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A unified homogenization procedure for split-ring metamaterials taking into account time and spatial dis-
persion is introduced. It is shown that electromagnetic and magnetoinductive waves propagating in the
metamaterial are obtained from this analysis. Therefore, the proposed time and spatially dispersive permeabil-
ity accounts for the characterization of the complete spectrum of waves of the metamaterial. Finally, it is shown
that the proposed theory is in good quantitative and qualitative agreement with full wave simulations.
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I. INTRODUCTION

Diamagnetic properties of systems of conducting rings
have long been known by physicists. In 1852 Wilhem Weber
�1� tried to explain natural diamagnetism �discovered by Far-
aday some years before� as a consequence of the excitation
of induced currents in some hypothetical conducting loops
that supposedly existed in diamagnetic materials. In order to
enhance the magnetic properties of artificial media �or
metamaterials in modern terminology� made from metallic
conducting rings, Shelkunoff proposed in 1952 to introduce a
capacitor �2�, so that the rings become resonant. More re-
cently Pendry et al. �3� proposed to replace the capacitively
loaded rings by planar split-ring resonators �SRRs� which
substitute the lumped capacitor with a distributed capaci-
tance between the rings. Because Pendry’s SRRs can be eas-
ily manufactured by using standard printed circuit technolo-
gies, this design opened the way to manufacturing true
magnetic metamaterials made of many individual elements
�SRRs� at many laboratories around the world. As a conse-
quence of this resonant behavior, capacitively loaded rings
and/or SRRs can produce metamaterials with negative mag-
netic permeability above resonance. It is also well known
�4–6� that when a system of these elements is properly com-
bined with another system of elements �metallic wires or
plates, for instance� producing a negative electric permittiv-
ity �7�, a metamaterial with simultaneously negative permit-
tivity and permeability �or left-handed metamaterial �8��
arises in the frequency band where both subsystems present
negative parameters. Remarkably, the electric and magnetic
properties of such combinations are, quite approximately, the
superposition of the electric and magnetic properties of each
subsystem. This superposition hypothesis is not apparent at
all �see, for instance, Refs. �9,10�� and, for the specific SRRs
and wire configuration proposed in Ref. �4�, it can be admit-
ted that it is valid provided the elements of both subsystems

are placed in such a way that their quasistatic fields do not
interact or interact weakly �10,11�. Almost simultaneously,
other analyses and experiments �12,13� did show that SRR-
based metamaterials also support, in some frequency bands,
slow waves based on short-range interactions between the
SRRs: the so-called magnetoinductive �MI� waves, which
cannot be deduced from the usually assumed local magnetic
permeability of the metamaterial. Interestingly, many of the
physical effects expected in negative permeability and left-
handed metamaterials, such as frequency band gaps and fre-
quency bands of backward-wave propagation, also come out
from the analysis when the coupling between electromag-
netic and MI waves in SRR systems is considered �14�, thus
providing an alternative explanation for such effects. Al-
though the analysis in Ref. �14� has a great heuristic value, it
cannot be considered as fully satisfactory because it only
considers one-dimensional systems in the nearest-neighbor
approximation. On the other hand, the presence of waves
which cannot be deduced from a local time dispersive mag-
netic permeability in split-ring metamaterials can be ex-
pected from the fact that its periodicity is usually not smaller
than one tenth of a wavelength. As is well known �15�, when
the periodicity of a given medium approaches the wave-
length of the electromagnetic radiation, it becomes not only
time dispersive but also spatially dispersive. Therefore, it can
be expected that both electromagnetic and MI waves would
come out from the analysis if spatial dispersion in split ring
metamaterials were taken into account. In fact, the main pur-
pose of this paper is to develop a spatially dispersive homog-
enization procedure able to describe both types of waves.

II. ANALYSIS

In order to simplify the analysis, we will consider an ideal
metamaterial made of a cubic arrangement of LC circuits
supporting current loops as sketched in Fig. 1�a� for a unit
cell. We define the current vector In on each unit cell as In

= �Ix
n , Iy

n , Iz
n�, where n= �nx ,ny ,nz� specifies the location of

each unit cell in the lattice and Ii
n denotes the current along

the loop located in the face normal to the i direction of the
unit cell of index n. The time dependence is assumed to be of

*juan_dbd@us.es
†l_jelinek@us.es
‡marques@us.es
§mario.silveirinha@co.it.pt

PHYSICAL REVIEW A 78, 013842 �2008�

1050-2947/2008/78�1�/013842�5� ©2008 The American Physical Society013842-1

http://dx.doi.org/10.1103/PhysRevA.78.013842


the form In� exp�j�t�. Each component of the current vec-
tor is governed by the equation

� j�L +
1

j�C
�Ii

n = − j��i
n, �1�

where L, C are self-inductance and self-capacitance of the
circuit �losses are neglected by simplicity, although they can
be easily introduced in the analysis through a ring resis-
tance�. In Eq. �1� �i

n is the total magnetic flux through the
considered loop which, using Lorentz local field approxima-
tion, can be calculated as

�i
n = A�0�Hi +

Mi

3
� + �

�m�n�∧�j�i�

r�R

Mij
nmIj

m, �2�

where A is the area of the loop, H, M are the macroscopic
magnetic field and magnetization on the ring, and Mij

nm are
the mutual inductances between the loops oriented along the
i and j axes in unit cells with indexes n and m. The summa-
tion is extended to the cells inside a sphere centered around
the nth unit cell and with radius R sufficiently large so that
the region outside can be approximated by a continuous ma-
terial but such that R is smaller than the wavelength to guar-
antee that the Lorentz approximation can be used. Therefore,
in Eq. �2� the first term accounts for the contribution of all
rings outside the sphere which, according to the standard
Lorentz local field theory, are considered as a “continuous
medium,” whereas the summation accounts for the detailed
contribution of each ring inside the sphere.

In the following we will assume a spatial field depen-
dence of the kind �H ,M	= �H0 ,M0	exp�−jk ·r� and In

=I0 exp�−jak ·n�, where a is the lattice periodicity and I0,
H0, M0 are constant vectors. With the assumed time and
space dependence, the macroscopic Maxwell equations lead
to

�km
2 − k2�H0 + �km

2 − kk ·�M0 = 0, �3�

with km=k0

�r=�
�r�0�0, where �r is the macroscopic rela-

tive dielectric constant of the metamaterial. By combining
Eqs. �1� and �2� the following equation for I0 is obtained:

Z̄̄�k,�� · I0 = − j�A�0�H0 +
M0

3
� , �4�

where Z̄̄�k ,�� is an impedance matrix which incorporates all
the magnetoinductive effects between the neighboring rings.
Explicit expressions for the diagonal and the off-diagonal

terms of Z̄̄ are

Zii = j�L�1 −
�0

2

�2 + �
n�0

r�R
Mii

0n

L
e−jak·n� , �5�

Zij = Zji = j�L�
n

r�R
Mij

0n

L
e−jak·n, i � j , �6�

where �0=1 /
LC is the frequency of resonance of the rings.
Taking into account that M0=AI0 /a3, it is possible to com-
bine Eq. �3� with Eq. �4� which gives

� Z̄̄�k,�� −
j��0A2

3a3

2km
2 + k2 − 3kk

km
2 − k2 � · I0 = 0. �7�

The dispersion relation for plane waves in the metamaterial
is obtained by equating the determinant of Eq. �7� to zero. In
the most general case this equation can be only solved nu-
merically. However, in some cases, it is possible to give ana-
lytical solutions. In particular, for propagation along one of
the coordinate axes �for k=kx̂, for instance� the summation
in Eq. �6� vanishes because all unit cells in planes perpen-
dicular to the x axis are in phase and mutual inductances
cancel out couple by couple �for instance, the mutual induc-
tances between the ring marked Ix and the rings placed on the
top and lower faces of the cube of Fig. 1�a� cancel each

other, and so on�. Therefore, the matrix Z̄̄�k ,�� becomes
diagonal, and Eq. �7� can be easily solved. This gives two
branches: a longitudinal wave with I0= I0xx̂ given by

Zxx −
2

3

j��0A2

a3 = 0 �8�

and a transverse wave with I0= I0yŷ+ I0zẑ given by

Zyy −
j��0A2

3a3

2km
2 + kx

2

km
2 − kx

2 = 0. �9�

If only interactions with the closest rings are considered for
the computation of the summations in Eqs. �5� and �6� the
dispersion equation for the longitudinal wave becomes

�0
2

�2 = 1 + 2
Ma

L
cos�akx� + 4

Mc

L
−

2

3

�0

a3 , �10�

where �0=�0A2 /L and Ma and Mc are the mutual induc-
tances between closest rings of the same orientation, placed
in the axial and the coplanar directions, respectively. It can
be easily recognized that Eq. �10� corresponds to the disper-
sion relation for longitudinal magnetoinductive waves �12�,
with some small corrections, which take into account the
effects of the rings other than the nearest neighbors in the
axial direction. In the same approximation the dispersion
equation for transverse waves can be written as

FIG. 1. �a� Unit cell of a material formed by a cubic array of
current loops. Each unit cell has three current loops centered at the
faces of the cube. �b� Similar to �a� but for a realistic metamaterial
formed by edge coupled SRRs with two splits. The SRRs are
formed by circular wires with radius r. The distance between the
inner and outer rings is d and the average radius of the particle is R.
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kx
2

km
2 − 1 =

�0

a3

�0
2

�2 − 1 −
2Mc

L
cos�akx� −

2�Ma + Mc�
L

−
�0

3a3

.

�11�

For high values of kx �kx�km� this equation reduces to

�0
2

�2 = 1 +
2Mc

L
cos�akx� +

2�Ma + Mc�
L

+
�0

3a3 , �12�

which corresponds to the dispersion relation for transverse
magnetoinductive waves �12�. On the other hand, in the long
wavelength limit �akx	1� Eq. �11� reduces to


��� =
kx

2

km
2 − 1 =

�0

a3

�0
2

�2 − 1 −
2Ma

L
−

4Mc

L
−

�0

3a3

. �13�

This equation gives the value for the magnetic susceptibility
that is obtained when the Lorentz homogenization procedure
is applied to the metamaterial with the ring magnetic polar-
izabilities �=�0��0

2 /�2−1�−1 already proposed in Ref. �16�,
except for a small correction term 2Ma /L+4Mc /L account-
ing for the effect of the closest rings. Actually, if such a
correction term is calculated by assuming a magnetic dipole
approximation for the rings, it can be easily shown that it
vanishes, thus giving exactly the Clausius-Mossotti formula
for the susceptibility. Therefore, we can conclude that in the
long wavelength limit, the transverse waves �9� correspond
to the electromagnetic waves that are obtained from the local
time-dispersive permeability �=�0�1+
���	. Conversely, in
the short wavelength limit �kx�km�, they converge to the
transverse magnetoinductive waves �12�. Furthermore, from
M0=AI0 /a3 and Eq. �4�

M0 = � ja3

�0�A2 Z̄̄�k,�� −
1

3
�−1

· H0 = 
̄̄�k,�� · H0 �14�

can be obtained. Now in Eq. �3� M0 can be replaced by Eq.
�14� leading to

��− k2 + km
2 � + �− kk + km

2 � · 
̄̄�k,��	 · H0 = 0, �15�

which gives the same dispersion equation as Eq. �7�. There-
fore we can conclude that the nonlocal �i.e., time and spa-
tially dispersive� magnetic permeability

�̄̄�k,�� = �0�1 + � ja3

�0�A2 Z̄̄�k,�� −
1

3
�−1� �16�

provides a complete characterization of the metamaterial, ac-
counting for all kinds of waves propagating through it. In the
long wavelength limit �a
k
	1� all the exponential terms in

Z̄̄�k ,�� can be equated to unity and the magnetic permeabil-
ity �14� reduces to the scalar time-dispersive permeability
�=�0�1+
���� with 
��� given by Eq. �13�. Alternatively,
following Landau’s description �15�, the metamaterial can be
also described by an equivalent spatially dispersive permit-

tivity ���k ,��. The relation between this dielectric permittiv-
ity and the proposed magnetic permeability Eq. �16� is given
by Eq. �43� in Ref. �17�.

III. NUMERICAL EXAMPLE

As a numerical example, we have studied the propagation
of electromagnetic waves in a metamaterial formed by the
simple cubic lattice of split-ring resonators whose unit cell is
depicted in Fig. 1�b�. The capacitance C and self-inductance
L were calculated following the ideas of Ref. �18� but for the
case of a SRR made of wires instead of planar strips. This
calculation was carried out by using well-known formulas
�19� as explained in Ref. �20�. The mutual inductances Mij

nm

were calculated numerically using Neumann’s formula in-
cluding time retardation. The macroscopic permittivity was
evaluated by substituting the SRRs by planar conducting
disks of the same external radius, and by using the static
Lorentz homogenization theory �21�. This approach yielded
the approximate value �r=2.5. Using Eq. �7� and the first
neighbor approximation, the dispersion characteristic of the
electromagnetic modes supported by the metamaterial along
different directions of the first Brillouin zone was calculated.
The result for the geometry associated with R=0.44a, r
=0.005a, and d=0.03a �see Fig. 1�b�� is depicted in Fig. 2. It
can be seen that the band structure is formed by three
branches and contains a band gap for all the depicted direc-
tions of k. For k along �-X, the first and third branches
correspond to the transversal mode described by Eq. �9� and
the second branch corresponds to the longitudinal mode de-
scribed by Eq. �8�. Figure 2 also shows the high isotropy of
the transversal mode even for moderate values of k, a fact
that is expected from the tetrahedral symmetry of the system
�22�.

To assess the accuracy of the proposed analytical model,
we have also numerically computed the exact band structure
of the aforementioned periodic material using the hybrid-

FIG. 2. �Color online� Dispersion diagram along �-X, �-M, �-R
directions obtained from the analytical model �lines 1, 2, 3� and
from a full-wave simulation �dashed line�. The coordinates of se-
lected points are �= �0,0 ,0�, X= �� /a ,0 ,0�, M = �� /a ,� /a ,0�, R
= �� /a ,� /a ,� /a�.
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plane-wave-integral-equation formalism introduced in Ref.
�23�. The result of the numerical simulation is presented in
Fig. 2 for the specific direction �-R, and in Fig. 3 for the
closed path R-�-X-M-R. Good qualitative agreement be-
tween theory and simulation can be seen from Fig. 2. We
think that the quantitative disagreement for high values of k
in the second branch can be attributed to the specific local
field approximation considered in Eq. �2�, which is strictly
valid only for small values of k. In the case of the third
branch, the disagreement is due to the proximity of the sec-
ond resonance of the SRRs, which is not taken into account
in the model. This effect is more visible in Fig. 3, where
higher frequency branches are included. This figure also
shows a complete electromagnetic band gap in the range
1.18�k0a�1.50, in agreement with the hypothesis of a
negative permeability in such a frequency band. It is worth
noting that the effect of the substitution km

2 →−km
2 �or equiva-

lently �r→−�r� into Eq. �11� is the onset of a backward wave
pass-band in the frequency range of the stop-band of Fig. 3,
as well as the conversion of the pass-bands of Fig. 2 into
stop-bands. Therefore, the proposed model will be also use-

ful for the analysis of isotropic left-handed media made of
SRRs and wires or any other elements providing a macro-
scopic negative permittivity �provided the conditions for the
validity of the superposition hypothesis previously discussed
in Ref. �10� are fulfilled�. Work in this direction is in
progress.

IV. CONCLUSIONS

A homogenization procedure for split-ring metamaterials
taking into account spatial dispersion has been developed.
The spatially dispersive permeability arising from this ho-
mogenization accounts for all the electromagnetic spectra
observed in these composites, including electromagnetic and
magnetoinductive waves. It has been also shown that this
spatially dispersive permeability continuously approaches to
the Lorentz local permeability in the long wavelength limit.
From this analysis follows that transverse magnetoinductive
waves are the continuation, at short wavelengths, of the well
known transverse electromagnetic waves that can be found
in the long wavelength limit. However, longitudinal magne-
toinductive waves are not related to electromagnetic waves
but to the collective oscillations of the metamaterial arising
at �=0 in the long wavelength limit. It has been also ob-
served that, when a macroscopic negative permittivity is im-
posed to the metamaterial, a typical left-handed pass-band
appears at those frequencies where the magnetic permeabil-
ity becomes negative. Therefore, we feel that the proposed
homogenization procedure provides a complete macroscopic
characterization of negative-� and left-handed split-ring
metamaterials.
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