance through a five unit cells thick
slab of the DR medium, shown in figure 4, immersed in a
plasma-like medium of permittivity £/eg = 1 — a)i J(w(w —
if.)), has been computed using CST Microwave Studio. The
result is shown in figure 9.

A clear pass band in the frequency band of negative
permeability of figure 4 can be observed, in agreement with
the above hypothesis. Apart from this left-handed band,
the structure also exhibits a right-handed pass band at lower
frequencies, which results from the plasmonic resonances
supported by the ring for high values of the negative
permittivity of the host medium. The ripples observed in
both pass bands are Fabry—Perot resonances due to the finite
width of the sample. The above results for the DR furthermore
suggest that also previously proposed dielectric metamaterials
based on magnetic Mie resonances would provide left-handed
media when immersed in a low value negative permittivity
medium.

Apart from in gaseous hot plasmas, low valued negative
permittivity is present in metals and in semiconductors near its

plasma frequency. The plasma frequency of metals is beyond
the optical range, where achieving the large permittivities
needed for the proposed DR designs seems almost impossible.
However, some semiconductors such as InSb [22], and others,
present plasma frequencies and relatively low losses in the
terahertz range, where the high dielectric constants needed
for DR media design can be easily achieved. Therefore,
a semiconductor matrix with DR inclusions seems to be
a promising structure for left-handed media design at THz
frequencies.

6. Conclusions

It has been shown that a high permittivity DR can resonate
at microwave and terahertz frequencies, providing strong
artificial magnetism with a frequency band of effective
negative permeability one order of magnitude larger than for
other previously proposed dielectric designs. By combining
these DRs with DRos or with a plasma-like host medium,
a left-handed behavior can be achieved. Combinations of
DRs with DRos may be useful for the design of left-handed
metamaterials when interactions with external low frequency
magnetic fields should be minimized. A composite made of
DR inclusions in a host semiconducting media near its plasma
frequency appears to be a promising alternative for the design
of left-handed media at terahertz frequencies. Lastly, it is
also worth mentioning that the use of ferroelectrics in DRs or
DRos can lead to significant tunability of the above proposed
systems.
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The main goal of this contribution is to show that periodic arrangements of chiral scatterers can be the basis
for the development of three dimensional and isotropic negative refractive index artificial media. Three dimen-
sionality and isotropy are key issues in this context since only three dimensional structures can be properly
viewed as a “medium,” and only in isotropic media the refractive index is unambiguously defined. The
proposed arrangements are cubic lattices of chiral split ring resonators conveniently designed to yield an
isotropic behavior. The reported structures are shown to provide a significant frequency band of negative

refraction with good matching to free space.

DOI: 10.1103/PhysRevB.77.205110

I. INTRODUCTION

Isotropic negative refractive index (NRI) media were first
proposed and analyzed by Veselago in 1968,! but its practical
implementation was not envisaged until recently, after the
results of Smith er al?> It should be pointed out that the
refraction index can only be unambiguously defined in three
dimensional isotropic media and that most reported practical
realizations of media exhibiting negative refraction fall into
the category of indefinite media® rather than into the category
of isotropic NRI or “left-handed”! media. Actually, the de-
velopment of an isotropic NRI medium is still a challenging
issue despite the diverse efforts in this direction.*’ Over-
coming this challenge is of interest not only from a theoret-
ical standpoint but also from a practical one: isotropic and
bi-isotropic NRI media will be useful for designing three
dimensional planar focusing devices,!® subdiffraction imag-
ing devices,” and other applications.

Chiral scatterers are an attractive alternative for the design
of NRI artificial media because of their ability for providing
simultaneously negative permittivity and permeability. To the
best of our knowledge, the first proposals in this direction
were made by Tretyakov and co-workers.!%!! Other propos-
als aimed to take advantage of chirality for NRI media de-
sign were subsequently reported.'>!3 All these proposals ei-
ther neglect the issue of isotropy or propose random
arrangements to address it. However, random arrangements,
although conceptually appealing, are not easily reproducible
and do not show a well defined electromagnetic response,
mainly if the size of inclusions is not sufficiently small com-
pared to wavelength (as usual in most artificial media). In
fact, this last feature could be one of the main reasons why
isotropic NRI artificial media made from chiral inclusions
have not been developed further, remaining only as a theo-
retical possibility. By contrast, periodic arrangements are re-
producible, and the eigenmodes of the structure can be un-
ambiguously identified by using Bloch-Floquet theorem.
Starting from these considerations, this paper proposes a way
to the experimental realization of bi-isotropic and isotropic
NRI artificial media using periodic arrangements of chiral
scatterers. The paper is organized as follows. First, the basic
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structure is proposed and an approximate analytical theory
based on a generalization of Lorentz homogenization proce-
dure is developed. This analysis directly provides the appro-
priate design parameters. Then, rigorous full-wave electro-
magnetic simulations are carried out in order to identify the
eigenmodes of the structure and to validate the analytical
theory. These simulations are also useful in order to identify
the effects of spatial dispersion, which are not taken into
account by the analytical theory. As will be shown, these
effects are not relevant in the frequency band of interest.
Next, the impedance matching to free space of the proposed
structure is studied. Finally, the possibility of creating a ra-
cemic configuration is discussed.

II. BALANCED CHIRAL BI-ISOTROPIC MEDIA

Before the analysis of any specific structure, some key
properties of bi-isotropic chiral media will be recalled. Bi-
isotropic media can be described by the following linear con-
stitutive relations:'*

D = go(1 + X.)E + jVeouoxH, (1)
B = — j\eouokE + po(1 + x,)H, (2)

where x,, X, and k are the electric, magnetic, and cross
susceptibilities, respectively, which are real quantities for
lossless media. Assuming an exp(jwt) time dependence, the
eigenwaves propagating through these media are right- and
left-circularly polarized plane waves whose dispersion rela-
tion is given by'4

ki = kO(V’Mrsr * K)’ (3)

where ky=w\eouy and g,=(1+y,), u,=(1+Y,,). In order to
reduce the forbidden bands of propagation coming from
complex values of k™, it is desirable that y,(w)=x,,(w) so
that u, and €, always have the same sign. It is known'""!? that
this condition also implies that

Xe(®) = Xp(@) = |(w)]. (4)

The conditions for negative refraction in transparent bi-
isotropic chiral media are also known."> In lossless bi-

©2008 The American Physical Society
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FIG. 1. (a) Cubic arrangement of chiral SRRs satisfying T group
of symmetry (namely, any of the in-body diagonals is a third order
rotation symmetry axis) and (b) detail of the chiral SRR design.

isotropic media satisfying the balance condition [Eq. (4)],
these conditions reduce to

X.<-05 and y,<-05 (5)

or, equivalently, &,<0.5 and u,<0.5,'3 which is less restric-
tive than the usual condition for conventional isotropic me-
dia (¢,<0 and u,<0). The price to pay for this enhanced
bandwidth is that only one of the eigenwaves of Eq. (3) will
exhibit negative refraction, while the other will present a
positive refractive index.®!3

Both eigenwaves have the same wave impedance given
by14

Z=7y\ =, (©)

where Zy=Vuy/g, is the free space impedance. However,
since the refractive index is different for each eigenmode, the
refracted amplitude is not necessarily the same for both
eigenmodes. In general, both eigenmodes will be generated
at the interface between free space (or other isotropic me-
dium) and a chiral medium, even if the incident wave is
circularly polarized. The only exception to this rule is normal
incidence.

III. THEORY AND DESIGN

In a previous paper,'® some of the authors showed that a
cubic arrangement of scatterers satisfying the tetrahedral or
(in Schoenflies notation) T group of symmetry provides a
useful basis for the design of isotropic artificial media. Fig-
ure 1(a) shows a cubic arrangement of chiral split ring reso-
nators (SRRs) satisfying this symmetry. It should be noticed
that the SRRs on opposite sides of the cube of Fig. 1(a) are
identical, which allows for the realization of an artificial me-
dium by means of the periodic repetition of this structure.
This artificial medium has a simple cubic lattice of periodic-
ity a (the edge of the cube) and its primitive unit cell con-
tains three chiral SRRs. Note that the proposed chiral SRR is
a practical design, feasible to be manufactured by standard
planar-circuit fabrication techniques.?’

An easy way to compute the susceptibilities of the
metamaterial can be obtained from a straightforward exten-
sion of Lorentz local field theory that takes into account the
presence of cross polarizabilities. This simple theory leads to
the following equations for the macroscopic polarizations, P
and M, of the metamaterial:

PHYSICAL REVIEW B 77, 205110 (2008)

p= é[<ae>(E+ 2 a4 M)} )

o 3
1 M |
M=‘_/|:/*L0<am>(H+?> _<aem><E+3_80):|, (8)

where V=a? is the volume of the unit cell and (a,), {a,,,).
and (a,,) are the average polarizabilities of the unit cell,
which are defined as

P= <ae>El + <aem>Bl7 (9)

m=_<aem>El+<am>Bls (10)

where p and m are the electric and magnetic dipoles induced
at each unit cell, E; and B, are the electric and magnetic local
fields, and where Onsager symmetries'’ for the magneto-
electric polarizabilities are explicitly introduced ({a,,.)
=—(a,,)). By using Egs. (7) and (8), the metamaterial sus-
ceptibilities are directly obtained from their definitions,
goX.=JP/JE and y,,=dM/JH, provided that the polarizabil-
ities are known. These polarizabilities can be obtained from
the polarizabilities of the chiral SRR. Analytical expressions
for the chiral SRR polarizabilities were already reported'®
and will be here reproduced for completeness,

4 2
T = : (1)
L wy— o™+ jwR/L
27t [ g o’
o= xj (—) o (12)
wol \ © )/ wy— o+ joR/L
2 2 2
aee:‘*_f(@) e 13)
oL\ 0/ wf- o’ + joR/L
16
@ = o= sogrzxt, (14)

where ¢ and r.,, are geometrical parameters [see Fig. 1(b)]
and L, R, and w, are the chiral SRR self-inductance, resis-
tance, and frequency of resonance, respectively, which can
be analytically obtained from a general procedure already
developed by some of the authors.'” From Eqgs. (11)—(14), the
average polarizabilities in Egs. (9) and (10) are obtained as

() = ag + oy + o, (15)
(@) = a2, (16)
(a,)=al". (17)

When the balance condition [Eq. (4)] is translated to the
unit cell polarizabilities, it becomes

Hap) = e = (a,), (18)

where ¢ is the velocity of light. This condition cannot be
exactly fulfilled at all frequencies using the polarizabilities
from Egs. (11)—(14) due to the presence of the static electric
polarizabilities [Eq. (14)]. However, if the static electric po-
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FIG. 2. Theoretical constitutive parameters x,, X,,» and « for the
metamaterial made of the periodic repetition of the cubic arrange-
ment of Fig. 1(a), forming a simple cubic lattice with periodicity a.
SRR parameters are a/re=2.87, w/re=0.4, and t/r.,=0.47.

larizabilities are neglected (which is a reasonable hypothesis
near resonance), the balance condition [Eq. (18)] is approxi-
mately satisfied provided that

ho = (7r)?, (19)

where A\, is the wavelength at resonance and ¢ and r=r
—w/2 are structural parameters of the chiral SRR [see Fig.
1(b)]. Although Eq. (19) is only approximate and comes
from a simplified homogenization procedure, it will be
shown that it is a very good design rule in the frequency
band of interest.

In the following, a particular example is analyzed in order
to illustrate and validate our analytical predictions. The cho-
sen metamaterial parameters satisfy Eq. (19) and are given in
the caption of Fig. 2. The frequency band of left-handed
propagation, given by Eq. (5), is marked in gray. It can be
seen how inside this region the balance condition [Eq. (4)] is
approximately fulfilled. However, outside this region, the
static nonresonant polarizabilities [Eq. (14)] dominate and
the balance condition is not fulfilled. The theoretical disper-
sion curves for the eigenwaves of the bi-isotropic metamate-
rial, given by Eq. (3), are shown in Fig. 3. A frequency band
of backward-wave propagation for one of the eigenwaves
can be clearly observed (between points marked as 2 and 4),
which corresponds to the left-handed frequency band shown
in Fig. 2. Since backward-wave propagation is the signature
of negative refraction,' this region corresponds to a NRI for
the considered eigenmode. Inside this band, there is also a
small forbidden band gap (marked as 3; see also the inset)
that corresponds to complex values of the propagation con-
stants [Eq. (3)]. This small band gap is due to the aforemen-
tioned approximations implicit in Eq. (19). The straight hori-
zontal line at the frequency where the propagation constant
of one of the eigenwaves vanishes (corresponding to the con-
dition &,u,=«?) represents a fully degenerate longitudinal
wave with kX E=0 and k X H=0.
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FIG. 3. Theoretical dispersion curves for the eigenwaves of the
metamaterial shown in Fig. 2. Dispersion curves are drawn inside
the first Brillouin zone of the structure.

IV. ELECTROMAGNETIC SIMULATIONS

In this section, the previously studied structure is ana-
lyzed by means of the commercial electromagnetic simulator
CST MICROWAVE STUDIO, giving the band structure shown in
Fig. 4. A good qualitative agreement is found between Figs.
3 and 4. In both figures, a frequency band of backward-wave
propagation is observed for one of the eigenwaves. Also, a
small frequency stopband appears in Fig. 4 inside this
backward-wave passband (because of the approximate bal-
ance condition employed) in agreement with the theoretical
predictions of Fig. 3. In order to show the isotropic nature of
the structure, the dispersion curves along the I'-X, I'-M, and
I'-R paths are shown in Fig. 5. The isotropy of the dispersion
relation for the transverse modes becomes apparent from
these curves, except for high values of the propagation con-
stant (namely, close to the border of the Brillouin zone),
where spatial dispersion affects the dispersion relation. The
longitudinal mode of Fig. 3 also appears in Figs. 4 and 5,
although now spatial dispersion destroys degeneracy and
isotropy.

The main differences between Figs. 4 and 5 and the the-
oretical dispersion curves shown in Fig. 3 are observed at

2.0
o 6
»/ 5\t/ﬂ_/
1.5 4 0
L
R
5]
210
0.5
0.0
R T X M R

FIG. 4. Band structure and dispersion relation for the metama-
terial of Fig. 2 obtained from full-wave simulations along the path
R-T-X-M-R [I' is the center of the k-space, X=(w/a,0,0), M
=(m/a,m/a,0), and R=(m/a,m/a,7/a)].
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FIG. 5. Dispersion curves along the I'-X, I'-M, and I'-R direc-
tions for the eigenwaves of the balanced metamaterial of Figs. 2 and
3. The end of the first Brillouin zone for each direction of propaga-
tion is shown in the figure (vertical lines).

high values of k and also at high values of frequency (i.e., at
high values of kya). These differences correspond to the ef-
fect of spatial dispersion, which becomes important when the
size of the unit cell is not small in comparison with the
wavelength in free space and in the medium.!” In such re-
gions, the behavior of the structure is closer to a photonic
crystal than to an effective medium. However, inside the left-
handed band (between points marked 2’ and 4’ in Fig. 4),
spatial dispersion does not produce significant deviations
from isotropy (i.e., the dispersion curves are almost equal for
any direction of propagation, as can be seen in Fig. 5). This
effect is even more apparent in the frequency band between
the unbalanced forbidden band (marked as 3’ in Fig. 4) and
the end of the left-handed band (marked as 4’ in Fig. 4).

It is illustrative to compare the band structure of the con-
sidered balanced structure with that of an unbalanced one.
Thus, Fig. 6 shows the dispersion diagrams for the eigen-
modes of two unbalanced structures (which were obtained by
varying ¢ in Fig. 1). It can be observed how, as r decreases,
the forbidden frequency band increases until the backward-

2.0

1.5 1

0.5 1

0.0 T T T T T T

FIG. 6. Dispersion curves along the I'-X direction for the eigen-
waves of two unbalanced metamaterials. Parameters are the same as
in Fig. 2, except for t/r.,, which is taken as t/r.,=0.3 (dashed
lines) and #/7.,=0.1 (solid lines).

PHYSICAL REVIEW B 77, 205110 (2008)

1’1213 |4 6’
NN
9 08 _ W
3 08 bj
5
g 0.6 1
wn)
=]
<
e 04
left-circular excitation -7
0.2 copolar £
— — — crosspolar f _ !
0.0 B S 1 Y%
0.5 1.0 1.5 2.0

kya

FIG. 7. Simulated transmittance through a seven unit cell thick
slab of the metamaterial analyzed in Figs. 2-5 for a left-circularly
polarized (LCP) incident wave. Transmittance is plotted for both the
co-polar (LCP wave) and the cross-polar (RCP wave) components.
Points marked 1'—6" correspond to the marks in Fig. 4.

wave region vanishes, giving a behavior similar to that of a
negative-u split ring metamaterial. Figure 6 also shows that
the tolerance of condition (19) is high. It can be seen that
even a change of more than 30% in the particle thickness
does not strongly affect the left-handed passband.

V. PROPAGATION THROUGH A FINITE SLAB

In the practical design of a NRI medium, apart from the
obvious obtaining of some amount of negative refraction, it
should be required that the metamaterial has small reflec-
tance for the beam to be refracted with a significant ampli-
tude. Since for balanced metamaterials it is imposed that
Xe.== X, 10 the frequency range of interest, it directly follows
from Eq. (6) that Z(w) = Z,, which ensures a good matching
to free space and constitutes an additional relevant advantage
of the proposed balanced NRI metamaterials.

In order to illustrate the above feature, the normal inci-
dence of a circularly polarized plane wave on a slab of the
proposed chiral medium will be studied through electromag-
netic simulations. First, a wave with the same polarization as
the left-handed eigenmode of Figs. 4 and 5 is analyzed. The
computed transmittance is shown in Fig. 7. It can be seen
that the amplitude of the cross-polarized wave is almost neg-
ligible, which means that the circular polarization is main-
tained. The figure also shows that the medium is practically
transparent for almost all the considered frequencies, as ex-
pected from the aforementioned impedance matching. How-
ever, the small ripples observed in the transmittance in Fig. 7
shows that the impedance matching is not perfect. The re-
gions of poor transmittance, between points 1’ and 2’, and
beyond 6', exactly reproduce the corresponding band gaps in
Fig. 4. There is also a smaller dip at point 3’, which corre-
sponds to the unbalanced band gap of Fig. 4. Therefore, a
useful region of backward-wave propagation ranges from
point 3’ to point 4’, which includes the most useful values of
g, and u,, as already mentioned.

Backward-wave propagation in the frequency band of in-
terest will be demonstrated by plotting the phases of the
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FIG. 8. Phase of the simulated transmission coefficient for the
incident LCP wave through a seven unit cell thick slab (solid line)
and a five unit cell thick slab (dashed line). Points marked 2’ -4’
correspond to the marks in Fig. 4.

computed transmission coefficients for two slabs of different
thicknesses (see Fig. 8). A zero phase shift between both
transmission coefficients was imposed at zero frequency, i.e.,
for static fields. Also, a convenient phase shift of 47 was
imposed to the phase of the seven unit cell thick slab at the
onset of the left-handed band (i.e., at frequency point 2').
This shift is imposed in order to obtain a zero phase shift
between both coefficients at point 4’, which corresponds to
the zero phase advance point for the backward-wave eigen-
mode of Fig. 4. As a consequence, the sign of the phase
difference between both samples changes from the
backward-wave region (between frequency points 2’ and 4")
to the forward-wave bands (between zero frequency and 2’,
and beyond 4'). This result is in complete agreement with
the backward-wave propagation postulated for the left-
circularly polarized wave (LCP) between frequency points 2’
and 4'. It should be mentioned that once a zero phase shift is
imposed at zero frequency and at the frequency point 4', the
phase jump at 2’ cannot be arbitrarily imposed. Therefore,
the fact that the phase jump necessary to fulfill the aforemen-
tioned conditions equals to 4 provides an additional confir-
mation of the proposed theory.

Finally, the simulated transmittances for the co-polar and
cross-polar componets of an incident RCP wave are shown in
Fig. 9. The obtained values for this transmittance are again
near unity, except for the band gaps shown in Fig. 4 for this
wave, i.e., around frequency point 3’ and beyond 5’.

VI. RACEMIC PERIODIC MEDIUM

Next, it will be explored the possibility of designing a
racemic mixture of chiral SRRs while keeping the necessary
symmetries to ensure an isotropic behavior for the metama-
terial. For this purpose, it will be considered a simple cubic
lattice of periodicity 2a made of cubes as that shown in Fig.
1(a) and another similar cubic lattice made of the same cubes
but of opposite handedness. Both cubic lattices can be inter-
leaved, as shown in the inset of Fig. 10, to give a simple
cubic lattice whose unit cell is formed by two cubes of op-
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FIG. 9. Simulated transmittance through a seven unit cell thick
slab of the metamaterial analyzed in Figs. 2-5 for the co-polar
(RCP wave) and the cross-polar (LCP wave) components of an
incident RCP eigenmode. Points marked 3" and 5’ correspond to
the marks in Fig. 4.

posite handedness. Since the whole structure is symmetric
after inversion (the centers of symmetry are the corners of
the cubes), the cross susceptibility « (which is pseudoscalar)
must vanish.!” Therefore, the whole structure is a balanced
isotropic metamaterial with k=0. Figure 10 shows the theo-
retical dispersion relation (k=k¢\e,u,) of the proposed struc-
ture. A frequency band of backward-wave propagation, cor-
responding to the condition ¢,, u, <0, can be observed in the
figure. Since the phase vector is now simply given by k
=w\eu, the unbalanced band gap disappears, and the width
of the left-handed frequency band decreases in comparison
with that of Fig. 3. The wave impedance is also given by Eq.
(6). That is, it is almost equal to the free space impedance,
which ensures good matching to free space for all angles of
incidence. From the above considerations, we feel that these

1.5

1 e A

|

1.3< .......................................................................

1.2 T T
0.0 0.5 1.0

FIG. 10. Theoretical dispersion relation for plane waves propa-
gating in the racemic metamaterial with the simple cubic lattice
shown in the inset. Inset: Racemic periodic structure made of two
interleaved simple cubic lattices of cubes as that of Fig. 1(a). White
cubes are identical to that of Fig. 1(a) and gray cubes are similar
cubes made of chiral SRRs of opposite handedness. Chiral SRR
parameters are as in Fig. 3 and the periodicity of the structure is 2a.
The fully degenerate longitudinal mode is now located at &,u,=0.
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racemic isotropic mixtures can be very useful for the design
of isotropic regular left-handed metamaterials.

VII. CONCLUSIONS

Periodic NRI metamaterials based on chiral SRRs have
been proposed and demonstrated. An analytical theory has
been developed for the design of such metamaterials, which
has been validated by careful full-wave electromagnetic
simulations. It has been shown that simple cubic lattices of
chiral SRRs can provide bi-isotropic NRI metamaterials with
a well defined frequency band of backward-wave propaga-
tion for one of its plane-wave eigenstates. Transmittance
through a slab of finite thickness has been analyzed and good
matching to free space has been demonstrated. Besides, a
racemic simple cubic lattice of chiral SRRs satisfying the
appropriate symmetry has been proposed in order to provide

PHYSICAL REVIEW B 77, 205110 (2008)

ordinary NRI isotropic left-handed metamaterials with a well
defined band of backward-wave propagation for all its plane-
wave eigenstates. Good matching to free space is also ex-
pected for these last designs. Besides good matching to free
space, the proposed structures have the advantage of being
made of a single kind of inclusions, a fact that substantially
simplifies their design and fabrication. Applications of the
reported concepts in the design of lenses, antennas, and other
NRI metamaterial based devices can be envisaged.
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ABSTRACT: This work proposes a quasi-planar chiral resonator suit-
able for the design of negative refractive index metamaterials. It is pre-
sented as an analytical model to determine the metamaterial polariz-
abilities, which is also the basis of a further study of the viability of
negative refraction in chiral and racemic arrangements of inclusions
made up with the proposed quasi-planar chiral resonator. The present
analysis is expected to pave the way for the design and building of fea-
sible negative refractive index metamaterials whose inclusions can be
manufactured by means of standard photo-etching techniques. © 2007
Wiley Periodicals, Inc. Microwave Opt Technol Lett 49: 2606-2609,
2007; Published online in Wiley InterScience (www.interscience.wiley.
com). DOI 10.1002/mop.22736

Key words: negative refraction; metamaterials

1. INTRODUCTION

The main aim of this work is to explore the possibility of obtaining
negative refraction in a medium made of a random arrangement of
quasi-planar chiral inclusions. Artificial bi-isotropic chiral media
made of random arrangements of metallic chiral inclusions are
known since long, after the works of Lindmann [1]. More recently,
a mixture of such inclusions was proposed in [2] as a way to obtain
negative refractive index metamaterials, a proposal further devel-
oped in [3] and [4]. Negative refraction in a mixture of chiral
inclusions and resonant wires was also analyzed in [5]. The main
advantage of using chiral elements to provide negative refraction is
that only one kind of inclusions is necessary to obtain negative
values of € and u simultaneously. If the design of this particle was
quasi-planar, a key additional advantage would come from the
possibility of using conventional printed-circuit fabrication tech-
niques to manufacture such inclusions.

2. THE PROPOSED INCLUSION

The inclusion proposed here is depicted in Figure 1, which basi-
cally shows a broadside-coupled version of the two-turn spiral
resonator (2-SR) already proposed by some of the authors in [6].
The analysis in that paper shows that the proposed element can be
characterized by a quasi-static LC circuit, where L is the induc-
tance of a single ring with the same radius and width as the
inclusion, and C = 27rC,,, is the total capacitance between the
rings. There are, however, two main differences between the
structure of Figure 1 and the 2-SR analyzed in [6]. First, due to the
broadside coupling of the proposed inclusion, the distributed ca-
pacitance between the rings can be very large, thus reducing the
electrical size of the inclusion near the resonance. Second, when
the element is excited near the resonance, there will appear strong
magnetic and electric dipoles oriented parallel to the resonator
axis. The electric dipole comes from the strong electric field
between the upper and lower rings that appear near the resonance.
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Neglecting losses and following the analysis in [6], the circuit
equation for the total current in the element (i.e., for the sum of the
currents excited on both rings, which must be angle-independent
[6]) can be written as

1
<j(Tc+j“’L>I: e, )

where € represents the external voltage excitation, given by
_ [ — jowr2B:, magnetic excitation )
€= tCy/CES™, electric excitation, @

where r is the mean radius of the inclusion, BS* the z-component
of the external magnetic field, ¢ the substrate thickness, EZ* the
z-component of the external electric field, and C, the total capac-
itance between the rings in the absence of the dielectric substrate.
(The factor C,/C is introduced to account for the multiplicative
factor that modifies the electric field inside the capacitor when this
is excited by a normal external field). From the above equations,
the electric and magnetic moments excited in the inclusion when
subjected to external electric and/or magnetic fields can be ob-
tained following the same procedure already reported in [7]:

m, = al"BN — ofMEN 3)
p.= aZE™ + o'BY, “)
where
A\
ot = 2 ﬁ_l (®)]
R R
a, = = Jm ZCOE Z_ (6)
4/ 2 ~1
e @ [ Wy
o = IZC(Z)LE<E - 1) s @)

with @, = /I/LC being the resonance frequency. From (5)—(7) it
is found the following useful identity:

alatt = — (a™>, 8)

It should be noted that the proposed inclusion also presents non-
resonant electric polarizabilities in the transverse z-plane, «f; and
ayy, [7]. However, since these polarizabilities are almost constant
with frequency and not very large, they can be neglected in a first
approximation.

When N chiral inclusions are randomly assembled, the resulting

medium becomes bi-isotropic with constitutive relations given by

D = gy(1 + xJE + j\eoroxH )
B = —j\euokE + po(l + Xup)H. (10)

The electric, y., magnetic, x,, and cross, k, susceptibilities are
related to the inclusion polarizabilities through

N o
XE_AT:O 3

an
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(12)

N o o
= + j— 4 |— —
T =IA\e, 37 a3

where the factor 1/3 arises from the random arrangement and A is
a common factor that depends on the homogenization procedure. If
Lorentz local field theory is used for the determination of the local
field seen by each inclusion, and (8) is taken into account, this
factor is given by

NS e 14
- 1= 6 & + Mol (- ( )
From (8) and (11)—(13) it follows that

Xe(®)Xm(@) = [k(@) . (15)

3. NEGATIVE REFRACTION

As it is well known, the general dispersion equation for plane
waves in lossless chiral media is

k= % kO( \(1 + Xe)(l + Xm) * K)’ (16)

where k, = w\/eom is the free-space wavenumber. The four
solutions of (16) correspond to right- and left-hand circularly
polarized waves, depending on the sign of k. To avoid complex
solutions of (16), and therefore forbidden frequency bands for
plane wave propagation, it would be desirable that y,(®) = x,(®).
According to (15) this implies that

Xe(@) = Xn(0) = |k(w)], an
namely, the electric and magnetic responses of the inclusions
should be very similar [4].

The general conditions for backward-wave propagation in
chiral media were analyzed in [8], and can be summarized as

€ = k<0, (18)

Figure 1 The proposed inclusion is formed by two identical conducting
rings etched on both sides of a dielectric substrate and connected by a via
in order to obtain an helicoidal shape
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Figure 2 Illustration of the negative refraction of a linearly polarized
wave at the interface with a chiral metamaterial made of inclusions such as
that shown in Figure 1. Only one of the two eigenwaves that can propagate
in the chiral medium shows negative refraction while the reflected wave is
elliptically polarized. RCP, right-handed circularly polarized; LCP, left-
handed circularly polarized

where the negative sign of the square root has to be chosen if ¢,
and w, are both negative. According to (18), if k* > |e,u,|, only
one of the solutions of (16) can be a backward-wave and
therefore will experience negative refraction at the interface
with ordinary media. This is indeed the case when (17) is
satisfied and both x, and yx,, are negative. In such case, negative
refraction will take place for only one of the eigenmodes of (16)
provided that y, = x,, = |k] < —0.5. This condition is less
restrictive than the condition found for ordinary media (for
instance, for a balanced mixture of inclusions of opposite
helicity): X., Xm < —1. The price to pay for this bandwidth
enlargement is that only one of the circularly polarized wave
solutions of (16) will show negative refraction. This scenario is
illustrated in Figure 2, where an incident linearly polarized
plane wave is considered

Returning to the inclusions, it is found from (11)—(13) that
condition (17) is satisfied provided that

cpast(w) = a™(w) = * jepasl(w), (19)
where c, is the velocity of light in vacuum. In principle, this
condition is compatible with (5)—(7), which makes it possible to
find particular designs that satisfy this condition by using the
analytical expressions for L and C,,,, reported in [7]. A substrate
with permittivity similar to free space (a foam for instance) has
been chosen in order to simplify the computations. With this
substrate (e = g,), a suitable design can be: width of the strips
¢ = 2 mm, external radius r.,, = r + ¢/2 = 5 mm, and
separation between strips + = 2.35 mm. Following [7], the
resonance frequency of the proposed configuration should be
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about 2.3 GHz, which gives an electrical size for the inclusion
(~A/13) that is acceptable for a practical metamaterial design.

To validate our analytical results, the electric and magnetic
polarizabilities of the inclusions have been numerically com-
puted following the procedure described in [9]. This procedure
mainly consists in placing the particle inside a TEM waveguide
and to determine the polarizabilities from the loaded
waveguide’s reflection and transmission coefficients (see [9] for
more details). The results for the meaningful quantities woa?"
and o:/€, are plotted in Figure 3, which shows a behavior for
these quantities in accordance with the predictions of our ana-
lytical model.

The frequency bandwidth for negative refraction in a meta-
material made of a random arrangement of the proposed inclu-
sions can be computed from the values of the electric suscep-
tibility x. of such medium (11) with A given by (14). Thus,
taking the dimensions and characteristics of the inclusions as
those previously reported (the number of inclusions per unit
volume is set to N = (12)"® mm™>), Figure 4 shows the
analytical results together with the numerical ones obtained
from the data in Figure 3. According to the previous analysis
and the presented numerical results, the curves for the mag-
netic, x,,, and cross, k, susceptibilities (not shown in Fig. 3)
must be quite similar. Although Figure 4 shows some differ-
ences between the analytical and numerical results, the quali-
tative agreement is apparent. In both cases, a significant nega-
tive refraction frequency band appears for both the random and
the racemic mixtures. As already mentioned, such frequency
bands are limited by the straight lines x. = —0.5 and x. = —1,
respectively (see Fig. 4).

Since the proposed inclusions show a balanced electric and
magnetic response (that is, (19) is satisfied), it follows from (17)
and (16) that there are no forbidden frequency bands for plane
wave propagation in the considered chiral medium. This implies
that the transition from backward to forward propagation occurs
through a point of zero phase velocity and nonzero group velocity,
a fact that recalls the behavior of balanced right/left-handed trans-
mission lines reported in [10]. Needless to say, a similar behavior

———— Re (uya™)
- ---- R (a%s,)

3107

Re (uya™), Re (a®®g,) (m®)

610"

940" . s
20 21 22 23 24 25 268 27 28 29 30

f {GHz)

mm

Figure 3 Numerical computation of w,a.:" and «o::/€, for the inclusion
shown in Figure 1. Width of the strips ¢ = 2 mm, external radius r , = r
+ ¢/2 = 5 mm, and separation between strips ¢ = 2.35 mm
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Figure 4 Analytical and numerical results for the electric susceptibility
X. of a random arrangement of chiral inclusions as those shown in Figure
1. The parameters of the inclusions are given in the text and are the same
as in Figure 3. The average volume per inclusion is V = 12° mm?

would appear in racemic mixtures of the proposed inclusions,
where the propagation constant for plane waves is given by k =

T Y TR
tko \/(1 + Xe)(l + Xm)

4. CONCLUSION

The feasibility of negative refractive index metamaterials made
of a random arrangement of balanced chiral quasi-planar inclu-
sions has been analyzed. It has been proposed that a specific
design amenable of being easily manufactured by means of the
standard photo-etching techniques. The proposed design has
been found to provide the necessary behavior for all the reso-
nant polarizabilities in order to produce a significant negative
refractive index bandwidth near the resonance. Finally, it has
been shown that a behavior quite similar to the previously
reported balanced right/left-handed transmission lines can be
achieved in three-dimensional arrangements of the proposed
inclusions.
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ABSTRACT: This contribution focuses on a scattering description of
infinite arrays of small metallic helices. The latter are assumed to scat-
ter like dipoles. A numerical approach is extended to account for the
influence of the lattice with more precision. This is done by a simple
extrapolation scheme, which accelerates the convergence of the arising
series. For regular arrays, a comparison with a commercial software
tool reveals a good agreement, at least as long as the distance between
the particles is large enough for the dipole assumption to be valid. This
also applies at resonance, the most critical case. The effects on random
arrays are also investigated. © 2007 Wiley Periodicals, Inc. Microwave
Opt Technol Lett 49: 26092613, 2007; Published online in Wiley In-
terScience (www.interscience.wiley.com). DOI 10.1002/mop.22788
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structures

1. INTRODUCTION

For numerical reasons, the properties of finite but large arrays of
antennas or scatterers are commonly estimated by applying peri-
odic boundary conditions to a unit cell, i.e., considering the infinite
case [1-3]. Depending on the applied numerical technique, e.g., a
method of moments [4] approach, this may require a summation of
the fields of the elements in the original cell and its spatial
repetitions to account for mutual coupling. As these series con-
verge very slowly in space domain, several methods have been
investigated to speed up this process (see, e.g., [5-7]).

This article is mainly concerned with the case of arrays of small
metallic helices. The adopted methodology follows from previous
work [8]. Thereby the fields of each particle are expanded into
spherical waves that render the fields of its multipole moments.
Periodic boundaries are implemented by re-expanding the fields of
neighboring cells into spherical waves with respect to the global
origin and a subsequent summation. This series converges slowly.
It is shown in the course of the present article that a simple
extrapolation scheme can be effectively used to speed up the
convergence of the sum in space domain. The improved accuracy
of the method is illustrated by a sample regular helix configuration.
A comparison with a commercial software tool using finite ele-
ments is drawn to assess the validity of the approach as well as the
quality of the dipole assumption for the helices.
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The evaluation of the required sum described above is inde-
pendent of the arrangement of scatterers within a unit cell. Thus,
we finally apply the more precise method to the setup of [8] to
investigate to what extent the results are affected if randomly
located inclusions are considered and a subsequent averaging
procedure to homogenize the layer is applied.

2. NUMERICAL TECHNIQUE

The main focus of this section is on the method used to sum up the
fields of the infinite array. The underlying scattering theory is
described in [8]. Nevertheless, for clarity, the main ideas are
briefly reviewed below. This is also expedient since some of the
involved approximations have to be addressed.

2.1. Scattering Approach
Each helix is supposed to scatter like a dipole. This is plausible for
observation points far away from the scatterer. As shown in [8],
this is also a reasonable assumption if a material made of randomly
oriented helices is considered and a certain minimum distance
between the inclusions is preserved. This randomness does not
occur here, so that the influence of this approximation is investi-
gated later on. We use the dipole-polarizabilities of the helices to
account for mutual coupling within the scattering approach. They
are determined quasi-analytically from the inverse system matrix
arising from the method of moments [9]. To keep the number of
unknowns small, a thin-wire approximation is used. Thereby,
global (harmonic) basis functions render the currents on the helix.
A number of N, particles is arranged within a unit cell, which
is then periodically repeated to form an infinite two-dimensional
array. In the present context, i.e., plane wave incidence, the num-
ber of unknowns reduces to the number of spherical waves re-
quired to describe the scattering of the elements in the original unit
cell centered at the global origin (in case of the dipole approxi-
mation: six per helix). In the following, this cell will be denoted as
“simulated cell.” If the complex spherical wave amplitudes of each
particle 7 in the simulated cell are written as vector b;, they can be
obtained by the following relationship [8, 10]

N

2; =a + Ti° (ﬁb(&) ‘Y + E gl(fi - EJ) : 2/)

=l

Here, the mutual coupling between the particles is accounted for
by the matrices & and &' that comprise the Cartesian components
of different types of spherical waves (depending on their radial
dependence) and 7;, which transforms these “incident” fields into
the corresponding expansion coefficients that represent the excited
dipoles [8, 11]. The coefficients for the case, if only the external
excitation were present, are denoted by the vector a,. The vector Y
represents the fields of the particles positioned outside the simu-
lated cell—the part that is obtained by summing up the fields of
neighboring cells in space domain until convergence is achieved:

. e
Y = X a(ry) - X Bry) b,

=1 j=1

The subscript / denotes the index of the considered cell. The index
of the simulated cell is / = 0. In the above, the translation matrices
B and a [12] are used to re-expand the scattered fields into
spherical harmonics with respect to the global origin. The expan-
sion is performed in two steps: Firstly, the translation from each
particle to the origin of the cell to which it is assigned (B(r,,)) and
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An FET-Based Unit Cell for an Active
Magnetic Metamaterial

Lukas Jelinek and Jan Machac, Senior Member, IEEE

Abstract—A particle that can be used to create an active mag-
netic metamaterial has been designed using an FET transistor
loaded in its gate by a conducting ring and in its source by a
parallel resonance circuit. The design procedure is discussed, and
the working principle is experimentally demonstrated in the RF
range.

Index Terms—Artificial materials, FET circuits, negative resis-
tance devices, oscillators, polarizability.

I. INTRODUCTION

N THE present state of the art, artificially made lattices
of conducting rings terminated by a properly chosen
impedance are considered a standard way of implementing
magnetic metamaterials, i.e., artificial media with negative
permeability [1], [2]. Materials made of conducting rings
are also behind the practical realization of super-resolution
lenses [3] and of cloaking devices [4]. Unfortunately, it is well
known [4], [5] that the intrinsic losses of the rings and their
loads are responsible for great degradation of lens and cloaking
properties in comparison to their lossless theoretical proposals.
Passive reduction of losses by a proper choice of their geometry
is very limited [6], and thus active elements seem to be the only
way out of this problem. The first proposal for using active
elements in the ring metamaterial was published in 2001 [7] and
used a negative impedance converter (NIC) as a load. The NIC
in [7] was designed using an ideal operational amplifier, a com-
ponent that works in a realistic implementation (with current
technology) only up to the low RF range. A much simpler de-
sign of NIC has recently been used in [8]-[10]. A two-transistor
implementation that offers a much wider frequency range of
operation has been used in these works. In addition to loading
rings with NIC, other authors have used two-port amplifiers
to create an active magnetic metamaterial [11], [12]. These
designs, however, suffer from the need for input and output
coils, which enlarge the unit cell and are necessarily coupled. In
addition, the necessary two-port monolitic amplifier and phase
shifter are difficult to make at high frequencies.
The design presented in this letter uses a one-port approach,
i.e., it uses a ring loaded by a one-port device offering at a given
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Fig. 1. Scheme of a ring loaded by a negative resistance transistor circuit. A
JFET transistor is used, however any other FET transistor could be used.

frequency a negative real part of impedance. Three main princi-
ples can be used to create this negative resistance. The first prin-
ciple involves the Gunn diode [13], an element that is widely
used for microwave oscillators up to subterahertz range. Unfor-
tunately, the Gunn diode needs considerable cooling, as it works
with a high dc bias, and the bulky nature of the sink preclude
its use for metamaterial design. The second principle uses the
above-mentioned NIC, which is a two-port device that images
the loading impedance Z on one port into an impedance —Z on
the other port [14]. A major review of possible NIC designs has
been published in [15] and [16]. It is shown that at least two tran-
sistors are needed for NIC design. The third principle is the use
of a single transistor loaded in its source by a proper impedance,
which makes it conditionally unstable. This is a common way
of making HF oscillators, and it is the principle that we employ
in our design. It offers the smallest size, the simplest assembly,
and even higher operating frequency than NIC.

II. DESIGN APPROACH

Our design (see Fig. 1) is mostly inspired by [17], where the
structure was used for an active antenna array. As can be seen,
the circuit is based on a JFET transistor connected in a common
drain mode, which is loaded at its gate by a ring and by a tuning
impedance, and which has a parallel resonance circuit connected
to its source. On the transistor gate, the negative resistance will
appear when operating above the resonance frequency (the ca-
pacitive loading of the source) and will disappear at frequencies

1536-1225/$26.00 © 2011 IEEE
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Fig. 2. Situation as seen by the ring.

high enough to make a low-impedance connection between gate
and source (through the internal gate-source capacitance). The
negative resistance is thus limited to a given frequency band.
This is important in order to preclude self-maintained oscilla-
tions of the transistor, as will be discussed later. The tuning
impedance in the gate serves to compensate the total impedance
of the ring circuit in order to obtain the strongest possible re-
sponse. The scenario from the point of view of the ring is de-
picted in Fig. 2. If properly tuned, the total impedance of the
ring (the self-inductance plus the load) should be small in abso-
lute value to obtain a strong response and should have a negative
real part in order to obtain a gain. The concept of Fig. 2 allows
us to write the magnetic polarizability of the proposed particle
as [2]
jwS? jwS? .

A B jWLring + Ztune + Zgate ( )

with S as the area of the loop. For our purposes, the polariz-
ability will be further normalized as

_ HoX _27T3N2(T0/)\0)

R GV @

where V' is the volume occupied by the particle, r( is the mean
radius of the ring, which is assumed to be made of N turns, A
is a free-space wavelength at the operating frequency, and Z
is the free-space impedance. Using (2), a rough estimate of the
permeability of a cubic lattice of such particles can be written
as piy = 1 4 ay,.

A. Frequency Tuning and Stability

In the frequency range of intended operation, the impedance
seen at the gate of the transistor has a capacitive imaginary
part. From that point of view, the situation is identical to an or-
dinary split-ring resonator (SRR), where an inductive loop is
loaded by a capacitance. However, the presented circuit, unlike
in SRR, also imposes some positive or negative (depending on
frequency) real part of the impedance Re(Z). Denoting the fre-
quency where Im(Z) crosses zero as wryy,, the full list of possible
responses is as follows:

Lm(e) < 0 for Re
Im(ex) > 0 for Re

w <wim = Re(a) >0 E
Im(w) < 0 for Re(Z
(
(
(

NN

w =wm = Re(a) =0 unstable for Re

Im(e) < 0 for Re

w > wim = Re(e) <0 Im(ex) > 0 for Re

)

) >0
) <0
)>0
7y <0
Z)>0
Z) <0
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Fig. 3. Input impedance of the prototype at the transistor gate.

For our purposes (a magnetic metamaterial with negative real
part of permeability), we are interested in the case of w > wry,.
However, care must be taken of the stability, otherwise the par-
ticle could become a generator. In Section III, it will be shown
that in the region of interest the total impedance Z can be ap-
proximated as

7 =~ A(w — (A)Re) + JB(W - WIm) (4)

where A < 0, B > 0, and where wn./wrn, are frequencies at
which real/imaginary part of Z crosses zero. Substituting (4) in
(1) leads to (in this frequency band)
jw
jw =+ po

O~

)

with

_AB(wRe - wlm)
B? 4 A?

Re(po) = (6)
Equation (6) implies that in order to ensure the stability
(Re(pg) > 0) of the proposed particle, wgre > wry, must hold,
i.e., the imaginary part of the total impedance needs to cross
zero earlier than the real part.

III. FABRICATION AND MEASUREMENT

In order to prove the working principle of the proposed ac-
tive ring, the frequency neighborhood of 100 MHz has been
used, as it allows for easy handmade implementation and it is
close to the frequency used in common MRI machines—one
of the important fields of metamaterial applications [3], [18].
A prototype was built using a JFET J310 transistor, which is
commonly used in VHF amplifiers. The parameters of the par-
allel resonant circuit in the source of the transistor were set to
fr = 60 MHz, \/L/C =~ 309, and R = 50 ). After setting the
bias so that the drain-source dc current was Ips =~ 12 mA, the
impedance between the transistor gate and the common node
was measured through the connected SMA connector on the
vector network analyzer (VNA); see Fig. 3. The negative real
part of the impedance can be appreciated in the frequency in-
terval 75—150 MHz together with the capacitive imaginary part.
According to Section II-A, the imaginary part of the gate input
impedance needs to be compensated just below f = 73 MHz,
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Fig. 4. Photograph of a realistic implementation of the ring loaded by a nega-
tive resistance circuit. The ring is actually a four-turn coil made of thin wire.
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Fig. 5. Detail of the frequency band in which the real and the imaginary part
of the total impedance crosses zero. Note how the imaginary part passes zero
earlier than the real part.

i.e., at a frequency just before the zero crossing of the real part.
Only in this case will we get stable and strong magnetic polar-
izability with a negative real part and a positive imaginary part.
It is also worth noting that in order to obtain low frequency dis-
persion and thus to make the compensation easier, the parallel
resonant circuit in the source of the transistor is highly damped.

In this particular case, the compensation was made by the
self-inductance of the connected ring, which was actually made
by four turns of wire with diameter ¢ = 0.2 mm. The diameter
of the loop was D ~ 25 mm. The fine frequency tuning was
done by a slight change in the separation of the coil turns. The
tuning impedance of Fig. 1 was not needed in this case. A pho-
tograph of the prototype is shown in Fig. 4.

With the compensating coil connected to the transistor gate,
the impedance as seen by the coil induced voltage was once
more measured on VNA via the SMA connector. The detail of
the zero crossing of the total impedance is depicted in Fig. 5,
from which it can be clearly seen that the stability condition, de-
rived in Section II-A, is satisfied. The measured total impedance
was then substituted into (2), and the result is plotted in Fig. 6.
The negative real part and the positive imaginary part of the nor-
malized polarizability can be clearly observed in the figure in
the frequency range of 73—150 MHz. The polarizability values
show that the real part of the permeability of a cubic lattice
of such particles can easily be cast below zero. Note also that
in our case the electrical size of the particle is rather small
(ra/Xo = 1/320), and that according to (2) the response will

Normalized magnetic polarisability

100 125 150 175
Frequency (MHz)

200

Fig. 6. Frequency dependence of the normalized magnetic polarizability of the
particle. The normalization volume was taken as a brick with the external di-
mensions of the prototype, which is 20 x 20 x 30 mm?®.

Reflection coefficient

100 125 150 175
Frequency (Mllz)

50 75 200

Fig. 7. Amplitude of the reflection coefficient measured on the loop magneti-
cally coupled to the active ring.

be much stronger for particles of common metamaterial sizes
(’I‘[)//\(] ~ 1/20) .

Until now the particle has been measured by directly con-
nected VNA and thus not in the free-space configuration in
which it is intended to work in a realistic metamaterial. To this
point the SMA connector has been substituted by a short. The
VNA has then been coupled to the particle via a mutual induc-
tance between the active ring and a loop of similar radius con-
nected to the VNA port. The measured amplitude of the reflec-
tion coefficient is shown in Fig. 7, from where the amplifica-
tion peak in the vicinity of 78 MHz can be seen, proving the
principle proposed in this letter. In the same setup, the coupling
loop has also been connected to a spectrum analyzer. It has been
checked that the particle does not self generate any oscillations
in the range of 9 kHz—2 GHz, and that what we have at hand
is really an active metamaterial element and not a microwave
generator.

IV. CONCLUSION

An active particle using a ring loaded by an FET transistor
circuit and offering magnetic polarizability with a negative real
part and a positive imaginary part has been proposed, designed,
and measured. The measurements show that the particle is ca-
pable of being used in negative-permeability metamaterial sys-
tems, where it can remove losses or even add a gain. The use of
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the proposed particle in magnetic lenses and magnetic metasur-
faces is envisaged and should be studied in future.
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Unified homogenization theory for magnetoinductive and electromagnetic waves
in split-ring metamaterials
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A unified homogenization procedure for split-ring metamaterials taking into account time and spatial dis-
persion is introduced. It is shown that electromagnetic and magnetoinductive waves propagating in the
metamaterial are obtained from this analysis. Therefore, the proposed time and spatially dispersive permeabil-
ity accounts for the characterization of the complete spectrum of waves of the metamaterial. Finally, it is shown
that the proposed theory is in good quantitative and qualitative agreement with full wave simulations.

DOI: 10.1103/PhysRevA.78.013842

I. INTRODUCTION

Diamagnetic properties of systems of conducting rings
have long been known by physicists. In 1852 Wilhem Weber
[1] tried to explain natural diamagnetism (discovered by Far-
aday some years before) as a consequence of the excitation
of induced currents in some hypothetical conducting loops
that supposedly existed in diamagnetic materials. In order to
enhance the magnetic properties of artificial media (or
metamaterials in modern terminology) made from metallic
conducting rings, Shelkunoff proposed in 1952 to introduce a
capacitor [2], so that the rings become resonant. More re-
cently Pendry er al. [3] proposed to replace the capacitively
loaded rings by planar split-ring resonators (SRRs) which
substitute the lumped capacitor with a distributed capaci-
tance between the rings. Because Pendry’s SRRs can be eas-
ily manufactured by using standard printed circuit technolo-
gies, this design opened the way to manufacturing true
magnetic metamaterials made of many individual elements
(SRRs) at many laboratories around the world. As a conse-
quence of this resonant behavior, capacitively loaded rings
and/or SRRs can produce metamaterials with negative mag-
netic permeability above resonance. It is also well known
[4-6] that when a system of these elements is properly com-
bined with another system of elements (metallic wires or
plates, for instance) producing a negative electric permittiv-
ity [7], a metamaterial with simultaneously negative permit-
tivity and permeability (or left-handed metamaterial [8])
arises in the frequency band where both subsystems present
negative parameters. Remarkably, the electric and magnetic
properties of such combinations are, quite approximately, the
superposition of the electric and magnetic properties of each
subsystem. This superposition hypothesis is not apparent at
all (see, for instance, Refs. [9,10]) and, for the specific SRRs
and wire configuration proposed in Ref. [4], it can be admit-
ted that it is valid provided the elements of both subsystems

*juan_dbd @us.es
+l_jelinek@ us.es

imarques @us.es
Ymario.silveirinha@ co.it.pt

1050-2947/2008/78(1)/013842(5)
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are placed in such a way that their quasistatic fields do not
interact or interact weakly [10,11]. Almost simultaneously,
other analyses and experiments [12,13] did show that SRR-
based metamaterials also support, in some frequency bands,
slow waves based on short-range interactions between the
SRRs: the so-called magnetoinductive (MI) waves, which
cannot be deduced from the usually assumed local magnetic
permeability of the metamaterial. Interestingly, many of the
physical effects expected in negative permeability and left-
handed metamaterials, such as frequency band gaps and fre-
quency bands of backward-wave propagation, also come out
from the analysis when the coupling between electromag-
netic and MI waves in SRR systems is considered [14], thus
providing an alternative explanation for such effects. Al-
though the analysis in Ref. [14] has a great heuristic value, it
cannot be considered as fully satisfactory because it only
considers one-dimensional systems in the nearest-neighbor
approximation. On the other hand, the presence of waves
which cannot be deduced from a local time dispersive mag-
netic permeability in split-ring metamaterials can be ex-
pected from the fact that its periodicity is usually not smaller
than one tenth of a wavelength. As is well known [15], when
the periodicity of a given medium approaches the wave-
length of the electromagnetic radiation, it becomes not only
time dispersive but also spatially dispersive. Therefore, it can
be expected that both electromagnetic and MI waves would
come out from the analysis if spatial dispersion in split ring
metamaterials were taken into account. In fact, the main pur-
pose of this paper is to develop a spatially dispersive homog-
enization procedure able to describe both types of waves.

II. ANALYSIS

In order to simplify the analysis, we will consider an ideal
metamaterial made of a cubic arrangement of LC circuits
supporting current loops as sketched in Fig. 1(a) for a unit
cell. We define the current vector I" on each unit cell as I"
=(1%,1),17), where n=(n,,n,,n,) specifies the location of
each unit cell in the lattice and I} denotes the current along
the loop located in the face normal to the i direction of the

unit cell of index n. The time dependence is assumed to be of

©2008 The American Physical Society
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FIG. 1. (a) Unit cell of a material formed by a cubic array of
current loops. Each unit cell has three current loops centered at the
faces of the cube. (b) Similar to (a) but for a realistic metamaterial
formed by edge coupled SRRs with two splits. The SRRs are
formed by circular wires with radius r. The distance between the
inner and outer rings is d and the average radius of the particle is R.

the form I" e exp(jwt). Each component of the current vec-
tor is governed by the equation

1
(ij+jw—C)I?=—jwq)?, (1)

where L, C are self-inductance and self-capacitance of the
circuit (losses are neglected by simplicity, although they can
be easily introduced in the analysis through a ring resis-
tance). In Eq. (1) @7 is the total magnetic flux through the
considered loop which, using Lorentz local field approxima-
tion, can be calculated as

<R
M, .
¢?=Auo(ﬂi+;’)+ S o @
(m#n)A(j#i)

where A is the area of the loop, H, M are the macroscopic
magnetic field and magnetization on the ring, and M:f'jm are
the mutual inductances between the loops oriented along the
i and j axes in unit cells with indexes n and m. The summa-
tion is extended to the cells inside a sphere centered around
the nth unit cell and with radius R sufficiently large so that
the region outside can be approximated by a continuous ma-
terial but such that R is smaller than the wavelength to guar-
antee that the Lorentz approximation can be used. Therefore,
in Eq. (2) the first term accounts for the contribution of all
rings outside the sphere which, according to the standard
Lorentz local field theory, are considered as a “continuous
medium,” whereas the summation accounts for the detailed
contribution of each ring inside the sphere.

In the following we will assume a spatial field depen-
dence of the kind {H,M}={H,,My}exp(-jk-r) and I"
=I, exp(—jak-n), where a is the lattice periodicity and I,
Hj), M, are constant vectors. With the assumed time and
space dependence, the macroscopic Maxwell equations lead
to

(kz, = K)H, + (k, —kk )M, =0, 3)
with k,, =k v’:,:wv’ereo,u,o, where €, is the macroscopic rela-
tive dielectric constant of the metamaterial. By combining
Egs. (1) and (2) the following equation for I, is obtained:
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= M
Z(k,w) - 1y= —ij,U«o<Ho + f) (4)

where E(k, w) is an impedance matrix which incorporates all
the magnetoinductive effects between the neighboring rings.
Explicit expressions for the diagonal and the off-diagonal

terms of Z are

2 r<R On

© o

Zi=joL) 1 - =3+ >, —eiakn o )
w n#0 L
r<R On

Zy=Zy=jul X ZLeN ixj (O
n

where wy=1/ VLC is the frequency of resonance of the rings.
Taking into account that My=AI,/a’, it is possible to com-
bine Eq. (3) with Eq. (4) which gives

jouA? 22 + k2 - 3kk

Ak, w) =725 12— k2

. IO b O (7)

The dispersion relation for plane waves in the metamaterial
is obtained by equating the determinant of Eq. (7) to zero. In
the most general case this equation can be only solved nu-
merically. However, in some cases, it is possible to give ana-
lytical solutions. In particular, for propagation along one of
the coordinate axes (for k=X, for instance) the summation
in Eq. (6) vanishes because all unit cells in planes perpen-
dicular to the x axis are in phase and mutual inductances
cancel out couple by couple (for instance, the mutual induc-
tances between the ring marked /, and the rings placed on the
top and lower faces of the cube of Fig. 1(a) cancel each

other, and so on). Therefore, the matrix E(k,w) becomes
diagonal, and Eq. (7) can be easily solved. This gives two
branches: a longitudinal wave with Iy=1,X given by

2 jwuA®
wT3g o

0 (8)

and a transverse wave with Iy=1y,y+/.Z given by

JouA? 2k, + 1
L

)

If only interactions with the closest rings are considered for
the computation of the summations in Egs. (5) and (6) the
dispersion equation for the longitudinal wave becomes

2
) M M, 2o
—(2) =1+2—"cos(ak,) + 4— - =2
0] L

L 3 (10)

where ay=uoA?/L and M, and M, are the mutual induc-
tances between closest rings of the same orientation, placed
in the axial and the coplanar directions, respectively. It can
be easily recognized that Eq. (10) corresponds to the disper-
sion relation for longitudinal magnetoinductive waves [12],
with some small corrections, which take into account the
effects of the rings other than the nearest neighbors in the
axial direction. In the same approximation the dispersion
equation for transverse waves can be written as
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]
kz a’
k_z —-l=— .
" wy 2M, 2M,+M,)
—-1- cos(ak,) - ———— -5
w L L 3a
(11)

For high values of k, (k,>k,,) this equation reduces to

2
wp 2M, 2M,+M,)  «
— =1+ k)+—————+——, 12
. 7 cos(aky) 3 30 12
which corresponds to the dispersion relation for transverse
magnetoinductive waves [12]. On the other hand, in the long
wavelength limit (ak,<1) Eq. (11) reduces to

%
e a
w=—=_1= . 13
R AT
® L L 3a°

This equation gives the value for the magnetic susceptibility
that is obtained when the Lorentz homogenization procedure
is applied to the metamaterial with the ring magnetic polar-
izabilities a=ay(wj/w?~1)"" already proposed in Ref. [16],
except for a small correction term 2M,/L+4M /L account-
ing for the effect of the closest rings. Actually, if such a
correction term is calculated by assuming a magnetic dipole
approximation for the rings, it can be easily shown that it
vanishes, thus giving exactly the Clausius-Mossotti formula
for the susceptibility. Therefore, we can conclude that in the
long wavelength limit, the transverse waves (9) correspond
to the electromagnetic waves that are obtained from the local
time-dispersive permeability w=uo{1+ x(w)}. Conversely, in
the short wavelength limit (k,>k,,), they converge to the
transverse magnetoinductive waves (12). Furthermore, from
M,=Al,/a* and Eq. (4)

. 3 -1
ja’ = 1 -
M, = s Z(k,w) -~ ( -Hy=x(k,0)-H, (14)
MoWA 3

can be obtained. Now in Eq. (3) M, can be replaced by Egq.
(14) leading to

{12+ k) + (- Kk + k2) - ¥(k,w)} - Hy=0,  (15)

which gives the same dispersion equation as Eq. (7). There-
fore we can conclude that the nonlocal (i.e., time and spa-
tially dispersive) magnetic permeability

Ak, ) = ol 1+ ——5Z(k,w) - = 16
a(k, ) = u #OwAz( )3 (16)
provides a complete characterization of the metamaterial, ac-
counting for all kinds of waves propagating through it. In the
long wavelength limit (a|k|<1) all the exponential terms in

Z(k, ) can be equated to unity and the magnetic permeabil-
ity (14) reduces to the scalar time-dispersive permeability
w=pol1+x(w)] with xy(w) given by Eq. (13). Alternatively,
following Landau’s description [15], the metamaterial can be
also described by an equivalent spatially dispersive permit-
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ie 1.0 -
, 1 I'X analytical model
0.5 Y 2 T'M analytical model
Y 3 I'R analytical model
----- I'R full wave result
0.0 T T T T T
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||a

FIG. 2. (Color online) Dispersion diagram along I'-X, I'-M, I'-R
directions obtained from the analytical model (lines 1, 2, 3) and
from a full-wave simulation (dashed line). The coordinates of se-
lected points are I'=(0,0,0), X=(7/a,0,0), M=(m/a,m/a,0), R
=(mla,mla,mla).

tivity €(k, ). The relation between this dielectric permittiv-
ity and the proposed magnetic permeability Eq. (16) is given
by Eq. (43) in Ref. [17].

III. NUMERICAL EXAMPLE

As a numerical example, we have studied the propagation
of electromagnetic waves in a metamaterial formed by the
simple cubic lattice of split-ring resonators whose unit cell is
depicted in Fig. 1(b). The capacitance C and self-inductance
L were calculated following the ideas of Ref. [18] but for the
case of a SRR made of wires instead of planar strips. This
calculation was carried out by using well-known formulas
[19] as explained in Ref. [20]. The mutual inductances M};"
were calculated numerically using Neumann’s formula in-
cluding time retardation. The macroscopic permittivity was
evaluated by substituting the SRRs by planar conducting
disks of the same external radius, and by using the static
Lorentz homogenization theory [21]. This approach yielded
the approximate value €,=2.5. Using Eq. (7) and the first
neighbor approximation, the dispersion characteristic of the
electromagnetic modes supported by the metamaterial along
different directions of the first Brillouin zone was calculated.
The result for the geometry associated with R=0.44a, r
=0.005a, and d=0.03a [see Fig. 1(b)] is depicted in Fig. 2. It
can be seen that the band structure is formed by three
branches and contains a band gap for all the depicted direc-
tions of k. For k along I'-X, the first and third branches
correspond to the transversal mode described by Eq. (9) and
the second branch corresponds to the longitudinal mode de-
scribed by Eq. (8). Figure 2 also shows the high isotropy of
the transversal mode even for moderate values of Kk, a fact
that is expected from the tetrahedral symmetry of the system
[22].

To assess the accuracy of the proposed analytical model,
we have also numerically computed the exact band structure
of the aforementioned periodic material using the hybrid-
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FIG. 3. Dispersion diagram along the closed path R-I"-X-M-R
obtained from full-wave simulation. The horizontal axis shows a
projection of k on the corresponding line on the boundary of the
Brillouin zone.

plane-wave-integral-equation formalism introduced in Ref.
[23]. The result of the numerical simulation is presented in
Fig. 2 for the specific direction I'-R, and in Fig. 3 for the
closed path R-I'-X-M-R. Good qualitative agreement be-
tween theory and simulation can be seen from Fig. 2. We
think that the quantitative disagreement for high values of k
in the second branch can be attributed to the specific local
field approximation considered in Eq. (2), which is strictly
valid only for small values of k. In the case of the third
branch, the disagreement is due to the proximity of the sec-
ond resonance of the SRRs, which is not taken into account
in the model. This effect is more visible in Fig. 3, where
higher frequency branches are included. This figure also
shows a complete electromagnetic band gap in the range
1.18<kpa<1.50, in agreement with the hypothesis of a
negative permeability in such a frequency band. It is worth
noting that the effect of the substitution k2 — —k2 (or equiva-
lently €,— —¢,) into Eq. (11) is the onset of a backward wave
pass-band in the frequency range of the stop-band of Fig. 3,
as well as the conversion of the pass-bands of Fig. 2 into
stop-bands. Therefore, the proposed model will be also use-

PHYSICAL REVIEW A 78, 013842 (2008)

ful for the analysis of isotropic left-handed media made of
SRRs and wires or any other elements providing a macro-
scopic negative permittivity (provided the conditions for the
validity of the superposition hypothesis previously discussed
in Ref. [10] are fulfilled). Work in this direction is in
progress.

IV. CONCLUSIONS

A homogenization procedure for split-ring metamaterials
taking into account spatial dispersion has been developed.
The spatially dispersive permeability arising from this ho-
mogenization accounts for all the electromagnetic spectra
observed in these composites, including electromagnetic and
magnetoinductive waves. It has been also shown that this
spatially dispersive permeability continuously approaches to
the Lorentz local permeability in the long wavelength limit.
From this analysis follows that transverse magnetoinductive
waves are the continuation, at short wavelengths, of the well
known transverse electromagnetic waves that can be found
in the long wavelength limit. However, longitudinal magne-
toinductive waves are not related to electromagnetic waves
but to the collective oscillations of the metamaterial arising
at u=0 in the long wavelength limit. It has been also ob-
served that, when a macroscopic negative permittivity is im-
posed to the metamaterial, a typical left-handed pass-band
appears at those frequencies where the magnetic permeabil-
ity becomes negative. Therefore, we feel that the proposed
homogenization procedure provides a complete macroscopic
characterization of negative-u and left-handed split-ring
metamaterials.
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Abstract

Here, we develop a nonlocal homogenization model to characterize the electrodynamics of an array of cubic particles made of
resonant rings. The effective parameters are calculated from the microscopic fields produced by a periodic external excitation. It is
confirmed that the spatial dispersion effects cannot be neglected in the regime where = 0. We demonstrate that when the array of
resonant rings is combined with a triple wire medium formed by connected wires, the structure may behave approximately as an

isotropic left-handed material.
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Structured materials with a strong magnetic response
have been under intense research in recent years [1-10],
mainly due to their potential applications in the design
of imaging systems with improved resolution [2-5]. In
particular, it was recently demonstrated that a metama-
terial lens formed by split-ring resonators (SRRs) boosts
the sensitivity of the coil used in magnetic resonance
imaging when operated in the regime p = —1 [6].
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In most of the studies published in the literature, it
is typically assumed from the outset that the response
of the metamaterial is local, and, based on that assump-
tion the effective parameters are usually calculated using
the retrieval procedure reported in Ref. [11] (inversion
of the scattering parameter data). Recently, in Ref. [12]
the Lorentz local field theory was used to homogenize
a metamaterial formed by an array of cubic particles
with tetrahedral symmetry formed by split-ring res-
onators (a topology similar to that considered here), and
the nonlocal magnetic permeability was calculated. It
was demonstrated that the spatially dispersive model
provides a unified description of the transverse electro-
magnetic waves and of the so-called magnetoinductive
waves [13], demonstrating in this manner that the lat-
ter are a short-wavelength continuation of the former. In
this work, we investigate a problem closely related to
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Fig. 1. Geometry of the unit cell of a structured material formed by res-
onant rings. The figure depicts the particular case in which the resonant
particles are SRRs.

that considered in Ref. [12] but from a different perspec-
tive. Instead of applying the Lorentz’s local field theory,
we compute the nonlocal parameters using the homoge-
nization method proposed in the works [14,15], which is
based on the idea of exciting the metamaterial with a peri-
odic source with suitable phase-shift. We obtain the exact
solution (taking into account the interaction between all
the particles in lattice) of the homogenization problem
under the approximation that the response of the inclu-
sions can be described using the dipole approximation,
and an explicit formula for the nonlocal magnetic per-
meability is derived. The results of the analytical model
are compared with the effective parameters obtained with
full wave simulations that take into account all the details
of the microstructure of the material. Finally, we study
the electrodynamics of a system formed by the array of
SRRs and a connected array of wires. It should be men-
tioned that other previous works (e.g. Ref. [16]) have
studied the homogenization of arrays of SRRs taking
into account rigorously the mutual effects and lattice
ordering. The main contribution of our analysis, which
extends our previous work [12], is the characterization
of the spatial dispersion effects.

2. Homogenization

A representative geometry of the unit cell of the mate-
rial under analysis is shown in Fig. 1. The unit cell
contains three different resonant metallic rings, being
each ring normal to one of the Cartesian axes. The lattice
is simple cubic with lattice constant a. Clearly, each basic
inclusion has an anisotropic response, but in the long
wavelength limit the response of the composite material
is approximately isotropic due to the spatial arrangement
and orientation of the particles. The ith resonant ring in

the unit cell is by definition normal to the unit vector @;
(i=x,y,2), and is centered at the point ro; = — (a/2) W;.

The resonant rings are generic planar (or quasi-
planar) inclusions, which may be produced by some
lumped or distributed capacitance. We suppose that
the rings can be characterized by an impedance
Zo=jwL+ 1/(jwC) obtained from a circuit model (for
simplicity the effect of metallic loss is neglected; see
Refs. [17,18] for the particular case of SRRs). The res-
onant rings will be modeled as dipole-type magnetic
particles characterized by a uniaxial magnetic polar-
izability dyadic (tensor). The magnetic polarizability
dyadic of the ith ring is

ai = oy 0,8, ()

where #;1;; = @; ® G; represents the dyadic (tensor)
product of two vectors. The parameter ¢, (with unities
[m3]) is related to the impedance Zg as follows (including
the effect of the radiation loss)

" jwA? Ton \c
R AT LA
= a {(w) 1]‘*‘]6”(6), @

where oeal = L/uoA?, A is the area of the ring and w, =
1/4/LC.

For simplicity, it will be assumed that the rings do
not have an electric response (i.e. that the electric polar-
izability vanishes; in Section 3, we will discuss how to
incorporate the electric response in the model). Thus, at
a microscopic level, the magnetic dipole moment of the
ith particle in the unit cell, p;, must verify:

Pi
o
where Hj is the local magnetic field that polarizes the
pertinent ring. The magnetic dipole p; as defined above

is related to the more traditional definition given in text-
books (e.g. Ref. [19]) as m =p;/uo.

=& - Hioc (ro,i), i=xy,2 3)

2.1. Two models for the response of the rings

It is possible to model the response of the resonant
rings using two alternative approaches. The first model
takes into account that the rings are metallic particles,
and thus that an external field induces a microscopic
electric current density in each ring. Since it is assumed
that the rings only have a magnetic response, which is
necessarily caused by the vortex part of the induced elec-
tric current (artificial magnetism), the induced current is
related to the magnetic dipole moments as follows (see
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Ref. [15] for a related result)

Pi ik
Jedp=Vx < Y D sr—rr—ro)—e M5,
=123 1 Ho

“)

where ry=a(i, iz, i3) represents a generic lattice point,
I=(i1,iz,13) is a triple index of integers, and p; is the
magnetic dipole moment of the ith particle in the unit
cell. Following the works [14,15], the unbounded meta-
material can be characterized by a dielectric function of
the type £ = &(w, k), where w is the angular frequency
and k= (ky, ky, k;) is the wave vector. The procedure to
compute the dielectric function for a given @ and k
is to excite the metamaterial with an external Floquet-
type electric current density Je ext = Je,av e~ /KT where
Jeav 1s a constant vector [14]. Then, one needs to
solve the corresponding source-driven electromagnetic
problem and calculate the microscopic fields. The aver-
aged macroscopic fields and the generalized electric
polarization vector are computed using the microscopic
fields. Finally, the unknown dielectric function &(w, K) is
obtained from the macroscopic fields and from the gener-
alized polarization vector [14]. This approach is further
developed in Appendix A.

The second model is based on the observation that
since the resonant rings only have a magnetic response,
they may be as well regarded as pure magnetic parti-
cles which, when excited by an external field, originate
a magnetic current density given by:

Im.dip = Z <Z‘3 (r—rr—ro,;) jop; e‘jk'rl> ,
i=123 \ 1
)

i.e. the second model for the response of the rings regards
the inclusions as magnetic particles characterized by a
magnetic current density (instead of an electric current
density as in Eq. (4)). Such model may seem less rig-
orous than the model associated with Eq. (4), but as
discussed below, they actually lead to equivalent results
after proper homogenization.

Itis important to note that the homogenization method
introduced in Ref. [14] assumes that the inclusions
are either dielectric or metallic materials with constant
permeability (u = (1o), i.e. the particles must have exclu-
sively an electric response (even though, as mentioned
before, magnetic effects may occur due to the eddy part
of the electric current). Thus, the method of Ref. [14] can-
not be directly applied to characterize a material formed
by pure magnetic particles, for which the response is

characterized by a magnetic current density as in Eq.
(5). However, evidently a structured material formed by
magnetic-type inclusions is the electromagnetic dual of
a material formed by electric-type inclusions, and thus
it is trivial to modify and generalize the method of Ref.
[14] to such configurations. It should be clear that such
modified homogenization approach is based on the intro-
duction of a magnetic function of the type ft = fi(w, K),
which, as detailed below, can be calculated by excit-
ing the metamaterial with an external magnetic current
density Jm,ext = Jm.av e~ /KT,

One important point is the relation between the dielec-
tric function £ (w, K) calculated within the framework
of the first model (developed in Appendix A), and the
magnetic function &t = [t (w, k) calculated within the
framework of the second model (developed in Section
2.2). From the results of Appendix A, it turns out that:

- = k
=T+c2> x (ro™" =T) x =, (©6)

where Iis the identity dyadic and c is the speed of light in
the host medium (assumed vacuum for simplicity). Inter-
estingly, in Refs. [14,15,20,21] it is demonstrated that an
unbounded material characterized by a given magnetic
permeability & and an electric permittivity & = &g, can be
as well characterized by a nonlocal dielectric function
defined as in Eq. (6) (in the sense that the plane wave
dispersion characteristic and the associated electric field
polarizations are the same independent of the adopted
constitutive relations). Thus, Eq. (6) demonstrates that
the two models described in this section yield equiv-
alent results. We will adopt the second model in the
following sections to calculate an explicit expression for

= p(wK).

2.2. The homogenization problem

Following the discussion of Section 2.1, here we
assume that the rings can be modeled as pure magnetic
particles, whose response to an external field originates
a magnetic current density given by Eq. (5). In order
to determine the unknown &t = 1 (w, k), we excite the
electromagnetic crystal with an external (magnetic-type)
source such that

. Pext — ik
Tnext = jo—2Le /T, (7)
Vcell

where Ve =a is the volume of the unit cell, and Pext 1S
a constant vector that determines the applied current.
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The microscopic fields (E, H) are the solution of the
electromagnetic problem

VXE= —]a)/J,oH - Jm,eXt - Jm,dip (83)
V x H = jwggE, (8b)

where J ;. gip 18 given by Eq. (5), and is written in terms of
the unknown magnetic dipole moments of the particles in
the unit cell p; (which obviously depend on the external
field). Notice that since the current source J,; ext has the
Floquet property and the material is periodic, it is clear
that both (E, H) and J,, 4ip have the Floquet property as
well (this actually justifies formula (5)). It is important
to emphasize that system (8) is a source driven prob-
lem and not an eigenvalue problem. Notice also that in
this formulation all the microscopic currents are purely
magnetic, because the rings are modeled as true magnetic
particles.

The solution of (8) can be written in a straight-
forward manner in terms of the Green dyadic
G, (rIr;m. k) = <i+c2/a)2VV) @, (r|r; 0, k)
introduced in Refs. [14,15], being &, the lattice
Green function [22]_. The Green d)_/adic veri-
fies V xVxG(rlr) —(w/c)iG, (r|r) =

I (Zc‘i (r—r' —m) e‘jk'r>. Thus, it is simple
I

to verify that the solution of system (8) is such that:

H(r) = (—jwe) Y Gp(rIro) - jop;
i=1,2,3
+ (—jweo) Gay - jwPex € T, )
where éav is the dyadic

= 1 I—c%/w’kk
Gav = B / 7 (10)
Vcell k= — (a)/c)

with k2 =k-k and kk =k ® k. The first term in the right-
hand side of Eq. (9) corresponds to the field created by the
induced magnetic dipoles, whereas the second terms cor-
responds to the field created by the external source J,;; ext-
It is interesting to note that G,y is the spatial average of
the Green dyadic:

= 1

Ga = / G, (r|v) ety (11)
Veell Jeell

To obtain the complete solution of (8) we still have to
determine the magnetic dipole moments, p; (i=1,2, 3),
of the rings in the unit cell. This can be done using the
microscopic relations (3). It is clear from Eq. (9) that the

local field on the ith ring is

(0N P;
Hii = () 6,00
w\2z= p;
+) (=) Gplroilro,)- —*
(2 emin
+(9>2(=;av - Port - leru, (12)
¢ o
where by definition
@(r|r/)=ép(r|r/)—G:0(r|r/) (13)

and Go (r| ') is the free-space Green dyadic. Using now
the microscopic relations (3) and the fact that p; = p;1;,
it is readily found that fori=1, 2,3

a;lﬂ = (f) (ﬁi . G;,(OlO) . ﬁiﬁ
Mo ¢ Ho

+Zﬁ,‘ . (:}p (1‘0,," rO,j) ~ﬁj&
JEi Ho

PO Pext — jkrg ;
+ul. . Gav . ﬂe Jk ro,i .
H“o

(14)

The above equation can be written in matrix notation
as follows:

pie
[aij] - | pae

p3e
where  the matrix _ entries are defined as
aii = o' — 8 - (@/c)*G), (0]0)-4;, and g =
—ﬁ,' . (a)/C)ZGP (I‘()J‘ l‘(),j) ejk~(r0,,~—ro,j) . ﬁj for i 7& ]
Eq. (15) formally relates the amplitudes of the induced
magnetic dipole moments p; (i=1,2,3) with the
external source (Pext). Thus, the microscopic fields are
completely determined by the solution of Eq. (15).

We are now in a position to determine the magnetic
function & = [t (w, k) of the metamaterial. To begin
with, we introduce the macroscopic averaged electric
and magnetic fields, which for the present homogeniza-

tion problem where all the particles are purely magnetic,
should be defined as

1 .
En=—— / E(r) e /% @3y,
cell Jcell

+jkro 1

ko - (%) Gav * Pexto (15)

+jkro 3

H,, = H(r) e/ ¢y (16)

Vcell cell
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It is simple to verify that the Maxwell equations (8)
imply that

wuoHy — K X Eyy = —0—— — ouoM (17a)

k x Hyy + weoEay = 0, (17b)

where the magnetization vector M was defined as

(Jm,dip) av _ 1 &ejk-l'o,i (1 8)

Jowo Veell, 5 510

M

and we used the fact that (J,; ext)av =j@Pext/Veenl, being
(Jm,dip)av and (Jpext)av defined consistently with Eq.
(16).

The magnetic function & must ideally be such that,
independent of the external excitation, one has B,, =
i - Hyy where by definition the macroscopic induc-
tion field is given by B,y = uo(Hyy + M), consistently
with the classical formula. Thus, i must be such that

(ﬁ /1o — i) - Hyy = M, for arbitrary pex;.

One interesting aspect implicit in the previous dis-
cussion is that when the metamaterial is formed by
purely magnetic particles, as considered in this section,
the fundamental field entity (obtained from averaging
the microscopic field) is the magnetic field intensity
(H), whereas the derived field is the induction field (B).
Indeed, this a trivial consequence of the formulation of
Ref. [14], noting that H is the electromagnetic dual of E,
and B is the electromagnetic dual of D. Quite differently,
when all the particles only have an electric response
(e.g. standard dielectrics or metals) the fundamental field
quantity is the induction field, whereas in those condi-
tions the magnetic field should be regarded as the derived
quantity [14] (see also Appendix A).

In order to calculate i we substitute (17b) into (17a)
and solve the resulting equation with respect to Pex;. It
may be easily verified that:

2

P c” =—1
AR _MVcell + EG;W : Hav» (19)

M0

1

_ 1
Cii (0. K) = 1 - Re {cim} A [ —0.15
a

3

(pret/&Ton | pyetikror piptikro3y it is found that:

22 1
[ay] M ==(%) Gax - M+ - —Ha. (20)

cell
Therefore, it is clear that in order that (ﬁ /o — i) .
H,y = M, [x should verify
|

I+
Vcell

. 2D

;; ‘tu
Tl

where the dyadic  is such that (with x;; = @; - - @),

xii = o, — ;- Cige - 0 (22a)

Xij = —0; - Din (ro,i| xo,j) -0,  fori # j (22b)

and éim and l:)im are defined by

Cin (.10 = (2)” (G} 010) - G (23)

Dint (r| r:w, k) = (;)2 (G:p(r|r/)ejk~(rfr/) _ Gav) )

(23b)

Eq. (21) establishes that the magnetic function (i.e.
the spatially dispersive permeability) of the material can
be written exclusively in terms of magnetic polarizabil-
ity of the basic particles and of the inferaction dyadics
Cin and Dyy. The dyadic Ciy describes the interaction
between rings with the same orientation, whereas Dinc
describes the interaction between rings with different
orientations. In general, these dyadics need to be numer-
ically evaluated (using for example the mixed-domain
Green function representation of Ref. [22]). It is interest-
ing to mention that Cj, is precisely the same dyadic that
was obtained in Ref. [15]. Specifically, Cin relates the
local fields and the macroscopic fields for point dipole
particles (Lorentz—Lorenz formulas). In particular, it was
demonstrated in Ref. [15] that for a simple cubic lattice
(as the one considered in this work), we have that to a
first approximation:

w 2
—a) +0.052 (cos (kya) — 1)
C

(24)

—0.026 (cos (kya) — 1) — 0.026 (cos (k;a) — 1)]

where (_};V1 is the inverse of the dyadic defined
by Eq. (10). Now, substituting the above equa-
tion into Eq. (15), and noting that since p; = p;l;
the magnetization vector is such that poVeenM =

The interaction constants Cp; and Cs3 are defined
similarly, by permutating the wave vector components
kx, ky and k. The imaginary part of the interaction dyadic

verifies Im { Cin } = ¢(w/)°T [15]. The first term in
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Eq. (24) is the familiar static interaction constant, 1/3a3,
for a simple cubic lattice. The second term in Eq. (24)
is a frequency correction of the static term. The remain-
ing terms, whose amplitude is evidently quite small, are
related to structural spatial dispersion effects [15]. In
general these small corrections are negligible, except
near to a resonance of the electric/magnetic response
of the particles where they may play an important role
[15,23].

On the other hand, it can be shown that because
of symmetry reasons Im {l_)im (I'O,i‘ r(),j)} =0,i #j.

Moreover, Dy ij = ; - Din¢ (ro,i| ro,;) - 01, canbe very
accurately represented by the following Taylor series in
powers of k;, kj and (w/c) (i # )

Hyy 1

~ 1

(which neglects the nonlocal effects) is in general invalid,
particularly when the effective permeability is near
Zero.

2.3. Comparison with the model of Ref. [12]

In our previous paper (Ref. [12]) an array of cubic
particles made of SRRs was homogenized using a local
field approach, and the nonlocal permeability was writ-
ten in terms of an impedance matrix that incorporates
all the magnetoinductive effects between the rings. The
case of wave propagation along one of the Cartesian axes
was analyzed in particular detail and it was shown that
for propagation along the x-direction (ky =k, =0), the
yy-component of the permeability dyadic is [12]

1

MO ky=k,=0

k,’kj w \2
Dinjj (@.k) ~ = —0.1936—0.01188<;a>

+0.005902a* (k? + k)|, @3)

even when the wave vector is close to the boundary of
the Brillouin zone or when the frequency is moderately
large. It is interesting to note that Djn ;; = 0 (for arbitrary
i,j, withi # j) when the wave vector Kk is directed along
one of the coordinate axes, i.e. in these conditions the
coupling between the resonant rings in the unit cell is
mutually cancelled.

Itis clear that Eqs. (24) and (25) imply that in the very
long wavelength limit, when |ka| <« 1 and |walc| K 1,
the dyadic  is approximately diagonal and verifies x =
(Re {a;l} -1/ 3a3) I. Thus, within such approxima-
tions the nonlocal permeability reduces to the classical
Clausius—Mossotti formula

ii 1 1 _
— =~ |1+ I (26)
0 < Veen Re {a;;'} — 1/3a3>

This result confirms that in the very long wave-
length limit the material response is isotropic, as
could be expected from the symmetry of the lattice.
Other materials formed by uniaxial resonators, suitably

Hyy =1+1

@ Re {o1) — (a512MC/L (cos (kya) — 1) + ag ' 2Ma/L + 4MC/L)> —1/3d3

@7

where M, and M, are the mutual inductances between
closest rings of the same orientation, placed in the
axial and the coplanar directions, respectively, and
ag is defined as in Eq. (2). For the particular case
of magnetic dipole-type inclusions, straightforward
calculations (using the fact that the magnetic field
created by a magnetic dipole is B = (uo/4m)(3RF -
m — m/r3) [19]) show that in the quasi-static
limit M, +2M.=0 and aal(ZMC/L) =2M,./jA? =
(—1/27)(1/a®) = —0.16/a>. Therefore, Eq. (27) sim-
plifies to:

Hyy
HO lky=k,=0
~14 :
a3 Ref{a;,' } +0.16/a3(cos(kya) — 1) — 1/3a3

(28)

Itis interesting to compare the above formula with the
magnetic permeability derived in Section 2.2. Since for
ky =k, =0 we have Djn;; =0 and it is clear that Eq. (21)
implies that the magnetic permeability function is diag-
onal and such that “Yy‘kvzkzzo = o (1 +1/ (a3X22)),
or equivalently: o

1
(29)

MO Jy=k,=0

oriented along different directions in order to yield an
isotropic response, have been as well considered in Refs.
[24-26]. It will be shown below that such simple result

a3 Re {a;,'} +0.026/a3 (cos (kya) — 1) — 1/a3 (1/3 — 0.15(wa/c)?)

Comparing Eqgs. (28) and (29) two differences are
detected. The first difference is the frequency correction
of the static interaction constant (the term 0.15(wa/c)?),
which was not considered in Ref. [12]. The second
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difference is the coefficient that multiplies the term
(cos(kya) — 1), which is responsible for the spatial dis-
persion effects. Apparently, the theory of our previous
paper [12] (when applied to the particular case of mag-
netic dipoles) overestimates this coefficient by nearly
one order of magnitude. A possible reason for this dis-
agreement is that formula (28) is based on the nearest
neighbor approximation, while the formula derived in
this work takes into account the coupling between all
the particles in the lattice. Indeed, the nearest neighbor
approximation may be more useful when the mutual cou-
pling between adjacent rings is large (which was the case
studied in our previous work [12], where the resonant
rings have larger diameters), whereas it may not be so
accurate for dipole-type particles with a comparatively
weaker mutual coupling.

3. Plane wave dispersion characteristic

Next, we apply the developed homogenization model
to characterize the dispersion characteristic of plane

Mxx 1

From Eq. (17), setting pex; =0, i.e. removing the exter-
nal source, using M = (ﬁ /o — i) - H,y, and replacing

&0 by &g, it is readily found after some manipulations
that

(wzsmﬁ ey kk) ‘Hy = 0. 30)

3.1. Propagation along the coordinate axes

First we will analyze the case of propagation along
the one of the coordinate axes, let us say the x-axis
(ky=k;=0). For this case the modes can be classified
as longitudinal modes and transverse modes. The longi-
tudinal modes are such that the magnetic field is parallel
to the wavevector (Hyy ~ k), which from Eq. (30) implies
that

fi (w,K)-k=0. (31)

As discussed in Section 2, for propagation along the
coordinate axes the magnetic function is diagonal, and
thus the above relation is equivalent to py, =0. Using
Eq. (21) and the fact that Dj,;; =0, we find that

1

=1+
MO |ky=k,=0

waves. To begin with, we remind that the model intro-
duced in Section 2 supposes that the rings only have a
magnetic response. Actually, this is a very rough approx-
imation, since it is well known that in general resonant
rings have as well an electric response (see for exam-
ple Ref. [17]). As in Ref. [12], we will assume that the
electric response of the rings can be taken into account
by considering that the effective permittivity is equal
to egg. Within this approximation the metamaterial is
characterized by a local effective permittivity (eg¢) and
by the nonlocal magnetic function (21) (& (w, k)).! Itis
interesting to note that this hypothesis is nothing more
than assuming that the electric and magnetic responses
are decoupled. Indeed, e4; may be easily related to the
electric polarizability of the particles using a homoge-
nization approach similar to that of Section 2 (in general
&sx May also depend on the wave vector, however since
the electric resonance occurs at a frequency significantly
higher than the magnetic resonance, that dependence
is expected to be small for frequencies comparable or
smaller than the frequency associated with the magnetic
resonance, which is the case of interest in this work).

1 Alternatively, the metamaterial could as well be characterized by
the nonlocal dielectric function (6) with the first term in the right-hand
side (T) replaced by (esrr/€0) 1, and by ©=po.

a3 Re {ap'} — 1/a3 (1/3 — 0.15(wa/c)* 4 0.052 (cos (kya) — 1))

(32)

Thus, the dispersion relation of the longitudinal mode
is:

3 -1 2 @ 2
a’Re {oem } + 3 —i—O.lS(za)

—0.052 (cos (kya) — 1) = 0. (33)

On the other hand, the metamaterial also supports
transverse modes for which H,,-k=0. It is simple to
verify that for propagation along the x-direction the dis-
persion relation of the transverse modes is

W Esprlhyy (@, ky) = k2, (34)

being uyy given by Eq. (29).
3.2. Propagation along the main diagonal

It is also interesting to analyze the propagation
properties along the “main diagonal” of the unit
cell, namely along the I'R direction, being I the
origin of the Brillouin zone and R=(n/a,n/a,n/a).
It is thus clear that ky=ky,=k;, and therefore from
Eqgs. (22a) and (24) it follows that x;; = Re {e,'} —
1/a (1/3 = 0.15(wa/c)?), for i=1,2,3. On the other
hand, from Eqgs. (22b) and (25) it is obvious that y;; is
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independent of the values of i and j for i #* j. Based
on these properties it can be verified that the magnetic
function is such that:

- = kk kk
Rlke=ky=k, = { I — -5 | M+ s (35a)
k k
1
me=po ( 1+ — |3
Veell X11 — X12

1 1
wr=po 1+ ) , (35b)
( Veell x11 +2x12

with  x12 = —k?/3a [—0.1936 —0.01188(wa/c)’> +
0.005902a%2k?/3], and Kk* =k-k=k2 + k% + k2.
It is clear that the above expression implies that the
electromagnetic modes can also be classified as longi-
tudinal and transverse modes. Using Eq. (31), it follows
that the dispersion characteristic of the longitudinal
mode (for propagation in the I'R direction) is p; =0, or
equivalently

&’Re {a,;‘} + % + 0.15(%1)2 428512 =0. (36)

On the other hand, the dispersion characteristic of the
transverse modes is obviously

0 eguits (0, k) = k2. (37)
4. Numerical example and discussion

In order to describe the implications of the theory
developed in Section 3, we will analyze the case where
the resonant rings are the edge-side coupled (EC) SRRs
originally proposed by Pendry [1]. To ease the numerical
and analytical modeling it is assumed that the SRRs are
formed by thin wires with radius r=0.01a (see Fig. 1),
instead of planar particles. The mean radius of the outer
(inner) ring is R+ d/2 (R — d/2), where d = 0.1607R is the
mean distance between rings, and R =0.4a is the average
radius. Each ring has a split that covers an angular sector
of @gqp =10°. It can be shown that the self-inductance
and capacitance of the EC-SRRs may be estimated using
the following formulas (see Refs. [12,17,23] for closely
related results)

R (n gun)
~ cosh™ ! (a2/2r2 — 1)’

8R
) -

The SRRs are oriented as shown in Fig. 1, con-
sistent with the proposal of Ref. [27]. Such structure,

1.4
1.2 |
1.0 ]
08 |
0.6 |
04 |
0.2 |

walc

0.0

R r X M R

Fig. 2. Band structure of a material formed EC-SRRs with unit
cell as in Fig. 1. The inset shows the first Brillouin zone
and the high-symmetry points X=(n/a,0,0), M =(n/a,/a,0) and
R=(n/a,nla, la).

unlike an ideal lattice of point magnetic dipoles, can-
not be truly regarded as an isotropic magnetic material.
Indeed, as discussed in Ref. [27], to ensure that a reg-
ular arrangement of particles is isotropic, the unit cell
should be invariant under the application of proper rota-
tions of the regular tetrahedron (cubic point group 7),
and the structure of Fig. 1 does not have such symmetry.?
Moreover, the material also does not have inversion sym-
metry since SRRs in opposite faces of the cube have the
same orientation due to the translational symmetry, and
thus bianisotropic effects may occur [17]. Despite these
problems, it will be shown below that the metamate-
rial (formed by very thin and closely spaced rings) has
approximately an isotropic response.

The band structure of the array of SRR resonators was
calculated using the hybrid integral equation-plane wave
method described in Ref. [28], and is reported in Fig. 2.
It can be seen that the structured material has a complete
band gap that occurs due to the strong magnetic response
of the rings. Below the magnetic resonance (normalized
frequency wa/c ~0.77), the material supports only two
electromagnetic modes (TEM waves), whose dispersion
characteristic is nearly degenerated.

On the other hand, above the magnetic plasma
frequency (walc~0.91, i.e. the frequency where the
propagation is resumed), the material supports three dif-
ferent modes. One of the modes is expected to be a
longitudinal wave (the so-called longitudinal magne-

2 The unit cell of Fig. 1 is invariant under the rotation 4,-4,, where
4; (i=x,y,z) represents a 4-fold (90-degree) rotation with respect to
the ith axis. Thus, the metamaterial is invariant under £120° rotations
with respect to the diagonal of the cube along (1, —1, 1). However, it
has not the same property along the other three diagonals, as would
be required so that it would be invariant under the application of the T’
cubic point group.
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Fig. 3. Dispersion characteristic along the directions I'R and I'X.
Black solid line: dipole based model proposed in this work. Black
dashed line: model proposed in Ref. [12] (I"X propagation), adapted
for the case of point dipoles. Green (thick) lines: full wave electromag-
netic simulations. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of the article.)

toinductive wave [13]) and has a nearly flat dispersion
characteristic. The other two modes are approximately
TEM waves and are nearly degenerated. The dispersion
curves confirm that the response of the material below the
magnetic resonance is to a good approximation isotropic.
However, it can be seen that near the magnetic plasma
frequency the dispersion characteristic of the longitudi-
nal magnetoinductive wave depends significantly on the
direction of the wave vector, having a much larger slope
along the direction /"R than along the direction I'X. Simi-
lar results have been reported in our previous work (Ref.
[12]) for the case where the inclusions are SRRs with
two splits (unit cell with tetrahedral symmetry). Thus,
the direction dependent properties of the longitudinal
magnetoinductive wave can only be explained in terms
of the emergence of nonlocal effects [21], induced by the
granularity of the material.

We have calculated the theoretical dispersion char-
acteristic using the analytical formulas reported in
Sections 3.1 and 3.2, with the static effective permittivity
Ese = 2.1€0. This value was numerically computed using
the homogenization approach of Ref. [14] for w=0.
The calculated dispersion curves are plotted in Fig. 3
(solid black lines) superposed on the numerical results
(green thick lines). Despite the simplicity of the ana-
Iytical model (which treats the SRRs as magnetic point
dipoles), a fairly good agreement is revealed. In particu-
lar, below the magnetic resonance the analytical model
concurs very well with the full wave simulations. Near
the magnetic plasma frequency, the quantitative agree-
ment is coarser, but the qualitative agreement remains
good. Consistent with the full wave simulations, the ana-
lytical model predicts that for propagation along I'X
the dispersion characteristic of the longitudinal magne-

toinductive wave is flat, whereas for propagation along
I'R the dispersion curve has a significant dispersion.
This supports that indeed the lack of isotropy of the
longitudinal mode is due to the emergence of nonlocal
effects, more specifically due to the relatively large val-
ues of Diyjj=—xij (see Eq. (36)), which characterizes
the interaction between magnetic particles with different
orientations.

Fig. 3 also reports (black dashed line) the results
yielded by the model proposed in our previous work, Ref.
[12], (adapted for the case of point dipoles: see Section
2.3) for propagation along the I"X-direction. Consistent
with the discussion of Section 2.3, it is seen that the
model of Ref. [12] tends to overestimate the slope of
the longitudinal model along the I"X-direction. Apart
from that discrepancy, the general agreement between
the model proposed here and the results of Ref. [12] is
good.

It is important to underline that in a local material
(i.e. in the absence of spatial dispersion) the longitudinal
wave should have a completely flat dispersion character-
istic, independent of the direction of the wave vector. It
seems that one of the most common manifestations of
nonlocal effects in structured media is that the longitudi-
nal wave is highly dispersive. This implies that unlike in a
local material the longitudinal mode can be excited by an
external source and represent an additional propagation
channel. In an array of cubic particles made of EC-SRRs
the nonlocal effects are dominant for propagation along
the I'R direction. Similar nonlocal effects have also been
reported for arrays of uniaxial SRRs [23,29], for con-
nected wire media [30-33], and for plasmonic nanorods
[34].

The effects of spatial dispersion in the longitudinal
mode can be tamed by decreasing the electrical size of the
particles at the resonance, for example by increasing the
capacitance of the rings. Indeed, from Eqgs. (2) and (36)
it is found that to a first order approximation (neglecting
powers of both (walc)? and (ka)4) the dispersion of the
longitudinal mode along I'R is

o \? 1
Omp 1+ (1 — w2, /wg) 0.1936(ka)>

where the magnetic plasma frequency (which defines
the onset of propagation of the longitudinal mode)

is approximately wm, ~ wy/y/1 —2/ (3a3aal). Let

us estimate the range of wave vectors for which
|(@ — Wmp) /®mp| < 8, where § is some small number.
Using Eq. (39) it can be easily seen that the solution is
of the form k < C/a, where C is some constant that only
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Fig. 4. Effective permeability of the array of cubic particles made
of EC-SRRs as a function of frequency. Dashed blue line: full wave
result extracted using the method reported in Ref. [14]. Solid black
line: analytical result, u(w, k=0), calculated using formula (29). (For
interpretation of the references to colour in this figure legend, the reader
is referred to the web version of the article.)

depends on § and on w,,p/w,. But, for a fixed fill fraction
(i.e. for R/a and r/a fixed) the ratio w,,,/w, is independent
of a. Moreover, the electrical size of the unit cell at the
plasma frequency w;,pal/c may be decreased by increas-
ing the capacitance of the rings (e.g. by decreasing the
inter-ring distance d). Thus, the range of wave vectors for
which the condition ‘ (a) — a)mp) / a)mp‘ < § is observed
verifies kc/wyp < Cl(wpmy alc), where C only depends on
the fill fraction and 8, and wypa/c is determined by the
electrical size of the unit cell. Therefore, the values of k
(normalized to the frequency of operation) for which the
dispersion of the longitudinal mode is below some given
threshold is broader when the electrical cell size of the
unit cell is smaller, showing that in these conditions the
nonlocal effects are less important.
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Fig. 5. Band structure of an array of cubic particles made of SRRs
and connected wires (solid black lines; see geometry of the unit cell
in the small right-hand side inset), superposed on the band structure of
the array of SRRs (green lighter lines). The left-hand side inset shows
the dispersion characteristic of the connected wire medium (without
SRRs). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of the article.)

In order to further reveal other possible nonlocal
effects, we have numerically calculated (with a full wave
simulation) the effective permeability of the array of EC-
SRRs using the approach described in Ref. [14]. The
effective permeability is written in terms of the second
order derivatives of the nonlocal dielectric function with
respect to the wave vector [14]. The extraction procedure
is only meaningful if the material’s response is approxi-
mately local. The computed results are represented in
Fig. 4 (dashed blue line), superposed on the results
obtained with the analytical model (29), u(w, k=0)
(solid black line). It is seen that the curves are nearly
coincident, except for a small shift in frequency above
the resonance. Given that the dashed line was extracted
under the hypothesis that the material’s response is local,
these results suggest that, except for the dispersive longi-
tudinal mode, the spatial dispersion effects are relatively
weak, especially for k near the origin of the Brillouin
zone.

5. Array of SRRs combined with a triple wire
medium

Given the contemporary interest in materials with
simultaneously negative permittivity and permeability
[2,26,35], it is pertinent to study the electromagnetic
response of a metamaterial formed by an array of
SRRs combined with an array of connected wires
[30-33,36,37] (see the geometry of the unit cell in the
right-hand side inset of Fig. 5). Based on the results of the
seminal work [35], it seems plausible that such structure
may behave to some approximation as a nearly isotropic
left-handed material. It is expected that the magnetic
response of the composite material will be determined
by the SRRs, whereas the electric response is mainly
determined by the array of connected wires.

It was shown in Refs. [30,31] that the triple wire
medium (with no SRRs) can be accurately characterized
by the following nonlocal dielectric function (assuming
perfectly conducting wires and that the host material is
air):

kk

- = kk
& (C(), k) = ET,WM (C()) I - ﬁ + gl,WM (a)v k) k77

(40a)

where the transverse and longitudinal components of the
dielectric function are

2 02
AT/ 2 (40b)
€0 w
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Elwm 13 ?7
(w, k) =1 o — 12/l (40c)

Above, B, = [27/ (In(a/27r,) +0.5275)]/* Ja is
the plasma wavenumber, r, is the radius of the wires, and
lp is a constant defined in Refs. [30,31] that depends on
the radius of the wires. The connected wire medium imi-
tates to some extent a plasma characterized by a Drude
type dispersion model, except for the longitudinal mode,
which similar to the results of Section 4, may be highly
dispersive [30,31].

If one assumes that the array of wires interacts
weakly with the SRRs, as suggested by the symmetry
of the material, by the results of Ref. [35] and also dis-
cussed in our previous work [12], it is straightforward
to obtain a homogenization model for the composite
material formed by SRRs and metallic wires. In fact,
since the connected wire medium does not have a mag-
netic response, it follows that the magnetic function of
the composite medium is the same as that of the array
of cubic particles formed by EC-SRRs [Eq. (21)]. On
the other hand, the effective permittivity of the compos-
ite medium should verify &, s = €0l + (e — £0) I +

(EWM — 80i) , where €4, already defined in section III, is

the effective permittivity of the array of EC-SRRs. Thus,
within the considered hypothesis it is found that

- = kk
£ (w,k) = Et, wm+SRR (w) (I— ﬁ

kk
+ &1, waresrr (wa k) k72 (413)
2 .2
Et Wi c
Lt (w) = Esrr,r — '81772 (41b)
0 w
EL,wmsrr ﬁf)

(o, k) = Esrr,r (410)

&0 w?/ct—k2/ly
where &g, r = ege/€0. It is important to emphasize that
the magnetic effects of the composite medium are not
included in the nonlocal dielectric function, and are
described separately by i (w, K), given by Eq. (21) [the
magnetic effects could be easily incorporated into the
dielectric function using a formula similar to (6); how-
ever, here it is preferable to separate the electric and
magnetic responses since such framework is necessary to
study the longitudinal magnetoinductive wave for which
wr=0[21].

Using the hybrid integral equation-plane wave
method of Ref. [28], we have computed the band struc-
ture of the composite material formed by connected
wires and EC-SRRs. The geometry of the EC-SRRs is the

same as that considered in section IV, and the triple wire
medium is formed by wires with radius r,, = 0.05a. The
calculated band structure is represented in Fig. 5 (solid
black lines) for the directions I'R and I'X of the Bril-
louin zone. It is seen that the material supports backward
waves for 0.77 <walc <0.89, i.e. roughly in the same
frequency band where the array of EC-SRRs is charac-
terized by a complete band gap (the band structure of
the array of EC-SRRs is represented with green lines
in Fig. 5). This supports the hypothesis that the com-
posite material formed by wires and SRRs behaves as
a left-handed medium. Quite interesting, the upper fre-
quency of the backward wave regime is slightly below
the magnetic plasma frequency of the array of EC-
SRRs. Most likely this is a consequence of some residual
bianisotropic effects, consistent with the theory of Ref.
[17].

Besides the two backward wave (TEM) modes, the
composite material also supports a longitudinal mode
at the magnetic plasma frequency. Remarkably, except
very near to the I" point, the dispersion of the longitu-
dinal mode cannot be distinguished from the dispersion
of the longitudinal magnetoinductive wave identified in
Section 4 (nearly flat green line in Fig. 5). This behavior
completely supports the hypothesis that the triple wire
medium interacts weakly with the array of SRRs. Indeed,
the dispersion of the longitudinal mode is determined by
condition (31), [t (w, K) - k = 0], which is completely
independent of the dielectric function & (w, K) of the
composite material (because the magnetoinductive lon-
gitudinal mode is associated with a trivial macroscopic
electric field: E,, =0). This explains why the dispersion
characteristic of this mode remains nearly invariant when
the triple wire medium is added to the array of EC-SRRs.

The composite material formed by SRRs and wires
has a band gap above the magnetic plasma frequency.
The propagation is resumed at wa/c ~ 1.08, which sup-
posedly corresponds to the electric plasma frequency for
which &y,,45: ~ 0. The theoretical value of the electric
plasma frequency may be estimated using Eq. (41b) and
IS wep/c = Bp//Eser.r- Since, for wires with ry, = 0.05a
we have that B, = 1.93/a, using e , =2.1 (see Section 4)
we obtain the theoretical value, wepa/c =1.33, which is
slightly larger than the more precise value obtained from
the band structure of the material. Most likely the reason
for the discrepancy is that eg,=2.1 is the static per-
mittivity of the array of SRRs, and thus our model may
underestimate &g » at the electric plasma frequency.

Above the electric plasma frequency the metamaterial
supports three electromagnetic modes. Two of the modes
are expected to be associated with TEM waves, whereas
the other mode is expected to be associated with an
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electric-type longitudinal mode. Curiously, it can be seen
in Fig. 5 that the dispersion characteristic of these three
modes is nearly coincident. This contrasts markedly with
the case where the metallic wires stand alone in the lat-
tice (see the left-hand side inset of Fig. 5), for which
the dispersion of the longitudinal mode is much smaller
than that of the transverse modes. To explain this curious
phenomenon, we note that near the plasma frequency the
magnetic response of the SRRs is expected to be rela-
tively weak (see Fig. 4) [i.e. it (w, k) ~ uol], and thus
to a first a approximation the composite metamaterial
may be described using only the nonlocal dielectric func-
tion & (w, K). It should be clear that Eq. (41) implies that
the metamaterial supports two transverse modes with
dispersion characteristic K= Etwmsrr O o, ie.

2 2 2
o _ P (422)
c

Esrr,r EsrR,r

and a longitudinal mode with dispersion characteristic
El wm+srr = 0,1i.e.
2 2 2
w B k
— =24+ (42b)

c Esrr,r lo

Comparing Eqs. (42a) and (42b), itis seen that the dis-
persion of the transverse and longitudinal modes is the
same when &g, - ~ lp. But for a triple wire medium with
rw=0.05a we have that [y ~2.03 (see Refs. [30,31]),
and thus the condition &g~ [y seems to be veri-
fied in our problem. This coincidence explains the
similarity of the dispersion characteristics of the trans-
verse and longitudinal modes above the electric plasma
frequency.

6. Conclusion

Using nonlocal homogenization methods we have
calculated theoretically the magnetic function of an
array of cubic magnetic resonators, under the approx-
imation that the inclusions can be modeled using the
magnetic dipole approximation. The proposed model
complements the analysis of our previous work [12],
and takes into account all interactions between the par-
ticles (i.e. magnetic dipoles), and both frequency and
spatial dispersion. It was shown that the properties of the
longitudinal magnetoinductive wave are determined by
nonlocal effects, which are caused by the interaction of
the magnetic resonators with different orientations. Our
results suggest that except in the regime where © ~0,
the effects of spatial dispersion may be relatively weak,
especially if Kk is near the origin of the Brillouin zone.
In addition, we studied the propagation properties in

a composite material formed by EC-SRRs and a triple
wire medium. It was shown that such material supports a
backward wave regime, where it may behave as a nearly
isotropic left-handed material. In addition, it also sup-
ports both magnetic-type and electric-type longitudinal
modes, and two TEM modes above the electric plasma
frequency. It is hoped that the present study contributes
for the understanding of nonlocal homogenization tech-
niques, and stimulates the study of truly isotropic local
left-handed metamaterials.
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Appendix A.

In this appendix we briefly describe the solution of
the homogenization problem when the resonant rings
are modeled as particles with an electric response. As
discussed in Section 2.1, in these circumstances the mag-
netic effects are related to the vortex part of the induced
electric current density.

Following Ref. [14], the nonlocal dielectric func-
tion is calculated by exciting the metamaterial
with an external electric current density, Jeext =

jo (pgi)t / Vceu> e~ /%T where pl) is a constant vector.

Thus, the microscopic electromagnetic fields, (E,B),
verify:

V X E = —jwB (Ala)
B .
V x M— = ]C()E()E + Je,ext + Je,dips (Alb)
0

where the microscopic electric current density, Je dgip, 1S
given by Eq. (4), and is written in terms of the unknown
magnetic dipole moments of the particles in the unit cell
p;. Itis important to emphasize that when the response of
the particles is characterized by an electric current den-
sity, as considered here, the microscopic fields are the
electric field intensity (E) and the magnetic induction
(B). Quite differently, from duality, when the response
of the particles is characterized by a magnetic current
density the microscopic fields are the electric field inten-



M.G. Silveirinha et al. / Metamaterials 3 (2009) 115-128 127

sity (E) and the magnetic field intensity (H) (see Section
2.2).

It may be easily shown that the solution of Eq. (A1)
is:

, = p;
E(r) = (—jono) Y, VxG,(rlrg,) —
- Ko
i=1,2,3
+ (—jouo) Gay - jop) e /X" (A2)

Thus, the local electric field in the immediate vicinity
of the ith ring is

Eioc.i (1) = —joV x G, (r|10,) - p;
—ja)ZV X (=}p (rlro;) - p;
J#i
+ 0 10Gay - pSre T,

(A3)
whereas the local induction field, Bjoc; =
V X Elo,i/ (— jow), is

W\ 2=~
Bioe, 1) = (2) G, (rlros) - p
+Z< ) Czi (rlro,;) P
JFi
+ wpok x Gay - pgi)t eIk, (A4)

being G:/p defined as in Eq. (13). It should be clear that
in the present context Hjo. in Eq. (3) should be iden-
tlﬁed with Bloc/uo Thus using the auxiliary relation

k x G av =G xk = GaV - (k x I) [see Eq. (10)], and
the property p; = p;l;, it is found that fori=1,2,3

_1 Pi oN\2 (. = ~ Pi
amlp* — <;> <ui-G/p(OIO)-u,p

1o
= )
+ 0 Gp (roro,j) -0
jFi Ho
2
. = c’k —ikerg
+18; - Gay - < ® ng()t) e Jero

(AS)

Interestingly, the above result is equivalent to Eq.
(14) provided we make the identification p., =k X

pext/wso Therefore, making manipulations similar to

those of Section 2.2, we conclude that

- w\?2 = 1k
$M= (%) Ga <M+ —x péii) . (A)
¢ Veell @

where the magnetization vector M is defined as in Eq.
(18), and the dyadic Y is defined as in Eq. (22).

The dielectric function must verify (5 (w, k) — 80i> .
E.y = Pg, independent of the applied current density,
where Py is the generalized electric polarization vector
given by [14]:

1

Pp=— [ Joap®et Xy

k
—— x M.
Vcell]a) cell w

(AT)

By averaging the microscopic Maxwell’s equations
(A1) [see Eqgs. (9) and (14) of Ref. [14]], it can be easily
shown that the macroscopic electric field must be such
that:

(e)
= P
E. = CUZMOVcellGav' P + el (A8)
Vcell

Thus, using again the result k x (:}av = (:}av x k and Eq.
(A7), it is found after some algebra that:

— X Eyy
How
2
[4)) =
sz VcellGav : <M +

1 %k
=M+ 7LX (e)
w

Vcell ext
(A9)

Substituting now the above formula into Eq. (A6), it
follows the magnetization vector is related to the macro-
scopic electric field as

- = k
M= (o™ - 1) < x E) , (A10)
How
where 1 is defined as in Eq. (21), and we have used the
property i ' =1 - (i + Vcell):()
- Eqv = P, and Egs. (A7) and
(A10), it is found that the nonlocal dielectric function of

the metamaterial verifies, indeed, Eq. (6), as we wanted
to prove.

1
. Finally, using the
property (E (w, k) — 80i)
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1. Introduction

Metamaterials — artificial media engineered with various structural units which play the role
of atoms — have been in the focus of active research for more than a decade. One of the mile-
stones in understanding metamaterial properties is the effective medium theory (EMT), which
aims to describe metamaterials in terms of effective parameters: permittivity and permeabil-
ity [1]. In particular, EMT has been essential for the lattices of split-ring-resonators (SRRs) —
the key structure for obtaining an artificial magnetic response [2]. Approaches for determining
the effective permeability of bulk SRR-metamaterials were attempted prior to metamaterials
outburst [3]. Subsequently, fruitful theoretical procedures were developed to account for mu-
tual interaction [4], bianisotropy [5], magnetoinductive waves [6] and their interaction with
the electromagnetic spectrum [7, 8], spatial dispersion [8—10], mutual interaction between the
electric and magnetic subsystems [11], specificity of boundary conditions [12, 13], arbitrary
geometry of elements [14], multipole expansion [15], disorder [16, 17] and noise [18].

However, effective medium theories, in principle, consider unbounded lattices, whereas all
practical metamaterials are of finite size. For conventional materials, it is well known [13, 19,
20] that at the boundaries a transition layer is formed, with properties different from those of
the bulk (see the historical introduction in [13] for a detailed background). For large samples,
however, transition layer does not significantly affect the overall macroscopic properties, and
only manifests itself under specific conditions such as strongly oblique incidence, with surface
modes not affecting the bulk considerably. But metamaterials are often constructed with a much
fewer number of elements than reasonable pieces of conventional materials, so a comparison to
atomic clusters might be more appropriate. At the same time, internal structure of metamaterials
is often more complex than that of natural materials, in a sense that metamaterial elements
may be quite densely arranged, be of different types or form geometrically independent sub-
lattices [21]. This raises an issue of pronounced surface and spatial resonances which may
appear in finite structures even in a quasi-static regime [22,23].

For metamaterial slabs, having a finite size in one dimension (and the same applies to the
small samples placed inside a waveguide, which is equivalent to a system infinite in transverse
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Fig. 1. Scheme of a symmetric finite cube with discrete structure, showing two options of
surface configuration (for the same unit cell in the bulk): “flat” geometry (a) and “ragged”
geometry (b). Note that the actual number of elements is not necessarily reflected here.

direction), bulk effective parameters can be, with certain precautions, extracted from transmis-
sion and reflection characteristics [24,25] (see e.g. [26,27] for a recent update on the method-
ology). On this way, it is known that the effective properties extracted for the slabs of finite
thickness quickly converge to the EMT predictions when the number of unit cells across the
slab increases, and for most structures with low spatial dispersion a thickness of a few unit cells
is sufficient to yield the bulk properties.

In this paper, we address the most general case of practical relevance: metamaterials with
finite size in all three dimensions, observed in free space. We will analyse whether such meta-
materials can be described with EMT parameters, and what are the requirements for such a
description to be valid. It turns out that while for a slab of metamaterial a few unit cells across
the slab are sufficient for EMT to work well, for the finite size in 3D it may be not sufficient to
take several unit cells in each direction, and that a dramatic effect is caused by the ambiguity in
the boundary structure (see Fig. 1).

Indeed, a unit cell of the isotropic system shown in Fig. 1 contains three resonant loops non-
symmetrically positioned with respect to the geometrical centre of the cell: three sides of the
cube carry resonators, and the other three do not (as those resonators belong to the adjacent
unit cells). This makes no difference in the middle of the structure. However, at the boundaries,
overall symmetry of the sample can be achieved either by adding extra surface resonators on the
three sides, Fig. 1(a), or, less trivially, by removing the unnecessary resonators on the opposite
sides, Fig. 1(b). We will further refer to these methods of assembly as “flat” and “ragged”.

We should note that early analysis [4] confirmed that anisotropic stacks of uniformly oriented
SRRs (all having parallel axes), with about one thousand elements can be successfully described
with EMT; however that structure has no ambiguity of the kind described above.

2. Results and discussion

We will now analyse metamaterial cubes with isotropic cubic unit cells, and having different
surface geometry as discussed above, and compare their characteristics to those of homoge-
neous pieces of a bulk material with the corresponding effective parameters [8]. In order to
avoid any complications related to spatial dispersion and fit well into the EMT domain, we
study a system with deeply subwavelength and strongly interacting resonant current loops:
kresa = 0.02 and a/ry & 3.1 (where ki is the value of the free space wavenumber k at reso-
nance, a is the lattice constant and ry is the mean radius of the loop). A high quality factor of
the resonators, Q = 500, has been chosen in order to present more illustrative results.

The finite size in all three directions does not permit a consistent study in terms of transmis-
sion characteristics, but there is a convenient macroscopic characteristic that can be attributed
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Fig. 2. Real part of the normalised polarisability (arbitrary units) of discrete cubes with
5, 8 or 11 layers of resonators in each direction, having either a “flat” geometry (a) or a
“ragged” geometry (b).

to finite samples: normalised polarisability, i.e. the total magnetic moment of the sample per
unit external magnetic field and per unit volume. For subwavelength objects made of a homoge-
neous isotropic medium, this quantity is a scalar independent of the size. To find the polarisabil-
ity of our discrete cubes, we solved a system of circuit equations for coupled resonators [6,28],
assuming a uniform external magnetic field perpendicular to the face of the cube; note that
taking all the mutual interactions into account is essential for such analysis. The total magnetic
moment is then computed by summing the individual magnetic moments of each ring.

In Fig. 2, we compare the normalised polarisabilities of several metamaterial samples with
various number of layers in each direction, calculated for either “flat” or “ragged” boundary.
The normalised polarisability of the discrete cubes changes remarkably as the number of ele-
ments grows (unlike what we would expect for a homogeneous material), and it does not show
a trend towards similarity between “flat” and “ragged” versions. However, the results obtained
for the “ragged” geometry show more uniformity than those obtained for “flat” cubes.

Further distinctions are revealed (Fig. 3) by comparing discrete cubes with an equivalent
cube made of a homogeneous medium, with the permeability given by Eq. (13) of [8],

Y
=1 1
B a2 (koa)2 — 1 —2ea— 4oz —7)3 W

where ¥ = 0.162 is a coefficient related to the polarisability of a ring (determined by its geome-
try), s, = 0.0195 and . = —0.0173 are inductive coupling coefficients to the axial and copla-
nar nearest neighbours; the numerical values specified here, correspond to the example used in
our illustrations. Note that, although it is generally necessary to take more remote neighbours
into account as well [4], for an unbounded cubic lattice taking only the nearest neighbours ex-
plicitly and then using Lorentz correction for farther neighbours [8] provides a sufficiently good
accuracy. The polarisability of the homogeneous cube was found using the CST “Microwave
Studio” commercial package. In order to avoid the appearance of multiple non-physical reso-
nances, the edges and corners of the homogeneous cube must be rounded [29]. We have used
a rounding radius corresponding to one half of the unit cell size of the discrete cubes. Such
rounding leads to a minor difference between the simulation results for cubes of various abso-
lute sizes, but this difference is very small in comparison with discrete cubes, and is not of a
qualitative nature. Figure 3 shows that the polarisability of the “ragged” cube is significantly
closer to that of the homogeneous cube, than the polarisability of the “flat” cube.

These results can be understood in view of the essential role of surface elements [13, 20],
since they do not have the same surroundings as the elements in the bulk and form transition
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Fig. 3. Real (a) and imaginary (b) parts of the normalised polarisability (arbitrary units)
of discrete cubes with 11 layers in each direction, having either a “flat” geometry (dashed
lines) or “ragged” geometry (dotted lines), in comparison with the polarizability of a ho-
mogeneous cube (solid lines).

layers with different properties. Then the difference between a “flat” structure and a “ragged”
structure can be qualitatively assessed by noting that the elements of a “flat” surface do not
have 5 out of 14 nearest neighbours, as compared to fully immersed rings, while in “ragged”
surfaces, only 3 of the nearest neighbours are absent. This suggests that the behaviour of the
“ragged” cube should be closer to the behaviour of an unbounded piece.

Although the considered metamaterial samples are formed by hundreds or even thousands
of elements, they still behave like mesoscopic systems. The reason for this is that the number
of periods is relatively small, so the surface excitations do not sufficiently dissipate within the
sample, making a consistent macroscopic field averaging unreliable. However, we can attempt
to extract the effective permeability directly from the polarisability of our cubic samples, as
these quantities must be related. For this purpose, we assume that the functional form of the
polarisability of a cube is similar to that of a sphere o, = 3(u — 1)/(1t +2). So, we formally
express the polarisability of a cube as

a=A-(p-1)/(n+0), @)

where A and C are real frequency-dependent coefficients (see Fig. 4 for an example of their
functional form). But for a homogeneous cube we know both the permeability function ( given

4.0

354

3.04
2.5
2.0

A, C Coefficients

1.0 1
0.5

0.0 T T T T
195 198 201 204 207 210

koa-10°

Fig. 4. Frequency dependence of the A and C coefficients calculated with Eq. (3) based
on the effective permeability u of a homogeneous cube Eq. (1) and its polarisability o,
obtained from numerical simulations.
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by Eq. (1), and the polarisability o (which was computed numerically and shown with solid
lines in Fig. 3). Thus, we can uniquely calculate A and C (shown in Fig. 4) as

|/,L|2—Reu—@|mu (Rept +C)% + (Imp)2
C= Im o A= ReH B ma. 3)
Imu-(C+1)

)

Rea
1-R —
e"Hrlmoc mH

Now, these A and C coefficients can be used to evaluate the effective permeability of discrete
cubes from their polarisability o which is available from our analysis (shown with the dashed
and dotted lines in Fig. 3), using an inverse of equation (2):

u* = (A+ca’)/(A—aP). )

The result of this procedure is shown in Fig. 5: the curve corresponding to the “ragged” cube
is very similar to the actual permeability of a homogeneous cube, unlike the curve of the “flat”
cube. This result can be regarded as a strong argument in favour of the “ragged” configuration,
in a sense that its effective permeability retrieved through the above procedure, matches the
EMT prediction, whereas for the “flat” configuration such retrieval fails.

3. Conclusions

We have shown that the behaviour of finite metamaterial samples can deviate significantly from
continuous medium expectations. We conclude that for isotropic SRR-metamaterials with up
to several thousands of elements, the “ragged” boundary structure should be used for practi-
cal applications to permit a description in terms of the effective parameters of an unbounded
metamaterial. We are confident that, for the size range in which most practical metamaterials
fit, our results provide valuable information and design guidelines, allowing for to control the
properties of finite metamaterial structures. Our results can be also of interest for the general
theory of mesoscopic electromagnetic systems.
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In this work a mu=-1 metamaterial (MM) lens for magnetic resonance imaging (MRI) is
demonstrated. MRI uses surface coils to detect the radio frequency (rf) energy absorbed and emitted
by the nuclear spins in the imaged object. The proposed MM lens manipulates the rf field detected
by these surface coils so that the coil sensitivity and spatial localization are substantially improved.
Beyond this specific application, we feel that the reported results are the experimental confirmation
of a new concept for the manipulation of rf field in MRI, which paves the way to many other
interesting applications. © 2008 American Institute of Physics. [DOI: 10.1063/1.3043725]

After the demonstration of the ability of a slab of an
ideal negative refractive index metamaterial (MM) with
e=—1 and u=-1 to obtain subdiffraction images,l the issue
of optical subwavelength imaging through the direct manipu-
lation of the electromagnetic field has attracted a lot of at-
tention. This effect has been shown in the optical frequency
range,2 in the microwave range,3’4 and in the radio frequency
(rf) ranges’6 by using different devices. However, the ability
to image objects smaller than the wavelength is not a recent
concept. It is something well known since long in magnetic
resonance imaging (MRI), where imaged objects are very
small as compared to the wavelength of the rf fields used to
obtain the image. As it is well known, the generation of
images in MRI is based on the detection of spatial variations
in the phase and frequency of the rf energy absorbed and
emitted by the nuclear spins of the imaged object.7 These
spatial variations are induced by some static magnetic field
gradients, and the image is built from signals measured by a
receiving coil that has no information about the relative lo-
cation of the emitting magnetic dipoles. Conventional MRI
involves many repeated measurements and then signal pro-
cessing (inverse Fourier transforming) before obtaining an
image of a single slice of tissue. Therefore, conventional
subwavelength MRI is based on signal processing and does
not involve any optical means such as focusing or collima-
tion. At this point a question arises in a natural way: would it
be possible to combine both signal processing and optical
means so that the ability of MM devices to directly obtain
subwavelength images could be used to improve conven-
tional MRI? The application of microstructured MM in MRI
was already explored to some extension by Wiltshire et al®
In Ref. 8 a magnetic flux guide with high permeability was
used to guide the rf flux to a remote coil. This work clearly
showed the compatibility of microstructured MMs with con-
ventional MRI machines, as well as their potential usefulness
in the frame of this technology, thus encouraging our search
for a rf lens with apglication in MRL

In a recent work™ some of the authors proposed to use a
subdiffraction MM lens to improve the images obtained by
surface coils in MRI. Surface MRI coils are usually placed
just on the skin of the patient and are used to obtain images
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of tissues in the proximity of the coil. Due to its higher
sensitivity, surface coils provide a signal-to-noise ratio
(SNR) much larger than that obtained with whole-volume
coils or body coils. However, whereas the sensitivity of body
coils is uniform, the sensitivity of surface coils, as well as the
SNR, decreases rapidly with the distance from the coil. Due
to Lorentz reciprocity, the sensitivity of a coil is directly
proportional to the intensity of the magnetic field created by
the coil inside the body of the patient for a standard value of
the current on the coil.' Figure 1(a) shows a typical plot of
the sensitivity (i.e., the normalized magnetic field intensity)
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FIG. 1. (Color online) Calculation of the normalized magnetic field intensity
(sensitivity) for different distances in centimeter of (a) a standard surface
coil of 3 in. in diameter and (b) of the same coil placed on the lens. Units are
arbitrary.
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of a circular coil placed on the skin of the patient. As can be
seen, this sensitivity decays with the distance from the coil,
making the coil useless for obtaining images of tissues lo-
cated at distances into the body deeper than the coil dimen-
sions, typically. Let us now imagine that an ideal MM lens of
thickness d is placed between the coil and the skin of the
patient. An ideal MM lens of thickness d has the ability of
focusing the electromagnetic field, translating the field distri-
bution on the plane of the coil to another plane at a distance
2d from the coil, and vice versa.' Therefore, this configura-
tion would increase the coil sensitivity, making it possible to
obtain images of deeper tissues. Before going further with
the design, we must consider that rf fields used for MRI have
an associated wavelength much higher than the dimensions
of any practical coil. Therefore, we are in the realm of the
quasimagnetostatics, and a slab of a microstructured MM
with u=-1 should be enough for manufacturing the lens.
Figure 1(b) shows the sensitivity of a coil in the presence of
such a lens with u=-1 [actually, the permeability of this
MM lens corresponds to that computed according to Eq. (13)
of Ref. 11 for the lens manufactured for this work]. As it can
be seen, the theory predicts a substantial increase in the coil
sensitivity and SNR inside the body of the patient. It is worth
mentioning here that the same effect would appear if the lens
is placed not directly on the coil but at some distance from it.
In this case the only difference will be that the coil sensitiv-
ity in the space between the coil and the lens will not be
affected by the presence of the lens.

For the practical implementation of the aforementioned
ideas, the ideal u=—1 lens was mimicked by a slab consist-
ing of a three-dimensional (3D) array of copper metallic
rings loaded with nonmagnetic capacitors. Capacitively
loaded rings (CLRs) were previously proposed by Schelkun-
off and Friis'? in order to design artificial media with strong
magnetic response. In our case they were placed in a simple
cubic lattice in order to obtain an isotropic artificial medium
with u=—1. The magnetic permeability of this medium was
computed from Eq. (13) of Ref. 11 as a function of the pe-
riodicity, the ring resistance, the ring self-inductance, and the
frequency of resonance. The fabricated MM lens was a two
unit cell thick slab of this artificial medium. A sketch of the
proposed lens is shown in Fig. 2(a). Before proceeding with
the description of the experiments, some additional words
will be devoted to the modeling of the lens. It is apparent that
a slab made of only two layers of unit cells can hardly be
considered as a continuous medium. Therefore, the detailed
description of this structure deserves a deeper discussion.
Actually, the authors have recently developed a homogeniza-
tion procedure for thin slabs made of resonant metallic
rings. 14 A conclusion of this analysis was that for the spe-
cific configuration proposed in this report, the continuous
medium approach gives a good description of the behavior of
the lens. Only a small shift in the frequency of operation of
the lens with regard to the continuous medium model was
detected. This conclusion was confirmed by additional elec-
tromagnetic simulations made by using the commercial soft-
ware package CST MICROWAVE STUDIO. Additional design
corrections were necessary as a consequence of the finite size
of the capacitors, which was not taken into account by the
models. Finally, the lens was manufactured for operation in a
MRI system of 1.5 T (i.e., for a frequency of operation of
63.85 MHz). Figure 2(b) shows a sketch of a CLR of the lens
whose dimensions and design parameters are external radius

Appl. Phys. Lett. 93, 231108 (2008)

(b)

Capacitor

FIG. 2. (Color online) (a) Sketch of the lens: a 3D array of CLRs. (b)
Sketch of a CLR with dimensions. Parameters of the fabricated CLRs:
w=2.17 mm, r=6.02 mm, self-inductance of 13.45 nH, capacitance of
470* 1% pF, resonance frequency of 63.28 MHz, and quality factor of
Q=115. (c) Photographs of the fabricated lens consisting of a 3D array of
18 X 18 X2 cubic cells with a periodicity of 15 mm. The total number of
CLRs is 2196. The height and width of the lens are both 27 cm and the
thickness is 3 cm.

of the rings r=6.02 mm, ring width w=2.17 mm, ring self-
inductance of 13.45 nH, and ring capacitance of 470+ 1%
pF, which gives a resonance frequency of 63.28 MHz and a
quality factor of 115. Finally, Fig. 2(c) shows two photo-
graphs of the final device consisting of a 3D array of 18
X 18X 2 cubic cells with a periodicity of 15 mm and a total
number of CLRs of 2196. The dimensions of the lens are
27X27X3 cm?’. The capacitors were low-loss nonmagnetic
capacitors of the series ATC100B specially designed by the
company American Technical Ceramics Corp. (NY, USA) for
MRI applications and manufactured with low tolerance for
our application. The rings were photoetched on a FR4 sub-
strate by the company Circuitronica S. L. (Seville, Spain)
and the capacitors were inserted by the company Silicium
S. L. (Seville, Spain).

The fabricated lens was tested in a General Electric
Signa 1.5T MRI machine using a standard 3 in. circular
surface coil 1.5T model M1085GA manufactured by ETL
for General Electric. In the experiment, one of the authors
was lying on the MRI machine and the coil was placed be-
side one of his knees. In our study, axial images (i.e., images
of a plane normal to the bore of the magnet) of type T1 were
acquired using a standard spin-echo sequence typical of T1
acquisitions. The repetition time between signals was 220 ms
and the echo time was 10 ms. The field of view was 34
X 34 cm? with a 256X 192 data matrix. Two acquisitions
with averaging were used in all cases. Figure 3(a) shows an
axial image of the knees without the lens so that both knees
are touching. In this figure, the knee on the right of the image
is closer to the coil and is clearly visible, whereas the knee
on the left is hardly visible, as it is expected from the fact
that the sensitivity of the coil drops off rapidly with distance.
Figure 3(b) shows also an axial image of both knees with the
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FIG. 3. (Color online) Axial T1 image of the knees of one of the authors (a)
without the lens and (b) with the lens between the knees. It must be noted
that the magnetic resonance images are inverted with respect to the photo-
graphs, and that this is inherent to the MRI acquisition process.

lens being placed between them (with this configuration it is
not necessary to retune the coil, and a direct comparison with
the previous image is possible using the same coil). In spite
of the fact that the distance between the coil and the knee on
the left of the image is larger than in the absence of the lens,
this knee is now more visible due to the presence of the lens.
This makes apparent that the lens increases the sensitivity of
the coil. We feel that this is a completely new result that
relies on the specific design of the lens, which mimics a
pm=—1 medium. We also feel that this result introduces a new
concept in MRI, showing that a u=—1 MM lens can be
applied in the frame of conventional MRI technology in or-
der to improve the sensitivity of surface coils.

Up to now we have shown that MM lenses can be useful
in MRI technology due to their ability of focusing the rf
magnetic field lines of force. Specifically, we have shown
that MM lenses can be applied to improve the sensitivity of
surface coils, thus resulting in an improvement in image
quality, reduction in acquisition time, and/or increase in spa-
tial localization. Since MM lenses can translate the field dis-
tribution in a plane behind the lens to another “equivalent”
plane in front of the lens, they can be also useful for obtain-
ing images of deeper tissues. We feel that the reported results
provide a sufficient “proof of concept” for the reported ef-
fect. Other MM lens configurations different from the manu-
factured CLR lens, as that proposed in Ref. 15, could be also
useful for this application. Regarding further applications of
this new concept, we feel that it may also find application in
parallel imaging MRI technology,16 as suggested in Ref. 15.

Appl. Phys. Lett. 93, 231108 (2008)

MRI parallel imaging techniques use several surface coils
and take advantage of the spatial localization of the images
detected by each coil” to reduce acquisition time. The spa-
tial localization of the images detected by the different coils
would be substantially increased if the coils were placed on
the equivalent plane of the imaged slice of tissue. In the
limit, this technique could make possible to avoid the phase
encoding process following the technique reported in Ref.
18, thus opening the way to real time image acquisition of
deep tissues.

This work has been supported by the Spanish Ministerio
de Educacién y Ciencia under Project No. TEC2007-68013-
C02-01/TCM and by the Spanish Junta de Andalucia under
Project No. P06-TIC-01368. We want to thank Dr. Francisco
Moya, Dr. Eduardo Gil, and Borja Mohedano from PET Car-
tuja Medical Center (Seville) for providing the MRI facilities
used in this work and for their advice.
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The usefulness of thin split ring metamaterial slabs for imaging applications, including magnetic
resonance imaging applications, has attracted some attention in the past years. However, the small
number of unit cells across these thin slabs prevents the direct application of continuous medium
models for its characterization. The main aim of this contribution is to provide a rigorous model for
these structures, also clarifying the usefulness of continuous medium approach for their
characterization. The proposed model is a generalization of the classical Lorentz procedure to two
dimensions and is able to deal with electrically thin slabs made of small resonant closed current
loops. The obtained results are validated by full-wave electromagnetic simulations and compared
with the continuous model approximation of the slab. © 2009 American Institute of Physics.

[DOLI: 10.1063/1.3067788]

I. INTRODUCTION

One of the most promising applications of left-handed
metamaterials is the Veselago—Pendry lens'? made of a
single slab of thickness d showing relative electric permittiv-
ity and magnetic permeability both equal to minus unity. In
principle, this device will be able to reproduce, with any
desired resolution, including subdiffraction resolution, the
electromagnetic field on a given plane (source plane) located
in front of the lens onto another plane (image plane) located
behind the lens at a distance 2d from the source plane.2
However, this effect is strongly limited by losses, which in
practice reduces it to a near field effect. In fact, it can be
shown (see Ref. 3 and references therein) that the minimum
resolution attainable from a lossy slab, having the real parts
of u, and €, both equal to minus unity, is given by

27rd
In(2/6)°

=

(1)

where & is the loss tangent of the slab. It is clear from Eq. (1)
that A>d for any realistic metamaterial. This means that in
order to obtain subdiffraction resolution (A<\) the slab
thickness must be substantially smaller than the wavelength.
In such case, electric and magnetic effects are decoupled and
we are in the realm of the quasielectrostatics or the quasi-
magnetostatics. Therefore, only slabs with w,=—1 or €,=-1
are necessary in order to obtain subdiffraction resolution in
the near field. The first possibility was actually analyzed in
Ref. 2 and then experimentally demonstrated using a thin
silver slab in Ref. 4. The second one was demonstrated in
Ref. 5 using a ferrite slab.

Regarding imaging in the quasimagnetostatic limit, a
promising application of metamaterial structures can be
found in magnetic resonance imaging (MRI) for medical
applications.ﬁ_lo In Ref. 6 a hexagonal array of metallic
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Swiss rolls was used as a “magnetic flux guide” in order to
translate MRI images from a source to a distant receiving
coil. In Ref. 7 a Swiss roll w,=-1 lens was proposed for
MRI applications. In Refs. 8 and 9 the applications of split
ring magnetoinductive lenses® for medical MRI were dis-
cussed. Later, a u,=—1 lens made of split rings was proposed
for the same application.10 These applications include im-
provement of surface coil sensitivity and acceleration of
measurement time in the frame of a parallel imaging process.
Split ring lenses with u,=—1 (Ref. 10) have the key advan-
tages over Swiss-roll lenses’ of three-dimensional (3D) isot-
ropy and sensitivity to axial magnetic fields. With regard to
magnetoinductive lenses,*’ split ring u,=-1 lenses' have
more complicated design, but this may be compensated by
smaller losses and improved sensitivity coming from the fact
that they do not operate at the split ring resonance, but well
above it, in the negative permeability frequency range.
Since nuclear MRI takes place in the megahertz fre-
quency range, a cubic array of capacitively loaded rings
(CLRs) (Ref. 11) is a suitable design in order to approach
ideal u,=-1 lenses in practice (CLRs were already used for
magnetoinductive lenses® operating in the same frequency
range). Since losses in the metamaterial are essentially given
by losses in its constitutive elements and vary inversely with
the electrical size of these elements,12 it is desirable from this
point of view to use electrically big CLRs for the design. On
the other hand, since according to Eq. (1) the minimum res-
olution cannot be made smaller than the slab thickness, there
is no reason to use more than two or three periods along the
slab width. From these considerations it comes out that the
better design for the implementation of an artificial u,=-1
lens for MRI applications contains only a few periods along
the slab thickness. Such system, however, can hardly be con-
sidered as a continuous medium and a specific description
must be developed in order to rigorously model its behavior.
According to the previous discussion, the main aim of
this work will be to develop a specific model for the analysis
of electrically thin periodic slabs of resonant split rings

© 2009 American Institute of Physics
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(a) (b)
TE plane wave
k=ky, + kz,
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d=2a a

FIG. 1. (a) Ideal slab of an effective magnetic medium with u=—pu,. (b) A
sketch of the proposed CLR implementation.

[which may include the aforementioned CLRs, as well as
split ring resonators (SRRs) (Ref. 13) or other similar ele-
ments] with the sight on imaging applications. At the present
state of the art it is possible to find, apart from the specific
models developed for the analysis of magnetoinductive
lenses,®’ some attempts of homogenization of thin metama-
terial slabs or layers. One of the directions is the analytical
calculation of the interaction constant inside double dipole
arrays,m"5 which finally leads to the definition of the effec-
tive material parameters for thin metamaterial slabs.'® This
method is not appropriate for the proposed application be-
cause it only takes into account normal incidence. Further-
more, it was developed for point dipole scatterers, which is
not appropriate for the analysis of practical lenses with
strongly coupled elements. Other possibility of homogeniza-
tion of thin slabs was proposed in Ref. 17. This method
derives the effective material parameters of a slab from the
effective material parameters of a 3D infinite lattice. Also
this method has two drawbacks for our purpose. First, the
homogenization of a 3D lattice is in many cases of the same
difficulty as the homogenization of a slab. Second, in order
to calculate the transmission and reflection by a slab, spatial
dispersion has to be taken into account.

To overcome the difficulties of the aforementioned ap-
proaches we will develop a model, which essentially is a
kind of two-dimensional (2D) generalized Lorentz procedure
including a detailed analysis of the magnetoinductive cou-
plings between nearest neighbors. The results obtained from
this model will be compared with those obtained from full-
wave electromagnetic simulations in order to validate the
analysis. They will also be compared with the results ob-
tained from the continuous medium approach in order to find
the limits of such approximation.

Il. THE CONTINUOUS MEDIUM APPROACH

Figure 1(a) shows an ideal u,=—1 lens for MRI applica-
tions. A practical implementation of this lens using CLRs,
which, according to our previous discussion, has only two
periods along the slab thickness, is sketched in Fig. 1(b). In
order to find the effective parameters of the ideal lens in Fig.
1(a) we can follow the homogenization procedure developed
in Ref. 18 [Eq. (13)], which takes into account magnetoin-
ductive couplings between rings. Let us then suppose that

J. Appl. Phys. 105, 024907 (2009)

this homogenization procedure applies and let us compute
the transfer function of the lens, that is, the transmission
coefficient between two planes at opposite sides of the lens,
separated by a distance 2d, where d is the lens width.
Clearly, in the ideal case of u,.=-1, this transfer function
must be equal to unity for any value of the transverse wave
number k, of the incident wave.

As mentioned above, the lens is supposed to operate in
the quasimagnetostatic limit, where all fields are almost
purely composed of evanescent TE modes. Let us then ana-
lyze the incidence of a TE plane wave, evanescent in the
z-direction, on the slab in Fig. 1(a). Fields of such wave are

Ez)nc — Ebnce](kyy+k7Z)X0,
inc

Hi()nC = . (_ kzyO + kyzo)ej(kyy”(ﬂ) s (2)
W

where k =\kj—k;, with Re(k,)<0 and Im(k,)>0. Taking
the reference planes on the source and image planes (i.e., at
two parallel planes located at both sides of the lens and sepa-
rated by a distance 2d=4a) the transmission coefficient of
the lens can be written as

4:“ ]ﬁejkzd
rkz
T= k 2 k 2 ’ (3)
e + _jkzxd j— <£ —_ ) ejkzsd
o v

Z

where k= ,u,,ké—ki is the longitudinal wave number inside
the slab with Re(k.,) <0 and Im(k_,) >0. Making use of this
approach, we have designed a w,=—1 split ring lens for op-
eration in a MRI 1.5 T machine (f=~63.85 MHz) according
to the design sketched in Fig. 1(b) with the lattice constant
a=15 mm. The CLRs were made of copper with metallic
strips etched on a nonmagnetic dielectric board. The CLRs
were loaded with lumped capacitors with normalized capaci-
tance C/(ae€y)=354 (470 pF). The normalized mean radius of
the CLRs was ry/a=0.329 (4.935 mm) and the normalized
width of the strips was w/a=0.145 (2.17 mm). The self-
inductance of the CLRs was obtained from the measured
value of the frequency of resonance in free space, whose
normalized value was kya=0.0199 (63.28 MHz). From this
value, the CLR self-inductance L:w%/ C was computed, hav-
ing the normalized value L/(au)=0.714 (13.5 nH). By mea-
surement of the quality factor of the resonator, the normal-
ized resistance R/(wyL)=0.008 69 (0.0465 (1), which
includes the effects of the ring and the capacitor, was ob-
tained. The permeability of a simple cubic lattice of such
SRRs was then calculated using the homogenization proce-
dure developed in Ref. 18 [Eq. (13)], and introduced in Eq.
(3) in order to compute the transfer function of the lens. It is
worth to note that strictly speaking, the analyzed CLR ar-
rangement is not isotropic as it does not follow the necessary
symmetries]9 due to the asymmetric location of the capaci-
tors on the rings. However, the electrical size of the CLRs is
so small (diameter/A=1/394) that they can be practically
seen as resonant closed current loops, supporting a uniform
current distribution. Therefore, the analysis reported in Ref.
18 can be applied to the proposed structure.
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The computed amplitude of the transmission coefficient
(3) is plotted in Fig. 2, as a function of the normalized fre-
quency koa and the normalized transverse wave number ka.
In the lossless case it can be seen that the transmission co-
efficient forms a flat valley between two steep cliffs, which
corresponds to the surface waves that can be excited at both
interfaces of the lens.® The frequency bandwidth of the val-
ley increases from zero width at ky,a=r to some finite width
when the incident wave exhibits normal incidence. The
transmission coefficient inside the entire valley has a value
very close to unity, which reflects the imaging properties of
the slab. The middle frequency of the valley corresponds to
permeability u,.=—1. When realistic losses are included, the
transfer function is strongly affected: both cliffs disappear
(for smaller losses, for instance, R=0.01 (), we can still find
some trace of them) and the spatial bandwidth (the allowed
values of kya) becomes smaller. Since the resolution of the
lens is limited by the minimum value of the allowed trans-
verse wavelength N\, =2m/k,, the presence of losses reduces
the resolution of the lens in agreement with our previous
discussion. Nevertheless, the results shown in Fig. 2 are still
very promising for MRI applications, as it will be shown in
Sec. IV. However, as it was mentioned above, this conclusion
is conditioned by the validity of the continuous medium
model, which is not clear for the analyzed structure. In Sec.
IIT we will develop a more accurate model and compare the
results with those obtained in this section.

lll. THE THIN SLAB MODEL

In this section a theoretical model of electrically thin
slabs made of 2D periodic arrays of SRRs will be developed.
The model will be particularized for the specific geometry
discussed in Sec. II. However, it will become apparent that
the analysis can be easily generalized to other similar con-
figurations, including one or more layers of resonant current
loops. The only limitations are a small electrical size of the
loops and slab thickness. In our particular example, the slab
is composed of a regular array of the unit cells shown in Fig.
3, which are periodically arranged in a square lattice of pe-
riodicity a over the x-y plane. It can be seen that each unit
cell contains seven resonators (in our specific example they
are CLRs, but other configurations, such as small SRRs, can
also be considered). Figure 3(b) shows the current loop

J. Appl. Phys. 105, 024907 (2009)

f/ MHz

FIG. 2. (Color online) Transfer func-
tion through the w,=—1 lens of Fig. 1
calculated using the continuous me-
dium model in Ref. 18. (a) Losses are
ignored (R=0 (). (b) Realistic losses
(R=0.0465 Q) are included in the
model.

0.020 0.021 0.022
k.a

model of the real structure in Fig. 3(a), where it is assumed
that each loop forms an RLC circuit® having self-impedance
Zy=1/(jwC)+jwL+R.

A. Circuit model of the slab

Let us assume now the incident wave (2) impinging on
the slab. This polarization was selected due to the particular
purpose of the example; however the analysis can be easily
modified for incident plane waves of any polarization and
phase shift in any direction. According to the model, each
unit cell of the slab is described by a current vector 1",
where superindices m and n indicate the location of the unit
cell in the x-y plane. Due to the assumed form of the incident
field it is I""=1%¢/%"¢_ The currents in the unit cell at origin
are driven by the magnetic flux across the different loops
according to

ZolP = - jo®®, i=1,....7, (4)

where the magnetic flux q)?o through the loops includes the
flux of the external magnetic field as well as the magnetic
flux created by all other loops in the lattice. Therefore, it can
be then written that

PP =0+ > MPI+ X D M (5)

JFEI mn#00 j

where M7;" is the mutual inductance between ith loop in 00th
cell and jth loop in mnth cell, and the summations extend
over all the unit cells. Although Eq. (5) is formally correct,
the last series are only conditionally convergent and cannot
be used in practice. To overcome this difficulty, the well
known Lorentz local field procedure21 will be applied. This
procedure, which for 3D structures leads to the well known

FIG. 3. (a) Considered unit cell made of CLRs. (b) Current loop model of
the unit cell.
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Clausius—Mossotti formula, has been successfully applied in
the past to the analysis of 3D metamaterial structures (see,
for instance, Ref. 3 and references therein) and, more re-
cently, it has been applied to the analysis of 3D metamateri-
als made of resonant current loops.'8 In this paper, a straight-
forward generalization of this procedure to the analyzed 2D
structure will be applied to compute the last summation in
Eq. (5).

Following the aforementioned Lorentz approach, the
whole metamaterial is divided in two regions: inside and
outside a circle (actually a flat cylinder) of radius R around
the 00th unit cell, i.e.,

¢?0=¢?xt+2Mgijoo+zquo S

JFEI i mn#00

m2n?<R2/a?

£ S M, (6)
J

mn jk na
Mij ety

where the term X j\/M;I?O represents the magnetic flux com-
ing from all the loops outside the circle.
Substitution of Eq. (6) into Eq. (4) then gives

(Zol + joM + joM*)I® = — jo®,

_ mn _jk na
M;;= E M;; e/mne,
mn#00
m>+n?<R*a*

ij _ 3400 mn jk na
MY =MP+ X M (7)

e mn#00

m2+n2<R%/a*

This equation can be solved provided M, M*, and the exter-
nal magnetic flux @ are known. Calculation of matrix M is
straightforward as its terms are given by summations of mu-
tual inductances between two current loops, which are ex-
plicitly calculated in Appendix A. The expression for M”
will be given in Sec. III C, assuming that the radius R is big
enough so that the contribution coming from all the unit cells
outside the circle can be seen as a continuous distribution of
magnetization. The details of these computations are left to
Sec. III C and to Appendix B; however, it is worth to men-
tion that the proposed procedure avoids all the problems re-
lated to the slow convergence of the last summation in Eq.
(5) because all series and integrals involved in the final ex-
pressions will be finite.

B. Transmission and reflection coefficient of the slab

The scattering of a plane wave by the considered slab is
characterized by the transmission 7" and reflection R coeffi-
cients. At the present stage of the analysis, Eq. (7) only gives
the currents on the loops along the periodic array. In order to
calculate T and R, the far field radiated by the loops has to be
calculated. In the far field region, the lens can be seen as
seven parallel magnetized surfaces, each of them carrying
the magnetization connected to each one of the seven loops
in the unit cell, altogether with its periodic repetitions along
the slab. Magnetization of each surface has the form

J. Appl. Phys. 105, 024907 (2009)

M =M/ 8z - z), (8)

where z; stands for the location of the layer along the z axis,
that is, zy=a, 2,=0, z3=—a, z4=z¢=a/2, and z5=z7=—a/2.

Radiation of these sources can be easily obtained by di-
rect inversion of Maxwell equations. Assuming a magnetiza-
tion layer at z=z; and B=u,(H+M), this results in

'w k M i PR
E = ]—2’“ 0 ( —Lk % — My, sgn(z— Zi)) el eiklil,

Z

2
]k M() . .
\= Msgn(z _ zi)efkyyeszlz z,|’

WE(

. 2
_ .]kkaMOX €j

kyy pikele=z] ,
2(080kz

E.=

Z

H. = _k(z)MO)c

: ' ey gikele=zi ,
2jk

4

H,= é[— keyMo, sgn(z — z;) + k.M, Je/s el

ik, k,M,, 0o
H = ]_X(‘—‘ % _ My, sgn(z - Z,-))ef"rye/"zz‘zi
2 Tk, )
- My 8(z 7). )

Now, according to the indices in Fig. 3(b), it can be easily
realized that only surfaces corresponding to loops 1, 2, 3, 4,
and 5 contribute to the radiated E, field component through

& 26> | k

Z Z Z

o) k, . k, . k, .
12345 _ Jﬂ[llleﬂ(zz—a + _xlze,kz|z| + ﬁ[3ejk2|z+a‘

a\ .
- sgn(z - 5)149”‘2'1‘“/2

and only surfaces corresponding to loops 6 and 7 contribute
to the radiated E, and E, field components through

2

JkeA a .

E6,7 — ekl g II(Z _ _)I e}kz|z al2|
Y 2wsyad® g 2)°¢

a .
+ sgn(z + 5)@@"?'“‘”} ,

. 2
KA iy

2wepk (Ige/ =2l 4 ekcleral2ly (11)
wWEnK A

67 _
EZ =

where A states for the surface of the current loop.

Now, taking into account the presence of the incident
wave, the reflection and transmission coefficients for the ref-
erence planes z=—2a and z=2a are given by
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12345, .
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In Eq. (12) superindices sign the co- and cross-polar compo-
nents. The presence of cross-polar components, not found in
homogeneous material slabs, is a consequence of the lack of
periodicity in the z-direction. The transmission and reflection
coefficients for the cross-polarized wave are, however, very
small in the analyzed structure, as it will be shown in Sec.
Iv.

C. Calculation of the magnetic flux created by far
neighbors

The last step before using Eq. (7) to calculate the in-
duced currents and, subsequently, T and RY coefficients, is
the calculation of matrix M”, which represents the coupling
of each unit cell with its far neighbors. For this purpose we
must evaluate the magnetic field over the unit cell at origin
created by unit cells outside a circular hole of radius R. This
situation is illustrated in Fig. 4.

Let us assume, following the procedure outlined in Sec.
IIT A, that the hole is big in comparison to unit cell (R>a),
that the unit cell is electrically small (kja <1, k,a<1), and
that the slab is electrically thin (kod<<1). In such case it is
possible to say that the field over the unit cell at origin,
created by neighbors outside of the hole, is almost uniform.
Therefore, the magnetic flux through the loops of the unit
cell will be ®;~Augn;-HY(0,0,0), where n; is the normal
to the ith loop and HY(0,0,0) is the magnetic intensity at
origin. Furthermore, since the slab is electrically thin, it can
be said that the field H¥(0,0,0) is radiated by a surface with
magnetization

J. Appl. Phys. 105, 024907 (2009)

FIG. 4. Tllustration of the slab with a hole of radius R.

Ic+1)xg+ (I, + 1 +(+1,+ 1)z
M:A(6 7)Xg + (Iy 5)2)’0 (I + I, + 1)z,
a

e’ 8(z)
=M,e/* 8(z), (13)

having a circular hole of radius R at the center. It may seem
that the field HY can be calculated by using free space
Green’s function for magnetic currents” and integrating over
the surface with the hole. Although this is possible, it has to
be taken into account that such approach leads to very poorly
convergent integrals that prevent any numerical solution.
This approach was used, for example, in Ref. 23 in case of
k,=0, where the poor convergence was overcome by finding
an analytical solution. Unfortunately, in the general case of
k,#0 there is no closed form solution of such integrals,
which prevents the generalization of such procedure. There
is, however, another possible approach that can be described
as follows: calculate the field created by a magnetized annu-
lus of outer radius R and inner radius € and subtract it from
the field created by a magnetized surface with a hole of ra-
dius €, assuming that € is negligibly small. Making then the
limit e—0 leads to the desired field HY. This procedure
slightly differs from the standard Lorentz procedure since the
field created by a surface of uniform magnetization has a
singularity on the surface. This singularity is avoided by the
subtraction of the fields created by a small circle of radius
€—0. The advantage of this procedure is that since e—0,
the magnetization of this last disk can be considered uni-
form, and therefore the fields can be easily computed. The
mathematical details of outlined procedure can be found in
Appendix B, where it is shown that

o0

FF FP F70 0 0 0
F" F° F°0 0 0 0
F* F° F°0 0 0 0
v D B
Me=E1o 0o 0o FF 0 0| (14
p s
0 0 0 F F 0 0
0 0 0 0 0 F F
00 0 0 0 F F

where F, F, and F_ are given by integrals (B8), which can
be easily evaluated.
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IV. NUMERICAL VALIDATION AND COMPARISON
WITH THE CONTINUOUS MEDIUM MODEL

In this section the results of the model developed
through Sec. III will be compared to full-wave numerical
simulations, carried out by the numerical CST Microwave
Studio electromagnetic solver. The comparison will be pro-
vided via the calculated transmission coefficient between
planes z=—2a and z=2a and the reflection coefficient at
plane z=-2a. For all the following calculations of the cou-
pling matrices M* and M a radius R=10a will be used. The
simulated slab is made of CLRs with normalized mean ra-
dius ry/a=0.34 and normalized width w/a=0.13. The nor-
malized self-inductance L=w?/C was computed from the
simulated frequency of resonance for several values of the
capacitance C, and the value L/(au)=0.79 was obtained.
The losses in CLRs will be neglected at this moment so that
all the resonance peaks are well visible.

First of all, the limits of the proposed model will be
studied. For this purpose the capacitance of the CLRs is var-
ied so that the mean diameter of the CLRs at resonance is
d/N=1/30, 1/50, 1/100, and 1/440. The transmission coeffi-
cients for all the above situations obtained from the theoret-
ical model, full-wave simulations, and effective medium
model (see Sec. IT) are depicted in Fig. 5. In all plots of Fig.
5 a normalized transversal wave number k,a=1/18 was im-
posed. The plots for CLRs with d/A=1/30 are depicted in
Fig. 5(a). It can be seen that although the theoretical model
reproduces the simulation better than the effective medium
model, the quantitative agreement is very poor. This is ex-
pected since it is known®* that the current induced on a con-
ducting loop can be considered approximately uniform only
if the circumference of the loop is smaller than \/10. There-

fore, the quantitative disagreements can be attributed to the
imprecise assumption of a uniform current over the CLRs.
This hypothesis is confirmed by the remaining panels of Fig.
5, where it can be clearly observed that as the CLRs become
electrically smaller, the quantitative agreement between
theory and simulation improves, reaching a practically per-
fect matching in Fig. 5(d). Noticeably, Fig. 5 also shows that
the effective medium model provides a reasonable first order
approximation for small CLRs, even though it shows a sys-
tematic frequency shift with regard to simulations. This fre-
quency shift is present for any electrical size of the CLRs.
Therefore it seems to be a consequence of the small number
of unit cells through the slab, regardless of the size of the
CRLs.

After the validation of the proposed model, the analysis
will be focused on the slab made of CLRs with d/A
=1/440, which is close to the slab proposed in Sec. II for
MRI applications. To study the imaging properties of this
slab, the transmission coefficient will be plotted for several
values of the transversal phase shift. Figure 6(a) shows the
result of the effective medium model and Fig. 6(b) shows the
results of the model of Sec. III. As it was already mentioned
in Sec. I, a T=1 valley appears between two peaks in both
cases. These peaks are approaching each other when the
transverse phase shift increases; however it can be seen that
there is always a region common to all curves. When dealing
with effective medium model, this common region precisely
corresponds with permeability around u,.=—1 and lies just in
the middle between both peaks. The model in Sec. III cor-
rects this scenario, showing that this common region is
shifted to lower frequencies when the transverse phase shift
increases and it is no more centered. However, in both cases,
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a frequency band of T=1 is present for moderate values of
the transverse phase shift, which confirms the usefulness of
the proposed design for MRI applications. Figure 7 shows
the transmission and reflection coefficient of the lens. It re-
veals that an optimal point of minimum reflection appears
just at the expected frequency of operation of the lens.
Finally, cross-polarization effects will be investigated.
As it was already mentioned in Sec. III B, the analyzed slab
produces not only copolar but also cross-polar components
of the transmitted and reflected waves, as it can be seen from
Eq. (12). In order to illustrate this effect, the transmission
coefficients 7" and 7°* are plotted in Fig. 8 for a normalized
transversal wave number kya=1/18. It can be observed that
especially in the region of interest, the cross-polar compo-
nent is approximately two orders of magnitude smaller that
the copolar one, having thus a negligible influence. Similar
conclusions are reached for other transversal wave numbers.

V. CONCLUSION

A rigorous model has been proposed for the description
of electrically thin metamaterial slabs made of resonant cur-
rent loops. This includes electrically small capacitively
loaded loops, SRRs, and other related configurations. This
model allows for the computation of the transmission and
reflection coefficients of any kind of propagative and/or eva-
nescent incident plane wave, and is specifically well suited
for the analysis of imaging applications of such slabs.

10*

transmittance
10° 4 — — - reflectance

10° 1
10

10°

Transmittance and reflectance

0.018 0.019 0.020

k,a

FIG. 7. Amplitude of transmission and reflection coefficient obtained from
the model of Sec. IIl. The normalized transversal wave number is k,a
=/18.

The reported model has been compared with numerical
full-wave electromagnetic computations, and a good agree-
ment has been found provided the hypothesis underlying the
approximation is fulfilled. Specifically, it has been found that
the proposed model remains valid, provided the size of the
current loops is small enough to guarantee an approximately
uniform current distribution along the loop. It has been also
compared with the continuous medium model of the slab.
The main conclusion of this comparison is that this last
model provides a qualitative description of the electromag-
netic behavior of the slab, even for thicknesses including a
number of unit cells so small as two. Quantitatively, the con-
tinuous medium model fails by a small amount even for very
small current loops, as a consequence of the small number of
unit cells across the slab. In such situations, the main braw-
back of the continuous medium model is a non-negligible
frequency shift in the transmission and reflection coefficients
through the slab.

Applications of the above concepts in the design of
metamaterial magnetic superlenses are envisaged. Specifi-
cally, medical applications in MRI can be foreseen. These
applications could result in a meaningful increasing of the
sensitivity of surface coils, reduction in image acquisition
times, and improvement of parallel imaging techniques.

1 4
0 direct

— — - crosspolar

10°-

10

Transmittance
N
<
\

10°

10*
0.017

0.018 0.020

FIG. 8. Amplitude of transmission coefficient obtained from the model of
Sec. III. The solid line represents direct copolar transmission, while dashed
line represents transmission through cross-polar component. The normalized
transversal wave number is k,a=1/18.
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APPENDIX A: MUTUAL INDUCTANCE OF TWO
CURRENT LOOPS

For orthogonally oriented loops the parametrization of
each current loop can be written as

dl = ro[Xy(=n, sin @+ n, cos @) +yo(n, cos a—n, cos a) - zy(n, sin a+n, sin a)]da.

J. Appl. Phys. 105, 024907 (2009)

x=ro(n, cos a+n, sin a) +x;,
y=ry(n, sin a—n, sin @) +y,,
z=ry(n, cos a+n, cos a) +z,,

a e (0,2m), (A1)

where n,, n,, and n_ are the components of the unit vector
normal to the loop; x,, y,, and z, are the coordinates of its
center; and ry is the radius of the loop. The element of length
in parametrization (A1) is given by

(A2)

The mutual inductance between two loops can now be calculated using the Neumann formula® as

e~ kop
M=@J f dl, - dl,,
4 LJvy P

p= \"/[xl(al) —xz(az)]z +[yi(ey) - )’2(012)]2 +[z1(a)) - Zz(az)]2~

For numerical calculations it is very convenient to rewrite
Eq. (A3) as

e~kor _ ] 1
M:@f f —dll-d12+ﬂf J ~dl, - dl,.
4m LYy p 4 L'y P

(A4)

In Eq. (A4) the second integral (static part) does not depend
on frequency and can be evaluated only once in whole fre-
quency sweep. The first integral (dynamic part) has to be
evaluated for each frequency. However the integrand is a
very slow varying function (especially when kop<<r/2, the
integrand is practically a linear function), so only a few in-
tegration points are needed, which drastically fasten the cal-
culation.

APPENDIX B: CALCULATION OF THE FIELD
HM(0,0,0)

Let us assume a problem of negligibly small hole of
radius € cut in the magnetized surface. Such problem can be
solved by subtracting the field of a disk of radius € from the
field of a full magnetization surface given by Eq. (9). Since
the disk is negligibly small it is k,€<<1, and the field in its
center can be approximated by the field of a uniformly mag-
netized disk, a problem that is solved in Appendix C. It can
be found that the field at the center of such disk is

- —jkoMy, 1 1 ;
Hglbk €_ % + Z(Jko _ ;>Moxe—jkoe,
. — jkoM, 1 1 .
HC!lSk €_ — JkoMoy + = jko—— | M, ,e_JkOE’

Y 2 4 e/

(A3)

, 1 1 j
Hngk E:—Mozé(Z:O)"‘E(jkO"-;)Moze_JkOE' (Bl)

In Eq. (B1) it can be seen that the z-component of the field is
divergent. However, it will be shown that this fact does not
introduce any difficulty if the term &(z=0) is treaded in sym-
bolic way. Subtracting Eq. (B1) from Eq. (9) we can write
the field in the center of hole of radius € as

—kM,, koM, 1 1 ,
Hiole e_ o. ox JRoMox —(jko _ _>M0x€_jk08,
2jk, 2 4 e
e J JkoMo,
HY*© ® = 5[— k,M,, sgn(z=0) + k.M,] + 5

1<'k 1>M Iko?
— -_—— e s
4 JKo e Oy

ik, k.M
leqole & =-]_,X(_V_07 _MOy Sgn(z:())) —
2\ &,

> (B2)

1( _ 1) s
—\ jko+ — | M. e™/"0%.
€
The problem of the terms sgn(z=0) in Eq. (B2) can be
solved as follows: assume that there is only magnetization
M. In such case there is an x-y magnetic wall at z=0 and
H, must vanish on it. This means that we can take sgn(z
=0)=0 for H, components. In a similar way, when there is
only magnetization M,, there must be an x-y electric wall at
z=0 and H, must vanish on it. This means that we can take
sgn(z=0)=0 for H, component. Finally we obtain
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Hhole € _-]k(% Jko 1 ( ik 1 ) —ikoe | M
=|—+—-- —-— e ,
Tl T2 eV ox

e ik ke 1f 1)
H;:l = _Z+_—_<]k0—; e Jkoe Moy,

272 74
C
jks 1. 1y
yhole e _ | 22y _<Jk0+ _)e .Ik08:|M0 . (B3)
Tk 2 e )

The final step is now to subtract from Eq. (B3) the field in
the center of an annulus with outer radius R and inner radius
€. The field of such annulus can be solved by direct integra-
tion of the magnetic current Green’s function, which leads to

M, (* ik,
o [ - 252

y

La +jkop)(3fl(kyp)

2 kyp

—Jy( k, p)) }e—jkoﬂd P,
p

,  Ma (R LT (K 1+ jk,
H;nnulus = _Oxf {k(z) 1( yp) + ( Jz Op) (210(k\p)
2 J, kyp P ’
_ 3J, (kXP) ) } e‘jko”dp,
kyp

annulus M(), K (1+Jk0P) —_i
| {ké-T Jolkyp)e P dp.

(B4)

Subtraction of Eq. (B4) from Eq. (B3) gives the field
HM(0,0,0) at the center of the circular hole of radius R. The
integrals in Eq. (B4) can be solved numerically; however the
numerical solution is difficult due to the divergent behavior
of the integrands for p=0 (note that it is assumed that ke
<1). However, this problem can be easily solved. The inte-
grals in Eq. (B4) have a closed form solution in the case of
ky:O, which reads

My, (* 1+ jk . M
G, = %f {k% + ( Jz oe) }e_]kopdp= %{(jko
& p
1 . 1 .
_ — | pmJkoR + (_ ikn + —) —jkoe )
Bl )
My, (* 1+ jk , M,,
G == 2+ M eTkoPdp = Oy jko
y 4 0 pZ 4
1 . 1 .
—— |ekoR 4 (— ko + —) EACH
el
My, (* 1+ jk : M
G.= 20“ f {ké_( p]2 Op‘)}e‘f"o”dp= 20Z{(jko
L) g ) LYy e
+I—e e Mot 4 —]ko—; e™roe (B5)

Now, we can add the right-hand part and subtract the left-
hand part of Eq. (B5) from Eq. (B4), which leads to

J. Appl. Phys. 105, 024907 (2009)

M,, (¥ J(k 1
s - — O f {k(2)<-]0(kyp) k) —)

2 kyp 2

L4 +J'kop)(311(kyp)

—Jo(kyp)
p2 kyp y

1 . M 1 .
2)}"” 4{(];(5)
1 )
(—jko + _>€_jk08} N
&

Hannulus — %XIR kz(h(k!P) _ 1)
’ 2 ), U\ kp 2

L +j2kop) (2 Jop) — 3J,(k,p)

kyp

e g
S
— jko+—|e7M0% ¢,
€

My, (* 1+ jk .
szmnulus — %f {k% _ (p+0p)}{‘]0(kyp) _ 1}6—.Ikopdp

My, ( 1)_“ ( , 1)_.k
+ ko+ — e 0% + | = jkg— — |eM0% .
Z{JORe ]086

(B6)

Field (B6) is identical to Eq. (B4), but now all the integrands
tend to zero for p—0 and all integrals in Eq. (B6) can be
numerically evaluated without difficulty. Finally the subtrac-
tion of Eq. (B6) from Eq. (B3), taking into account Eq. (13),
leads to

F* F* F* 0 0 0 0

F* F F0 0 0 0

JF2 0 0 0 0
M“:”zf 0 0 0 F F 0 0|  (BY)

0 0 0 F F 0 0

00 0 0 0 F F

0 0 0 0 0 F F
where

k2 ik, 1 1\ .
F;OZ {]_0+]_0—_(jko—_>e_1k0R]
2k, 2 4 R

1(® Ji(kyp) 1
A {eloono- 2]

y

. (1 +j2kop) [3J1(kvp) ~Jy(kyp) - l]} e—jkopdp},

p kyp 2
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k. jko 1(. 1) »
FP=4 | = +2= =~ jky— — |77k
y [2 2 T4\ TR/
1 (" Jikyp) 1| (1+jkop)
_EJ kﬁ[l—kL—E + 52| 2Jo(k,p)
p WP p
2 1]}
kyp 2
k2 1 1\ . 1 [k
F'= ’—L——(jk0+—)e-fkoR ——f kg
2k, 2 R 2,
_ (1 + jkop)

< }[Jo(kyp) — e rdp (B8)

All integrals in Eq. (B8) converge even for e=0. Making €
— 0 leads to the exact solution.

APPENDIX C: MAGNETIC FIELD IN THE MIDDLE OF
A UNIFORMLY MAGNETIZED DISK

Assume that the disk of radius € carries a uniform mag-
netization

M=M,dz). (C1)

The magnetic intensity produced in the disk center will be
obtained in two steps. First of all, setting k,=0 in Eq. (9), we
obtain the magnetic field intensity radiated by an infinite
surface of magnetization M,

= jkoMo, _;
= 2SR 0x —jile]

Hy
= Me—jko\z\’
H,=—-My,82). (C2)

Then, it is assumed that there is a circular hole of radius € on
the surface of magnetization (C1). Since k,=0, this problem
can be solved directly by integration of the magnetic Green’s
function. Introducing polar coordinates and using the identity

J. Appl. Phys. 105, 024907 (2009)

—jkop .
i(e 0 ) _ 1 +]2k0pe_jk0p’
ap\ p p

it is found that the magnetic field intensity in the middle of
the hole is

100 10 0
1. 1 P
H={=jkf0 1 0[+-[0 1 0 |jMeeoe. (C3)
002 loo -2

Now, by subtracting Eq. (C3) from Eq. (C2) we can easily
obtain the field in the middle of uniformly magnetized disk
of radius e.
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In this work some possible applications of negative permeability magnetic metamaterial lenses for mag-
netic resonance imaging (MRI) are analyzed. It is shown that using magnetic metamaterials lenses it is
possible to manipulate the spatial distribution of the radio-frequency (RF) field used in MR systems
and, under some circumstances, improve the sensitivity of surface coils. Furthermore a collimation of
the RF field, phenomenon that may find application in parallel imaging, is presented. MR images of real
tissues are shown in order to prove the suitability of the theoretical analysis for practical applications.
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1. Introduction

Metamaterials are artificial composites whose electromagnetic
properties can be engineered to achieve extraordinary phenomena
not observed in natural materials as, for instance, negative effec-
tive permittivity and/or permeability [1]. Effective permittivity
and permeability of metamaterials arise from their structure rather
than from the nature of their components, which usually are con-
ventional conductors and dielectrics. Metamaterials are usually
manufactured by means of the repetition of resonant elements to
constitute a periodic structure. An essential characteristic of
metamaterials is that both the size of these elements and the peri-
odicity are smaller than the wavelength of the electromagnetic
fields that propagate through the structure, so that an effective
permittivity and permeability can be defined through the appro-
priate homogenization procedure [2]. One of the most striking
properties of metamaterials is the ability of a metamaterial slab
with relative permittivity ¢ and relative permeability y,, both
equal to —1, to behave as a “super-lens” with sub-wavelength res-
olution [3], that is, with a resolution smaller than the free-space
wavelength of the impinging radiation. Although this effect is se-
verely limited by losses, it is now well supported by many experi-
ments and theoretical calculations (see, for instance, [2] and
references therein). Interestingly, if the frequency of operation is
sufficiently low, as it happens in MRI, we are in the realm of the
quasi-statics, and we only need a metamaterial slab with & = —1

* Corresponding author. Fax: +34 954239434,
E-mail address: freire@us.es (M.]. Freire).
URL: http://alojamientos.us.es/gmicronda/Miembros/Freire/freire.ntm  (M.].
Freire).

1090-7807/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmr.2009.12.005

or u, = —1 (depending on the electric or magnetic nature of the
quasi-static field) in order to observe this effect [3]. Therefore, if
we place a i, = —1 metamaterial slab between a RF magnetic field
source (for instance an oscillating magnetic dipole) and a receiving
device (for instance a MR surface coil) the slab will image the
source towards the receiver, which will “see” the source closer
than it actually is, thus detecting a stronger signal. It is clear that
this mechanism can be applied to improve the sensitivity of MR
surface coils as far as the additional noise introduced by the device
will not compensate the gain in the signal. As it has been just ex-
plained, i, = —1 metamaterial slabs have the ability to virtually
“approach” the source to the detector. As it will be shown in this
paper, this can be useful not only to improve the signal, but also
to provide a better localization of the field of view (FOV) of the
detector, with potential applications in parallel imaging. Of course,
in order to take advantage of all these capabilities, metamaterials
should not interact with the static magnetic fields used to codify
the oscillating magnetic dipoles in MRI. Fortunately, as it was al-
ready mentioned, metamaterials are usually made of conventional
dielectric and conductors, so that the compatibility with static MR
magnetic fields can be achieved by using non-magnetic conductors.

The interesting properties of most metamaterials occur in a
very narrow band of frequencies due to the resonant nature of
the elements that constitute the periodic structure. This narrow
bandwidth is usually cited as one of the main limitations for meta-
material applications. However, it is not a problem for MRI applica-
tions, because MR images are acquired by measuring RF signals
inside a relatively narrow bandwidth of a few tens of kilohertz.
In addition, since the wavelength associated with RF fields is of
the order of the meters, it is possible to use conventional printed
circuit techniques to develop quasi-continuous metamaterials
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with constituent elements and periodicities two orders of magni-
tude smaller than the wavelength.

Application of metamaterials in MRI has been explored previ-
ously in several works [4-11]. Basically, two types of metamateri-
als which correspond to two different resonant elements have been
used for MRI applications. The first group are swiss roll metamate-
rials [4-8]. A swiss roll consists of a conductive layer which is
wound on a spiral path around a cylinder with an insulator sepa-
rating consecutive turns. Reported experiments [4,5] proved that
swiss roll metamaterials can guide the RF flux from a sample to a
remote coil. The guiding behavior is due to the high effective per-
meability of the metamaterial. The reported experiments also
proved that these metamaterial guides can be employed in imag-
ing [4] and spectroscopic [5] experiments for excitation as well
as reception. In all these applications, the swiss rolls metamaterials
mimic a medium with very high magnetic permeability at the
proper frequency. A 2D log-pile structure of swiss rolls, which
mimics a two-dimensional ¢, = —1 medium was also used to dem-
onstrate sub-wavelength imaging of a pair of parallel wire currents
[6], but no direct application to MRI of this device has been re-
ported up to the date. The other group of metamaterials which
have been applied to MRI are capacitively-loaded split ring metam-
aterials [9-11]. A capacitively-loaded split ring is a small open ring
of copper which is loaded in the gap with a capacitor. Of course,
this capacitor has to be non-magnetic for MRI applications. Split
rings have the key advantage over swiss rolls of providing three-
dimensional (3D) isotropy when they form a cubic lattice [9,10],
which is an essential property if the device has to image 3D
sources. A split ring is similar to a very small parasitic MR coil.
However, whereas a MR coil works at resonance, the working fre-
quency of split rings in a i, = —1 metamaterial lens differs from its
frequency of resonance [9,10], which also helps to reduce losses
and noise. It is the collective behaviour of split rings what provides
the relative effective permeability equal to —1 [10]. Split rings
were used as the constituent elements of a 3D lens that was fabri-
cated and tested in a 1.5T MRI system [9]. Fig. 1 shows a photo-
graph of this device. Almost simultaneously, an accurate model
for this design was developed, which showed the consistency of
the continuous medium description of the device [10]. The goal
of this design was to provide a permeability x, = —1 at the Larmor
frequency of the MRI system. The reported experiment [9] showed
the capability of a 4, = —1 metamaterial lens to improve the signal
detected by a surface coil for a particular configuration, but did not

5
g
oy
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Fig. 1. Photograph of the metamaterial lens and reflector. The lens consists of a 3D
array of capacitively-loaded copper rings with 18 x 18 x 2 cubic unit cells
containing a total of 2196 rings. It has been designed to exhibit a permeability
equal to —1 at the Larmor frequency of 63.87 MHz in a 1.5 T system. The reflector
consists of a 2D array of 14 x 14 rings which constitutes the first layer of a high
permeability metamaterial slab.

provide a systematic analysis of the capabilities of such metamate-
rial lenses for MRI applications. The main aim of this work is to
provide this analysis.

The paper is organized as follows: first, a theoretical model
based on a continuous medium approach is developed. Using this
model, the sensitivity, the signal-to-noise ratio (SNR) and the
FOV localization provided by y, = —1 metamaterial lenses are ana-
lyzed in several situations. Inspired by this analysis some experi-
ments were designed and carried out in order to test the
conclusions derived from the analysis. Finally, potential future
applications of metamaterial lenses for MRI will be discussed.

2. Model

The main aim of this section is to develop a method for the com-
putation of the signal, the noise, and then the SNR detected by a
surface coil in the presence of a metamaterial slab placed at several
distances. The analysis will include configurations that mimic the
experiments reported in [9] and [11], as well as other potentially
useful configurations. Through the analysis it will be assumed that
the metamaterial slab behaves as an effective homogeneous med-
ium with some effective permittivity and permeability. To demon-
strate that the device shown in Fig. 1 actually behaves as an
effective homogeneous medium is outside the scope of this paper,
and furthermore this was shown in detail in our previous work [9-
11]. Although the analysis could be done, in principle, by using a
conventional electromagnetic solver, our experience is that these
solvers have difficulties to deal with effective media of negative
permeability, particularly those close to p, = —1. Therefore, a spe-
cific code has been developed for this analysis. In order to simplify
the following discussion, Fig. 2 shows the structure under analysis.
This structure includes a coil of average radius p, made of a loss-
less metallic strip of width w and negligible thickness. The coil is
placed at certain distance of a piecewise homogeneous multilay-
ered medium with the coil axis perpendicular to the layers. The
layers have a thickness t and an arbitrary complex permittivity &
and permeability y, and depending on the values of these param-
eters they can model either the u, = —1 lens, a specific tissue, or
air. This simplified model has the advantage of an easy analytical
solution, and we feel that it retains the most salient features of real
experiments, at least qualitatively.

The first step in the analysis is the computation of the signal re-
ceived by the coil. According to reciprocity theorem this signal is
proportional to the B; magnetic field produced by the detector
when it is driven by a unit current [12]. We begin with the calcu-
lation of the B; field by considering a current density given by

Io(p:2) = Ko(p)o(2) (1)

Fig. 2. Model for the analysis of the sensitivity and the SNR of a circular coil in
presence of a metamaterial slab and one or more samples. The coil is modelled by a
flat perfect conducting strip. The complex permittivity and/or permeability of each
layer of thickness t models either the metamaterial lens or the tissue.
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where K, (p) is the surface current density on the ring. This surface
current density is approximated by a Maxwellian distribution in the
ring cross-section as

“1/2
K, =Ko (1 - <pw_/§°>2> (2)

which gives quite good approximation for the actual current distri-
bution on the metallic strip provided that the ring radius is not too
small.

In order to compute the magnetic field, the equation for the vec-
tor potential A must be solved

AA + KA = — i, 1) 3)

where k accounts for the wavenumber. This equation has to be
solved at each layer and the boundary conditions have to be satis-
fied. Since the studied system has angular symmetry, Eq. (3) can
be easily solved with the help of a Hankel transformation of the first
order. Particularly, in the layer containing the coil, the transformed
equation has the following shape

Pho 25— K 4
pr) +kAp = —0(2) U 1K (4)
where

k=1 -k (5)

and k, is the spectral wavenumber associated with the transverse
coordinates x, y, and the tilde above the quantities denotes Hankel
transformation. Eq. (4) can be easily solved giving

Ap(ky,2) = C (ky)es (6)

MMy iz
~Tok, ¢ K (k) +
where the first summand in the second term of Eq. (6) represents
the excitation, and the second one represents the reflected wave.
In the remaining layers, the corresponding equation is the expres-
sion in Eq. (4) without the source term, and the solution is

A, = CF(ky)e e 4 C(k,)el. (7)

The unknown coefficients C*(k,), C” (k,) can be determined for each
layer by imposing the appropriate boundary conditions, specifically,
by enforcing the continuity of the tangential components of the
electric and magnetic fields on each boundary. After the unknown
coefficients C*(k,), C”(k,) have been determined, the magnetic field
is know at every point in space.

As it was already mentioned, the signal is proportional to the B,
magnetic field produced by the coil when it is driven by a unit cur-
rent. On the other hand, the MR noise is proportional to the square
root of the noise resistance R associated with the sample [13]. In
our analysis the coil is assumed to be lossless, which means that
both the coil losses and the MRI system losses are excluded from
the analysis. Therefore the computed noise will be a sort of intrin-
sic noise [14]. Since we are interested in the comparison of the SNR
given by different configurations, taking into account that the SNR
is proportional to B; /R, in our analysis we will compute and com-
pare this quantity for the different configurations. This quantity
can be seen as a sort of normalized SNR. For the sake of simplicity,
we will term SNR to the quantity B; /R, but the previous consid-
erations must be taken into account in order to get a correct inter-
pretation of the results.

Once the magnetic field is calculated, the next step is the com-
putation of the noise resistance R. Usually, this resistance is calcu-
lated from the power dissipated by the eddy currents J° induced in
the sample as:

R= Re [/] -Ecdv} ®)
> Ly

where E€ is the electric field induced by the coil, and I is the current
intensity, which is set equal to unity. In our analysis, we use reci-
procity theorem ([15], pp. 116) to obtain this resistance from the
reaction between the current in the coil J° and the electric field re-
flected by the sample E', which is defined as the field created by all
currents in the multilayer medium (that is, all currents in the sys-
tem, except the imposed current on the coil):

#Re [ /V I Efdv}. (9)

Particularly, for the case presented above, this resistance can be cal-
culated as

,7WRe[/ K, E, pdp} (10)
which can be advantageously rewritten using Plancherel-Parseval
theorem as

R:—WRe{/ Kw E(Pk dk,,} (11)
Once the noise resistance R has been computed, the normalized SNR
given by B; /R, can be readily computed, which ends our analysis.

3. Results
3.1. Numerical results

Following the method described above, the signal and the SNR
for a surface coil of 3 inch in diameter and a strip width of 1 cm,
have been computed at the frequency of 63.87 MHz corresponding
to the Larmor frequency of a 1.5 T MRI system, which is the type of
system used in the experiments reported in this work. According to
the previous analysis, the sample is modelled as a lossy layer with
a complex permittivity whose real and imaginary parts are given
by the mean values corresponding to human tissues [16]. The lens
is modelled as a layer with a complex permeability whose imagi-
nary part accounts for the losses. Fig. 3 shows on the left side a
sketch of the two different configurations analyzed in this section.
In one of them the coil is placed at certain distance d of a semi-infi-
nite lossy media (no lens case in the figure) which models the sam-
ple. In the other configuration the coil is placed at the same
distance d from the lens and this lens is in contact with the sample.
In our calculations the lens was modelled as a 3 cm thick slab with
a complex permeability p, = —1 — j0.25, which corresponds to the
realistic values calculated for the lens shown in Fig. 1 from previ-
ously developed models [10,17]. The sample was modelled by
using an average value for the permittivity of human tissues,

=90 — j197, whose imaginary part corresponds to a conductiv-
ity of 0.7 S/m at 63.87 MHz [16].

Fig. 3a shows the signal (the axial magnetic field) along the coil
axis for a distance d = 1 cm. The solid line in Fig. 3a (no lens case)
corresponds to the signal provided by the coil in the absence of the
lens. The dashed line (realistic lens case) corresponds to the signal
provided by the coil with the lens placed between the coil and
the lossy media. Finally, the dotted line (low-loss case) corresponds
to the signal provided by the coil in front of a hypothetical lens
with an imaginary part of the permeability one order of magnitude
smaller than for the realistic lens. As expected, the comparison be-
tween the different curves shows that the signal with the lens is al-
ways larger that the signal without the lens for the same distance
d. The dip in the signal observed for the low-loss case is due to the
strong oscillations of the magnetic field at the output interface of
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Fig. 3. On the left side it is shown a sketch of the configurations which are theoretically analyzed, a coil of 3 inch in diameter with a strip width of 1 cm at certain distance d of
a semi-infinite lossy media and the coil at the same distance from a lens, which is placed in contact with the lossy media. On the right side it is shown the calculation of the
magnetic field per unit current along the coil axis in these configurations for (a) d = 1 cm and (b) d = 6 cm. The SNR of the coil is also shown for (c)d =1 cmand (d)d = 6 cm.

The lens is modelled as a slab with a complex permeability p,

the lens [2]. Fig. 3b shows the signal for a distance d = 6 cm, with a
qualitative behavior similar to that shown in Fig. 3a.

The normalized SNR corresponding to the cases analyzed in
Fig. 3a and b are shown in Fig. 3¢ and d, respectively. It can be seen
that for the smaller distance, d =1 cm, the SNR is lower in the
presence of the lens than in the absence of it. However, for larger
distances, such as d = 6 cm, the SNR becomes systematically high-
er when the lens is present (numerical computations not shown
here prove that this improvement is even better for higher dis-
tances). It is worth to mention that this behavior is almost un-
changed when losses in the lens are reduced by an order of
magnitude, as it is shown in Fig. 3d. Only at very small distances
of the lens there is a systematic improvement of the SNR, associ-
ated to the aforementioned oscillations of the field. Therefore,
reducing lens losses—for instance, using superconducting split
rings [18] (in this case the different temperature of the sample
and the lens should be taken into account in the analysis)—is not
enough to systematically improve the SNR over the no lens case
when the coil is near the lens (and the lens near the sample). From
field computations we have realized that this fact is related to the
very high values of the induced fields at the interface between the
lens and the sample that appear in the low-loss configuration.
These strong fields cause a strong dissipation in the sample, and
therefore a substantial increase of noise. The presence of such
strong fields at the lens-sample interface is a well known effect
in low-loss metamaterial lenses (see, for instance, [2] and refer-
ences therein) which is related to the strong variations of the mag-
netic field at the input lens interface (the interface closer to the
coil) when the coil is near this interface.

From the results reported in Fig. 3 and from the above consider-
ations, it can be concluded that, as far as the lens can be modelled
as a continuous medium with u, = —1, the presence of the lens al-
ways improves the signal, but (except very near the lens) it only
improves the SNR when the coil is placed at some distance of the
lens. When the coil is placed near the lens, the SNR is not im-

—1—j0.25 and the lossy media has a complex permittivity & = 90 — j197. The frequency is 63.87 MHz.

proved, although it remains of the same order as in the absence
of the lens.

From systematic numerical calculations and experiments (not
shown in this work) it is concluded that, as a rule of thumb, the dis-
tance between the coil and the lens should be at least equal to the
diameter of the coil in order to ensure an improvement of the SNR.
Since the configuration in the experiment previously reported by
the authors [9] fulfils this requirement, the analysis is now ori-
ented to a configuration that resembles this experiment. The
experiment consisted of placing the lens between the knees of a
volunteer in order to image both knees with a 3-inch coil placed
near one of the knees. Fig. 4 shows in logarithmic scale the normal-
ized SNR for the same coil geometry as in Fig. 3 but with the lens
placed between two lossy slabs (noted as tissue in the figure)
which may represent the knees in the reported experiment [9] or
any other tissue. The curves in the figure show that the SNR in
the slab closer to the coil is the same regardless the lens is present
or not. However, the SNR is highly improved for the slab beyond
the lens in comparison with the situation where the lens has been
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Fig. 4. SNR along the axis of a coil placed in front of two lossy slabs of 10 cm of
thickness separated by a lens of 3 cm.
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replaced by an air layer of the same thickness. The reported results
clearly show the improvement of the SNR when the lens is placed
between the lossy layers.

Since the sensitivity of surface coils strongly decays with dis-
tance, it will be useful if, on the basis of the previous concepts, it
can be developed some way of reducing this decay. This can be
possible by backing the lens with a magnetic wall, that is, a med-
ium with a large value of the permeability (which, in practice,
could also be another metamaterial slab). According to image the-
ory in electromagnetism, this configuration will create an “image”
beyond the magnetic wall composed by an identical lens and an
identical coil, carrying the same current as the original one. There-
fore, the magnetic field (and the signal) in the region of interest
will be increased by the presence of these additional coil and lens.
Fig. 5 shows the SNR along the coil axis for this configuration when
the lens is backed by a magnetic wall and when the lens and the
magnetic wall have been removed. The comparison between both
results makes clear the increasing of the SNR in the region between
the coil and the lens at distances where the coil sensitivity has de-
cayed appreciably in the absence of the lens. This result is experi-
mentally checked in the following section.

Probably the most studied property of metamaterial lenses is
their ability to improve the discrimination between the fields com-
ing from two independent sources [3]. Translated to MRI terminol-
ogy, this property implies an improved localization of the FOV of
each coil in an array of surface coils, a fact that could find applica-
tion in parallel imaging [19]. Some numerical computations carried
out using the method described in the previous section are shown
in Fig. 6. This figure shows the B; field produced at 6 cm inside a
lossy semi-infinite media by two rectangular coils with dimensions
of 7x23cm? and with their centers separated 10 cm. These
dimensions correspond to the coil geometry used in [19]. The coil
array is placed at 1.5 cm from the sample and at the same distance
of the lens analyzed in this work, which is then placed on the sam-
ple, as it is shown in Fig. 6a. The results in Fig. 6b and c shows that
the field pattern of each coil can be distinguished much better
when the lens is present than when it is not. In other words, the
lens improves the localization of the FOV of each coil in the array.
As it is expected from the previous results—Fig. 3c—this should not
imply a significant loss in the SNR.

3.2. Experimental results

First, for the purpose of illustrating how a ¢, = —1 metamaterial
lens does really transfer the field pattern of a source beyond the
lens, Fig. 7 shows a sketch of a simple experiment and the MR
images obtained in this experiment where a coil of 16 cm in diam-
eter is placed on a saline solution phantom—Fig. 7a—and then a
lens of 3 cm in thickness is placed between the coil and the phan-
tom—Fig. 7b. The MR images were obtained in a Siemens Avanto
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Fig. 5. SNR along the axis of a coil with a lossy slab of 10 cm of thickness placed
between the coil and the lens backed by a reflector.
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Fig. 6. Plots of the calculated sensitivity at 6 cm inside a lossy semi-infinite slab
(& =90 —j197) for two rectangular coils with dimensions of 7 x 23 cm—dimen-
sions of the coil geometry used for PILS demonstration [19]—and with their centers
separated 10 cm. (a) Sketch of the configuration. (b and c) Images when the coils are
placed at 1.5 cm from (a) the sample and (b) when they are placed at the same
distance from the lens. The field pattern of each coil can be distinguished much
better when the lens is present, which suggests the use of the lens for parallel
imaging.

1.5 T system (Siemens Medical Systems, Erlangen, Germany) sited
at the Department of Experimental Physics 5 (Biophysics) of the
University of Wiirzburg (Wiirzburg, Germany). The coil was used
in transmit/receive mode of operation. The pulse sequence used
was a typical rf field mapping sequence, i.e., a high flip angle prep-
aration pulse followed by a rapid image acquisition module. This
allows to visualize the field lines pattern produced by the coil. A
field line in the MR image shown in Fig. 7a has been marked with
a cross. The equivalent field line in Fig. 7b appears shifted into the
phantom a distance of 3 cm, which is the thickness of the lens. This
experiment clearly illustrates the ability of the metamaterial lens
to translate the field profile of the coil deeper into the sample.
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Fig. 7. MR images obtained for a circular coil of 16 cm in diameter by using a RF field sequence when (a) it is placed on a water saline phantom and (b) when a two unit cell
(3 cm) thick lens is placed between the coil and the phantom. The field lines in case (a) appear in case (b) shifted inside the phantom a distance which is similar to the

thickness of the lens.

Fig. 8a-c shows MR images of a phantom when a coil of 5-inch
in diameter is placed in contact with the phantom. Fig. 8d-f shows
MR images of the phantom when a lens is introduced between the
coil and the phantom (that is, the coil is placed directly on the
lens). The sagittal images in Fig. 8a and d contains the axis direc-
tion of the coil. The coronal images were obtained at distances of
1 cm (Fig. 8b and e) and 4 cm (Fig. 8c and f) inside the phantom
(there is an additional distance of 0.5 cm between the lens and
the phantom, as it is explained in the caption of the figure). T1-
weighted pulse sequences with FOV = 26 x 26 cm?, data matrix
256 x 160, TE = 10 ms, TR = 180 ms, and slice thickness 3 mm were
used. The images were obtained in a GE Signa LX 1.5T system (Gen-
eral Electric, Milwaukee, USA) sited at PET Cartuja (Seville, Spain).
The comparison between the images shows that the lens produces
a compression of the image, which is in agreement with the discus-
sion in the previous section about the parallel imaging application
of the lens. In the coronal images, an estimation of the SNR in a
small circular ROI placed as shown in the figures was derived from
the ratio between the mean signal to the standard deviation (SD).
The SNR at a distance of 4 cm inside the phantom is lower when
the lens is present in Fig. 8f (mean/SD = 43.26) than when it is ab-
sent in Fig. 8c (mean/SD = 69.06), in agreement with the general
conclusion arising from the analysis shown in the first section
(see Fig. 3). However, at the distance of 1 cm inside the phantom
(i.e. 1.5 cm from the lens) an increase in the SNR is observed in
Fig. 8e with the lens (mean/SD = 75.46) in comparison with the va-
lue measured in Fig. 8b without the lens (mean/SD = 56). This in-

crease in the SNR cannot be explained by the model shown in
this paper since this model assumes that the lens is a continuous
slab of metamaterial and in practice the lens is a discrete structure,
so that at distances from the lens of the order of the periodicity
(15 mm) the continuous medium approach is not appropriate.
This unexpected increase in the SNR at very short distances has
been checked theoretically by means of field calculations with an
“ad hoc” numerical code which takes into account the discrete nat-
ure of the lens. This code, whose numerical details will be pre-
sented elsewhere [20,21], is based on the direct computation of
the self and mutual inductances between the rings of the lens,
and between these rings and the surface coil. Even taking into ac-
count all symmetries, the code involves the computation of thou-
sands of mutual inductances, which are obtained by using some
numerical tricks that are described in [21]. Both realistic widths
and resistances of the rings were taking into account in the compu-
tation but the effect of the conductivity of the human body must be
neglected to simplify the calculations, so that the fields are com-
puted in vacuum. Fig. 9 shows the axial magnetic field generated
in air by the coil and the lens of three layers of Fig. 8. In Fig. 9
the field is computed along the coil axis by using the continuous
medium model (dotted line) described in Section 2 and the “ad
hoc” model or discrete model (solid and dashed lines). With the
discrete model, the field was computed for two cases: the coil axis
contains the axis of a ring in the lens interface (dashed line) or the
coil axis is off the axis of a ring (solid line), as it is shown in the in-
set. The results of this figure clearly show that there is an increase
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Fig. 8. MR images obtained for a circular coil of 5-inch in diameter when (a-c) the coil is placed on a water saline phantom and (d-f) a three unit cells thick lens (thickness is
4.5 cm) is introduced between the coil and the phantom. A pulse sequence with FOV = 26 x 26 cm?, data matrix 256 x 160, TE = 10 ms, TR = 180 ms, and slice thickness of
3 mm was used. (a and d) Sagittal images containing the axis of the coil. (b and e) Coronal images at a distance of 1 cm inside the phantom. (¢ and f) Coronal images at a
distance of 4 cm inside the phantom (there is, however, an additional distance between the phantom and the lens, due to the plastic screws that can be seen in Fig. 1, so that
the actual distances between the images and the first plane of rings is of 1.5 cm and 4.5 cm, respectively).

of the coil signal of about a 40% at 1.5 cm of the lens (the distance
for the image of Fig. 8e) with regard to the continuous medium
model, which we feel can explain the observed increase in the
SNR. Small discrepancies between the models at larger distances
can be attributed to the finite size of the lens itself, not taken into
account by the continuous model which considers the lens as an
infinite slab of homogeneous permeability.

Next, other conclusions arising from the theoretical analysis
shown in the previous section will be tested by means of experi-
ments. The results shown in Fig. 4 are in agreement with the re-

sults of the previous experiment reported by the authors [9]. It is
of interest to illustrate the present work with other MR images cor-
responding to a different coil geometry, and to include in the re-
sults a quantitative evaluation of the increase in the SNR, which
was not provided in [9]. Fig. 10 shows a sketch of the experimental
setup and the MR images obtained for this purpose. The MR images
were obtained in a Siemens Simphony 1.5 T system (Siemens Med-
ical Systems, Erlangen, Germany) sited at Virgen Macarena Univer-
sity Hospital (Seville, Spain). One of the elements of a double loop
array coil (Siemens Medical Systems, Erlangen, Germany) was used
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Fig. 9. Magnitude of the axial magnetic field generated in air by the coil and the
lens of three layers of Fig. 8. The field is computed along the coil axis by using the
continuous medium model (dotted line) described in Section 2 and an “ad hoc”
model or discrete model which accounts for the discrete nature of the lens (solid
and dashed lines). The discrete model involves the computation of all the mutual
inductances between the 3132 rings of the lens of Fig. 8 and between the coil and
these rings. With the discrete model, the field was computed for two cases: the coil
axis contains the axis of a ring in the lens interface (dashed line) or the coil axis is
off the axis of a ring (solid line), as it is shown in the inset.

as detector. This array is usually applied for imaging of the temp-
oro mandibular joints, eyes and wrists, and it was used in the
experiments for imaging the ankles of one of the authors. A fat-

i
i

suppression pulse sequence with FOV = 219 x 250 mm?, data ma-
trix 224 x 256, TE = 7.7 ms, TR = 371 ms and slice thickness 3 mm
was used and axial MR images were obtained. The comparison be-
tween the MR images shows that the presence of the lens increases
the SNR in the ankle which is far from the coil. An estimation of the
SNR was derived from the ratio between the mean signal to the
standard deviation (SD) of a small circular ROI placed as shown
in the figure. The ratio mean/SD in the presence of the lens was
56.3/5.1 =11 and it was 15.7/3.7 = 4.2 without the lens, that is,
the SNR provided by the lens in the observed ROI was 2.6 times lar-
ger than without the lens. This gain is of the same order as the gain
predicted in Fig. 4 for a similar situation, which was approximately
3.5 times along all the region behind the lens. Therefore, there exists
aqualitative agreement between these experimental results and the
theoretical results shown in Fig. 4 (quantitative predictions of the
SNR are out of the scope of this work since noise depends on the spe-
cific structure of the tissues, which cannot be accounted for quanti-
tatively by the simple model developed in the previous section).

At this stage it would be worth to mention that a similar
enhancement of the SNR could be obtained by using a resonant coil
instead of the metamaterial lens [22]. The physics behind this last
technique is, however, quite different from the physics behind the
analyzed device, and also performances are different. Unlike a res-
onant coil, the metamaterial lens is not a resonant device (the fre-
quency of resonance of the individual coils of the lens is

Fig. 10. Sketch of the experiment carried out in a 1.5 T Simphony system from SIEMENS (Siemens Medical Solutions, Erlangen, Germany) in the Virgen Macarena University
Hospital (Seville, Spain) using an element of a double loop array coil (Siemens Medical Systems, Erlangen, Germany) as detector. A fat-suppression pulse sequence with
FOV = 219 x 250 mm?, data matrix 224 x 256, TE = 7.7 ms, TR = 371 ms, and slice thickness of 3 mm was used. Axial MR images of the ankles of one of the authors were
obtained with and without a two unit cell (3 cm) thick lens. A small ROI for determination and comparison of the SNR in both situations is shown in the images. The SNR was

increased 2.6 times with the lens.
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63.28 MHz, which is far from the frequency of operation of
63.87 MHz in the 1.5T system in comparison with the typical
bandwidth of tens of KHz of the MRI acquisition). This makes a
key difference since the metamaterial lens presents a much less
interaction with the strong RF field emitted by the body coil, a fact
that can be advantageous in some situations. On the other hand,
owing to the intrinsic properties of metamaterial lenses [1,2], the
sensitivity in the region between the receiving coil and the lens
is not significantly affected by the presence of the lens, as it is
shown in Fig. 4. This also implies that the metamaterial lens does
not strongly interact with the receiving coil. It is quite apparent
that this behavior will not be shared by a resonant coil (unless it
is very small), which will equally affect the field at its both sides,
and eventually could strongly interact with the receiving coil [22].

Next, an experiment was designed to validate the conclusion
arising from the analysis shown in Fig. 5 for the combination of a
lens with a magnetic wall. A theoretical magnetic wall is given
by a semi-infinite medium with an infinite permeability. In prac-
tice, a magnetic wall can be implemented by means of a thick slab
exhibiting a high permeability. In a first approach we simply fabri-
cated a 2D array of split rings corresponding to the outer interface
of this metamaterial slab. Since magnetic fields do not penetrate
into the infinite permeability medium, it can be guess that this sin-
gle layer will mimic to some extent the above mentioned metama-
terial slab [11]. A photograph of this device, which has been
termed “reflector” by the authors, is shown in Fig. 1 besides the
lens. Fig. 11 shows a sketch of the experiment, as well as the axial
and sagittal MR images obtained with the lens and the reflector.
The pulse sequence was the same as that used for the results
shown in the previous figure. With the lens and the reflector an
increasing of the SNR is observed in the ankle placed between

i
i

Reflector

the coil and the lens. The ratio mean/SD in the circular ROI indi-
cated in the axial images corresponds to 30.9/4.6 = 6.7 for the case
without lens and 62.4/7.7 = 8.1 for the case where the reflector-
backed lens is used, so that this combined device provides a rela-
tive increasing of 20% in the SNR at that point. This result can be
probably improved by optimizing the implementation of the mag-
netic wall (for example, by using a 3D array of split rings exhibiting
a high permeability instead of a single 2D array). Anyway, the
authors think that the reported experiment clearly shows the
validity of the proposed concept.

4. Conclusions

Along this paper a theoretical model for the analysis of the sen-
sitivity, the SNR and the FOV of MR coils in the presence of . = —1
metamaterial lenses has been developed. Our analysis has shown
that metamaterial lenses usually improve the signal and the local-
ization of the FOV of surface coils. However, except very near the
lens, the SNR is only systematically improved if the lens is placed
at a distance from the coil which, as a rule of thumb, should be lar-
ger than the coil diameter. A combination of a lens with a metama-
terial mimicking a magnetic wall may behave as a reflector,
increasing the signal received by a coil located at the opposite side
of a given organ or tissue. These conclusions have been checked
successfully by “in situ” MR experiments. Although a similar in-
crease of the SNR could be achieved by means of other passive de-
vices, such as additional parasitic resonant coils [22], we feel that
the metamaterial lens could provide an useful alternative to such
devices due to its non-resonant nature, which implies a lower
interaction with the RF field coming from the body coil, as well
as a lower interaction with the receiving coil.

Fig. 11. With the same experimental setup as in Fig. 5, axial and sagittal MR images were obtained by using the lens backed by the reflector. The images show that the SNR is
increased in the ankle placed between the detector and the reflector-backed lens. Direct measurements of the SNR in the small ROI indicated in the images show an increase

of 20% by using the lens and the reflector.
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Another interesting application for metamaterial lenses is re-
lated with the techniques of parallel imaging. Thus, for example,
in the PILS technique [19] it is essential that the FOV of each coil
is well localized and restricted to a finite region of space. However,
in conventional coil arrays, this localization takes place only at dis-
tances close to the array because the field produced by the coils
spread out at farther distances. Since the lens can help to discrim-
inate the fields produced by individual coils at deeper distances in-
side the patient body, this device could be advantageously used in
PILS and other parallel imaging techniques in order to obtain a bet-
ter localization of the FOV of the receiving coils. This better local-
ization will be achieved without significant loss in the SNR, or
even with gain in the SNR at small distances of the lens. Computer
simulations and experiments reported along this paper support
these conclusions.

In summary, the authors feel that, in general, the emerging
technology of metamaterials could help to improve several aspects
of MR imaging by providing new concepts for the advancement of
the MR technology, and that split ring ;. = —1 metamaterial lenses
could play an important role in this direction.

Acknowledgments

This work has been supported by the Spanish Ministerio de
Educacién y Ciencia under Project No. TEC2007-68013-C02-01/
TCM and by the Spanish Junta de Andalucia under Project No.
PO6-TIC-01368. Lukas Jelinek also thanks for the support of the
Czech Grant Agency (project no. 102/09/0314). We want to thank
Dr. Carlos Caparr6s, from Virgen Macarena University Hospital (Se-
ville, Spain), Dr. Bavo van Riet, MR Regional Business Manager for
South-West Europe from SIEMENS Medical Solutions and his part-
ners Roger Demeure and Pierre Foucart from Charleroi University
Hospital (Charleroi, Belgium) and Prof. Peter M. Jakob and Dr. Vol-
ker C. Behr, from the Department of Experimental Physics 5 (Bio-
physics) of the University of Wiirzburg (Germany) for providing
the MRI facilities used in this work, and also for helpful discus-
sions. We want also to thank Dr. Francisco Moya, from PET Cartuja
(Seville, Spain), for his advice and support.

References

[1] V.G. Veselago, The electrodynamics of substances with simultaneously
negative values of ¢ and g, Sov. Phys. Usp. 10 (1968) 509.

[2] R. Marques, F. Martin, M. Sorolla, Metamaterilas with Negative Parameters:
Theory and Microwave Applications, Wiley, Hoboken, New Jersey, 2008.

[3] J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85 (2000)
3966-3969.

[4] M.CK. Wiltshire, ].B. Pendry, L.R. Young, D.J. Larkman, D.J. Gilderdale, ].V.
Hajnal, Microstructured magnetic materials for RF flux guides in magnetic
resonance imaging, Science 291 (2001) 849-851.

[5] V.C. Behr, A. Haase, P.M. Jakob, RF flux guides for excitation and reception in
31p spectroscopic and imaging experiments at 2 Tesla, Concepts Magn. Reson.
Part B (Magn. Reson. Eng.) 23B (1) (2004) 44-49.

[6] M.C.K. Wiltshire, Radio frequency (RF) metamaterials, Phys. Status Solidi B 244
(2007) 1227-1236.

[7] M. Allard, M.C.K. Wiltshire, ]J.V. Hajnal, RM. Henkelman, Improved signal
detection with metamaterial magnetic yoke, Proc. Intl. Soc. Mag. Reson. Med.
13 (2005) 871.

[8] A. Mathieu, RM. Henkelman, Using metamaterial yokes in NMR
measurements, J. Magn. Reson. 182 (2006) 200-207.

[9] MJ. Freire, R. Marques, L. Jelinek, Experimental demonstration of a pu=-1
metamaterial lens for magnetic resonance imaging, Appl. Phys. Lett. 93 (2008)
231108 1-231108 3.

[10] L. Jelinek, R. Marques, M.]. Freire, Accurate modelling of split ring
metamaterial lenses for magnetic resonance imaging applications, ]J. Appl.
Phys. 105 (2009) 024907 1-024907 10.

[11] MJJ. Freire, R. Marques, L. Jelinek, V. Delgado, Potential applications of = —1
metamaterial superlenses for magnetic resonance imaging, in: Metamaterials
2009, 3rd International Congress on Advanced Electromagnetic Materials in
Microwaves and Optics, London, UK, Aug 30th-Sept 4th, 2009.

[12] D.I. Hoult, RE. Richards, The signal-to-noise ratio of the nuclear magnetic
resonance experiment, J. Magn. Reson. 24 (1976) 71-85.

[13] D.I. Hoult, P.C. Lauterbur, The sensitivity of the zeugmatographic experiment
involving human samples, J. Magn. Reson. 34 (1979) 425-433.

[14] W.A. Edelstein, G.H. Glover, CJ. Hardy, R.W. Redington, The intrinsic signal-to-
noise ratio in NMR imaging, Magn. Reson. Med. 3 (1986) 604-618.

[15] RF. Harrington, Time Harmonic Electromagnetic Field, McGraw-Hill, New
York, 1961.

[16] M.E. Kowalski, J.M. Jin, J. Chen, Computation of the signal-to-noise ratio of
high-frequency magnetic resonance imagers, IEEE Trans. Biomed. Eng. 47
(2000) 1525-1533.

[17] ].D. Baena, L. Jelinek, R. Marques, M.G. Silveirinha, Unified homogenization
theory for magnetoinductive and electromagnetic waves in split-ring
metamaterials, Phys. Rev. A 78 (2008) 013842 1-013842 5.

[18] R.D. Black, P.B. Roemer, O.M. Mueller, Electronics for a high temperature
superconducting receiver system for magnetic resonance microimaging, IEEE
Trans. Biomed. Eng. 41 (1994) 195-197.

[19] M.A. Griswold, P.M. Jakob, M. Nittka, J.W. Goldfarb, A. Haase, Partially parallel
imaging with localized sensitivities (PILS), Magn. Reson. Med. 44 (2000) 602-
609.

[20] M. Lapine, L. Jelinek, R. Marques, M]J. Freire, Discreteness effects in
metamaterial lens, accepted communication to be presented at META'10, in:
2nd International Conference on Metamaterials, Photonic Crystals and
Plasmonics, February 22-25, 2010, Cairo, Egypt.

[21] M. Lapine, L. Jelinek, R. Marques, M.J. Freire, Exact modelling method for
discrete finite metamaterial lens, invited paper submitted to IET Transactions
on Microwaves, Antennas and Propagation, special issue on: Microwave
Metamaterials.

[22] R.R. Harman, P.C. Butson, A.S. Hall, LR. Young, G.M. Bydder, Some observations
of the design of RF coils for human internal use, Magn. Reson. Med. 6 (1988)
49-62.



Appendix 15

This appendix contains a full text of Ref. [48]



www.ietdl.org

1ET Journals

Published in IET Microwaves, Antennas & Propagation
Received on 2nd December 2009

Revised on 12th April 2010

doi: 10.1049/iet-map.2009.0598

In Special Issue on Microwave Metamaterials: Application to
Devices, Circuits and Antennas

Exact modelling method for discrete finite

metamaterial lens
M. Lapine® L. Jelinek®* R. Marqués® M.J. Freire’

1Department of Electronics and Electromagnetics, Faculty of Physics, University of Seville, 41015 Seville, Spain
2Department of Electromagnetic Field, Czech Technical University in Prague, 16627 Prague, Czech Republic
E-mail: mlapine@uos.de

Abstract: The authors analyse the properties of metamaterial lens composed of capacitively loaded ring
resonators, with the help of an efficient rigorous model suitable for calculating the properties of finite
metamaterial samples. This approach takes into account the discrete structure and finite extent of realistic
metamaterials. The authors show that the discrete model reveals the effects, which can be missed by a
continuous model based on effective parameters and that the results are in close agreement with the
experimental data.

1 Introduction Such a metamaterial lens is intended to operate at the value

of effective permeability w = —1. In theory, for modelling
For the last decade, metamaterials [1, 2] are in the focus of such metamaterials (based on SRRs), one can exploit an
research  attention in  theoretical and  applied effective medium approach, taking care of numerous
electrodynamics. Even though no commonly accepted limitations related to general restrictions of homogenisation
definition is available [3, 4], this research direction [20] as well as to specific peculiarities caused by resonant
experiences a boom encompassing a wide span of areas nature of the structural elements [21]. Universally, all the
ranging from microwave engineering to non-linear optics. structure details (size of the elements and lattice constants)
One of the well-known suggestions for applications was must be much smaller than the wavelength, whereas the
formulated as a ‘perfect lens’ [5], making use of negative total number of elements in metamaterial should be
effective material parameters and providing imaging with sufficiently large to make homogenisation meaningful. In
subwavelength resolution. The idea of super-resolution was addition, spatial dispersion effects can be rather remarkable
subsequently analysed and developed in a number of ways in metamaterials and impose further restrictions on
[6—8] and even realised in practice (speaking about three- effective medium treatment, prohibiting that in certain
dimensional (3D) systems) using split-ring resonators frequency bands [21, 22].

(SRRs) [9, 10], or transmission-line networks [11, 12].

Unless one opts for a completely numerical
Arguably the closest approach to practice offered by homogenisation method [23], generally applicable to

metamaterials, is related to magnetic resonance imaging almost arbitrary structures, a model have to be developed to
(MRI). For example, rotational resonance of magnetoinductive describe adequately the effective medium properties. In
waves [13] was suggested for parametric amplification of MRI SRR-type metamaterials, near-field mutual interaction
signals [14] or enhanced detection with flexible ring resonators between the elements significantly differs from dipole
[15]. Alternatively, applications were promised with using interaction adopted in many models; this is particularly
‘swiss-rolls’ [16] or employing channelling effect with wire relevant for dense arrays. The first rigorous analysis of such
media [17, 18]. Naturally, superlens concept is also promising metamaterials was given early in [24], where the effective
in this area: an isotropic lens based on capacitively loaded permeability has been derived given the properties of
single-ring resonators was experimentally tested specifically for individual elements and lattice parameters, through the
MRI [19]. classical procedure of averaging the microscopic fields. In
1132 IET Microw. Antennas Propag., 2010, Vol. 4, Iss. 8, pp. 1132-1139
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that approach, mutual inductances between a large number of
neighbours are taken into account, revealing the importance
of lattice effects. This approach, however, is limited to
quasi-static conditions and requires wavelength to be much
larger than any structural details. Later on, a similar
method, accounting also for spatial dispersion, was
elaborated for isotropic lattices of resonant rings [22, 25].
The latter approach employs a nearest-neighbour
approximation as otherwise full analytical treatment
becomes impractical.

The above theoretical approaches provide the effective
parameters for ‘infinite’ structures (which in practice implies
the structures sufficiently large in all three dimensions).
The lens of [10], however, contains just a few elements
across the slab. Specifically for this case, a method was
developed to calculate the transmission properties for a thin
infinite slab [26], providing rather realistic predictions for
the lens properties in most cases.

Nevertheless, it is clear that a number of peculiar effects
caused by the discrete structure of the lens as well as its
finite size, cannot be reliably assessed with the above
models, as the lens is too small for an effective medium
treatment. On the other hand, it is large enough to make
an analysis with full-wave commercial software practically
impossible. For this reason, an optimal solution to achieve
reliable modelling is to employ a discrete model, which
explicitly takes the structural details into account by
evaluating mutual interaction between all the elements. In
the context of metamaterials, such an approach was first
applied a few years ago in connection with research on
magnetoinductive excitations in SRR arrays [27] or
evaluation of the effective permeability of finite SRR
samples [24]. This method have been, for example,
successively applied to ‘swiss-roll’ resonators [28], extended
to hexagonal symmetry [29] and imaging with bilayer
structures  [30]. Further generalisations considered
retardation effects in mutual interaction [31] or arbitrarily
oriented elements [32]. In the above work, however, the
total number of elements to be considered was typically of
the order of tens or few hundreds (about 500 at most). A
typical isotropic lens [10], in contrast, contains thousands
of elements and an extra care is required to make the
rigorous calculation practically feasible.

The goal of this paper is to describe in detail such a
modelling approach, as applied specifically to a
metamaterial lens employed in MRI and to illustrate that
indeed it does reveal certain features, which are missed by
the corresponding continuous modelling of [26].

2 Geometry of the problem

The metamaterial lens described in [10] is composed of
capacitively loaded rings (CLRs) periodically arranged in an
isotropic 3D lattice with the lattice constant 2 = 1.5 cm.

The lens has three planes of 18 x 18 CLRs interlayered

www.ietdl.org

Figure 1 Photograph of the analysed quasi-magnetostatic
metamaterial lens

with orthogonal segments providing two mutually
orthogonal sets of two layers 17 x 18 CLRs each (see
Fig. 1 for clarity), which makes it up to roughly 2200
CLRs. This lens can be optionally extended by an extra
3D-layer, resulting in having four 18 x 18 layers interlaced
with the three orthogonal subsystems of 3 x 17 x 18
CLRs, amounting to about 3130 elements. Overall
dimensions of the (non-extended) lens are thus
27 x 27 x 3 cm.

The CLRs themselves (Fig. 2a) are made of copper
through etching metallic strips on a dielectric board. The
mean radius 7y of the CLRs is 0.49 cm (ry / @ = 0.33) and
the strip width w is 0.22 cm (w / @ = 0.15). The CLRs are
loaded with lumped non-magnetic 470 pF capacitors. The

X
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Figure 2 Lens structure and geometry

a Sketch of the CLR resonator
b Scheme of the lens with the corresponding coordinate system
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self<inductance of the CLRs, L = wg/ C =13.5nH, has
been obtained from the measured value of the frequency of
resonance in free space, equal to 63.28 MHz. By
measurement of the quality factor of the resonator the
resistance has been estimated as R = 0.0465 Ohm, which
includes the losses in both the ring and the capacitor.

We reserve the standard coordinate system (x, y, ) for
discussions of rings geometry and their mutual interactions
(the next section). When referring to the overall lens
geometry, we define a supplementary coordinate system (X,
Y, Z) so that the lens geometrical centre is placed at the
coordinate origin and the Y-axis is perpendicular to the
lens as slab (‘lens axis’), whereas the long edges of the lens
are parallel to X and Z axes (Fig. 22). Note that the
coordinate origin is between the rings and thus the lens is
completely symmetric with respect to the coordinate origin,
all the axes and all the coordinate planes (in the analysis,
we neglect minor asymmetry occurring in the real lens
caused by specific assembly details, for example resulting
from substrate thickness, as well as unavoidable production
inaccuracy). For the three mutually orthogonal sets of
CLRs, we will refer to as X-rings, Y-rings or Z-rings,
depending on whether the rings’ normals are along X, Y or
Z axes. The lens therefore contains 612 of either X-rings
and Z-rings, and 972 Y-rings. We also introduce a
consecutive numbering through all the N CLRs with a
single index 7 or m. The so called input and output
surfaces of the lens correspond to Y= F 1.5 cm, whereas
the theoretical source and image planes are at Y F+ 3.0 cm.

3 Discrete modelling of the lens

In line with the description of similar lattices [24, 25, 27], for
the analysis of the lens response to the external field, we
consider an ideal cubic array of L—C circuits supporting
current. With the time convention as I < exp(jw?), each of
the currents is governed by equation

ZyI, = —jw®, 1)

where the self-impedance Z; = (R + jwL 4+ 1/(jwC)) is
determined by the resistance R, self-inductance L and self-
capacitance C of the single CLR, whereas ®,, represents
the total magnetic flux through the considered ring which
can be written as

(I)n = (D;Xt + Z (Dnm = q);xt + Z MnmIm (2)

m#n m#n

where CDZ’“ is the magnetic flux from external sources and M,,,,
are the mutual inductances between the rings # and m.
Combining (1) and (2), we obtain

Z 1= —-jo®™ 3)

with Z,, = Z,, Z

o = joM,,,, which is a system of linear
equations for unknown currents, provided that the external

sources are known. This is the general equation for various
discrete modelling approaches. As opposed to continuous
models [24, 26], which develop analytical approaches to
evaluate remote mutual interactions in a (theoretically)
infinite lattice, discrete modelling explicitly takes all the
mutual inductances into account, so that the system (3) is
solved exactly for the finite number of elements.

Note that, in practice, it is convenient first to evaluate the
matrix of mutual inductances M. This matrix is only
determined by the geometry of the rings arrangement
inside the lens and can be filled once for a given lens
geometry, while the impedance matrix Z = jwM can be
then obtained for any particular set of frequencies as required.

Mutual inductance between the flat rings (which is the
case under consideration) carrying the currents I, and I,
along the ring contour is, most generally [33]

__» K, () - K, () :
M,, = 4vTInImLLf ey dsas @

where K represent surface current densities. We assume that
these follow Maxwellian distribution across the strip

21
1 p—"n 2
“r ‘(w/2>

and that the currents I, and I, are uniform along the ring
contour, which is quite reasonable for this perfectly

subwavelength (a/A = 0.0005) system.

K p) = (5)

Clearly, such integration is not sufficiently fast for
numerous calculations required. Although, in the first
approximation, mutual inductance between CLRs can be
estimated with the one between linear currents (double
linear integration along the equivalent ring contour), for
close CLRs this does not give a good precision. However, a
trick is that the result of surface integration according to
(4) can be approximated with a good precision through an
average mutual inductance between two pairs of circular
currents [34]. This way, each flat ring can be represented
by a pair of coaxial circular currents of radii , + yw/2 and
the sought value is calculated as an average between the
four corresponding mutual inductances

M,, =L, +L,, +L,, +L,)/4 (6)

which essentially decreases calculation time. The value of
particular parameter 7y depends on the ring geometry, but
does not depend remarkably on the relative orientation and
distance between the CLRs (within the limits of lens
structure). For the particular parameters considered here, y >~
0.7 was numerically found to give a good match to the
precise integration (4) (while y = 1 would correspond to the
edges of the strip).
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Note that a ‘linear’ mutual inductance L,,,, can be routinely
obtained by integrating the vector potential of one ring along
the other one, while the vector potential can be easily
determined through elliptic integrals [33]. Given the fact
that the fast pre-defined routines for elliptic functions are
available in a number of computational platforms (e.g.
Matlab®), the approximation (6) effectively reduces the
double surface integration (4) to just four single ones.

For such a lens as described above, having 2196 rings, the
matrix M contains almost 5 million values and filling those
with a direct calculation would be rather time-consuming
even with a simplified integration described above.
However, obvious reciprocity (M, = M,,,) and symmetry
properties of the lens allow for a great simplification of
matrix filling. Indeed, the lens is symmetric with respect to
X, Yand Z axes as well as to XY, YZ and ZX planes. This
implies, in particular, that the mutual inductances between
X-rings and Y-rings are all the same as between Z-rings
and Y-rings. Furthermore, as all the rings are identical,
inductance between them is only determined by their
mutual orientation and spatial offsets Ax, Ay and Az (see
Fig. 3) and for parallel rings even Ax is equivalent to Ay.
Explicitly, integration for the mutual inductances between
the parallel rings is performed according to

2
I 89 = | g, 2t Abeosa)
0 Ap

Ap = \/rg + (AB)* + 2r,Abcos a (7)
) 4rAp
® = 2 2
(Ap+7)” + (Az)

with Ab = /(Ax)* + (Ay)2 and for the rings with orthogonal

mutual orientation

21T

o Ay cos a
L (Ax, A_y, AZ) = jo ﬂtpr da
Ap = \/(Ax — rysin )’ + (Ay)2 8)
2 4rAp

x = 2 2
(Ap+ 7))+ (Az — rycos @)

Figure 3 Geometry of the linear currents for parallel or
orthogonal ring orientations, as relevant for mutual
inductance calculations
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In both the integrals, the only component of the vector
potential is calculated as

4 M [ (@ AKG) — 2600
¢ 4w\ Ap p%

where the corresponding » (as shown within either of
equations) also serves as the argument of complete elliptic
integrals of first and second kind, IC and £ [33]. Note that,
in the above equations, we imply a general case that the
radii of the two rings (r; and r,) can be different.

Thus, a number of ring pairs within the lens share the
same value of mutual inductance, so it is only necessary to
calculate a full set of non-equivalent mutuals [27] and then
assign those values depending on the mutual offsets. With
the particular lens considered here, there are only 1924
independent inductances for the parallel ring orientation
and 1668 for the orthogonal one, so the total number of
calculations with (6) amounts to 3592, which is orders of
magnitude smaller than the number of matrix elements.
This way, filling the entire matrix is a matter of seconds on
a conventional personal computer.

Another preliminary step is to determine the external flux
@ imposed to each ring by a given source. For a
homogeneous field or a plane wave excitation, calculation is
straightforward with the known coordinates of each ring:
P = 7773 (B, n), where n is a ring normal while
magnetic field B, can be evaluated at the ring centre as the
field variation across the ring is negligible.

In practice, the lens is typically used along with excitation/
measuring coils employed in MRI practice. In that case,
instead of calculating the field produced by a coil over each
ring (which has an extra complication as this field is not
even uniform across each ring), it is much easier to obtain
the flux directly @$=M,I° in terms of mutual
inductance M, between the coil and each ring, which can
be calculated with the same method as the one between the
rings, only that the distances and ring radii are different in
(7) and (8). Then, the total current I¢ in the coil (induced
in the coil by the external voltage source as well as by the
lens) can be encompassed by the entire vector of currents I
as Iy,; = I°. Imposing a given voltage ¥, to the coil with
the self-impedance Z_, we can thus include the coil mutual
impedances into system (3), modified as

Z- 1=V 9)
7 Z, 7 joM,,,, for 1<n<N
m— 1 Z T |joM,, for n=N+1

with V,, = V8, . Clearly, additional coils, if necessary, can
be included by extending the system in an analogous way.
Matrix equations in this form are typically used in the
analysis of magnetoinductive waves in finite arrays [27-31].
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After the above procedures, it is finally possible to solve the
systems (3) or (9) obtaining currents I, in each ring for any
given excitation. With these known, it is further possible to
calculate any desired response of the lens, such as magnetic
field produced by the lens (using standard Biot—Savart
expressions) or impedance as measured by the MRI coil
(see below).

4 Results and discussion

Armed with the above precise method, we can have a detailed
look into lens features and its response to external field
sources. In the previous work [26], it was concluded that
the accurate model, developed for a 2D-infinite slab with
the same structure and thickness as the real lens, is capable
of predicting the observations made in connection to lens
use in MRI practice. In a typical setup, a coil of 3 inch in
diameter is placed parallel to the lens interface at the source
plane, Y= —3 cm (that is, at a distance 1.5 cm from the
lens surface — equal to one half of the lens thickness). The
super-lens behaviour implies that the magnetic field
produced by the coil, is then reproduced in the space
behind the image plane (Y= 3 cm), as if the coil itself were
present in place of the image.

A straightforward example to test the discrete model and
to compare it with practice as well as with earlier models, is
to evaluate the impedance as measured by a coil in front of
the lens, depending on frequency. With the discrete model,
it is easily calculated as

P I
Z° = jwMS 2 10
while with the continuous model it can be obtained from
numerical simulations with a homogeneous slab having an

appropriate effective permeability (of [25]), as

zeol — —%Rej E - dI (11)
coil

where E' is electric field reflected by the lens. The two
modelling results are compared in Fig. 4 along with the
experimental data. Although there is no exact quantitative
matching to the measured data, it is clear that the
frequency dependence provided by the discrete model is
much closer to experiment than that of the continuous
calculation. The latter only provides a qualitative picture,
predicting an overall course of the impedance frequency
dependence.

With both the continuous model [26] and the model
described above, it is easy to obtain the axial magnetic field
Hy behind the lens for a given excitation. Comparison
between the predictions of the two models is shown in
Fig. 5. One can see that at distances smaller than about
one lattice constant (4= 1.5cm), Hy, is essentially
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Figure 4 Frequency dependence of the impedance measured
by a 3 inch coil placed at the ‘source’ plane (1.5 cm from the
lens surface)
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Figure 5 Axial component Hy of the total magnetic field
observed behind the lens surface along the lens axis (1)
or along the parallel line (2) slightly displaced in X- and
Z- directions so that it passes through the centre of one
ring (see the inset for the labels of the axes)

Comparison between the two models for the lens excited by 3 inch

coil, centred with respect to the lens axis and placed at 1.5 cm
from the lens surface
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inhomogeneous as the near field of the individual rings (compare (a) and (d) plots in Fig. 6). At larger distances,
dominates, so that the total field is quite different whether the field calculated through the discrete model becomes
traced along the lens axis (which passes between the rings) reasonably smooth and can be favourably compared to the
or along a line that passes through a ring centre, while both continuous model calculation, although certain extra
are remarkably different from the continuous model. This features presumably imposed by the square shape of the
is an obvious consequence of the discrete structure, which lens lattice as well as of lens itself, are visible (compare (&)
cannot be revealed by a homogenised model but is apparent to (¢) and (¢) to (f) plots in Fig. 6). The key discrepancy
in practice [30]. At distances larger than approximately one between the continuous and discrete models here is that
lattice constant (1.5 cm), the field observed along the two the circular area corresponding to the minimum of axial
axes converge and are qualitatively similar to the continuous field at the ‘image’ of the coil, quite apparent in () plot, is
model with a fair numerical agreement (see Fig. 5). hardly traceable in the (¢) counterpart. On the other hand,

comparison between (¢) and (/') patterns suggests that the
agreement between the discrete and continuous models is

Further comparison can be made by looking at the axial
improved at larger distances, which is reasonable to expect.

magnetic field patterns at various X—Z planes as shown in
Fig. 6. It can be clearly seen that close to the lens (5 mm)

the field calculated with the discrete model is locally One can also check how the imaging properties of the
inhomogeneous so that even the individual rings can be system change when the exciting coil is moved away from
distinguished in the field pattern. Clearly, the field as the ideal source plane (Fig. 7). These results suggest,
predicted by the continuous model is quite different analogously, that as the excitation becomes more remote
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Figure 6 Patterns of the axial magnetic field (Hy) observed Figure 7 Patterns of the axial magnetic field in the X-Z

in X—Z planes at various distances from the lens surface plane fixed at 1.5 cm behind the lens, when the 3 inch
coil is placed at various distances from the lens surface

a and b 0.5cm
candd 15cm a and b 1.5cm
e and f 4.5 cm c and d 4.5cm
Comparison between the continuous g, ¢, e and discrete b, d, f e and f 9.0 cm
models for the lens excited by 3 inch coil, centred with respect Comparison between the continuous a, ¢, e and discrete b, d, f
to the lens axis and placed at 1.5 cm from the lens surface models
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from the discrete structure, the field patterns as obtained by
the two models, tend to agree better. At the same time,
these field patterns support an idea that the lens produces
an image of the field pattern available at the source plane:
the patterns show the same trend as the field of an isolated
coil observed at increasing distances (not shown). However,
if the distance from the coil to the lens is comparable to
the transverse size of the lens, influence of the overall
rectangular shape is noticeable with the discrete model

(Fig. 7).

Evidently, a lens cannot resolve any details of the source
field which are of the order of lattice constant in size. In
attempt to identify the actual limitation, we test the
magnetic field distributions originating from using the coils
of various small radii (Fig. 8). For this series of
calculations, we assume the lens with a ten times lower
resistance of the CLRs, in order to reduce the impact on
the resolution imposed by the losses [2]. For excitations
with a coil of the ring size (r;), the entire lens is dominated
by strong excitations and the field pattern does not suggest
any hints for resolving the source (Fig. 8a). Indeed,
practically the same field pattern is observed with a three
times larger coil, two lattice constants in diameter (Fig. 82).
With a still larger coil, encompassing four lattice constants,
one may argue that the pattern starts to clarify (Fig. 8¢),
although still it cannot be reliably used to assess the source
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Figure 8 Axial component Hy of the magnetic field
observed behind the lens surface

Horizontal axis corresponds to the lens surface (parallel to
X-Z plane), whereas the vertical one is normal to the lens (Y).
Only one half of the symmetrical field spatial distribution is
presented. Excitation with coils of different radii (0.5, 1.5, 3 and
4.5 cm), centred with respect to the lens axis and positioned at
1.5 cm from the lens surface

location and size. A reasonable picture is obtained for a
4.5 cm coil radius, where the field farther than the image
plane looks as expected with super-lens performance
(Fig. 84). We can therefore make a preliminary conclusion
that spatial resolution of the discrete lens can be assumed
to be of the order of 5 lattice constants. This observation is
in good agreement with the general concerns regarding the
lattice effects in metamaterials [24].

With the above examples, we clearly demonstrate that the
discrete modelling is suitable for a reliable description of the
metamaterial lens and makes it possible to predict specific
observations, which might be missed by a continuous
model. At the same time, we should note that the question
of the discrete lens resolution is not trivial, and further
careful analysis is required to address this question in a
satisfactory manner. This is the subject of our ongoing
research.

5 Acknowledgments

This work has been supported by the Spanish Ministerio de
Educacién y Ciencia and European Union FEDER funds
(project nos TEC2007-65376, TEC2007-68013-C02-01
and CSD2008-00066), by Junta de Andalucia (project
TIC-253) and by Czech Grant Agency (project no. 102/
09/0314).

6 References

[1] sOLYMAR L., SHAMONINA E.: ‘Waves in metamaterials’
(Oxford University Press, 2009)

[2] MARQUES R., MARTIN F., SOROLLA M.: ‘Metamaterials with
negative parameters’ (Wiley, 2008)

[3] LAPINE M., TRETVAKOV s.: ‘Contemporary notes on
metamaterials’, IET Microw. Antennas Propag., 2007, 1,
pp. 3-11

[4] siHvoLA A.: ‘Metamaterials in electromagnetics’,
Metamaterials, 2007, 1, pp. 2—-11

[5] PenDRYJ.B.: ‘Negative refraction makes a perfect lens’,
Phys. Rev. Lett., 2000, 85, pp. 3966—3969

[6] SHAMONINA E., KALININ V.A., RINGHOFER K.H., SOLYMAR L.:
‘Imaging, compression and Poynting vector streamlines
for negative permittivity materials’, Electron. Lett, 2001,
37, (20), pp. 1243-1244

[7] w™aAsLovskl 5., TRETYAKOV S., ALITALO P.. ‘Near-field
enhancement and imaging in double planar polariton-
resonant structures’, J. Appl. Phys., 2004, 96, (3),
pp. 1293-1300

1138
© The Institution of Engineering and Technology 2010

IET Microw. Antennas Propag., 2010, Vol. 4, Iss. 8, pp. 1132—-1139
doi: 10.1049/iet-map.2009.0598



[8] MESAF, FREIREM.J., MARQUESR., BAENAL.D.: ‘Three-dimensional
superresolution in metamaterial slab lenses: experiment and
theory’, Phys. Rev. B, 2005, 72, article id 235117

[9] FREIRE M., MARQUESR.: ‘Planar magnetoinductive lens for
three-dimensional subwavelength imaging’, Appl. Phys.
Lett., 2005, 86, article id 182505

[10] FREIRE M.J., MARQUES R., JELINEK L.: ‘Experimental
demonstration of a w= —1 metamaterial lens for
magnetic resonance imaging’, Appl. Phys. Lett., 2008, 93,
article id 231108

[11] GRBIC A., ELEFTHERIADES G..: ‘An isotropic three-
dimensional negative-refractive-index transmission-line
metamaterial’, J. Appl. Phys., 2005, 98, article id 043106

[12] AuTALO P, TRETYAKOV S.: ‘Subwavelength resolution with
three-dimensional isotropic transmission-line lenses’,
Metamaterials, 2007, 1, pp. 81-88

[13] sOLYMARL., ZHUROMSKYY 0., SYDORUKO., SHAMONINAE., YOUNG |.R.,
sYMs R.R.A.: ‘Rotational resonance of magnetoinductive
waves: basic concept and application to nuclear magnetic
resonance’, J. Appl. Phys., 2006, 99, article id 123908

[14] syms R.R.A., SOLYMAR L., YOUNG LR.: ‘Three-frequency
parametric amplification in magneto-inductive ring
resonators’, Metamaterials, 2007, 2, pp. 122-134

[15] symMs R.R.A, YOUNG IR, SOLYMAR L: ‘Flexible
magnetoinductive ring resonators: design for invariant
nearest neighbour coupling’, Metamaterials, 2010, 4, pp. 1-14

[16] WILTSHIRE M.C.K., HAINALJ., PENDRYJ.B., EDWARDS D.J., STEVENS C...
‘Metamaterial endoscope for magnetic field transfer: near
field imaging with magnetic wires’, Opt. Express, 2003,
11, pp. 709-715

[17] IKONEN P, BELOVPA., SIMOVSKIC.R., MASLOVSKIS.I.: ‘Experimental
demonstration of subwavelength field channeling at
microwave frequencies using a capacitively loaded wire
medium’, Phys. Rev. B, 2006, 73, article id 073102

[18] RADU X., GARRAY D., CRAEYE C.: ‘Toward a wire medium
endoscope for MRI imaging’, Metamaterials, 2009, 3,
pp. 90-99

[19] FREIRE M.J., JELINEK L., MARQUES R., LAPINE M.: ‘On the
applications of u = —1 metamaterial lenses for magnetic
resonance imaging’, J. Magn. Reson., 2010, 203, pp. 81-90

[20] AGRANOVICH V.M., GARTSTEIN YU.N.: ‘Electrodynamics of
metamaterials and the Landau—Lifshitz approach to the
magnetic permeability’, Metamaterials, 2009, 3, pp. 1-9

[21] simovski c.: ‘Analytical modelling of double-negative
composites’, Metamaterials, 2008, 2, pp. 169—-185

www.ietdl.org

[22] SILVEIRINHA M.G., BAENA J.D., JELINEK L., MARQUES R.: ‘Nonlocal
homogenization of an array of cubic particles made of
resonant rings’, Metamaterials, 2009, 3, pp. 115-128

[23] SILVEIRINHA M.G.: ‘Metamaterial homogenization
approach with application to the characterization of
microstructured composites with negative parameters’,
Phys. Rev. B, 2007, 75, article id 115104

[24] GORKUNOV M., LAPINE M., SHAMONINA E., RINGHOFER K.H.:
‘Effective magnetic properties of a composite material
with circular conductive elements’, Eur. Phys. J. B, 2002,
28, pp. 263-269

[25] BAENA J.D., JELINEK L., MARQUES R., SILVEIRINHA M.: ‘Unified
homogenization theory for magnetoinductive and
electromagnetic waves in split-ring metamaterials’, Phys.
Rev. A, 2008, 78, article id 013842

[26] JELINEK L., MARQUES R., FREIRE M.J.: ‘Accurate modelling
of split ring metamaterial lenses for magnetic
resonance imaging applications’, J. Appl. Phys., 2009, 105,
article id 024907

[27] SHAMONINA E., KALININ V.A., RINGHOFER K.H., SOLYMAR L.:
‘Magnetoinductive waves in one, two, and three
dimensions’, J. Appl. Phys., 2002, 92, pp. 6252—-6261

[28] WILTSHIRE M.C.K., SHAMONINA E., YOUNG I.R., SOLYMAR L.:
‘Experimental and theoretical study of magneto-inductive
waves supported by one-dimensional arrays of “Swiss
rolls”) J. Appl. Phys., 2004, 95, pp. 4488—-4493

[29] zHUROMSKYY 0., SHAMONINA E., SOLYMAR L.: ‘2D
metamaterials with hexagonal structure: spatial
resonances and near field imaging’, Opt. Express, 2005,
13, pp. 9299-9309

[30] sYDORUK ©., SHAMONIN M., RADKOVSKAYA A., ET AL.:
‘Mechanism of subwavelength imaging with bilayered
magnetic metamaterials: theory and experiment’, J. Appl.
Phys., 2007, 101, article id 073903

[31] zHUROMSKYY 0., SYDORUK O., SHAMONINA E., SOLYMAR L.: ‘Slow
waves on magnetic metamaterials and on chains
of plasmonic nanoparticles: driven solutions in the
presence of retardation’, J. Appl. Phys., 2009, 106, article
id 104908

[32] sYDORUK 0., SHAMONINA E., SOLYMAR L.: ‘Tailoring of the
subwavelength focus’, MOTL, 2007, 49, pp. 2228-2231

[33] LaNDAU L.D., LIFscHITZE.M.: ‘Electrodynamics of continuous
media’ (Pergamon Press, Oxford, 1984)

[34] RosA E.B., GROVER Fw.. ‘Formulas and tables
for the calculation of mutual and self induction’,
Bull. Bureau Stand., 1916, 8, (1), (Washington, 1948)

IET Microw. Antennas Propag., 2010, Vol. 4, Iss. 8, pp. 1132—-1139
doi: 10.1049/iet-map.2009.0598

1139
© The Institution of Engineering and Technology 2010




Appendix 16

This appendix contains a full text of Ref. [49]



PHYSICAL REVIEW B 82, 165124 (2010)

Realistic metamaterial lenses: Limitations imposed by discrete structure

M. Lapine,' L. Jelinek,> M. J. Freire,! and R. Marqués!
'Department of Electronics and Electromagnetism, Faculty of Physics, University of Seville, 41012 Seville, Spain
2Department of Electromagnetic Field, Czech Technical University in Prague, 16627 Prague, Czech Republic
(Received 16 July 2010; published 28 October 2010)

We study the peculiarities of a metamaterial “superlens,” caused by its discrete structure and finite size. We
show that precise modeling of the lens provides remarkable distinctions from continuous medium approxima-
tion. In particular, we address the problem of highest resolution that can be achieved with a realistic electrically
thin metamaterial lens. We conclude that discrete structure imposes essential limitations on the resolution and
that the resolution cannot be improved by decreasing dissipation in the system. Further implications related to
effective medium description of discrete structures are discussed.

DOI: 10.1103/PhysRevB.82.165124

I. INTRODUCTION

Metamaterials attract heaps of research attention for the
last 10 years."> Although there is no consensus on the very
definition of metamaterials,>* the number of publications
rises exponentially and ever new directions are proclaimed
promising. A major flow of work and speculations is related
to the idea of super-resolution with the so-called “perfect
lens,” which is perhaps among the few key triggers® of the
research outburst. While it was soon apparent that the perfect
lens is not so perfect,” the overall idea appeared to be fruit-
ful enough to be developed up to a level of applications. In
particular, metamaterials based on split-ring resonators were
put forward for various superlenses.'®!!

Practical solutions are so far available at microwave and
radio frequencies, with the key goal to aid at magnetic reso-
nance imaging (MRI). A metamaterial superlens suggested'!
for MRI applications employs an idea of imaging with a
sufficiently subwavelength slab having negative permeability
or permittivity.” This must be distinguished from another ap-
proach, based on a multiple point-to-point channelling (ca-
nalization), as can be achieved with wires!? or “Swiss
rolls,”! although such method is also applicable for
MRI.'3>!# With the split rings, on the other hand, other MRI
enhancements are possible, being, for example, the eased
detection with flexible ring resonators,'> or parametric am-
plification of MRI signals.'®

While the latter practical devices allow for a precise and
exact theoretical description (in terms of accounting for their
structure and all the few elements explicitly), larger metama-
terials are normally analyzed with the help of effective me-
dium modeling,'”'® so that split-ring structures can be de-
scribed with effective permeability.'®2! Since for a thin lens
(comprising just a few structural units in one direction) the
effective permeability approach is not directly applicable, a
specific continuous slab model was developed?*> which could
be used to calculate transmission/reflection properties with
the only approximation that the lens is assumed homoge-
neous and infinite in transverse directions. Although the lat-
ter model was quite efficient to predict the overall perfor-
mance of the lens,?>23 it was soon noticed?* that some of the
lens properties can differ remarkably whether evaluated with
a continuous medium approximation, or assessed experimen-
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tally. In order to achieve better accuracy in theoretical de-
scription, we should follow an explicit approach (see, e.g.,
Ref. 25) which takes into account interaction between all the
elements in a finite structure. Preliminary comparison* re-
vealed that the predictions of the discrete model are quite
close to the experimental findings while deviate sometimes
from the continuous model approximation.

The aim of this paper is to analyze in detail what is the
consequence of the discrete structure of the lens and its finite
size; how this affects the general lens properties, such as
imaging frequency, transmission between the MRI coils, etc.;
and how the continuous model can be modified in order to
describe some of such features.

II. SETUP OF THE PROBLEM

Geometry of the problem and the corresponding discrete
modeling approach were described in great detail in a previ-
ous publication.?* Here we only repeat the most general in-
formation as long as necessary for discussing the results.

The isotropic metamaterial lens proposed in Ref. 11 is
composed of capacitively loaded rings (CLRs) periodically
arranged in an isotropic three-dimensional lattice with the
lattice constant a=1.5 cm. The lens has three planes of 18
by 18 CLRs interlayered with orthogonal segments providing
two (mutually orthogonal) sets of two layers 17 by 18 CLRs
each, which makes it up to roughly 2200 CLRs. Overall
dimensions of the lens are thus 18 X 18 X 2 lattice constants,
although it must be noted that “unit cells” are incomplete at
the edges of the structure and that there are neither two nor
three unit cells across the lens.

The CLRs have the mean radius ry=0.49 cm (2ry/a
=0.66) and are loaded with lumped nonmagnetic capacitors
so that the frequency of resonance in free space equals to
63.28 MHz (kya=0.02). The total resistance has been esti-
mated as R=0.0465 Ohm (obtained indirectly by measure-
ments of the quality factor of the resonator).

We define a Cartesian coordinate system (x,y,z) so that
the lens geometrical center is placed at the coordinate origin;
the y axis is perpendicular to the lens as slab (lens axis)
while the long edges of the lens are parallel to x and z axes
(Fig. 1). The lens is thus completely symmetric with respect
to the coordinate origin, all the axes and all the coordinate

©2010 The American Physical Society
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FIG. 1. Scheme of the lens with the corresponding coordinate
system. Note that the actual number of elements along x and z
directions is not reflected in this sketch.

planes (we neglect minor asymmetry occurring in the real
lens caused by specific assembly details such as resulting
from substrate thickness; these deviations are of the same
order as unavoidable production inaccuracy). The so-called
input and output surfaces of the lens correspond to y
=%+ 1.5 cm while the theoretical source and image planes
are xz planes at y=+3.0 cm.

The discrete analysis of the systems of resonators is well
appreciated in literature, particularly in studying magnetoin-
ductive waves in CLR arrays.>>~?® It constitutes in solving
the matrix multi-impedance equation

Z-1=— jod™ (1)

with Z,,=Z, and Z,,=jowM,,,. The self-impedance Z,=R
+jwL+1/(jwC) is determined by the resistance R, self-
inductance L and self-capacitance C of a single CLR. Here,
@ represents the total external magnetic flux through the
corresponding ring while the mutual interaction between all
the rings is expressed in terms of mutual inductances M,,,,,.
Solving the system (1) for currents with a given distribution
of external sources of magnetic field provides the complete
description of the lens, as all the interesting characteristics,
such as impedance measured by the coil, spatial distribution
of the magnetic field produced by the lens, can be calculated
as soon as all the currents /, are known. Further specific
details of such analysis applied to a large lens are given in.?*

III. RESULTS AND DISCUSSION
A. Imaging frequency

Within the continuous medium approach, it is well
known? that the best imaging with a slab having negative
effective permeability occurs at a frequency where u=-1.
For a discrete lens of a finite size, however, the question is
less trivial as it is too small to be described with effective
parameters.?’ The assessment can be attempted through some
indirect characteristics. Continuous modeling approach
suggests? that at the imaging frequency impedance measured
with a sufficiently large coil placed at the source plane has a
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FIG. 2. (a) Real and (b) imaginary parts of impedance for a
5-inch coil placed in the source plane (15 mm from the lens sur-
face): comparison between a slab of continuous medium (solid) and
discrete model (dash).

local minimum (between the two peaks) in the real part
while the imaginary part is crossing zero (Fig. 2, solid
curves). However, discrete model predicts a different pattern
(Fig. 2, dash curves), expressing a more complex picture of
peaks.

Further complication is that with the discrete model, the
impedance frequency dependence is not the same for the
coils of different size and also depends on the distance be-
tween the coil and the lens. With an increase in the coil size,
the frequency dependence of the impedance changes qualita-
tively (Fig. 3). For small coils, a peak at 63.2 MHz (close to
the resonance frequency of the corresponding bulk medium)
is dominant in the resistance. For moderate coil sizes
(5a—10a in diameter), second peak at 65.5 MHz emerges,
although the main resonance is still present. For larger coils,
this second peak starts to vanish while the third one, at 67
MHz, becomes stronger and for coils larger than 20a is
clearly dominant.

These observations imply that the lens shows distinct
properties caused not only by the discrete structure but also
by its finite size. For this reason, it is only possible to use the
corresponding criterion for the coils of moderate size: large
enough to make an averaging over many unit cells but still
sufficiently small not to be affected by the lens size limita-
tions. From Fig. 3, we can conclude that for moderate coil
sizes, (first) local minimum of the resistance occurs within
64.0-64.5 MHz, and the zero crossing of the reactance hap-
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FIG. 3. (Color online) (a) Real and (b) imaginary parts of im-
pedance for coils of different size, placed in the source plane. The
color sequence from red to blue (curves upwards at 66.5 MHz)
corresponds to the coils from 1 to 13 c¢m in radius, with a step of 0.5
cm. The data are renormalized to have a unity maximum.

pen within the same frequency interval, although we must
note that the two characteristic frequencies do not exactly
coincide for each particular coil radius.

Similar conclusions can be made by studying the imped-
ance measured by a coil placed at various distances from the
lens (Fig. 4). Apart from the case when the coil is too close
to the lens surface (when close proximity of some lens rings
to the coil apparently has a dominating effect on the pattern
of frequency dependence), we can see that characteristic fre-
quencies converge within the interval mentioned above. For
this particular coil size (5 inch diameter), the frequency of
64.2-64.4 MHz can be assumed.

Another approach to evaluate the imaging frequency (or,
as it is likely, frequency range) lies in the calculation of the
transmission between the two identical coils, placed in the
source and image planes, respectively.’ An easy measure of
this quantity can be the ratio of the current induced in the
receiving coil, to that in the transmitting coil. For a continu-
ous slab at the imaging frequency (not shown), this ratio has
a local minimum (equal to unity in a lossless case); naturally,
this occurs exactly at the same frequency as the minimum in
the resistance measured by the coil, and zero reactance.?2
The imaginary part of the current ratio is zero, as there is no
phase shift between the two currents. However, the discrete
model reveals different observations. Figure 5 shows the ab-
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FIG. 4. (Color online) (a) Real and (b) imaginary parts of im-
pedance for a 5-inch coil, placed at various distances from the lens
surface (millimeter, shown in the inset). The data are renormalized
to have a unity maximum.

solute value and imaginary part of this ratio for different coil
sizes. Comparing the absolute values of transmission for dif-
ferent coils, we can admit that while the data for small and
large coils vary considerably, there is certain uniformity (ag-
gregation of curves at a local minimum around 64 MHz) for
intermediate coil sizes, 6a—10a in diameter. This local mini-
mum roughly corresponds to the zero crossing of the imagi-
nary part (renormalized to a unity maximum in Fig. 5 for
clarity). For the representative coil sizes mentioned above,
the frequency of zero crossing varies between 63.5 and 63.7
MHz, and this frequency range can be assumed to be the
result of the transmission criterion for imaging. Note that this
result differs from the impedance approach.

So far, we were discussing indirect criteria to evaluate the
imaging frequency. The necessity to employ such criteria, in
spite of the ambiguity discussed above, is driven by the fact
that direct observations of the field patterns produced by the
lens from various sources, might be equally unclear. Indeed,
as the resolution of the lens is still to be determined (see Sec.
III B), we cannot be certain about choosing an appropriate
geometry to check if an image can be observed at some
frequency. For example, the field patterns observed in the
imaging plane for various coils were not found to reproduce
the source field in detail at any frequency between 60 and 70
MHz while a clear central spot could be observed several
times across the frequency sweep, interchanged with more

165124-3



LAPINE et al.

1.5

1.24

0.91

0.61

0.3 1

Absolute value of current ratio

0.0 7 -
60 62 64 66 68 70

Frequency (MHz)

Imaginary part of normalized current ratio

Frequency (MHz)

FIG. 5. (Color online) (a) Absolute value and (b) normalized
imaginary part of the ratio between the current induced in a coil in
the image plane, to the current in the identical coil in the source
plane, for coils of different size. The color sequence from red to
blue (curves upwards at 64 MHz) corresponds to the coils from 1 to
9.5 cm in radius with a step of 0.5 cm.

complex patterns of excitations (data not shown). For the
reasons explained in Sec. III B, it appears more reasonable to
try an arrangement of two sufficiently distant small sources:
two coils of 5 mm radius positioned symmetrically at 7a
distance. Detailed observation of the changes in the field
pattern with frequency, illustrated by an animation®® made
with a 0.1 MHz step in the 60-70 MHz interval, demon-
strates that the pattern obtained around 63.6 MHz appears
most clear, although we should note that none of the patterns
actually correspond to the source field of the small loops.
The frequency found this way, is consistent with the criterion
based on the transmission between two coils but deviates
from the impedance criterion (at 64.0-64.5 MHz, further
maxima emerge in the field pattern and overall image is less
clear). However, we should note that the frequency differ-
ence is minor, so for experimental evaluation both the crite-
ria appear to be fairly suitable.

One may argue that a further discrepancy lies in the fact
that, contrary to the continuous model which predicts the
imaging frequency to be symmetrically between the two
resonances of the slab (Fig. 2, solid curves), the frequency
we choose is much closer to the first resonance. This is,
however, consistent with the findings of paper,?> where it
was demonstrated that the imaging frequency of the thin slab
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FIG. 6. Spatial profile of the axial component (H,) of the total
magnetic field observed across the image plane (y=3 “cm, z=0) for
a small or a large coil placed in the source plane. Comparison
between the field obtained with a discrete lens (at 63.6 MHz) with
a continuous slab (with u=-1) and in vacuum.

is indeed expected to be closer to the first resonance. We
therefore should not seek to find imaging phenomena be-
tween the second and third peaks of the impedance predicted
by discrete model, even though some of the field patterns
might look promising.

We should also comment that one further qualitative cri-
terion for a superlens behavior could have been the observa-
tion of evanescent field enhancement. However, the field
structure inside the lens is strongly nonuniform and cannot
show a clear analogy to a field inside a homogeneous slab.
At the same time, field analysis in the outer areas faces the
same difficulty: there is no unique frequency to be selected
with such criterion, as the best visual analogy (field decay
from the source and a subsequent decay, from a larger value,
on the other side) occurs at different frequencies depending
on the coil size and distance to the lens.

All this analysis suggests that, although no direct coinci-
dence between the continuous model and the discrete calcu-
lation can be found, the general criteria formulated with the
help of continuous model are still applicable. Although we
cannot select an exact frequency, ideal for imaging, we can
safely speak of a relatively narrow frequency interval—63.5
to 63.7 MHz—where the phenomena, analogous to the im-
aging with a continuous w=-1 slab, can be observed with a
discrete finite lens. Since the field patterns do not change
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FIG. 7. Axial component (H,) of the total magnetic field observed at 63.6 MHz in the image plane for the two small sources (coils of 5
mm radius) placed in the source plane at various distances (1a—12a) between each other.

remarkably within this frequency range, we have chosen
63.6 MHz in order to convey calculations necessary to evalu-
ate the spatial resolution of the lens, analyzed in the follow-
ing section.

B. Spatial resolution of the lens

Now that we are confident that the lens behavior corre-
sponding to the imaging phenomena can be reliably studied
at frequencies discussed in the previous section, we are able
to proceed to the important question of the resolution that
can be achieved by the lens. Within the continuous theory,
resolution is limited by lens thickness and by dissipation,
according to the relation’

B 2rd
T In(2/8)°

(2)

For the lens under consideration, having loss tangent 6=0.2
and thickness d=2a, resolution is thus limited by 5.5a. This
value might be not a good starting point to study the reso-
lution of a discrete structure if we expect it to be of the order
of a few lattice constants. Nevertheless, it is interesting to
check the behavior of the realistic lens with this respect.

As it was already noticed,* magnetic field distributions
behind the lens excited by relatively small coils, are visually
rather similar regardless of the coil size. Now, we have sys-
tematically studied the patterns in the image plane for coils
of different radii, and conclude that the field profiles are
practically identical for small coils up to 5 cm in radius.

These profiles are characterized by 4.3a full-width at half-
maximum, so are almost as wide as the coil field in vacuum
(in the absence of the lens) for same coils (Fig. 6). For coil
radii larger than 6 cm, the profiles obtained with the lens tend
to give a clearly better spot size accuracy than in vacuum. On
the other hand, even for larger coils the image field remains
unresolved in details, demonstrating only a central spot (of
appropriate size) but not the source profile. Only with a coil
as large as 9 cm radius further features in the profile are
visible, which are qualitatively analogous to the source field,
as also with the continuous model (Fig. 6). Going to much
larger sizes is not appropriate as the size of coil becomes
comparable with the lens dimensions, and edge effects are be
essential, deteriorating the image (not shown). For checking
bigger coils, studying a much larger lens would be necessary,
which is numerically challenging but will be probably done
in the future.

Clearly, the above observations cannot be considered en-
tirely appropriate for understanding the resolution. More
consistent approach to test the resolution limitations is to
analyze if the lens can distinguish the two point sources with
various spacing. As we know that the field patterns obtained
with coils smaller than four lattice constants in diameter are
practically identical, we can safely choose a coil with the
same radius as the ring inside the lens, as a fair representa-
tive of a point source. Placing two such coils at various dis-
tances between each other in the source plane provides the
field patterns in the image plane as shown in Fig. 7. We can
see that indeed coils close enough provide either one central
spot or a complex pattern which does not reflect actual loca-
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FIG. 8. (Color online) Profiles of the axial component (H,) of
the total magnetic field observed at 63.6 MHz along x axis in the
image plane (at y=3 cm, z=0) for the two sources at various dis-
tances between each other. The data are renormalized to have a
unity maximum.

tion of the sources unambiguously. With separation of 6a,
the two spots can be distinguished although the “spurious”
maximum between them is still strong; for separations larger
than 7a, resolution is apparent, although of course not the
size of the spots but only location corresponds to the source
geometry. This can be also conveniently seen on a field pro-
file across the line of the source images in the image plane
(Fig. 8). Note, though, that the shape of these profiles makes
a standard half-maximum criterion for peak separation barely
applicable.

In spite of these complications, we can nevertheless con-
clude that the spatial resolution of the lens is limited by 5-7
lattice constants. This conclusion can be supported with the
continuous model. Indeed, if we force certain truncation for
the k vectors which can be transmitted by the lens, we can
obtain the field patterns for the corresponding resolution.
Figure 9 shows the difference between the virtually unre-
stricted case (k=300 m~!, corresponding to 1.5a reso-
lution), and the truncated calculation (k=65 m~', which
corresponds to a restriction by 6.5a). The difference is
clearly visible: complete separation of the source spots oc-
curs starting from about 4« in the first case but only at 6a in
the second. This test supports indirectly the conclusion on
resolution made from field pattern observations.

However, with the theoretical limitation, Eq. (2), being of
the same order, one may doubt whether these results reflect
the limitations specific for the discrete structure. In order to
make a reliable check, it is possible to study an artificial case
of lower losses. Because of the logarithmic dependence in
Eq. (2), we would need to assume the resistance a few orders
of magnitude lower in order to improve dramatically the pre-
diction of continuous model. In general, the overall charac-
teristics of the lens, such as its impedance to the coil or
transmission between the coil, remain qualitatively similar,
however, the analysis is more complicated as all the resonant
features are sharper and extra resonances emerge. We there-
fore restrict this consideration by assuming a ten times
smaller dissipation. The frequency interval given for the im-
aging phenomena by the impedance criterion, is confined to
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FIG. 9. Assessment of the resolution with a continuous slab
model. Axial component (Hy) of the total magnetic field observed in
the image plane for the two point sources at various distances be-
tween each other (as shown above each image). Spatial harmonics
are cut at either 300 m~! (left column) or 65 m™' (right column).

64.0-64.2 MHz while the transmission approach suggests
63.4-63.5 MHz. As to the field patterns in the image plane,
further complication is brought by very rapid change in the
patterns with frequency and numerous multiple additional
maxima observed practically in the whole frequency range.
By analyzing the patterns for 6a separation between the two
small sources, we were able to give preference to the fre-
quency interval of 63.46 to 63.50 MHz, which is once again
close to the transmission optimum. We should note, though,
that such a favorable interval may appear different for differ-
ent geometry, and is not very reliable. With this precaution,
we performed a resolution check analogous to that of Fig. 7
at a frequency 63.48 MHz. It can be seen (Fig. 10) that
although the patterns look much more “noisy” with extra
excitations, the two sources can be reasonably distinguished
at separations more than 5a while at a smaller distance the
central spot dominates. As for these losses resolution pre-
dicted by Eq. (2) is less than 3a, we feel confident that the
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FIG. 10. Axial component (H,) of the total magnetic field ob-
served (at 63.6 MHz) in the imagé plane for the two small sources
(coils of 5 mm radius) placed in the source plane at various dis-
tances between each other. Dissipation in the lens is assumed to be
ten times smaller as compared to Fig. 7

observed limitation should be attributed to the discreteness
effect.

On the other hand, with low losses the above patterns of
magnetic field are very sensitive to subtle variations in fre-
quency and setup geometry. The additional peaks can be
comparable or even exceed the image peaks in magnitude.
This is especially remarkable when the coils are placed non-
symmetrically with respect to the lens center (Fig. 11): while
with the realistic losses the shifted sources can be well re-
solved, the patterns at low loss are not comprehensive and
could not be improved even by frequency variation. This is a
consequence of numerous magnetoinductive excitations
(spatial resonances) across the lens structure’2° which are
favored by low dissipation and relatively small size of the
entire lens. This leads to various standing wave patterns
which depend on frequency and coil parameters. In other
words, a clear analogy to the phenomena, predicted for ho-
mogenized media, are not possible here because of the strong
spatial dispersion.'”-?2! For these reasons, we feel that it is
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FIG. 11. Axial component (H,) of the total magnetic field ob-
served (at 63.6 MHz) in the image plane for the two small sources
(coils of 5 mm radius) placed nonsymmetrically in the source plane:
one source is at x;=3a and z;=2a from the lens center, the other
one is at either [(a) and (c)] x;=—4a, z;=—5a (distance approxi-
mately 10a) or [(b) and (d)] x;=—4a, z;=5a (distance approxi-
mately 7.5a). Comparison between the low-loss case [(a) and (b)]
and realistic dissipation [(c) and (d)].

impossible to discuss consistently lens resolution at low
losses, as the whole structure does not perform as intended
with the original design. Note that the presence of such in-
homogeneities is also noticeable for realistic losses (Fig. 7)
but in that case they are largely suppressed and do not inter-
fere so significantly with the image patterns.

Nevertheless we can conclude that the spatial resolution is
not improved by decreased dissipation and that a reasonable
distinction between the small sources is only possible for the
same separations as with realistic losses. Therefore, reso-
lution is indeed severely limited by discreteness of the lens
and cannot be made better than five lattice constants.

Finally, we should comment that the result which we ob-
tained with regards to resolution, is consistent with the effec-
tive medium theory. Indeed, it was shown explicitly for CLR
metamaterials that the characteristic length of response for-
mation in the bulk is of the order of few lattice constants.'’
This is also generally expected in condensed matter
theory.3!3> Consequently, it does not make sense to speak of
any effective material properties on a smaller scale and any
excitations delivered on the level of individual elements are
spread out across the corresponding area encompassing nu-
merous unit cells. This makes an important distinction to the
channeling approach!? to imaging: resolution on the level of
lattice constant is only possible with an array of weakly in-
teracting elements. When, however, metamaterial is build up
as an internally coupled effective medium, the limitations
discussed in this paper are unavoidable.

165124-7



LAPINE et al.

IV. CONCLUSIONS

We have shown that the behavior of a realistic metamate-
rial lens (which can be practically implemented with a lim-
ited number of capacitively loaded resonators), differs sig-
nificantly from the predictions based on a continuous
medium approximation. It turns out that no direct coinci-
dence to the imaging properties of a u=—1 slab can be ob-
tained with such a practical lens, although analogous phe-
nomena, suitable for imaging applications, are available in a
certain frequency range.

We have also assessed the resolution, achievable with a
discrete lens and conclude that it is generally limited by 5-7
lattice constants. It is important to emphasize that this limi-
tation is entirely structural and cannot be improved by de-
creasing losses.

PHYSICAL REVIEW B 82, 165124 (2010)

The discussed peculiarities are enforced by discrete struc-
ture and finite size of the lens, and are thus in agreement with
the restrictions for the classical effective medium theory. At
the same time, rich phenomena observed for a practical lens,
leave much room for further exploration and can be useful
for various applications.
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Isotropic frequency selective surface (FSS) made of cubic arrangements of split ring resonators
(SRRs) is proposed and analyzed. For this purpose, a suitable isotropic modification of the SRR was
used in the design of a cubic unit element invariant under the tetrahedral point symmetry group. It
was experimentally demonstrated that the transmission through such a FSS is angle and polarization
independent. For comparison, another FSS, whose unit elements do not satisfy necessary
symmetries, was measured, showing clearly anisotropic behavior. We feel then that symmetries play
an important role. Potential device applications are envisioned for antenna technology at microwave
and terahertz frequencies. © 2007 American Institute of Physics. [DOL: 10.1063/1.2806915]

Frequency selective surfaces (FSSs) are planar periodic
arrays of scatterers exhibiting one or more passbands or stop-
bands for impinging electromagnetic waves. They are widely
used in microwave technology as, for instance, in antenna
radomes and reflectors.’ For the aforementioned applications
it is often desirable to have an isotropic transmittance and/or
reflectivity of the FSS, which should be independent of both
the angle of incidence and the polarization of the impinging
wave.' Needless to say, this implies that secondary grating
lobes should not be generated by the FSS.

Previous implementations of FSSs can generally be clas-
sified into two groups. The first group consists of electro-
magnetic band gap planar structures. In these structures, the
distance between the elementary scatterers is of the order of
the wavelength, which results in the generation of undesir-
able secondary grating lobes. The second group of FSSs is
based on resonant scatterers individually interacting with the
electromagnetic fields. In this case, the distance between
scatterers can be made much smaller than the wavelength to
prevent the generation of secondary grating lobes. There are
many kinds of resonant scatterers useful for FSS design.
Resonant electric dipoles, tripoles, and metallic crosses were
used in many former FSS designs..1 However, the behavior of
such FSSs presents a strong dependence on the angle of in-
cidence and the polarization of the impinging wave. Annular
elements were theoretically studied in Ref. 2 and are widely
used™ for microwave reflector antennas and for applications
at optical frequencies.5 FSSs made of annular elements were
shown to be less sensitive to the incidence angle and polar-
ization than other previous designs.zf5 More recently, fractal
resonators were proposed as small size scatterers able to re-
duce the angular dependence of FSS transmittance and/or
reflectance.™ Split ring resonators® (SRRs) can also be used
as small size scatterers for FSS design.g’10 However, the
transmittance/reflectance of SRR made FSSs strongly de-
pends on the angle of incidence.'”

The aim of this work is to develop an isotropic (i.e.,
polarization and angle independent) FSS by using SRRs as
basic elements. It was shown in Ref. 10 that the SRR aniso-
tropy is the main source of FSS anisotropy. Therefore, the
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first challenge is to find a suitable arrangement of SRRs
showing an isotropic behavior. Once this arrangement is
found, it can be expected that FSSs made of such elementary
scatterers will show almost isotropic behavior. In Ref. 11, it
was demonstrated that the cubic resonator (CR) shown in
Fig. 1(a) exhibits an isotropic behavior due to its invariance
under the tetrahedral point group of symmetry (or T group in
Schoenflies notation). The planar resonator used in this CR
was first introduced in Ref. 12 and called nonbianisotropic
SRR (NB-SRR). In what follows, this cubic element will be
called 7-CR, in accordance with its symmetry properties.

A square network of 18X 18 T-CRs, partially shown in
Fig. 2, was assembled in order to form an isotropic FSS. To
illustrate the importance of the aforementioned symmetry,
another anisotropic FSS made of 18X 18 CRs of conven-
tional SRRs shown in Fig. 1(b) was also manufactured. Geo-
metrical parameters of both samples were equal. The reso-
nance frequencies of each individual NB-SRR and SRR were
measured in an X-band waveguide, getting the experimental
frequencies of resonance fyp.sgr=(10.00+£0.22) GHz and
Sfsrr=1(9.65+0.28) GHz, respectively.

Figure 3 shows the experimental setup used for the
analysis of the transmission through both FSSs. Two conven-
tional X-band horn antennas were used as emitter and re-
ceiver. The FSS was measured for TE,, TE,, TM,, and TM,
polarizations, where TE (TM) means that the electric (mag-
netic) field is tangent to the FSS and TF, (TF,) means that
the field F of the incident wave is directed along the x (y)
axis. Different polarizations were achieved by rotating either

(b)

FIG. 1. Unit elements used for the design of the FSSs: (a) the isotropic
T-CR and (b) the CR made of conventional SRRs.

© 2007 American Institute of Physics
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FIG. 2. (Color online) Image of the actual experimental isotropic FSS struc-
ture made of T-CRs. The sample has a size of 16.6 X 16.6 cm” and contains
18 X 18 CRs with edge size a=4.6 mm placed on a square network of peri-
odicity 2a. Geometrical dimensions of planar resonators are external radius
Fex=1.8 mm, width of strips w=0.2 mm, distance between strips
d=0.4 mm, and slit size g=0.4 mm. Planar resonators were etched on a
dielectric substrate FR4, with &,=4.4, thickness r=0.2 mm, and copper met-
allization thickness A=17 pum.

the sample or the antennas. In order to avoid diffraction ef-
fects on the FSS borders, the FSS was surrounded by a mi-
crowave absorber. Finally, since a bigger incidence angle im-
plies a smaller sample effective cross section, transmission
was normalized to previous measurements of transmittance
through the hole in the absorber without the sample.

Figures 4 and 5 show the transmission through the
sample made of T-CRs for a selected set of angles (the mea-
surement was made for angles from —50° to 50° with 10°
step for all polarizations). For better readability, Fig. 4 pre-
sents fewer angles showing amplitude and phase of transmis-
sion and Fig. 5 presents finer angle definition but shows only
amplitudes and selected polarizations. Both figures, however,
clearly reflect the angle independency of transmission for
both TE and TM polarizations, except for small deviations
that may be attributed to imprecision during the manufactur-
ing process.

Transmission through the FSS made of conventional
SRRs is reported in Fig. 6. It can be seen that the transmis-
sion strongly depends on the angle and the polarization of
the incident wave, i.e., this FSS clearly exhibits an aniso-
tropic behavior. Furthermore, instead of a single stopband
approximately centered at the resonance frequency of a
single SRR, a set of four stopbands appears. This splitting of
the transmission dip cannot be attributed to fabrication im-
precision (note that the distance between dips is bigger than

Port 1

FIG. 3. Sketch of the experimental setup for measuring the transmission
through the FSSs. Two X-band horn antennas, located at /=61 cm from the
sample, are used as emitter and receiver. The FSS is placed in a window
opened in a wood panel covered with microwave absorber. The size of this
absorber panel is 122 X 122 cm?.
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FIG. 4. Measured transmission coefficient S,, through the FSS made of the
T-CR shown in Fig. 1(a) for different incidence angles and polarizations.

Afsrr=0.28 GHz) but to internal couplings in the unit
element.'® We feel that these results show the importance of
geometrical symmetries in order to obtain an isotropic be-
havior for the FSS.

Finally, a model of isotropic FSS describing its overall
characteristics is presented. This model is based on approxi-
mation by slab of homogeneous isotropic medium of thick-
ness t=2a equal to the FSS periodicity. Although we admit
that such model cannot be rigorous, since there is no period-
icity along the direction normal to the FSS, it can serve as
first order approximation. The model assumes that the cou-
pling between adjacent cubic resonators is not strong. In
such case, the relative permeability of the three-dimensional
lattice of cubic SRRs can be approximated as
u,=1+poalV, with V=(2a)® being the volume of unit cell
and a=2w?A%/[(L+M)(wj—w’+jwy)] the T-CR free space
polarizability, where A is area of planar SRR. The self-
inductance L was calculated using the inductance model
from Ref. 14 and the mutual inductance M as coupling be-
tween two circular loops. The resonance frequency w, was
taken equal to the experimental resonance frequency of the
FSS and the damping factor y was fitted so that the trans-
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FIG. 5. (Color online) Measured amplitudes of transmission coefficient S,
through the FSS made of the 7-CR shown in Fig. 1(a) for different incidence
angles and TE, and TM, polarizations.
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FIG. 6. Measured transmission coefficient S,, through the FSS made of
conventional SRR CRs shown in Fig. 1(a) for different incidence angles and
polarizations.

mission coefficient through the slab coincides with experi-
mental value at normal incidence. The resulting transmis-
sions through the slab are shown in Fig. 7 for both
polarizations. It can be observed that transmissions in Fig. 7
show a similar behavior to those in Figs. 4 and 5. Figure 7,
however, also shows that the slab model predicts a depen-
dence of the minimum transmission on the angle of inci-
dence bigger than the experimental values. Thus, the bulk
isotropic material model may offer a reasonable first order
approximation. However, more precise calculations are
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FIG. 7. (Color online) Amplitudes of transmission coefficient S,; through a
slab model of FSS for different incidence angles and polarizations.
Parameters of the model are y=6.0X10""s71, a=4.6X10"2m,
A=62X10"°m?, L+M=3.0X 10" H, and y=1.6X10° s\,
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needed to reproduce all the observed effects in detail.

In summary, an isotropic polarization and angle indepen-
dent FSS has been designed by using previously proposed
isotropic SRR cubic resonators that are invariant under the
tetrahedral point group of symmetry and an ab initio physical
model has been proposed. Practical applications of the re-
ported device may arise in the design of frequency selective
antenna reflectors and antenna dichroic subreflectors.' Since
magnetic response of SRRs has been shown from the
radiofrequency to the terahertz range,15 applications of the
proposed design may cover all the aforementioned range of
frequencies. In fact, the proposed isotropic FSS design is the
first practical application of the isotropic cubic resonators
already proposed in Ref. 11 for metamaterial design. We feel
that this application will pave the way for future applica-
tions, including truly isotropic three-dimensional magnetic
metamaterials with interesting applications in lenses and
other bulk metamaterial devices.
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