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1 Introduction

The main purpose of this thesis statement is to provide a general overview of my own re-
search work as a PhD candidate at the Czech Technical University in Prague. The intro-
ductory section specifies the scope of the main thesis, it provides a list of my publications
related to the scope of the thesis1) and it also summarizes my other research-related activities
(e.g. grants etc.). The second section provides a brief overview of the current state-of-the-
art in the two specific fields of Wireless (physical layer) Network Coding (WNC) research,
namely the WNC processing inparametric wireless channelsand WNC processing with
imperfect/partial side information. Our original contributions to the research in these inter-
esting WNC research areas form the core of the thesis. The most important results of our
research activities in these fields are summarized in Section 3.

1.1 Aims and scope of the thesis

The scope of the thesis is basically three-fold:
1. It serves as a very brief overview of the basic PHY techniques and principles applic-

able in wireless cooperative networks
2. It introduces the fundamental principles of WNC processing in context of relevant

scientific publications and provides some important references for a more in-depth
study of the WNC-related problems

3. It provides a detailed overview of my up-to-date researchwork as a PhD candidate at
the Czech Technical University in Prague and summarizes my original results on:

(a) WNC processing in parametric channel
(b) WNC processing with imperfect/partial side information

1.2 Publications related to the scope of the thesis

Journals ranked by impact:
• T. Uricar and J. Sykora, “Design criteria for hierarchicalexclusive code with parameter-

invariant decision regions for wireless 2-way relay channel,” EURASIP J. on Wireless
Comm. and Netw., vol. 2010, pp. 1–13, 2010.(TU 60%, JS 40%; cited by [1])

• T. Uricar and J. Sykora, “Non-uniform 2-slot constellations for bidirectional relaying
in fading channels,”IEEE Commun. Lett., vol. 15, no. 8, pp. 795–797, 2011.(TU
65%, JS 35%)

• T. Uricar and J. Sykora, “Non-uniform 2-slot constellations for relaying in butterfly
network with imperfect side information,”IEEE Commun. Lett., vol. 16, no. 9, pp.
1369–1372, 2012.(TU 65%, JS 35%)

• T. Uricar, B. Qian, J. Sykora and W.H. Mow, “Wireless (Physical Layer) Network
Coding with Limited Side-Information: Maximal Sum-Rates in 5-Node Butterfly Net-
work", submitted for publication, 2013.(TU 25%, QB 25%, JS 25%, WHM 25%)

1)Author’s contribution to the core publications are emphasized by the red colour.
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Refereed journals:
• T. Uricar, “Parameter-invariant hierarchical eXclusivealphabet design for 2-WRC

with HDF strategy,”Acta Polytechnica, vol. 50, no. 4, pp. 79–86, 2010.(TU 100%)

Conference papers (indexed by WoS/Scopus):
• T. Uricar, B. Qian, J. Sykora, and W.H. Mow, “Superpositioncoding for wireless but-

terfly network with partial network side-information,” inProc. IEEE Wireless Com-
mun. Network. Conf. (WCNC), (Shanghai, China), pp. 1–6, Apr. 2013.(TU 25%, QB
25%, JS 25%, WHM 25%)

• T. Uricar, T. Hynek, P. Prochazka, and J. Sykora, “Wireless-aware network coding:
Solving a puzzle in acyclic multi-stage cloud networks,” inProc. Int. Symp. of Wire-
less Communication Systems (ISWCS), (Ilmenau, Germany), pp. 612–616, Aug. 2013.
(TU 25%, TH 25%, PP 25%, JS 25%)

Other conference papers
• T. Uricar and J. Sykora, “Systematic design of hierarchical network code mapper for

butterfly network relaying,” inProc. European Wireless Conf. (EW), (Poznan, Po-
land), pp. 1–8, Apr. 2012.(TU 65%, JS 35%)

• T. Uricar, “Rateless codes and network coding in two-way wireless relay channels,” in
Proc. POSTER 2009 - 13th International Student Conference on Electrical Engineer-
ing, (Prague, Czech Republic), pp. 1–6, May 2009.(TU 100%)

• T. Uricar and J. Sykora, “Extended design criteria for hierarchical eXclusive code with
pairwise parameter-invariant boundaries for wireless 2-way relay channel,” inCOST
2100 MCM,(Vienna, Austria), pp. 1–8, Sept. 2009. TD-09-952.(TU 50%, JS 50%)

• T. Uricar, J. Sykora, and M. Hekrdla, “Example design of multi-dimensional parameter-
invariant hierarchical eXclusive alphabet for layered HXCdesign in 2-WRC,” inCOST
2100 MCM, (Athens, Greece), pp. 1–8, Feb. 2010. TD-10-10088.(TU 50%, JS 30%,
MH 20%)

• T. Uricar, “Parameter-invariant hierarchical eXclusivealphabet design for 2-WRC
with HDF strategy,” inProc. POSTER 2010 - 14th International Student Conference
on Electrical Engineering, (Prague, Czech Republic), pp. 1–8, May 2010.(TU 100%)

• T. Uricar and J. Sykora, “Hierarchical eXclusive alphabetin parametric 2-WRC - Eu-
clidean distance analysis and alphabet construction algorithm,” in COST 2100 MCM,
(Aalborg, Denmark), pp. 1–9, June 2010. TD-10-11051.(TU 70%, JS 30%)

• T. Uricar, “Constellation alphabets for hierarchical relaying in multiple-access relay
channel,” inProc. POSTER 2011 - 15th International Student Conference on Elec-
trical Engineering, (Prague, Czech Republic), pp. 1–5, May 2011.(TU 100%)

• T. Uricar and J. Sykora, “Hierarchical network code mapperdesign for adaptive relay-
ing in butterfly network,” inCOST IC1004 MCM, (Barcelona, Spain), pp. 1–9, Feb.
2012. TD-12-03048.(TU 65%, JS 35%)

• T. Uricar and J. Sykora, “Non-uniform 2-slot constellations: Design algorithm and
2-way relay channel performance,” inCOST IC1004 MCM, (Lyon, France), pp. 1–7,
May 2012. TD-12-04041.(TU 65%, JS 35%)
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• T. Uricar, B. Qian, J. Sykora and W.H. Mow, “Wireless (Physical Layer) Network
Coding in 5-node butterfly network: Superposition coding approach,” inCOST IC1004
MCM, (Malaga, Spain), pp. 1–9, Feb. 2013. TD-13-06026.(TU 25%, QB 25%, JS
25%, WHM 25%)

1.3 Grants

International grants
• FP7 ICT/STREP (INFSO-ICT-248001): SAPHYRE Sharing Physical Resources

Mechanisms and Implementations for Wireless Networks, 2010-2012
• FP7 ICT/STREP (INFSO-ICT-215669): EUWB Coexisting Short Range Radio

by Advanced Ultra-WideBand Radio Technology, 2010-2011
• FP7-ICT-2011-8/ICT-2009.1.1: DIWINE Dense Cooperative Wireless Cloud

Network, 2013-2015
• EU COST 2100:Pervasive Mobile & Ambient Wireless Communications, 2006-

2010
• EU COST IC1004:Cooperative Radio Communications for Green Smart Envir-

onments, 2011-2014

National/local grants
• Grant Agency of Czech Republic (GACR 102/09/1624):Mobile radio communica-

tion systems with distributed, cooperative and MIMO processing, 2009-2012
• Ministry of Education, Youth and Sports (OC 188):Signal Processing and Air-

Interface Technique for MIMO radio communication systems, 2007-2010
• Ministry of Education, Youth and Sports (LD12062):Wireless Network Coding and

Processing in Cooperative and Distributed Multi-Terminal and Multi-Node Com-
munications Systems, 2012-2015

• Grant Agency of the Czech Technical University in Prague (SGS10/287/OHK3/3T/13):
Distributed, Cooperative and MIMO (Multiple-Input Multip le-Output) Physical
Layer Processing in General Multi-Source Multi-Node Mobile Wireless Network,
2010-2012

• Grant Agency of the Czech Technical University in Prague (SGS13/083/OHK3/1T/13):
Wireless Network Coding based Multi-node Dense Networks, 2013

1.4 Awards and recognitions

• Exemplary reviewer of the IEEE Communications Letters(2012)
• Dean award for the best paper in sectionCommunications: (T. Uricar, “Parameter-

invariant hierarchical eXclusive alphabet design for 2-WRC with HDF strategy,” in
Proc. POSTER 2010 - 14th International Student Conference on Electrical Engineer-
ing, (Prague, Czech Republic), pp. 1–8, May 2010)
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1.5 International experience

• Visiting postgraduate internship at the Department of Electronic and Computer En-
gineering, School of Engineering,Hong Kong University of Science and Technology–
HKUST (Oct. 2012 – Dec. 2012)

1.6 Other professional activities

Reviewer – Journals
• IEEE Communications Letters
• Radioengineering

Conference Technical Program Committee
• IEEE Student Conference on Research and Development (SCOReD), 2012
• IEEE International Symposium on Personal, Indoor and Mobile Radio Communica-

tions (PIMRC), 2013

Reviewer – Conferences
• IEEE Global Communications Conference (GlobeCom)
• IEEE Vehicular Technology Conference (VTC spring/fall)
• IEEE International Symposium on Personal, Indoor and Mobile Radio Communica-

tions (PIMRC)
• International Conference on Computer Communications andNetworks (ICCCN)
• International Symposium on Wireless Communications Systems (ISWCS)

2 Overview of the current state-of-the-art

2.1 Wireless (physical layer) Network Coding

During the last decade researchers over the world demonstrated that allowing anon-orthogonal
sharingof channel resources (time/frequency/space) and implementation ofcooperative pro-
cessingdirectly at Physical Layer (PHY) can substantially improvethe performance of wire-
less networks (see e.g. [2, 3]). Wireless (physical layer) Network Coding (WNC)[4, 5] rep-
resents one of the emerging PHY techniques, being capable todouble the throughput in the
wireless 2-Way Relay Channel (2-WRC), while having a potential to provide similar (or even
larger) gains in more complicated wireless networks.

In 2-WRC (see Fig.1), both nodes have knowledge about their own (previously sent) data
(visualized as Hierarchical Side Information (HSI) [6,7] in Fig. 1), which in turn allows to
exploit this (inherently available)side-informationto implement the WNC-based processing
in the system. The original idea ofWNC relaying techniques[8–10]) was inspired by the
observation that it is unnecessary for the relay to decode the exact source information [9,11–
13], as it is not the final destination of the communication. This observation allows to select
the source data ratesoutside the relay MAC sum-rate regionand thus to improve markedly
the spectral efficiency.
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Figure 1: 2-WRC with HSI.

Two general WNC relaying strategies can be found in the literature (see e.g. [12]). In
the first strategy the relay only amplifies the received analog signal and hence this strategy is
calledAmplify and Forward(AF) (see e.g. [8,12,14–16]) or Analog Network Coding [17].
The second strategy, whose principles were independently introduced in [9, 11] is usually
calledDenoise and Forward(DNF) [11], Hierarchical Decode and Forward(HDF) [7] or
Compute and Forward(CaF) [5], although some less common names likePartial Decoding
[18] can be found in the literature as well. A rigorous description of the HDF, DNF and CaF
strategies can be found in the excellent papers [2,4,5,7].

Although the fundamental idea of HDF processing is relatively straightforward, there
is still a great number of research challenges which quicklyarise when more complicated
models of channels and networks are to be analysed. In the following section we briefly
overview two specific open problems in the WNC research, namely the HDF processing in
parametric channelsand HDF processing withpartial/imperfect HSI.

2.2 Selected open research problems in HDF processing

2.2.1 HDF in parametric channels

While the HDF strategies are already quite mature in the traditional AWGN channel, their
performance infading channelscan be seriously degraded due to the inherent wireless chan-
nel parametrization(e.g. complex channel gain) [7, 10]. This performance degradation is
a direct consequence of the undesired phase and amplitude offset between the source-relay
channels [19,20] and it was identified as amajor problemof the WNC-based bi-directional
relaying strategies already in [9,11].

Channel coefficients in the MAC stage of HDF strategy determine how the two source
signals overlap in the compound constellation (see an example in Fig.2) observed at the relay
node [10]. If the eXclusive mapping operation is kept fixed at the relay, some specific values
of channel parameters can directly invokefailures of the eXclusive law[7,21], resulting in a
decreased performance of the overall system2).

There are several possible ways how to avoid this performance degradation in paramet-
ric HDF systems, including the phase pre-rotation (and power control) of both source node
transmissions [10, 13, 22] and the adaptation of the relay output eXclusive mapping opera-
tion [10]. The design of adaptive relay mapping was originally proposed in the paper by

2)The detrimental effect of channel parametrization affectsthe performance of the system even if the relay has perfect
estimates of source-relay channels available.
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Figure 2: Impact of channel parametrization: 2-WRC with uncoded QPSK.

Koike et al. [20], where a brute-force search algorithm (identifying optimal mapping opera-
tion for a particularchannel parametrization) was presented3).

Koike’s design of adaptive mapping was revised later in [23], where a novel construc-
tion of adaptive mapping operation (based on the Latin squares) was introduced. The Latin
squares-based design of adaptive mapping was further extended to the 2-WRC scenario with
multiple source/relay node antennas [24]. An analytical treatment of the eXclusive law fail-
ure events (singular fade states) is presented in [21], where the fact that in Rician chan-
nels only some singular fade states contribute dominantly to the average Symbol Error Rate
(SER) is emphasized. Even though most of the authors focus only on theuncoded para-
metric 2-WRC, there are already some results available for convolutionally-coded [25] and
LDPC-coded [18] 2-WRC systems.

Unfortunately, the aforementioned techniques face several drawbacks, including a prac-
tical infeasibility of the (synchronized) multi-node transmission phase pre-rotation or a sens-
itivity to channel estimation errors of the adaptive solutions (inaccurate channel estimates
results in an improper choice of the relay eXclusive symbol mapper) [26]. Due to these
drawbacks, some authors try to attack the problem from a different angle. A simple multi-
level coding scheme over QPSK modulation (allowing to adaptthe relay decoding operation
to actual channel conditions) is presented in [27]. However, this approach is limited only to
the QPSK modulation scheme, and moreover, it avoids the performance degradation only for
some specific values of channel parameters. In [28] the authors try to avoid the occurrence of
singular fade states(eXclusive law failures) by the design of a distributed space-time coding
technique (single antenna at both sources and relay node is assumed).

Another approach is based on the design of new modulation schemes which can es-
sentially avoid (or at least decrease) the impact of channelparametrization on the system
performance. Some novelnon-linear modulation schemesfor parametric HDF systems are
introduced in [29,30]. The design oflinear modulation schemesfor parametric HDF systems
represents one of the two major areas of our own research. Thecore of our results in this
field has been already published in [31–38].

3)The goal was to find the mapping which has the best Euclidean distance profile of the compound constellation received
at the relay (unocoded QPSK modulation is assumed at both sources).
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Figure 3: Wire-line vs. wireless 5-node Butterfly Network.

2.2.2 Partial HSI processing

Even though the principles of WNC profit from the specific nature of wireless channels
(inherent combining of electromagnetic waves and its broadcast nature), they still remain
partially grounded in the essentials of conventional Network Coding (NC) [39,40].

In wire-line NC-based networks, the information packets are sent through orthogonal
links with identical capacity and intermediate relay nodescombine the received packets
before re-transmission (instead of purely relaying them) to boost the system performance.
While this packet-based NC processing is natural in wire-line networks, in wireless networks
the inherent broadcast propertyis to be exploited on channels with potentiallysignificantly
different capacities. Consequently, even though each node’s transmission can bepotentially
overheard by several nodes in its vicinity, the same (perfect) information cannot be always
retrieved by all these nodes due to the varying capacities ofrelated wireless channels. The
legacy of NC principles is hence partially broken in wireless (WNC-based) networks, yield-
ing several significant and novel research challenges [6].

One example of this phenomenon can be demonstrated in a5-node Butterfly Network
(BN) topology (see Fig.3), where, similarly as in 2-WRC, HSI is required to decode the
desired data from a common (NC/WNC-coded) data stream. While this information can be
perfectly delivered to both destinations through orthogonal links in the wired BN, no ded-
icated orthogonal channels for transmission of HSI are required in theWireless BN (WBN),
where both destinations can obtain HSI directly from the overheard source node transmission.
Unfortunately, when channel conditions on such "overheard" HSI link(s) are not favourable,
only limited (partial/imperfect) HSIcould be received at destinations (due to an insufficient
capacity of the corresponding wireless channels) and hencethe WNC processing must be
appropriately modified to cope with this situation [41–43].

To the best of our knowledge, there are still only very limited results considering the
problem of imperfect HSI processing. As shown in [41], the performance of WBN with

7
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Figure 4: Perfect (full) HSI processing in WBN. Relay outputhasminimal cardinality.
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Figure 5: Zero HSI processing in WBN. Relay output hasfull cardinality.
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Figure 6: Partial HSI processing in WBN. Relay output hasextended cardinality.

Algorithm 1 Higher-order codebook - Example design.

1. Choosex,y ∈ C
2 such that〈x;y〉= 0.

2. A A
s = {qiA ·x}Ms−1

iA=0 ; qiA ∈ C

3. A
B

s = {qiB ·y}Ms−1
iB=0 ; qiB ∈ C

minimal cardinality HDFrelaying4) is limited by theHSI link capacity. Fortunately, it is
possible to overcome this limitation by employing theextended cardinalityprocessing (see
e.g. [42,43]). Even though an increased cardinality of the relay outputis required in this case,
only partial HSI becomes sufficient to guarantee a successful decoding at both destinations.
As shown in [43], this approach can outperform (for some specific channel conditions) the
conventional HDF relaying with minimal cardinality.

The basic principles of HDF processing in theuncoded WBN systemwith QPSK source
alphabet constellation are summarized in Figs.4 (perfect/full HSI),5 (no HSI) and6 (partial
HSI). The decoding process is visualized only for destination DB (for the sake of clarity).

The analysis ofpartial/imperfect HSIprocessing represents one of the two major areas of
our own research. The core of our results in this field has beenalready published in [43–47],
[6] has been submitted for publication.

4)The cardinality of the relay output alphabetA R
s is given by

∣

∣A R
s
∣

∣ = max
{
∣

∣

∣
A A

s

∣

∣

∣
,
∣

∣A B
s
∣

∣

}

in the minimal cardinality

HDF.
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Algorithm 2 NuT constellation alphabet design.

1. Pick a base alphabetAs.
2. Choose a power scaling factorsf ∈(0,2).
3. SourceA alphabet:A A

s = [
√

sf As,
√

2−sf As].
4. SourceB alphabet:A B

s = [
√

2−sf As,
√

sf As].

3 Summary of contributions

In the following sections we briefly summarize our most relevant original research results in
the two specific research areas discussed in the previous section. Due to the limited extent of
this thesis statement we introduce only the basic ideas behind our work and, where appropri-
ate, we supplement the description with some relevant Figures, Tables or Algorithms.

3.1 HDF in parametric channels

In this section we overview our contributions to the design of linear modulation schemes
for parametric HDF systems. The first attempts to design constellations resistant to the eX-
clusive law failure events (see [31,33,36]) have led only to multi-dimensional constellations
in C2. An example design algorithm (see Algorithm1) from [36] allows to design source
constellations which have the Euclidean distance performance highly resistant to the effects
of channel parametrization (see a comparison with conventional linear modulation constella-
tions in Figs.7, 8, 9).

Unfortunately, even though the design of multi-dimensional constellations inC2 appears
to be the most simple solution, the increased alphabet cardinality is inherently accompanied
with a reduction of achievable throughput. Naturally, the goal of the follow-up work was
to find a suitable constellations inC1 to avoid this inherent drawback of multi-dimensional
constellations. However, based on the analysis of (squared) Euclidean distance propertiesof
hierarchical symbols, we have proved that only binary constellations can fully avoid the viol-
ation of the eXclusive law (for arbitrary parametrization), if the constellation dimensionality
is limited toC1 (see [36] for details).

Even though the occurrence of eXclusive law failures cannotbe prevented in case of
conventional modulation schemes inC1 (excepting the binary alphabets), it can be shown
that in Rician fading channelsit is possible to at least suppress this harmful behaviour of
channel parametrization by a design of novel 2-slot constellation alphabets. The proposed
Non-uniform 2-slot (NuT)alphabets [32,38] (see Algorithm2) are robust to channel paramet-
rization effects in Rician channels, outperforming the traditional linear modulation schemes
without sacrificing the overall system throughput.

The NuT constellation (NuT
(

As;sf
)

) is generally a 2-source alphabet (A A
s ,A B

s ), where
the power is re-allocatednon-uniformlyamong the 2-slots of the NuT super-symbol. The
non-uniform allocation of power allows totrade-off the vulnerability to eXclusive law failures
with the alphabet distance properties, resulting in an improved performance in the medium
to high SNR region. A comparison of the overall Euclidean distance performance and SER
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Figure 7: Minimum hierarchical distance performance for QPSK and 4-ary example alpha-
bet.
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Figure 8: Minimum hierarchical distance performance for 8-PSK and 8-ary example alpha-
bet.
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Figure 9: Minimum hierarchical distance performance for 16-QAM and 16-ary example
alphabet.

performance of the proposed NuT alphabets (with variablesf ) and some conventional linear
modulation constellations is in Figs.10, 11, 12, 13.

Remarkable SNR gains of NuT alphabets (∼ 10− 15dB in Fig. 12, ∼ 5− 7dB in Fig.
13) have been observed in moderately high SNR regions. Note again, that the overall system
throughput is not sacrificed, since the cardinality of the NuT alphabet is

∣

∣A A
s

∣

∣=
∣

∣A B
s

∣

∣= M2

for |As| = M (see Algorithm2) and hence the promising parametric performance of NuT
alphabets is not accompanied with a reduction of achievablethroughput.

3.2 Partial HSI processing

In this section we summarize our original contributions in the field ofpartial/imperfect HSI
processingin WNC networks. A Superposition Coding (SC) based scheme for relaying in
WBN was introduced in [46, 47] as a scheme capable to adapt to arbitrary amount of HSI.
The main idea of the SC-based scheme (see Fig.14) is based on the splitting of source
information into two separate data streams (and optimization of rate and power allocated
to each particular stream), which in turn allows to adapt theWBN processing to the actual
channel conditions (and hence the available HSI at destinations). As shown in Fig.15, the
SC-based scheme is capable to provide non-zero two-way ratefor an arbitrary quality of HSI
channels (given by the SNR of HSI channelsγ2).

In [6], the state-of-the-art bi-directional 3-step (Decode andForward – DF) and 2-step
(Amplify and Forward – AF, Joint Decode and Forward – JDF and Hierarchical Decode and
Forward – HDF) relaying strategies were modified to guarantee that successful decoding at
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DF RDF
sum=







C(γ1)C(γ3)
C(γ3)+0.5C(γ1)

, γ2 ≥ γ1

max
[

C(γ2)C(γ3)
C(γ3)+0.5C(γ2)

; C(γ1)C(γ3)
C(γ3)+C(γ1)−0.5C(γ2)

]

, γ2 < γ1

AF RAF
sum=















C
(

γ1γ3
2γ1+γ3+1

)

, γ2 ≥ γ1γ3
2γ1+γ3+1

C(γ2) ,
γ1γ3

2γ1+γ1γ3+γ3+1 ≤ γ2 <
γ1γ3

2γ1+γ3+1

C
(

γ1γ3
2γ1+γ1γ3+γ3+1

)

, γ2 <
γ1γ3

2γ1+γ1γ3+γ3+1

JDF RJDF
sum =







C(2γ1)C(γ3)
C(γ3)+0.5C(2γ1)

, C(γ2)≥ 1
2C(2γ1)

max
[

2C(γ2)C(γ3)
C(γ3)+C(γ2)

; C(2γ1)C(γ3)
C(γ3)+C(2γ1)−C(γ2)

]

, C(γ2)<
1
2C(2γ1)

HDF RHDF
sum =















2C(γ1)C(γ3)
C(γ1)+C(γ3)

, C(γ2)≥C(γ1)
2C(γ2)C(γ3)
C(γ2)+C(γ3)

,
1
2C(2γ1)≤C(γ2)<C(γ1)

max
[

2C(γ2)C(γ3)
C(γ3)+C(γ2)

; C(2γ1)C(γ3)
C(γ3)+C(2γ1)−C(γ2)

]

, C(γ2)<
1
2C(2γ1)

Table 1: Maximal two-way rates of relaying strategies in WBN(symmetric channel SNRs:
γ1 (source→ relay),γ2 (HSI channel),γ3 (relay→ destination)).

extended cardinality map minimal cardinality map








0 2 4 6
1 3 5 7
4 6 0 2
5 7 1 3

















0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0









Table 2: eXclusive mapping operations (matrix representation) for sources with 4-ary alpha-
bets.
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destinations is made possible even if HSI is only partially available. We have shown that in
all the strategies the so-calledpartial HSI processingusually provides a better sum-rate than
the straightforward solution, where the availability of perfect HSI is secured by a decrease of
the source transmission rate. The performance of all the modified strategies was compared in
an information-theoretic investigation and the (modified)HDF strategy was found to provide
thebest performanceamong all the WNC strategies (even under the partial HSI condition).
The results of this analysis are summarized in Table1. An example comparison of the sum-
rate performance of all the strategies (for a particular channel SNRs) is provided in Fig.16.

One of the crucial steps in the design of particular HDF processing for partial HSI sys-
tems is the choice of a suitable eXclusive mapping operationat the relay. As noted in [43,44],
the unreliable transmission of HSI can be overcome by increasing the cardinality of the re-
lay output [7]. A design of eXclusive mapping operation is quite simple for the minimal
mapping(perfect HSI assumption) operation, where it is usually given by a simple bit-wise
XOR operation. However, in case of theextended cardinality mapping(see Fig.6), a suitable
eXclusive mapper must respect the amount of HSI at destinations to maximize the system
throughput. A systematic approach to the design of aset of eXclusive relay output mappers
for WBN was introduced in [43]. An example of suitable eXclusive mappers designed ac-
cording to the Algorithm from [43] is presented in Table2. As shown in Figure.17, a feasible
eXclusive mapping (with extended cardinality) guaranteesthat the BC phase capacity is no
longer limited by the HSI link capacity.

The capability to design suitable eXclusive mappers for arbitrary quality of HSI channels
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has enabled the possibility to exploit the promising parametric channel performance ofNuT
source alphabetsin the WBN systems [45]. While the favourable parametric MAC channel
performance of NuT alphabets induces alower error floor in both minimal (Fig.18) and
extended (Fig.19) cardinality relaying, the increased reliability ofpartial one-slot HSItrans-
forms into anadditional SNR gainin the extended cardinality case (Fig.19), where the worse
aggregate HSI performance is compensated by an increased cardinality of the relay output
alphabet. The basic principle of extended cardinality relaying with NuT constellations in
WBN is depicted in Fig.20.

4 Conclusions

In this thesis statement I have summarized my own research work as a PhD candidate at the
Czech Technical University in Prague. The scope of the thesis was specified in the introduct-
ory section, together with a list of my core publications related to the scope of the thesis and
summary of my other research-related activities. Then, thecurrent state-of-the-art in the two
specific fields of WNC techniques research, namely theWNC processing in parametric wire-
less channelsandWNC processing with imperfect/partial side informationwas discussed in
section2. Our original contributions to the research in these two specific WNC research
areas, which form the core of the thesis, were summarized in Section3.
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Summary

The up-and-comingWireless (Physical layer) Network Coding (WNC) techniques, imple-
mented directly at Physical Layer (PHY), possess undoubtedly a great potential to harness
all the performance benefits accompanied with thenon-orthogonalsharing of wireless me-
dium. The power of WNC lies mainly in an efficient exploitation of theinherent properties of
wireless channels(broadcast nature and inherent combining of electromagnetic waves at re-
ceiver antenna(s)), which provide a fertile ground for an extension of conventional (wire-line)
network-coding principlesto wireless channels. The interference is no longer considered as
harmful in WNC-based systems, and hence it is exploited rather than avoided. Since WNC
operates directly at PHY, huge performance gains can be achieved, when compared to con-
ventional routing (e.g. doubled throughput in a simple bi-directional relay channel). Unfor-
tunately, the specific properties of wireless channels are not always only beneficial, as they
introduce many novel research problems which makes a directimplementation of WNC in
wireless systems quite challenging.

First, theinherent parametrizationof wireless channels (e.g. channel gain) significantly
influences the achievable performance of WNC systems, and hence the PHY processing al-
gorithms must take the channel parametrization inherentlyinto account, providing solutions
robust to parametrization effects. Secondly, the inherentbroadcast nature is to be exploited
on channels withpotentially significantly different capacities, forcing the PHY processing to
cope with the problems associated with animperfect/partial transmission of information. In
the doctoral thesis we focused on these two specific open problems in WNC research, namely
the WNC processing inparametric channelsand WNC processing withpartial/imperfect
Hierarchical Side Information(HSI).

We have shown that even though only multi-dimensional constellations are capable to
fully avoid the detrimental effects of channel parametrization, these constellations suffer
from an inherent reduction of achievable throughput. To avoid this inherent drawback of
multi-dimensional constellations, we introduced a designof novel Non-uniform 2-slot (NuT)
constellations, which proved to be able to suppress the harmful behaviour of channel para-
metrization if the 2-WRC system operates in Rician fading channels. The proposed NuT
constellations outperform the traditional linear modulation schemes (in the sense of SER
performance) without sacrificing the overall system throughput.

An attempt to extend the WNC processing to more complex network structures (e.g.
Wireless Butterfly Network – WBN) has revealed the issues associated with the limited avail-
ability of HSI at receiving nodes. We have shown that the state-of-the-art bi-directional 3-step
and 2-step relaying strategies can be modified to guarantee that successful decoding at destin-
ations is made possible even if HSI is only partially available and we have proposed a novel
WNC scheme, which is capable to adapt to any amount of HSI at destinations. To provide a
practical design tool for a construction of relay processing for networks with imperfect HSI
links we have introduced a systematic algorithm for a designof relay output mapping opera-
tions. The availability of suitable relay output mapping operation has enabled to exploit the
promising parametric channel performance of NuT constellations in WBN, transforming the
increased reliability ofpartial one-slot HSIinto anadditional SNR gainin BER performance
of the system.
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Anotace

Technikabezdrátového sít’ového kódování(WNC) nabízí nepochybňe velký potenciál k vy-
užití p̌ríznivých jevů spojených s neortogonálním přístupem ke sdílení radiového kanálu.
Tato perspektivnost WNC technik spočívá zejména v efektivním využitíspecifických vlast-
ností radiových kanálů(všesm̌erové ší̌rení signáluči samǒcinné kombinování/šcítání inter-
agujících elektromagnetických vln na anténě p̌rijímače), poskytujích p̌ríznivé podmínky pro
implementaci (modifikovaných) principůsít’ového kódování(NC) v bezdrátových sítích. V
systémech založených na WNC není interference považována za nežádoucí jev, ale dochází
zde naopak ke snaze o její efektivní využívání. Jelikož je WNC implementováno p̌rímo
na fyzické vrstv̌e, umož̌nuje dosáhnout mnohem lepších přenosových vlastností než kon-
veňcní p̌rístup založený na sm̌erování individuálních datových toků v síti. Bohužel, výše
zmíňené specifické vlastnosti radiových kanálů s sebou přináší také̌radu nových výzkum-
ných problémů, které znesnadňují p̌rímou implementaci WNC v bezdrátových systémech.

První z problémů, kterým musí návrh WNC zpracováníčelit, souvisí sparametrizací
(nap̌r. komplexní zisk) radiového kanálu. Druhým problémem je pak samotnévšesměrové
šíření radiového signálu, které je ve WNC systémech využíváno k přenosu informace radi-
ovými kanály s potenciálňe významňe odlišnými p̌renosovými kapacitami. Tato skutečnost
vyžaduje, aby bylo zpracování signálu přizpůsobeno možným problémům souvisejícím s
částěcným/neperfektním p̌renosem informace. Ve své dizertační práci jsem se zm̌ěril na tyto
dva výše zmíňené problémy ve WNC systémech, konkrétně tedy návrh zpracování signálu
ve WNC systémech sparametrickým kanálema WNC systémech sneperfektním přenosem
hierarchické postranní informace(HSI).

V dizertǎcní práci jsme ukázali že pouze více-dimenzionální konstelace jsou schopné
úplně zabránit nežádoucím jevům souvisejícím s parametrizacíkanálu. Bohužel, s vícedi-
menionální povahou těchto konstelací je rovněž spojeno významné snížení dosažitelné propust-
nosti síťe. Abychom p̌redešli tomuto nežádoucímu jevu, představili jsme návrh nových
neuniformních 2-slotových konstelací(NuT), které jsou v p̌rípaďe kanálů s Riceovým rozložení
schopny významňe potlǎcit důsledky parametrizace kanálu. Navržené NuT konstelace tak
překonávají tradǐcní konstelace ve smyslu odolnosti vůči chybám p̌ri přenosu, aniž by tyto
výhodné vlastnosti byly spojeny s jakýmkoliv omezením dosažitelné propustnosti sítě.

Pokusy o rozšíření WNC zpracování do složitějších sítí (nap̌r. 5-terminálová 2-zdrojová
sít’ – WBN) poodhalily problémy spojené s omezenou dostupností postranní informace (HSI)
na p̌rijímači. Jak uvádíme v dizertační práci, stávající 2 a 3-krokové WNC strategie mo-
hou být upraveny pro použití ve WBN sítích, přičemž jsou všechny tyto (modifikované)
strategie schopny zajistit dekódovatelnost požadované informace na p̌rijímači při libovol-
ném množství dostupné HSI. Dalším významným krokem k rozšíření WNC zpracování do
složiťejších sítí byl návrh systematického algoritmu pro výstupní (mapovací) operace vn-
itřního uzlu síťe (tzv. relay), který v koněcném důsledku umožnil také znovuobjevení NuT
konstelací pro aplikaci ve WBN sítích. Typická odolnost NuTkonstelací vǔ̊ci nežádoucím
vlivům parametrizace kanálu zde tak opět umož̌nuje dosáhnout lepší odolnosti vůči chybám
při přenosu (ve srovnání s tradičními konstelacemi), a to i v přípaďe neperfektní HSI.
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