
Master’s thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Architecture of Autonomous
Agent Based on Cortical Learning
Algorithms
Modeling human brain & mind

Marek Otáhal
Open Informatics - Artificial intelligence
otahama2@fel.cvut.cz

December 2013
Supervisor: Doc. Ing. Nahodil Pavel, CSc.

Acknowledgement / Declaration
I would like to express my gratitude

to my supervisors, doc. Ing. Nahodil
Pavel, Csc. and Mgr. Jaroslav Vítků,
for providing me with the opportunity
to work on this interesting topic, their
devoted time and endless support with
advice.

My thanks belong to everybody par-
ticipating in the NuPIC community and
creating a great environment overflow-
ing with new ideas, interesting research
and friendly atmosphere.

My biggest thanks go to my family
and friends for their continued support
and overcoming the time when I wasn’t
much fun to be around with.

I hereby declare that this thesis
is the result of my own work and
all the sources I used are in the list
of references, in accordance with the
Methodological Instructions on Ethical
Principles in the Preparation of Univer-
sity Theses.

Marek Otáhal
in Prague, December 30th, 2013

Prohlašuji, že jsem předloženou prá-
ci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

Marek Otáhal
v Praze, 30. prosince 2013

v

Abstrakt / Abstract
Návrh autonomních agentů, kteří

se pohybují v různých prostředích a
vykazují prvky chování musí brát v
potaz: samostatnost agenta, co největší
doménovou nezávislost a odolnost vůči
chybám. Výzkum těchto agentů v po-
slední době nabírá na významu s tím,
jak se připojení k internetu stává všu-
dypřítomné a pokroky v návrhu nových
menších, levnějších, výkonějších, ale
hlavně dostupnějších hw. čipů umožňují
vznik mnoha “inteligentních zařízení”.
A většina těchto zařízení potřebuje spo-
lupracovat, sdílet data a koordinovat
svou činnost.

Podle výzkumu vedeného na kateře
kybernetiky, ČVUT, v Praze, se velmi
osvědčil návrh těchto agentů inspirovaný
přírodou.

Nedávno uvolněná teorie HTM-CLA
má silnou oporu v neurovědách, nabízí
online učení, učení časových řad, a pod-
poruje generalizaci a zapomínání. Roz-
hodli jsme se proto využít jejích výhod,
rozšířit ji o emoce a pokusit se ji využít
pro modelování agentů s chováním.

Navíc jsme implementovali podporu
pro ROS, platformu umožňující inte-
graci s dalšími metodami strojového
učení, simulátory a i podporou robotic-
kého hardwaru.

Klíčová slova: kortikální učící algo-
ritmy, hierarchická paměť, ALife, cho-
vání, mozek

Překlad titulu: Architektura auto-
nomního agenta založená na kortikál-
ních učících algoritmech (Modelování
lidského mozku a kognitivních procesů)

Autonomous agents that exhibit any
more complex behavior in various en-
vironments are required to be designed
with autonomy, strong domain indepen-
dence and fault tolerance in mind. The
research of autonomous agents is recent-
ly gaining traction thanks to the increas-
ing trend in recent years where inter-
net connection starts to penetrate al-
most every aspect of our lives and en-
vironments and the advances in hard-
ware design make chips more powerful,
lower-factor, with longer battery life and
more affordable for a huge variety of new
“intelligent” gadgets. And all these de-
vices need to cooperate, share informa-
tion and synchronize their actions.

In accordance with the long-term
research done at the Department of
Cybernetics, of Czech Technical Univer-
sity, Prague, nature-inspired methods
in agent design proved to be very well
suited for this kind of work.

A new theory: Hierarchical temporal
memory with cortical learning algo-
rithms has recently been released to
public and it looks promising for the
task - thanks to its novel properties it
can handle time series data, does online
learning, implicitly uses generaliza-
tion and forgetting, plus it has strong
foundations in recent neuroscientific
research.

We integrate this HTM/CLA theory
with emotions to allow us construct
agents with behavior, show how these
additions allow us to “program” the au-
tonomous agents and take advantages
of promising features of this new theory.

In addition we implement initial sup-
port for ROS, a platform allowing wider
integration with existing technologies,
environments or even hardware.

Keywords: Cortical Learning Algo-
rithms, Hierarchical Temporal Memory,
ALife, Behavior, Brain

vi

Contents /
1 Introduction .1
1.1 Motivation .1
1.2 Related work .1
1.3 Our approach .2

1.3.1 Goals .2
1.3.2 Outline .2

2 NuPIC - CLA implementation,
community & resources4

2.1 Description of NuPIC.4
2.2 Community. .5
2.3 Projects and Demos imple-

mented in NuPIC6
2.4 Other HTM/CLA imple-

mentations and corporate
subjects .8
2.4.1 htm-java .8

2.5 Tools. .9
2.6 Robotic Operation System

support . 10
2.7 Domain independence 10
2.8 Things left TODO 11

3 Applied Theory of Hierarchical
Temporal Memory & Cortical
Learning Algorithms 13

3.1 Hierarchical temporal mem-
ory . 13

3.2 CLA region . 14
3.3 Spatial Pooler and Sparse

Distributed Representations
(SDRs) . 15
3.3.1 Sparsity 16
3.3.2 Distributiveness 17
3.3.3 Summary of Features

of SDRs 18
3.4 Temporal Pooler 18
3.5 Summary: Key Concepts of

HTM/CLA . 20
4 Producing Behavior in a Bio-

logically Plausible Way 21
4.1 Behavior in NuPIC 22
4.2 Memory . 23

4.2.1 Generalization 23
4.2.2 Forgetting and Dream-

ing . 24
4.3 Emotions . 25
4.4 Action-learning. 27

4.5 Planning . 28
4.6 Attention . 29
4.7 Higher-level cognitive con-

cepts, thoughts, Abstraction . . 29
5 Discussion of the Implemen-

tation of CLA-based Agents 31
5.1 Design of the CLA-based

Agent . 31
5.2 Comparison of HTM/CLA

with other Machine Learning
Techniques . 32

5.3 Features of CLA-based
Agents . 32

5.4 ROS Implementation 33
5.5 Memory Representation 33

6 Conclusions . 35
6.1 Diploma thesis contributions . . 35
6.2 Remaining open issues 35
6.3 Future research 36
References . 38

A Acknowledgment 41
B List of Abbreviations and

Names . 42
B.1 Abbreviations: 42
B.2 Names: . 42
B.3 Other software 43

C Electronic content. 44

vii

/ Figures
2.1. Numenta logo .4
2.2. CPU utilization prediction

example .6
2.3. Example of Ski game con-

trolled by CLA7
2.4. CEPT representation of two

words .8
2.5. OpenHTM project GUI9
2.6. Cerebro - CLA visialization

tool . 10
2.7. Eye as a sensor 11
3.1. Structure of a Hierarchical

Temporal Memory 14
3.2. Structure of a Region 15
3.3. Function of a Column in Neo-

cortex . 15
3.4. Cell’s Functionality in Spa-

tial Pooler . 16
3.5. Visualization of an SDR 17
3.6. Temporal Pooler Represents

Context . 19
4.1. Example of a 2D environ-

ment with resources 22
4.2. Utility map representing in-

complete knowledge 23
4.3. Visualization of generaliza-

tion process . 24
4.4. Maslow’s pyramid of needs 26

viii

Chapter 1
Introduction

A brief introduction to the structure and focus of this thesis, my motivation and interest
in cortical learning applied to autonomous agents, setting the current research around
NuPIC in context with related work on both fields of neural networks, neuro-science
and artificial life modeling, and a description of our goals and approach we have decided
for.

1.1 Motivation
I have always been interested in an interdisciplinary research, cognitive sciences as a
combination of mathematical/algorithmic models, with biological focus taking inspira-
tion in nature inspired technologies, evolution and specific focus on human brain. The
psychological take on the matter modeling types of memories, how we learn, forget,
certain mental disabilities and their causes, optical and mental illusions, ... The philo-
sophical direction focuses on questions like what is required for thinking, how do we
perceive the reality, or does the soul exist and can a matter-a brain create thinking as
observed at human level?

For this purpose studying a neocortex inspired neural model and trying to apply it
to agents to make them exhibit various forms of cognitive behavior as found in humans
was a great mixture of my interests. I will try to find ways how to model certain
cognitive functions human brains perform with the means of the chosen theory and
then for various parts of the algorithm find biological evidence, if the algorithm adheres
to the neuroscientific findings (or why not eventually).

1.2 Related work
There are two main research directions that are combined together in this work - the
Hierarchical Temporal Memory and Cortical Learning Algorithm (HTM/CLA theory)
and artificial life (ALife) research with focus on producing behavior and taking inspi-
ration in nature, esp. behavior and brains of mammals.

The hierarchical temporal memory & cortical learning algorithms (HTM/CLA for
short) is a learning model developed by Jeff Hawkins and his colleagues in 2003, cur-
rently supported by the Numenta foundation. It is built on findings in neuroscience
and can be compared to deep-learning, recurrent neural networks (RNNs), and spinking
neural networks in terms of biological principles and capabilities, although there are of
course differences in functionality and use-cases. There are several existing implemen-
tations of the HTM/CLA algorithm now, and some have even been utilized by several
commercial companies that make their business product on them. The focal point
currently is the community around NuPIC, the “official” open-source implementation
endorsed by Numenta. The situation hasn’t been that way at the beginning of writing
this thesis, NuPIC hasn’t been open source, there were several semi-working implemen-
tations and documentation was lacking, to the current date, we’ve seen tremendous
improvement in the usability, software support, and applications of the CLA.

1

1. Introduction .
The autonomous agent models and behavior modeling builds on the long term re-

search of Doc. Ing. Nahodil Pavel, Csc. at the Department of Cybernetics at CTU and
especially latest work of J. Vitku [1] that aims to create autonomous agent for universal
environments with inspiration in animal species.

1.3 Our approach
With regards to the interests and current state-of the art in ALife we have decided to
explore the concept of Hierarchical temporal memory and Cortical learning algorithms
in general and ways to apply them to artificial agents who can produce behavior. An
advantage is the fact that CLA theory is strongly building up on the findings in neuro-
science.

1.3.1 Goals
Here are the goals of the thesis, the main interest is in exploring the novel concept
of cortical learning and its applications for ALife agents and producing behavior. We
also aim at implementing the support for Robotic Operating System (ROS) for better
integration with other research:.Study the fundamental principles of Cortical Learning Algorithms (CLA) inspired

by mammalian brain.Modify these algorithms to be able to produce also behavior, aside of learning.. Implement CLA (or augment a current implementation) with ability to produce
behavior. This implementation should support Robotic Operating System (ROS)
communication and should be as domain independent as possible.Compare the efficiency of resulting learning and behavior of agent controlled by this
modification of CLA with another today used learning and decision making technique

Further, aligned with the CLA concept and our interest we try to:.Maintain biological plausibility of the models when possible

...both at the biological/neuroscientific level and psychological, philosophical at the
higher level.

1.3.2 Outline
The thesis in divided into six consecutive chapters. The required knowledge on the
subject is building up, so for a new reader unaware of the HTM/CLA theory it is
recommended to bear with us from the beginning. However, we put an effort to write
the chapters as independent upon each other as much as possible, so if some topic is
uninteresting to you, or you are searching just for a specific part of the work, it should
be fine to skip directly to the required chapter.

The thesis structure is as follows:.Chapter 1 provides thesis introduction, our motivation, and setting in the related
research work..NuPIC is introduced in the Chapter 2, it is a recommended starting point for anyone
new to the NuPIC research and development platform, you will find information
about the community, the tools used, channels to ask for more help or find detailed
information, or examples for work that has already been done..Followed by Chapter 3, where the theory of HTM/CLA and the main concept of
SDRs are explained. It is possible to skip this chapter if you intent to apply CLA

2

. 1.3 Our approach

to your problem quickly, it is essential, however, for better understanding of the
concepts and differences to another machine learning techniques used currently, and
to understand the differences for artificial agents using the HTM/CLA theory, their
advantages and limitations thereof. The principle is nice and simple, but rather
different so programming new agents might have a slower learning curve..Modeling behavior in ALife agents using CLAs is introduced in Chapter 4 for the
first time, along with some implementation details and changes that needed to be
taken. We discuss on several examples the usefulness and problems that come with
this new approach..The next chapter, Chapter 5 covers design and implementation details of different
solutions for ROS and behavior support that we came along, comparing them to
some other standard approaches used in machine learning for that matter..Final recapitulation of our findings during this thesis can be found in Chapter 6 along
with some possible further research ideas.

3

Chapter 2
NuPIC - CLA implementation, community &
resources

The introductory part which briefly explains what is the NuPIC platform, draws a
closer picture of the community, the development model, history of the project and
most importantly ways to participate and/or ask for more information.

It is intended for new users and developers to gain a quick insight how the develop-
ment works, what is possible to do with NuPIC, and what has already been achieved
with it - to give you some motivation! The chapter is written in a lighter tone, more
details how the theory works can be found in chapter about SDRs, HTM/CLA theory 3

2.1 Description of NuPIC
NuPIC [2–3] stands for Numenta Platform for Intelligent Computing, a collection of
algorithms implementing neural network model based on the principles of the human
neocortex and trying to be biologically accurate, while staying computationally effec-
tive. 1). The ideological foundation for the NuPIC platform dates to the book On
Intelligence published by Jeff Hawkins [4], and the first description of how the algo-
rithms’ implementation in the CLA Whitepaper [5].

The key ideas of the Cortical Learning Algorithm (CLA) theory are:.all parts of the neocortex look the same, run the same “algorithm” in principle [6]. information, memories are passed in a form of sparse distributed representations
(SDRs ??) between the parts of the brain [4–5].our brains are constantly performing temporal inference in order to observe the
world [4–5].we are learning “on the go” - that is called online learning 2).

Figure 2.1. Numenta, Inc, the company behind NuPIC. (The logo represents hierarchy of
regions)

1) Unlike the project Deep brain that focuses primarily on the precision.
2) Online learning, or online algorithm is a machine learning technique of unsupervised learning that is
constantly processing incomming data as they come

4

. 2.2 Community

Currently, NuPIC is an open-source project with an active community backed by
Numenta, the original company that developed NuPIC for many years before it went
open-source. Grok [7] is a commercial product for streaming data, an offspring of
Numenta.

2.2 Community

Since NuPIC has been released as open-source for personal/academic purposes in
mid-2013 [8], the community became very active and produced some interesting
applications of the CLA and modifications, improvements to the code itself. The
contacts person for the community is Matt Taylor [9], the “self-proclaimed open-
source community flag-bearer” who has been doing an awesome job in organizing
various events, the transformation to OSS, and is improving the ways community
members and the company can collaborate. The communication channels stretch a
variety of ways, here’s a short list with description:

.Mailing-list is the most active place to ask questions, ask for help installing
NuPIC or raise new development ideas. It is frequented by full-time NuPIC
developers, enthusiasts in machine-learning, robotics, academics in cognitive sci-
ences, neuroscience, entrepreneurs etc. The lists are separated in nupic-devel,
for raising questions about the code, discussing pull-requests1) before merging,
and nupic-general for all other discussions ranging from new ideas, interesting
projects or asking for help. A lot of information can be found searching the ML
archives[10]..NuPIC Github repository - the complete code, new pull-request discussions and
issues and requests for new features can be found on the github page [3]. The
wiki is the best place to read about the project, how NuPIC works or figure out
details about the algorithm. Recently a new project started and is bringing the
code documentation available on-line easily [11]..Sprint planings, Open office-hours, Talks The commercial product - Grok is using
exactly the same code as is available online to anyone, and Numenta is trying
to be as open as possible, so there are several audio-visual conferences, mostly
over google hangouts : Sprint planings where shorter term goals, resolved or
blocking bugs are discussed and tasks are assigned. Open office-hours are a
variant of a morning coffee with the developers where any questions and issues
from the community members can be discussed, and Talks are more like lectures,
there’s a given topic that is explained and later Q&A can follow. [12].Last, but far most popular are the Hackathlons, 24hrs or weekend actions where
several teams work on a project, with developers ready to help them overcome
some problems. Usually there are also talks on a specific topic. So far there
have been two hackathlons that have been met with a great success. The event
was also streamed online, so even members who couldn’t attend personally could
participate. [13–14]

1) in development with Git, pull-request is a way one developer proposes their changes to the code (bug-fix,
new features, etc), for review and inclusion in upstream.

5

2. NuPIC - CLA implementation, community & resources .
2.3 Projects and Demos implemented in NuPIC

This section is a show-case for some of the interesting projects built on HTM/CLA in
NuPIC, so you can make a picture what is already possible to achieve with HTM/CLA
applied in NuPIC:.Streaming CPU usage predictions developed by Scott Purdy during the first

hackathon, demonstrates the temporal predictions, the demo is simply streaming
the current CPU usage data to the model and predicting future utilization. The
source code and introductory video are available. [13]

Figure 2.2. CPU utilization prediction example.

.NTA Skier created by Keithcom is a text based game where computer generates
a random skiing slope and the algorithm learns to navigate and avoid obstacles
there, after some initial guidance (learning), it is possible to “ski” the whole slope
by itself alone. [15].Song composition another great outcome of the first hackathon, here the model is

presented a song (in MIDI format), and later is able to follow up and produce the
song even further - to unseen parts. This relates to a very interesting combination
of AI and arts - computer generated music, images etc. [13].Quadcopter “This team taught the CLA to learn to control a quadcopter. Their
objective was to pilot the quadcopter by controlling its vertical speed to fly to a
desired altitude and hover there. The supervised learning approach involved having
the CLA watch an expert flyer and learn those sequences, and use its prediction of
those sequences to directly control the copter in the face of noise.” [14].Mice and Maze an extension to CLA written by Eron Wright adds the ability to
evaluate multiple alternatives and choose the best one. The example explains the
idea on a maze where it eveluates predictions for many possible paths and chooses
accordingly. [14]

6

. 2.3 Projects and Demos implemented in NuPIC

Figure 2.3. Screenshot of the nta ski game.
Top half of the picture displays situation where the skier is being trained (he is placed in
the middle if the track), the bottom half is where the skier is controlled by the algorithm.
We can note the difference, where in the AI-controlled part the line does not perfectly pass
through the middle of the track, but the skier is still able to safely complete the whole

slope.

.Linguist is a project of Chetan Surpur [16] that falls to the category of text generation
AI. It will first train on a text corpus to learn the “language features” and later can
enter the prediction/generation mode to create a new text, tell you a story. We’ve
extended it to a story-teller mode, where you can give the beginning of the sequence
and the model will follow. As the model can seem just fun and childish, the use-
case are for unsupervised data-mining where it can absorb knowledge from a large
dataset and the user can later query it to get insights on topics, specific information
etc. This is also very interesting from the research perspective, trying to replicate an
impressive example made by Jeff Hinton [17] in deep-learning1), where grammatical
features were acquired by the neural network..What does the fox eat? is a great example [14] of NLP features of CLA combined
with the CEPT technology [18] for word representation during the natural language
processing themed hackathon. Based on the popular song, it feeds sentence about
animals and what they eat, in the end you can ask “What does the fox eat?” and
get an answer, even though the algorithm has never been told “fox eats chicken”!
The magic lies in pattern association done in NuPIC and the way CEPT represents
words as ontologies of terms. The figure 2.4 shows visual representation of two words
(dog, cat) using CEPT and their similarity. CEPT provides API to their service and
online demo which is very interesting to try out!

1) Deeplearning is a very promising type of really huge neural networks, deep-NNs are excelling at tasks like
object recognition in images, text generation, etc.

7

2. NuPIC - CLA implementation, community & resources .

Figure 2.4. CEPT SDR representation of two words.
Dog (left part), Cat (right) and their join and similarity score in the middle.

2.4 Other HTM/CLA implementations and corporate
subjects

There have been several implementations of the HTM/CLA1) after the CLA Whitepa-
per [5] has been released, however their working-state and stability were varied, most
of them orphaned. The situation changed after the release of NuPIC where most of the
development re-united there. The list of projects known to implement CLA is listed on
the NuPIC wiki, we’ll describe a few notable ones:

.HTM-Camera-Toolkit is a HTM implementation2) based on the old NuPIC 1 version
of the algorithm. Its main focus was on the visual domain - object recognition in
pictures and even videos, where some nice results have been achieved..HTM is a simple and clean implementation3) of the CLA in Matlab. Based on the
Whitepaper, it is useful for learning purposes..openHTM is a HTM/CLA implementation4) in .Net, a nice feature of this version is
nice GUI for visualization of the neurons in the network, as we can see in 2.5.

2.4.1 htm-java

Htm-java5) was my implementation of the CLA, based on the code of htm6); I’ve
followed the Whitepaper, differences were mostly in the algorithmic implementation,
where I dare say my approach was cleaner, written in object-oriented style and more
focused on parallelization and tuned for faster execution. Unfortunately it was a one-
man project, so I wasn’t able to give enough effort in debugging and support. I have
abandoned the development in favor of NuPIC soon after it has been released to public.

1) list of the projects can be found at https://github.com/numenta/nupic/wiki/Other-HTM-CLA-
projects
2) https://github.com/binarybarry/HTM-Camera-Toolkit
3) https://github.com/ShermanMorrison/HTM
4) http://sourceforge.net/projects/openhtm/
5) https://github.com/breznak/htm-cla
6) http://code.google.com/p/htm/

8

https://github.com/numenta/nupic/wiki/Other-HTM-CLA-projects
https://github.com/numenta/nupic/wiki/Other-HTM-CLA-projects
https://github.com/binarybarry/HTM-Camera-Toolkit
https://github.com/ShermanMorrison/HTM
http://sourceforge.net/projects/openhtm/
https://github.com/breznak/htm-cla
http://code.google.com/p/htm/

. 2.5 Tools

Figure 2.5. OpenHTM’s visualization of the temporal pooler and letter ’I’ at the input.

2.5 Tools
Several tools have been developed around NuPIC, these tools are not essential part of
the NuPIC library, not needed for running. But provide means to visualize, experiment,
debug and fine-tune your HTM/CLA applications better. The most important of these
tools are:.Serialization is not actually a stand-alone tool but a part of the NuPIC implemen-

tation1). As the name suggests, it allows to store and load a trained network with
its weights. This is useful in many cases, eg. when you train and start off from a
pretrained network on a large dataset and just want to accommodate to the new
data..Cerebro is a standalone tool2) for visualization and debugging of a CLA. It is useful
for learning how the algorithm works, debugging details in new implementations, or
it can be used to generate new datasets. You can find a very explanatory video3)
with details how to run and use Cerebro. Figure 2.6 shows Cerebro instance running
a CLA on hotgym dataset..Swarming is an extended parameter tuning tool4) for NuPIC, given a dataset, it
will evaluate multiple models and fine-tune parameter combinations for them. Inter-
nally the tool uses particle-swarm optimization (PSO) to find optimal combinations.
Swarming is a recommended step for final deployment of your model. More extensive
information can be found on the wiki or an instructive video5)..Unit tests are part of the core NuPIC library to ensure valid and reliable behavior
for (several) implementations of the core parts of the algorithms..Pre-installed virtual machine (VM) NuPIC has been ported to run on various plat-
forms and most common OSs, should some problems occur, we have provided a preset
VM [19] with a running NuPIC instance, complete development environment plus
the tools mentioned in this section for a quick and easy way to experiment with the
algorithms.

1) wiki https://github.com/numenta/nupic/wiki/Serialization
2) source repository + instructions: https://github.com/numenta/nupic.cerebro
3) https://www.youtube.com/watch?v=WQWU1K5tE5o&feature=youtu.be
4) Swarming repository and instructions: http://numenta.org/resources/blog/Swarming in NuPIC.pdf
5) http://www.youtube.com/watch?v=xYPKjKQ4YZ0

9

https://github.com/numenta/nupic/wiki/Serialization
https://github.com/numenta/nupic.cerebro
https://www.youtube.com/watch?v=WQWU1K5tE5o&feature=youtu.be
http://numenta.org/resources/blog/Swarmingunhbox voidb@x kern .06em vbox {hrule width.3em}inunhbox voidb@x kern .06em vbox {hrule width.3em}NuPIC.pdf
http://www.youtube.com/watch?v=xYPKjKQ4YZ0

2. NuPIC - CLA implementation, community & resources .

Figure 2.6. Cerebro - a tool for visualization and debugging of the state of a CLA.
We can see Cerebro showing a visualization of the hotgym dataset running in CLA, it
presents a graph of predicted and actual output, anomaly score of the input (how unex-
pected it has been) and the black plane with a few white dots represets an SDR, output

layer of the algorithm with a few cells active.

2.6 Robotic Operation System support
Support for Robot Operation System (ROS) is completely new to NuPIC, although
ROS itself is a very mature and well established project [20]. ROS is a collection of
machine learning algorithms, drivers for sensors and robots, and various simulators of
virtual reality, and other tools. ROS has been used with success in works of J. Vítků [1]
for behavior agent simulations. It does not bring any direct change to the functionality
of the HTM/CLA algorithm but offers much more comfortable development and wider
field of problems CLA can be applied to.

More details about how I approached the implementation1) are in 5, despite early
stage, it seems the implementation has reached interest of some other users who are
now working with it.

The resulting ROS API implementation is easy to use, transparent to existing CLA
functionality and allows to connect HTM/CLA with other machine learning tech-
niques, be it either integration of other ML algorithms into a HTM network, or using
HTM/CLA as a part of a ML solution.

2.7 Domain independence
In principle hierarchical temporal memory model with cortical learning algorithm is
domain independent2), which is a big advantage to many more specific ML techniques.
Of course this needs to be taken with a grain of salt, just like eg. “classical” neural
networks 3).
1) the code for ROS support to NuPIC is in https://github.com/breznak/nupic/tree/ROS-encoder and
waiting for inclusion upstream.
2) because of the uniformity of neocortex [6]
3) According to Kolmogorov’s theorem, any neural network with sufficiently large hidden layer is a universal
approximator; which roughly means it could learn to predict output of any function. Even if this is true, NNs
are still impractical for a variety of problems (mostly the precidion-time required to learning compromise).

10

https://github.com/breznak/nupic/tree/ROS-encoder

. 2.8 Things left TODO

According to the HTM teory and with support in biological evidence, the structural1)
and algorithmic functionality2) is the same in all parts of the brain.

On the implementation point of view, encoders are piece of software that needs to be
tailored for specific use-cases (in a sense of quality - eg. different encoders for different
inputs like sound, images, numbers, or words. Encoders for inputs of, say, numbers 0
to 5, and numbers 1 to 1000 would be the same). At that level, encoders represent our
“senses” 3), the senses transform from the reality-space to the internal representation
understood by the brain, as mentioned earlier. An illustrative example is vision where
a cat (reality) reflects light, it reaches our eye (the sensor/encoder) which projects the
light on the retina where some of the light-sensitive cells become active and send out
electric signal (that is the internal brain representation, SDR), as shown at fig. 2.7.

Figure 2.7. Real world object seen by the eye, projected on the retina and transfered to
brain, as an analogy to sensors in NuPIC. 4)

Another degree of freedom in the algorithm are the parametric variable, respectively
their values. For most cases there are defaults that work reasonably well, or it is possible
to refine them using any chosen methods. One provided for NuPIC is the swarming
mentioned earlier 2.6. The biological analogy for swarming is accomodation of our
vision to darkness/light. When we are reading at night with the lights on, we are used
to the light, if suddenly you turn the light off, initially you wouldn’t see anything, but
soon (after a couple of seconds) the eyes will accommodate and you’ll start to see in
the dark much better.

2.8 Things left TODO
Even though the theory has been researched for almost 10 years, and its implementation
- NuPIC is in continual development for years as well, there are still some major issues
(both in theory, and in the algorithmic implementation) that will need to be resolved.

Including:

1) Contrary to the Neuro-evolution approaches where quality of the solution for different problems is sought
to emerge from different wiring of the neural network.
2) for example recurrent neural networks are suitable for one kind of problems (temporal sequence predictions)
but fail for other
3) Even though in NuPIC, one could have different senses for rational numbers, or words.

11

2. NuPIC - CLA implementation, community & resources .
.hierarchy - is the core part of the HTM theory. It was implemented in earlier versions

of NuPIC 1) that was focused on the visual domain. The code is still available, but has
not been used in the current version, therefore will likely require some modifications
and testing..core library and stable API after many discussions, there is a work in progress to
strip down the requirements and dependencies of the NuPIC as a software project,
with the aim to create a minimalistic core library (written in C++) with stable and
well defined 2) API for interfacing with other languages 3) and simplified porting to
new hardware platforms.. reconstruction is a means of reversing the bottom-up computation of a layer. Nor-
mally, a layer is given an input, will process it and produce a result, reconstruction is
an “inverse” to this process, more precisely, it will approximate the most likely input
such that would produce the given output at the top of the layer. This is an example
of another functionality that had been a part of NuPIC but has been removed.4) It is
important to realize that in real brains this functionality is actually not required! 5). sensory-motor integration extension to HTM/CLA with functionality of the 5th re-
gion of the neocortex (V5). This part is believed to be responsible for motoric
functions, generation of actions, feedback to lower layers and so on.

1) reffered to as NuPIC 1, this old version of NuPIC is completely different to today’s NuPIC (2) which uses
the CLA learning algorithm. NuPIC 1 used Zeta learning algorithm, the work on NuPIC 1 has been focused
around the visual domain - in recognition of objects in video streams. It has been discontinued by Numenta
because of speed reasons, the current version of NuPIC2 in teh commercial product Grok is focused on work
that can be done in a single CLA region.
2) Another ongoing task is to create online documentation to the code
3) currently only Python and C++ are supported
4) replaced with Classifier a code which is not a part of the HTM/CLA theory, but for usability reasons is
included in NuPIC. This code pairs the inputs with the outputs.
5) The difference between human brain and our usecases in AI is that brain always uses its internal repre-
sentation to cummunicate between different parts of the brain (say an SDR) - so once a picture of the reality
(we see a red car) enters our senses (eg. vision) the retina of the eye converts it to the internal representation,
which is passed and processed in several regions of the brain (V1,...,V5 vision regions, or any other parts
of the brain). The message probably changes, but the encoding (SDR) stays the same. On the contrary to
our common usecases for the algorithm, where we need to interpret the internal representation back in the
input-space of the reality - take another example, we want to predict stock price of the USD/EUR pair, the
inputs are values of several currencies at given times of a day, and we want to predict the price in future.
This is where some way of conversion back from SDR to USD is required.

12

Chapter 3
Applied Theory of Hierarchical Temporal
Memory & Cortical Learning Algorithms

The aim of the following chapter is to introduce the model used - Hierarchical tempo-
ral memory (HTM) and its learning algorithm - Cortical learning algorithm (CLA)
which together combine to the HTM/CLA theory. The HTM/CLA theory tries to
describe how the neocortex works and transfer this knowledge to a new machine
learning algorithm. HTM/CLA has a very sound biological foundation supported
by findings in neuroscience, but still it is a machine learning algorithm which has
simplicity and real-world use in mind1).

The chapter offers a quick reiteration of the theory from my side, the more in-depth
resources are available at [4–5] or video talks [21–22].

Now let us look how neocortex is structured and how the information is processed
in it:

3.1 Hierarchical temporal memory
Hierarchical temporal memory (HTM) is a machine learning concept inspired by the
structure and algorithmic functionality of the neocortex. It is a type of a neural
network that is programmed by exposure to streaming sensory data (that is called
on-line learning). The core unit in HTMs are cells 2), the cells are arranged in
columns (there is the same topological structure in the whole neocortex [6]), layers,
regions, and hierarchy. The specific structure plays an important role and is what
differentiates HTMs from other neural networks3) [23].

HTM is composed of smaller units, called Regions, and these regions4) are ordered
in a hierarchy. That has 2 important consequences: smaller networks are trained
faster and consume less memory - because the patterns can be reused, combined to
describe new patterns; and at the higher layers of HTM the patterns become more
stable5) (the cause is explained later on in this chapter in spatial pooler), which
leads to generalization and improved learning. The figure 3.1 depicts a HTM with
two sensory inputs, consisting of 6 regions arranged in 4 layers.

1) unlike the project Blue Brain http://bluebrain.epfl.ch/ which seeks to model brain functions precisely
up to the smallest level (chemical reaction in synapses) - this is because primary goal of BlueBrain is to
research brain diseases, while NuPIC (Grok) is used for commercial applications of streaming web data
2) Cells are usually called neurons in real brain and other neural networks
3) The topological importance of the network and impact on the performance is not a new idea (neuro-
evolution), but HTM does not do a “blind” evolution but rather takes inspiration in how specifically it is
done in mamalian brain (neocortext) and wires accordingly.
4) note that each region is like a small neural network itself
5) A stability of a pattern means how much is it changing with new inputs in time. For illustration, imagine
inputs as: a big tiger, a cute kitten, an old dog,... These are varying laregely in most aspects, yet at some
level of abstraction, all of them can be described as an animal, a stable pattern.

13

http://bluebrain.epfl.ch/

3. Applied Theory of Hierarchical Temporal Memory & Cortical Learning Algorithms

Figure 3.1. Regions (white rectangles) connected to a hierarchical structure form a four
layer HTM (with 2 inputs). 1)

3.2 CLA region
A region is the main building block for each HTM structure. Basically a region
is what we call a neural network in classical machine learning, but with a specific
structure that is interestingly same for all parts of the neocortex [6, 24].

A region2) composes of many cells ordered in a 2D fashion (a layer) but also in a
vertical structure - columns, as we can see on the figure 3.2.

A column (here composed of 4 cells) maps a part of the input space3) by connect-
ing a (shared for all cells in a column) proximal dendrite to a subset of the input
synapses.Thus forming a randomized feature. Figure 3.3 shows a neocortical column
with 4 cells (C1-C4) with a shared proximal dendrite linking them to a set of 10
potential synapses. The set of potential synapses is a pool of total synapses available
for the column. Whether they are considered as relevant (active) for the column is
decided by the permanence value4).

A synapse is considered active if its permanence value5) reaches a certain threshold
(these are depicted as filled dots), while inactive synapses have a low permanence
value below this threshold (empty dots). Please do note that as the requirements of
the algorithm adapt during the run, synapses may become active or inactive. Note
the difference to classical neural networks, what is called an output of a neuron there
is in CLA actually output of the column, not a particular cell!

In terms of functionality, a region performs functions of a spatial pooler (SP)
and a temporal pooler (TP), both of them will be explained now. Although their
functionality is merged in a real physical region, for the purposes of the algorithm SP,
and TP are separated, as they perform different tasks and actually either of them,
or both can be used in different scenarios.

2) Regions are shown in 3.1 as the rectangles.
3) By “input space” here we mean either the real input, or actually an output of a layer directly below this
region.
4) Eg. noisy, “broken”, or irrelevant (uncorrelating, inactive) synapses for a features will not be considered.
5) Permanence value means, roughly speaking, an infogain of the synapse - if it correlates well with the
activity of this column, the synapse is selected.

14

. 3.3 Spatial Pooler and Sparse Distributed Representations (SDRs)

Figure 3.2. Each region of neocortex (and in HTM/CLA) composes of a number of cells (a
cell is depicted as a circle) and the cells additionally form columns (the vertical structures;

one of them being highlighted).

Figure 3.3. Cells forming a columnar structure, a shared proximal dendrite connects them
to the potential synapses where the synapses that correlate with the overall activity of the
column are selected as active (filled dots) and considered for computing columns activity

(On/Off state).

3.3 Spatial Pooler and Sparse Distributed Represen-
tations (SDRs)

A spatial pooler (SP) is a part of each cortical region and an (optional) part of a
NuPIC region. As it physically is a region, its structure is the same as described in
3.2 where we talked about a region. The main functionality of the spatial pooler is
to create sparse distributed representations of the input.

To achieve the SDR representation, the cells in a region are not only connected
in a vertical fashion by proximal dendrites (as shown in 3.3), cells also connect in a
horizontal meaning by distal dendrites to other cells within the same layer. This kind
of horizontal connections allow the SP to perform inhibition1) [25]. So if a column

1) Inhibition is a process when active column forces (inhibits) the neighboring columns to be inactive. This
is important property, otherwise all columns within the network would be active at once - this is called an
“explosion”

15

3. Applied Theory of Hierarchical Temporal Memory & Cortical Learning Algorithms
becomes active (thanks to one of its cells), it inhibits all of its neighboring cells.
The functionality is shown in figure 3.4, where the cell C2 is connected with 5 distal
dendrites (the 5 rows of blue filled/empty dots, each dot represents a connection - a
synapse - to a cell within the dendrite’s reach. Same as in 3.3, filled dots represent
active synapses and empty the inactive ones. This is called a lateral input of the cell.)
A logical OR from the distal dendrites represents the predictive state for the cell.
The cell’s output value is a boolean OR of the predicted state (driven by neighboring
cells) and the column activation (by proximal dendrite, a red line on the left side).

Figure 3.4. Computation of the output state for a single cell: If the feed-forward input
(related by the proximal dendrite, shown as a red line) is On, the cell’s output is set as
On. Or if any of the (5) distal dendrites (the lines of 10 dots) that connect to cells in
another columns but within the same layer has sufficient input from the active synapses
(filled dots), the cell enters a predictive state and is also marked is On. Otherwise the

output of the cell is Off.

Sparse distributed representations (SDRs for short) are the key concept of how the
CLA works. The main idea of Jeff Hawkins’s HTM/CLA theory is that all parts
of the brain operate on the same principle and thus can communicate with same
messages. And an SDR is the message type regions share with each other.

On the figure 3.5 you see a grid of neurons (cells in NuPIC) where the active cells
are highlighted.

To explain the principle behind the SDRs, we’ll analyze its main features.

3.3.1 Sparsity
This means only a small portion of the total number of columns is active at a time. It
is a fixed percentage (2% as observed by neuroscience [4], and that value is also used
as a default in NuPIC) of active neurons. Such stable value is interesting to find (and
seems wasteful, but we will show nice implications coming out of this requirement),
obviously two cases occur: the number of active neurons is higher than 2% and thus
has to be reduced, or the other case where insufficient number of neurons fired at a
same time (active).

Inhibition is a well known mechanism for the first case, where the output is too
dense and some columns need to be chosen to be turned off. It ensures a dense
representation becomes sparse.

16

. 3.3 Spatial Pooler and Sparse Distributed Representations (SDRs)

Figure 3.5. Sparse distributed representation (of a spatial pooler) with active neurons
highlighted. Credit: F.Byrne

In the algorithmic implementation, inhibition can be either local, or global. Local
inhibition is the one how mammalian brains work: neurons have horizontal inhibitory
synapses connecting neighboring neurons. Whenever one neuron’s activation poten-
tial reaches the threshold (neuron becomes active, fires), the inhibitory signal is sent
along the inh. synapses to block possible activations of the other neighbors. This is
crucial for the network to avoid a state of chaos where almost all neurons fire, known
as network explosion1) from the spiking neural fields theory.

Global inhibition does not exist in biological networks, but in principle is similar to
local inhibition, and is easier to implement algorithmically, that is why it is commonly
used. Just like its used in NuPIC. The principle of the global inhibition is simple:
if we want to ensure 2% sparsity (only 2% of cells active at a time from the whole
spatial pooler) we will represent s “quality” of the activation and choose just such a
number of the total active columns to make for a 2% of the total number of columns.

The opposite case is when insufficient number of columns is active. The method
to fight this is called boosting. We can imagine this as a round-based game. In
each round some fixed number of columns are the winners. When a column hasn’t
won for a long time (it is becoming useless) it will try to “adapt and be more eager”.
Becoming eager means a) lowering (some of) its existing synapses’ permanences, thus
becoming more competitive and increasing a chance to fire first for a certain pattern
and winning. Or b) the neuron can grow new synapses (and/or drop the old ones)
from the pool of potential synapses of the belonging dendrite thus covering a new
(and hopefully) unexplored part of the input space.

One could say it’s wasteful to represent patterns in the sparse way. Yet, unlike
computers, brains are heavily parallel so this is not a burden. Quite the opposite,
useful features of SDR arithmetic appear.

An example of sparse encoding is when an input vector of 30.000 elements is
converted to a representation of 10.000 bits where only 2% of the bits are ON at a
time (that is 200 out of 10.000). Same would also apply for a smaller input, say 50
elements, this would also be sampled to 10.000 bits representation with a 2% sparsity.

3.3.2 Distributiveness
1) State when all of the neurons fire because their neighbors fire and the horizontal connections made them
active too.

17

3. Applied Theory of Hierarchical Temporal Memory & Cortical Learning Algorithms
The other important property of an SDR is that they are distributed. That is a way
how the information is encoded to the number of bits. The encoding can have each
bit independent - this concept is called a Grandmother cell1), the other pole is an
encoding where a bit does not bear a meaning, only the whole set of bits conveys the
meaning - example of such an encoding is the binary code. The obvious disadvantage
of Grandmother-cell encoding is its memory requirement for increasing number of
possible input patterns and inability to determine if two patterns have “something
in common”. On the other hand, the disadvantage of dense (eg. binary) encoding is
the sensitivity to noise2), and also the completely different representations for similar
concepts.

The response to these issues is the distributed representation which is a compromise
from the both words. Each bit conveys some (fuzzy) meaning, but the bits need to be
interpreted in context of a large number of other bits to describe a certain pattern.
For example the 200 out of 10.000 bits as we discussed above.

3.3.3 Summary of Features of SDRs
Key ideas of SDRs are that they are sparse and distributed representations of the in-
put pattern, that means a small subset of bits(columns) is active at a time (2%). The
mechanisms that regulate the number of active neurons are inhibition and boosting.

Recapitulation of features that are derived from these properties:.Robustness to noise
Because SDRs are distributed representations, there must always be a big number
(200) of bits to encode a pattern. Even if a number of bits is “broken”, the remain-
der of the ON-bits pattern fits the original pattern with a very high probability -
Of 10.000 bits, some 200 bits are selected to represent a pattern, still knowledge
of only 50 of these 200 active bits gives us a good chance that the pattern is the
original one..Capacity
Even though the sparse representation may seem wasteful, the number of com-
binations, thus patterns the SDR is able to represent is huge. For an SDR with
10.000 bits with 2% sparsity it is (10.000 choose 200) !.Similarity
Similar concepts (input patterns) will have similar3) SDRs4). This is a very useful
property - it allows us to tell if “cat” is similar to a “tiger”, is the cause of resistance
to noise, allows merging of concepts - SDRs for “a pear” and “an apple” can be
merged, or even sub-sampled.

3.4 Temporal Pooler
As the spatial pooler’s main role is to form sparse distributed representations of the
patterns, the role of temporal pooler (TP) is to represent the notion of time, or
sequential order of events. The temporal pooler fits patterns in context of previously

1) In “Grandmother cell” encoding each bit conveys its meaning as a stand-alone unit. In principle it is
an enumeration, for example, to represent 10.000 words, we’ll make a list of the words and each bit in our
representation would match one word. So if 163rd word is ’Grandmother’, the 163rd bit means ’Grandmother’.
2) Changing a single bit in 4=(100)2 can lead to (000)=0!
3) Similar in a way of Hamming distance
4) Because the way how proximal dendrites sub-sample the input space to form features. ??

18

. 3.4 Temporal Pooler

presented (because HTM/CLA does online learning, data are continuously streamed
into it) inputs.

A good example could be when I say a “dog”, you partly know what I mean (a
dog, not a cat, of course), but all in all it does not make much sense. If you knew I
said “My new dog Zag”, or “The wild dog that bit me”, the message would be much
more clear. And this is exactly what the TP does. It allows the SDR for “dog” to
always look the same, because I said literally “dog”, but also adds more information
to tell the difference between many contexts of the word.

The functionality is achieved by the number of cells in each column. Remember
that the output of the column (logical OR of any of its cell’s outputs) is what forms
bits in the SDR. As there are more cells in a column and the cells connect to other
cells with distal (predictive) connections, CLA is able to represent: when a “dog
cell”1) is active, CLA can learn that usually either the “Zag cell” or ”that” cell will
be active in the next step (and form the predictive link). As shown in figure 3.6
where SDRs for the dog are the same, but the context is different (represented by
the colored cell - either orange for “My dog Zag”, or blue for “The dog that bit me”).

Figure 3.6. The temporal pooler represent word “dog” in two contexts. The SDRs (active
columns) are the same, difference is in the cell(s) (here only 1 colored for simplicity) that
make the columns active. Cells form predictive connections by distal dendrites between

other cells at the same level to represent context.

The temporal pooler is responsible for the sequence memory, a type of memory
that is crucial for most of our cognitive tasks. Very nice examples are described in
On Intelligence [4], to name a few:

Our ability to remember and recognize songs (even if the pitch does not perfectly
fit). By giving you the first tone, you would know nothing about the song, after the
second note the number of possibilities is reduced, so with every other consecutive
note, and already after 3 - 5 notes we could be able to recall a melody of the whole
song!

Another, not so obvious example is the sense of touch. If I place an object in your
open hand and you are not allowed to move, you probably would not recognize what
the object is. To do so, one will need to swipe on its surface to make a feeling of the
structure, move the hand around the object to create and idea of the shape and size,
after that, it would be possible to tell whether it is an apple, or a car.

1) Actually a “dog pattern of cells” because of distributed representations.

19

3. Applied Theory of Hierarchical Temporal Memory & Cortical Learning Algorithms
3.5 Summary: Key Concepts of HTM/CLA

The most important findings to take from this chapter are:.Neocortex has a same structure and performs same “algorithm” in all of its parts.
This suggests existence of a unified algorithm that is capable of performing all of
the tasks human neocortex is responsible for. That is the goal of HTM/CLA..Our perception and thinking happens in a continuous stream of input data, the
brain is performing on-line learning and is constantly making predictions, repre-
senting things in context of previous events. 3.5.The patterns in brain are represented as sparse distributed representations (SDRs)
and have their useful properties - similarity, robustness to noise, invariance, possi-
bility to subsample or merge patterns.

20

Chapter 4
Producing Behavior in a Biologically Plau-
sible Way

The following chapter aims to bring the concept of behavior1) [27, 26] to cortical
learning algorithms, a fusing of the cortical learning (CLA) represented by NuPIC
and modeling of behavior in artificial agents. The concept of behavior is completely
new to NuPIC2) therefore a number of modifications needed to be done. From the
side of artificial life (ALife)/behavior - the work is based on research of Vitku [1],
Kadlecek [26], and Svatos [28], however, because of the diference of HTM/CLA the
implementation is rather different. The novelty and limitations of my approach
come from the goal to stay biologically plausible as much as possible. As we will
see, some things which are considered as easily done by to-date machine-learning
(ML)3) are hard with this new (and willingly limited) approach, on the other hand,
new problems that are currently difficult4) are possible with the CLA theory.

The text is separated into sections representing different aspects5) which we
expect from an agent exhibiting behavior. Role of emotions [29] will be discussed
and whether/why they would be needed for an agent that exhibits behavior but
still on much lower level than feeling in love with somebody; problems passing our
intentions to the agent, or how to force to make our agent robo-car run through
fire and not stay safe in the depo? How does a baby learn to walk? And could
we learn to use telepathy, or night vision as a 6th sense? What are dreams? Or
why does your child always gaze at a handicapped person in the subway? These
interesting questions apparently do not fall to the field of machine learning nor
neuroscience, and still should be answered in the following text.

1) Definition of behavior:
“Behavior refers to the actions or reactions of an object or organism, usually in relation to the environment.
Behavior can be conscious or unconscious, overt or covert, and voluntary or involuntary. In animals, behavior
is controlled by the endocrine system and the nervous system. The complexity of the behavior of an organism
is related to the complexity of its nervous system. Generally, organisms with complex nervous systems have a
greater capacity to learn new responses and thus adjust their behavior. Behavior can be viewed from various
views and thus is studied in different disciplines.”, quotation from [26]
2) Pull-request with code and discussion: https://github.com/numenta/nupic/pull/407
3) like a simple planning taks with breadth-first search.
4) like agent that learns and operates with a language (NLP domain), all sorts of vision tasks
5) like cognitive functions, ability to carry out similar mental tasks as we can observe in mammals, or even
only on humans (young babies will be very common target of our focus during this chapter because their
brain is the most plastic and they are just beginning to explore everything, create patterns in mind and in
brain literally.)

21

https://github.com/numenta/nupic/pull/407

4. Producing Behavior in a Biologically Plausible Way .
4.1 Behavior in NuPIC

Based loosely on the Belief-Desire-Intention (BDI) model1), [30], there is an active
entity, the agent, and the environment it operates in, the world. The world can be
of any nature, it just requires its “laws”2) to be defined.

For the examples here and for easier visualization let’s assume a “classical” 2D-
map based world (see figure 4.1) which is composed of tiles, and each tile can have
specific features (contain food, be occupied by another agent, cause damage, etc.)
In multi-agent scenarios the environment and resources are shared among all the
agents (who can compete on them).

Figure 4.1. An example of a 2D environment (agent’s world) with two resources (food,
water) and several tiles with other properties (cows, trees).

Belief of the agent represents its knowledge of the world. Depending on the
model, either the whole world map is known to the agent since the beginning, or
the agent has to explore and reveal the properties. In that case, the map can
be incomplete (missing, unexplored areas), or even inaccurate (a faulty sensor
disturbs the measurement, or the reality changed while the agent’s map haven’t
been updated - eg. another agent takes all the food from a tile we have marked
as “hasFood” before and haven’t revisited ever since). These limitations require
that any planning based on this belief is fault tolerant to some degree. This would
be analogical to memory in humans, with a slight difference that for multi-agent
setups, the memory could be shared (a variant of us humans having telepathy
and sharing thoughts), but that is just an implementation detail. Throughout the
code, this is referred to as a utility map. Figure 4.2 shows a utility map of a agent
living in a 2D world and the utility corresponds to “attractiveness” of each tile
(the lower, the better).

Another property of agents we use in our models is an internal state, a set
of variables that are not shared with other agents and correspond to “personal
properties” of each agent instance. For example these would include: agent’s
name, its current position on the map, its target location (the goal), how hungry
the agent is (how much battery it has left), etc. Some of these stats stay over
time (the goal, name), some change with each action (the position), and some can

1) Agent has its beliefs, desires, intentions, avail. actions and an environment
2) like physics, but in a general sense. For example there could be a world where states are letters, and rule
is: whenever ’X’ is encountered, next state would be ’A’.

22

. 4.2 Memory

Figure 4.2. Utility map showing an incomplete knowledge. It is a visualization of a 2D-
plane with utility being the 3rd (up) dimension. The agent is minimizing the utility, so
the lower, the better. Missing places represent unvisited, or obsoleted states - we do not

have any knowledge about them.

change only in certain condition (the hunger increases when walking, and decreases
when the agent takes action “eat food”).

That leaves us to the final properties of an agent, its senses1) and actuators. A
set of actions which agent uses to perceive the world (a GPS for location on the 2D
map, “eyes” or a camera allows to tell what properties (food, danger, cow) are on
each tile, ...), and a set of actions that interact with the world (allow the agent to
manipulate the world (eg move box to the next tile), some actions manipulate the
inner states (action eat will increase the food agent has - reduces hunger state).

4.2 Memory
Some sort of memory is essential for all but very simple reactive agents. As
HTM/CLA is a memory based system, it already has this feature and allows to
learn and predict sequences very well2) The ability of CLAs to do online learning
and accommodate the sequence to their capacity makes them ideal for analogy of
long term and short term memory known from psychology and cognitive sciences.3)
So to answer the first of the questions: How are memories stored in brain? -
it seems memories are represented by SDRs and are highly context sensitive, so
they would be stored is sequences in CLA regions.

4.2.1 Generalization
Generalization is an ability to learn from experience and apply the knowledge
to new, unencountered situations. By definition, generalization of a concept is

1) Senses are represented by the Encoders in CLA; Encoders transform the reality (input space) to something
the CLA understands (arrays of 1/0).
2) This is where simple neural nets are insufficient, and more complex recurrent NNs must be deployed. A
disadvantage of RNNs is that they train relatively bad, resp. it’s time consuming. Not like online learning
of CLAs.
3) Another successful ML technique to deal with these types of memory is TLST-mem.

23

4. Producing Behavior in a Biologically Plausible Way .

Figure 4.3. Generalization finds the common, defining features in a set of discrete objects
and creates a condensed representation with only the essential features.

“extension of the concept to less-specific criteria”. It is an important element of
human(-like) reasoning.

The important-feature extraction1) property of generalization (as on 4.3) is the
exact thing that happens when spatial pooler creates a SDR of the input pattern.
And the resulting “essence” is the reason why higher levels in HTM theory repre-
sent more stable patterns and allow abstract thinking - thinking about concepts,
or concepts of concepts.

Another interesting thing about generalization in human mind is that it is
strongly concept specific 2), this fits perfectly in the CLA’s sequence memory -
where same object (“a dog”) can be interpreted in many different contexts (my
dog, dog as an animal, dog as a slang term, ...)

4.2.2 Forgetting and Dreaming
Forgetting and dreaming are interesting properties of human (and animals’) mem-
ories. It has been shown that forgetting is not a negative effect of our minds
(within reasonable amounts), it is even essential for our brains to operate effec-
tively3). Otherwise we would become bloated with random details of memories,
rendering any reasonable thinking difficult or impossible.

It is an interesting fact that there are three “types” of forgetting implicitly
available in the CLA:.Outliners: outliners, errors4), or any statistically insignificant data are remem-

bered at first but forgotten soon during the process of learning, as the CLA is
a statistically based learning model..Feature selection and missing values as a property of the sparse distributed
representations, the model will pick only the features from the inputs that carry

1) https://en.wikipedia.org/wiki/Feature_selection
2) From one point of view, dogs and cats are very much the same - both are mammals, have four legs and we
raise them as pets in our homes. From another point they are completely different - different species, dogs
chase cats, Ben is a dog, but not a cat!
3) http://faculty.washington.edu/chudler/sleep.html
4) can be caused by faulty sensors, a mistake in the environment situation, user input, ...

24

https://en.wikipedia.org/wiki/Feature_selection
http://faculty.washington.edu/chudler/sleep.html

. 4.3 Emotions

significant information and will discard the useless features. Another property
of SDRs is ability to handle incomplete input (missing or otherwise corrupted
values) well..Dealing with limited capacity: a nice thing about CLAs is that there is no need to
specify to which details we want to remember 1) and what should be considered
unimportant and forgotten. Like with the outliners 4.3 the CLA will balance
the “information storing” capacity of the CLA (determined by the number of
columns), the details remembered from the inputs (what is already considered an
outliner in the current data), and adapt to new trends emerging in the input2).

And what is the role of dreaming? Recent research shows that sleeping is
crucial for our brains: during the sleep (and dreaming) chemical reactions occur
in brain and help neurons and synapses revitalize3), forgetting takes place (and
brain is throwing out useless information), and also the contrary happens: the
brain replays (emotionally) important events to structure and strengthen the
knowledge4) - dreaming is a time when brain is idle, not overwhelmed with
multiple sensory inputs as usual, and uses this time to improve the quality of
stored information, or just meaninglessly generates some activity as it’s used to,
probably a mix of both is what happens.

4.3 Emotions
Emotions express how we feel, some researchers even consider them as superfluous
in the concept of artificial intelligence. In my opinion, emotions are a key idea for
expressing goals, desires in agents, allowing us to make the agent do what we need
in a biologically plausible way, because without them, there would be no reason
for the agent to do anything.

This is not unique only to machines, it of course applies to humans as well.
Why do you do anything at all? Why do you go to work every day? Why did you
stop at a supermarket on the way home to buy a chicken and salad? And why
are you considering to get married? These questions could go on and on. Your
answers, motivations, urges and reasons may vary, but down there (at the bottom
of the Maslow’s pyramid on figure 4.4) there is an answer, because you’ve been
programmed to do so! And emotions are the messengers who relate the needs
of the body and mind. Don’t get me wrong, I do not imply that our destiny is
written: we have no free will etc. I’m saying that in evolution (of species and of

1) or respectively, how many columns does the model require? We just allocate some number (usually 2048
columns in a region) and the CLA will try to utilize them to the best.
2) For example, if a CLA is encountering numbers with precision to 2 decimal digits (3.14) in range from 0
to 10, it is able to learn and recall them with the fill precision. now that it encounteres a large value (1900)
for the first time, it is considered an outliner. As more and more values in range 1000-5000 arrive, the CLA
will adapt to represent them too, at the expense of reduced precision for small numbers (say it will not be
able to remember the decimal precision, only values like 1, 2, 3, ...). Should the shift in trend continue and
only data in values 1000 - 5000 keep arriving, the initial small numbers (¡10) become marginal, an anomaly
and the model will forget them.
3) that’s why bigger mammals with physically bigger and more complex brains need to sleep more.
4) All of us dream some of the time (actually many times) at night, but we only remember the dreams
when we wake up at the right moment. And the dream is the state of the brain (the sequence of memories)
which we have just realized as we woke up and became aware. That is also the reason why we ofthen dream
about stressful, worrying, or happy moments of the past day(s). And why dreams sometimes seem “crazy,
not making sense”, because two or more unrelated information can be processed at a time and they become
mixed together during the dream.

25

4. Producing Behavior in a Biologically Plausible Way .

Figure 4.4. An interpretation of Maslow’s hierarchy of needs, represented as a pyramid
with the more basic needs at the bottom.1)

individuals as well) those who survive and reproduce succeed. That seems to be
an objective fitness function for a long time.

Low level emotions relate directly to body functions, some examples are:
Need to eat, to sleep, reproduce, stay in optimal living conditions, etc. These

emotions express a state of the body and are related to brain by levels of certain
hormones the organs are able to produce. For example when you are hungry, the
body produces Ghrelin hormone2) and you get a I’m feeling hungry feeling in
your brain.

We could say senses are represented by emotions as well. For example when you
touch a red hot iron, a sensation of pain (haptic sense) flows through your body
(the nervous system, to be more exact) to the brain.

These emotions are tacit knowledge, we don’t need to learn them, we have them
instantly. This is important, because emotions are not learned by the brain during
our lives (the brain uses them heavily in its work, but does not initiate them).
This assumption allows us to say that when we aim to create artificial intelligence
(strong AI) by taking inspiration from how the brain works, it is OK to hard-code
emotions directly. That is, implement them in a non-biologically plausible way
and still we can be sure none of the important concepts of how the brain works is
missed. Compare this to a case where we would emulate long-term memory by a
(classic relational) database, such model would not be plausible and it’s possible
some important part of the brain’s functionality would be missed and we wouldn’t
succeed in constructing a strong AI.

For the purposes of the algorithm some other, artificial, emotions can be con-
structed. For example if you need to make your agent go to a target location (say
point [5,2]) we would create an agent with an artificial emotion dragging it to that
point. Now you should say That’s wrong, it’s not how the brain works!,
and you’d be right. Doing so, however, is not wrong either. It’s completely true
there is no emotion in your head dragging you to the point [5,2], or to buy chicken

2) https://en.wikipedia.org/wiki/Ghrelin

26

https://en.wikipedia.org/wiki/Ghrelin

. 4.4 Action-learning

on the way home. However, you buy the chicken, so that you can cook it later, give
one half to your girlfriend and eating the other. Thus avoiding a death from star-
vation and the state of sadness from death of your significant other. These, rather
complex, consequences bubble through the hierarchy of the (real) brain regions and
you’ve spend years of practice to create the knowledge of relations, consequences,
experiences of states - you’ve been mapping the state-time-action dimension space
for a very long time. In this light, creating an emotion for go to the target is
a concession for the simplicity. But the result is the same, and even the way the
flow of events is processed in brain is the same too. It’s important to note that
emotions are related to the environment, the body and the goals (lifestyle) of the
agent, so it is perfectly ok to omit some of the emotions that are not relevant (for
example hunger in a world where there is no death and creatures don’t eat; or
emulating sensation of pain where the only goal of the agent is to get to the target
location and the only limit is distance - aka shortest path search).

4.4 Action-learning
Action learning is the process of adopting new actions, or to be more precise,
re-learning their prerequisites and effects once either the environment’s laws, or
the actuators have changed. Some real life examples of these include: drinking
in the space-station1) (new physics of the environment), using an artificial limp
after operation (new actuator), or the action can be more abstract, for example
go to work changes when you relocate to a new city and are unable to make a 5
minute walk to work every day, instead you need to take a bus or drive a car.

The time when we experience most of the action-learning, and also the time when
our brains are the most flexible to learning new things is of course the babyhood
and early childhood (same applies to all mammals and animals in general). Some
of the most prominent examples of such behavior are when a new born baby is
adopting its senses. From the prenatal time when it was in the mothers belly, the
baby is used to her tone of voice and thus is able to recognize the mother. Eyes,
however, have not been used before and in the early days the vision is only blur,
unable to recognize further objects nor the parents’ faces. This is the reason why
we place rattles close to the child’s bed and the baby likes to watch them and
train the vision. Same applies to haptic coordination of hands and fingers, the
baby tries to grab and move small toys, practicing fine-motorics.

In artificial intelligence, as well as for humans, a common example is learning
to walk. Humans start to learn walking around the 10th month and it takes them
several months to achieve this ability. On the contrary, some animals have to learn
it almost instantly to survive (young giraffes know how to walk in a few hours). If
you think it’s an easy task, I suggest you try the QWOP-game2), where you learn
to walk again, by fingers. In machine learning reinforcement learning (RL) and
genetic programming (GP) are most commonly used to achieve action-learning.
For example the walking robot in GP3).

The experiments with action learning agents who use CLA are in the ALife
repository [31]. The two primary concepts of CLA are in use for this process -
sequence memory and generalization. The simpler approach represents actions

1) Video of an astronout drinking in space: https://www.youtube.com/watch?v=Fg1RMEIP6i4
2) Game where you learn to “walk” by your fingers: http://www.foddy.net/Athletics.html
3) Walking robot learns by genetic programing https://www.youtube.com/watch?v=LL0ajYq8A 0

27

https://www.youtube.com/watch?v=Fg1RMEIP6i4
http://www.foddy.net/Athletics.html
https://www.youtube.com/watch?v=LL0ajYq8Aunhbox voidb@x kern .06em vbox {hrule width.3em}0

4. Producing Behavior in a Biologically Plausible Way .
and states as a same entity, so the CLA is learning a sequence of these states:
S1--A1--S2--A2--S3..., where S(i), A(i) are distinct states, resp. actions.

The other approach is similar to the one that will be used in the Planning
problem 4.6, we make the space of a Cartesian product of the:
(world’s state) x (agent’s internal state) x (parametrized action)
x (context) but we modify the utility-encoder to write the best action
(instead of utility score) to the knowledge of the agent.

The obvious drawback of this approach is the curse of dimensionality1), but
because of the CLA’s generalization and ability to deal with missing values, it
makes the proposal feasible, and most importantly, we believe this is the way we
train ourselves too.

4.5 Planning
Planning is a very important task in machine learning, basically it means execut-
ing right actions at the right time and under right conditions. CLA’s ability for
temporal predictions (when to execute) and generalization (what action) make it
a good candidate for a planning agent.

There are two ways how to apply the planning, one of them is relatively simple,
the other would be biologically plausible but is complicated.

The first, simple, approach is to use a CLA as a “helper”, a module to store
and predict next state in a sequence, or suggest most suitable action given certain
conditions. Then some other, non biological 2) algorithm will evaluate utility of
the select state/action and from a set of available actions pick the most suitable
one.
The pseudo-code looks like this:
in the current state;
for-loop: from all possible actions:
--evaluate utility of outcome of the action applied in this state;
pick the best action;

That is the classical approach, the for-loop for all actions, and picking the
best one are not implemented in CLA, that means brain couldn’t perform it
that way. We have found a solution to this problem by shifting the problem
to a weird, multi-dimensional space where a state is represented as (state in
the environment) x (parametrized action) x (inner state) x (state
of the CLA -the weird part!- it depends on previous context) . And
in this space we implement simply an optimization rule (override with better, eg.
lower value). The tricky part is that this space depends on the context of the
agent, so if you come to me from the right side and say ’Hello’, my reaction could
be different to when you come from the left and say ’Hello’.

However, there could still a problem of transition between two sequences. Let’s
assume the agent has learned to follow the path of points A–B–C–D (the D is
important 3)), and another path C–X–Y. And we want to go from A to Y. But
the problem is how to merge the knowledge? We are at state C, the sentence 1
suggests to go to ’D’, the sentence 2 suggests to go to ’X’. And as CLA is doing

1) https://en.wikipedia.org/wiki/Curse of dimensionality
2) that is how current planning algorithms work.
3) if the first sentence ended with C instead (the end-point of first one and starting-point of the other were
the same), the problem will not occur and the transition would be clear.

28

https://en.wikipedia.org/wiki/Curseunhbox voidb@x kern .06em vbox {hrule width.3em}ofunhbox voidb@x kern .06em vbox {hrule width.3em}dimensionality

. 4.6 Attention

online learning (experience, statistical based), if we had walked path A–D 100
times, and C–Y 10 times, the odds would be 10:1 in favor of going to ’D’, instead
of taking path to ’X’ which is the correct one and will leave us to ’Y’. Even adding
hierarchy and look-ahead predictions does not help much.

We have come up with a hypothesis that predictions’ probabilities could be
altered in favor of path containing the desired destination with emotions (a mix
of reinforcement learning and emotions applied to CLA), but we still investigate
details of the implementation and if there is an analogy in brain’s functionality.
This is one of the open problems of CLA application with focus on biological
plausibility.

4.6 Attention
Attention to the details, ability to recognize what’s new, what has changed, the
feeling something is suspicious! ...all of these are crucial for living creatures that
operate and compete in complex environments. Anomaly detection1)2) is the prin-
ciple behind these features that seem like a complex behavior. And it’s happening
automatically with the CLA - you can always say how much some input was un-
expected in the previous context and learning experience.

The importance of attention is well known in the psychological literature [32],
however it has rarely been used in ML because anomaly detection is a hard task
in itself. Imagine the astronomical amounts of data coming through your senses at
every moment3). Such amount of data would overwhelm even such a highly parallel
system as a brain is, not to mention such a poor approximations as computers
where the data makes the bottleneck for usability of AI in some domains (vision,
...).

4.7 Higher-level cognitive concepts, thoughts,
Abstraction

I have found a very interesting definition of happiness, which says: “the brain is
happy when it finds a better description of the reality, allowing it to store the same
(or higher) amount of data with less required information.”4) That means lowering
the entropy, more effectively storing the information with lesser energy demands.
And that goes in hands with the hierarchical principle of the brain and the HTM
theory.

A simple example can be found feature selection mentioned above. This means
the brain is trying to create higher-level concepts, abstractions.

An interesting conclusion for this is that we are programmed to learn, it makes
us happy. The humans, our brains, are curious. And especially babies..

The biological support for abstraction can be observed on young babies as well.
During the process of adopting new abilities - senses, not only we learn how to
operate the hardware, as we improve our ability to perceive the world, we also
extend and improve our map of it, the mind and memory.

1) https://en.wikipedia.org/wiki/Anomaly_detection
2) Anomaly detection in HTM/CLA: https://github.com/numenta/nupic/wiki/Anomaly-Score-Memo
3) Resolution of eyes is 576Mpix! http://www.clarkvision.com/imagedetail/eye-resolution.html
4) http://www.davidpublishing.org/DownLoad/?id=13874

29

https://en.wikipedia.org/wiki/Anomaly_detection
https://github.com/numenta/nupic/wiki/Anomaly-Score-Memo
http://www.clarkvision.com/imagedetail/eye-resolution.html
http://www.davidpublishing.org/DownLoad/?id=13874

4. Producing Behavior in a Biologically Plausible Way .
A game babies love is “Peek-a-boo!”1). The baby and a parent are sitting and

facing each other. Then the parent will close their eyes, cover them with hands
and open them in a moment later (a few seconds) and smile at the baby. The baby
will follow (babies also love mirroring), it will look afraid, surprised when it closes
the eyes, and so happy and relieved when open again, you’ll be rewarded with a
happy smile on the baby’s face. I bet you know this game and you have played it
as a baby yourself, and have/will play it with your child when you have one, no
matter what culture, country you are from. Does it sound like a silly game to you?
The baby is just exploring and learning one of the key properties of our physical
world - that is: the (macroscopic) objects have duration and exist (in reasonable
sizes) in time and space. In fact, your smart baby is just philosophizing the old
question “Does a falling tree make a noise if there’s no-one to hear it?” That is the
reason of the happy smile on the baby’s face, it’s genuinely happy that you haven’t
disappeared to the void, or haven’t turned into a dragon. It’s not only babies who
think about that, for example an Australian Indian tribe believes you live another
life when you close your eyes and dream at night2). And it’s not foolish to think
so, there are worlds where this longevity property does not exist, for example
in the quantum world: there is something, then you look at it... and you’ve just
broken it.

Another fine game to play with a baby is “Where is the toy?”. Here you’ll need
some of the baby’s favorite toys, and some object to hide it, a blanket or a box
will be just fine. Show the baby the toy and then put it under the blanket, so
the toy is not visible. The baby will be puzzled where the toy could be, uncover
the blanket and the baby is happy again. Later it will learn to put the blanket
away and recover the toy. So, what is the baby learning here? For example the
perspective, a property of the vision domain, that a bigger object placed between
us and our target hides the target. Or simple the concept of A is behind B.

How does this translate to cortical learning? In HTM, abstraction is happening
automatically with new, more stable patterns forming in the higher levels. And
the way the spatial and temporal pooler learn in the cortical learning algorithms.
Even though we cannot exactly say “this is a pattern for –being behind–”, the
more common (in context) patterns are learned.

One such practical example, which was successfully realized with HTM/CLA
in NuPIC is from the visual domain, where the HTM was thought to understand
invariance to rotation and translation. That means the algorithm is aware the
observed object is the same, even though it’s rotating or moving in the picture.
It is a well understood tracking problem, however the way the CLA is thought is
different. Details of the invariance vision experiment can be found at the wiki3).
This example is an exact analogy of how the young child is becoming aware of
persistance of objects, as mentioned above.

1) Peek-a-boo game for children: https://en.wikipedia.org/wiki/Peekaboo
2) http://dreamhawk.com/dream-encyclopedia/australian-aborigine-dream-beliefs/
3) https://github.com/numenta/nupic/wiki/Vision:-Object-Recognition-Using-NuPIC

30

https://en.wikipedia.org/wiki/Peekaboo
http://dreamhawk.com/dream-encyclopedia/australian-aborigine-dream-beliefs/
https://github.com/numenta/nupic/wiki/Vision:-Object-Recognition-Using-NuPIC

Chapter 5
Discussion of the Implementation of CLA-
based Agents

The description and discussion of some of the details we have faced in our approach
to the implementation of an artificial agent controlled by the HTM/CLA algorithm,
and relation to other machine learning approaches currently used.

5.1 Design of the CLA-based Agent
Our premise was that we want to explore if the HTM/CLA algorithm we ac-
quainted ourselves with is suitable for construction of an autonomous agent. Our
motivation for such a decision is in the features of the HTM/CLA theory. It is a
nature-inspired agent based on the functioning of the mammalian neocortex which
is capable of performing very complex and, even more importantly, a wide variety
of cognitive processing and behavior.

As the HTM/CLA is a memory based temporal learning model constantly per-
forming online learning and predictions able to deal with anomalies, adapt to new
trends in inputs, the core functionality is simply covered by this algorithm.

The agent is constantly improving its representation of the world - a knowledge
map. Depending on the implementation described later, the map actually really
exists as a 2D array holding a utility map and then a reinforcement learning (RL)
like method is used to guide the agent on a known utility map terrain, for example
minimizing the utility. The other method stores even the utility map in the CLA
memory, therefore even the 2D map similarity with Q-learning disappears.

Technically, aside of that, the simulation environment (the World) and the Agent
were only needed1). The relevant code can be found in the ALife repository [31]
2). The environment provides the simulation for the agent plus it defines the laws
applicable in that world3). The agent must consist of a set of actions applica-
ble to the World - the actuators, sensors to perceive (parts of) the environment,
the HTM/CLA control unit, and optionally a utility function to evaluate certain
“states in time-space”, emotions to form goals and characteristics of the behavior4)
of the agent. More details how the utility function and changing levels of hormones
(the emotions) can alter the plans of the agent can be found in the chapter 4 -
Modeling Behavior.

1) As the NuPIC implementation is still being developed in an active pace, a number of modifications were
needed to iron things out and be able to perform experiments we wanted.
2) Plus additional branches to the main NuPIC repository: ROS-encoder & utility-encoder from my reposi-
tory https://github.com/breznak/, if these were not yet mainlined.
3) Such as what happens if the agents steps outside of the World’s borders? - It dies, stays at the same spot,
wraps around to the other side of the map?
4) For example an “excited” agent who performs exploration when reaches an unknown state, or a lazy agent
who does nothing, or a coward agent who returns to the last know state.

31

5. Discussion of the Implementation of CLA-based Agents .
Because of the nature of the HTM/CLA and the range of its features, the

classification of the model used for our CLA-based agent is slightly complicated.
The agent with utility function and emotion whose behavior is controlled by the
HTM/CLA algorithm falls into these categories:
It is a cognitive architecture, a model-based, utility-based learning agent, an input-
based agent 1), a processing agent 2) and finally a world agent. [33–34]

5.2 Comparison of HTM/CLA with other Machine
Learning Techniques

To evaluate the important properties, limitation and learning methods it is useful
to try to study (a partial) classification of the HTM/CLA algorithm itself.

HTM/CLA is a neural network model inspired by the mammalian neocortex, in
the context of neurobiological models it is similar to convolutional neural networks,
HMAX or deep-learning neural networks recently proposed. In regards to ability to
represent temporal memory, HTM resembles recurrent neural networks or temporal
logic.

When we look at general purpose probabilistic models, HTMs belong to the cat-
egory with Bayesian networks, Energy based models, Hierarchical Hidden Markov
Models or Bolzman Machines that analyze statistical relationships between vari-
ables.

Although it is not the primary purpose, it is possible to emulate supervised
learning with HTMs, just like discriminative models do. These models avoid trying
to find a mapping of inputs to the desired output (not exactly of the same structure
as the original model) where are the well-known Support Vector Machines and
“classical”3) neural networks.

5.3 Features of CLA-based Agents
A recapitulation of features of the HTM/CLA with regards to the demands of
autonomous agents..Domain independence: as the CLA is quite universal algorithm, the core func-

tionality of the agent is domain independent. We have designed the agent to
be parametrized by the utility function which allows to define desired goals and
characteristics of the behavior. This makes agents reusable for different tasks,
but of course some code modification is needed for new environments and tasks.
Also new set of actions and sensors are required for various environments..Contextual memory and notion of time The agent is able to perform different
actions in different context and create plans with time perspective in mind..Generalization and invariants Agents are able to form ideas about concepts like
“is similar to”, “was unexpected”, and so on..Biological plausibility As the model adheres to nature inspired model, some other
cognitive functions are possible to model, as a side-effect. For example forget-
ting, ignoring always-present sensory inputs, modeling of emotions, convergence
to forming low-energy state representations of the memory.

1) Neural network based agents.
2) That solve signal processing problems, eg. speech recognition.
3) Using back-propagation.

32

. 5.4 ROS Implementation

5.4 ROS Implementation
For the purposes of other research done at our department, and for interoperability
of this new solution, we preferred to be able to abstract the CLA algorithm as a
node in Robot Operating System (ROS). This approach has been pioneered by
J. Vitku [1], where both “talker/listener”1) and client/server2) were implemented.
For NuPIC, I have decided for the listener/talker based approach in Python API
for ROS because the core API for NuPIC is still not clearly separated, and in
this approach we implement the ROS support as a new Encoder to NuPIC, which
presents just a plug-n-play functionality. It is completely transparent to existing
CLA based applications, the support can be added by creating a new instance
of the respective encoder and attaching it to intended part of the pipe-line, just
like in flow-based programming. A publisher ROS-encoder will broadcast all data
passing through it to specified ROS topics, and ROS listener encoder will listen to
all given topics and send received messages further through the CLA. Details for
ROS specific functionality can be found at the Tutorials page [20].

5.5 Memory Representation
As HTM is a memory based system, the agent’s memory representation of the
world can be stored completely inside the HTM/CLA, which is a novel approach
to most of the agent architectures.

We have implemented two approaches to this topic: a “classical” memory where
the knowledge of the agent about the world is stored in a map of the world - for
example a 2D map where each position holds some information about the world,
and also a utility for doing certain action at that position. In [1] this approach is
successfully used. They assume agent to have a set of (possibly divergent) goals
each goal with a utility map for given position in the map. And based on agent’s
changing! internal state (“need for food, sleep, ...”) the overall utility is computed
as a linear combination of these sub-goals, so goals can shift around as needed.

The process we take with CLA is quite different, although it looks almost the
same. There is just one utility map shared for all goals. The solution assumes
that for each objective there exists an optimal solution as a sequence of actions,
states, parameters and timing. As the CLA is context aware, we are able to have
a different quality of a state for the same position, but different sequence of steps
leading to it. So we will create a adaptive utility map that stores a utility
and the best action for each position depending on the optimal sequence of events
that lead to it. As the CLA is context aware (the path how we have reached the
point) so we cannot use a simple utility map as is used in Q-learning, instead, we
store the sequence x action pair’s utility in the CLA’s context memory. Normally
this would create unfeasible dimension expansion but because of CLA is able to
recognize similarities in parts of patterns or sequences, the solution seems feasible
(at least for reasonable problem instances).

In our second approach we even avoid the 2D array structure for storing the
values and attempt to model everything, including the sequence memory and the
utility map in the CLA. This has an advantage of even simpler implementation of

1) Distributed message-passing, topic-based architecture; please refer to ROS for details.
2) Classical client-server, request-response design.

33

5. Discussion of the Implementation of CLA-based Agents .
the agent and possibly more general capabilities, of course at the cost of increased
demands on the CLA algorithm and its recall capability.

34

Chapter 6
Conclusions

We have been able to create an autonomous agent exhibiting behavior (in [31]
and chap. 4) that is controlled by the CLA. Most significant, although expected
finding is how completely different it is to “program” the agent using the CLA-
only technology, and also that it brings some very nice benefits (sequence memory,
generalization, forgetting, robustness to unknown inputs), and also has its limita-
tions (more complicated way to program the agent).

We have thought-through various interesting analogies between cognitive func-
tions of human brains and their realizations within the HTM/CLA framework -
such as how is forgetting realized, what happens while dreaming, ability to learn to
control completely new kind of limbs, planning the way from work home, providing
motivation to the agent, exploring unknown space and so on.

The agent controlled by CLA takes advantage of the HTM/CLA theory main
features - anomaly detection, generalization, self-accommodation to new trends in
input patterns, fault tolerance, sequence memory - some of which are uncommon
in classical machine learning.

Two kinds of learning have been implemented, mirroring where a sequence of
action-state-action is learned. Here CLA performs very well because it has a strong
sequence memory. For some problems (4.6) this approach is not well suited and
a more general, multi-dimensional learning has to be used. With this attitude we
face the curse of dimensionality, but CLA is able to deal with it to some degree.

6.1 Diploma thesis contributions
Only a listing of goals of the thesis that have been achieved and some additional
features I consider note-worthy..ROS support has been added ([35]). joined development to advance the CLA implementation. functionality needed for agents exhibiting behavior is possible with CLA ([31]). further researched into analogies between workings of HTM/CLA theory and

cognitive processes in mammals (at the neural, behavioral, psychological level).designed thought experiments to further test abilities of CLA based agents. compared the differences of autonomous agents controlled by HTM/CLA and
other approaches. identified missing functionality in the current implementation of NuPIC

6.2 Remaining open issues
This is a list of issues we have encountered and which either blocked or complicated
our experimenting with CLA-driven autonomous agents.

35

6. Conclusions .
. simple core library: this is a work in progress now, the NuPIC code-base is very

complex, written in combination of C++ and Python withs callbacks in Swig. It
still contains obsolete code, multiple implementation of similar functionality and
the core CLA code is not clearly separated from other supportive functionality.
That presents a burden for some more adventurous redesign aims. This issue has
been very well discussed and a pursuit to make a stripped down, tiny, portable
and understandable library is underway.. reintroduce reconstruction so that “input” patterns can be obtained for each
component of the region in a top-down manner1),2)..Planning with CLA only - the research problem, how to evaluate and choose
multiple hypothesis with a CLA-only approach.. Improve speed/memory requirements: according to our experiments, for
some interesting experiments huge datasets would be required (like all texts of
Wikipedia - 50GB, or video processing), to carry on these experiments currently
is very difficult or almost impossible due to memory and speed consumption of
the CLA. We have proposed some solutions and these are also issues for Grok,
so they will be definitely worked on.

6.3 Future research
I definitely want to continue my programming tasks on NuPIC, seeing to some of
my open pull-requests to get merged and participate on the open issues mentioned
above.

Right after this thesis I plan to join Fergal Byrne on his great idea of improved
spatial pooler with predictive (distal) connections3). This would mean improved
predictions and anomaly detection, allowing for reconstruction in the spatial-pooler
and of course again a more biologically plausible model.

I want to spend some more time investigating an even more biologically accurate
implementation, somewhere even at the cost of reduced functionality/convenience
or speed. I’m expecting some of these changes would be acceptable to the up-
stream, some probably wouldn’t and would stay just for research purposes.

Other plan is to execute some of the big-dataset projects (domains of NLP, vision
come on my mind), maybe including hierarchy, and see if some qualities emerge
just from the sheer amount of data. This will likely uncover another algorithmic
limitations, mostly speed issues.

Once hierarchical support in the NuPIC takes better shape, it would be possible
to extend our existing agents based on CLA (4) to HTM-based agents and gain
advantages that (theoretically) come with HTM4).

Interesting idea would be experimenting with pre-trained CLAs, their sharing,
distribution etc. This is related to serialization (??)

And last but not least, I would like to spend my future research on brain-machine
interaction. More precisely, brain-CLA interfacing/extensions. That is the reason
I have set the ever-reoccurring “biologically-plausible” limitation on myself. The

1) https://github.com/numenta/nupic/wiki/Reconstruction
2) ML discussion https://www.mail-archive.com/nupic@lists.numenta.org/msg01695.html
3) http://inbits.com/2013/11/adding-prediction-to-the-nupic-spatial-pooler/
4) esp. this would be more stable patterns at higher levels of the hierarchy and abstract patterns.

36

https://github.com/numenta/nupic/wiki/Reconstruction
https://www.mail-archive.com/nupic@lists.numenta.org/msg01695.html
http://inbits.com/2013/11/adding-prediction-to-the-nupic-spatial-pooler/

. 6.3 Future research

technology for brain-computer interfaces (BCI) exists, the CLA model seems to
adhere to the brain principles, there would be some limitations to be overcome 1).

1) eg. the difference between CLA’s model producing ’1’ and ’0’, while real neurons (and eg. spiking NNs)
use frequency encoding. Some maybe connecting CLA with a SpikingNN (through ROS?) could be the first
milestone!

37

References
[1] Jaroslav Vitku. An Artificial Creature Capable of Learning from Experience

in Order to Fulfill More Complex Tasks. CTU, Prague, 2011. Diploma
Thesis.

[2] Numenta. Numenta, inc website, 2013.
http://numenta.org/.

[3] Numenta. Nupic github repository, 2013.
https://github.com/numenta/nupic.

[4] Jeff Hawkins and Sandra Blakeslee. On Intelligence. oct 2003.
http://www.citeulike.org/user/prolog/article/705837.

[5] Numenta. CLA Whitepaper, 2013.
http://numenta.org/cla-white-paper.html.

[6] AJ Rockel, RW Hiorns, and TP Powell. The basic uniformity in structure of
the neocortex. Brain, Jun 1980.
http://www.ncbi.nlm.nih.gov/pubmed/6772266.

[7] Numenta and Grok. Grok, 2013.
https://www.groksolutions.com/.

[8] Numenta. Nupic open source project and community established at nu-
menta.org, jul 2013.
http://www.groksolutions.com/prs/pr-07-22-13.html.

[9] Matt Taylor aka rhyolight. self-proclaimed open-source community flag-
bearer.
https://github.com/rhyolight.

[10] NuPIC. Nupic mailing list. and archives,
http://lists.numenta.org/mailman/listinfo/nupic_lists.numenta.org.

[11] NuPIC. Nupic online api documentation, 2013.
http://numenta.org/docs/.

[12] Numenta. Sprint plannings, talks and conferences on numenta google+.
https://plus.google.com/+NumentaOrg/posts.

[13] NuPIC. Nupic first hackathon, jun 2013.
http://numenta.org/blog/2013/06/25/hackathon-outcome.html.

[14] NuPIC. Nupic nlp hackathon, nov 2013.
http://numenta.org/blog/2013/11/06/2013-fall-hackathon-outcome.html.

[15] Keithcom. Skier game controlled by cla, 2013.
https://github.com/keithcom/nta_ski.

[16] Chetan Surpur. Linguist, a story-teller, text generating cla.
https://github.com/chetan51/linguist.

[17] Jeff Hinton. Lecture on text-generation using deep nns.
https://class.coursera.org/neuralnets-2012-001/lecture/91.

38

http://numenta.org/
https://github.com/numenta/nupic
http://www.citeulike.org/user/prolog/article/705837
http://numenta.org/cla-white-paper.html
http://www.ncbi.nlm.nih.gov/pubmed/6772266
https://www.groksolutions.com/
http://www.groksolutions.com/prs/pr-07-22-13.html
https://github.com/rhyolight
http://lists.numenta.org/mailman/listinfo/nupic_lists.numenta.org
http://numenta.org/docs/
https://plus.google.com/+NumentaOrg/posts
http://numenta.org/blog/2013/06/25/hackathon-outcome.html
http://numenta.org/blog/2013/11/06/2013-fall-hackathon-outcome.html
https://github.com/keithcom/nta_ski
https://github.com/chetan51/linguist
https://class.coursera.org/neuralnets-2012-001/lecture/91

. .
[18] CEPT. Nlp technology.

http://www.cept.at/index.html.
[19] M. Otahal. Virtual machine with nupic and tools preinstalled, 2013.

https://mega.co.nz/#!fQomTTqI!ffY QBQQH5oGagylqpgScTzKPHF8Ef7yLFo3LboHzuk.
[20] ROS. Robot operating system website, 2013.

http://www.ros.org/.
[21] M. Thaylor and P. Scott. Nupic at oscon, 2013.

https://www.youtube.com/watch?v=5r1vZ1ymrQE.
[22] J. Hawkins. Intelligence and the brain: Recent advances in understanding

how the brain works with jeff, 2012.
https://www.youtube.com/watch?v=qZM9JREjnp4.

[23] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks
through augmenting topologies, 2001.

[24] M. EBDON. Is the cerebral neocortex a uniform cognitive architecture?,
1993.
http://onlinelibrary.wiley.com/doi/10.1111/j.1468-0017.1993.tb00291.x/
abstract.

[25] James A. Reggia, C. Lynne D’Autrechy, III Granger G. Sutton, and Michael
Weinrich. A competitive distribution theory of neocortical dynamics.

[26] D. Kadlecek. MOTIVATION DRIVEN REINFORCEMENT LEARNING
AND AUTOMATIC CREATION OF BEHAVIOR HIERARCHIES. CTU,
2008. Doctoral Thesis.

[27] P. Nahodil and J. Vítků. Novel Theory and Simulations of Anticipatory
Behaviour in Artificial Life Domain, in Advances in Intelligent Modelling
and Simulation. Springer, 2012.

[28] V. Svatos. Návrh a aplikace hybridního řídícího systému mobilních robotů na
bázi Umělého života. CTU, 2007. Doctoral Thesis, in Czech language.

[29] E. A. Blechman. Moods, Affect, and Emotions. Lawrence Erlbaum Asso-
ciates: Hillsdale, NJ, 1990.

[30] A. S. Rao and M. P. Georgeff. Modeling Rational Agents within a BDI-
Architecture. In Proceedings of the 2nd International Conference on Principles
of Knowledge Representation and Reasoning, 1991.

[31] M. Otahal. Agents with cla, 2013. repository
https://github.com/breznak/ALife.

[32] Cognitive psychology and its implications (6th ed.). Worth Publishers., 2004.
[33] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-

proach. Prentice Hall, 2003.
[34] Intelligent agent.

https://en.wikipedia.org/wiki/Intelligent_agent.
[35] M. Otahal. Ros support to nupic, 2013. branch

https://github.com/breznak/nupic/tree/ROS-encoder.

39

http://www.cept.at/index.html
https://mega.co.nz/#!fQomTTqI!ffYunhbox voidb@x kern .06em vbox {hrule width.3em}QBQQH5oGagylqpgScTzKPHF8Ef7yLFo3LboHzuk
http://www.ros.org/
https://www.youtube.com/watch?v=5r1vZ1ymrQE
https://www.youtube.com/watch?v=qZM9JREjnp4
http://onlinelibrary.wiley.com/doi/10.1111/j.1468-0017.1993.tb00291.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1468-0017.1993.tb00291.x/abstract
https://github.com/breznak/ALife
https://en.wikipedia.org/wiki/Intelligent_agent
https://github.com/breznak/nupic/tree/ROS-encoder

Appendix A
Acknowledgment

I would like to express my special gratitude to the following members, institutions
and authors of tools which we have found helpful during the project..CTUstyle a very elegant template for thesis at CTU created by Petr Olšák1)

and which has been used to typeset this document. Thank you very much Mr.
Olšák, and especially for the additional help with the template..Metacentrum an organization2) providing access to high-performance clusters to
universities for research purposes. Your project is really great and allows us to
experiment with datasets and algorithms which would otherwise be completely
out of our scope. Thank you.

1) http://petr.olsak.net/ctustyle.html
2) http://metavo.metacentrum.cz/

41

http://petr.olsak.net/ctustyle.html
http://metavo.metacentrum.cz/

Appendix B
List of Abbreviations and Names

B.1 Abbreviations:

BCI Brain-Computer Interface
CLA Cortical Learning Algorithm
CTU also ČVUT Czech Technical University in Prague, my University
HTM Hierarchical Temporal Memory
IDE Integrated Development Environment

LTST Long-Term Short-Term memory model
ML Mailing list
NN Neural network

OSS open-source (software)
PSO particle swarm optimization
RNN recurrent neural network
ROS Robot Operating System1)

RL Reinforcement Learning
SDR Sparse Distributed Representation

SP spatial pooler, core part of CLA
TP temporal pooler
VM virtual machine

B.2 Names:
ALife also A-life, discipline studying agents and artificial life

NuPIC a development platform founded by Numenta, now an open-source project, imple-
mentation of HTM/CLA theory

Whitepaper or CLA Whitepaper, refers to HTM/CLA theory pseadocode and documentation
published in [5]

Numenta the company behind NuPIC development, [2]
Grok commercial product developed by [2, 7] (it uses same HMT/CLA algorithm as the

one available in NuPIC)
CEPT a company and technology to represent words in a visualize-able and computational

friendly way (as a feature vector, ontology) [18]
Cerebro visualization and debugging extension tool for NuPIC

Swarming tool used for parameter tuning of the CLAs

1) “The Robot Operating System (ROS) is a set of software libraries and tools that help you build robot
applications. From drivers to state-of-the-art algorithms, and with powerful developer tools, ROS has what
you need for your next robotics project. And it’s all open source.” [20]

42

. B.3 Other software

B.3 Other software
Python Python language interpreter

GCC GNU C Compiler Collection (also C++)
Netbeans Java IDE with optional python and C++ support

ROS ROS platform
VirtualBox a virtualization solution
CTUstyle TeX template used to typeset this thesis

Linux OS supported by NuPIC, optionaly also OSX
pip python module installer

43

Appendix C
Electronic content

The enclosed DVD contains the following files and directories:

.DP-CLA-agent-otahama2.pdf this thesis in an pdf document.. tex/ folder contains the source files (.TeX) and images to generate the pdf above,
the CTUstyle template is included.NuPIC.ova: NuPIC development platform on Ubuntu 13.04 64bit [19]
. (pre)installed NuPIC (core HTM CLA). Cerebro (CLA visualisation and debugging). swarming (parameter tuning for Nupic). Netbeans IDE with added C++/Python support. all dependencies for development (python 2.6,2.7, gcc 4.7, git). XChat IRC (set to #nupic channel). cppcheck. ROS (robotic OS). username/password: nupic/nupic

all tested and working out-of-the box;

As a user, you can tune these settings:
. change you name & email in git (for commits under your name). change nick on IRC (so we’re not all ’nupic’ ;)). in VM settings, you can allocate more RAM/CPUs (but this is a reasonable

default). in VM settings, set up shared folders

When you boot the VM image the following repositories are readily available:. repositories:
. nupic-source/ a clone of the official NuPIC git repository, also contains

branches ROS and utility-encoder pulled from my repo. These are required
for some of the experiments mentioned in this thesis and have not yet been
merged to upstream.. ALife/ clone of my repository for experiments with agents, behavior and
emotions. This code depends on the nupic repo and some of the experimental
branches.

Usage: the NuPIC.ova file is a virtual machine (VM) image that can be conve-
niently imported to any standard virtualization program 1), it will create a new
instance of Ubuntu Linux with the preinstalled software and users can just hit
“Play” to run the VM.

1) for example Virtualbox, VMWarePlayer, kvm - these programs are available for all the main platforms -
Win, Linux, OSX

44

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	/Figures
	Introduction
	Motivation
	Related work
	Our approach
	Goals
	Outline

	NuPIC - CLA implementation, community & resources
	Description of NuPIC
	Community
	Projects and Demos implemented in NuPIC
	Other HTM/CLA implementations and corporate subjects
	htm-java

	Tools
	Robotic Operation System support
	Domain independence
	Things left TODO

	Applied Theory of Hierarchical Temporal Memory & Cortical Learning Algorithms
	Hierarchical temporal memory
	CLA region
	Spatial Pooler and Sparse Distributed Representations (SDRs)
	Sparsity
	Distributiveness
	Summary of Features of SDRs

	Temporal Pooler
	Summary: Key Concepts of HTM/CLA

	Producing Behavior in a Biologically Plausible Way
	Behavior in NuPIC
	Memory
	Generalization
	Forgetting and Dreaming

	Emotions
	Action-learning
	Planning
	Attention
	Higher-level cognitive concepts, thoughts, Abstraction

	Discussion of the Implementation of CLA-based Agents
	Design of the CLA-based Agent
	Comparison of HTM/CLA with other Machine Learning Techniques
	Features of CLA-based Agents
	ROS Implementation
	Memory Representation

	Conclusions
	Diploma thesis contributions
	Remaining open issues
	Future research

	References
	Acknowledgment
	List of Abbreviations and Names
	Abbreviations:
	Names:
	Other software

	Electronic content

