
Czech Technical University

Faculty of Electrical Engineering

On Parametric Model Creation with Neural
Modeling Fields

Master Thesis

Author:
Bc. Antońın Šulc

Supervisor:
Mgr. Michal Vavrečka, Ph.D.

January 2014

http://www.cvut.cz
mailto:sulc.antonin@gmail.com
mailto:vavremic@fel.cvut.cz

iv

v

Prohlášeńı autora práce

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré informačńı
zdroje v souladu s Metodickým pokynem o dodržováńı etických princip̊u při př́ıpravě vysokoškolských
závěrečných praćı.

V Praze dne 2. ledna 2014 ...
Podpis autora práce

“Představte si to ticho, kdyby lidé ř́ıkali jen to, co věd́ı.”

Karel Čapek

Abstrakt

Práce shrnuje současné poznatky z tvorby parametrických model̊u pomoćı př́ıstupu založeném

na Neural Modeling Fields (NMF). Součást́ı práce je podrobný popis NMF jako metody pro

tvorbu parametrických model̊u včetne vztahu k abstraktńımu pojet́ı NMF jako modelu, jehož

formalismy umožňuj́ı algoritmus obecně vztáhnout k mysli.

Součást́ı práce je rovněž vlastńı d̊ukaz ekvivalence NMF s algoritmem známým jako Expecta-

tion Maximization (EM). Dokázaný vztah umožnil převźıt snáze některé vztahy pro Gamma,

Exponenciálńı, Normálńı, Lognormálńı, von Mises-Fisherovu, Wishartovu a Dirichletovu dis-

tribučńı funkci, pro něž je algoritmus implementován. Uvedené funkce jsou podrobně analy-

zovány zejména ve vztahu k parametrickému modelováńı. Pro Exponenciálńı, v́ıcerozměrné

Lognormálńı a Dirichletovo rozděleńı nebyla nalezena žádná relevantńı informace o paramet-

rických metodách ve směśıch distribučńıch funkćı tud́ıž, práce obsahuje potřebné rovnice včetně

odvozeńı.

Experimentálńı část práce obsahuje vyhodnoceńı modelu učeńı s učitelem tzv. Hierarchical Mix-

ture of Experts pro aproximačńı problémy jehož učeńı je založeno na principu maximalizace

věrohodnosti. Dále pak experiment s NMF pro Normálńı rozděleńı v hierarchii s Kohonenovou

Samoorganizačńı mapou, jakožto klasifikátor vstupńıch obrazc̊u. Vstupńı data pro druhý prob-

lem jsou založena na tzv. Feature Integration Theory, na něž je MLANS adaptován. Posledńı

experiment byl realizován obrazový klasifikátor založený na matici vlastnost́ı klasifikovanou směśı

Wishartova rozděleńı.

Abstrakt

The thesis summarizes state-of-the art of the parametric model creation with the Neural Mod-

eling Fields (NMF) approach. The thesis contains a detailed description of the NMF as a

method for parametric model creation including relation to NMF interpretation as model whose

formalisms allows to use the NMF for a modeling mind processes.

The thesis contains proof of equivalence of the NMF and an algorithm known as Expectation-

Maximization (EM). The proved equivalence allowed to take over more easily some relations for

the Gamma, Exponential, Normal, Log-normal, von Mises-Fisher, Wishart and Dirichlet proba-

bility distribution functions for which the algorithm is implemented. Enumerated distributions

are analysed in detail with in relation to parametric model creation. For Exponential, multivari-

ate Log-normal and Dirichlet distributions no relevant resource about parametric model creation

in a mixture of densities was found thus the thesis contains these equations including derivation

of the equations.

Experimental part contains evaluation of the supervised parametric model based on Hierarchical

Mixture of Experts for approximation problems whose learning is based on maximum likelihood

principle. Further the thesis contains experiments of the NMF for Normal distribution in a

hierarchy with Kohonen’s Self Organizing Map, known as MLANS, as a classifier of input images

where the data are based on Feature Integration Theory. The last experiment is region classifier

of images based on feature matrices classified by a mixture of Wishart distribution.

Acknowledgements

I would like to thank to MSc. Michal Vavrečka Ph.D. for the opportunity to be a part of his

research group at Incognite, and for his continued encouragement, support and patience with

my creativity explosions. I would like to thank to MSc. Karla Štěpánová, who advised me with

the mathematical problems related to the thesis and provided detailed feedback.

I would like to thank my parents, grandparents and sister who let me do what they think I am

good at and always supported me. I would like to thank my friends Pavel Hubač and Babrobra

Kafková for empathy and patience with my chaotic thought processes.

I would like to thank to the Faculty of Electrical Engineering, for providing me an environment

that has enabled me to develop my skills in growing scientific area of cybernetics and artificial

intelligence.

Special thanks belong to my former English teacher Ing. Dana Slámová CSc. who helped my

with language corrections refinements of the text. Thanks also belongs to Professor Michal

Pěchouček who gave me an opportunity to study abroad in Austria, where I found out what

I really want to do in my carrier. Jana Žichová as well as Leona Svobodová for support with

administrative stuff and Jan Kubový for worth advices in my hard times.

viii

Contents

Declaration of Authorship iv

Abstract vii

Acknowledgements viii

List of Figures xii

List of Tables xiv

Abbreviations xv

Symbols xvi

1 Introduction to intelligent artificial systems 1

1.1 Intelligence . 1

1.1.1 Concept of intelligence . 1

1.2 Artificial intelligence . 2

1.2.1 Acting humanly . 3

1.2.2 Thinking humanly . 4

1.2.3 Think rationally . 4

1.2.4 Acting rationally . 5

1.3 Learning process . 5

1.3.1 Learning as a philosophical problem . 6

1.3.2 Learning with teacher . 6

1.3.3 Learning without a teacher . 7

1.3.3.1 Reinforcement learning . 7

1.3.3.2 Unsupervised learning . 7

1.3.4 Semi-supervised learning . 7

1.4 History of the AI . 8

1.4.1 Beginnings of logical reasoning . 8

1.4.2 Connectionist era . 9

1.4.3 History of density estimation . 10

1.5 Adaptive systems . 10

1.5.1 Rule-based systems . 10

1.5.2 Non-parametric methods . 10

1.5.2.1 Kernel method . 11

1.5.2.2 Nearest neighbour methods . 12

1.5.3 Parametric methods . 12

1.5.3.1 Neural networks . 13

ix

Contents x

2 On Maximum likelihood estimation of some probability density functions 16

2.1 Preliminaries . 17

2.1.1 Likelihood and Log-Likelihood . 17

2.1.2 Maximum likelihood estimation . 17

2.1.3 Maximum likelihood estimation for a single function 18

2.1.4 Number of observations and accuracy of MLE 19

2.1.4.1 Analytic method . 19

2.1.4.2 Numeric type method - Gradient ascent method 20

2.1.4.3 Numeric type method - Newton-Raphson method 21

2.1.4.4 Summary of MLE . 22

2.2 Uni-variate distribution functions . 23

2.2.1 Uni-variate Exponential distribution . 23

2.2.1.1 Probability density function . 23

2.2.1.2 L (x|Θ), lnL (x|Θ) and MLE . 23

2.2.2 Uni-variate Gamma distribution . 24

2.2.2.1 Probability density function . 24

2.2.2.2 L (Θ|x), lnL (Θ|x) and MLE . 24

2.3 Multivariate distributions . 26

2.3.1 Von Mises-Fisher distribution . 26

2.3.1.1 Probability density function . 27

2.3.1.2 L (Θ|X), lnL (Θ|X) and MLE 27

2.3.2 Multivariate Normal distribution . 28

2.3.2.1 Probability density function . 28

2.3.2.2 L (Θ|X), lnL (Θ|X) and MLE 29

2.3.3 Multivariate Log-normal distribution . 30

2.3.3.1 Probability density function . 30

2.3.3.2 L (Θ|x), lnL (Θ|x) and MLE . 30

2.3.4 Wishart distribution . 31

2.3.4.1 Probability density functions . 32

2.3.4.2 L (Θ|S), lnL (Θ|S) and MLE . 33

2.3.5 Dirichlet distribution . 33

2.3.5.1 Probability density function . 33

2.3.5.2 L (Θ|X), lnL (Θ|X) and MLE 34

2.4 Exponential family distributions . 35

3 Neural Modeling Fields and Expectation maximization algorithm 37

3.1 EM algorithm . 38

3.1.1 EM algorithm as classifier . 42

3.1.2 EM algorithm for various distribution functions 42

3.1.2.1 Univariate Exponential distribution 43

3.1.2.2 Univariate Gamma distribution 44

3.1.2.3 Multivariate Normal distribution 45

3.1.2.4 Multivariate Log-normal distribution 46

3.1.2.5 Multivariate von Mises Fisher distribution 46

3.1.2.6 Dirichlet distribution . 47

3.1.2.7 Multivariate Wishart distribution 48

3.2 Neural Modeling Fields . 48

3.2.1 Similarity measures . 49

3.2.1.1 Aristotelian similarity . 50

3.2.1.2 Fuzzy similarity . 51

3.2.1.3 Adaptive Fuzzy similarity . 51

3.2.2 Learning parametric models with NMF 51

3.2.3 NMF and EM algorithm equivalence . 52

Contents xi

3.2.4 Maximum Likelihood Adaptive Neural System 53

3.2.5 Perlovsky’s theory of mind and NMF . 54

3.2.5.1 Understanding and meaning . 55

3.2.5.2 Imagination . 56

4 Hierarchical mixture of experts 57

4.1 Introduction . 57

4.1.1 Computation . 58

4.1.2 Interpretation of the architecture . 60

4.2 Learning the HME with EM algorithm . 61

4.3 Experiments . 64

4.3.1 Discussion . 67

5 Feature Integration Theory - Experimental evaluation of MLANS 68

5.1 Introduction . 68

5.1.1 Feature integration theory . 68

5.2 Description of experiment . 69

5.2.1 Scene features . 69

5.2.2 Clustering in the first layer . 71

5.2.2.1 Self Organising Maps . 71

5.3 Experiment . 72

5.3.1 First layer - training MLANS . 72

5.3.2 Second phase - Training the SOM . 74

5.3.2.1 SOM results . 74

5.3.3 SOM for feature clustering . 74

5.3.3.1 Comparison of SOM and MLANS 77

6 Region clustering of satellite images with Wishart distribution 81

6.1 Introduction . 81

6.2 Image representation . 82

6.3 Classification of image regions . 84

6.4 Estimation of the parameters . 84

6.5 Experiments . 85

7 Conclusion 89

A Some special functions 91

A.1 Approximation error of the Digamma function ψ (x) 91

A.2 Hessian matrix . 91

B Contents of attached CD 92

B.1 Instructions to run the framework . 92

Bibliography 93

List of Figures

1.1 Semi-supervised learning examples . 8

1.2 Classification of adaptive systems. 11

1.3 Kernel method illustration . 12

1.4 A feed-forward neural network trained by the back-propagation 13

1.5 Illustration of one step of the SOM . 14

1.6 Two dimensional SOM example. 15

2.1 Example of log-likelihood function for mixture of densities 18

2.2 MLE illustration . 19

2.3 Illustration of MLE estimation. 20

2.4 Newton-Raphson method illustration. 22

2.5 Values of Exp (x|λ) for various λ parameter. 23

2.6 Values of Gam (x|k, θ) for various parameters k and θ. 24

2.7 MLE of Gamma PDF estimated by the NR method with 1000 observations x. . . 26

2.8 von Mises-Fisher distribution example . 27

2.9 Multivariate Normal PDF . 29

2.10 Log-normal and Normal distribution . 30

2.11 Probability density function of multivariate Log-normal distribution 31

2.12 Dirichlet distribution function . 34

3.1 Bayesian Decision Boundary . 43

3.2 Example of the MLANS/EM algorithm density 49

3.3 Example of the set partition . 50

3.4 Division of afferent and efferent signals. 55

4.1 Hierarchical Mixture of Experts architecture . 58

4.2 Divide and conquer principle in HME . 58

4.3 Experts group in sub-tree i . 59

4.4 Separation with the soft-max function. 60

4.5 Benchmark functions for the HME . 66

4.6 The HME and the Neural Networks results comparison for a benchmark function. 66

4.7 The HME and the Neural Networks results comparison for a benchmark function. 66

5.1 Visualisation inputs for each possible concept of feature Colour. 70

5.2 Visualisation inputs for each possible concept of feature Direction. 70

5.3 Visualisation inputs for each possible concept of feature Shape. 70

5.4 Visualisation inputs for each possible concept of feature Size. 70

5.5 Visualisation inputs for each possible concept of feature Texture. 70

5.6 The structure of FIT system . 71

5.7 SOM, Component planes and the U-matrix . 72

5.8 MLANS mean for colour feature . 73

5.9 MLANS mean for direction feature . 73

5.10 MLANS mean for shape feature . 73

xii

List of Figures xiii

5.11 MLANS mean for size feature . 73

5.12 MLANS mean for texture feature . 73

5.13 Component planes for 10-by-10 SOM . 75

5.14 The U-matrix for 10-by-10 SOM . 75

5.15 Component planes for 50-by-50 SOM . 76

5.16 The U-matrix for 50-by-50 SOM . 76

5.17 Component planes for 90-by-45 SOM . 77

5.18 The U-matrix for 90-by-45 SOM . 77

5.19 The U-matrices of SOM for features which are performed with MLANS 78

5.20 SOM and MLANS comparison of error . 78

5.21 The results for the colours and directions features of the smallest SOM 79

5.22 The results for the sizes and shapes features of the smallest SOM 80

5.23 The results for the textures feature of the smallest SOM 80

6.1 Visualisation of particular attributes taken as a features. 83

6.2 Region clustering of Vilandi, Estonia . 86

6.3 Region clustering of Amsterdam, Netherlands . 87

6.4 Region clustering of Agricultural land of the Tadco company in Saudi Arabia . . 88

A.1 Diagamma function approximation Eq. 3.21 error. 91

List of Tables

1.1 Division of artificial intelligence into four categories. 3

3.1 Comparison between notion used in this thesis and Perlovsky’s 54

5.1 SOM and MLANS comparison of error . 79

xiv

Abbreviations

AI Artificial Intelligence

RL Reinforcement Learning

LT Logic Theorist

AT Advice Talker

GPU General Problem Solver

NN Neural Network

SOM Self Organizing Map

BMU Best Matching Unit

MLE Maximum Likelihood Estimation

NR Newton Raphson

FIT Feature Integration Theory

MLANS Maximum Likelihood Adaptive Neural System

EM Expectation Maximisation

BDB Bayesian Decision Boundary

SP Set Partition

HME Hierarchical Mixture of Experts

LSQ Least Square Problem

WLSQ Weighted Least Square Problem

R Red

G Green

B Blue

w.r.t. With RegardTo

i.i.d. Identically Independently Distributed

xv

Symbols

x datum - observation scalar; x ∈ R.

x datum - observation vector with D elements; x = [x1, . . . xD]
T

.

|x| set cardinality, vector dimension

‖x‖2 Euclidean distance, L2 metric

n− by −m matrix, table, lattice with n rows and m columns

X = {xn}Nn=1 data - set of N observation vectors X = {xn}Nn=1 = [x1 . . .xn]

d datum - desired value scalar for an observation x or x

d datum or data - D dimensional desired vector or vector of desired values

D data - set of N desired vectors d for observations X

a ≡ b a and b are equivalent concepts

I identity matrix

p (x, y) joint probability of x and y

p (x|y) conditional probability of x given y

p (x|Θ) probability density function with parameters Θ

x ∼ p (x|Θ) sample drawn from p (x|Θ)

f (x|Θ) adaptive fuzzy similarity with parameters Θ

f (x|k) fixed fuzzy membership of a datum x to class k

fk (x|Θk) k-th probability density function value in mixture with parameters Θk

Γ (x) Gamma function Γ (x) = (x− 1)!

ψ (x),ψ(0) (x) Digamma function ψ (x) = ∂ ln Γ(x)
∂x

ψ(1) (x) Polygamma function ψ(1) (x) = ∂2 ln Γ(x)
∂x2

ID (x) modified Bessel function of degree D

∇yf (x) Gradient vector
[
∂f(x)
∂x1

(y1) , . . . ∂f(x)
∂xD

(yD)
]T

in y

f̃ approximation of a function f

Θ̂(i) estimate of a set of parameters in the i-th iteration of a learning algorithm

Θ a real set of parameters

ΩΘ a set of all admissible values of parameter/set of parameters Θ ∈ ΩΘ

diag (X) diagonal elements of a matrix X in a column vector

diag (x) square matrix whose diagonal elements are elements of the vector x

xvi

Symbols xvii

tr (X) trace of a square matrix X, sum of diagonal elements

det X determinant of a square matrix X

S scattering matrix of a set of observations with zero mean S =
∑N
n=1 xnxTn

S set of scattering matrices

A ·B element wise multiplication of two matrices (Hadamard product)

L (Θ|x) likelihood function of a univariate PDF p (x|Θ).

L (Θ|X) likelihood function of a multivariate PDF p (x|Θ).

lnL (Θ|x) log-likelihood function of a univariate PDF p (x|Θ).

lnL (Θ|X) log-likelihood function of a multivariate PDF p (x|Θ).

Exp (x|λ) Exponential probability density function with parameter λ

Gam (x|k,Θ) Gamma probability density function with parameters k and Θ

N (x|µ,Σ) Normal probability density function with parameters µ and Σ

LN (x|µ,Σ) Log-normal probability density function with parameters µ and Σ

MF (x|µ,Σ) von Mises-Fisher probability density function with parameters µ and κ

W (S|N,Σ) Wishart probability density function with parameters N and Σ

D (x|a) Dirichlet probability density function with vector of parameters a

Chapter 1

Introduction to intelligent

artificial systems

In this chapter, problems related to the concept of intelligence are discussed. Further the intro-

ductory part summarizes methods of model estimation applied in artificial intelligence.

1.1 Intelligence

For purposes of this thesis, proper intelligence and AI definition would be useful to determine

capabilities of the artificial system build further.

1.1.1 Concept of intelligence

Intelligence is one of the aspects of mind that forms character. Despite huge interest in modern

artificial intelligence (AI), there is no generally accepted definition of intelligence. One problem

arises because there is no technique to decide how to judge intelligence because the concept has

no exact measurements. Human intelligence is naively referred as so called IQ. For example, one

can contest IQ by the fact that there is nothing more than statistical correlation of an ability to

solve problems that are focused on particular mind processes and IQ score, so the first emerging

problem is exact specification of the way how to measure the intelligence. The other problem is

that intelligence is used in diverse fields and so the basis of a definition uses concepts related to

the particular field, while one can say that intelligence as an ability to solve some problems, the

another can refer the intelligence as proper behaviour in hard situations.

Let us look at some definitions that try to determine intelligence. The first is related to AI [1]:

Definition 1.1. Intelligence measures an agent’s ability to achieve goals in a wide range of

environments.

1

Chapter 1. Introduction to intelligent artificial systems 2

The definition determines an intelligent agent as an entity that is focused on problem solving.

If it is necessary to apply this definition in the psychological field it does not cover the area of

self-criticism. Of course, mentioned the ability to achieve goals supposes that the agent already

has knowledge of the problem, but how the agent would act in unknown environments? More

generally is it necessary to require that an agent must be able to act in various (also unknown)

environments?

On the other hand following definition [2] encapsulates that missed in Def. 1.1:

Definition 1.2. The ability to acquire and apply knowledge and skills .

The Def. 1.2 very aptly covers two crucial goals of intelligence, information acquisition (in terms

of computer science - machine learning) and using acquired knowledge. The Def.1.2 covers what

missed in Def. 1.1 but it says nothing about acting because the Def. 1.2 determines intelligence

as an ability of interaction with the environment, but not intelligent behaviour. The definition

bounds intelligence as a system without interaction with outside.

Let us investigate intelligence more from the human perspective. According to [3] the definition

is formulated as follows:

Definition 1.3. The ability of an animal to form associative links between events or objects of

which it has had no previous experience.

The Def. 1.3 formulates the same as the Def. 1.2 but in more biologically plausible way. The

ability to form associative rules is the basis of artificial organisms. Despite problems related to the

definition in the previous paragraph the Def. 1.3 approaches to a general connectionist principle

of the intelligence perception that is applied widely in machine learning, e.g. in neural networks,

which forms association rules based on available information by strengthening connections. The

Def. 1.3 is used as the basis for further relation between system build in this thesis and concept

of intelligence.

1.2 Artificial intelligence

As it is mentioned above, definition of intelligence is not that easy to determine just in one

single definition. The intelligence is in the general domain of biological systems like humans

or generally animals. A concept of intelligent agent is used instead of human or animal as an

entity that embodies intelligence in AI. An intelligent agent can act rationally or has human-like

performance. Rationality and human-like-performance can easily coincident. The human-like-

performance is not necessary rational, because humans are not perfect 1 so the relation between

rationality and human behaviour exist but it shall be distinguished.

The first pioneering work about how to judge intelligence as something artificial was proposed

by Alan Turing with his Turing Test. Turing’s test says that the computer is intelligent if human

interrogator after posting some written questions cannot distinguish whether the responses come

1Not all humans are the best chess players [4].

Chapter 1. Introduction to intelligent artificial systems 3

from a computer or a human. The Turing’s test gives rise to question whether the machines can

behave intelligently or can have their minds. These two categories of simulated intelligence and

machine mind is also referred as weak and strong AI. The weak AI supposes that the machine

only behaves intelligently. The strong AI claims that Turing’s test is not omnipotent judgement,

it consider consciousness - being aware of its own states and actions. Strong AI does not simulate

intelligence, it is intelligent itself. One thing that shall be taken into consideration is a limited

amount of memory. For the both weak and strong AI it shall be considered that real machines

are equipped with a finite number of memory cells, so it is possible to program 2k intelligent

agents in k cells so the best agent can be constructed combinatorially, but the number of possible

intelligent agents is not infinite.

Let us start with a definition of the AI taken from [3], which is defined as follows:

Definition 1.4. A field of computing concerned with the production of programs that perform

tasks that requiring intelligence when they are done by people.

The Def. 1.4 does not say whether the AI is better or worse than an intelligent human, but it

is still pretending intelligence thus it is weak AI. The human intelligence factor in AI can be

perceived from different perspectives (see Tab.1.1); nevertheless, connection in between program,

machine and intelligence is strong enough to consider the definition as consistent specification

of requirements of the system that embodies AI. If the Def. 1.3 and Def. 1.4 are unified into one

definition, the following defines what artificial intelligence is:

Definition 1.5. A field of computing concerned with the production of programs that perform

tasks that requiring the ability to form associative links between events or objects of which it

has had no previous experience.

Since this moment whenever AI is referred the basis relies on the Def.1.5.

Thinking Humanly Thinking Rationally
Acting Humanly Acting Rationally

Table 1.1: Division of artificial intelligence into four categories.

There are different views of how to analyse the AI. The AI is always related to human intelligence.

Only difference is how the human intelligence and behaviour is reflected in AI. The [4] describes

four quadrants (see. Tab. 1.1) of intelligence and rationality in relation to AI.

The four concepts in Tab. 1.1 are discussed in following sections in a more detail.

1.2.1 Acting humanly

The system that acts humanly is a system that imitate human acting. This approach is closest

to robotics which tries to construct machines that can do what human can [4].

The art of creating machines that perform functions that require intelligence when

performed by people [4].

Chapter 1. Introduction to intelligent artificial systems 4

The goal of a system is not problem solving but human acting (e.g. rescue robots, search agents

and so on). The above mentioned Turing’s test is just strongly focused on human acting. A

machine is considered as intelligent if a human judge cannot decide whether written answers to

asked questions were answered by a computer or a human.

1.2.2 Thinking humanly

Thinking humanly is focused on intelligent behaviour rather than acting.

The exciting new effort to make computers think . . . machines with minds, in the

full and literal sense [4].

If one wants to say that a computer works in the same way as a human thinks we must judge

how humans really think. In [4] there are three perspectives of how to investigate systems that

think humanly, namely:

1. through introspection - trying to understand ourselves.

2. through psychological experiments - mostly experimental, cognitive.

3. through brain imaging - observing how the brain works.

All above mentioned perspectives are not merely related to machines but also to cognitive sci-

ences. While the systems that act humanly are more focused on the technical issues of the system;

the systems that think humanly are more focused on how system performs actions internally.

1.2.3 Think rationally

The study of mental faculties through the use of computational models [5].

Antic philosopher Aristotle was the first who tried to codify rational (right) thinking [4] with

theory of syllogisms. The aim was to investigate whether humans can make a conclusion based

on a set of claims (premises) so that a new claim is correct to its premises. The following example

shows that based on two premises: All students that study hard will graduate and X study hard

can be concluded X will graduate:

All students that study hard will graduate

X study hard

X will graduate

(1.1)

This logical reasoning has become the basis for first-order logic, which is the basis of rationality in

AI. Systems cannot diverse from the goals defined in a set of logical statements. In 19th century,

formal apparatus has been developed to transform logical statement into so called predicate logic

and then Eq. 1.1 can be formulated in more convenient form for computers as follows:

Chapter 1. Introduction to intelligent artificial systems 5

∀x : StudyHard(x) =⇒ Graduate(x)

StudyHard (X)

Graduate (X)

(1.2)

Since the Aristotle theory of syllogisms much time has passed, but, nowadays, for AI the theory

has brought one of the most important concepts where systems/agents think rationally using

their knowledge (set of logical statements), regardless what a human would do. Bad news is that

reasoning shown above require many cases exponential amount of time2.

1.2.4 Acting rationally

Computational Intelligence is the study of the design of intelligent agents [4].

Agents are very similar to objects in terms of object oriented programming, but the major

difference is that the agent has its own behaviour. Often rationality is related to a performance

measure (e.g. number of wins in a chess game, average price of processed tickets, etc.). Rational

acting is acting where agent’s behaviour is the good with respect to some performance measures.

As it is mentioned earlier, not all humans are rational. Great example is Allais paradox. People

are asked to make a decision in a lottery with probability and choose between 1 and 2, and 3

and 4:

1. 80% chance to win $4000,

2. 100% chance to win $ 3000,

3. 20% chance to win $ 4000,

4. 25% chance to win $ 3000,

Most people prefer 2 over 1 and 3 over 4. If the prize is weighted by the probability of win the

outcome has different preference ordering, 1 is preferred to 2. Why? Most people are risk aware.

The risk awareness has its basis in certainty effect. People are strongly attached to certain gains

but then do not act rationally. Agent that acts rationally is the agent that optimize certain utility

regardless what human would do, moreover, the rational agent shall act better than human. In

case of the Allanis paradox, the agent shall always pick the best option regardless the human

risk-awareness 3.

1.3 Learning process

Learning is referred to as a process where new knowledge or skill is acquired based on given data.

According to data provided there are two types of learning. First type supposes the existence

2Example of tractable logical statements for the machine is a knowledge base based on Horn’s clauses which
are solvable in polynomial time.

3As an agent that acts rationally is often referred the booking agent, that tries to find the best tickets.

Chapter 1. Introduction to intelligent artificial systems 6

of annotations/labelling of input signals while the second uses only inputs (eventually with a

feedback as reinforcement learning). The learning process adapts some parameters Θ̂ with regard

to (w.r.t.) the data.

1.3.1 Learning as a philosophical problem

The idea of investigating learning and intelligence problem dates back to Antics. First attempts

to formulate learning were made by Plato’s theory of Ideas. Plato claimed that all that a human

can know is in a world of Ideas, and human intelligence is formed exclusively by the connection

with the world of Ideas. Initially, human has no associations with the world of Ideas. The

learning is based on recalling all that is given a priori. In computer science, the notion of the

world of the Ideas resembles abstract machine called oracle, which is a machine that always

knows the correct answer for any question. The Plato’s principle a-priority in practice means

that any real object (as a concept) has relation with the world of Ideas that are shared by all

humans, and the world of Ideas is static.

The Plato’s world of Ideas lacks the learning process that is a natural part of the human intel-

ligence (the learning is an integral part of the Def. 1.3). Aristotle, a Plato’s pupil [6] criticised

Plato’s Ideas just because of absence of learning. The Aristotle claimed that intelligence does

not come from the world of Ideas but rather evolves dynamically without any prior knowledge.

In comparison to Plato’s theory the Aristotle’s supposed that human is born with no prior

knowledge4 and intelligence that evolve gradually as educative process5.

1.3.2 Learning with teacher

Learning with teacher, also referred to supervised learning type of learning where desired outputs

for input data are given. A teacher has got knowledge about the problem domain, and data are

associations of x - output d pairs, where d are the desired outputs of the system annotated by the

teacher. A learning algorithm adapts system’s parameters Θ̂ to minimize the difference between

system’s output for a particular datum x and desired outputs d. It is not always necessary to

find exact mapping from input space X = {xn}Nn=1 to (desired) outputs space D = {dn}Nn=1

because, for example, only subset of the data is provided and some generalizations are needed.

There are two major methods how to present the training data. The first method gives all

inputs X to the system, then new parameters are calculated for each datum and parameters

are adapted. This learning method is often referred to as offline or batch learning because the

training is performed in batches. The second method is called online learning, where training

data are presented one-by-one, and for each input-output training datum the parameters Θ̂ are

adapted.

A practical example is raw learning of a foreign language vocabulary which can be performed

by simple making bi-directional associations between foreign words and native language from

dictionary. The learning method is online because each word association is made separately.

4Individual initially has no knowledge, which is called Tabula rasa
5Concept of educative process is used instead of adaptivity because it better corresponds to the learning process.

The adaptivity is an ability to adapt to environment needs, whereas educative is wilful process of learning [6].

Chapter 1. Introduction to intelligent artificial systems 7

1.3.3 Learning without a teacher

Learning without teacher is a process where no annotations are given. Further learning without

teacher can be divided into two categories: reinforcement learning that interacts systematically

with an environment to improve the system’s performance and unsupervised learning where no

expected outputs are given and the system tries to find the underlying structure on input data.

1.3.3.1 Reinforcement learning

The supervised learning supposes the existence a teacher who is able to respond to a set of

training stimuli. The systems restricted to learning under these conditions are not adequate

when it is costly, or event impossible, to obtain the required desired outputs. The reinforcement

learning allows systems to learn from experiments instead of exclusively from teachers [7].

In reinforcement learning (RL), the learning of an input X samples is performed through in-

teraction with the environment in order to maximize utility [8]. There are no desired outputs.

The RL is in class of learning methods based on trial-and error where the system repeats an

experiment in given order until some criterion is met.

1.3.3.2 Unsupervised learning

Unsupervised learning is a process where no information about outputs is given. The only

information that is known is input samples X. The most common task of unsupervised learning

is clustering : detecting subsets that have some shared property/properties.

1.3.4 Semi-supervised learning

Semi-supervised learning is a combination of supervised and unsupervised learning. The semi-

supervised learning is often referred when only a subset of the data is annotated or when some

additional information is given.

The example of partially annotated data in Fig. 1.1 (left) where the task is to separate points

into two classes. The labelled part of the data is used to find borderline between red and blue

classes and the other unlabelled data are classified by the found borderline. The data with

no extra information is not useless in the learning process. They can be, for example, used

for finding a prior distribution of all data (regardless they are annotated or not annotated) in

input space. Another case of semi-supervised learning is when the observations contain some

uncertainty or noise. The example of presence of noisy data for regression problem can be seen

in Fig. 1.1 (right), where two outliers are deviated from linear relation. If the regression problem

was solved as an ordinary least square linear regression, then outlier would negatively affect

results, and attract the solution to the wrong line. On the other hand, robust regression ignores

the outliers and estimates regression as it was desired. In general, the semi-supervised learning

means works partially annotated or with uncertain data.

Chapter 1. Introduction to intelligent artificial systems 8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x 2

Unlabelled data
Class 1
Class 2

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

11

x values

y=
w

0 +
 w

1 x

Samples

Linear regression
Robust regression

Figure 1.1: Semi-supervised learning. Left: Classification of partially annotated data. Part
of the data is labelled (red and blue circles), and part is unlabelled. Right: Regression where
some undesired disturbances are present. The red line is the result of linear regression where

parameters are adapted with disturbance while robust regression ignored the outliers.

1.4 History of the AI

It is hard to decide when AI came into awareness as a branch of computer science, due to the

fact there is no commonly accepted definition thus it is very hard to determine where is the

boundary between the theoretical model on the paper and the system that embodies an AI as

it is perceived by the definition Def. 1.5. There are some theories that existed only on paper

before they were simulated on the first computer. A big question also is when the first computer

was constructed and what is and what is not a computer. If the computer is considered to be

something that can perform elementary arithmetic operations, then the first computer is Pascal’s

mechanic calculator constructed in the 17th century. A semiconductor can be identified as a real

milestone of computing since this is the material which is used for microprocessor construction.

It shall be emphasized that artificial neural networks were modelled with analogue circuits even

before.

As the first attempts of the AI is referred a first artificial neuron designed by McCulloch and

Pitts in 1943. Inputs of the neuron are weighted by synapses and output is binary - on or

off. The theory of artificial neuron also supposed construction of neural network which can

perform simulation of arbitrary logical function. Afterwards, Donald Hebb came with Hebbian

learning rule performed on the artificial neurons. The Hebbian learning rule is a basic principle

which strengthen weights of simultaneously active neurons. In 1950 Marvin Minsky and Dean

Edmonds came with the first artificial neural network which is called SNARC. The SNARC used

3000 vacuum tubes and surplus automatic pilot mechanism to simulate a network of 40 neurons

[4].

1.4.1 Beginnings of logical reasoning

Two researchers from Carnegie Mellon University Allen Newel and Herbert Simon showed reason-

ing program called Logic Theorist (LT) on a workshop in 1956 [4]. Simon claimed the following

about the LT:

Chapter 1. Introduction to intelligent artificial systems 9

We invented a computer program capable of thinking non-numerically, and thereby

solved the venerable mind-body problem, explaining how system composed of a mat-

ter can have the properties of mind. [4]

The program was able to prove most of the theorems from Russel’s and Whitehead’s book Prin-

cipia Mathematica. The statement, in which the LT solved a the mind-body problem classifies

the LT as program that embodies strong AI [4].

In 1958, McCarthy introduced a hypothetical program called Advice Taker (AT) that used

knowledge same as the LT, but AT supposed existence of general knowledge which contains all

possible rules of the World. Later McCarthy formed a new team at Stanford, afterwards, one

member of the team discovered resolution method for the first order logic [4].

Later on, in 1959, Simon and Shaw came with a General Problem Solver (GPU). The idea of the

GPU was to approach human way of problem solving by its division into subtasks. Rather than

to solve the problem in general, the GPU tries to approach the way how a human being solves

it. In the same year, Herbert Gelernter constructed a Geometry Problem Solver which was able

to solve problems that some students had found out as tricky [4].

1.4.2 Connectionist era

The logic based systems had shown that their power decreases rapidly with a task complexity.

The problem of reasoning with representation where all information is defined in some rules

suffers from higher computational requirements. Generally, the logical reasoning does not take

into consideration the optimization of the input problems; they are supposed to be theoretically

solved in a finite time; thus new approaches were necessary to shift AI forward to be a regular

scientific discipline. The ideas of McCulloh and Pitts in 1960 gave a rise to adaptive linear neural

networks, also ADALINEs and perceptrons.

At the given time, all neural networks were one layered because simply no learning algorithm

had existed for the multi-layered neural networks. This bound was the real limit of capabilities of

the neural networks. Invention of back-propagation in the middle of 1980 for multi-layered feed-

forward networks changed completely pessimistic perception of the future of connectionist prin-

ciple and the entire AI. The invention of back-propagation opened many problems that seemed

intractable for AI. The real break-even point was Kolomogorov’s theorem that has claimed that

any continuous function of n variables can be represented by a finite network of functions of a

single argument, where addition is used as the only function of several arguments [9].

Some euphoria from the times when back-propagation was invented still alive these days, mainly

because the illusion of the increasing number of neurons can simulate arbitrary mapping.

Chapter 1. Introduction to intelligent artificial systems 10

1.4.3 History of density estimation

The historical background of density estimation problems is a bit different branch of AI. It evolved

in statistics rather than in AI because the density estimation was initially purely statistical

discipline which later became a part of AI, as a machine learning branch.

The earliest reference to literature on the algorithm that reminds EM algorithm dates back to

1886 where the Newcomb considered an estimation of parameters of a mixture of two univariate

normal distributions. Later in 1926 McKendrick gave a medical application of the problem in the

spirit of the EM algorithm. In 1956, iterative method for estimating missing values which turned

out to be an EM algorithm by Healey and Westmacott in 1956 was proposed. In 1958, Harley

gave a treatment of the general case of count data and the first idea about formalization of an

EM type algorithm as it is known nowadays, was published. Later on Buck in 1960 published

a paper which considered estimation of a multivariate Normal distribution with a mean vector

and a covariance matrix with the idea that only part of data is observed. The Buck’s method

is also known as semi-supervised learning. It uses given observations to regress missing values.

Interesting is that Buck’s method gives MLE under certain conditions, so the solution is near

to EM. In 1970 Blight in 1970 tried to solve the problem of finding MLEs for exponential

family distributions and his solution had turned out to be EM algorithm. Blight also proved

some convergence results. Baum’s series of papers in 1967 and 1970 can be perceived as a real

beginning of the EM algorithm. They applied EM algorithm in Markov Model. Later on in 1972

Orchard and Woodbury introduced the principle of missing information. Orchard’s contribution

includes incomplete and complete likelihood function that are crucial for the algorithm. Finally

Dempster, Laird and Rubin [10] published the algorithm that is called EM algorithm.

1.5 Adaptive systems

The classification of adaptive systems as a branch of the machine learning is shown in Fig. 1.2.

1.5.1 Rule-based systems

Rule based systems are systems that work with if -then statements. The knowledge base is set

of all rules which the system consists of. The procedure of obtaining an answer from rule based

system is based on asking whether a query fulfil one of the if-then rules. If there is any then

conclusion, then it is taken as the answer of the system.

Rule-based systems are, for example, used for medical diagnostics where if statement are some

set of known disease symptoms and then statements are the treatments.

1.5.2 Non-parametric methods

Non-parametric methods (NPM) play important role in the machine learning. The NPM have

no functional form but allow the form of the density to be determined entirely by the data. The

Chapter 1. Introduction to intelligent artificial systems 11

Artificial intelligence

Machine learning

Adaptive systems

Rule based systems Non-parametric methods Parametric methods

Expert systems K-nearest neighbours Neural networksSVM Maximum likelihood estimation Bayesian inference

Feed-forward NN Self organzing maps EM alg.

NMF

Figure 1.2: Classification of adaptive systems.

NPM can be used, for example, to assess the multi-modality, skewness, or any other structure in

the distribution of the data. It can also be used for the classification and discriminant analysis.

The NPM are alternatives to the parametric approaches, in which one specifies a model up to a

few parameters and then estimates the parameters via e.g. the maximum likelihood principle.

Currently, the most popular NPM methods for density estimation are Kernel methods and

Nearest neighbours methods [11].

1.5.2.1 Kernel method

The goal of Kernel method is to approximate an unknown probability density function p(x|Θ)

of a random variable x. Assume we have N observations X = {xn}Nn=1 drawn from the p(x|Θ).

The estimate of density based the Kernel method f (xi|h) at a point x is defined as

f (xi|h) = 1
Nh

∑N
n=1K

(
xi−xn

h

)
xi 6∈ X (1.3)

The K (x) is symmetric probability density function6 which is commonly Guassian-like distri-

butions. The parameter h is called bandwidth (smoothing) and determines how wide is a kernel

window. The task of the Kernel method is to choose an appropriate kernel function K (x) and

bandwidth parameter h for a given set of observations X. There is a trade-off between bias and

variance. If the h is too large then variance of the model is small (see right bottom in Fig. 1.3),

conversely if h is too small then variance is large (see left top in Fig. 1.3).

6Symmetry means K (x) = K (−x) and distribution function property always gives 1 for the sum over all
possible values of random variable.

Chapter 1. Introduction to intelligent artificial systems 12

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

real distribution p(x|Θ) = N(x|−2,2) + N(x|3,1)

Kernel method − estimate f(x|h=0.1)

−8 −6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

di
st

rib
ut

io
n

of
 x

 v
al

ue
s

real distribution p(x|Θ) = N(x|−2,2) + N(x|3,1)

Kernel method − estimate f(x|h=0.5)

−8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

real distribution p(x|Θ) = N(x|−2,2) + N(x|3,1)

Kernel method − estimate f(x|h=1)

−8 −6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x
di

st
rib

ut
io

n
of

 x
 v

al
ue

s

real distribution p(x|Θ) = N(x|−2,2) + N(x|3,1)

Kernel method − estimate f(x|h=2)

Figure 1.3: Example of Kernel method for density estimation with varying bandwidth and
Gaussian kernel where the data are drawn from two univariate Gaussians.

1.5.2.2 Nearest neighbour methods

One of the potential problems of Kernel method for density estimation arises from fixed band-

width parameter h for all data points X = {xn}Nn=1. If bandwidth is too large, then some regions

are over-smoothed but reducing h, may cause noisiness on dense regions. The Nearest neighbour

methods let bandwidth h to vary. Since the h may change, the neighbourhood with volume V

of a value x, where the density is estimated, absorbs more and more observations until certain

k observations lie in the neighbourhood that grows as h is getting larger. Intuitively, the above

mentioned facts can be formalized into following ratio neighbourhood [12]:

p̂ (x) =
k

NV (h)
=

#points in neighbourhood

all points * increasing volume of neighbourhood depending on h
(1.4)

The Nearest neighbourhood has one parameter, which critically affects performance - number

of k neighbours. If the k is too large, model variance is small and conversely. If k is too small

then variance is very high and thus small number of other points regions, where the density of

observations is larger the Nearest neighbour method exhibits very peaky estimations [12]

1.5.3 Parametric methods

Parametric methods (PM) are those which have a specific functional form for the estimated

model. The functional form is defined by a set of parameters Θ which are optimized by adapting

Chapter 1. Introduction to intelligent artificial systems 13

their values to fit the parametric model to the observations. The PM the one of the most

straightforward approaches in adaptive systems. The most frequently used parametric model for

the density estimation is the (multivariate) normal distribution which has convenient analytical

and statistical properties. Two major techniques for PM are: maximum likelihood and Bayesian

inference. In the first technique the parameters of functional form that describes an estimate are

adjusted to find the most likely values of parameters (estimate) Θ̂. On the other hand, Bayesian

inference does not use maximization principle for the likelihood function but computes expected

values based on observations [12]. As parametric methods are also referred neural networks and

mixture of densities. In some literature [12, 13] they are referred as semi-parametric because the

parameters also specifies functional form, but the functional form is closed and then parameters

of both can be estimated through PM [12], thus both methods are considered as PM here.

1.5.3.1 Neural networks

The term neural network (NN) has evolved to encompass a large class of models and learning

methods. The NN is an attempt at modeling the information processing capabilities of nervous

systems [9]. The NN can perform a wide range of learning tasks for supervised, unsupervised and

semi-supervised learning. The NN is a graph that constis of elementary units called neurons.

Each neuron performs defined computation where each unit has adaptive parameters called

weights. The principle of the NN is based on distribution of knowledge among neurons to

represent desired problem by the weights and interconnections between the neurons.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(
x)

Most commonly used transfer functions

f(x)=sigmoid(x)

f(x)=heaviside(x)

f(x)=x

]

. . .

. . .

x1 xDI

y1 yDO

o1,H1
= f

(
wT

1,H1
x
)

o1,1 = f
(
wT

1,1x
)

oL,HL
= f

(
wT
L,HL

x
)

oL,1 = f
(
wT
L,1x

)

... L hidden layers

w1,1,1

w1,1,DI
w1,H1,1

w1,H1,DI

Figure 1.4: Left: The most commonly used transfer functions f (x). Right: General structure
of a feed-forward neural network trained by back-propagation. The first layer presents input
vectors x to hidden H1 units in the first layer. After all L layers processes outputs from
previous layers, the outputs from the last hidden layer are presented to the outputs. The
network parameters are determined by DIH1 +

∑L
l=2 HlHl−1 weights where Hi is the number

of units in i-th hidden layer.

As a supervised realization of the NN is usually referred feed-forward network whose architecture

is defined in directed graph without cycles where the direction is from inputs to outputs (see

Chapter 1. Introduction to intelligent artificial systems 14

Fig. 1.4, left). The learning algorithm for multi-layered NNs is usually back-propagation algo-

rithm. The back-propagation algorithm is a general weight adaptation rule based on gradient

descent of the error function. Major disadvantage of the feed-forward approach is the non-

transparent interpretation of the network structure (architecture, weights) for more complex

architectures.

As an unsupervised realization of the NN is usually referred Kohonen’s Self Organising Map

(SOM). It provides a mapping from a high-dimensional input space to a lower-dimensional,

often two-dimensional, output space. In the process of this mapping input patterns, that are

located close to each other in the input space, will also be located closely in the output space,

while dissimilar patterns will be mapped on opposite regions of the trained SOM [14].

The SOM provides a sort of clustering of the data. Basically, the SOM is a low-dimensional

lattice, consisting of m neurons or units. The map lattice can have different topologies, in this

thesis only rectangular lattices are used. For each neuron in the output space, a weight vector

wi of the dimensionality of the input space is linked to a position on the two-dimensional map

lattice. In the training phase, the best matching unit (neuron, weight vector) is identified for

all input vectors by using a distance function, which is most usually Euclidean distance, After

that, the best matching unit is identified, its weight vector. The weight vectors of neighbouring

units are shifted towards the input vector as it is illustrated in Fig. 1.5. Example of the entire

procedure of the SOM training on two dimensional data with two normally distributed clusters

is shown in Fig. 1.6.

neuron

best matching unit

datum x

neighbrhood

weight shift toward to datum x

Figure 1.5: Weight adaptation of the SOM for the best matching unit (BMU) and its neigh-
bours. After the BMU is found, the weight is shifted toward to the datum x together with
its neighbouring neurons where the the neighbours are shifted less w.r.t. as the topological

distance from the BMU grows.

Chapter 1. Introduction to intelligent artificial systems 15

−10 −5 0 5 10
−10

−5

0

5
Input space

−10 −5 0 5 10
−10

−5

0

5
Initial SOM

−10 −5 0 5 10
−10

−5

0

5
Trained SOM

Figure 1.6: Two dimensional SOM example. Left : Input samples. Middle: Initial state of
the SOM. Right : Trained SOM.

Chapter 2

On Maximum likelihood

estimation of some probability

density functions

The distribution functions are chosen to cover diverse types of data. As the first, the most com-

monly used Normal distribution is shown, which is naturally universal choice in the most cases.

Further, there are skewed distributions Gamma and Log-normal that are useful in cases where

some asymmetries, unlike the Normal distribution are needed. Another class are distributions

which require special input format, namely von Mises-Fisher and Dirichlet distributions. The

Von Mises-Fisher is distribution which requires unit norm can be useful in situations where only

direction is relevant or input data lies on a unit sphere. The Dirichlet distribution requires unit

sum which means the data lies in D − 1 simplex. For example, the Dirichlet distribution is

applied for probabilistic topics model creation [15, 16]. The Wishart distribution can be applied

for some matrix estimation, which is shown, for example, in Chapter 6.

For each distribution function likelihood and log-likelihood functions are derived. The likelihood

and log-likelihood functions are used for comparison between models as a measure of goodness

between two models, and the concept plays an important role in further chapters to define some

special functions based on these functions.

The likelihood and log-likelihood functions are also useful in finding maximum likelihood estimate

based on observation to guess parameters of an original distribution function. In Chapter 3 it

will be shown more complicated situation with a mixture of the distribution functions where the

maximum likelihood estimation results are used. The results are necessary basis for the problem

of the estimation of the original parameters with a mixture of densities.

The distribution functions are divided into two categories. The first is univariate where the

modeled random variable is one-dimensional (D = 1) and multivariate where the random variable

can have more than one dimension (D ≥ 1).

16

Chapter 2. On Maximum likelihood estimation of some probability density functions. 17

2.1 Preliminaries

2.1.1 Likelihood and Log-Likelihood

Likelihood is a function of parameters Θ for a given probability density function p (x|Θ) (PDF)

and finite set of N observations X = {xn}Nn=1 (each observation xn is supposed to be D dimen-

sional). The likelihood function gives a measure for comparison how likely a set of observations

X is drawn with a set of parameters Θ.

Definition 2.1. Given set of N observations X = {xn}Nn=1 drawn from a known PDF x ∼
p (x|Θ) then the likelihood function is calculated as follows:

L (Θ|X) =

N∏

n=1

p (xn|Θ) (2.1)

For some applications it is more convenient to work with the log-likelihood denoted as lnL (Θ|X)

which is logarithm of likelihood function defined in the Eq. 2.1. The logarithm is a monotonically

increasing function which ensures that when one parameter setting has greater likelihood than

the other, the parameter has greater log-likelihood too1. The logarithm has useful property

which changes the product over all observations in Eq. 2.1 to a sum of logarithms over of the

PDFs which is easier to handle:

lnL (Θ|X) = ln

N∏

n=1

p (xn|Θ) =

N∑

n=1

ln p (xn|Θ) (2.2)

Both likelihood and log-likelihood are equivalent for comparison, thus it is not necessary to

strictly distinguish in between log-likelihood and likelihood functions.

2.1.2 Maximum likelihood estimation

Maximum likelihood estimation (MLE) is a technique used to estimate parameters of a given

PDF based on a likelihood of a set of observations drawn from a PDF. Formally MLE finds such

parameters that reach the maximum for a given set of observations of the likelihood function.

The Def. 2.2 states MLE in more rigorous way.

Definition 2.2. The MLE maximizes likelihood function for a given set of N observations

X = {xn}Nn=1 by finding parameters Θ̂MLE such that:

Θ̂MLE = arg max
Θ̂∈ΩΘ

L
(

Θ̂|X
)

= arg max
Θ̂∈ΩΘ

lnL
(

Θ̂|X
)

(2.3)

1Mathematically speaking following relation holds : L (Θ1|X) ≥ L (Θ2|X)⇔ lnL (Θ1|X) ≥ lnL (Θ2|X).

Chapter 2. On Maximum likelihood estimation of some probability density functions. 18

The Def. 2.2 does not specify how the function p (x|Θ) inside the likelihood or log-likelihood

function is formulated thus the function f (x|Θ) can be formulated as a weighted sum of K

PDFs fk (x|Θk) weighted by coefficients πk which is called mixture of densities:

p (xn|Θ) =

K∑

k=1

πkfk (xn|Θk) (2.4)

Where the Θ is a set of parameters Θ = {π1, . . . πK ,Θ1, . . .ΘK} for all PDFs and each PDF has

one additional parameter called a mixture coefficient πk. The problem of MLE for a mixture of

densities is investigated in Chapter 3 where EM algorithm and NMF are shown. The likelihood

function for mixture of densities is multi-modal (see Fig. 2.1) thus both methods (which are

shown as equivalent) iteratively converge to a locally maximal stationary point based on initial

guess of parameters Θ̂(0).

−2
−1

0
1

2

−2
−1

0
1

2

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

µ
1

µ
1
=−0.5,µ

2
=1

Likelihood of mixture of two normal distibutions with unknown mean vectors µ
1
,µ

2

µ
2

µ
1
=1,µ

2
=−0.5

N
(x

|µ
1,Σ

=
0.

1)
/2

 +
 N

(x
|µ

2,Σ
=

0.
1)

/2

Figure 2.1: Example of log-likelihood function for mixture of two univariate Normal PDFs
N (x|µ1,Σ = 0.1) /2+N (x|µ2,Σ = 0.1) /2. The estimated parameters are mean vectors µ1, µ2

and Σ is known and given as Σ, each PDF drew 100 observations. The blue lines depict points
where the likelihood is maximal. There are at least two maxima, one for each combination of

the means (µ1, µ2) and (µ2, µ1).

2.1.3 Maximum likelihood estimation for a single function

The MLE has a particular exploitation in statistics where it is used to estimate parameters of

PDF based on a set of observations X. The MLE is also frequently used in machine learning,

mostly for MLE in the mixture of densities in Eq. 2.4, but it is investigated in more detail in the

Chapter 3.

There are several ways how to perform MLE. The first and the most straightforward method

is an analytic one, which finds values of the Θ̂ that lie on stationary point (see Fig. 2.2). The

analytic method is the most accurate w.r.t. likelihood function, but it is not available for all

PDFs. For example, the (multivariate) Normal distribution has analytic form for MLE but the

Gamma PDF does not. In case, there is no analytic solution, there are another methods. The

first method is numerically approximate the analytic solution with the gradual approaches to

the stationary point with a gradient ascent or use some sophisticated second-order methods like

Chapter 2. On Maximum likelihood estimation of some probability density functions. 19

a Newton-Raphson. The second method and the worst is to enumerate parameters and pick the

parameter setting with the highest likelihood (log-likelihood).

All PDFs used in this thesis are members of so called exponential family functions and share

some useful properties. The most important result is a uni-modality of a likelihood function

stated in Theorem 2.6, which guarantees that there is a single stationary point of the likelihood

function w.r.t. the parameters Θ for a single PDF; thus all PDFs shown here have unique MLE

solution Θ̂MLE whose likelihood is guaranteed to be maximal.

An illustration of MLE of PDF from the exponential family distribution is shown in Fig. 2.2.

lnL (Θ|X)

Θ ∈ ΩΘ̂MLE

∂ lnL(Θ̂MLE |X)
∂Θ = 0

Figure 2.2: MLE illustration of uni-modal log-likelihood function.

2.1.4 Number of observations and accuracy of MLE

The quality of MLE depends on the number of observations provided. In the ideal case a set

of observations is infinite which is stated in Theorem 2.3, but it is not applicable for real cases,

but the cardinality of observations should be large enough. The more data is given the more

accurate estimates are.

Theorem 2.3. Having sufficiently many observations X = {x}Nn=1 drawn from a PDF x ∼
p (x|Θ). In limit case is possible to find original parameters Θ from which observations were

drawn, which is formulated as follows:

lim
|X|→∞

arg max
Θ̂∈ΩΘ

L
(

Θ̂|X
)

= lim
|X|→∞

arg max
Θ̂∈ΩΘ

lnL
(

Θ̂|X
)

= Θ (2.5)

2.1.4.1 Analytic method

There are basic steps of how to find the MLE in analytic form. The MLE with analytic method

is found with the help of known property of stationary points from mathematical analysis of

differentiable functions. The points, where function derivative w.r.t. the optimized parameter

is zero is the stationary point which lie in a maximum or minimum of a function (the example

of stationary point in Fig. 2.2). If the function is uni-modal, then there is one unique solution

(exponential family), otherwise, the problem shall be solved by some other methods like gradient

ascent or Newton-Raphson method.

Chapter 2. On Maximum likelihood estimation of some probability density functions. 20

−20
−15

−10
−5

0
5

0
5

10
15

20
−15000

−10000

−5000

0

MLE (µ=−4.9562, Σ=2.7089

µ

Log likelihood

Σ −12 −10 −8 −6 −4 −2 0
0

0.05

0.1

0.15

0.2

0.25

x

N
(x

|µ
,Σ

)

MLE estimate

Observations

Original distribution N(x|−5, 3)
MLE N(x|−4.9562, 2.7089)

Figure 2.3: Illustration of MLE estimation. The graph on the left shows the log-likelihood
function of univariate Normal distribution N (x|µ = −5,Σ = 3) with 100 observations. The
blue line depicts where the log-likelihood is maximal which is MLE solution. In the right chart

are shown values of original PDF and PDF with parameters calculated by MLE.

The basic steps of analytic method are as follows: finding the derivative of the likelihood or

log-likelihood w.r.t. the parameter and setting it to zero. The resulting equation is solved w.r.t.

the parameter θk ∈ Θ. If a solution exists it is the stationary point where the likelihood and

log-likelihood are maximal. Generally the first step for likelihood and log-likelihood formulated

as follows:

∂ lnL(Θ̂|X)
∂θk

=
∑N
n=1

∂
∂θ̂k

ln f
(
xn|Θ̂

)
θ̂k ∈ Θ̂

or
∂L(Θ̂|X)
∂θ̂k

=
∏N
n=1

∂
∂θ̂k

f
(
xn|Θ̂

)
θ̂k ∈ Θ̂

(2.6)

In the Eq. 2.6 each parameter is treated separately and other parameters are constants. The

second step is to find the stationary point from the derivatives in Eq. 2.6, which means solving

the equation w.r.t. the parameter θk ∈ Θ:

∂ lnL(Θ̂|X)
∂θk

= 0 θ̂k ∈ Θ̂

or
∂L(Θ̂|X)
∂θ̂k

= 0 θ̂k ∈ Θ̂

(2.7)

For example, MLE for univariate Normal distribution in Fig. 2.3 is calculated with analytic

equations from Eq. 2.38 and 2.39.

2.1.4.2 Numeric type method - Gradient ascent method

The analytic method is not always available for all functions and so some approximate methods

must be used instead. An alternative for the analytic method is a gradient ascent which is based

on the fact that the gradient of a function L (x|Θ) with K parameters Θ = [θ1, . . . θK]2 gives

direction where the likelihood function L (Θ|X) grows the most in a particular position. The

gradient of the L (Θ|X) at Θ̂(i) is formulated as follows:

2The parameters must have some ordering.

Chapter 2. On Maximum likelihood estimation of some probability density functions. 21

∇Θ̂(i)L
(

Θ̂|X
)

=

∂L
(

Θ̂|X
)

∂θ̂1

(
θ̂

(i)
1

)
, . . . ,

∂L
(

Θ̂|X
)

∂θ̂K

(
θ̂

(i)
K

)

 (2.8)

Suppose some initial guess of the parameters Θ̂(0). The gradient∇Θ̂(0)L
(

Θ̂|X
)

points to position

where the likelihood shall be higher3 than for the parameters Θ̂(0). By iterative repeats of the

previously stated formulates the gradient ascent method as follows:

Θ̂(i+1) = Θ̂(i) + α∇Θ̂(i)L
(

Θ̂|X
)

(2.9)

Where the α is step length of the gradient.

2.1.4.3 Numeric type method - Newton-Raphson method

The Newton-Raphson (NR) method is based on an approximation with Taylor series in quadratic

form [17]. The quadratic form has one unique stationary point which can be found analytically

thus the NR method is fast for quadratic and near quadratic function optimization. The only

requirement of the method is to have defined first and second derivatives of the optimized func-

tion. Likelihood functions are typically quadratic and, so the NR is relatively fast alternative

if no solution for the analytic method exists. The NR is an iterative method; it works with

some initial guess of parameters Θ̂(0) which are iteratively replaced by newly estimated (usually)

better parameters, where the newly estimated parameters adapts according to the stationary

point of the current Taylor expansion. At the beginning, the likelihood function is approximated

in a single point Θ̂(0) (initial guess) as follows:

L
(

Θ̂|X
)
≈ L̃Θ̂(0)

(
Θ̂|X

)

= L
(

Θ̂(0)|X
)(

Θ̂− Θ̂(0)
)T

gΘ̂(0)

+ 1
2

(
Θ̂− Θ̂(0)

)T
HΘ̂(0)

(
Θ̂− Θ̂(0)

)
(2.10)

Where gΘ̂(0) ≡ ∇Θ̂(0)L
(

Θ̂|X
)

is a gradient vector in a point Θ̂(0) and HΘ̂(0) ≡ ∇2
Θ̂(0)
L
(

Θ̂|X
)

is

a Hessian (matrix of second derivatives) in the same point. Both are coefficients of a quadratic

function for which stationary point can be found analytically. The principle is to find stationary

point of the quadratic approximation L̃Θ̂(0)

(
Θ̂|X

)
instead of the likelihood function. Firstly the

gradient of the L̃Θ̂(0)

(
Θ̂|X

)
by the chosen parameters must be taken:

∇L̃Θ̂(0)

(
Θ̂|X

)
= ∇Θ̂(0)L

(
Θ̂|X

)
+
(

Θ̂− Θ̂(0)
)T
∇2

Θ̂(0)
L
(

Θ̂|X
)

(2.11)

By setting the result in Eq. 2.11 as zero and solving it, the equation gives the stationary point

of the approximation L̃Θ̂(0)

(
Θ̂|X

)
which is a linear function formulated as follows [17]:

3This is in the ideal case, if the length of the gradient update is too large then it may jump over the better
likelihood to worse values.

Chapter 2. On Maximum likelihood estimation of some probability density functions. 22

Θ̂ = Θ̂(0) −
(
gΘ̂(0)

)T (
HΘ̂(0)

)−1
(2.12)

The equation can be reformulated as iterative procedure:

Θ̂(i+1) = Θ̂(i) −
(
gΘ̂(i)

)T (
HΘ̂(i)

)−1
(2.13)

If the likelihood function is quadratic the approximation is exact and NR method converges

to the stationary point in one iteration (see Fig. 2.4, left). If the function is concave then it

is guaranteed that the NR method converges to the stationary point (see Fig. 2.4, right). If

the function is convex for some Θ then the NR method does not always converge to the local

maximum. The Eq. 2.13 formulates the NR method as iterative procedure for the likelihood

function maximization (the same can be applied for log-likelihood).

−5 −4 −3 −2 −1 0 1 2 3 4 5
−25

−20

−15

−10

−5

0

Θ(1)

Θ(2)
Stationary point of −x2 with NR method

x

f(
x)

Function f(x)=−x2

NR steps

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
8

9

10

11

12

13

14

Θ(1)

Θ(2) Θ(3)

Stationary point of x + exp(x(1/2)/2)*(cos(x) + 1) with NR method

x

f(
x)

Function f(x)=x + exp(x(1/2)/2)*(cos(x) + 1)

NR steps

Figure 2.4: Newton-Raphson method illustration. Left: quadratic function maximization
with the NR. The NR finds stationary point in one iteration. Right: If the function is not

quadratic (x+ exp
(√

x
2

)
(cosx+ 1)), the method still converges to a stationary point, but in

more than one iteration.

All functions shown in this chapter are members of the exponential family for which is guaranteed

concavity thus the NR method converges.

2.1.4.4 Summary of MLE

The analytic method gives the most accurate estimation w.r.t. likelihood or log-likelihood, but

it is not always necessary. Sometimes some regularization is needed. The regularization problem

is a general issue and well known drawback of the MLE. The easiest method is to perform some

sampling of the observations to have smaller subset of original observations.

Good alternatives are the gradient ascent and NR methods which tries to find MLE in iterative

way. The NR method is always convergent for the functions from the exponential family. Only

issue of both methods is that they do not consider inadmissible parameters.

Chapter 2. On Maximum likelihood estimation of some probability density functions. 23

2.2 Uni-variate distribution functions

2.2.1 Uni-variate Exponential distribution

The Exponential distribution plays an important role in life testing, reliability [18].

2.2.1.1 Probability density function

The PDF of Exponential distribution denoted as Exp (x|λ) is defined as follows [19]:

Exp (x|λ) =

λe−λx, x ≥ 0,

0, x < 0.
(2.14)

Where λ is referred as a rate parameter. The smaller is the λ, the steeper is function Exp (x|λ).

The Exponential PDF for various λ setting is shown in Fig. 2.5.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

x

E
xp

(x
|λ

)

Exp(x|λ)

Exp(x|λ=0.1)
Exp(x|λ=1)
Exp(x|λ=5)

Figure 2.5: Values of Exp (x|λ) for various λ parameter.

2.2.1.2 L (x|Θ), lnL (x|Θ) and MLE

Suppose that there is a set of N independently identically distributed (i.i.d.) observations x =

{xn}Nn=1 drawn from the Exponential distribution x ∼ Exp (x|λ). The likelihood function for the

set of observations x is the product of the evaluations of the PDF Exp (x|λ) for each observation

xn ∈ x:

L (λ|x) =
∏N
n=1 Exp (xn|λ) =

∏N
n=1 λ exp (−λxn)

= λN exp
(
−λ∑N

n=1 xn

) (2.15)

The log-likelihood lnL (λ|x) of the Exponential distribution is defined as follows:

lnL (λ|x) =
∑N
n=1 ln Exp (xn|λ)

= N lnλ− λ∑N
n=1 xn

(2.16)

Chapter 2. On Maximum likelihood estimation of some probability density functions. 24

Taking partial derivative of Eq. 2.16 by the λ gives an analytic MLE which is defined as follows:

λ̂MLE =
N

∑N
n=1 xn

(2.17)

2.2.2 Uni-variate Gamma distribution

The univariate Gamma distribution denoted as Gam (x|k, θ) can be used in a wide range of

disciplines where variances of data are estimated. It gives rise to areas like daily rainfall amounts

[20] where the Gamma distribution is successfully applied. Various combinations of distribution

parameters can rapidly change the shape of the PDF, so there are many degrees of freedom in

combination of parameters to fit desired function. The Gamma distribution is conjugate prior

to inverse of variance of the univariate Normal distribution thus it can be applied in Bayesian

inference [13].

2.2.2.1 Probability density function

The PDF of the Gamma distribution is defined as follows [13]:

Gam (x|k, θ) =
1

θkΓ (k)
xk−1 exp

(
−x
θ

)
(2.18)

Where k is referred to as a shape parameter and θ as a scale parameter. The θ and k completely

determines the PDF. The Fig. 2.6 depicts how the Gam (x|k, θ) differs for various parameter

setting of the θ and k.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Gam(x|θ=0.5,k=2)

Gam(x|θ=1,k=2)

Gam(x|θ=5,k=2

Gamma PDF for fixed k=2 and θ values θ=0.5,1,5

Gam(x|θ=0.5,k=2)
Gam(x|θ=1,k=2)
Gam(x|θ=1,k=2)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gam(x|θ=2,k=0.1)

Gam(x|θ=2,k=1)

Gam(x|θ=2,k=5)

Gamma PDF for fixed θ=2 and k values k=0.1,1,5

Gam(x|θ=2,k=0.1)
Gam(x|θ=2,k=1)
Gam(x|θ=2,k=5)

Figure 2.6: Left: Values of the Gam (x|k, θ) for fixed k = 2 and variable θ in range x ∈ (0, 20);
Right: Values of Gam (x|k, θ) for fixed θ = 2 and variable k in range x ∈ (0, 20)

2.2.2.2 L (Θ|x), lnL (Θ|x) and MLE

Suppose that there is a set ofN i.i.d. observations x = {xn, }Nn=1 drawn from Gamma distribution

x ∼ Gam (x|k, θ). The likelihood function for the set of observations x is a product of the

Chapter 2. On Maximum likelihood estimation of some probability density functions. 25

evaluations of the PDF Gam (x|k, θ) for each observation xn ∈ x:

L (k, θ|x) =
∏N
n=1 Gam (xn|k, θ)

=
∏N
n=1

1
θkΓ(k)

xk−1
n exp

(
−xn

θ

)

= 1
θkNΓ(k)N

∏N
n=1 x

k−1
n exp

(
−xn

θ

)
(2.19)

Corresponding log-likelihood function lnL (k, θ|x) is defined as:

lnL (k, θ|x) = (k − 1)

N∑

n=1

lnxn −
1

θ

N∑

n=1

xn −N ln Γ (k)−Nk ln θ (2.20)

To obtain MLE, derivatives of the log-likelihood of the Eq. 2.20 have to be taken by the param-

eters θ and k:
∂ lnL(k,θ|x)

∂θ = −Nkθ + 1
θ2

∑N
n=1 xn

∂ lnL(k,θ|x)
∂k = −N ln θ −N ∂ ln Γ (k)

∂k︸ ︷︷ ︸
ψ(x)

+
∑N
n=1 lnxn (2.21)

The first equation for the θ is solvable analytically thus the MLE for Θ̂MLE is determined by

the following formula:

θ̂MLE =
1

Nk

N∑

n=1

xn (2.22)

A problem arises with the MLE for the k. There is no closed form for ∂ ln Γ(k)
∂k , but this derivative

is known as Digamma function ψ (k) which has no closed form. The ψ (x) is available in the

most of the mathematical packages, alternatively numerical approximation can be used. By

substituting θMLE into L
(
θMLE , k|x

)
the following equation is obtained [21]:

lnL
(
k, θ̂MLE |x

)
= N (k − 1)

N∑

n=1

lnxn −N ln Γ (k)−Nk ln

N∑

n=1

xn +Nk ln k −Nk (2.23)

The Eq. 2.23 has no closed form but the MLE can be found iteratively by the gradient ascent

or more effectively with the NR method. For the NR method the first and the second partial

derivatives by the optimized parameter k must be calculated. The corresponding derivatives by

the k in Eq. 2.23 are following:

∂ lnL(θMLE ,k|x)
∂k = −N ln θMLE −Nψ(0) (k) +

∑N
n=1 lnxn

∂ ln2 L(θMLE ,k|x)
∂k2 = −Nψ(1) (k)

(2.24)

The derivatives in Eq. 2.24 give all the necessary information to substitute unknowns in the

NR iterative equation Eq. 2.13 to formulate MLE with NR method. In the most cases the NR

method is faster than the gradient ascent for the MLE, so the gradient ascent is shown only

for completeness (and also it is intermediate step of NR method). The gradient ascent of the

Chapter 2. On Maximum likelihood estimation of some probability density functions. 26

log-likelihood function Eq. 2.20:

k̂(i+1) = k̂(i) + α
∂ lnL(θ̂MLE ,k̂(i)|x)

∂k̂(i)

= k̂(i) +
(
−N ln θMLE −Nψ (k) +

∑N
n=1 lnxn

) (2.25)

The faster method for maximizing log-likelihood Eq. 2.20 is the NR method, which can be

formulated for the parameter k by substituting the results from Eq. 2.24 into Eq. 2.13 as follows:

k̂(i+1) = k̂(i) − ∂
k̂(i) lnL(θ̂MLE ,k̂(i)|x)
∂2

k̂(i)
lnL(θ̂MLE ,k̂(i)|x)

= k̂(i) − −N ln θMLE−Nψ(0)(k)+
∑N

n=1 ln xn

−Nψ(1)(k)

(2.26)

Example of MLE solution with NR method formulated in Eq. 2.26 for 1000 random samples

drawn from x ∼ Gam (x|k = 2, θ = 3) is shown in Fig. 2.7.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

True distribution Gam(x|k=3,θ=0.5)
Estimate Gam(x|k=3.3841,θ=0.47465)

Figure 2.7: MLE of Gamma PDF estimated by the NR method with 1000 observations x.

2.3 Multivariate distributions

2.3.1 Von Mises-Fisher distribution

The Von Mises-Fisher denoted as MF (x|µ, κ) is PDF that describes the distribution of obser-

vations that lie on a sphere. The spherical constraint of observations means that all values x are

equidistant from origin with norm 1 (∀x : ‖x‖2 = 1). MF is practically applicable in domains

where the equidistant coordinates are needed (e.g. characteristics of the Earth), where observa-

tions are periodic or if only an angle is significant (distance from the origin can be ignored just

by equidistant constraint).

Chapter 2. On Maximum likelihood estimation of some probability density functions. 27

2.3.1.1 Probability density function

The PDF of MF distribution in D dimensions is defined as follows:

MF (x|µ, κ) = cD (κ) exp
(
κµTx

)
∀x : ‖x‖2 = 1 (2.27)

Where µ is the mean direction parameter for which the same property of unit norm as for

observations must hold and κ is the concentration parameter which characterizes how strongly

the unit vectors are drawn in a particular direction µ. Larger κ implies higher density of the

region in direction of the mean µ. The function cD (κ) is normalizing constant defined as follows:

[22]:

cD (κ) =
κ

D
2 −1

(2π)
D
2 ID

2 −1 (κ)
(2.28)

The ID
2 −1 (κ) is modified Bessel function of the first kind with order D

2 −1. The modified Bessel

function has no analytic form. For D = 3 the c3 (κ) can be formulated [23] in more convenient

form as follows:

c3 (κ) =
κ

sinhκ
(2.29)

The Fig. 2.8 shows an example of observations drawn from MF in three dimensions.

−0.5

0

0.5

−0.5

0

0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Uniformly distributed with norm ||X||=1

MF(−0.68041 0.27217 0.68041,100)

MF(0.57735 −0.57735 0.57735,20)

Figure 2.8: Blue points are observations uniformly distributed in unit sphere. The red ones
are points drawn from MF with µ = [−0.6804, 0.2722, 0.6804] and κ = 100 and green points

are drawn from MF with µ = [0.5774,−0.5774, 0.5774] and κ = 20.

2.3.1.2 L (Θ|X), lnL (Θ|X) and MLE

Suppose that there is a set of N i.i.d. observations X = {xn}Nn=1 drawn from the von Mises-

Fisher distribution x ∼ MF (x|µ, κ). The likelihood function for the set of observations X is a

product of the evaluations of the PDF MF (x|µ, κ) for each observation xn ∈ X:

L (µ, κ|X) =
∏N
n=1MF (xn|µ, κ)

=
∏N
n=1 cD (κ) exp

(
κµTxn

)

= cD (κ)
N

exp
(
NκµT r

)
(2.30)

Chapter 2. On Maximum likelihood estimation of some probability density functions. 28

Where r =
∑N
n=1 xn. Corresponding log-likelihood function lnL (µ, κ|x) is formulated as follows:

lnL (µ, κ|X) =
∑N
n=1 lnMF (xn|µ, κ)

=
∑N
n=1

(
ln cD (κ) + κµTxn

)

= N ln cD (κ) +NκµT r

(2.31)

By taking partial derivative of Eq. 2.31 by the µ the analytic MLE for the µ̂MLE is obtained

[22]:

µ̂MLE =
r

‖r‖ (2.32)

For the parameter κ the MLE is more complicated. The κ occurs in the modified Bessel function

as a parameter which requires some advanced analysis. The problem is resolved in [22] where

the κ̂MLE is formulated as follows:

κ̂MLE =
Dr − r3

1− r2 (2.33)

2.3.2 Multivariate Normal distribution

Multivariate Normal distribution denoted by N (x|µ,Σ) is the most commonly used PDF in

density estimation. The N (x|µ,Σ) occurs quite often in statistics thanks to its symmetric bell-

shape. There is a strong relation with nature, in other words, the events that occur in nature are

usually normally distributed. In mathematics N (x|µ,Σ) is related to the central limit theorem

that estimates behaviour of an arithmetic mean which is normally distributed for the i.i.d. for a

large number of observations.

The parameter µ can be interpreted as a position where the probability is highest thus it can be

interpreted as a significant information about observations modelled by N (x|µ,Σ). The Σ says

how the model varies from the mean. The Σ values can be interpreted as the measurement of

how much the observations are distant from µ, in other words how much are the observations

X consistent with µ in a particular direction. The Σ also specifies the direction of the variances

which can be obtained from Σ by eigendecomposition. The eigenvectors with the highest eigen-

values are directions with the highest variance (the Fig. 2.9 depicts that the blue eigenvector

with highest eigenvalue points to the direction with the highest variance).

2.3.2.1 Probability density function

The PDF of multivariate Normal distribution in D dimensions is defined as follows:

N (x|µ,Σ) =
1√

(2π)
D

det Σ
exp

(
−1

2
(x− µ)

T
Σ−1 (x− µ)

)
(2.34)

Where the µ = [µ1, . . . µD]
T

is a parameter called mean. The mean vector determines position

of mode of the distribution and the Σ ∈ RD,D is a symmetric positive definite covariance matrix

that determines size and orientation of the Gaussian.

Chapter 2. On Maximum likelihood estimation of some probability density functions. 29

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

1.7929

3.2071

x
1

x 2

Second eignvector with eigenvalue
First eignvector with eigenvalue

−5

0

5

−5

0

5
0

0.02

0.04

0.06

0.08

3.2071

x
1

1.7929

x
2

N
([

x 1,x
2]|µ

,C
)

Second eignvector with eigenvalue
First eignvector with eigenvalue

Figure 2.9: Multivariate Normal PDF with parameter setting µ = [0, 0]T and Σ =[[
2, 1

2

]
;
[

1
2
, 3
]]

. The eigenvectors are v1 = [0.38270.9239]T ,v2 = [−0.9239, 0.3827]T , and
their corresponding eigenvalues are d1 = 3.2071, d2 = 1.7929.

2.3.2.2 L (Θ|X), lnL (Θ|X) and MLE

Suppose that there is a set of N i.i.d. observations X = {x1}Nn=1 drawn from the multivariate

Normal distribution x ∼ N (x|µ,Σ). The likelihood function for the set of observations X is a

product of the evaluations of the PDF N (x|µ,Σ) for each observation xn ∈ X:

L (µ,Σ|X) =
∏N
n=1N (xn|µ,Σ)

= 1(√
(2π)D det Σ

)N exp
(
− 1

2

∑N
n=1 (xn − µ)

T
Σ−1 (xn − µ)

)
(2.35)

Corresponding log-likelihood function lnL (µ,Σ|X) based on the likelihood in Eq. 2.35 is defined

as follows:

lnL (µ,Σ|X) =
∑N
n=1 lnN (xn|µ,Σ)

= −ND2 ln (2π) + N
2 ln det Σ− 1

2

∑N
n=1 (x− µ)

T
Σ−1 (x− µ)

(2.36)

The MLE solution for N (x|µ,Σ) is obtained by taking partial derivative of lnL (µ,Σ|X) by the

parameters µ and Σ. Following equations are the derivatives of the the lnL (Θ|X) [24]:

∂ lnL(µ,Σ|X)
∂µ = Σ̂−1

∑N
n=1 (xn − µ̂)

∂ lnL(µ,Σ|X)
∂Σ =

∑N
n=1

Σ−1 + Σ−1xnxTnΣ−1−1

2

(
Σ−1xnxTnΣ−1 − Σ−1

)
· I

︸ ︷︷ ︸
diagonal

(2.37)

The symbol · stands for element-wise multiplication (also referred as Hadamard product) and I

is a D − by −D identity matrix. The MLE for µ̂MLE can be obtained by multiplying Eq. 2.37

with Σ̂ and rearranging terms. The analytic MLE of the parameter µ̂MLE is defined as follows:

µ̂MLE =
1

N

N∑

n=1

xn (2.38)

Chapter 2. On Maximum likelihood estimation of some probability density functions. 30

Some advanced algebra operations are required to obtain Σ̂MLE . The analytic MLE for the

parameter Σ̂MLE is defined as follows [13]:

Σ̂MLE =
1

N

N∑

n=1

(xn − µ) (xn − µ)
T

(2.39)

2.3.3 Multivariate Log-normal distribution

The symmetry of the Normal distribution is not always desired property and the skewness of

the distribution with similar properties as N (x|µ,Σ) is useful. The Log-normal distribution

denoted as LN (x|µ,Σ) is the PDF whose logarithm is the Normal distribution. The logarithm

property changes the skewness of the distribution from N (x|µ,Σ) and the resulting distribution

is asymmetric, which is so called long tailed (see difference Fig. 2.10).

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

x

pd
f(

x|
Θ

)

Lognormal and normal distribution for the same paramters

LN(x|µ=0,Σ=0.5)

N(x|µ=0,Σ=0.5)

LN(x|µ,Σ)

N(x|µ,Σ)

Figure 2.10: The Log-Normal and Normal distributions with the same parameters µ = 0,Σ =
0.5.

2.3.3.1 Probability density function

The PDF of multivariate Log-normal distribution LN (x|µ,Σ) in D dimensions is defined as

follows:

LN (x|µ,Σ) =
1

(2π det Σ)
D
2
∏N
n=1 xi

exp

(
1

2
(ln x− µ)

T
Σ−1 (ln x− µ)

)
(2.40)

Due to the logarithm of random vector the admissible vectors are only positive values. The

parameters in Eq. 2.40 have the same names as in multivariate Normal distribution, but different

meaning which is caused by the logarithm property. The µ is not in the mode of the PDF

and the Σ has not the same meaning as in case of the Normal distribution. Skewness of the

LN (x|µ,Σ) causes that the eigenvectors does not reflect the directions of variances as in case of

the N (x|µ,Σ).

2.3.3.2 L (Θ|x), lnL (Θ|x) and MLE

Suppose that there is a set of N i.i.d. observations X = {xn}Nn=1 drawn from the multivariate

Log-normal distribution x ∼ LN (x|µ,Σ). The likelihood function for the set of observations X

is the product of the evaluations of the PDF LN (x|µ,Σ) for each observation xn ∈ X:

L (µ,Σ|X) =
∏N
n=1 LN (x|µ,Σ) =

=
∏N
n=1

1

(2π det Σ)
D
2
∏D

d=1 xd,n

exp
(

1
2 (ln xn − µ)

T
Σ−1 (ln xn − µ)

)

= 1

(2π det Σ)
ND

2

∏N
n=1

1∏D
d=1 xd,n

exp
(

1
2 (ln xn − µ)

T
Σ−1 (ln xn − µ)

) (2.41)

Chapter 2. On Maximum likelihood estimation of some probability density functions. 31

5 10 15 20

2

4

6

8

10

12

14

16

18

20

x
1

x 2

0

5

10

15

20

0

5

10

15

20

0

1

2

3

x 10−3

x
1x

2

lo
g

N
([

x 1,x
2]|µ

,C
)

Figure 2.11: Probability density function of multivariate Log-normal distribution with µ =
[3, 3]T and

[[
1, 1

2

]
;
[

1
2
, 2
]]

.

Corresponding log-likelihood function lnL (µ,Σ|X) based on the likelihood Eq. 2.41 is defined

as follows:

lnL (Θ|X) =
∑N
n=1 lnLN (x|µ,Σ) =

= −ND2 ln (2π det Σ)−
N∑

n=1

D∑

d=1

lnxd,n

︸ ︷︷ ︸
1stdifference

+

+
∑N
n=1

1
2

 ln xn︸ ︷︷ ︸

2nddifference

− µ

T

Σ−1

 ln xn︸ ︷︷ ︸

2nddifference

− µ

(2.42)

To obtain the MLE solution for the multivariate Log-normal distribution the results from MLE of

the N (x|µ,Σ) can be reused with a substitution. The log-likelihood functions Eq. 2.36 and 2.42

differ in the sum of random variable ln xn (emphasized in Eq. 2.42 as the 1st difference) and

logarithm of the random variable x in the exponential function (emphasized in Eq. 2.42 as the

2nd difference). The first difference is ruled out by taking the derivative by the parameter, thus

the difference can be ignored. The second difference can be resolved by substitution z = ln x,

which gives exactly the same lnL (µ,Σ|X) as for N (x|µ,Σ). The MLE for the LN (x|µ,Σ) after

back-substitution of the z is formulated as follows:

µ̂MLE = 1
N

∑N
n=1 ln xn

Σ̂MLE = 1
N

∑N
n=1 (ln xn − µ)

T
(ln xn − µ)

(2.43)

2.3.4 Wishart distribution

The Wishart distribution denoted byW (S|N,Σ) is the multidimensional version of the chi-square

distribution. The Wishart distribution characterizes the covariance matrix of the observations

drawn from N (x|µ,Σ) from a scattering matrix [25].

The scattering matrix is an important statistical characteristics which describes how a set of

data varies. Computation of the scattering matrix of a set of data X = {xn}Nn=1 is defined as

Chapter 2. On Maximum likelihood estimation of some probability density functions. 32

follows:

S =

N∑

n=1

(x− µ) (x− µ)
T

(2.44)

Where the µ stands for arithmetic mean of the data.

Theorem 2.4. If Σ is non-negative definite D − by −D matrix where D > 2 is dimension and

N ≥ D degrees of freedom of Wishart distribution W (S|N,Σ), then for scattering matrix holds

following relation:

S ∼ W (S|N,Σ) (2.45)

Where the values {x1 . . .xN}Nn=1 are observations drawn from:

xn ∼ N (xn|0,Σ) (2.46)

The Theorem 2.4 can be used to measure scattering matrix similarity in a probabilistic way.

With framework shown in the Chapter 3 the scattering matrices can be classified by a mixture

of Wishart distributions and the Theorem 2.4 is used in the Chapter 6 where the mixture of the

Wishart PDFs are used to classify regions of images characterized by the scattering matrices

calculated from feature vectors. Generally speaking, the Wishart distribution is useful in cases

where the set of observations is drawn from N (x|0,Σ) and shares some properties which are

reflected in scattering matrices.

2.3.4.1 Probability density functions

The PDF of Wishart distribution is defined as follows [13]:

W (S|N,Σ) =
(det S)

N−D−1
2 exp

(
1
2Tr

(
Σ−1S

))

2
ND

2 π
D(D−1)

4 (det Σ)
N
2
∏D
j=1 Γ

(
1
2 (N − j + 1)

) (2.47)

Where the parameter Σ is called scale matrix that specifies the covariance matrix Σ of the

original observations x ∼ N (x|0,Σ) from which is the scattering matrix S calculated. The N is

called degrees of freedom which specify how many observations x are used to calculate scattering

matrix S.

The visualisation of theW (S|N,Σ) for different parameter setting is not that straightforward as

in other distributions, because the random variable is a matrix with at least 2− by− 2 elements.

Some visualisation methods, especially for matrix distributions are described in paper [26].

The Wishart PDF as it is given in Eq. 2.47 has a problem with MLE because the N occurs in

the Γ (x) function. Fortunately, there is a Wishart distribution which does not require the N .

The distribution is called simplified Wishart distribution. The simplified Wishart distribution is

formulated as follows [6]:

W (S|Σ) = (π)
−3

(det Σ)
−1

exp
(
−tr

(
SΣ−1

))
(2.48)

Chapter 2. On Maximum likelihood estimation of some probability density functions. 33

Since this moment the Wishart distribution is supposed to be formulated in simplified form in

Eq. 2.48.

2.3.4.2 L (Θ|S), lnL (Θ|S) and MLE

Suppose that there are N i.i.d. scattering matrices S = {S1, . . .SN} calculated from the set of ar-

bitrary number of observations drawn from the multivariate Normal distribution x ∼ N (x|0,Σ).

The likelihood function for the set of observations S is the product of the evaluations of the PDFs

W (Sn|Σ) for each scattering matrix Sn from a set of scattering matrices S:

L (Σ|S) =
∏N
n=1W (Sn|Σ)

=
∏N
n=1 (π)

−3
(det Σ)

−1
exp

(
−tr

(
SnΣ−1

))

= (π)
−3N

(det Σ)
−N

exp
(
−∑N

n=1 tr
(
SnΣ−1

)) (2.49)

Corresponding log-likelihood function of the Eq. 2.49 is

lnL (Σ|S) =
∑N
n=1 lnW (Sn|Σ)

= −3N lnπ −N ln det Σ−∑N
n=1 tr

(
SnΣ−1

) (2.50)

The MLE for Σ̂MLE has an analytic solution that is arithmetic average of scattering matrices

[6]:

Σ̂MLE =

∑N
n=1 Sn
N

(2.51)

2.3.5 Dirichlet distribution

The Dirchlet distribution denoted as D (x|a) is a multivariate extension of beta distribution.

One application area where the Dirichlet has shown as useful is in modelling of the distribution

of words in the text documents [15] modelled by mixture of Dirichlet densities. The sum of

random vector x must be 1 thus the PDF forms D− 1 dimensional simplex (see Fig. 2.12). The

Dirichlet distribution is conjugate prior to multinomial distribution which is useful in Bayesian

inference.

2.3.5.1 Probability density function

The PDF of Dirichlet distribution is defined as follows [15]:

D (x|a) =
Γ
(∑D

d=1 ad

)

∏D
d=1 Γ (ad)

D∏

d=1

xad−1
d (2.52)

Where the parameter a is D dimensional column vector where all elements must be positive

and for all random vectors
∑D
d=1 xd = 1 must hold. The Dirichlet PDF with various parameter

settings is shown in Fig. 2.12.

Chapter 2. On Maximum likelihood estimation of some probability density functions. 34

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

x
2

D(x
1
,x

2
,x

3
|a=[1 1 1])

x
1

x 3

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

x
2

D(x
1
,x

2
,x

3
|a=[10 10 10])

x
1

x 3

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

x
2

D(x
1
,x

2
,x

3
|a=[2 5 15])

x
1

x 3

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

x
2

D(x
1
,x

2
,x

3
|a=[5 2 1])

x
1

x 3
Figure 2.12: The D (x|a) for different parameter a were: a = [1, 1, 1]T (left upper), a =

[10, 10, 10]T (right upper), a = [2, 5, 15]T (left bottom) and a = [5, 2, 1]T (right bottom).

2.3.5.2 L (Θ|X), lnL (Θ|X) and MLE

Suppose there is a set of N i.i.d. observations X = {xn}Nn=1 drawn from the Dirichlet distri-

bution x ∼ D (x|a). The likelihood function for the set of observations X is the product of the

evaluations of the PDF D (x|a) for each observation xn ∈ X

L (a|X) =
∏N
n=1D (xn|a)

=
∏N
n=1

Γ(
∑D

d=1 ad)∏D
d=1 Γ(ad)

∏D
d=1 x

ad−1
d

=

(
Γ(
∑D

d=1 ad)∏D
d=1 Γ(ad)

)N ∏N
n=1

∏D
d=1 x

ad−1
d,n

(2.53)

Corresponding log-likelihood function lnL (a|X) based on the likelihood Eq. 2.54

lnL (a|X) =
∑N
n=1 lnD (xn|a)

= N ln Γ
(∑D

d=1 ad

)
−N∑D

d=1 ln Γ (ad) +
∑N
n=1

∑D
d=1 (ad − 1) lnxd,n

(2.54)

The Γ (x) again prevents from obtaining the analytic solution for the MLE. The D (x|a) is a

member of the exponential family thus there is one unique MLE solution that can be found

iteratively by gradient or NR method. Taking partial derivative of the log-likelihood function

Eq. 2.54 by one of the parameters ad ∈ a gives relation for gradient ascent method:

∂

∂ad
lnL (a|X) = Nψ

(
D∑

d=1

ad

)
−Nψ (ad) +

N∑

n=1

lnxd,n (2.55)

Chapter 2. On Maximum likelihood estimation of some probability density functions. 35

The gradient from Eq. 2.55 can be used to find MLE solution iteratively and for each ad ∈ a

separately. The iterative equation for each ad is defined as follows:

â
(i+1)
d = â

(i)
d + α ∂

∂ad
lnL (Θk|X)

= â
(i)
d + α

(
Nψ

(∑D
d=1 â

(i)
d

)
−Nψ

(
â

(i)
d

)
+
∑N
n=1 lnxd,n

) (2.56)

Where the α is a constant that regulates gradient step length.

2.4 Exponential family distributions

All distribution functions shown so far are members of family of distribution functions called

exponential. The family of exponential PDFs has some important properties that can be derived

from general formulation of the PDF. The most important results that come from the exponential

family is stated in Theorem 2.6 which claims that all likelihood and log-likelihood functions are

uni-modal.

Definition 2.5. A distribution function is member of exponential family if the PDF can be

formulated as following exponential function [27]:

pEXP (x|Θ) = h (x) exp
(
ΘTT (x)−A (Θ)

)
(2.57)

Where T (x) is a vector function of sufficient statistics, A (Θ) is the coefficient that ensures that

sum/integral over PDF is one and h (x) is arbitrary function of variable x.

There are three the most important theorems that come from the exponential family. The first

and the second derivative (moments) and the MLE for Eq. 2.57. First and second results are not

important in context of our problems but third is crucial because it guarantees the uni-modality

of likelihood function.

First of all, the log-likelihood for a set of i.i.d observations X = {xn}Nn=1 drawn from the x ∼
pEXP (x|Θ) that is a member of exponential family. The log-likelihood of the set of observations

is defined as follows:

lnL (Θ|X) =

N∑

n=1

lnh (xn) + ΘTT (xn)−A (Θ) (2.58)

To obtain maxima of the log-likelihood function, gradient ∇Θ of the Eq. 2.58 is taken:

∇Θ lnL (Θ|X) = −N∇ΘA (Θ) +

N∑

n=1

T (xn) (2.59)

Rearrangement of the terms gives:

Chapter 2. On Maximum likelihood estimation of some probability density functions. 36

∇ΘA (Θ) =
1

N

N∑

n=1

T (xn) (2.60)

The Eq. 2.60 says that MLE solution depends only on terms T (x) which are called sufficient

statistics. The Eq. 2.60 gives general form for MLE of an arbitrary PDF from the exponential

family [27].

Theorem 2.6. In exponential families the log-likelihood function has at most one local maximum

in Θ̂MLE. This is then equal to the global maximum and determined by the unique solution to

the Eq. 2.60 w.r.t. Θ. [28]

The basis of proof of the Theorem 2.6 is hidden in the second gradient of the Eq. 2.60 which

guarantees that the function is strictly concave [28].

Chapter 3

Neural Modeling Fields and

Expectation maximization

algorithm

In this chapter, the Neural Modeling Fields (NMF) and Expectation Maximisation algorithm

(EM) are shown. The both find the MLE solution of a mixture of density functions mentioned

briefly in Chapter 2 in Eq. 2.4. The literature about the NMF [6, 29] does not strictly specify

whether the learning equations of the NMF are based on the EM or not; nevertheless the, both

approaches are equivalent which is later proved in this chapter. Moreover, the EM algorithm is

better developed from the theoretical perspective so the notion used is mostly based on the EM

algorithm.

In the first section, the EM algorithm is introduced, including derivation of the equations that

find the MLE for the densities introduced in Chapter 2. In the second section, the NMF are shown

with discussion about similarity measures [6] and proof of equivalence of the NMF and the EM.

The derived relation between the EM and MLE stated in Theorem 3.5 opened entire problem of

the density estimation as widely applicable approach. Further a Maximum Likelihood Artificial

Neural System (MLANS) is shown, which is particular realization of the NMF for multivariate

Normal distribution.

To avoid confusion, in Chapter 2, all PDFs are members of the exponential family thus their

likelihood function is uni-modal which is guaranteed by Theorem 2.6, but the theorem does not

guarantee the uni-modality of the likelihood functions for the mixtures of densities Eq. 3.1. Sim-

ple multi-modality is illustrated in Fig. 2.1 where mixture of two univariate Normal distributions

has two optima.

37

Chapter 3. Neural modeling fields and Expectation maximization algorithm 38

3.1 EM algorithm

The origin of the EM algorithm dates back to 1977 when the algorithm that finds MLE solution

for mixtures of densities function was published [10]. The proposed algorithm is an iterative

procedure of finding MLE of the parameters Θ of an underlying distribution p (x|Θ) that con-

verges local the maximum of the marginal a posteriori probability p (Θ|x) = p (x|Θ) p (Θ) [30].

The algorithm proceeds in two steps: E step that stands for expectation phase where a condi-

tional expectation in Eq. 3.4 is calculated and M that stands for maximization step where the

parameters Θ̂(i) are updated such that the conditional expectation Eq. 3.4 is maximal.

The mixture of densities is formulated as a sum of K PDFs weighted by coefficients π:

p (x|Θ) =

K∑

k=1

πkfk (x|Θk) (3.1)

The purpose of the algorithm is to estimate a set of parameters Θ = {π1 . . . πK ,Θ1, . . .ΘK} of

an underlining distribution of a mixture of densities formulated in Eq. 3.1.

The weighting parameters π1, . . . πK are general for all types of density functions and they are

called mixture coefficients. The πk can be interpreted as a prior πk ≡ (Θk) of a PDF in a mixture

of densities.

Definition 3.1. A conditional expectation w.r.t. a conditional distribution p (x|y) of a X for

given y is defined as follows [13]:

E [f (x) |y] =
∑

x∈Ωx

p (x|y) f (x) (3.2)

The EM algorithm in general formulation supposes the existence of unobserved data y = {yn}Nn=1

for each observed datum xn ∈ X = {xn}Nn=1. The observed and unobserved data are called

complete data {X,y} = {xn, yn}Nn=1. For the complete data the joint density p (x,y|Θ) function

is defined as follows [31]:

p (x, y|Θ) = p (y|x,Θ) p (x|Θ) (3.3)

The joint density function in Eq. 3.3 is used to construct complete log-likelihood lnL (Θ|X,y)

functions. The unobserved data y are not given, but their probabilities based on current param-

eter estimates are used instead thus the unobserved are treated as a random variable.

The principle of EM algorithm is to maximize expected value of the complete data log-likelihood

L (Θ|X,y) based on the complete data {X,y}. The computation is formulated as so called

Q-function (the conditional expectation of the complete log-likelihood) [31]:

Q
(

Θ̂(i+1), Θ̂(i)
)

= E
[
lnL

(
Θ̂(i+1)|X,y

)
|X, Θ̂(i)

]
(3.4)

Chapter 3. Neural modeling fields and Expectation maximization algorithm 39

The conditional expectation in Eq. 3.4 with help of Def. 3.1 can be expanded in following form

[31]:

E
[
lnL

(
Θ̂(i+1)|X,y

)
|X, Θ̂(i)

]
= Q

(
Θ̂(i+1), Θ̂(i)

)

=
∑

y∈Ωy︸︷︷︸
marginalization

p
(
y|X, Θ̂(i)

)
lnL

(
Θ̂(i+1)|X,y

)

︸ ︷︷ ︸
complete log-likelihood

(3.5)

The reason why the estimation of Θ̂ does not come out only from observed data is due to the

sum of densities inside the logarithm of incomplete log-likelihood lnL (Θ|X).

lnL
(

Θ̂|X
)

=

N∑

n=1

ln p
(
xn|Θ̂

)
=

N∑

n=1

ln

K∑

k=1

π̂kfk

(
xn|Θ̂k

)
(3.6)

The lnL
(

Θ̂|X
)

is useful as measure of quality of current estimate for the mixture, but useless

for estimation. Maximization of the lnL (Θ|X) does not give the general formula for varying K

as the Q-function does.

Suppose for a moment that it is known which of the distributions from mixture Eq. 3.1 drew the

datum xn. The distribution that drew is determined by unobserved data y = {yn}Nn=1 where

the value yn is equal to k if and only if the datum xn was drawn from k-th PDF in the mixture

of K densities. If yn-s was known the calculation would be straightforward because each PDF k

in the mixture Eq. 3.1 would compute separate MLE as it is described in Chapter 2.

The algorithm works iteratively with some initial guess of parameters Θ̂(0). The guess Θ̂(0)

together with observed data X via Bayes formula can give current probability of the assignment

yn = k. The formula Eq. 3.3 gives answer to p (y|x,Θ). The probability of unobserved variable

yn can be interpreted as the degree of membership of the xn in a density function k in mixture:

p
(
yn = k|xn, Θ̂(i)

)
=
π̂

(i)
k fk

(
xn|Θ̂(i)

k

)

p
(
xn|Θ̂(i)

) =
π̂

(i)
k fk

(
xn|Θ̂(i)

k

)

∑K
j=1 π̂

(i)
j fj

(
xn|Θ̂(i)

j

) (3.7)

Because observed data are supposed to be drawn independently so the probability of complete

data p
(
y|X, Θ̂

)
is calculated as a set of independent events as follows:

p
(
y|X, Θ̂

)
=

N∏

n=1

p
(
yn|xn, Θ̂

)
(3.8)

The log-likelihood of the complete data {X,y} is defined as follows:

lnL (Θ|X,y) =

N∑

n=1

ln p (xn, yn|Θ) =

N∑

n=1

lnπynfyn (xn|Θyn) (3.9)

Chapter 3. Neural modeling fields and Expectation maximization algorithm 40

Plugging Eq. 3.8 and 3.9 into Eq. 3.5 formulates Q-function that is later used for obtaining

general equations for the E and M steps of the EM algorithm [31]:

Q
(

Θ̂(i+1), Θ̂(i)
)

=
∑

y∈Ωy
lnL

(
Θ̂(i+1)|X,y

)
p
(
y|X, Θ̂(i)

)

=
∑

y∈Ωy

∑N
n=1 ln π̂

(i+1)
yn fyn

(
xn|Θ̂(i+1)

yn

)∏N
n=1 p

(
yn|xn, Θ̂(i)

)

=
∑K
y1=1 · · ·

∑K
yN=1

∑N
n=1 ln π̂

(i+1)
yn . . .

. . . fyn

(
xn|Θ̂(i+1)

yn

)∏N
n=1 p

(
yn|xn, Θ̂(i)

)

=
∑K
y1=1 · · ·

∑K
yN=1

∑N
n=1

∑K
j=1 . . .

. . . δj,yn ln π̂
(i+1)
j fj

(
xn|Θ̂(i+1)

j

)∏N
n=1 p

(
yn|xnΘ̂(i)

)

=
∑K
j=1

∑N
n=1 ln π̂

(i+1)
j fj

(
xn|Θ̂(i+1)

j

)
. . .

. . .

K∑

y1=1

· · ·
K∑

yN=1

δj,yn

N∏

m=1

p
(
ym|xm, Θ̂(i)

)

︸ ︷︷ ︸
p(yn=j|xn,Θ̂(i))

=
∑K
j=1

∑N
n=1 ln

(
π̂

(i+1)
j fj

(
xn|Θ̂(i+1)

j

)
p
(
yn = j|xn, Θ̂(i)

))

=
∑K
j=1

∑N
n=1 ln π̂

(i+1)
j p

(
yn = j|xn, Θ̂(i)

)

+
∑K
j=1

∑N
n=1 ln fj

(
xn|Θ̂(i+1)

j

)
p
(
yn = j|xn, Θ̂(i)

)

(3.10)

The probabilities p
(
yn = j|xn, Θ̂(i)

)
and p

(
yn|xn, Θ̂(i)

)
may seem a bit confusing. Notion of

p
(
yn = k|x, Θ̂(i)

)
is used to emphasize particular assignment of the value k.

In the fourth step of Eq. 3.10 marginalization is substituted by p
(
yn = k|xn,Θ(i)

)
since the

∑K
k=1 p

(
yn = k|xn,Θ(i)

)
= 1 holds the underscored part is simplified into:

K∑

y1=1

· · ·
K∑

yN=1

δj,yn

N∏

m=1

p
(
ym|xm,Θ(i)

)

=

K∑

y1=1

· · ·
K∑

yn−1=1

K∑

yn+1=1

· · ·
K∑

yN=1

∏

m=1,m 6=j
p
(
ym|xm,Θ(i)

)

 p

(
yn = j|xm,Θ(i)

)

=

N∏

m=1,m 6=n

(∑K
ym=1 p

(
ym|xm,Θ(i)

))
p
(
yn = j|xmΘ(i)

)

= p
(
yn = j|xn,Θ(i)

)

(3.11)

From algorithmic perspective the steps of the EM are divided into two major parts: E where

the Q-function Eq. 3.10 is calculated based on the current Eq. 3.7 and observed data X, and

maximization M where the new estimate Θ̂(i+1) is calculated from maximization of the Q-

function in Eq. 3.10. The pseudo-code in Alg. 1 summarizes entire procedure.

The stop criterion in Alg. 1 is widely discussed problem that has no universally the best option.

Usually only criterion is that incomplete log-likelihood lnL
(

Θ̂(i)|X
)

shall not decrease. If the

EM procedure converged to some maxima the incomplete log-likelihood would not change which

seems as good stop criterion. The mostly used stop criteria are following:

Chapter 3. Neural modeling fields and Expectation maximization algorithm 41

1. Bounded number of iterations (i > MAX ITER).

2. Incomplete log-likelihood reached desired level (lnL
(
Θ(i)|X

)
> desired).

3. Incomplete log-likelihood does not change in last few iterations:
∑∆
j=1

∣∣lnL
(
Θ(i−∆+j)|X

)
− lnL

(
Θ(i−∆+j−1)|X

)∣∣ ≤ τ

Algorithm 1: EM algorithm in generalized form.

input : Set of observed values X = {xn}Nn=1, list of K PDFs to be estimated.
output: Set of paramters Θ = {π1, . . . πK ,Θ1 . . .ΘK}
Θ(0) ← guess initial parameters;
i← 1;
while stop criterion do

for k ← 1 to K do
// E step, calculate conditional expectation

Q
(

Θ̂(i+1), Θ̂(i)
)

; // (Eq. 3.10)

// M step.

Θ̂
(i+1)
k ← arg max

Θ̂(i+1)

Q
(

Θ̂(i+1), Θ̂(i)
)

; // maximization of the (Eq. 3.10)

π̂
(i+1)
k ← 1

N

∑N
n=1 p

(
yn = k|x,Θ(i)

)
; // (Eq. 3.12)

The Q-function expression in last term of the Eq. 3.10 gives more convenient form of how to

maximize the parameters Θk of each PDF. The Q-function is general framework of solving the

MLE for mixture of densities.

The EM increases log-likelihood in each iteration by approaching to local maximum of the log-

likelihood function which is performed by finding maximum of the Q-function for the current

parameters Θ̂(i). The maximization of Q-function will never decrease the likelihood function and

so the EM always converges to a certain stationary point [30].

The Q-function is formulated in way which allows to treat separately πk-s and parameters of the

PDFs fk-s and thus the M step for the mixture coefficients π can be found independently on

functions fk. Taking partial derivative of the Eq. 3.10 by arbitrary mixture coefficient π̂
(i)
k , setting

the resulting derivative as zero with constraint
∑N
k=1 πk = 1 gives the equation that determines

M step for the πk-s for independently of PDF. The M step for the π̂
(i+1)
k is formulated as follows

[31]:

∂
∂Q
(

Θ̂(i+1), Θ̂(i)
)

= 0

∂

∂π̂
(i)
j

(∑K
k=1

∑N
n=1 ln π̂

(i)
k p

(
yk = j|xj , Θ̂(i)

)
+ λ

(∑K
k=1 π̂

(i)
k − 1

))
= 0

∑N
n=1

p(yn=j|xj ,Θ̂
(i))

π̂
(i)
j

+ λ = 0

1
N

∑N
n=1 p

(
yn = j|xn, Θ̂(i)

)
= π̂

(i+1)
j

(3.12)

The procedure of finding stationary point of theQ-function for the Θ̂
(i)
k is different. The equations

for M step must be derived for each PDF separately, nevertheless, later it will be useful for

defining general steps that lead to parameter estimation of the Θ̂
(i+1)
k for an arbitrary function

Chapter 3. Neural modeling fields and Expectation maximization algorithm 42

fk (x|Θk)1:

∂
∂Θj

Q
(
Θ(i+1),Θ(i)

)
= ∂

∂Θj

∑K
k=1

∑N
n=1 p

(
yn = k|xn,Θ(i)

)
ln fk

(
xn|Θ(i)

k

)

=
∑N
n=1 p

(
yn = j|xn,Θ(i)

)
∂
∂Θj

ln fj

(
xn|Θ(i)

j

) (3.13)

The Eq. 3.12 and 3.13 provide all that is fundamental framework to formulate E and M steps of

the EM algorithm for arbitrary PDF. The Eq. 3.13 must be derived individually for each type

of PDF.

3.1.1 EM algorithm as classifier

So far the EM was supposed to perform the density estimation of mixture of densities. But

the EM is known as generalization of so called K-means algorithm [13] which is used purely

for classification. The probabilities of unobserved variable provide the information which the

PDF most probably drew a given observation thus the probability can be used for classification.

Practically the higher p (yn = j|xn,Θj) value the better is to choose j-th class as a label for a

datum xn.

The Bayesian Decision Boundary (BDB) gives general and intuitive clue how to perform clas-

sification. The BDB lies exactly at the intersection of two PDFs f1 (xn|Θ1) and f2 (xn|Θ2).

If a datum xn is moved slightly from the BDB the probability of the one PDF increases and

the other decreases. If the datum is shifted from the BDB to any side the p (yn = 1|xn,Θ1) >

p (yn = 2|xn,Θ1) or p (yn = 1|xn,Θ1) < p (yn = 2|xn,Θ1) which means that it is better to choose

the one with higher p (yn|xn,Θ). The BDB is illustrated in Fig. 3.1. The entire classification

procedure can be formalized as following procedure:

Classify
(
xn, Θ̂

)
= arg max
k∈{1,...K}

p
(
y = k|xn, Θ̂

)
= arg max
k∈{1,...K}

π̂kfk

(
xn|Θ̂k

)

∑K
i=1 π̂ifi

(
xn|Θ̂i

) (3.14)

3.1.2 EM algorithm for various distribution functions

This subsection deals with solutions of the M step of the Alg. 1 for PDFs that are described in

Chapter 2. All PDFs except of the Gamma and Dirichlet distributions have an analytic solution

for stationary point of Q-function formulated in Eq. 3.13.

The form of Q-function allows the division of computation into two parts where mixture coeffi-

cients π̂
(i+1)
k and Θ̂

(i+1)
k can be treated separately. The part of the Q-function where the mixture

coefficients π are defined is supposed to be a constant C. The mixture coefficients are already

solved in Eq. 3.12

The log-likelihoods from Chapter 2 are reused here because the log-likelihoods only slightly differ

from maximizing problem in Q-functions.

1At this moment, the notion slightly diverges here because mixture coefficients are a part of Θk so suppose
for a moment that π 6∈ Θk

Chapter 3. Neural modeling fields and Expectation maximization algorithm 43

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p(y|x,Θ
1
)=p(y|x,Θ

2
) p(y|x,Θ

1
)=p(y|x,Θ

2
)

x

p(
y|

x,
Θ

k)

Bayesian Decision Boundary

p(y|x,Θ
k
) of the N(x|−3, 2)

p(y|x,Θ
k
) of the N(x|0, 0.4)

Bayesian decision boundary

Figure 3.1: Intersection of two univariate Normal distributions is called Bayes decision bound-
ary.

3.1.2.1 Univariate Exponential distribution

The Q-function where the k-th PDF is the Exponential distribution, with one parameter λ, is

defined as follows:

Q
(

Θ̂(i+1), Θ̂(i)
)

= C +

K∑

k=1

N∑

n=1

p
(
yn = k|xn, Θ̂(i)

)
ln
(

Exp
(
xn|λ̂(i+1)

k

))

= C +

K∑

k=1

N∑

n=1

p
(
yn = k|xn, Θ̂(i)

)(
ln λ̂

(i+1)
k − λ̂(i+1)

k xn

) (3.15)

By taking partial derivative of Eq. 3.15 by the parameter λ̂
(i+1)
k the following equation is obtained:

∂

∂λ̂
(i+1)
k

Q
(

Θ̂(i+1), Θ̂(i)
)

=

N∑

n=1

p
(
yk = k|xi, Θ̂(i)

)(1

λ̂
(i+1)
k

− xn
)

(3.16)

The equation above can be directly solved analytically for the λ̂
(i+1)
k , so the solution for the M

step for the Exponential distribution is defined as follows

arg max
Θ̂(i+1)

Q
(

Θ̂(i+1), Θ̂(i)
)

= λ̂
(i+1)
k =

N
∑N
n=1 p

(
yn = k|xn, Θ̂(i)

)
xn

(3.17)

Chapter 3. Neural modeling fields and Expectation maximization algorithm 44

3.1.2.2 Univariate Gamma distribution

The Q-function where the m-th PDF is the Gamma distribution with two parameters k and θ

is defined as follows:

Q
(

Θ̂(i+1), Θ̂(i)
)

= C +

K∑

m=1

N∑

n=1

p
(
yn = m|xn, Θ̂(i)

)
ln
(

Gam
(
xn|k̂(i+1)

m , θ̂(i+1)
m

))

= C +

K∑

m=1

N∑

n=1

p
(
yn = m|xn, Θ̂(i)

)
. . .

. . .

ln 1(

θ̂
(i+1)
m

)k̂
(i+1)
m

Γ
(
k̂

(i+1)
m

)xk̂(i+1)
m −1
n exp

(
− xn

θ̂
(i+1)
m

)

= C +

K∑

m=1

N∑

n=1

p
(
yn = m|xn, Θ̂(i)

)((
k̂(i+1)
m − 1

)
lnxn . . .

. . . − 1

θ̂
(i+1)
m

xn − ln Γ
(
k̂

(i+1)
m

)
− k̂(i+1)

m ln θ̂
(i+1)
m

)

(3.18)

By taking partial derivative of Eq. 3.18 by the parameters θ̂
(i+1)
m and k̂

(i+1)
m following equations

are obtained:

∂

∂θ̂
(i+1)
m

Q
(

Θ̂(i+1), Θ̂(i)
)

=
∑N
n=1 p

(
yn = m|xn, Θ̂(i)

)(
−Nk̂

(i+1)
m

θ̂
(i+1)
m

+ xn

θ̂
(i+1)
m

)

∂

∂k̂
(i+1)
m

Q
(

Θ̂(i+1), Θ̂(i)
)

=
∑N
n=1 p

(
yn = m|xn, Θ̂(i)

)(
− ln θ̂

(i+1)
m − ∂ ln Γ(k̂(i+1)

m)
∂k̂

(i+1)
m

+ lnxn

)

(3.19)

For the θ̂
(i+1)
m the solution is straightforward which is defined as follows:

arg max
Θ̂(i+1)

Q
(

Θ̂(i+1), Θ̂(i)
)

= θ̂(i+1)
m =

k̂
(i)
m
∑N
n=1 p

(
yn = m|xn, Θ̂(i)

k

)

∑N
n=1 xnp

(
yn = m|xn, Θ̂(i)

k

) (3.20)

The problem of the km is more complicated due to Γ (x) function. The first derivative (see

Chapter 2, where analogous problem for the MLE is solved) of Γ (x) is called Digamma function

ψ (x). As very useful is shown the approximation of the Digamma function, because the ψ (x) is

not available in some packages. In [32] they approximated the value ψ (x) as follows:

ψ (x) ≈ ψ̃ (x) = ln

(
x− 1

2

)
+

1

24
(
x− 1

2

)2 (3.21)

The differences between the real value and approximation is insignificant as long as the values

are relatively small. The approximation is mentioned for completeness, in MATLAB the ψ (x)

is implemented as function named psi.

In fact, the EM algorithm is actually a gradient-based technique, i.e., in each iteration the

parameter change has positive projection on the gradient of the likelihood function with respect

Chapter 3. Neural modeling fields and Expectation maximization algorithm 45

to the Θ parameters so gradient is used to find k̂
(i+1)
m , which is formulated as follows [32]:

arg max
Θ̂(i+1)

Q
(

Θ̂(i+1), Θ̂(i)
)

= k̂
(i+1)
m

= k̂
(i)
m + c

N

∑N
n=1 p

(
yn = m|xn, Θ̂(i)

)
. . .

. . .
(
− ln θ̂

(i)
m + lnxn − ψ (xn)

)
(3.22)

Where the c > 0 is constant that regulates the size of steps.

3.1.2.3 Multivariate Normal distribution

The Q-function where the k-th PDF is the multivariate Normal distribution, with two parameters

µ and Σ is defined as follows:

Q
(

Θ̂(i+1), Θ̂(i)
)

= C +

K∑

k=1

N∑

n=1

p
(
yn = k|xn,Θ(i)

)
ln
(
N
(
xn|µ̂(i+1), Σ̂(i+1)

))

= C +
∑K
k=1

∑N
n=1 p

(
yn = k|xn, Θ̂(i)

) (
−D2 ln (2π) . . .

. . . − ln det Σ̂
(i+1)
k

2 − 1
2

∑N
n=1

(
xn − µ̂(i+1)

k

)(
Σ̂

(i+1)
k

)−1 (
xn − µ̂(i+1)

k

)T)

(3.23)

By taking partial derivative of Eq. 3.23 by the parameters µ̂
(i+i1)
k , Σ̂

(i+1)
k the following equations

are obtained: [24]:

∂

∂µ̂
(i+1)
k

Q
(

Θ̂(i+1), Θ̂(i)
)

=
(

Σ̂
(i)
k

)−1∑N
n=1 p

(
yn = k|xn, Θ̂(i)

k

)(
xn − µ̂(i+1)

k

)

∂

∂Σ̂
(i+1)
k

Q
(

Θ̂(i+1), Θ̂(i)
)

=
∑N
n=1 p

(
yn = k|xn, Θ̂(i)

)((
Σ̂

(i+1)
k

)−1

. . .

. . . +
(

Σ̂
(i+1)
k

)−1

xnxTn

(
Σ̂

(i+1)
k

)−1

. . .

. . . − 1
2

((
Σ̂

(i+1)
k

)−1

xnxTn

(
Σ̂

(i+1)
k

)−1

−
(

Σ̂
(i+1)
k

)−1
)
· I
)

(3.24)

The equations Eq. 3.24 can be solved analytically for the parameters µ̂
(i+1)
k and Σ̂

(i+1)
k thus the

solutions for M step with multivariate Normal distribution are formulated as follows [13]:

arg max
Θ̂(i+1)

Q
(

Θ̂(i+1), Θ̂(i)
)

= µ̂
(i+1)
k =

∑N
n=1 xnp

(
yn=k|xn,Θ̂

(i)
k

)
∑N

n=1 p
(
yn=k|xn,Θ̂

(i)
k

)
arg max

Θ̂(i+1)

Q
(

Θ̂(i+1), Θ̂(i)
)

= Σ̂
(i+1)
k =

∑N
n=1 p

(
yn=k|xn,Θ̂

(i)
k

)(
xn−µ̂(i)

k

)(
xn−µ̂(i)

k

)T

∑N
n=1 p

(
yn=k|xn,Θ̂

(i)
k

) (3.25)

Chapter 3. Neural modeling fields and Expectation maximization algorithm 46

3.1.2.4 Multivariate Log-normal distribution

The Q-function where the k-th PDF is the multivariate Log-normal distribution, with two pa-

rameters µ and Σ is defined as follows:

Q
(

Θ̂(i+1), Θ̂(i)
)

= C +

K∑

k=1

N∑

n=1

p
(
yn = k|xn, Θ̂(i)

)
ln
(
LN

(
xn|µ̂(i+1), Σ̂(i+1)

))

= C +
∑K
k=1

∑N
n=1 p

(
yn = k|xn, Θ̂(i)

) (
−D2 ln (2π) . . .

. . . −∑D
d=1 lnxd,n − ln det Σ̂

(i+1)
k

2

. . . − 1
2

∑N
n=1

(
ln xn − µ̂(i+1)

k

)(
Σ̂

(i+1)
k

)−1 (
ln xn − µ̂(i+1)

k

)T)

(3.26)

The procedure of obtaining stationary point of Q function in Eq. 3.26 can be reused from Eq. 3.23

(the same procedure as in Chapter 2) with substitution zn = ln xn. The Q-function with the

substitution is identical with Q-function for the Normal distribution except of
∑D
d=1 lnxd,n. The

term
∑D
d=1 lnxd,n, that makes difference is ruled out by derivatives by parameters µ̂

(i+1)
k and

Σ̂
(i+1)
k thus the analytic solution from Eq. 3.25 can be reused. The M step after back-substitution

is defined as follows:

arg max
Θ̂(i+1)

Q
(

Θ̂(i+1), Θ̂(i)
)

= µ̂
(i+1)
k =

N∑

n=1

ln(xn)p
(
yn=k|xn,Θ̂

(i)
k

)
N∑

n=1

p
(
yn=k|xn,Θ̂

(i)
k

)

arg max
Θ̂(i+1)

Q
(

Θ̂(i+1), Θ̂(i)
)

= Σ̂
(i+1)
k =

N∑

n=1

p
(
yn=k|xn,Θ̂

(i)
k

)(
ln(xn)−µ̂(i+1)

k

)(
ln(xn)−µ̂(i+1)

k

)T

N∑

n=1

p
(
yn=k|xn,Θ̂

(i)
k

)
(3.27)

3.1.2.5 Multivariate von Mises Fisher distribution

The Q-function where the k-th PDF is the von Mises-Fisher distribution, with two parameters

µ and κ is defined as follows [22]:

Q
(

Θ̂(i+1), Θ̂(i)
)

= C +

K∑

k=1

N∑

n=1

p
(
yn = k|xn, Θ̂(i)

)
ln
(
MF

(
xn|µ̂(i+1)

k , κ̂
(i+1)
k

))

= C +
∑K
k=1

∑N
n=1 p

(
yn = k|xn, Θ̂(i)

)(
ln cD

(
κ̂

(i+1)
k

)
+ . . .

. . . κ̂
(i+1)
k

(
µ̂

(i+1)
k

)T
xn + λk

(
1−

(
µ̂

(i+1)
k

)T
µ̂

(i+1)
k

))
(3.28)

Where λk is Lagrange multiplier which guarantees that constraint
(
µ̂

(i+1)
k

)T
µ̂

(i+1)
k = 1 will be

kept. Taking partial derivatives of Eq. 3.28 by the parameter µ̂
(i+1)
k and Lagrange multiplier λk,

Chapter 3. Neural modeling fields and Expectation maximization algorithm 47

setting resulting the equations as zero, the following relations are obtained [22]:

µ̂
(i+1)
k =

κ̂
(i)
k

2λk

N∑

n=1

p
(
yn = k|xn, Θ̂(i)

)
xn

(
µ̂

(i+1)
k

)T
µ̂

(i+1)
k = 1

(3.29)

By solving system of equations Eq. 3.29 the M step for µk [22]:

λk =
κ̂

(i+1)
k

2

∥∥∥
∑N
n=1 p

(
yn = k|xn, Θ̂(i)

)
xn

∥∥∥
arg max

Θ̂(i+1)

Q
(

Θ̂(i+1), Θ̂(i)
)

= µ̂
(i+1)
k =

∑N
n=1 p(yn=k|xn,Θ̂

(i))xn

‖∑N
n=1 p(yn=k|xn,Θ̂(i))xn‖

(3.30)

The parameter κk requires some advanced mathematical results so only solution for M step is

shown here, which is defined as follows [22]:

arg max
Θ̂(i+1)

Q
(

Θ̂(i+1), Θ̂(i)
)

= κ̂
(i+1)
k =

Dr − r3

1− r2 (3.31)

Where r is defined as r =
‖∑N

n=1 p(yn=k|xn,Θ̂
(i))xn‖

Nπ
(i)
k

.

3.1.2.6 Dirichlet distribution

The Q-function where k-th PDF is the Dirichlet distribution D (xn|a) with D parameters a =

[a1, . . . aD]
T

is defined as follows:

Q
(

Θ̂(i+1), Θ̂(i)
)

= C +

K∑

k=1

N∑

n=1

p
(
yn = k|xn, Θ̂(i)

)
ln
(
D
(
x|â(i+1)

k

))

= C +

K∑

k=1

N∑

n=1

p
(
yn = k|xn, Θ̂(i)

)
. . .

. . .

(
ln

Γ
(∑D

d=1 â
(i+1)
d,k

)
∏D

d=1 Γ
(
â

(i+1)
d,k

) ∏D
d=1 x

â
(i+1)
d,k −1

d,n

)

= C +

K∑

k=1

N∑

n=1

p
(
yn = k|xn, Θ̂(i)

)(
ln Γ

(
D∑

d=1

â
(i+1)
d,k

)
. . .

. . . −∑D
d=1 ln Γ

(
â

(i+1)
d,k

)
+
∑D
d=1

(
â

(i+1)
d,k − 1

)
lnxd,n

)

(3.32)

Taking partial derivative of Eq. 3.32 by any parameter ad,k, the following equation is obtained:

∂

∂â
(i)
d,k

Q
(

Θ̂(i+1), Θ̂(i)
)

=
∑N
n=1 p

(
yn = k|xn,Θ(i)

) (
ψ
(∑D

d=1 â
(i+1)
d,k

)

+ −ψ
(
â

(i+1)
d,k

)
+ lnxd,n

) (3.33)

Chapter 3. Neural modeling fields and Expectation maximization algorithm 48

The parameters â
(i+1)
d,k occur in Γ (x) function thus they have to be calculated by Digamma ψ (x)

or approximation ψ̃ (x) (Eq. 3.21):

arg max
Θ̂(i)

Q
(

Θ̂(i+1), Θ̂(i)
)

= â
(i+1)
d,k

= â
(i)
d,k

+

N∑

n=1

p
(
yn=k|xn,Θ

(i)
k

)
N

(
ψ
(∑D

j=1 â
(i)
j,k

)
− ψ

(
â

(i)
d,k

)
+ lnxd,n

)

(3.34)

The gradient equation formulated in Eq. 3.34 suffers from the usual problems of the gradient

ascent - the procedure does not consider inadmissible values and the step size is constant. The

step size does not reflect the current steepness of the Q-function thus convergence of the Eq. 3.34

requires more iterations.

3.1.2.7 Multivariate Wishart distribution

The Q-function where the k-th PDF is the Wishart distribution, with one parameter Σ is defined

as follows:

Q
(

Θ̂(i+1), Θ̂(i)
)

= C +

K∑

k=1

N∑

n=1

p
(
yn = k|Sn, Θ̂(i)

)
ln (W (Sn|Σk))

= C +
∑K
k=1

∑N
n=1 p

(
yn = k|Sn, Θ̂(i)

)
(−3 lnπ . . .

. . . ln det Σ̂k − tr
(
SΣ−1

))
(3.35)

The Σk requires some advanced techniques so only solution for M step will be shown which is

defined as follows [6]:

arg max
Θ̂(i)

Q
(

Θ̂(i+1), Θ̂(i)
)

= Σ
(i+1)
k =

∑N
n=1 p

(
yn = k|Sn, Θ̂(i)

)
Sn

∑N
n=1 p

(
yn = k|Sn, Θ̂(i)

) (3.36)

3.2 Neural Modeling Fields

The NMF associates lower-level signals with higher-level concept-models where each concept

(class) is represented as one parametric model. The NMF tries to generalize low level signals by

adapting model parameters. The parametric model creation is achieved by using measures of

similarity between the concept models and the input signals which is performed by an adaptive

fuzzy similarity (AZ − LL). Fuzzy approach extends the crisp (Aristotelian) logic with the

concept of fuzziness where membership of signals is not restricted on two values but where the

signal is either present or not. Input signals X (data, observations) are associated (recognized,

grouped into) with the concepts according to the representation models and similarity measures.

In the process of association-recognition, the models are adapted for better representation of

the input signals. The initial uncertainty of the models is high and so is the fuzziness of the

similarity measure; in the process of learning models, the fuzziness becomes more accurate and

Chapter 3. Neural modeling fields and Expectation maximization algorithm 49

as the similarity getting higher the fuzziness is more crispy between the input signals and the

associated parametric model [33].

From the computational perspective NMF are set of equations that find MLE of a mixture of

densities for parametric model. Example of NMF result is shown in Fig. 3.2.

−10 −5 0 5 10
−10

−5

0

5

10

x

y

1400 samples drawn from 7 Gaussians

−5 0 5
−6

−4

−2

0

2

4

6

x

y

Estimated Gaussians via EM/MLANS

Figure 3.2: Example of the MLANS/EM algorithm density estimation on 7 Gaussians with
means placed in the circle.

3.2.1 Similarity measures

In [6] three kinds of similarity measures between trained NMF and the input signals data are

shown where each of the functions differs slightly from the others depending on, how strictly the

membership of a datum is judged. Set partition is the crucial concept in this context. The basis

of the problem is how perform clustering of a set of data into K classes. This problem is also

known as a set partition. The SP plays a critical role in this context. The SP divides input space

into K subsets such that a rank of the partition is maximal2. It can be perceived as a division

of space into K regions (subset of the current set partition) where each region is assigned to one

agent that forms a model on that region regardless other data that belong to the other agents.

The number of set partitions of N data into K subsets can be computed by Stirling numbers of

the second kind S2 (N,K) as it is formulated in Def. 3.2.

Definition 3.2. The Stirling number of the second kind, S2 (N,K), is the number of partitions

of an N -element set into K non-empty subsets. The S2 (N,K) is defined recursively as:

S2 (N,K) = S2 (N − 1,K − 1) +KS2 (N − 1,K) (3.37)

Or alternatively:

S2 (N,K) =
1

K!

K∑

k=1

(−1)
K−k

(
K

k

)
kN (3.38)

[34]

Theorem 3.3. The Stirling number of the second kind is bounded by exponential function for

the parameter N [35].

From Def. 3.2 and Theorem 3.2 implies that the set partition is the problem that is solvable for

worst cases in exponential time thus finding optimal set partition difficult task fromNP-complete

class of problems. The exponential complexity is also referred as combinatorial complexity [6].

2The one of the sub-problems solved by the SP

Chapter 3. Neural modeling fields and Expectation maximization algorithm 50

Another problem how to guess how many concept classes K shall be used if the K is not given

arises. There is no confident principle how to choose K-s but there are some useful methods

how to guess the K based on data, the most popular is the Dirichlet process gives a hint how to

guess the K [15].

In the next sections following notion is used: Given data (observations) X = {xn}Nn=1, a datum

xn is the member of a subset k with parameters Θk with f(xn|Θk) ∈ 〈0, 1〉3 membership where
∑K
k=1 f (xn|Θk) = 1 must hold (otherwise a datum may be the member of a concept class

more than once). The f (x|Θk) is equivalent with p (yk|x,Θk) used in the EM algorithm. The

f (x|k) stands for non-adaptive membership that is independent of adaptive parameters Θk.

Furthermore suppose any PDF fk (xn|Θk). The fk (xn|Θk) measures how a datum xn is similar

to the model determined by the function fk with parameters Θk.

A crisp set partition example is shown in Fig. 3.3.

Figure 3.3: Example of set partition of four elements (N = 4) into two classes (K = 2).
S2 (4, 2) = 7. The data membership is distinguished by crosses and circles.

3.2.1.1 Aristotelian similarity

Aristotelian similarity (A − LL) is based on the principle of excluded third where each datum

either belongs to a subset, or not (no third option) [6]. The crisp membership of presence/absence

of datum to a certain class is determined by function fA (xn|Θk) whose definition is different

from above stated.

fA (xn|Ξ) =

1 if xn is a member of k-th class

0 else
(3.39)

Where the Ξ is the current set partition. The A− LL is defined as follows [6]:

A− LL = max
Ξ

K∑

k=1︸ ︷︷ ︸
combinatorial

max
Θk

N∑

n=1

fA (xn|Ξ) ln fk (xn|Θk) (3.40)

Because membership function is crisp, the Eq. 3.40 rules out all points whose membership func-

tion evaluates a datum x as non-member of a subset thus the A − LL is calculated only from

points that are members of the subset. The set partition of the data has two steps, at the first set

is partitioned, and at the second the function parameters are optimized for the current partition.

Unfortunately, the first step is exactly combinatorial problem of the set partition whose problem

class is NP-complete.

3For each subset, the membership function may be different

Chapter 3. Neural modeling fields and Expectation maximization algorithm 51

3.2.1.2 Fuzzy similarity

Another similarity measure extends A−LL with the possibility to have membership function in

a range from 0 to 1 independently on the parameters Θ. Assigning membership as the real value

from 0 to 1 is the well-known principle studied in Fuzzy sets. The Fuzzy sets are an extension of

the crisp sets where membership determines how much a datum is involved as the member of a

particular class. This similarity is referred as Fuzzy (Z − LL) in honour to Zadeh’s authorship

of fuzzy logic [6]. The Z − LL is calculated as follows:

Z − LL = max
Ξ

K∑

k=1

max
Θk

N∑

n=1

f (xn|k)︸ ︷︷ ︸
const.

ln fk

(
xn|Θ(i)

k

)
(3.41)

Due to fuzzy character, the maximization of the set of parameters is possible to be obtained

by taking derivative of Θk, setting equal the equation as zero and solving for the Θk. The

membership function is fixed value so f (x|k) is treated as a constant and changes in parameters

Θk are not reflected in the f (x|k). Complexity of finding solution with Z − LL is O (NK)

because each function is adapted for each datum. The problem of Z − LL is a non-adaptive

membership function f (x|Θk) which does not reflect changes in parameters Θ.

3.2.1.3 Adaptive Fuzzy similarity

The last one is made combine advantages of Aristotelian and Fuzzy similarity, the adaptive

segmentation from the A−LL and low computational complexity from the Z−LL. The AZ−LL
which is the abbreviation of Adaptive Fuzzy similarity performs maximization parameters over all

functions w.r.t. to log-likelihood. The AZ −LL reflect parameter changes in fuzzy membership

functions f (x|Θk). The measure is defined as follows:

AZ − LL = max
Ξ

K∑

k=1

max
Θk

N∑

n=1

f
(
xn|Θ(i)

k

)

︸ ︷︷ ︸
adaptive

ln fk

(
xn|Θ(i)

k

)
(3.42)

The difference in between AZ − LL and Z − LL is the way how f
(
x|Θ(i)

k

)
is defined. While

in Z − LL the membership f (x|k) is supposed to be given a priori and is non-adaptive, for the

AZ−LL the value of f
(
x|Θ(i)

k

)
changes adaptively as parameters Θ

(i)
k are adapted to maximize

the log-likelihood. It is important to note that the AZ − LL is equivalent of the Q-function

defined in the Eq. 3.4.

3.2.2 Learning parametric models with NMF

Before the the NMF are defined some notion shall be refined. In the literature that deals with

the NMF [6, 29] is quite confusing notion. The original one is replaced by the probabilistic

which is introduced for the EM above (see Tab. 3.1 for comparison). On the other hand, the

basis of this thesis are NMF so the symbol f (xn|Θk) is used here instead of p (yn = k|xn,Θk)

Chapter 3. Neural modeling fields and Expectation maximization algorithm 52

to emphasize the relation with original symbol for the adaptive fuzzy similarity f (n|k) which is

defined as follows:

f (xn|Θk) =
πkfk (xn|Θk)

∑N
i=1 πifi (xn|Θi)

(3.43)

The symbol f (xn|Θk) is called adaptive fuzzy similarity and measures membership of the datum

x in class k. The normalization guarantees the
∑K
k=1 f (x|Θk) = 1 holds.

Definition 3.4. Suppose task of MLE of parameters for a mixture of K functions f1, . . . fK with

a set of initial parameters Θ̂(0) =
{
π̂

(0)
k , Θ̂

(0)
k

}K
k=1

from Eq. 3.1. The NMF learning equations

are defined as follows:

∂AZ−LL
∂Θ̂(i+1)

= α
∑N
n=1 f

(
xn|Θ̂(i)

k

)
∂ ln fk(xn|Θ̂(i+1))

∂Θ̂(i+1)

π̂
(i+1)
k =

∑K
k=1 f(xn|Θ̂k)

N

(3.44)

Where the α is coefficient that regulates learning step length.

3.2.3 NMF and EM algorithm equivalence

In the [6] the NMF are referred as a framework for the fuzzy membership function adaptation

which turned out as the same as the mixture density estimation (where the parametric model

creation is performed by the EM algorithm). In the literature that deal with NMF [6] are some

unambiguous references of relationship of the NMF to EM algorithm but the both have shown

as equivalent. The proof below proves that the NMF and EM algorithm perform the same

computation. The reason why the NMF are referred as EM but not in vice versa is because the

first reference of EM (1977 in [10]) is many years before any reference of the NMF (1991 in [36])

occurred.

Theorem 3.5. The EM algorithm and NMF are identical.

Proof. The EM at first computes conditional expectation (E phase) of unobserved value, which

is formulated in the Eq. 3.7. The same computation is performed for the NMF by the Eq. 3.43.

The f (x|Θk) is membership function that measures how much the datum belongs to a k-th class

thus f (x|Θk) and p (yk|x,Θk) can be supposed as equivalent because both stand for the same.

By substitution of p (yk|x,Θk) by f (x|Θk) into Eq. 3.13 can be shown that ∂AZ−LL
∂Θ(i) does the

same as Q-function and vice versa:

Chapter 3. Neural modeling fields and Expectation maximization algorithm 53

∂

∂Θ̂
(i+1)
k

Q
(

Θ̂(i+1), Θ̂(i)
)

= ∂

∂Θ̂
(i+1)
k

∑K
k=1

∑N
n=1 p

(
yn = j|xn, Θ̂(i)

)

︸ ︷︷ ︸
EM

ln fk

(
xn|Θ̂(i+1)

k

)

︸ ︷︷ ︸
EM≡NMF

=
∑N
n=1 p

(
yn = j|xn, Θ̂(i)

)

︸ ︷︷ ︸
EM

∂

∂Θ̂
(i+1)
k

ln fk

(
xn|Θ̂(i+1)

k

)

︸ ︷︷ ︸
EM≡NMF

=
∑N
n=1 f

(
xn|Θ̂(i)

k

)

︸ ︷︷ ︸
NMF

∂

∂Θ
(i+1)
k

ln fk

(
xn|Θ̂(i+1)

k

)

︸ ︷︷ ︸
EM≡NMF

≡ 1

α︸︷︷︸
const.

∂AZ−LL
∂Θ(i+1)

(3.45)

The learning constant α can be ignored because for α = 1 the parameter vanishes.

The mixture coefficients defined in Eq. 3.12 are equivalent with the prior in 3.44:

π̂
(i+1)
j = 1

N

∑N
n=1 p

(
yn = j|xn, Θ̂(i)

)

︸ ︷︷ ︸
EM

= 1
N

∑N
n=1 f

(
xn|Θ̂(i)

k

)

︸ ︷︷ ︸
EM≡NMF

(3.46)

Since the AZ − LL and Q-function stand for the same, the both approaches can be supposed

as equivalent. The EM performs MLE just by maximizing the Q-function and the NMF by

AZ − LL.

For completeness, there are written down in Tab. 3.1 the symbols that are used in this thesis

and in [6, 29].

The equations described in Def. 3.4 describes adaptive process as unsupervised where parameters

are changed in order to maximize similarity between input signals X and mixture of densities.

The NMF can be switched to supervised or semi-supervised learning if a teacher explicitly

determines the memberships of input signals X in corresponding classes f
(
xn|Θ̂(i)

k

)
. Once the

memberships are set up they should be kept as constants regardless to current parameters Θ̂
(i)
k .

3.2.4 Maximum Likelihood Adaptive Neural System

Maximum Likelihood Adaptive Neural System (MLANS) [36] plays a special role for NMF.

The MLANS is specific realization of the NMF equations for multivariate Normal distribution.

MLANS is intended for problems which require an adaptive estimation of metrics in clustering

input spaces. The adaptivity of the metrics is achieved by adapting covariance matrix Σ that

determines how a current estimate varies. The model itself is represented by mean µ. The

MLANS can be used as unsupervised, supervised and semi-supervised system. The supervised

learning supposes given f (xn|Θk) ∀xn ∈ X,∀k ∈ {1, . . .K}.

Chapter 3. Neural modeling fields and Expectation maximization algorithm 54

Based on the result from Theorem 3.5, the MLANS is equivalent with a mixture of the Normal

distributions where parametric model adaptation is performed by the EM.

The MLANS learning equations in unsupervised variant are defined as follows:

Definition 3.6. Suppose task of MLE of parameters Θ = {πk, µk,Σk}Kk=1 for a mixture K

multivariate Normal distributions N (x|µ,Σ) from Eq. 3.1 with update equations:

1. f
(
xn|Θ̂(i)

k

)
=

π̂
(i)
k N

(
xn|Θ̂(i)

k

)
∑K

j=1 π̂
(i)
j N

(
xn|Θ̂(i)

j

)
2. Σ̂

(i+1)
k = α

∑N
n=1 f

(
xn|Θ̂(i)

k

)(
xn − µ̂(i)

k

)(
xn − µ̂(i)

k

)T

3. µ̂
(i+1)
k = α

N

∑N
n=1 f

(
xn|Θ̂(i)

k

)
xn

4. π̂
(i)
k =

∑K
k=1 f

(
xn|Θ̂(i)

k

)
N

(3.47)

Where the α is coefficient that regulates learning step length. The MLANS works iteratively

with some initial guess of parameters Θ̂(0) =
{
π̂

(0)
k , µ̂

(0)
k , Σ̂

(0)
k

}K
k=1

. The initial guess of covariance

matrices Σ̂(0) shall have larger eigenvalues to reflect initial uncertainty of the model which is

measured by log-likelihood Eq. 3.6.

Above stated supposes unsupervised learning where parameters Σ
(i+1)
k and µ

(i+1)
k are initially

(randomly) guessed and f (x|Θk) computed according to parameter setting. If supervised or

semi-supervised learning is needed, the f (x|Θk) are set up by the known memberships for the

input data {xn,dn}4.

EM algorithm Neural Modeling Fields

πkp (xn|Θk) l (k|n)
lnπkp (xn|Θk) ll (k|n)
p (yn = k|xn,Θk) f (k|n)
L (Θ|xn) l (n)

lnL (Θ|xn) ll (n)
Θk Sk
µk Mk

Σk Ck

πk r (k)

Table 3.1: Comparison between notion used in this thesis (mostly based on [12, 13, 31]) and
by Perlovsky’s in NMF in [6, 29].

3.2.5 Perlovsky’s theory of mind and NMF

The significant contribution of NMF is in approach how an internal conceptualization of input

signals is made in the mind. The conceptualization is a generalization a process where input

signals are processed to give a concept of general object described by features (here a set of

parameters Θ) instead of storing all objects. For example, a car is an object which shares

4The |dn| = K where K is number classes.

Chapter 3. Neural modeling fields and Expectation maximization algorithm 55

similar shape and sound with the other cars, so their common features can be used as object

conceptualization instead of storing the entire objects.

The adaptation mechanism of obtaining features of some objects is just described by NMF adap-

tive equations. The system starts initially with high uncertainty of fuzziness, and its parameters

are consecutively adapted to achieve concept-input signal similarity.

A thought process involves a number of sub-tasks including working with internal representation

of thought and their manipulation, attention, concept formation, knowledge retrieval, general-

ization, recognition, understanding, imagination, intuition, emotion, decisions and reasoning. A

minimal subset of these processes is called an elementary thought process (ETP) [29, 33]. The

ETP involves mechanisms for afferent and efferent signals (see Fig. 3.4). The afferent signals are

represented by input signals X, and the efferent are represented by a current model based on

parameters Θ. Resonances between afferent and efferent signals are caused by high similarity

between input signals X, and a model Θ, it means that some input signals are represented by

the concept k with internal parameters Θk.

models Θ = {Θ1 . . .ΘK}

Input signals (stimuli) X

bottom-up (afferent) top-down (efferent)

imagination

Figure 3.4: Division of afferent and efferent signals.

3.2.5.1 Understanding and meaning

The subsets of incoming signals are recognized in ETP by creating phenomena which are under-

stood as objects. It means that subsets of signals are interpreted by its meaning. The objects are

glued with models by emotional signals to instincts 5. The NMF artificially embodies knowledge

instinct (with models that respond to a particular signal) and behaviour of learning (adaptive

equations in Def. 3.4) [33].

Another aspect of understanding and meaning is that stimuli (input signal) can be perceived as

a more general concept in hierarchically higher layers (a car same as motorcycle can be perceived

as more general concept vehicle although at the first sight, their visual features are different but

they both have transportation purpose in common). As the stimuli goes toward the most general

concept, the system can come up with such models [33]:

• scientific concept - a model of the universe.

• psychological concept - a model of self.

5An innate, typically fixed pattern of behaviour in animals in response to certain stimuli [37].

Chapter 3. Neural modeling fields and Expectation maximization algorithm 56

• philosophical concept - a model of meaning of existence.

• theological concept.

3.2.5.2 Imagination

Visual imagination involves excitation of a neural pattern in a visual cortex in the absence of

an actual sensory stimulation. Imagination is often considered considered being a part of the

thinking process. Kant likened process of thinking as [33]:

A play of cognitive function of imagination and understanding.

Kant’s thought about thinking contains imagination as an integral part of the mind process. In

terms of NMF, the imagination part of model excitation is a random stimulus (input signal) or

taking parameters that significantly describe current model (µk ⊂ Θk which describes general

concept of a certain class of inputs).

Chapter 4

Hierarchical mixture of experts

The EM algorithm is not restricted only on density estimation. The aim of this chapter is to

show that the EM algorithm can carry out more sophisticated tasks than density estimation.

Hierarchical Mixture of Experts (HME) is supervised network model1 whose adaptation is based

on NMF/EM maximum likelihood principle. The HME uses divide and conquer strategy to

split the problem into smaller parts where specialized units called gates divide input space into

multiple regions where units called experts are adapted to assigned region of the supervised

dataset {X,d}.

4.1 Introduction

Hierarchical mixture of experts (HME) is tree structured supervised model, originally introduced

in [38] . The HME resembles neural networks but the units that perform computation are divided

into two types: experts and gates, in which each type has a different meaning. The experts

are units which perform input-output {X,D} mapping and the gates determine how much the

experts contribute to the output for a given input signal. Architecture the HME is parallel where

both types of the units obtain an input vector and perform the computation. The experts made

a decision and the same time gates perform weighting of outputs of the experts. The outputs

from the previous computation are weighted again by other gates that lie hierarchically higher

(nearer to output). Topology of HME with two layers is depicted in Fig. 4.1. The HME consists

of n1 + . . . nm experts where the experts are divided into m experts groups (see Fig. 4.3) and

gates where each experts group has its gate and one gate for experts group outputs.

Informally the experts are the output-makers and gates are divisors that divide input space and

assign regions of the input space to particular experts. In computer science the principle of

dividing space is also known as divide-and-conquer. On the highest level (toward to output),

the input space is divided into m subspaces where each experts group has the highest weight for

1The tree structure encourages to consider HME as a neural network but the reason why the term network is
used is because the HME has a tree structure, which reminds neural networks.

57

Chapter 4. Hierarchical mixture of experts 58

E1,1 (x) E1,n1 (x). . . Em,1 (x) Em,nm (x).

. . .
gn1|1

g1|1

gnm|m

g1|mGm (x)G1 (x)

G (x)
gm

g1

ym =
∑nm

i=1 Em,i (x) gi|my1 =
∑n1

i=1 E1,i (x) gi|1

y =
∑m
i=1 giyi

Figure 4.1: Hierarchical Mixture of Experts architecture

assigned region and as divisions go toward to experts the subspaces are divided into the other

subspaces as Fig. 4.2 depicts.

X1

X2

X3

X1|1

X2|1

X3|1

X1|2

X2|2

X3|2

X1|3

X2|3

X3|3

X1 X2
X3

Figure 4.2: Divide and conquer principle applied on two dimensional input space. The space
is consecutively divided into smaller pieces where each subspace has assigned one expert.

For purposes of this thesis, only two layered HME is supposed. Theoretically it is possible to

construct HME with an arbitrary number of layers [39], but in most of the cases, this level of so-

phistication is not necessary. If the network is larger than necessary, some numerical instabilities

may occur.

4.1.1 Computation

The HME is supervised technique, so the goal of the learning phase is to find such parameters

that the HME perform the mapping of input vectors X = [x1, . . .xN] on output space with the

smallest error from the vector of desired outputs d = [d1, . . . dN]. The experts group is one

sub-tree with gate and group of gates (see Fig. 4.3). Outputs of the experts are denoted by

Ei,j (x) where i is an experts group and j is the index of the expert in a particular experts group

i. Outputs of the gates are denoted as gj|i (x) for the gates connected to the experts outputs,

where i stands for i-th experts group and j is the index of expert, which is weighted by the gate’s

output. The gi (x) is the output of the gate at the top level where i is the weight for the i-th

experts group.

Chapter 4. Hierarchical mixture of experts 59

Ei,1 (x) Ei,ni (x). . .

gni|i

g1|iGi (x)

yi =
∑ni

j=1 Ei,j (x) gj|i

Figure 4.3: Experts group in sub-tree i

At the beginning, the inputs are presented to the experts. The inputs are presented sequentially

datum-by-datum as it is done e.g. in neural networks. Each expert performs computation

which is the evaluation of polynomial of DEG-th degree for the input vector x (the polynomial

regression is an extension of originally proposed linear [38]):

Ei,j (x) =

D∑

d=1

DEG∑

deg=0

ui,jd,degx
deg
d (4.1)

The ui,j are parameters of the expert. The ui,j values can be represented as a matrix where rows

are corresponding input dimensions and columns are coefficients of polynomial for each degree.

Ui,j =

ui,j1,0

...

ui,jD,0

ui,j1,1 . . . ui,j1,DEG

...
. . .

...

ui,jD,1 . . . ui,jD,DEG

 (4.2)

The first columns of the Ui,j is bias parameter.

Every experts group has its gate Gi (x) =
[
g1|i (x) , . . . gni|i (x)

]
with |Gi (x) | = ni outputs. The

gate performs weighting of expert decisions in the frame of the experts group where g1|i (x) +

· · ·+ gni|i (x) = 1 must hold.

The regions are soft-partitioned by a straight line. The soft-partition is performed by soft-max

function. Each gate has weight vector vj|i =
[
v
j|i
0 , . . . v

j|i
D

]T
(the v

j|i
0 is bias) for each expert

where vj|i determines the position a line in an input space that divides the input D-dimensional

Euclidean space into ni regions as it is depicted in Fig. 4.4. The gate output gj|i is calculated

as follows:

ξj|i = vTj|ix

gj|i (x) =
exp ξi,j∑ni

k=1 exp ξi,k

(4.3)

After gates outputs are calculated, the experts group i output is calculated as follows:

yi (x) =

ni∑

j=1

Ei,j (x) gj|i (x) (4.4)

Chapter 4. Hierarchical mixture of experts 60

Gate 1

x
1

x 2

−2 0 2

−2

0

2
0

0.2
0.4

0.6
0.8

Gate 2

x
1

x 2

−2 0 2

−2

0

2
0.2

0.4

0.6

Gate 3

x
1

x 2

−2 0 2

−2

0

2
0

0.2

0.4
0.6

0.8

Gate 4

x
1

x 2

−2 0 2

−2

0

2 0.2

0.4
0.6

0.8

Figure 4.4: A particular space division into four parts performed by gates. Each figure
represents the output for values [x1, x2] of one gate, which is weight for one expert outputs.

After each of m the experts group perform computation of yi, the value yi is again weighted by

the output-level gate output vector G (x) = [g1 (x) , . . . gm (x)]
T

as follows:

y (x) =

m∑

i=1

yi (x) gi (x) (4.5)

The output level gate has vi = [vi0, . . . v
i
D] weights, where one vi is for one experts group. The

calculation is performed similarly as for 4.3:

ξi = vTi x

gi (x) = exp ξi∑m
k=1 exp ξk

(4.6)

The HME output for an input datum x is formulated as follows:

y (x) =

m∑

i=1

gi (x)

ni∑

j=1

Ei,j (x) gj|i (x)

︸ ︷︷ ︸
experts group

(4.7)

From algorithmic perspective the HME performs calculation described in Alg. 2.

Each sum of the experts group in Eq. 4.7 reminds the mixture of densities. In the mixture of

densities the coefficients are supposed to be constants (prior) while the coefficients in the HME

are variables that depend on input x.

4.1.2 Interpretation of the architecture

The outputs of the gates that perform division of the input space can be interpreted as a sequence

of decisions that lead to a selection of proper expert whose output is the approximation input-

output pairs [38]. In adaptation phase, the parameters are dependent on the level of expert

Chapter 4. Hierarchical mixture of experts 61

Algorithm 2: The HME feedforward calculation y ← Feedforward (x,Θ) for an input datum

x = [x1, . . . xD]
T

input : An input vector x = [x1, . . . xD]
T

, set of parameters of the HME

Θ =
{
{vi}mj=1 ,

{{
vi|j
}ni

j=1

}m
i=1

,
{
{Ui,j}ni

j=1

}m
i=1

}

output: The y for an input x

// Evaluate experts
for i← 1 to m do

for j ← 1 to ni do

Ei,j (x) =
∑D
d=1

∑DEG
deg=0 u

i,j
d,degx

deg
d ; // (Eq. 4.1)

// Evaluate experts groups
for i← 1 to m do

yi (x) =
∑ni

j=1 Ei,j (x) gj|i (x); // (Eq. 4.4)

// Calculate overall output
y (x) =

∑m
i=1 yi (x) gi (x); //(Eq. 4.7)

decision quality and then gates try to adapt their parameters to assign input subspace to the

experts whose results are better than the others. The quality of expert’s outputs is measured

by the univariate Normal PDF where each desired output dn is considered as mean vector and

the real output y (xn) is a random vector (N (y (xn) |dn,Σ)). The Normal distribution is used

because it minimizes contribution of the random noise. If the desired outputs d = {dn}Nn=1

contain some additive noise drawn from a Normal distribution den = dn + ε ∼ N (ε|dn,Σ) it

can be elegantly eliminated. The experts adapts their parameters
{{

Ui,j
}ni

j=1

}m
i=1

to the mode

which lies in the position of desired output dn because the mean of the den is dn.

4.2 Learning the HME with EM algorithm

For the maximizing, a likelihood by EM algorithm the unobserved variable is used to describe

from which mixture a datum was originally drawn. The principle of unobserved variable can

be applied generally, where together with observed data {x, dn}Nn=1 there are some unobserved

data which are not known a-priori. For training of the HME, the unobserved variable is used

to model unknown activity of the elements in the structure of a network. The input-output

pairs {X,d} = {(xn, dn)}Nn=1 are the observed data. The unobserved data2 are denoted by

symbol zni,j that indicate which path from expert to output is used for an observed data pair

{xn, dn}. The unobserved variable zi,j is 1 if Ei,j (xn) expert is used as the HME output y (xn),

thus there are as many unobserved variables as possible paths from expert to output and datum

(z =
{{{

zni,j
}ni

j=1

}m
i=1

}N
n=1

). Only one expert can be used as output, thus
∑m
i=1

∑ni

j=1 zi,j = 1

must hold. The complete likelihood function of the complete data {{X,d} , z} is defined as:

L (Θ|X,D, z) =

N∏

n=1

m∏

i=1

ni∏

j

(
gi (xn) gj|i (xn)N (y (xn) |dn,Σ)

)zni,j (4.8)

Where Θ are parameters of gates and experts Θ =
{
{vi}mj=1 ,

{{
vi|j
}ni

j=1

}m
i=1

,
{
{Ui,j}ni

j=1

}m
i=1

}
.

2The z-s are also referred as indicator variables [38].

Chapter 4. Hierarchical mixture of experts 62

Probabilities of unobserved variable zni,j (more formally p
(
zni,j |y (xn) ,Θ

)
) are present in HME

to simplify maximization via Q-function as in EM algorithm. To stay consistent with the

notion from [38] the probability of unobserved variable is denoted by symbol hni,j instead of

p
(
zni,j |y (xn) ,Θ

)
. The probability of unobserved variable zi,j = 1 is defined as follows:

hni,j = p
(
zni,j = 1|y (xn) ,Θ

)
=

gi (xn) gj|i (xn)N (y (xn) |dn,Σ)
m∑

k=1

ni∑

l=1

gk (xn) gl|k (xn)N (y (xn) |dn,Σ)

(4.9)

Additionally it is useful to define probabilities hni and hnj|i. The hni stands for the unobserved

variable zni which is activation of the gate at the top level and probability hnj|i of unobserved

variable zj|i that is activation of the j-th gate in i-th experts group i. The value hni is obtained

from Eq. 4.9 by marginalization over all values j-s 3:

hni =
∑m
j=1 h

n
i,j

=
∑m
j=1 p

(
zni,j |y (xn) ,Θ

)

=
gi
∑ni

l=1 gl|j(xn)N (y(xn)|dn,Σ)∑m
k=1

∑ni
l=1 gk(xn)gl|k(xn)N (y(xn)|dn,Σ)

(4.10)

The value of hj|i is obtained from Eq. 4.9 by modifying with the formula for conditional proba-

bility 4:

hnj|i =
hn
i,j

hn
i

=
gj|iN (Ei,j(xn)|dn,Σ)∑ni
l=1 gl|iN (Ei,l(xn)|dn,Σ)

(4.11)

The unobserved variable zni,j eliminates paths to experts which do not contribute to output in

complete likelihood function Eq. 4.12. If Ei,j is the expert whose result is used as the output then

zi,j = 1 and other paths vanish (because ∀c ∈ R : c0 = 0) and only the Ei,j expert’s parameters

are adapted to observed data. Complete log-likelihood based on the Eq. 4.8 is defined as follows:

lnL (Θ|X,D, z) =

N∑

n=1

m∑

i=1

ni∑

j=1

zni,j ln
(
gi (xn) gj|i (xn)N (y (xn) |dn,Σ)

)

=

N∑

n=1

m∑

i=1

ni∑

j=1

zni,j
(
ln gi (xn) + ln gj|i (xn) + lnN (y (xn) |dn,Σ)

) (4.12)

The same recipe as in Chapter 3 is applied here to eliminate the unobserved variables zni,j . The

unobserved variable zni,j is modelled by probability hni,j and the complete log-likelihood is defined

in Eq. 4.12 thus the Q-function for the HME is defined as follows:

3p (x) =
∫
y∈Ωy

p (x,y) dy

4p (x|y) =
p(x,y)
p(y)

Chapter 4. Hierarchical mixture of experts 63

Q
(
Θ(t+1),Θ(t)

)
=

N∑

n=1

m∑

i=1

ni∑

j=1

hni,j︸︷︷︸
p(zni,j |y(xn),Θ)

ln
(
gi (xn) gj|i (xn)N (y (xn) |dn,Σ)

)

=

N∑

n=1

m∑

i=1

ni∑

j=1

hni,j
(
ln gi (xn) + ln gj|i (xn) + lnN (y (xn) |dn,Σ)

)
(4.13)

The EM algorithm performs two steps in each iteration. The first expectation step E where

the unknowns of the Q-function are calculated (the hNi,j) and the second maximization step M

that maximize the conditional expectation of complete log-likelihood in Eq. 4.13 given observed

variables, current parameters Θ(i) and probabilities of unobserved variables.

The set of estimated parameters is Θ(k) =

{{
v

(k)
i

}m
j=1

,

{{
v

(k)
i|j

}ni

j=1

}m

i=1

,

{{
U

(k)
i,j

}ni

j=1

}m

i=1

}
.

The formulae for the M step that maximize the Eq. 4.13 can be obtained by taking partial deriva-

tive by optimized parameter. The M step can be divided into three independent maximization

tasks [38]:

Û
(k+1)
i,j = arg max

Û
(k+1)
i,j

N∑

n=1

hni,j lnN (y (xn) |dn,Σ)

v̂
(k+1)
i|j = arg max

v̂
(k+1)

i|j

N∑

n=1

m∑

i=1

hni

ni∑

j=1

hnj|i ln gj|i (xn)

v̂
(k+1)
i = arg max

v̂
(k+1)
i

N∑

n=1

m∑

i=1

hni ln gi (xn)

(4.14)

All maximizations from Eq. 4.14 give rise to the least square problem (LSQ) and weighted least

LSQ (WLSQ) [38]. The WLSQ for polynomial regression, which is the solution for Eq. 4.14, has

closed form formalized by Def. 4.1.

Definition 4.1. Weighted least-squares solution û for polynomial regression of degree DEG for

a set of observation values X = [x1, . . .xN] where each datum is a D dimensional column vector

xn = [xn,1, . . . xn,D]
T

, desired values d = [d1 . . . dN]
T

and weights diag (W) = [w0, w1, . . . wN] is

defined as follows:

ûMLE =
(
XT
DEGWXDEG

)−1
XT
DEGWd (4.15)

where XDEG a Vandermonde matrix [40]:

XDEG =

1
(
x1

1

)T
. . .

(
xDEG1

)T
...

...
. . .

...

1
(
x1
N

)T
. . .

(
xDEGN

)T

 (4.16)

Ordinary LSQ performed by Eq. 4.15 for diag (W) = [1, . . . 1].

The M step in Eq. 4.14 is (solved by LSQ and WLSQ regression defined in Def. 4.1) formulated

as follows:

Chapter 4. Hierarchical mixture of experts 64

Ût+1
i,j For each expert i, j solve polynomial WLSQ of degree DEG with observations X =

[x1, . . .xN], desired values d = [d1, . . . dN]
T

and weights hi,j =
[
h1
i,j , . . . h

N
i,j

]T
.

v̂t+1
i For top-level gate i-th weight solve polynomial LSQ of degree 1 with observations X =

[x1, . . .xN] and desired values ln hi =
[
lnh1

i , . . . lnh
N
i

]T
.

v̂t+1
i,j For gate in i-th experts group and j-th weight solve polynomial WLSQ of degree 1 with

observations X = [x1, . . .xN], desired values ln hj|i =
[
lnh1

j|i, . . . lnh
N
j|i

]T
and weights

hi =
[
h1
i , . . . h

N
i

]T
.

For covariance matrix, Σ is the situation quite tricky. Large Σ causes a high degree of freedom

in learning because high error will not affect the update rapidly. On the other hand, small Σ

causes strict elimination of candidate experts and then no experts adapts to this space. In [39]

is recommended to calculate weighted covariance matrix with weights hi,j :

Σ̂MLE
i,j =

1

N

N∑

n=1

hni,j (yn − dn)
T

(yn − dn) (4.17)

The Σ̂MLE
i,j in Eq. 4.17 is actually the MLE solution for the Σ [39]. The Σ̂MLE

i,j does not

remove the problem of small/large Σ. The Σ̂MLE
i,j is the source of many numerical instabilities,

mainly if the expert has very small region then Σ̂MLE
i,j approaches zero and the whole procedure

fails(Σ ≈ 0 is singular for N (y (x) |d,Σ) which is inadmissible). One method is to use uniform

Σ and alternatively decrease the value with iterations, but it will not reflect currently assigned

regions. The other method is to calculate ordinary covariance matrix as in Eq. 2.39 where µ = d

or set up bounds for smallest eigenvalues (in this particular the |dn| = 1, thus Σ is a single value)

of the Σ. In implementation, the second mentioned method is used where minimal bound value

is current ordinary covariance of the outputs and desired values which is defined as follows:

Σ̂
(k+1)
i,j = min

{
Σ̂MLE
i,j ,

1

N

N∑

n=1

(yn − dn)
2

}
(4.18)

Entire learning procedure is summarized in Alg. 3.

4.3 Experiments

Two experiments are performed to compare performance of the HME with feed-forward neural

network with one hidden layer (NN). As the benchmark two function approximation problems are

chosen. The benchmark is a multi-modal one-dimensional function f (x) = exp sin (−x+ 2) on

interval (1, 2π) (see Fig. 4.5, left) and the second experiment is an approximation of multi-modal

two-dimensional function f (x, y) = | sinx|y in interval x, y ∈ (−3, 3) (see Fig. 4.5, right).

The HME has following configuration:

The first approximation problem Two experts groups where each group has two experts

(22 weights).

Chapter 4. Hierarchical mixture of experts 65

Algorithm 3: The HME training procedure

Inputs : A set of input vectors X = [x1, . . .xN] with desired vectors d = [d1 . . . dn]
T

, number
of experts in each experts group [n1, . . . nm], degree of expert’s polynomial DEG.

Outputs: A parameter estimate Θ̂ =
{
{vi}mj=1 ,

{{
vi|j
}ni

j=1

}m
i=1

,
{
{Ui,j}ni

j=1

}m
i=1

}
.

// Guess the initial parameters Θ̂(0);

Θ̂(0) = Initialize ();
// algorithm iterations
XDEG ← Vandermore (X) // calculate Vandermore matrix (Eq. 4.16)
for k ← 1 to MAX ITER do

// E step
// Evaluate outputs with method Alg. 2

// The outputs of the Alg. 2 are column vectors y = [y1, . . . yN]
T

y← Feedforward
(
X, Θ̂(k)

)
;

// Evaluate probabilities of unobserved variables hi,j for each datum
for n← 1 to N do

for i← 1 to m do
for j ← 1 to ni do

hni,j =
gi(xn)gj|i(xn)N (y(xn)|dn,Σ)∑m

k=1

∑ni
l=1 gk(xn)gl|k(xn)N (y(xn)|dn,Σ)

; // (Eq. 4.9)

// Evaluate probabilities of unobserved variables hi and hj|i with hj,i
for n← 1 to N do

hni =
∑m
j=1 h

n
i,j ; // (Eq. 4.10)

hnj|i =
hn
i,j

hn
i

; // (Eq. 4.11)

// M step
// Training experts
// Experts:
for i← 1 to m do

for j ← 1 to mi do
W← diag (hi,j); // form a diagonal matrix from hi,j-s

Û
(k)
i,j ←

(
XT
p WXp

)−1
XT
p Wd

// Top level gate
for i← 1 to m do

ln hi ←
[
lnh1

i . . . lnh
N
i

]T
; // hi-s

v̂
(k)
i ←

(
XT
p Xp

)−1
XT
p ln hi

// Experts gates
for i← 1 to m do

for j ← to ni do
W← diag (hi); // form a diagonal matrix from hi-s

v̂
(k)
j|i ←

(
XT
p WXp

)−1
XT
p W ln hj|i

Θ̂← Θ̂(k);

The second approximation problem Two experts groups where each group has four experts

(37 weights).

The neural network has one hidden layer with 10 neurons with linear mapping units. The NN

has 31 weights for the first problem and 41 weights for the second problem. Learning of the NN

is performed by the scaled conjugate gradient method (NETLAB Toolbox for MATLAB [41]).

Chapter 4. Hierarchical mixture of experts 66

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

x

f(
x)

f(x)=exp(sin(−x+2))

−3
−2

−1
0

1
2

3

−4

−2

0

2

4
−3

−2

−1

0

1

2

3

x

f(x,y)=|sin(x)|*y

y

f(
x)

Figure 4.5: Benchmark functions for the HME. Left: f (x) = exp sin (−x+ 2) in interval
x ∈ (1, 4π); Right: f (x, y) = | sinx|y in interval x ∈ (−3, 3).

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

Iteration

lo
g(

||y
−

d|
| 2)

HME log L2 error
Neural Network L2 error

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

Iteration

lo
g(

||y
−

d|
| 2)

HME min error
Neural N. min error
HME max error
Neural N. max error
HME mean error
Neural N. mean error

Figure 4.6: The HME and Neural Networks results comparison for the approximation of the
first function. Left: Log-Euclidean distance between desired value d and output value for the
HME and NN for 20 runs per each; Right: Special values of all experiments - minimal, mean

and maximal Log-Euclidean error.

0 5 10 15 20 25 30 35 40 45 50
3

4

5

6

7

8

9

10

Iteration

lo
g(

||y
−

d|
| 2)

HME log L2 error
Neural Network L2 error

0 5 10 15 20 25 30 35 40 45 50
3

4

5

6

7

8

9

Iteration

lo
g(

||y
−

d|
| 2)

HME min error
Neural N. min error
HME max error
Neural N. max error
HME mean error
Neural N. mean error

Figure 4.7: the HME and Neural Networks results comparison for the approximation of the
second function. Left: Log-Euclidean distance between desired value d and output value for
the HME and NN for 20 runs per each; Right: Special values of all experiments - minimal,

mean and maximal Log-Euclidean error.

Chapter 4. Hierarchical mixture of experts 67

4.3.1 Discussion

The HME is a powerful approach for both approximation problems. The HME converges very

quickly (10-20 iterations) to accurate approximations if it does not fail numerically. The large

difference between the first and second iteration is because the M step in EM algorithm jumps

to a maximum of the Q-function (Eq. 4.13). The initial guess of the parameters of the HME has

much larger error in comparison to the initial guess of the NN. The Q-function has closed form

(Def. 4.1) and converges very fast at the beginning, but the error difference rapidly slows down

with iterations. It means that in the further iterations, the algorithm tries to refine parameter

setting, but the first iteration of the Alg. 3 is essential. The only stop criterion of the HME is

the number of iterations which, sometimes, caused an increasing trend of Euclidean error.

The NN converges slowly but, on the other hand, NN weight space is variable, and the results

get better for more iterations. The 100 iterations for the first and 50 iterations for the second

problem are too few. If the NN has 1000 iterations, then errors are rapidly smaller.

Despite worse results of the NN, the HME is not better only because HME minimize error faster.

The main drawback of the HME is numerical instability for complex architectures. If an expert

has too small hi,j-s, it will never get over small hi,j because it will never get a chance to update

error due to too small weight in the WLSQ.

Significant advantage of the HME, in comparison to the NN, lies in interpretability of the architec-

ture and parameters. The HME parameters are easy to interpret because the divide-and-conquer

approach determines relevance of experts in regions of the input space (see Fig. 4.2 which is ac-

tually input space partition of one gate in experts group for the second approximation problem),

while the NN is distributed approach where no universal recipe how to interpret weights and

architecture is available.

Chapter 5

Feature Integration Theory -

Experimental evaluation of

MLANS

In this chapter, the hierarchical structure of the visual system based on Feature Integration

Theory is shown. The proposed model consists of two layers where in the first layer features are

classified into a corresponding class for each of the five features (colour, direction, size, texture,

shape). The clustering is made by the NMF in the first layer. The NMF outputs are further

classified in the second layer by the Kohonen’s Self Organizing Map (SOM) into regions to reveal

whether some of the low level signals exhibit some simultaneous activity. The Fig. 5.6 illustrates

the structure of the entire system.

5.1 Introduction

5.1.1 Feature integration theory

The Feature Integration Theory (FIT) of attention [42] suggests that object recognition in the

human brain is performed by scene decomposition into a conjunction of features where each

feature is processed separately if it is needed. Subsequently, the features are integrated and

recognized as one particular object. The FIT supposes that the scene is analysed in early stages

by specialized receptors that respond to properties as orientation, colour, spatial frequency or

movement, and distribute those features into separate parts of brain [42]. The FIT registers early,

automatically and in parallel across the visual field, while the objects are identified separately

and only at later stage, which requires focused attention [42]. The problem of FIT lies in

binding the decomposed scene. Once the scene is decomposed into separate features, the resulting

information shall keep the information.

68

Chapter 5. Feature Integration Theory - Experimental evaluation of MLANS 69

Suppose, for example, there are wooden doors to be recognized. The object’s feature classes are

rectangular shape, brown colour and wooded texture. Each feature class is recognized separately

and, subsequently, in the integration phase the object is recognized from the present conjunction

of feature classes as a door.

5.2 Description of experiment

The learning process is performed as unsupervised. One input consists of five 100 dimensional

vectors:

xn =
{
xcolorn ,xdirectionn ,xshapen ,xsizen ,xtexturen

}
(5.1)

Each element of the xn stands for different feature, and each is processed by separate MLANS

that classifies corresponding feature xfeaturen of the input vector xn. Each input feature vector

xfeaturen is an image with 10 − by − 10 pixels thus learning is performed on 100 dimensional

vectors per feature (100*5 values for each input sample xn). After each feature is processed

by corresponding MLANS in the first layer, the output fuzzy memberships f
(
xfeaturen |Θk

)
(in

notion of EM the probability p
(
yn = concept|xfeaturen |Θk

)
) are used as inputs at the second

layer. The MLANSs outputs are again processed as vector of features yn:

yn =
{
ycolorn ,ydirectionn ,yshapen ,ysizen ,ytexturen

}
(5.2)

Each MLANS has Kfeature classes where the Kfeature is the number of different classes defined

in labels of the input data. The outputs yfeaturen of the MLANSs are the fuzzy memberships of

presence of each feature the input vector xfeaturen .

The second layer performs clustering of the memberships yn from the first layer. The purpose of

the second layer is to find receptive fields of features without any prior knowledge for learning.

As the classifier, the Kohonen’s SOM is used. The SOM has some methods that are used to

visualize high-dimensional models as matrices that are easy to visualise and interpret.

5.2.1 Scene features

The FIT describes how the scene processing is performed by the brain. The decomposition of

the scene into several features is performed in earlier stages of the scene processing. Results of

the scene decomposition are used for clustering of the objects of which is the scene made of. The

features are restricted in following set of classes:

Colour: blue, cyan, green, magenta, olive, purple, red, teal, yellow.

Directions: diagonal, vertical, horizontal.

Shapes: crescent, cross, diamond, ellipse, heart, hexagon, pentagon, rectangle, star, triangle

Chapter 5. Feature Integration Theory - Experimental evaluation of MLANS 70

Sizes: big, medium, small

Textures: dotted, grid, lined, plain, tweed

The visualisation of corresponding classes of features is shown in Fig. 5.1, 5.2, 5.3, 5.4 and 5.5

blue cyan green

magenta olive purple

red teal yellow

Figure 5.1: Visualisation inputs for each possible concept of feature Colour.

diagonal horizontal vertical

Figure 5.2: Visualisation inputs for each possible concept of feature Direction.

crescent cross diamond elipse hearth

hexagon pentagon rectangle star triangle

Figure 5.3: Visualisation inputs for each possible concept of feature Shape.

big medium small

Figure 5.4: Visualisation inputs for each possible concept of feature Size.

dotted grid lined plain tweed

Figure 5.5: Visualisation inputs for each possible concept of feature Texture.

Chapter 5. Feature Integration Theory - Experimental evaluation of MLANS 71

5.2.2 Clustering in the first layer

The entire system has two layers. In the first layer, the features are clustered and classified into

corresponding classes. The system has five separate MLANSs where each MLANS represents

one of the features mentioned above. The input dimension is uniform for all features because

the inputs are processed as images from the same scene. The number of separate classes of each

feature is known thus MLANSs are initialized with their corresponding number of classes. In

the second stage, the outputs of the MLANSs for each input vector xn are used as inputs yn

for training the SOM (structure is shown in Fig. 5.6). The MLANSs outputs are encoded in

1−to−K vectors, where the values are memberships of a particular class in the input vector. The

SOM inputs yn has 30 dimensions (9 colours + 3 directions + 10 shapes + 3 sizes + 5 textures

= 30 values), and there are 4050 possible combinations of features (9 colours × 3 directions ×
10 shapes × 3 sizes × 5 textures = 4050 values).

xn =
(
xcolorn ,xdirectionn ,xshapen ,xsizen ,xtexturen

)

xcolorn xdirectionn xshapen xsizen xtexturen

ycolorn ydirectionn yshapen ysizen ytexturen

MLANS - color MLANS - direction MLANS - shape MLANS - size MLANS - texture

SOM

Figure 5.6: In the first layer input vectors, xfeature
n for separate features are processed. After

MLANS processes the input xfeature
n the fuzzy memberships formed into yn are used as input

for the SOM that finds receptive field of classified input vectors xn.

5.2.2.1 Self Organising Maps

The results of the SOM can be evaluated from different perspectives. The first perspective is to

use the best matching unit (the nearest neuron to an input datum w.r.t. some distance measure)

as representative vector of a certain input class. The second perspective is to visualize weights of

trained SOM. Visualization can give a clear insight into data separability and similarity of input

vectors for relatively very high dimensionality. There are two important visualization tools, the

first is called U-matrix, which is a matrix of distances of a neuron to topologically neighbouring

neurons and the second tool is component plane which is a projection of a dimension of weight

vectors into two dimensional space with respect to the topology.

Example of component planes and U-matrices for classification of the Fig. 1.6 are depicted in

Fig. 5.7. The both tools provide relatively fast outlook into the trained SOM.

Chapter 5. Feature Integration Theory - Experimental evaluation of MLANS 72

x

d
−4.1

−0.677

2.75

2 normally distributed clusters

y

d
−5.78

−1.7

2.38

2 normally distributed clusters

U−matrix

0.256

1.39

2.53

Figure 5.7: Left: Component planes, Right: The U-matrix. From the U-matrix, it is easy to
see that there are two significant clusters because the distances of some neurons on the ridge

are bigger than those in the clusters.

The plateaus in U-matrices represent a crowded group of neurons because their distance with

neighbours is relatively small while ridges represent large distance with neighbours and represents

the neurons that separate clusters.

5.3 Experiment

5.3.1 First layer - training MLANS

At the first phase the MLANSs are trained for clustering of each feature. Each feature class is

represented as 100 dimensional Gaussian with mean vector µ̂(i) and positive definite symmetric

covariance matrix Σ̂
(i)
k , thus each feature class is represented by 100 + 1002 values (the Σ̂(i) is

a symmetric matrix thus the values above or below diagonal may be ignore because they are

redundant). The dataset has 81000 training vectors.

The MLANSs are initialized with respect to input vectors as follows:

µ̂
(0)
k = µ̂+ r

10 µ̂

Σ̂
(0)
k = 1

N

∑N
n=1 (xn − µ̂) (xn − µ̂)

T (5.3)

Where r ∈ (0, 1) is a random constant and µ̂ is the arithmetic average of all inputs vectors xfeaturen

for the given feature. The initialization procedure of the µ
(0)
k is practically only perturbed

arithmetic mean. The Σ
(0)
k is initialised with covariance of all inputs for the given feature thus

the eigenvalues are large enough to reflect high initial fuzziness.

The learning on MLANSs is performed 10 times and for each feature the MLANS with highest

lnL
(
Θ|Xfeature

)
is taken. Since the mean vector µ̂(i) describes significantly the a concept class

the values µ̂(i) are used as representatives. The mean vectors µ̂(end) of the MLANSs with the

highest likelihood are visualized in Fig. 5.8, 5.9, 5.10, 5.11 and 5.12 respectively.

From the Fig. 5.8, 5.9, 5.10, 5.11 and 5.12 is clear that some classes are not found or are

clustered unambiguously. For example, the colours, the blue and yellow are clustered, because

the algorithm felt into local optimum with general concepts where the colour is supposed to be

Chapter 5. Feature Integration Theory - Experimental evaluation of MLANS 73

uniformly ≈ 0.5. Another problem is that multiple classes are clustered as only one concept

class, for example, the horizontal and the diagonal directions classes are clustered as one concept

class while vertical is clustered into two same classes.

Color 1

0

0.5

1
Color 2

0

0.5

1
Color 3

0

0.5

1

Color 4

0

0.5

1
Color 5

0

0.5

1
Color 6

0

0.5

1

Color 7

0

0.5

1
Color 8

0

0.5

1
Color 9

0

0.5

1

Figure 5.8: Mean values of trained MLANS for feature vectors with colour.

Direction 1 Direction 2 Direction 3

Figure 5.9: Mean values of trained MLANS for feature vectors with direction.

Shape 1 Shape 2 Shape 3 Shape 4 Shape 5

Shape 6 Shape 7 Shape 8 Shape 9 Shape 10

Figure 5.10: Mean values of trained MLANS for feature vectors with shape.

Size 1 Size 2 Size 3

Figure 5.11: Mean values of trained MLANS for feature vectors with size.

Texture 1 Texture 2 Texture 3 Texture 4 Texture 5

Figure 5.12: Mean values of trained MLANS for feature vectors with texture.

Chapter 5. Feature Integration Theory - Experimental evaluation of MLANS 74

5.3.2 Second phase - Training the SOM

In the second phase, all input vectors are evaluated on learned MLANSs where the output vectors

are probabilities of class memberships f
(
xfeaturen |Θfeature

class

)
. The MLANS outputs are used as

30 dimensional inputs for the SOM (9 colours, 3 directions, 10 shapes, 3 sizes and 5 textures).

The SOM Toolbox [43] is used for clustering the yn. Parameters of the SOM are: rectangular

lattice, decreasing influence to neighbouring neurons that initially starts at 5 and decreases to 1

and 10 epochs.

5.3.2.1 SOM results

The smallest lattice, whose results are significant enough, is the SOM with 10− by−10 neurons.

The component planes for the SOM with 10 − by − 10 neurons are shown in Fig. 5.13 and the

U-matrix in Fig. 5.14. The component planes for the SOM with 50− by− 50 neurons are shown

in Fig. 5.15 and the U-matrix in Fig. 5.14. The results of the experiment with the SOM with the

same number of neurons as all possible combinations of features (4050) organized into 90−by−45

lattice is depicted in Fig. 5.17 and 5.18. Each component plane is one feature class because

each input dimension of the SOM associated with one fuzzy membership of the MLANS. The

visualization approximately reveals where there are bounds of the entire system. From Fig. 5.11

is apparent that MLANS which represents medium size is ambiguous which is reflected in a small

difference between corresponding component planes. The worse results are for colour, where the

MLANS clustered only three significant classes: one for blue, the another for yellow and reaming

seven represent the third universal concept. The third and ninth component planes are clusters

for yellow and blue, but the other classes are almost indistinguishable. For direction, only two

is distinguished, one for the diagonal and horizontal and one for vertical direction. The second

class is almost the same as the third. Texture clustering is well distinguished in comparison to

other features. This is obvious from Fig. 5.12 where classes seem significantly different except of

the second and fourth where there are black horizontal stripes, which propagate ambiguity in the

corresponding component planes. Finally the third, sixth, ninth and tenth shapes are clustered

perfectly as unique classes, which are reflected with very different component planes. The first

and second classes are clustered as the same class as well as fourth and third.

5.3.3 SOM for feature clustering

The MLANS had shown relatively good results for some features (e.g. textures) but it is not

generally robust technique. It would be useful to perform some experiments with the SOM on

the same data as for MLANS and compare the results.

First of all, the smallest comparable SOM network is tested: as few neurons as possible and all

features covered kept as the principal requirement. The following SOM configuration for the

smallest SOM for feature clustering is used:

Colour: 3− by − 3 SOM.

Chapter 5. Feature Integration Theory - Experimental evaluation of MLANS 75

size

d
0.24

0.62

1
size

d
2.12e−06

0.00167

0.00335
size

d
5.46e−05

0.378

0.757
colour

d
0.0879

0.113

0.137
colour

d
0.0736

0.111

0.149
colour

colour

d
0.00107

0.193

0.386
colour

d
0.0984

0.117

0.135
colour

d
0.148

0.175

0.202
colour

d
0.0681

0.104

0.14
colour

d
0.0698

0.0883

0.107
colour

direction

d
0.682

0.814

0.945
direction

d
0.0273

0.0942

0.161
direction

d
0.0274

0.0923

0.157
texture

d
0.00804

0.472

0.935
texture

d
0.00247

0.292

0.581
texture

texture

d
0.000241

0.0198

0.0393
texture

d
0.00846

0.213

0.417
shape

d
0.00232

0.00313

0.00395
shape

d
0.00532

0.00683

0.00834
shape

d
0.00684

0.0133

0.0198
shape

shape

d
0.0821

0.261

0.44
shape

d
0.00794

0.0337

0.0594
shape

d
0.164

0.304

0.444
shape

d
0.309

0.378

0.447
shape

d
0.00747

0.0459

0.0843
shape

Figure 5.13: Component planes of SOM with 10-by-10 neurons (100 neurons) placed in rect-
angular lattice that perform clustering on 30 dimensional inputs taken from MLANS feature

outputs.

U−matrix

0.0693

0.187

0.305

Figure 5.14: The U-matrix of SOM with 10-by-10 neurons (100 neurons) placed in rectangular
lattice that perform clustering on 30 dimensional inputs taken from MLANS feature outputs.

Directions: 2− by − 2 SOM.

Shapes: 4− by − 4 SOM.

Sizes: 2− by − 2 SOM.

Textures: 3− by − 3 SOM.

The smallest SOM gives promising results for colours in comparison to MLANS because SOM

distinguishes six of nine (see Fig. 5.21, left). The results for the textures and shapes are compa-

rable with MLANS (see Fig. 5.23 and 5.22, right). On the other hand, the MLANS gives better

results for directions where the two of three are recognized while SOM fails and considers all

directions as almost identical (see Fig. 5.21, right)

Chapter 5. Feature Integration Theory - Experimental evaluation of MLANS 76

Figure 5.15: Component planes of SOM with 50-by-50 neurons (100 neurons) placed in rect-
angular lattice that perform clustering on 30 dimensional inputs taken from MLANS feature

outputs.

U−matrix

0.0179

0.13

0.242

Figure 5.16: The U-matrix of SOM with 50-by-50 neurons (2500 neurons) placed in rect-
angular lattice that perform clustering on 30 dimensional inputs taken from MLANS feature

outputs.

If the number of neurons is increased, the SOM gives much better results. For 10 − by − 10

SOM, learning phase gives at least one neuron whose weight is similar to one of the represented

feature (see Fig. 5.19, upper row), for 50− by− 50 SOM the results are significantly better than

the others which can be easily seen from the U-matrices. The neurons form regions of weights,

where each region is separated by ridge (separating neurons between patterns do not represent

any feature), and plateaus are the separated concept classes.

Chapter 5. Feature Integration Theory - Experimental evaluation of MLANS 77

Figure 5.17: Component planes of SOM with 90-by-45 neurons (4050 neurons) placed in rect-
angular lattice that perform clustering on 30 dimensional inputs taken from MLANS feature

outputs.

U−matrix

0.0162

0.117

0.218

Figure 5.18: The U-matrix of SOM with 90-by-45 neurons (4050 neurons) placed in rect-
angular lattice that perform clustering on 30 dimensional inputs taken from MLANS feature

outputs.

5.3.3.1 Comparison of SOM and MLANS

Main drawback of MLANS lies in the absence of any parameter that regulates complexity. Fixed

complexity bounds the ability to tune and, alternatively, obtain better results. Once MLANS

reaches a certain error, its results can not be improved by increasing K, which is only a com-

plexity parameter. On the other hand, the SOM rapidly increases the quality of clustering with

increasing complexity of the structure (number of neurons). Another problem of the MLANS is

Chapter 5. Feature Integration Theory - Experimental evaluation of MLANS 78

U−matrix − color

0.5

1
U−matrix − direction

0.5
1
1.5
2

U−matrix − shape

0.5
1
1.5
2
2.5

U−matrix − size

1
2
3

U−matrix − texture

1
2
3

U−matrix − color

0.1
0.2
0.3

U−matrix − direction

0.5
1
1.5

U−matrix − shape

0.5
1
1.5
2

U−matrix − size

0.5
1
1.5
2

U−matrix − texture

0.5
1
1.5
2

Figure 5.19: The U-matrices of 10 − by − 10 (upper row) and 50 − by − 50 SOM which are
trained for the same task as the MLANS in the first phase. For each feature one SOM is

trained.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

n−by−n neurons

L 2 e
rr

or

SOM/MLANS traning error on input features

SOM size
SOM colour
SOM direction
SOM texture
SOM shape
MLANS size
MLANS colour
MLANS direction
MLANS texture
MLANS shape

Figure 5.20: SOM and MLANS Euclidean distances from the most similar pattern (again
measured by Euclidean metrics).

that results are strongly affected by initialisation. For example if µ̂(0)-s are chosen inappropri-

ately (for example near to each other) the algorithm is attracted by local optima, which represent

some general concepts. The Σ̂(0) gives the alternative to complexity parameter, but there is no

general procedure how to appropriately guess Σ̂(0) to get better results.

The SOM has better results as complexity increases (see Tab. 5.1 and Fig. 5.20).

The absence of complexity parameter, that can shift forward to the better results, restricts the

MLANS in many domains where such flexibility is necessary. On the other hand, knowing the

number of classes brings all necessary information, while SOM requires some tuning (neighbour-

hood, lattice, number of neurons)

Chapter 5. Feature Integration Theory - Experimental evaluation of MLANS 79

Size Colour Direction Texture Shape
∑

MLANS 4.34 1.09 0.29 0.28 6.95 12.95
Smallest SOM 5.38 2.30 2.48 3.32 3.26 16.74

3− by − 3 SOM 0.78 2.06 0.58 1.93 7.39 12.75
4− by − 4 SOM 0.31 1.47 0.29 1.91 5.80 9.77
5− by − 5 SOM 0.26 1.24 0.26 0.53 3.67 5.96
6− by − 6 SOM 0.25 1.13 0.26 0.28 0.79 2.70
7− by − 7 SOM 0.23 1.04 0.23 0.27 0.31 2.09
8− by − 8 SOM 0.22 1.02 0.23 0.24 0.30 2.01
9− by − 9 SOM 0.22 1.00 0.22 0.23 0.30 1.96

10− by − 10 SOM 0.21 1.00 0.21 0.23 0.253 1.90
11− by − 11 SOM 0.21 1.00 0.21 0.22 0.26 1.89
12− by − 12 SOM 0.20 1.00 0.20 0.21 0.24 1.85
13− by − 13 SOM 0.20 1.00 0.20 0.21 0.23 1.83
14− by − 14 SOM 0.19 1.00 0.19 0.20 0.22 1.80
15− by − 15 SOM 0.19 1.00 0.19 0.20 0.22 1.79
16− by − 16 SOM 0.18 1.00 0.19 0.20 0.21 1.77
17− by − 17 SOM 0.18 1.00 0.18 0.20 0.21 1.76
18− by − 18 SOM 0.18 1.00 0.18 0.18 0.22 1.76
19− by − 19 SOM 0.17 1.00 0.18 0.19 0.21 1.74
20− by − 20 SOM 0.17 1.00 0.18 0.19 0.21 1.74
30− by − 30 SOM 0.16 1.00 0.17 0.17 0.18 1.67
35− by − 35 SOM 0.15 1.00 0.16 0.16 0.18 1.64
40− by − 40 SOM 0.16 0.99 0.16 0.16 0.18 1.65
45− by − 45 SOM 0.16 0.99 0.16 0.15 0.18 1.63
50− by − 50 SOM 0.15 0.99 0.16 0.17 0.17 1.63

Mean 0.5936 1.1314 0.3093 0.4797 1.2851 3.7991
Variance 1.6867 0.1125 0.2113 0.5768 5.0414 18.7263

Table 5.1: SOM and MLANS Euclidean distances from the most similar pattern (again
measured by Euclidean metrics).

Colour 1 Colour 2 Colour 3

Colour 4 Colour 5 Colour 6

Colour 7 Colour 8 Colour 9

Direction 1 Direction 2

Direction 3 Direction 4

Figure 5.21: Left: All weight vectors of the SOM with 3− by− 3 neurons in the rectangular
lattice trained on the colour features; Right: All weight vectors of the SOM with 2 − by − 2

neurons in the rectangular lattice trained on the direction features.

Chapter 5. Feature Integration Theory - Experimental evaluation of MLANS 80

Size 1 Size 2

Size 3 Size 4

Shape 1 Shape 2 Shape 3 Shape 4

Shape 5 Shape 6 Shape 7 Shape 8

Shape 9 Shape 10 Shape 11 Shape 12

Shape 13 Shape 14 Shape 15 Shape 16

Figure 5.22: Left: All weight vectors of the SOM with 2− by− 2 neurons in the rectangular
lattice trained on the size features; Right: All weight vectors of the SOM with 4 − by − 4

neurons in the rectangular lattice trained on the shape features.

Texture 1 Texture 2 Texture 3

Texture 4 Texture 5 Texture 6

Texture 7 Texture 8 Texture 9

Figure 5.23: All weight vectors of the SOM with 3− by−3 neurons in the rectangular lattice
trained on the texture features

Chapter 6

Region clustering of satellite

images with Wishart distribution

In this chapter, a scheme for region clustering of images is shown. The images are divided into

separate regions with constant width and height. Pixels of the images are transformed into

feature vectors, and scattering matrix between the feature vectors is calculated [44]. The feature

representation allows rapid reduction of storing requirements in comparison to the original image

region because feature matrices are usually smaller. The feature matrices are used for further

clustering by EM algorithm (MLANS) with a mixture of Wishart distributions. The Wishart

distribution performs estimation of scattering matrices of normally distributed observations. The

parameters of the Wishart distributions are estimated by the EM algorithm, and the estimated

parameters are used for classification of regions.

6.1 Introduction

Images can be perceived as a large dense matrix with many elements. The large images images

can be intractable for tasks that require larger computational efforts. Especially satellite images

are taken with very high resolution and some representations that reduce computational efforts

based on dense representation are need.

One of the methods is to split image into regions and to reduce the number of elements in the

regions by computing scattering matrix of image features between several features. The simplest

region scattering matrix of an image is to take pixel intensities of the image region and compute

scattering matrix between the pixel depths. The method is very non-robust for clustering because

it does not reflect important properties of the neighbourhood pixels like region changes. In [44]

they propose the feature representation that utilizes some extra features that describe image

characteristics of each pixel. The utilized features are pixel depth intensities and absolute value

of the sum of the first and second gradient over horizontal and vertical axes (see Fig. 6.1). The

extra features are used to calculate the scattering matrix of the region that is the reduced feature

matrix.

81

Chapter 6. Experiment - Region clustering of satellite images with Wishart distribution 82

There are two main contributions within the method in [44]. Firstly, the scattering matrix of

several image features is computed inside in a region of interest and used as a region descriptor.

Instead of the joint distribution of the image statistics, the scattering matrix is used as the

element that represents entire region, so the dimensionality is smaller. Secondly it provides a

fast method of calculating feature representation using the 7− by− 7 (or 5− by− 5 if the colour

is grey) matrix and thus the computational cost of the classified region is independent of the size

of the region.

In original paper [44] the feature matrices are classified by eigenvalues of the feature matrix,

where the clustering on eigenvalues is performed by k-means algorithm . The k-means gives

promising results, but the algorithm ignores important information - the eigenvectors which can

improve clustering accuracy.

Here the more sophisticated is used; problem of clustering of scattering matrices can be solved

by Wishart distribution W (S|Σ) that estimates covariance matrix of normal distribution from

where the observations of scattering matrices (feature matrices) were originally drawn. The

Theorem 2.4 says more rigorously how the Wishart distribution can be useful in this context.

6.2 Image representation

Suppose an image I where each pixel is defined by three colour depths: red (R), green (G) and

blue (B). The pixel in i-th row, j-th column and k-th colour depth level1 is accessed by I (i, j, k).

For simplicity k = 1 corresponds to red, k = 2 to green and k = 3 is for blue. Horizontal gradient

of i-th row, j-th column and k-th colour depth level is denoted as ∂I(i,j,k)
∂x and is computed as

follows:
∂I (i, j, k)

∂x
= I (i+ 1, j, k)− I (i− 1, j, k) (6.1)

A vertical gradient of a pixel in i-th row, j-th column and k-th colour depth is calculated as

follows:
∂I (i, j, k)

∂y
= I (i, j + 1, k)− I (i, j − 1, k) (6.2)

The second order gradient is computed by the same method as the first gradient but instead

of I, the result from corresponding first gradient is used. Each pixel has three colour depths so

gradients of depths D are summed to have single value, which defined as follows:

∂I(i,j)
∂x =

∑D
d=1

∂I(i,j,d)
∂x

∂I(i,j)
∂y =

∑D
d=1

∂I(i,j,d)
∂y

(6.3)

The same as for the first gradient is performed with the second order gradients:

∂2I(i,j)
∂x2 =

∑D
d=1

∂2I(i,j,d)
∂x2 =

∑D
d=1

∂
∂x

(
∂I(i,j,d)
∂x

)

∂2I(i,j)
∂y2 =

∑D
d=1

∂2I(i,j,d)
∂y2 =

∑D
d=1

∂
∂y

(
∂I(i,j,d)
∂y

) (6.4)

1Images restricted to depth 3 with R-G-B colour depths, but, for example infra-red images have more than
three dimensions or different colour map can be used.

Chapter 6. Experiment - Region clustering of satellite images with Wishart distribution 83

Original image I Red I(:,:,1) Green I(:,:,2) Blue I(:,:,3)

Gradient ∂ I / ∂ x Gradient ∂ I / ∂ y Gradient ∂
2
 I / ∂ x

2
Gradient ∂

2
 I / ∂ y

2

Figure 6.1: Visualisation of particular attributes taken as a features.

All above described features are used to form the feature vector f (i, j) which is calculated for

each pixel of the region. The feature vector is composed of following elements:

f (i, j) =

[
I (i, j, 1) , I (i, j, 2) , I (i, j, 3) ,

∣∣∣∣
∂I (i, j)

∂x

∣∣∣∣ ,
∣∣∣∣
∂I (i, j)

∂y

∣∣∣∣ ,
∣∣∣∣
∂2I (i, j)

∂x2

∣∣∣∣ ,
∣∣∣∣
∂2I (i, j)

∂y2

∣∣∣∣
]T

(6.5)

The example of elements of a feature vector is shown in Fig. 6.1. The feature vectors are

calculated for each pixel in processed region. The order of the feature vectors is irrelevant

thus the pixels can be taken in arbitrary order. The scattering matrix is calculated from the

well-known formula from statistics as follows:

S =
∑iend

i=istart

∑jend

j=jstart

(
f (i, j)− f

) (
f (i, j)− f

)T

f = 1
N

∑iend

i=istart

∑jend

j=jstart
f (i, j)

(6.6)

Where the istart, iend determine the first and last horizontal coordinate of the region respectively

and jstart, jend determine the first and last vertical coordinate of the region. The scattering

matrix calculated by formula Eq. 6.6 where feature vectors are defined in Eq. 6.5. The feature

vector has 7 elements thus scattering matrices are stored in 7 − by − 7 arrays. The scattering

matrices are used as inputs (observation) for the EM algorithm to adapt their parameter and

automatically cluster the regions into K classes. The procedure of scattering matrix computation

of an image region is formalized as the function Sn = Cov (I, regn) shown in Alg. 4.

Chapter 6. Experiment - Region clustering of satellite images with Wishart distribution 84

Algorithm 4: The Sn = Cov (I, rn) method that performs transformation of single region into
feature matrix Sn
Data: An image I with rectangularly determined coordinates of a region

regr =

istart, iend︸ ︷︷ ︸

x

, jstart, jend︸ ︷︷ ︸
y

Result: Scattering matrix Sr of the specified region.

// calculate average mean vector of features f = [0, . . . 0];
for i← istart to iend do

for j ← jstart to jend do
//the feature vector f (i, j) from Eq. 6.5
f = f + f (i, j);

Sr = I;
for i← istart to iend do

for j ← jstart to jend do

Sr = Sr +
(
f (i, j)− f

) (
f (i, j)− f

)T

6.3 Classification of image regions

The Wishart distribution has the useful property for the scattering matrices as stated in The-

orem 2.4. The Theorem 2.4 enables the Wishart distribution to be used as measurement of

similarity between various classes of scattering matrices. The parameter adaptation is performed

by the EM algorithm2 (widely analysed in Chapter 3) that gives general framework for density

estimation of mixtures. After the parameters of the densities in the mixture are adapted, the

region is labelled with a density k which has the highest probability p (yn = k|Sn,Θ). The pa-

rameter that specifies degrees of freedom N in Eq. 2.47 is not needed (otherwise the EM will try

to estimate the number of pixels from which the scattering matrix is calculated) thus simplified

version of Wishart distribution defined in Eq. 2.48 is used instead.

The classification of a datum Sn into one of the K regions for the parameters Θ = {Σ1, . . .ΣK} of

the mixture of K Wishart PDFs is performed by function Classify (S) whose outcome is defined

as follows:

Classify
(
Sn, Θ̂

)
= arg max
k∈{1,...K}

p
(
y = k|Sn, Θ̂

)
= arg max
k∈{1,...K}

π̂kW
(
Sn|Σ̂k

)

∑K
i=1 π̂iW

(
Sn|Σ̂i

) (6.7)

6.4 Estimation of the parameters

The estimation is performed with Eq. 3.36 shown in Chapter 3. The entire procedure of param-

eter estimation is described in Alg. 6.

2The reason why the EM is referred instead of NMF is because the notion of EM is used.

Chapter 6. Experiment - Region clustering of satellite images with Wishart distribution 85

Algorithm 5: The Sn = FeatureExtraction (I, wr, hr) method that extracts feature (scattering)
matrices from the input image

Data: The input image I (with width w and height h) and width wr and height hr of each
region.

Result: Scattering matrices {S1, . . .SN} all regions in image.

{S1 ← I, . . .SN ← I};
k ← 1;
i← wr;
j ← hr;
while i ≤ w do

while j ≤ h do
rk = [i− wr, j − hr, wr, hr];
Sk = Cov (I, rk);
i← i+ wr;
j ← j + hr;
k ← k + 1;

i← i+ wh;

Algorithm 6: Parameter estimation of mixture of Wishart distribution from Eq. 3.1 an image
I
input : An image I whose regions are clustered with specified image width w and height h

and dimensions of clustered regions wr for width and hr for height.
output: Set of parameters of the mixture in Eq. 3.1.

{S1, . . .SN} ← FeatureExtraction (I, wh, hh);
i← 0; // iterations

Θ̂(0) ←
{

Σ̂
(0)
1 , . . . Σ̂

(0)
K

}
;

while i ≤MAX ITER do
for k ← 1 to K do

// E step

p
(
yn = k|Sn, Θ̂(i)

)
← Eq. 3.7;

// M step.

Σ̂
(i+1)
k ← Eq. 3.36;

π̂
(i+1)
k ← Eq. 3.12;

i← i+ 1;

6.5 Experiments

Three experiments with satellite images are performed. The number of classes is 5 (K = 5).

The first image is taken from [45] which is the satellite image of Viljandi located in Estonia.

Input image resolution is 2500 − by − 2380 pixels and region sizes are 50 − by − 50, thus 2880

feature matrices are clustered. The result is shown in Fig. 6.2.

The second image is taken from [46] which is the satellite image of Amsterdam the capital of

Netherlands. Input image resolution is 2400− by− 2400 pixels and region sizes are 50− by− 50,

thus 2209 feature matrices are clustered. The result is shown in Fig. 6.3.

Chapter 6. Experiment - Region clustering of satellite images with Wishart distribution 86

The third image is taken from [47] which is the satellite image of Tadco Farms located in Saudi

Arabia. Input image resolution is 3873 − by − 2112 pixels and region sizes are 100 − by − 100

thus 608 feature matrices are clustered. The result is shown in Fig. 6.4.

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

4

4

4

2

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

4

2

2

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5

4

4

4

4

2

4

4

4

4

4

5

5

5

5

5

5

5

5

4

4

4

4

4

4

2

2

2

4

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

4

2

2

2

4

4

4

4

4

5

4

3

3

5

5

5

5

5

5

5

5

4

4

4

4

4

4

4

4

4

4

4

5

3

3

4

5

5

5

5

5

5

5

4

4

4

4

4

4

4

4

4

4

3

5

3

3

3

4

5

5

5

5

5

5

5

5

2

4

4

4

4

4

5

4

3

3

4

3

5

5

5

5

5

5

5

5

5

5

4

2

4

4

5

5

4

4

4

3

4

4

4

4

4

4

5

5

5

5

5

5

5

2

4

4

3

5

5

4

3

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

2

4

3

3

3

3

4

3

4

4

4

4

4

4

5

5

5

5

5

5

5

5

4

2

4

4

3

3

3

4

4

4

4

4

5

4

4

4

5

5

5

5

5

5

5

4

2

4

3

3

3

3

3

4

4

4

4

5

4

3

3

5

5

5

5

5

5

5

4

4

4

3

3

3

3

4

4

4

4

4

4

3

3

3

4

5

5

5

5

4

3

4

4

5

5

5

3

3

3

5

5

5

4

5

3

3

3

4

4

4

4

5

5

3

4

4

5

4

5

3

3

3

3

3

3

4

5

3

3

5

5

4

4

4

4

4

5

5

5

5

5

5

3

3

3

3

3

4

4

4

4

3

5

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

4

4

4

4

4

4

4

4

4

4

4

4

4

4

5

5

5

5

4

5

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

3

3

3

3

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

4

5

3

3

3

3

4

5

3

4

4

4

5

4

Figure 6.2: The clustering results (bottom) of the input image (upper) located in the Viljandi,
Estonia [45].

Chapter 6. Experiment - Region clustering of satellite images with Wishart distribution 87

5
5
2
2
2
2
5
5
5
5
5
5
5
2
2
2
5
5
5
2
5
5
5
5
5
5
5
5
5
5
2
4
2
2
5
5
5
5
2
2
2
5
5
5
2
2
2

5
2
2
2
4
2
5
5
5
2
5
5
5
5
2
2
2
2
5
4
4
4
2
5
5
5
2
2
2
5
2
2
2
2
2
5
5
5
2
5
5
5
2
2
5
2
5

5
2
4
2
2
5
5
5
5
5
2
2
5
5
2
2
2
2
2
2
2
2
4
2
2
2
2
2
2
2
5
2
2
2
5
5
5
5
5
2
2
2
2
2
2
2
2

2
4
4
4
2
2
2
2
5
5
2
2
2
2
2
2
4
4
4
4
2
4
4
4
4
2
4
2
4
4
2
5
2
2
5
5
5
5
5
5
2
2
2
2
2
2
2

2
2
2
2
5
5
2
2
2
2
4
2
2
2
2
2
4
4
4
4
2
2
4
4
4
2
2
2
2
4
2
5
5
2
2
5
5
5
5
2
2
2
2
2
5
5
4

2
2
2
5
2
2
4
4
2
4
4
4
2
4
4
4
4
4
2
2
4
4
4
2
2
2
5
2
2
2
2
2
2
2
2
2
5
5
5
2
2
2
2
2
5
5
3

2
2
2
2
2
2
4
4
2
4
4
4
2
4
2
2
2
4
4
2
2
2
4
4
4
2
2
2
5
2
2
2
2
5
2
4
2
2
5
5
2
2
2
5
2
4
3

2
2
4
2
2
4
4
4
2
2
4
4
4
2
2
4
4
2
2
2
2
2
2
4
2
2
2
4
2
2
2
2
2
5
2
2
2
5
5
5
2
2
5
5
4
3
3

4
4
4
4
4
4
4
5
2
5
2
2
5
2
4
2
4
5
2
5
5
5
2
4
2
5
2
2
5
5
2
5
5
5
5
5
5
5
5
2
5
5
5
2
4
3
3

4
4
4
4
4
4
2
5
5
5
5
4
4
4
4
2
4
2
5
5
5
5
5
2
2
5
5
5
5
2
2
2
2
2
5
5
5
5
2
2
5
5
5
4
3
3
2

4
4
4
4
4
4
2
5
5
5
2
2
2
2
4
4
4
2
5
5
5
5
5
4
4
5
5
2
5
5
2
2
2
2
5
5
5
5
5
5
5
5
5
5
2
5
5

2
2
2
2
2
5
5
5
5
4
4
4
2
4
4
4
4
2
5
5
5
5
5
5
2
5
2
2
2
5
5
5
2
2
5
5
5
5
5
2
5
5
5
5
2
5
5

4
4
4
4
4
2
2
5
5
2
4
2
4
4
4
4
4
4
5
2
5
5
5
5
4
2
2
2
5
5
5
5
2
2
2
2
2
2
5
5
5
5
5
5
2
2
5

4
4
4
4
4
4
4
2
5
5
4
5
2
5
5
2
2
4
5
2
2
5
5
5
4
5
2
2
5
5
5
5
5
5
2
2
5
5
5
2
5
5
5
5
5
2
5

2
2
4
4
4
4
4
2
5
5
2
5
5
5
5
5
5
5
5
2
5
5
5
5
2
5
2
2
5
5
5
2
2
2
2
5
5
2
5
5
5
5
5
5
5
2
2

2
4
2
4
2
4
4
2
2
4
4
2
5
5
5
5
5
5
5
5
5
5
5
5
2
5
5
4
2
5
5
2
4
2
2
2
2
2
5
5
5
5
5
5
5
5
2

2
2
4
4
4
4
4
2
4
4
2
4
2
2
5
5
5
5
5
2
5
5
5
5
5
5
5
2
5
5
5
2
4
4
4
4
4
4
2
5
5
5
2
2
5
5
2

2
4
4
4
4
4
4
4
4
2
2
2
2
4
2
5
5
5
5
2
5
5
5
5
5
5
5
5
5
5
5
2
4
4
4
4
4
4
2
5
5
2
2
4
2
2
5

2
4
2
4
4
4
4
4
4
4
2
4
4
4
4
4
2
5
5
5
5
5
5
5
2
5
5
5
5
5
5
5
2
4
2
5
5
5
5
5
2
4
4
4
4
2
5

2
2
4
4
2
4
4
4
4
4
4
4
4
4
2
4
4
5
2
2
5
5
5
2
2
5
5
5
2
5
5
5
5
5
5
5
5
5
5
5
5
2
4
4
4
2
2

2
2
4
2
4
4
4
4
2
4
4
4
4
2
2
2
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
2
5
5
5
5
5
5
2
4
4
2
2
4
4

4
2
2
2
4
4
4
2
4
4
4
4
4
4
4
4
2
4
2
2
5
5
2
5
5
5
5
5
5
5
2
5
5
2
2
2
2
2
2
2
2
2
4
4
2
4
4

2
2
2
2
2
4
2
2
2
4
4
4
4
4
4
4
4
4
2
5
5
5
5
5
5
5
5
5
5
5
5
5
2
2
4
4
4
2
2
4
4
4
4
4
2
2
4

2
4
4
4
2
2
2
4
2
4
2
4
2
2
2
2
2
2
2
2
2
5
5
5
5
5
5
5
5
5
5
2
2
2
2
2
2
2
2
4
4
4
4
4
4
2
2

2
2
4
2
2
2
2
2
2
2
2
2
4
4
4
4
2
5
2
4
2
5
5
5
5
5
5
5
5
5
5
5
5
2
4
4
4
5
5
4
4
4
4
4
4
4
4

2
2
2
2
2
5
2
5
5
2
2
4
4
4
4
4
4
4
2
4
2
5
5
2
5
2
5
5
5
5
5
5
5
5
2
2
4
2
4
4
2
4
4
4
4
4
2

4
2
2
2
2
5
5
5
5
2
2
2
2
4
2
4
4
4
4
2
2
2
2
2
2
2
5
5
5
5
2
5
5
2
5
5
5
2
4
4
2
4
4
4
4
4
4

2
2
2
2
2
5
5
5
5
2
4
2
2
2
4
2
2
2
2
2
4
4
5
5
2
2
5
2
2
5
5
5
2
5
5
5
5
5
5
2
4
4
4
4
4
4
4

2
4
4
2
5
5
5
5
5
2
4
4
2
2
4
4
4
4
4
4
2
4
2
5
2
5
5
2
2
5
5
5
5
5
5
5
2
5
2
4
2
2
2
2
4
3
4

4
2
4
4
5
2
5
5
2
2
4
4
4
4
4
4
4
4
4
4
4
4
4
4
2
2
5
2
2
5
2
5
5
5
5
5
2
5
2
4
2
2
2
2
2
2
2

4
2
4
4
5
5
5
2
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
2
4
5
2
2
2
2
5
2
5
2
2
5
4
4
2
2
2
4
4
2
4

2
4
4
4
5
5
4
4
4
4
2
4
4
4
4
4
4
2
2
2
4
4
2
4
4
4
3
4
5
2
4
2
2
2
5
4
2
5
4
4
2
4
4
4
2
4
4

2
4
2
2
5
5
4
4
4
4
4
4
4
2
4
4
4
4
4
4
4
2
4
4
4
4
4
4
2
5
2
2
2
4
4
4
2
4
4
4
4
4
4
4
2
4
4

2
4
4
4
2
2
4
4
4
4
4
4
4
4
2
2
4
4
4
4
4
4
4
4
4
4
4
3
2
5
2
5
4
4
4
2
2
4
4
4
4
4
4
4
4
2
4

4
4
4
4
2
4
4
4
2
2
2
2
2
2
2
4
4
4
4
4
2
4
4
4
3
3
3
3
3
4
4
2
4
4
5
5
2
4
4
4
2
4
4
4
4
4
4

4
4
4
4
2
2
4
2
4
4
4
2
2
5
2
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
4
4
4
2
5
2
4
4
4
2
4
2
2
4
4
2

4
4
4
4
4
5
2
5
2
4
4
4
4
4
4
4
4
4
2
4
4
3
3
3
3
3
3
3
3
3
3
4
4
4
2
5
5
2
4
4
4
2
2
2
2
2
4

3
3
3
4
2
5
5
5
5
3
4
4
3
3
3
3
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
2
4
2
4
3
4
4
2
4
4

3
3
3
3
4
5
5
5
4
3
3
3
3
3
3
3
4
2
4
4
3
3
3
3
3
3
3
3
3
3
3
2
2
4
4
4
4
4
4
4
4
4
4
4
2
4
4

3
3
3
3
3
3
4
3
3
3
3
3
3
3
3
3
4
4
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
2
4
2
4
4
4
4
4
4
4
2
2
4
4

3
3
3
3
3
3
3
3
3
3
3
3
4
2
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
2
2
4
4

3
3
3
3
3
3
3
3
3
3
3
3
4
2
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

3
3
3
3
3
3
3
3
3
3
3
3
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
4
4
4
4
4
4
4
4
2
4
2
4

3
3
3
3
3
3
3
3
3
3
3
3
4
3
3
3
3
3
3
3
3
3
3
3
2
5
2
3
3
3
3
3
2
2
4
2
4
4
4
4
4
2
2
2
4
2
2

3
3
3
3
3
3
3
3
3
3
3
3
4
3
3
3
3
3
3
4
3
3
3
4
2
2
2
4
5
2
2
2
4
2
4
2
4
4
4
4
2
4
4
4
4
4
4

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
3
3
3
4
4
4
4
2
2
5
5
5
2
2
4
2
5
5
2
2
2
2
2
2
4
4
4
4

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
3
3
3
4
4
4
2
5
4
2
5
5
5
2
4
3
4
4
2
2
2
2
2
2
4
4
4
4
4

Figure 6.3: The clustering results (bottom) of the input image (upper) located in the Ams-
terdam, Netherlands [46].

Chapter 6. Experiment - Region clustering of satellite images with Wishart distribution 88

4
4
4
4
4
4
4
1
1
1
1
4
4
4
4
4

5
5
4
4
4
4
1
2
2
2
2
2
4
4
4
4

4
4
4
4
4
1
2
2
2
2
2
2
2
4
4
4

4
4
4
4
1
2
2
2
2
2
2
2
2
1
4
4

5
4
4
4
1
2
2
2
2
2
2
2
2
2
4
4

4
4
4
4
1
2
2
2
2
1
2
2
2
2
4
4

4
4
4
4
1
2
2
2
2
2
2
2
2
1
4
4

4
4
4
4
1
2
2
2
2
2
2
2
2
1
4
4

4
4
4
4
4
1
2
2
2
2
2
2
1
4
4
3

4
4
4
4
4
4
1
1
2
2
1
1
4
4
3
3

4
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3

4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3

4
4
4
4
4
4
4
4
4
4
4
1
3
3
3
3

4
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3

4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
3

1
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
3

3
3
3
3
3
3
4
4
4
4
4
3
3
3
3
4

3
3
3
3
1
1
3
3
3
3
3
3
4
3
3
3

3
3
3
3
4
1
1
1
3
3
3
3
3
3
4
5

3
3
3
3
3
4
1
1
3
4
1
1
4
4
3
3

3
3
3
3
3
1
1
1
4
4
1
1
1
4
5
5

3
3
3
3
1
1
1
1
1
3
3
3
3
4
5
5

3
3
3
3
1
1
1
1
1
3
3
3
3
4
5
5

3
3
3
3
3
1
1
1
1
3
3
4
3
3
5
5

3
3
3
3
3
1
3
1
1
3
3
4
3
3
4
5

3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
5

3
3
3
3
3
1
3
3
3
3
4
4
4
4
4
5

3
3
3
3
3
1
4
4
1
1
4
4
4
3
4
4

3
3
3
3
3
3
1
4
4
1
1
1
1
4
4
5

3
3
3
3
3
3
1
1
4
1
1
1
1
4
4
5

3
3
3
3
3
3
3
1
1
3
4
4
4
5
5
5

3
3
3
3
3
3
3
1
1
3
1
4
4
5
5
5

3
3
3
3
3
3
3
1
1
3
4
1
1
4
5
5

3
3
3
3
3
3
3
1
1
1
4
1
1
4
5
5

4
3
3
3
3
3
3
1
1
1
4
4
4
4
4
4

4
4
4
4
4
3
3
1
1
1
1
4
4
3
4
4

Figure 6.4: The clustering results (bottom) of the input image (upper) located in the Agri-
cultural land of the Tadco company in Saudi Arabia [47].

Chapter 7

Conclusion

The thesis presents the Neural Modeling Fields (NMF) as a parametric model creator for diverse

distribution functions and approaches. Since the equivalence of NMF with the EM (Expectation

Maximization) algorithm was shown the NMF can be used for the same problems as the EM.

The first contribution of this thesis is a summary of frequently used distribution functions in

statistics and machine learning. The summary contains formulations that can be used for mixture

density estimation. For some of them, own equations for adaptive step of the NMF and EM

algorithm are derived. The derived distributions are the Exponential, the Gamma, von Mises-

Fisher, Log-normal, Normal, Wishart and Dirichlet distributions. For the Exponential, Log-

normal and gradient ascent for the Dirichlet distributions formulations are derived.

The thesis contains detailed analysis of the EM algorithm including derivation of the general

equations which is required for proof of the identity of the NMF and the EM algorithm. The

proof itself is straightforward because it proves only identity between terms of both approaches.

The power of the NMF are simulated with three experiments. The first is Jordan’s HME (Hier-

archical Mixture of Experts) which is supervised network structure whose parameter adaptation

is based on the maximum likelihood principle. The HME is shown including the derivation of the

adaptive equations. Further the HME are slightly extended for polynomial regression (original

paper supposes only linear), this extension brings more better results. The HME is compared on

two approximation problems with neural networks. The HME has shown as very fast approach

whose main drawback are numerical instabilities. The second experiment is data clustering and

classification based on Feature Integration Theory where the NMF and SOM (Self Organizing

Map) are compared. For the second problem, the SOM exhibits better results with increasing

structure complexity. The third experiment is region clustering of satellite images calculated

from feature matrices where the clustering classification is performed as a maximum likelihood

task where the parametric model is the mixture of Wishart distributions. The experiment is

based on a combination of the feature extraction method and evidence gained from distribution

function analysis. The results from the third experiment were presented on Rektory’s contest

2013.

89

Conclusion 90

Implementation of NMF for the analysed distribution functions, the HME and image classifier

based on Wishart distribution in MATLAB are also contained in this thesis. The code is intended

to be published as open-source toolbox because there is yet no such implementation.

The thesis covers wide range of problems. Some of problems in the thesis can be yet further

developed in the future. The NMF (EM) is one of many methods in parametric model creation,

which can be modified to heterogeneous tasks. The topic of this thesis covers only small fraction

of what can be written about the parametric models creation with NMF. This thesis demonstrates

relation between NMF and parametric models with chosen applications. The thesis contains

many novelty results, mostly for the distribution functions, entire chapter about region clustering

in the last chapter and some slight modifications for HME.

Appendix A

Some special functions

A.1 Approximation error of the Digamma function ψ (x)

In Chapters 2 and 3 derivative of ln Γ (x) function is needed. The value can be replaced by the

Digamma function ψ (x). The digamma function has no closed form, thus some approximations

are needed. The approximation Eq. 3.21 whose error is shown in Fig. A.1.

2 4 6 8 10 12 14 16 18 20
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
x 10−3

x

D
iff

er
en

ce
 b

et
w

ee
n

ψ
an

d
its

 a
pp

ro
xi

m
at

io
n

Difference between ψ and its approximation

Figure A.1: Diagamma function approximation Eq. 3.21 error.

A.2 Hessian matrix

In Chapter 2 Hessian matrix is used. Elements of the Hessian matrix is formulated as follows:

H = ∇2f (x) =

∂2f(x)
∂x2

1
. . . ∂2f(x)

∂x1∂xD

...
. . .

...
∂2f(x)
∂xD∂x1

. . . ∂2f(x)
∂x2

D

 (A.1)

91

Appendix B

Contents of attached CD

The DVD contains the text of the thesis including source, MATLAB implementation of NMF

for all analysed probability density functions, MATLAB implementation for two layered HME,

the dataset that was used in Chapter 5 for Feature Integration Theory and implementation of

region classification analysed in Chapter 6.

CD

◦ thesis

◦ source

◦ pdf

code

◦ framework

◦ HME

◦ FIT

◦ region-classification

data

◦ FIT

(B.1)

The framework contains some examples. The example files distinguished by the suffix exam-

ple.m. The region-classification contains example code as well as some sample images.

B.1 Instructions to run the framework

Some special paths must be added to run the framework. It can be added manually via

File→Set path→Add folders or via MATLAB built-in commands:

addpath(’[path_to_framework]/functions/’);

addpath(’[path_to_framework]/functions/distributions/’);

addpath(’[path_to_framework]/functions/util/’)

92

Bibliography

[1] Shane Legg and Marcus Hutter. A collection of definitions of intelligence. In Proceedings of

the 2007 conference on Advances in Artificial General Intelligence: Concepts, Architectures

and Algorithms: Proceedings of the AGI Workshop 2006, pages 17–24, Amsterdam, The

Netherlands, The Netherlands, 2007. IOS Press. ISBN 978-1-58603-758-1. URL http:

//dl.acm.org/citation.cfm?id=1565455.1565458.

[2] C. Soanes and S. Hawker. Compact Oxford English Dictionary of Current English. Oxford

University Press, Incorporated, 2005. ISBN 9780198610229. URL http://books.google.

cz/books?id=d7BlQgAACAAJ.

[3] Alan Isaacs, John Daintith, and Elizabeth Martin. A dictionary of science. Oxford Univer-

sity Press New York, New York, USA, 1999.

[4] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (2nd Edi-

tion). Prentice Hall, December 2002. ISBN 0137903952. URL http://www.amazon.ca/

exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0137903952.

[5] Eugene Charniak. Introduction to artificial intelligence. Pearson Education India, 1985.

[6] L.I. Perlovsky. Neural Networks and Intellect: Using Model Based Concepts. Neural Net-

works and Intellect: Using Model-based Concepts. OXFORD University Press, 2001. ISBN

9780195111620. URL http://books.google.at/books?id=fMchKnr57rIC.

[7] Omid Omidvar and David L Elliott. Neural systems for control. Elsevier, 1997.

[8] Simon S Haykin, Simon S Haykin, Simon S Haykin, and Simon S Haykin. Neural networks

and learning machines, volume 3. Prentice Hall New York, 2009.

[9] Raúl Rojas. Neutral Networks: A Systematic Introduction. Springer, 1996.

[10] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from in-

complete data via the em algorithm. Journal of the Royal Statistical Society. Series B

(Methodological), pages 1–38, 1977.

[11] ZI Botev, JF Grotowski, and DP Kroese. Kernel density estimation via diffusion. The

Annals of Statistics, 38(5):2916–2957, 2010.

[12] Christopher M Bishop. Neural networks for pattern recognition. Oxford university press,

1995.

93

http://dl.acm.org/citation.cfm?id=1565455.1565458
http://dl.acm.org/citation.cfm?id=1565455.1565458
http://books.google.cz/books?id=d7BlQgAACAAJ
http://books.google.cz/books?id=d7BlQgAACAAJ
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0137903952
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0137903952
http://books.google.at/books?id=fMchKnr57rIC

Bibliography 94

[13] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-

ence and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN

0387310738.

[14] Robert Neumayer, Rudolf Mayer, G Polzlbauer, and Andreas Rauber. The metro visualisa-

tion of component planes for self-organising maps. In Neural Networks, 2007. IJCNN 2007.

International Joint Conference on, pages 2788–2793. IEEE, 2007.

[15] Bela A Frigyik, Amol Kapila, and Maya R Gupta. Introduction to the dirichlet distribution

and related processes. Department of Electrical Engineering, University of Washignton,

UWEETR-2010-0006, 2010.

[16] Mark Steyvers and Tom Griffiths. Probabilistic topic models. Handbook of latent semantic

analysis, 427(7):424–440, 2007.

[17] Kevin Quinn. The newton raphson algorithm for function optimization. University of

Washington, Seattle, 2001.

[18] Albert W Marshall and Ingram Olkin. A multivariate exponential distribution. Journal of

the American Statistical Association, 62(317):30–44, 1967.

[19] Narayanaswamy Balakrishnan and Asit P Basu. The exponential distribution: theory, meth-

ods and applications. CRC press, 1995.

[20] Hafzullah Aksoy. Use of gamma distribution in hydrological analysis. Turkish Journal of

Engineering and Environmental Sciences, 24(6):419–428, 2000.

[21] Thomas P Minka. Estimating a gamma distribution. unpublished paper (http://research.

microsoft. com/en-us/um/people/minka/papers/minka-gamma. pdf), 2002.

[22] Arindam Banerjee, Inderjit S Dhillon, Joydeep Ghosh, and Suvrit Sra. Clustering on the unit

hypersphere using von mises-fisher distributions. In Journal of Machine Learning Research,

pages 1345–1382, 2005.

[23] Abdul Hasant, Oliver Alata, and Alain Tremeau. Hierarchical 3-d von mises-fisher mixture

model, 2013.

[24] Thomas P. Minka. Old and new matrix algebra useful for statistics. Technical report, 2001.

[25] Christophe Saint-Jean and Frank Nielsen. A new implementation of k-mle for mixture

modeling of wishart distributions. In Geometric Science of Information, pages 249–256.

Springer, 2013.

[26] T Tokuda, B Goodrich, I Van Mechelen, A Gelman, and F Tuerlinckx. Visualizing distribu-

tions of covariance matrices. Technical report, Technical report, University of Leuwen, Bel-

gium and Columbia University, USA. URL http://www. stat. columbia. edu/˜ gelman/re-

search/unpublished/Visualization. pdf.(Cited on pages 114, 116, 117 and 119.), 2011.

[27] Exponential family of distributions, 2004. URL http://www.cs.columbia.edu/~jebara/

4771/tutorials/lecture12.pdf.

http://www.cs.columbia.edu/~jebara/4771/tutorials/lecture12.pdf
http://www.cs.columbia.edu/~jebara/4771/tutorials/lecture12.pdf

Bibliography 95

[28] Maximum likelihood in exponential families, 2004. URL http://www.stats.ox.ac.uk/

~steffen/teaching/bs2siMT04/si6bw.pdf.

[29] L. Perlovsky, R. Deming, and R. Ilin. Emotional Cognitive Neural Algorithms with En-

gineering Applications: Dynamic Logic: From Vague to Crisp. Studies in Computational

Intelligence. Springer, 2011. ISBN 9783642228292. URL http://books.google.at/books?

id=CZDeKMmAkucC.

[30] Mário AT Figueiredo. Lecture notes on the em algorithm. URL: http://www. stat. duke.

edu/courses/Spring06/sta376/Support/EM/EM. Mixtures. Figueiredo, 2004.

[31] Jeff A Bilmes et al. A gentle tutorial of the em algorithm and its application to parameter

estimation for gaussian mixture and hidden markov models. International Computer Science

Institute, 4(510):126, 1998.

[32] Jalal Almhana, Zikuan Liu, Vartan Choulakian, and Robert McGorman. A recursive algo-

rithm for gamma mixture models. In Communications, 2006. ICC’06. IEEE International

Conference on, volume 1, pages 197–202. IEEE, 2006.

[33] Leonid I Perlovsky. Neural networks, fuzzy models and dynamic logic. In Aspects of Auto-

matic Text Analysis, pages 363–386. Springer, 2007.

[34] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. cambridge University

press, 2009.

[35] E Rodney Canfield and Carl Pomerance. On the problem of uniqueness for the maximum

stirling number (s) of the second kind. INTEGERS: Electronic Journal of Combinatorial

Number Theory, 2(A01):2, 2002.

[36] Leonid I Perlovsky and Margaret M McManus. Maximum likelihood neural networks for

sensor fusion and adaptive classification. Neural Networks, 4(1):89–102, 1991.

[37] Oxford dictionaries, 2013. URL http://www.oxforddictionaries.com/definition/

english/instinct?q=instinct.

[38] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algo-

rithm. Neural computation, 6(2):181–214, 1994.

[39] Michael I Jordan and Lei Xu. Convergence results for the em approach to mixtures of

experts architectures. Neural networks, 8(9):1409–1431, 1995.

[40] Walter Gander. Change of basis in polynomial interpolation. Numerical linear algebra with

applications, 12(8):769–778, 2005.

[41] Ian Nabney. Netlab toolbox, 2000. URL http://homepages.cae.wisc.edu/~ece539/

software/netlab/intro.htm.

[42] Anne M Treisman and Garry Gelade. A feature-integration theory of attention. Cognitive

psychology, 12(1):97–136, 1980.

[43] Esa Alhoniemi, Johan Himberg, Juha Parhankangas, and Juha Vesanto. Som toolbox, 2005.

URL http://www.cis.hut.fi/projects/somtoolbox/.

http://www.stats.ox.ac.uk/~steffen/teaching/bs2siMT04/si6bw.pdf
http://www.stats.ox.ac.uk/~steffen/teaching/bs2siMT04/si6bw.pdf
http://books.google.at/books?id=CZDeKMmAkucC
http://books.google.at/books?id=CZDeKMmAkucC
http://www.oxforddictionaries.com/definition/english/instinct?q=instinct
http://www.oxforddictionaries.com/definition/english/instinct?q=instinct
http://homepages.cae.wisc.edu/~ece539/software/netlab/intro.htm
http://homepages.cae.wisc.edu/~ece539/software/netlab/intro.htm
http://www.cis.hut.fi/projects/somtoolbox/

Bibliography 96

[44] Oncel Tuzel, Fatih Porikli, and Peter Meer. Region covariance: A fast descriptor for detec-

tion and classification. In Computer Vision–ECCV 2006, pages 589–600. Springer, 2006.

[45] Viljandi satellite image, 2013. URL http://www.regio.ee/?op=body&id=239.

[46] Amsterdam satellite image, 2013. URL http://visibleearth.nasa.gov/view.php?id=

81689.

[47] Tadco farms, saudi arabia sattelite image, 2013. URL http://www.satimagingcorp.com/

galleryimages/ikonos-80cm-image-saudi-tadco.jpg.

http://www.regio.ee/?op=body&id=239
http://visibleearth.nasa.gov/view.php?id=81689
http://visibleearth.nasa.gov/view.php?id=81689
http://www.satimagingcorp.com/galleryimages/ikonos-80cm-image-saudi-tadco.jpg
http://www.satimagingcorp.com/galleryimages/ikonos-80cm-image-saudi-tadco.jpg

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction to intelligent artificial systems
	1.1 Intelligence
	1.1.1 Concept of intelligence

	1.2 Artificial intelligence
	1.2.1 Acting humanly
	1.2.2 Thinking humanly
	1.2.3 Think rationally
	1.2.4 Acting rationally

	1.3 Learning process
	1.3.1 Learning as a philosophical problem
	1.3.2 Learning with teacher
	1.3.3 Learning without a teacher
	1.3.3.1 Reinforcement learning
	1.3.3.2 Unsupervised learning

	1.3.4 Semi-supervised learning

	1.4 History of the AI
	1.4.1 Beginnings of logical reasoning
	1.4.2 Connectionist era
	1.4.3 History of density estimation

	1.5 Adaptive systems
	1.5.1 Rule-based systems
	1.5.2 Non-parametric methods
	1.5.2.1 Kernel method
	1.5.2.2 Nearest neighbour methods

	1.5.3 Parametric methods
	1.5.3.1 Neural networks

	2 On Maximum likelihood estimation of some probability density functions
	2.1 Preliminaries
	2.1.1 Likelihood and Log-Likelihood
	2.1.2 Maximum likelihood estimation
	2.1.3 Maximum likelihood estimation for a single function
	2.1.4 Number of observations and accuracy of MLE
	2.1.4.1 Analytic method
	2.1.4.2 Numeric type method - Gradient ascent method
	2.1.4.3 Numeric type method - Newton-Raphson method
	2.1.4.4 Summary of MLE

	2.2 Uni-variate distribution functions
	2.2.1 Uni-variate Exponential distribution
	2.2.1.1 Probability density function
	2.2.1.2 L(x|), lnL(x|) and MLE

	2.2.2 Uni-variate Gamma distribution
	2.2.2.1 Probability density function
	2.2.2.2 L(|x), lnL(|x) and MLE

	2.3 Multivariate distributions
	2.3.1 Von Mises-Fisher distribution
	2.3.1.1 Probability density function
	2.3.1.2 L(|X), lnL(|X) and MLE

	2.3.2 Multivariate Normal distribution
	2.3.2.1 Probability density function
	2.3.2.2 L(|X), lnL(|X) and MLE

	2.3.3 Multivariate Log-normal distribution
	2.3.3.1 Probability density function
	2.3.3.2 L(|x), lnL(|x) and MLE

	2.3.4 Wishart distribution
	2.3.4.1 Probability density functions
	2.3.4.2 L(|S), lnL(|S) and MLE

	2.3.5 Dirichlet distribution
	2.3.5.1 Probability density function
	2.3.5.2 L(|X), lnL(|X) and MLE

	2.4 Exponential family distributions

	3 Neural Modeling Fields and Expectation maximization algorithm
	3.1 EM algorithm
	3.1.1 EM algorithm as classifier
	3.1.2 EM algorithm for various distribution functions
	3.1.2.1 Univariate Exponential distribution
	3.1.2.2 Univariate Gamma distribution
	3.1.2.3 Multivariate Normal distribution
	3.1.2.4 Multivariate Log-normal distribution
	3.1.2.5 Multivariate von Mises Fisher distribution
	3.1.2.6 Dirichlet distribution
	3.1.2.7 Multivariate Wishart distribution

	3.2 Neural Modeling Fields
	3.2.1 Similarity measures
	3.2.1.1 Aristotelian similarity
	3.2.1.2 Fuzzy similarity
	3.2.1.3 Adaptive Fuzzy similarity

	3.2.2 Learning parametric models with NMF
	3.2.3 NMF and EM algorithm equivalence
	3.2.4 Maximum Likelihood Adaptive Neural System
	3.2.5 Perlovsky's theory of mind and NMF
	3.2.5.1 Understanding and meaning
	3.2.5.2 Imagination

	4 Hierarchical mixture of experts
	4.1 Introduction
	4.1.1 Computation
	4.1.2 Interpretation of the architecture

	4.2 Learning the HME with EM algorithm
	4.3 Experiments
	4.3.1 Discussion

	5 Feature Integration Theory - Experimental evaluation of MLANS
	5.1 Introduction
	5.1.1 Feature integration theory

	5.2 Description of experiment
	5.2.1 Scene features
	5.2.2 Clustering in the first layer
	5.2.2.1 Self Organising Maps

	5.3 Experiment
	5.3.1 First layer - training MLANS
	5.3.2 Second phase - Training the SOM
	5.3.2.1 SOM results

	5.3.3 SOM for feature clustering
	5.3.3.1 Comparison of SOM and MLANS

	6 Region clustering of satellite images with Wishart distribution
	6.1 Introduction
	6.2 Image representation
	6.3 Classification of image regions
	6.4 Estimation of the parameters
	6.5 Experiments

	7 Conclusion
	A Some special functions
	A.1 Approximation error of the Digamma function (x)
	A.2 Hessian matrix

	B Contents of attached CD
	B.1 Instructions to run the framework

	Bibliography

