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Abstract and contributions

A huge number of problems in various fields of science leads to System of linear equations
(SLE) representation. The problems that also lead to a differential equation set should
be included here because their solution is obviously obtained by solving a corresponding
linear equation system. Due to these facts it is very important to be able to solve SLE
accurately and quickly.

The thesis presents a system for solving huge SLEs quickly, numerically stable and indeed
accurately to eliminate the problem of generating rounding errors and their propagation
through the rest of the computation. This problem is eliminated by solving the SLE by
means of Residual Number System (RNS) and Gaussian elimination in modular arithmetic.

The main contributions of the thesis are as follows:

1. System optimizations of operation multiplication with reduction. The special case
for many multiplications with one common factor (multiplication of vector by scalar
value).

2. System optimizations of solving a SLE by means of RNS, including application of
the first mentioned contribution.

3. A new mixed radix conversion algorithm suitable for parallel implementation includ-
ing the possibility of balancing and sufficient precision determination.

Keywords:

Set of Linear Equations, System Optimizations, Residual Arithmetic, Residual Number
System, Set of Linear Congruencies, Floating Point Arithmetic, Exact Arithmetic, Mixed
Radix Conversion, Parallel Computing, Single Instruction Multiple Data
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1 Introduction

1.1 Motivation

Finding a solutionto a set of linear equations (SLE) is one of the most common math-

ematical problems. There are many well known and defined approaches such as various

elimination and iteration methods for their solution.

Nevertheless, some SLEs cause considerable problems when one attempts to solve them

using the currently easily accessible computational technology. These problems rise from

the principle of how numbers are represented in digital devices.

One of the properties of the floating point representation is that it is not able to represent

every real number. Moreover, the floating point representation cannot give the full range

of rational numbers, but only a small subset of them. Thus, the usage of real numbers and

their floating point representation is doubtful and it is complicated to recognize that a loss

of accuracy has occurred.

On the other hand, the usage of integer numbers is transparent and computations using

integer numbers are easily controlled. Using integer arithmetic is precise and if there is a

problem, a flag indicating overflow of the integer range is set.

The most common standard for floating point representation is the IEEE organization

standard [18]. When using this standard, the number of bits used for fraction representation

is strictly specified. The number of bits is 23 or 52 bits for single or double precision.

Knowing these fraction ranges clearly states the rounding errors of computation in such

standards.

The range limitations are clear and it is straightforward that it is impossible to break them

in hardware. There always has to be a limit in hardware implementation. According to

the fraction and exponent limits the range of expressible numbers is given. This range

could be extended on software level using a library for multiple precision computing. Such

libraries cause a reasonable slowdown of the whole computation. In addition to using these

libraries it is still necessary to determine the precision needed for the appropriate problem.

Due to the given problems, it is obvious that floating point arithmetic computations are

burdened with plenty of rounding errors. These errors are generated and propagated

through the computation, so the result can be frequently inaccurate.
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Maybe it seems that those rounding errors are not important but clearly they are prop-

agated through the whole computation. Thus the consequent step of the computation

does not have the precise input data and so it is not possible to produce the right result.

Moreover, each of the consequent computational steps generate their own rounding errors

and these are also propagated through the rest of the computation.

Another way of solving the problem of rounding errors and their propagation is to use

another mathematical model for finding a solution. Such a model should be a residual

number system (RNS). This model provides the possibility of creating arbitrary large com-

puter word, which leads to preserving all the information from the input data, and generates

no rounding errors, because the computations are processed in residual arithmetic, where

accuracy is guaranteed. There is also a problem of setting the needed precision but for

RNS there is a mechanism for its estimation. This estimation is optimal in comparison

with some others which are typically very pessimistic. Another advantage of the RNS is

the natural degree of parallelism.

1.2 Problem statement

Our aim is to design a distributed system for solving SLEs capable of solving sets with

dense coefficient matrices of large dimensions. This system is meant to be usable for

clusters of workstations as well as for High Performance Computing (HPC) clusters. The

solution process itself is to be error free which means no errors during the computation nor

rounding errors.

1.3 Contributions of the thesis

There are two main contributions expressed in this thesis.

1. System optimizations of multiplication with reduction, especially the vector form

of this operation. This also includes an overall optimization of the whole Gaussian

elimination process. Some minor memory demand improvement.

2. The new Mixed Radix Conversion algorithm for distributed environment with pos-

sible dynamic weighting and recognition of sufficient precision. This also allows a
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completely homogeneous design of application where all the nodes have exactly the

same role.

1.4 Organization of the thesis

The thesis consists of the seven following chapters.

1. Introduction: Describes the motivation for our work and our goals. There is also a

list of main contributions of the thesis.

2. State-of-the-Art: This chapter maps the current state-of-the-art in solving general

dense SLEs exactly.

3. Our Approach: Describes the theoretical background of solving a SLE by means of

RNS and Gaussian elimination. Presents initial design of the system this thesis is

based on. Also presents a complexity analysis of the initial design.

4. System Optimizations: Describes the system optimizations performed during the

development of the new system, especially multiplication with reduction operation.

5. Decentralization: Presents the design of a new decentralized version of the system

including partial results on the design of parallel algorithms, such as mixed radix

conversion and prime number generation.

6. Conclusions: Summarizes the results of our work and concludes the thesis.

7. Future Work: Suggests possible topics for further interests.
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2 State-of-the-Art

The problem of linear equation systems is common in different fields of science. Thus it is

not surprising that there are plenty of publications dealing with it.

Some publications focus on different pivoting strategies for different elimination methods.

The choice of the pivoting strategy has a direct impact on the result and its accuracy. This

is due to the fact that if the elements in the elimination process are well chosen, then there

is no need for such a great precision. Numerous pivoting strategies are described in article

[9]. Also, paper [29] introduced a new pivoting strategy for Gaussian elimination. But

there is no guarantee for the solution to be exact just for a well chosen pivoting strategy.

Nevertheless, none of the pivoting strategies should be marked as best for the general linear

equation system.

Another often used technique for an ill-conditioned SLE solution is based on various reg-

ularization procedures. This technique tries to find a meaningful approximate solution to

the problems with an ill-conditioned coefficient matrix. Paper [28] gives a comprehensive

description of various regularization techniques. Other methods dealing with regularization

of the matrix are expressed in [3, 4, 31].

Paper [30] describes a package for iterative solving of linear equation-systems which are

ill-conditioned and have large dimensions. This package contains various iterative methods

of SLE solution.

The basics of the method we use are presented in paper [27]. This article describes a

system for solving linear equation systems exactly using the residual number system and

it gives emphasis on the hardware implementation of the described algorithms.

The hardware implementation of the algorithms described in [27] is expressed in article

[25] where the design of this system is presented.

The system described in this thesis is based on facts published in these articles.

There is also a software implementation of this algorithm. It is introduced in paper [16].

The article describes a software implementation of the procedure that solves SLEs by means

of RNS. For this implementation, the FORTRAN language was used. The downside of this

implementation is its simplicity. It has no support for parallel processing, therefore, it is

not suitable for problems of large dimensions. Paper [17] is just a remark to this algorithm.

Another implementation of similar algorithms is described in papers [5–8], where a parallel
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system for SLE solution is proposed using the RNS and distribution of individual Set of

Linear Congruencies (SLC) solution to separate processors.

The SLE solution algorithm in [5–8] is basically divided into two parts. The first part of

the processing is a simultaneous solution of separate SLCs, whereas the other is the mixed

radix conversion algorithm itself. The parallel solution of SLCs is algorithmically almost

identical to our approach. There is a difference in the knowledge of moduli count used.

Doctor Koç presents algorithms where the count of moduli used is predefined. Our system,

on the other hand, does not know the moduli count at the beginning of the computation.

This count is determined by particular results of the Mixed Radix Conversion (MRC)

algorithm which then has to be performed simultaneously with the SLCs solutions. The

count of moduli used strictly corresponds with the accuracy of the computation. The more

moduli we use the more accuracy we get. Thus we are determining whether the results

have a sufficient accuracy and then the computation is finalized. So the algorithm cannot

be strictly divided similarly to [5–8].

Articles [5–8] present different approaches to the parallel solution of the mixed radix con-

version algorithm. There are some algorithms based on systolic arrays in [5, 8]. And the

algorithm suitable for Symmetric multiprocessor architecture with distributed memory are

presented in [6,7]. Those parallel algorithms for the MRC are not suitable for usage in our

system, due to the presented necessity of the MRC processed simultaneously with SLCs

solution. The algorithm used for moduli count control is described in 3.1.5.

Works [A.7] and [10] deal with primary design of the system. These works describe the

basic implementation of the system for SLE solution.



SECTION 3. OUR APPROACH 6

3 Our Approach

3.1 Theory

3.1.1 Outline

The standard approach to solving the SLE in modular arithmetic consists of 4 steps [23,27].

These steps are scaling transformation, SLE reduction into many SLCs, SLCs solving

process, and finally a backward transformation.

1. Scaling transformation. This transformation takes the input SLE and performs scal-

ing of its matrix and right-hand side (RHS) by a constant. The scaling procedure is

necessary to ensure that the input SLE is representable within an integer set. Scaling

can be performed for each row of the input matrix independently or globally for the

entire SLE.

2. SLE reduction into SLCs. A number of prime number moduli q is chosen and modular

reduction is performed for the entire SLE producing as many SLCs as the number of

moduli. A proper choice of moduli is important as modular reduction will often be

needed.

3. Solving SLCs. SLCs obtained from the previous step are solved in this step. As they

have nothing in common, they can be solved independently.

4. Backward transformation. After we have solved SLCs, we obtain up to so many

partial solutions that we recombine back into the floating point set yielding an SLE

solution. This is done with a backward transformation using a mixed radix conversion

(MRC) [12,14,27].

3.1.2 Transformation to integer numbers

Let us presume that in this section the number called the smallest element means the

number with the smallest absolute value. To correspond with this, the function min also

returns the number with the smallest absolute value.

The whole computation is implemented in residual arithmetic, so the first step is transfor-

mation into Z. The early implementation used for such a transformation formulae 3.1.
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aij =
2m+1

min(ai1, ai2, . . . , ain, yi)
aij 1 ≤ i, j ≤ n (3.1a)

yi =
2m+1

min(ai1, ai2, . . . , ain, yi)
yi 1 ≤ i ≤ n (3.1b)

The first formula in 3.1a fits for elements of coefficient matrix A. The other 3.1b fits for

right-hand side vector y. The identifier m represents the mantissa size, aij represents the

elements of the coefficients matrix and yi represents the RHS vector elements.

The terms 3.1 should be described in a few sentences. Each row is adjusted separately, so

the smallest element of the whole row (including the appropriate element of the right-hand

side vector) has to be found. Then the whole row is divided by that element. After the

division, the smallest element of the row has the value of 1. Finally, all the elements of the

row are shifted to the left by the size of fraction (m) bits. Now all the elements are integer

numbers.

During the experiments we discovered a problem with this part of computation. The

division operation is a generator of certain numerical errors that are propagated down

the whole computation. Consequently, results are obtained for a different set of linear

equations.

This problem is easily solved by using the shift operation instead of a division operation.

Numbers are not divided by the smallest element but they are shifted to the right by the

number corresponding to the exponent of the smallest element. After this operation the

value of the smallest element is in the range 〈1, 2) and all the other elements in the row

are greater than 1. Then these numbers are shifted to the left just in the same way as they

were in 3.1. The final formulae are presented in form 3.2.

mini = min0≤k≤n(aik, yi) (3.2a)

aij =
2m+1

2exp(mini)
aij 1 ≤ i, j ≤ n (3.2b)

yi =
2m+1

2exp(mini)
yi 1 ≤ i ≤ n, (3.2c)

In formulae 3.2 the identifier exp(x) represents the exponent of the x value. The mini
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represents the element with the smallest absolute value in the i-th row. When using

formulae 3.2 for the transformation into integer numbers, numerical errors caused by the

division operation are avoided.

Using formulae 3.2 for the transformation into integer numbers causes a limitation of the

available input range. If there is a need to use the whole original input range, then the range

used for the transformation has to have different parameters. The following paragraphs

discuss the required ranges.

We should express the relationship for the input range. Let the desired input range has

m bits of mantissa, the least acceptable exponent is emin and the largest exponent is emax.

Then it is necessary to find out the parameters of the range needed for the transforma-

tion which are marked as m1, emin1, emax1. These parameters should be set to allow the

transformation of every representable number of the original input range.

emax1 = emax − emin +m (3.3a)

emin1 = min(0, emin) (3.3b)

m1 = m (3.3c)

The relation of the original input range parameters and the parameters of the range needed

for an errorless conversion is gathered in formulae 3.3. The relevance of 3.3c is straight-

forward because during the conversion there are no other operations but a shift operation

and there is no need for fraction enlargement.

Formula 3.3b states the relation of the least exponent of the original and the new ranges.

The least exponent from the new range is set to minimum of 0 and the original emin. This

fact rises from the shifting process where numbers are shifted, so they have the exponent

equal to 0 and then they are shifted to the left by the size of the fraction.

Finally the greatest exponent which can arise from formulae 3.2 has the value according to

3.3a. This is the case when one row contains both: the element with the smallest possible

exponent emin and the greatest one emax.
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3.1.3 Transformation into Zn

This transformation is performed by fmod function, which returns the remainder after

division, in floating point representation. This function and its characteristics are described

in 3.2.2

3.1.4 Gaussian elimination with non-zero pivoting

Gaussian elimination algorithm is commonly used and well understood, so it is described

only very briefly. In addition, it is supplied with non-zero pivoting. At the beginning, the

form of the expanded coefficient matrix corresponds to formula 3.4.

(A|y) =



a11 a12 a13 . . . a1n y1

a21 a22 a23 . . . a2n y2

a31 a32 a33 . . . a3n y3
...

...
...

...
...

an1 an2 an3 . . . ann yn


(3.4)

The Gaussian elimination is split into two phases. The first one is modification to elim-

inate some variables in the right equations. More accurately, the first phase consists of

transformation of the matrix 3.4 into upper triangular matrix expressed in formula 3.5.



a11 a12 a13 . . . a1n y1

0 a
(1)
22 a

(1)
23 . . . a

(1)
2n y

(1)
2

0 0 a
(2)
33 . . . a

(2)
3n y

(2)
3

...
...

...
...

...

0 0 0 . . . a
(n−1)
nn y

(n−1)
n


(3.5)

The algorithm can be written in a symbolic way by formulae 3.6 and 3.7.

a
(0)
ij = aij i = 1, . . . , n j = 1, . . . , n+ 1 (3.6)
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a
(k)
ij = a

(k−1)
ij − a

(k−1)
ik

a
(k−1)
kk

a
(k−1)
kj k = 1, . . . , n− 1 i = k + 1, . . . , n j = k + 1, . . . , n+ 1

(3.7)

Adjusting the expanded coefficient matrix may result into the element a
(k)
k+1k+1 in the k-

th step of the elimination being equal to zero. And such an element should not be used

for the k + 1-st step of elimination, so it is necessary to modify the matrix. One and

the easiest way is non-zero pivoting from [25] where such an element is exchanged with

another non-zero element of the matrix. More precisely, row k is swapped with row l where

l > k∧alk 6= 0 holds. This row swapping implies the change of the determinant sign which

is also calculated during the first phase.

Some other pivoting strategies are mentioned in [9] and [29].

Determinant is then the result of the product of elements on the main diagonal. Finally,

its sign is set according to the number of row swaps during the elimination. Formula 3.8

expresses the determinant value. Identifier l is the number of row swaps.

D =
dim∏
i=1

a
(i−1)
ii · (−1)l (3.8)

The second phase of the algorithm just calculates the variables. The value of the variable

corresponding to the last column of the expanded coefficient matrix is determined directly

by the last row of 3.5. This value is used to gain the value of the variable corresponding to

the last but one column. And so the process continues until having values of all variables.

3.1.5 RNS and mixed radix representation

The transformation from the RNS back into the integer numbers can be solved by Chinese

remainder theorem (CRT). Instead of this classical way, the system uses another method

which is based on the relation between RNS representation and mixed radix representation.

The reason for the usage of another algorithm is the complexity of the CRT transformation.

The following description of the conversion process was taken from [22]. The extension for

signed numbers is formed in [27].

We have an n-tuple ρ = [r1, r2, . . . , rn], where the components are radices. Let R is a
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product of these radices so R =
∏n

i=1 ri holds.

It is straightforward that every number s from the range 0 ≤ s < R can be expressed in

the form corresponding to formula 3.9.

s = d0 + d1(r1) + d2(r1r2) + . . .+ dn−1(r1r2 . . . rn−1) (3.9)

Identifiers d0, d1, . . . , dn−1 in equation 3.9 are standard mixed radix digits which have to

conform to relation 3.10.

0 ≤ di < ri+1 i = 0, 1, . . . , n− 1. (3.10)

The mixed radix representation are numbers d0, d1, . . . , dn−1 which can be written down in

form 3.11.

〈s〉ρ = 〈d0, d1, . . . , dn−1〉 (3.11)

The special case of the mixed radix representation is a fixed radix representation with all

radices having the same value (r1 = r2 = · · · = rn). For example, when having all radices

ri = 10 then, such a representation is the common decimal number system. But a more

interesting and relevant case is when radices are equal to moduli of RNS, thus ri = mi for

i = 1, 2, . . . , n. Then the range of the multi-modulus residual arithmetic and mixed radix

representation are equal.

It is necessary to find the relations for the integer number s and its representations in

residual number system |s|β and mixed radix representation 〈s〉β now.

The representation |s|β in the RNS and its relation to the number s is described in section

3.1.2.

If the number s is known, the process to determine the mixed radix representation 〈s〉β
follows. Let s = t1 and the relation for d0 is expressed in formula 3.12.

t1 = s

= d0 +m1 [d1 + d2(m2) + . . .+ dn−1(m2 . . .mn−1)]

= d0 +m1t2

(3.12)
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The relation 3.13 can be written down as

|t1|m1 = |d0 +m1t2|m1

= d0

= |s|m1 .

(3.13)

From the relations 3.13 and 3.12 it should be clear that there is no need to perform any

processing to determine the value of d0 because it is equal to the first residue in RNS

representation. Then the relations for t2 and d1 are expressed in formulae 3.14 and 3.15.

t2 = d1 +m2 [d2 + d3(m3) + . . .+ dn−1(m3 . . .mn−1)]

= d1 +m2t3.
(3.14)

|t2|m2 = |d1 +m2t3|m2

= d1
(3.15)

It is easy to extract the recursive form for di elements of the mixed radix representation

from formulae 3.12, 3.13, 3.14 and 3.15. The initial value is t1 = s. This recursive formula

is expressed in 3.16.

d0 = |t1|m1

t1 = s

ti+1 =
ti − di−1
mi

di = |ti+1|mi+1
i = 1, 2, . . . , n− 1. (3.16)

Those relations are only prerequisites for conversion from residual representation to mixed

radix representation. This process is based on recursive formula 3.16 for ti+1.

If the residual representation is known, the following relations hold:

|t1|β = [d0, |t1|m2 , . . . , |t1|mn ]
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|d0|β =
[
|d0|m1

, |d0|m2 , . . . , |d0|mn

]
.

Combining these two relations, we get the following notation:

|t1 − d0|β =

[
0,
∣∣∣z(1)2

∣∣∣
m2

,
∣∣∣z(1)3

∣∣∣
m3

, . . .
∣∣z(1)n

∣∣
mn

]
,

where

z
(1)
i = |t1|mi

− |d0|mi
i = 2, 3, . . . , n.

Now we can establish the reduced base vector β1.

β1 = [m2,m3, . . . ,mn].

And the value of t1 − d0 with base vector β1 is

|t1 − d0|β1 =

[∣∣∣z(1)2

∣∣∣
m2

,
∣∣∣z(1)3

∣∣∣
m3

, . . .
∣∣z(1)n

∣∣
mn

]
.

In order to be able to compute the value of t2, a multiplicative inverse m−11 (β1) has to

exist and has to be known. Those inverses exist because all the elements of β1 are prime

numbers. And the condition for existence of multiplicative inversion |x−1|m of x is that x

and m are relatively prime. Then the inversions can be expressed as:

m−11 (β1) =
[
m−11 (m2),m

−1
1 (m3), . . . ,m

−1
1 (mn)

]
.

Then the t2 can be expressed in the form:

|t2|β1 =

∣∣∣∣t1 − d0m1

∣∣∣∣
β1

=

[∣∣∣w(1)
2

∣∣∣
m2

,
∣∣∣w(1)

3

∣∣∣
m3

, . . . ,
∣∣w(1)

n

∣∣
mn

]
, (3.17)

where

w
(1)
i =

∣∣∣z(1)i

∣∣∣
mi

m−11 (mi) i = 2, 3, . . . , n.
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When using formula 3.16, we get the second element of the mixed radix representation d1.∣∣∣w(1)
2

∣∣∣
m2

= |t2|m2

= d1

We can use it in equation 3.17 and then we can write:

|t2|β1 = [d1, |t2|m3 , . . . , |t2|mn ] (3.18)

|d1|β1 = [|d1|m2 , |d1|m3 , . . . , |d1|mn ] . (3.19)

These relations are similar to relations for d1. Repeating the process for the rest, we will

get d2, d3, . . . , dn−1.

This algorithm can be easily written in a table where the principle can be understood

much more easily. Table 3.1 shows the steps of the algorithm, for example, where

β = [13, 11, 7, 5, 17] and |s|β = [4, 2, 4, 2, 5]. The elements of mixed radix representation

corresponding with relation 3.16 are marked out in bold.

The above algorithm has to be extended for signed numbers because when used in this

fashion, it works only with positive numbers. The extension is based on double conver-

sion, one for the number (residue) itself and the other for its negative value. There, the

negative value means the number (residue) subtracted from the corresponding modulus

mi. Afterwards it is necessary to determine which of the two results will be used. If the

positive result is less than M/2, then it is the actual final value, otherwise, if the result

gained with negative partial results fulfills the condition of being less than M/2, then the

negative value of this result is the final value.

Finally, all the elements of the result vector are divided by the determinant to obtain

rational number results according to section 3.1.4.

The transformation algorithm is very important for the termination of the whole computa-

tion. The process terminates when elements of the mixed radix representation marked in

table 3.1 are zero for all the elements of the result vector. This condition has to be fulfilled

for at least one of the representations (positive/negative). When it is satisfied, there is no

need to extend the range and this means that no other SLCs have to be solved.

This method of process termination does not guarantee the achievement of a sufficient

range (M) to solve the SLE exactly without any rounding errors. But the probability of
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β m1 = 13 m2 = 11 m3 = 7 m4 = 5 m5 = 17 op.
|t1|β 4 2 4 2 5
|d0|β 4 4 4 4 4 −
|t1 − d0|β 0 9 0 3 1
m−11 (β1) 6 6 2 4 ·
|t2|β1 = | t1−d0

m1
|β1 10 0 1 4

|d1|β1 10 3 0 10 −
|t2 − d1|β1 0 4 1 11
m−12 (β2) 2 1 14 ·
|t3|β2 = | t2−d1

m2
|β2 1 1 1

|d2|β2 1 1 1 −
|t3 − d2|β2 0 0 0
m−13 (β3) 3 5 ·
|t4|β3 = | t3−d2

m3
|β3 0 0

|d3|β3 0 0 −
|t4 − d3|β3 0 0
m−14 (β4) 7 ·
|t5|β4 = | t4−d3

m4
|β4 0

Table 3.1: Example transformation (RNS to MR)
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an insufficient range is very small. The mechanism for computation finishing is described

in [24].

3.2 Implementation

3.2.1 Transformation into integer number space Z

Implementation of the transformation of input data set into an integer number range is

just a simple coding of process described in 3.1.2. No notable problems in this field exist.

3.2.2 Transformation into Zn

To gain the remainder after division the fmod function from standard C library is used.

During our development and testing we have used the GNU C compiler and the GNU C

library as well.

When using the GNU C library implementation this function should be errorfree for the

following architectures, according to the GNU C library manual [21]:

• Alpha

• intel x86 architecture including x86 64 architecture.

• IA64 (Itanium)

• Sparc in both 32 bit and 64 bit variants

• PowerPC

• S/390

But in the GNU C compiler, this function is also built-in and thus the compiler is free

to use its own implementation under certain conditions. In case of problems the built-in

function implementation can be suppressed.

Finally, this function will be translated into the fprem instruction [19] for x86 architecture

processors.
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3.2.3 Set of linear congruencies

To solve one set of linear congruencies with modulus m a common Gaussian elimination

in residual arithmetic is used. This means that we have to take care of the magnitude of

every result of every operation and perform modular reduction if necessary.

3.2.4 The calculation of Final results

Final results are gained from the vector of values calculated according to the algorithm

expressed in section 3.1.5 using formula 3.9. There is a need to use a multiple precision

floating point library. The implementation strictly follows formula 3.9. At the beginning

of computation we predict some degree of precision which is used for this computation.

Whenever the results are in the range where some precision could be lost, the range used

for this computation is extended accordingly. We can state that for every modulus used

there is a need to represent all the possible values with full precision (without any loss).

Thus when using, for example, ten modules of 31-bit size, it is necessary to use the range

with 310 bits of mantissa, because the product of ten 31-bit numbers can be the number

with a 310-bit representation.

This form of processing guarantees that full precision of the result is preserved.

Certainly the final result is not expressed with such a precision. There is a default value for

mantissa size of the output vector. This default value can be overridden with a concrete

desired precision.

3.2.5 Final result verification

Due to the fact that the completion of the computation is done basically on probability

principles, it is necessary to verify the accuracy of the results. Thus, we perform the test

whether the left-hand side (LHS), applying the results, is equal to the RHS in every linear

equation. The verification process can be described as formulae 3.20.

δx = Ax−y
y

∀i, 0 ≤ i < dim δxi < t
(3.20)

The tolerance t in formulae 3.20 is implicitly set to 10−6 and it can be easily changed.
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3.2.6 System Architecture

The application which processes the SLE solution is the core of the whole system. Since

its early implementation it has been designed as a parallel application because of its time

complexity. The complexity is high because there is a lot of SLCs for every task to solve.

This application is designed for parallel clusters using MPI (Message Passing Interface)

communication protocol. For more information on MPI see MPI homepage1.

The application itself is divided into two parts. The first can be described as a master

process and the other one as a slave process. The relationship between these two kinds of

processes is demonstrated in figure 3.1.

The computation can be described as a sequence of three phases. The next paragraph

describes each phase solely in view of master/slave process partitioning.

1. This phase should be called Initialization. The master process allocates the mem-

ory needed. Then it reads the input data from the disk and performs the basic

conversion of the problem to integer numbers according to section 3.1.2. The slave

process just allocates memory locations needed.

2. The next phase is the most time consuming part of the computation. Master process

assigna moduli to slave processes (assign modulus in figure 3.1) and processes results

received from slave processes. The way of processing the result is theoretically

discussed in section 3.1.5, which also includes sufficient precision resolving. Slave

processes are responsible for receiving moduli, processing the Gaussian elimination in

residual arithmetic with all the received moduli (3.1.4), and providing SLC solutions

back to the master process.

3. In the last phase, only administrative tasks are performed. Master process sends a

stop message to slave processes and stores the final results. All processes clean up

their environment.

3.3 Complexity

This section concentrates on the complexity of the whole system from different points of

view. It is divided into three subsections according to the complexity type. The first section

1http://www-unix.mcs.anl.gov/mpi/

http://www-unix.mcs.anl.gov/mpi/
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master
process

slave
process #1

slave
process #2

slave
process #n-1

assign
modulus

receive
result

assign
modulus

assign
modulus

Figure 3.1: Linsolve architecture

3.3.1 deals with the asymptotic time complexity of every single part of the algorithm. The

second subsection 3.3.2 is focused on memory consumption and its effects. The last 3.3.3

expresses the communication complexities.

The parameters of the relations vary. Some of them are clearly understood and stated like

the number of cluster nodes p and the dimension of the SLE n. However, the parameter

number of moduli used for computation is not so clear and its value is not known. The

only way to find its value is to perform the computation.

The count of moduli used should theoretically correspond to the range required to solve

the problem, but in practice it is not easy to determine this value.

3.3.1 Time complexity

This section is divided according to the division of the algorithm in section 3.1. It should be

remembered that sections 3.3.1.1 and 3.3.1.3, corresponding to sections 3.1.2 and 3.1.5, are

performed by the master process (on the main node). Section 3.3.1.2 states the complexity

of SLC solution which is handled in slave processes. The difficulty of the whole algorithm

is summarized in section 3.3.1.4.

The formulae presented through sections 3.3.1.1 to 3.3.1.3 were taken from [10]. The final

complexity of the whole computation stated in 3.3.1.4 can be derived from those relations
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and the knowledge of the systems behaviour.

3.3.1.1 Transformation to integer numbers

Transformation to the integer number range is completely determined by the dimension

of the problem. The transformation of one value in agreement with the formula 3.2 takes

constant amount of time. The time complexity of such a transformation is as follows.

ttoint = O(n2) (3.21)

3.3.1.2 SLC

Asymptotic complexity of computation of one set of linear congruencies is given by the

complexity of the Gaussian elimination. This algorithm is well known and its complexity

is tSLC = O(n3).

Furthermore, the Gaussian elimination algorithm is performed for every modulus. The

asymptotic complexity for the process of all the eliminations is expressed by formula 3.22.

O(m · n3) (3.22)

In addition, the time needed for the transformation from integer numbers into residue

arithmetic should be taken into account. But this conversion has the same asymptotic

complexity as the transformation into integer numbers expressed in form 3.21, so it does

not affect the relation 3.22.

3.3.1.3 Transformation to real numbers

Time complexity of the transformation from RNS into rational numbers depends on the

number of moduli used for the computation. This complexity should be expressed by

relation 3.23.

O(m2n) (3.23)

Relation 3.23 arose from a detailed analysis of the algorithm described in section 3.1.5.

When studying table 3.1, we can say that for the transformation of one number it is



SECTION 3. OUR APPROACH 21

necessary to perform m2 computational steps. It is obvious that for the conversion of the

whole result vector of dimension n the complexity corresponds to formula 3.23.

In fact , 2n+2 conversions are performed because of an independent transformation of pos-

itive and negative representations and the determinant. Asymptotically, the final relation

is truly formula 3.23.

3.3.1.4 Overall complexity

When combining the complexity of the whole computation, all the parameters have to

be taken into account. The final complexity of the whole system is not just a trivial

combination of the relations expressed in sections 3.3.1.1 to 3.3.1.3. Actually, the final

complexity should be written in form 3.24.

O(n2 +max(m2n,m · n3 · (p− 1)−1)) (3.24)

The first element (n2) of 3.24 represents conversion into integer numbers. The second

element of the addition in 3.24 represents the maximum of the time needed for the trans-

formation from the RNS into rational numbers and the SLCs solution itself. The time for

SLCs processing is divided by the number of available processors.

We suppose the same hardware configuration for all the nodes used for the computation. If

this condition is not fulfilled, then it is impossible to estimate the complexity of the whole

computation and the validity of formula 3.24 would be doubtful.

The second part of relation 3.24 shall be described in more details. The meaning of this

term is straightforward. When the transformation from the RNS into rational numbers

becomes more complicated than the SLCs solution itself, the master process will turn into

a bottleneck of the computation. This is due to the fact that the master process will

be overloaded and the assignment of the moduli for the slave processes will fail. So, the

computational capacity of the slave nodes will not be fully utilized. In this case, the slave

nodes will be idle and will wait for the modulus to start the elimination.

This problem would arise in two ways. In the first instance the problem requires too

many moduli and in the other where there are too many nodes available. To preserve this
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situation, condition 3.25 must be fulfilled.

tSLC > (p− 1) · tbt (3.25)

Figure 3.2 shows the work-flow of the computation for fulfilled relation 3.25. Figure 3.3

brings up an other situation, when relation 3.25 does not hold. Figure 3.2 shows that the

slave processes (red colour) are fully utilized when the workload of the master process (blue

colour) is low and it is free to assign moduli to them. In figure 3.3 we can observe gaps

in slave processes utilization at the end of the computation, when, on the other hand, the

master process has a igh workload due to MRC computation.

Figure 3.2: An example of the Node workload (n = 500, p = 5) - The graph of different
processes utilization. The blue colour represents the master process and the red colour
represents slave processes. The master process is idle almost all the time, while the slave
processes are busy.

When adjusting relation 3.25 we get a relation for the number of processors, the dimension

of the problem and the number of moduli used. This relation is expressed in equation 3.26.

p <
tSLC
tbt

+ 1 =
O(n3)

O(m · n)
= O

(
n2

m

)
(3.26)

Formula 3.26 says that the number of processors can grow as fast as dimension square but,

on the other hand, with the growing number of used moduli the count of effectively spent
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Figure 3.3: An example of the Node workload (n = 500, p = 24) where starvation is
obvious - The meaning of colours remains the same as in 3.2. Master process is busy at
later stage of computation and the slave processes starve (the gaps in red bars).

processors decreases.

3.3.2 Memory consumption

This section deals with memory consumption of the system. The relations do not cover the

entire memory which the system uses. It is just the memory complexity of the algorithm.

Furthermore, the system uses some temporary variables and buffers for different purposes.

These memory areas are neglected due to their relatively small sizes.

A very simple description of the memory complexity is given in [10]. This section provides

a more detailed analysis of memory consumption.

The section is divided in the same way as section 3.3.1. Sections 3.3.2.1 and 3.3.2.3 cor-

respond to the computations performed by the master process and section 3.3.2.2 focuses

on the memory consumption of the part processed by slave processes.

Although it is not highly important to state the overall memory consumption because we

assume that every process is executed on a single node of the cluster, it is presented in

section 3.3.2.4.
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3.3.2.1 Transformation to integer numbers

Memory consumption of the part of the algorithm performing the conversion of input

data into integer numbers is determined by the size of the input data. So, the memory

consumption should be expressed by relation O(n2). The statements in section 3.1.2 imply

usage of a 80-bit floating point data type because it is necessary to extend the range in

comparison with the range of input data. We suppose input data in the range of double

precision floating point values defined by literature [18], which means 64 bits in size. The

use of the 80-bit floating point data type finally occupies 96 or 128 bits of memory space.

It depends on the compiler and hardware architecture. We are working on x86 architecture

and using mostly the GNU C compiler where the long double data type has the size of 128

bits.

The final size of memory space needed is expressed by formula 3.27 in bytes. The memory

consumed by the input data has to be taken into account too.

mtoint =
128 + 64

8
· n2 = 24 · n2 (3.27)

3.3.2.2 SLC

Memory claims of the Gaussian elimination are also well known as O(n2). Unfortunately,

it is necessary to guarantee that the needed data will be placed in the physical memory. If

this demand is not fulfilled, then the whole will slow down because some parts of the data

have to be swapped out of the memory.

Thus, memory consumption has to be expressed more exactly. For the Gaussian elimination

itself, 32-bits integer numbers are used. Nevertheless, we need to remember the input data

in the form of integer numbers. Those are stored in the variables of the floating point type

with 80 bits range. Then the size of memory the SLC solution needs is given by relation

3.28.

mslc =
128 + 32

8
· n · (n+ 1) = 20 · n · (n+ 1) (3.28)

When formula 3.28 is adjusted to the form of formula 3.29 it is possible to give an ap-

proximate limit to the dimension of the input problem, that can be processed without

any complications. This limit is just a guess because of the system memory requirements,
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temporary variables and other auxiliary demands are not included in this limit.

mslc

20
> n2√

mslc

20
> n (3.29)

For example, when having a physical memory of 512MB, then the limit for the dimension

is approximately given by relation
√

512M
20

.
= 5180.

Experimental results show the fact that this limit is not a strict one. It is caused by the

usage of integral scaled input data stored as 80-bit floating point type. These data are

only used at the beginning of the SLC solution where the conversion from integer numbers

to residual arithmetic is performed. Afterwards only the SLCs data of 32-bit integer type

are utilized.

There is a possibility of saving some memory by changing the process of moduli assignment

for separate slave processes. The SLC modulus should be assigned in the way, where the

master process performs the transformation from the integer number range into residual

arithmetic with a given modulus and then sends such a problem to the slave process. This

is a way of saving the memory required for remembering the problem in integer numbers

and this means saving 128 bits for each element.

But in effect this adaptation increases the communication complexity, because every SLC

computation means that the whole task is sent from the master process to the slave process.

Hypothetically, when using the 32-bit integer range, then 4B ·n2 will be sent. For n = 5000

it gives 4 · 50002 = 100MB and for n = 10000 it gives 4 · 100002 = 400MB.

3.3.2.3 Transformation to real numbers

Expressing memory demands of the transformation from the RNS into real numbers is a

little complicated. This is because the multiple precision library is used for the transfor-

mation.

Final values are stored as floating point numbers where the size of mantissa is determined

by the number of used moduli and the number of their valid bits. The memory demands

should be written in the form O(m · n), too.

More precisely the size of the memory needed should be expressed by the number of bits
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used for mantissa. Relation 3.30 then represents the total memory consumption for such

elements. Identifier k corresponds to the moduli valid bits count.

mbt = k ·m · n (3.30)

It is straightforward that all the members of the mixed radix representation, called di, i =

0, 1, . . . ,m in section 3.1.5, have to be remembered. This gives the m · 2(n + 1) elements

of 32-bit integer type due to the positive and negative representation computing.

3.3.2.4 Total memory consumption

Memory consumption of the whole system can be expressed as the sum of the consumption

of the master process and multiple of the memory consumption of the slave processes. The

gained formula is useful when using a single computer where the processes have to share

the memory, which obviously was the case of some ofthe tests as well. The total memory

consumption is expressed by formula 3.31.

mall = k ·m · n+m · 2n · 32 + 192n2 + p(160 · n · (n+ 1))

= n2(192 + 160p) +mn(k + 64) + 160pn
(3.31)

3.3.3 Communication complexity

Communication complexity is not divided. It is given entirely for the whole system. There

are only a few operations the system performs. The first one is the distribution of the

problem transformed in the integer number range, then some assignments of the moduli

are performed and, finally, the results of individual SLC eliminations are gathered into the

master process.

The most complex operation is the distribution of the problem in integer numbers. This

operation is performed at the beginning, just after the master process transforms the

problem into integer numbers. Its complexity corresponds to the dimension of the problem

and therefore it is O(n2).

The operation of assigning a modulus is very simple. It only means sending the modulus
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for the SLC. The count of moduli is m. Then the overall complexity of this operation is

O(m).

The last communication operation is sending the result of the SLC back to the master

process. This operation is performed m times, as well. The only difference is that it sends

the result vector with dimension n. The complexity of this operation is O(m · n).

The communication complexity of the whole computation is expressed by relation 3.32,

where identifier l has the meaning of type size for sending the modulus and the result

vector.

c = l · n2 + l ·m · n = O(n2 +m · n) (3.32)
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4 System Optimizations

4.1 Motivation

In spite of parallel implementation, the time needed for solving the SLE is much greater

than for standard elimination methods (including some regularization). Thus, we have

focused on optimization of time complexity.

The operation which is the most time consuming is the multiplication with reduction. It is

due to the fact that modulo reduction after addition or subtraction can be realized by using

one comparison and possible subtraction or addition, respectively. But after multiplication,

the modulo reduction has to be done by means of division operation, which returns the

residuum too. The division operation is very complex and takes a lot of processor cycles.

A table of instructions and their latencies can be found in [11].

Nevertheless, the memory demands have been reviewed due to the problems of solving some

real data sets and some bad decisions in the system design were discovered and eliminated

later in the process.

Although the system has been developed as a linear equation solver for huge and dense

matrices, the first real problem to solve was the sparse matrix from the Astronomical

Institute of the Academy of Sciences of the Czech Republic. Thus, we have to focus on

memory demands again, because the memory limit has been reached for this task. While

the symmetric multiprocessing (SMP) is common due to multi-core processors, we decided

to use shared memory (SHM) for the problem, where all the processes use this shared

storage of the original data. Moreover, shared memory utilization also helps our primary

design for dense problems.

4.1.1 Assumptions

As we focus on the SLC solution by the Gaussian elimination method, we can state that

all the multiplications are performed in form 4.1 the row multiplication operation where

each element of the row (vector) is multiplied by the same scalar value.

b′ ≡ c · b mod m (4.1)
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This fact makes some of the following optimizations possible.

4.2 Results

Sections 4.2.1.1 to 4.2.1.5 provide a detailed description of approaches that we have taken

for multiplication with reduction. They are all used to find a remainder mod m after

finding a product of two integers a and b and they correspond to z = ( a * b ) % m

in the C programming language. This task is the most frequent operation during the

SLC solving process as we need to perform a reduction mod m after every operation in

order to avoid an overflow in the computer register. The remainder mod m is calculated

during a modular version of Gaussian elimination where we multiply a vector by a scalar

variable and then reduce the computed vector by mod m. Undoubtedly, this task presents

a bottleneck in the code, and therefore a system optimization should be applied to obtain

performance improvement in this code.

The two main approaches that we have taken are in integral arithmetic and in floating

point arithmetic. The integer arithmetic is a natural choice for reduction purposes as a

single div instruction calculates both the quotient and the remainder and we can just

pick the remainder. An alternative strategy is to employ the floating point arithmetic.

Although, at first sight, the floating point arithmetic does not look very attractive for

reduction purposes, the following sections demonstrate that the possibility to use Single

Instruction Multiple Data (SIMD) vector extensions to calculate multiple reductions with

the same module simultaneously is very enticing and several times faster than the original

approach using integer arithmetic.

Section 4.2.2.1 deals with the Gaussian elimination and the application of the presented

approaches to carry it out. In addition, the section presents optimizations for other oper-

ations, not only multiplication with reduction.

The other interesting method for multiplication with reduction optimization is the use of

Montgomery domain. This method and its usage for the whole Gaussian elimination is

described in 4.2.2.2.

Memory demands of auxiliary data structures are analyzed in section 4.2.3.1. This section

also presents a simple inoptimality disposal where memory demands for the specific task

have been lowered to 50 percent of the original implementation. Memory demand then

corresponds to the theoretical formulae expressed in complexity section 3.3.2.
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4.2.1 Multiplication with reduction

4.2.1.1 Integer Approach

This approach is traditional one. A product of integers a and b is calculated and a truncated

quotient and remainder are obtained by using the div instruction. The quotient is simply

discarded and the remainder is stored instead. When presented in the assembly language,

this approach corresponds to the following code fragment:

mov eax, dword ptr [a] ; load a into eax

mov edx, dword ptr [b] ; load b into edx

mul ; calculate a*b in eax

mov edx, dword ptr [m] ; load modulus into edx

div ; eax=TRUNC(a*b/m), edx=remainder

mov dword ptr [z], edx ; store remainder

4.2.1.2 Floating Point Approach with fmod/remainder Functions

This is the first and the simplest approach that uses the Floating Point Unit (FPU) instead

of the integer unit. The approach loads 3 integers (a, b, and m) onto the floating point

stack multiplies with fmulp and then uses the fprem or fprem1 instruction depending on

whether we want to obtain the result in Zn or in Sn. The following code corresponds to

the implementation of the fmod function with the fprem instruction or remainder function

with the fprem1 instruction:

fild dword ptr [m] ; modulus

fild dword ptr [a] ; a modulus

fild dword ptr [b] ; b a modulus

fmulp ; a*b modulus

fprem/fprem1 ; calculate remainder

fistp dword ptr [z] ; store remainder as integer
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4.2.1.3 Optimized Floating Point Approach

The problem of the approach described in section 4.2.1.2 is that fprem and fprem1 in-

structions have a high latency1. These latencies are also caused by checks for validity of

source operands, a need for division and also by the fact that the floating point divisions

are not pipelined. The latency of fprem is commonly smaller than the latency of div but

still large enough to do some more work. As we know that input operands are always valid

and it is not likely that a floating point exception is to be ever thrown, we can bypass both

fprem/fprem1 and div instructions. We can use m−1 value which we can precalculate be-

fore the computation and replace division with multiplication. When we do so, we obtain

the following code:

;--------------------------------------------------------------------

; Load the floating point stack and calculate a*b/modulus

;--------------------------------------------------------------------

fild dword ptr [a] ; a

fimul dword ptr [b] ; a*b

fld st0 ; a*b a*b

fmul qword ptr [m_inv] ; a*b/modulus a*b

;--------------------------------------------------------------------

; Enforce rounding to integer by adding a rounding constant. Once

; rounded, remove the constant by subtracting it.

;--------------------------------------------------------------------

fadd qword ptr [mmd_round]

fsub qword ptr [mmd_round]

1The latencies of instructions for different processors can be found in [11]
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;--------------------------------------------------------------------

; Calculate the remainder

;--------------------------------------------------------------------

fimul dword ptr [m] ; modulus*ROUND(a*b/modulus)

fsubp st1, st0 ; remainder

fistp dword ptr [mmd_tmp] ; store remainder as integer...

;--------------------------------------------------------------------

; Add modulus if the remainder is < 0 or add zero otherwise.

;--------------------------------------------------------------------

mov eax, [mmd_tmp] ; ...and load it into eax

mov edx, eax ; make a copy of eax into edx

sar eax, 31 ; if eax < 0 then eax = -1 else 0

and eax, dword ptr [mmd_intp] ; and module’s value

add eax, edx ; add zero, or module

This approach is senseless if we have a different m for each operation. In our case of SLC

solution using Gaussian elimination in residual arithmetic the m is the same value for the

whole row and thus for all the modulo reductions in this row multiplication. This is the

reason why we can perform one division and then replace the remainder operation with

multiplication.

4.2.1.4 Floating Point Approach with MMX
TM

and SSE2

In fact, there is a necessity for multiple reductions modulo m as we solve SLCs and there we

typically multiply a vector (matrix row) with a scalar during Gaussian elimination. In the

following c is a scalar, while b is a vector and we rather calculate b′ ≡ cb mod m. The size

of operands in this approach is restricted and intermediate products shall not exceed 53-bit

mantissa, therefore c, m, and elements of b must only be up to 26-bit wide. This limitation

does not affect the floating point approach in 4.2.1.2 and 4.2.1.3 thanks to the usage of

FPU and its full operational precision of 80 bits. Because of the length of an excessive

source code, only the most important portion of the unrolled modular multiplication with

reduction is shown:
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;-------------------------------------

; Save the FPU state

;-------------------------------------

fsave [sse_fpu_state]

;-------------------------------------

; Load parameters into registers

;-------------------------------------

mov ecx, [ebp+16]

mov edi, [ebp+12]

mov esi, [ebp+8]

mov ebx, [mmd_intp]

;-------------------------------------

; Is vector of even or odd length?

;-------------------------------------

mov eax, ecx

shr ecx, 1

and eax, 1

mov [ebp-4], ecx

mov [ebp-8], eax

or ecx, ecx

jnz .loop_2x_sse

jmp .pre_loop_1x_sse

align 32
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.loop_2x_sse:

;-------------------------------------

; Process next 2 vector elements

;-------------------------------------

cvtpi2pd xmm0, [esi]

mulpd xmm0, [sse_dbl_m]

movapd xmm1, xmm0

movapd xmm2, [sse_dbl_p]

mulpd xmm0, [sse_dbl_pinv]

addpd xmm0, [sse_round]

subpd xmm0, [sse_round]

mulpd xmm0, xmm2

subpd xmm1, xmm0

cvtpd2pi mm0, xmm1

movq mm1, mm0

psrad mm0, 31

pand mm0, [sse_int_p]

paddd mm0, mm1

movq [edi], mm0

;-------------------------------------

; Move to next 2 vector elements

;-------------------------------------

add esi, 8

add edi, 8

dec dword [ebp-4]

jz .pre_loop_1x_sse

jmp .loop_2x_sse
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.pre_loop_1x_sse:

;-------------------------------------

; Process 1 vector element

;-------------------------------------

mov ecx, [ebp-8]

jecxz .loop_1x_sse_end

.loop_1x_sse:

mov eax, [esi]

mul dword [sse_int_m]

div dword [sse_int_p]

mov [edi], edx

;-------------------------------------

; Move to the next vector element

;-------------------------------------

add esi, 4

add edi, 4

dec dword [ebp-8]

jnz .loop_1x_sse

.loop_1x_sse_end:

;-------------------------------------

; Restore the FPU state

;-------------------------------------

frstor [sse_fpu_state]

4.2.1.5 Floating Point Approach with SSE2 by Intel Intrinsics

Since most of the operating systems currently run in the 64-bit mode, there is a need of

porting the presented algorithms to the 64-bit architecture. These ports become slightly

difficult because of minor differences in the assembly languages of IA-32 and the x86-

64 architecture, and therefore we have decided to implement the latest approach from

section 4.2.1.4 by means of the Intel intrinsic functions instead and let the compiler do its

work. This implementation no longer requires any assembly code inlines nor the assembler

compiler.
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Due to the performed loop unrolling we were able to eliminate the usage of the multimedia

extension (MMX
TM

) technology instructions and we have unrolled the loop to process eight

elements per each iteration. Thus the sequence of instructions psrad, pand, and paddd

at the end of two elements processing has been superseded by their Streaming SIMD

Extensions (SSE) equivalents.

This implementation can be compiled by means of the GNU C compiler and presumably

the Intel C compiler2. Both compilers support the Intel intrinsic functions to perform the

SSE technology instructions directly from the C source code, and such an implementation

is portable through IA-32 and x86-64 architectures without any problems.

4.2.2 Gaussian elimination

4.2.2.1 Using SSE2 for Gaussian elimination

All of the optimization performed through sections 4.2.1.1 to 4.2.1.5 has been made to

fully optimize the process of the Gaussian elimination in residual arithmetic. Note that

multiplication with reduction is not the only possible operation to be vectorized using SIMD

instructions since almost all of the processing during the elimination is vector based.

Consequently, we have used SSE instructions also to add the row multiple to another row(s)

in the matrix. This operation can be written as vj ≡ vj − cvi mod m, where vj and vi

are rows of the SLC matrix and c is a nonzero scalar. The source code for multiplication

just needs to be extended with a load instruction and a subtraction of the elements of the

second vector, and the reduction mod m is performed after this operation.

We have also used vector processing during backward substitution in the Gaussian elim-

ination process, where SSE extensions are used to calculate a dot product in residual

arithmetic of vj · y mod m, where vj stands for a row of the SLC matrix, and y stands for

the right hand side vector.

We have used the approach from section 4.2.1.5 and Intel intrinsic functions for this im-

plementation.

2We have no Intel C compiler at disposal.
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4.2.2.2 Montgomery domain

Montgomery domain is another way of speeding up the modular arithmetic, especially

the multiplication with reduction. The principles of the modular multiplication without

division in Montgomery domain were first published in [26].

Montgomery found a representation of numbers which allows effective modular multiplica-

tion without division and does not affect other algorithms like addition or subtraction. The

drawback of this approach is that numbers have to be transformed into the Montgomery

domain at the beginning and back in the end. This means that this representation is not

suitable for simple single modular multiplication but it fits well when the processing is more

complex. The Gaussian elimination is such a process where the benefits of efficient modular

multiplication should outweigh the drawback of the initial and final transformations.

The representation of number a in the Montgomery domain with modulus m is given by

formula 4.2.

a ≡ aR mod m (4.2)

Then operations addition, subtraction and multiplication in the Montgomery domain are

defined in formulae 4.3.

a+ b ≡ aR + bR ≡ cR mod m

a− b ≡ aR− bR ≡ cR mod m (4.3)

c ≡ cR ≡ (a · b)R ≡ (aR · bR)R−1 ≡ (a · b)R−1 mod m

We may observe that addition and subtraction are common operations with final reduc-

tion. The product of a and b has to be multiplied by the inverse of R to get the proper

Montgomery representation of c. This operation is called Montgomery reduction. The

algorithm of multiplication including the Montgomery reduction is described by algorithm

1.

An essential feature of this algorithm is that it consists of general multiplication and

addition, but operations of division and modulo reduction are performed only with R as

its operand. Thus we can chose such R that would make these operations cheap. An

obvious choice is some power of two for which the division is just a shift operation and

the modulo reduction corresponds to the and operation. We always pick R as the smallest
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Algorithm 1 Modular multiplication in Montgomery domain

Require: a, b - The Montgomery representation of operands
Require: R - The Montgomery representation multiplier
Require: m - The modulus
Require: k such that k = (RR−1 − 1)/m ∧RR−1 ≡ 1 mod m
Ensure: c ≡ (a · b)R−1 mod m - The Montgomery representation of product of a and b

1: T ← a · b
2: p← (T mod R)k mod R
3: t← (T + pm)/R
4: if t ≥ m then
5: c← t−m
6: else
7: c← t
8: end if

power of two greater then modulus m.

R = 2x

R > m ∧ 2x−1 ≤ m
(4.4)

see Appendix B for amore detailed description of the Montgomery domain and operations

of multiplication, addition, subtraction etc. in this representation.

To gain best performance, we used all the knowledge gained from the previous sections

mostly 4.2.2.1 and 4.2.1.5 and we have implemented the Gaussian elimination using SSE

instructions. For a multiplication operation we can use the 128-bit packed quadword

integers to ensure accuracy. For other operations, like addition or subtraction, we can use

128-bit packed doubleword integers, which gives us the opportunity to process even four

elements simultaneously instead of two elements for multiplication.

4.2.2.3 Optimizations for sparse matrices

We have also performed some optimizations for sparse matrices. A sparse matrix is a

matrix populated primarily with zero elements. This kind of matrices often appears in

science when solving partial differential equations. The great number of zero elements

opens the possibility for processing only a specific subset of elements in the elimination

process.
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Truly the elimination algorithm is implemented by stepping one row after another and,

from this point of view, in the elimination step k, there is no need to process the rows

where the kth element of the row is already zero. And also if after the multiplication of

the kth row by the multiplicative inverse of its kth element, the lth element is zero, the lth

elements of other rows need no processing.

4.2.3 Memory demands

4.2.3.1 Auxiliary data structures

It is necessary to focus on auxiliary data structures, too. We can express one example

of highly impractical allocation of data structures for transformation to real numbers,

especially the MRC part without Horner scheme. The theoretical complexity of this part

of processing is described in 3.3.2.3. The structure has to be allocated dynamically on the

heap, thus we allocate a three-dimensional array for storing the elements of table 3.1 for

each element of the result vector and for both the positive and negative representation.

There are huge differences in the size of the additional allocated memory depending on the

index order. We have expressed memory consumption for three different index orders in

the next paragraphs.The symbols in the following formulae are:

• p The size of pointer type

• m The moduli count

• n The dimension of the result vector

• u The size of one element

prime, vector, negative : The worst ordering that we have accidentally chosen at the

beginning of the implementation.

mmrc = m · (p+ (n+ 1) · (p+ 2u))

= 2m(n+ 1)u+m(n+ 2)p
(4.5)



SECTION 4. SYSTEM OPTIMIZATIONS 40

prime, negative, vector : This ordering is better than the first one.

mmrc = m · (p+ 2 · (p+ (n+ 1)u))

= 2m(n+ 1)u+ 3mp
(4.6)

negative, prime, vector : The best ordering of indices with minimal memory demand

overhead.

mmrc = 2 · (p+m · (p+ (n+ 1)u))

= 2m(n+ 1)u+ 2(m+ 1)p
(4.7)

When talking about x86-64 architecture, which is our case, the p = 64b and u = 32b. The

first factor of all the three formulae represents the theoretical memory demand stated in

3.3.2.3. From 4.5 we can observe that making a bad choice of index order leads to double

memory consumption. On the other hand, in 4.7 the overhead of auxiliary data structures

is negligible and the smallest of all the three cases.

4.2.3.2 Shared memory

It is not necessary to store the original data of the solved problem separately for each

process of computation. Especially, when we know that the SMP is engaged to a high

degree. Thus, these data, common to all the processes, should be stored once for each

SMP segment.

To engage the shared memory model we have to take several consecutive steps. There is a

need to make suresafeguard that only one process on the SMP segment will be responsible

for receiving the original problem. We use inter-process communication (IPC) lock to

ensure this. Such a process will securely be responsible for the shared memory allocation

and its deallocation. Other processes on the same SMP segment only have to prepare

theirits own structures to use the shared memory segment. The safeguard and distribution

are described by algorithms 2, 3 for the master process (loading and sending the problem)

and slave processes, respectively.

From algorithms 2 we can see and 3 that the order of operations lock and barrier at the

beginning is reversed. This ensures that the master process locks the IPC lock at its SMP

segment and thus it is responsible for shared memory management. The second operation



SECTION 4. SYSTEM OPTIMIZATIONS 41

Algorithm 2 Problem distribution for shared memory use (master)

1: locked = lock(IPC) {Lock the interprocess lock.}
2: barrier {The global barrier.}
3: sle = load() {Load the input into the shared memory.}
4: lockedv = gather(locked) {Gather the lock flags to the master processes.}
5: for all i such that process i locked IPC and i 6= 0 do
6: send(sle) to process i {Send the sle data to all the locked processes.}
7: end for
8: barrier {The global barrier.}

Algorithm 3 Problem distribution for shared memory use (slave)

1: barrier {The global barrier.}
2: locked = lock(IPC) {Lock the interprocess lock.}
3: gather(locked) {Gather the lock flags to the master processes.}
4: if locked then
5: sle = receive() {Receive the sle into the shared memory.}
6: barrier {The global barrier.}
7: else
8: barrier {The global barrier.}
9: sle = loadFromShm() {Load the auxiliary structures for shared memory use.}

10: end if
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Table 4.1: Vector multiplication with reduction timings

n “C” [s] s. 4.2.1.1 [s] s. 4.2.1.2 [s] s. 4.2.1.3 [s] s. 4.2.1.4 [s] s. 4.2.1.5 [s]

104 0.000330 0.000215 0.000145 0.000098 0.000073 0.00001

105 0.003648 0.002306 0.001484 0.001109 0.000755 0.00010

106 0.037292 0.022908 0.016579 0.011686 0.009848 0.01003

107 0.355189 0.232233 0.162232 0.112162 0.083057 0.10602

108 3.464424 2.306178 1.580290 1.056258 0.821638 1.05307

barrier at the end of those algorithms is the safeguard for loading, sending, receiving and

the entire necessary SHM management preceding the usage of SHM by non-responsible

processes.

4.3 Experiments and Evaluation

4.3.1 Multiplication with reduction and Gaussian elimination

We have implemented the presented approaches from section 4.2.1.1 through 4.2.1.5 for

multiplication with reduction in their vector form. The measurement has been done on

a 1.7 GHz Intel machine running Linux. All timings were obtained with the clock API

(Application Programming Interface). Table 4.1 shows the results obtained for multipli-

cation with reduction cb mod m used during solving SLCs of various vector dimensions n

for C language implementation and then for the 5 approaches we have presented:

The columns in table 4.1 are captioned with the appropriate section number. For results

from table 4.1 brought into graph 4.1, a significant speedup is visible:

Figure 4.1 plots all 6 approaches we have taken, including the plain C implementation

(the “C” column) which just uses ( a * b ) % m, followed by 5 approaches described in

sections 4.2.1.1 to 4.2.1.5. It is important to note that timings have been measured for un-

rolled versions of presented algorithms that calculate vector multiplication with reduction

and instructions have been blended with respect to processor architecture. Each approach

was optimized separately at the instruction level in order to obtain a top performance.

There is an interesting observation that we can safely use the inverse module 1/m instead
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Figure 4.1: Vector multiplication with reduction timings - The meaning of lines is as
follows. C - pure C implementation; INT - integer assembler implementation; FP - floating
point implementation; FPND - floating point without division; SSE - floating point without
division by means of SSE; SSEI - SSE implemented by means of Intel intrinsics



SECTION 4. SYSTEM OPTIMIZATIONS 44

of just m and completely avoid the division. Moreover, the FPU unit is not used in the final

approach. The reduction is performed by 2 elements simultaneously with SSE2 instructions

with the support of MMX
TM3. The speedup which we obtained in approach 4.2.1.4, when

compared to approach 4.2.1.1, tops 4.2 times.

We have to note that the approach from section 4.2.1.5 gives worse results than the ap-

proach from section 4.2.1.4, but this slowdown is the cost of higher simplicity and porta-

bility.

To present a comparison of the result chosen in the previous paragraph with the new al-

gorithm described in 4.2.2.2, we performed new measurements on the system with Intel R©

Core
TM

i5 CPU, type 3210M running at 2.50GHz 4 frequency. The computer ran OS

GNU/Linux (Arch distribution) with gcc version 4.7.1 compiler and glibc version 2.15.

All timings were obtained with the clock API (Application Programming Interface). Now

we only performed measurements for the original C language implementation, the previ-

ously chosen approach from section 4.2.1.5 and finally the timings for Montgomery domain

algorithm described in 4.2.2.2. The results of these measurements are expressed in table

4.2.

Table 4.2: Vector multiplication timings

dimension TC [s] TSSE [s] TMD [s]

10 · 106 0.096 0.020 0.011
30 · 106 0.292 0.059 0.031
50 · 106 0.486 0.101 0.053
70 · 106 0.682 0.142 0.073
100 · 106 0.974 0.202 0.105

Table 4.3: Gaussian elimination timings

dimension TC [s] TSSE [s] TMD [s]

1000 3.453 0.667 0.466
1500 11.701 2.238 1.559
2000 27.679 5.255 3.640
2500 54.054 10.213 6.994
3000 92.897 17.509 11.998

We can see that the speedup for the approach using floating point arithmetic and the

SSE is approximately the same in the new measurement. Also, we have observed that the

Montgomery domain utilization made the vector multiplication even twice as fast.

Finally, we have measured Gaussian elimination timings for approach 4.2.2.1 and Mont-

gomery domain implementation from section 4.2.2.2 and compared it to the Gaussian

elimination implemented by using pure C. All timings are presented in table 4.3 for var-

ious SLCs dimensions n. This measurement has been performed on the same Core
TM

i5

machine.

3The MMX
TM

instructions have been replaced with their 128-bit SSE2 equivalents in approach 4.2.1.5.
4Intel R© Core

TM

i5-3210M CPU @ 2.50GHz specification

http://ark.intel.com/products/67355/
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Figure 4.2: Gaussian elimination timings

Data from table 4.3 are expressed in figure 4.2 where we can observe the speedup for the

whole single modular elimination.

Though the performance of Gaussian elimination using floating point arithmetic is very

good, the Montgomery domain implementation behaves much better.

The optimizations for sparse matrices presented in 4.2.2.3 have a significant impact on

the performance. Table 4.4 presents the Gaussian elimination timings for sparse matrix

containing non-zero elements just around the main diagonal. More specifically, up to five

elements in each row are not equal to zero.

Table 4.4: Gaussian elimination timings for sparse matrices
dimension 1000 1500 2000 2500 3000 3500 4000 4500 5000
TS [s] 0.005 0.012 0.024 0.040 0.063 0.091 0.129 0.171 0.206
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Table 4.5: Latency FP versus Montgomery domain

FP Montgomery domain

Loading
CVTPI2PD 4 MOVD 1

PUNPCKLQDQ 1

Processing

MULPD 5 PMULUDQ 5
MULPD 5 PAND 1
ADDPD 3 PMULUDQ 5
SUBPD 3 PAND 1
MULPD 5 PMULUDQ 5
SUBPD 3 PADDQ 1

PSRLQ 1

Storing
CVTPD2PI 4 PSHUFD 1

POR 0.5 · 1
PSUBD 0.5 · 1∑

32 23

4.3.1.1 Rationale

In this section we try to analyze the reasons for the data presented above. The simplified

sequence of instructions for the SSE variants of floating point and Montgomery domain

approaches with their latencies are shown in table 4.5

We can see that the summation of the latencies of the Montgomery domain implementation

is significantly smaller than the summation for the floating point approach. This fact

corresponds to the results presented. Instructions POR and PSUBD have latency 1 but

we are counting only a half of this because we need just two repetitions of those two

instructions for four repetitions of 4.5.

If we use the SSE4.1, we can replace the set of ADD and SUB in the floating point approach

by one ROUNDPD of latency 3. But when using the Advanced Vector eXtension (AVX) we

can embrace the 256-bit alternatives for the processing part of the floating point approach,

which should take the overall latency under the Montgomery domain implementation.

On the other hand, when we have the AVX2 at disposal, we can even use the 256-bit

alternatives for the whole Montgomery domain processing, which would probably give the

best running time.
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4.3.2 Memory demands

4.3.2.1 Auxiliary data structures

Here we also present the difference in the index ordering from 4.2.3.1 in a real example.

We have made a mistake in choosing bad index ordering at the beginning and thus we had

to figure out what caused the memory demand. Figures5 4.3 and 4.4 show the memory

allocation analysis performed by massif6 tool of valgrind7 for the worst 4.5 and the best

4.7 index ordering.

Figure 4.3: Memory demands with a bad index order(n = 500, m = 3000)

We can compare the unrolled snapshots of memory allocated from figures 4.3 and 4.4. It is

clear that one of the blocks of size 11.5MB allocated in masterInitMemoryGeneral function

at 4.3 has disappeared in 4.4. It perfectly fits in the memory demand expressed in 4.5 and

4.7. The first 11.5MB corresponds to the theoretical memory consumption and the second

5The figures come from the massif visualizer tool [33]
6heap profiler taking the snapshots of allocated memory including the information the parts of which

are responsible for most allocations
7The framework for dynamic analysis tools [2]
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Figure 4.4: Memory demands with a good index order(n = 500, m = 3000)

block of the same size corresponds to the auxiliary structures in 4.5. But for the second

case in figure 4.4, the auxiliary structures memory demands are just about 50kB of memory

((2 · 3001 · 64)/(8 · 1024)
.
= 47kB). This size is under the chosen threshold and thus is not

at all visible.

4.3.2.2 Shared memory

Results of the SHM usage are show in figures 4.5 and 4.6 where the top command output is

captured for variants without shared memory usage and with shared memory, respectively.

The significant columns in figures 4.5 and 4.6 are columns marked as RES and SHR.

Where column RES gives the amount of non-swapped physical memory a task uses. On

the other hand, column SHR gives the amount of shared memory available to a task. It

is obvious that the non-shared variant uses approximately the same amount of resident

memory but as its shared counterpart. The huge difference is in the amount of shared

memory where the first variant uses 13MB of memory of which about 5MB are shared

between processes, on the other hand, the second variant uses 13MB, too, but all of the
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Figure 4.5: Memory demands without shared memory(n = 500)

Figure 4.6: Memory demands with shared memory used(n = 500)
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9MB are shared between processes.

More precisely, we can write the following expression 13 · 4 − 9 · 3 < 13 · 4 − 5 · 3 thus

25 < 37 and we have observed that by using shared memory we saved approximately 12MB

of memory space.

The more profitable the shared memory use is the more cores in one SMP segment we

have. To be specific for STAR cluster and, especially for nodes, where there is a processor

with twelve cores and hyper-threading, it means that we are running 24 processes on one

physical node (SMP segment). Thus we can save 23 instances of problem data.

4.4 Summary

This chapter deals with system optimization of the core problem in solving a set of linear

congruencies, that is, a modular reduction after multiplication of two numbers. The re-

duction is necessary to avoid overflow. This problem appears e.g. in Gaussian elimination

which is commonly used during solving process. Normally, reduction is performed in the

integer unit with the div instruction, but because this instruction has a high latency and

is not pipelined, we would prefer a way without division.

Another approach would be to perform modular reduction after multiplication completely

in the floating point unit with fmod and remainder C POSIX functions that correspond to

fprem or fprem1 instructions of the Intel architecture set and that calculate the remainder

mod m we need. These two instructions have also high latencies, and, because we know

module m in advance, we can go around using fprem and fprem1 instructions by turning

the division by a module into multiplication by its inverse m−1. Inverse modules are

typically precalculated once just before running the multiplication of the vector for the

specific module.

Nevertheless, the process of Gaussian elimination features a multiplication of the entire

matrix row b with the same constant c and therefore a need for modular reduction after

multiplication with the same module m arises (b′ ≡ cb mod m). This need can be

beneficial as we can perform multiple reductions simultaneously with the help of processor

features — namely SIMD instructions from the SSE2 processor extension. Taking this

approach allows computing two reductions simultaneously and when several reductions are

combined together and the code loops are unrolled, a significant speedup is achieved. This
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speedup is shown in figure 4.1 and presents more than a four fold enhancement8.

A completely different way of avoiding division during the multiplication with reduction

is the usage of the Montgomery domain, where the operations of addition and subtraction

are defined as common but the multiplication with reduction is performed by a set of

multiplications, additions and bit operations shift and mask. Table 4.2 shows that the

Montgomery domain presents nine-fold enhancement against the original C implementation

of vector multiplication.

From section 4.3.1.1 we can observe that those implementations are highly dependent on

the architecture used. We have theoretically shown that for some architectures, namely

the processor which includes AVX and not AVX2, would run the elimination faster using

floating point representation and 256-bit AVX extensions.

For the SLC solution using the Gaussian elimination with modular pivotization, we have

achieved a speedup rate more than seven due to the use of SIMD vector extension in-

structions for multiplication, addition and all other possible vector processing during the

elimination process

The special case of sparse matrices is handled and measured too. We observe that the

sparse matrices processing timings are disproportional to their dense equivalents.

Also, we have expressed the need to take care of every aspect of algorithm design on the

right choice of the indexing order for the dynamically allocated three dimensional array for

the transformation back into real numbers (MRC). We have shown that with bad choice

of ordering, memory demands could double.

At a later stage we engaged the shared memory concept for storing the original task data.

We have shown that it has a significant influence on memory demands. Nowadays, when

Intel R© produces processors with twelve physical cores and hyper-threading and is about to

come with fifteen cores on one chip, which gives thirty threads of execution, it is the right

way of reducing memory demands. Advanced Micro Devices produces multi core systems

up to sixteen cores, too. Moreover a lot of CPUs can share one memory. We have shown

algorithms for safe data distribution and that this concept is valuable for memory saving.

The results presented in this chapter were published in author’s papers [A.1,A.2,A.3,A.6].

8No influence of communication complexity was accounted.
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5 Decentralization

5.1 Motivation

Architecture of the system has some bad consequences. The processing is split into two

strictly separated parts, master and slave. This means that it is strongly unbalanced and

it cannot be rebalanced in any way.

Specifically, we present two direct results of the system design.

• The first is expressed in section 3.3.1.4, more specifically, in formula 3.25. The

meaning of this formula is that when we have a lot of processes or a lot of moduli used

then the master process would become the limiting part for the SLCs processing due

to the design of application where the master process, which performs the backward

MRC transformation, also handles the assignment of the modulus for the next SLC

processing at the slave nodes.

• The next problem of such a tightly bounded architecture is the fact that the memory

demands of the master and slave processes can be very different. Here we can get into

trouble when we have a homogeneous cluster and the memory demands of master

process are much higher than the memory demands of the slave processes. In such a

case, the master process memory demands will be limiting the size of the problem in

the way of dimension of SLE and the number of moduli used.

From the previous paragraphs we can say that the decentralization of the whole computa-

tion could help with balancing the whole problem computation. To decentralize the master

process we need to implement its parts in the distributed environment. Thus we need to

formulate the distributed version of the prime moduli assignment and the distributed ver-

sion of MRC algorithm.

5.2 Results

5.2.1 Prime number generation

The first thing we want to solve is the problem of assigning moduli to the slave processes.

It is achieved in a straightforward manner by enabling each process to generate the moduli
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for itself alone.

A special requirement for this self generation is to generate a mutually disjoint set of prime

numbers, because we do not want to solve the SLC of one moduli more than once.

This means that we are looking for sets Pi for i = 1, 2, . . . , p such that the following holds.

∀pj ∈ Pi : pj is prime ∧ pj /∈ Pk : k 6= i (5.1)

We implement the prime number generator simply by scanning integer numbers. Condition

5.1 can be fulfilled by defining step s as a number of prime numbers to be skipped. At the

beginning, each process makes the step equal to the processor’s number (index), thus the

starting prime number will be different for each of all the processes. Subsequently, the step

is set equal to the number of processes which ensures Pi sets to be disjoint.

5.2.2 Mixed Radix Conversion

Moving Mixed Radix Conversion into distributed environment is not a very complicated

task. We can find some parallel implementations in [7, 34]. The problem of those imple-

mentations is that they do not fulfill our requirements. First we have to define the desired

properties of the algorithm we are looking for.

The point is that we need to process the MRC transformation during the solution process,

i. e. concurrently with SLC solving. There are two reasons for such a demand:

• Resolving sufficient precision – at a certain stage of the processing we can say that the

precision of the result is already sufficient and stop subsequent processing (another

SLCs solving). This process would be meaningless if the MRC transformation was

performed at the end of the computation.

• The ability of rebalancing - it would be nice to have the opportunity to rebalance the

MRC transformation. This is very important especially for a jheterogeneous parallel

environment. As already expressed in 3.1.5, the MRC is responsible for finishing the

processing. If there is a huge difference between the nodes performance, the faster

nodes in the cluster will process a greater portion of the MRC. If the MRC is still

divided into parts of the same size, the decision whether to stop the processing will

be suspended until the slow nodes finish the needed MRC parts. As a result, there
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could be many SLCs solved by the faster nodes and their solutions will be thrown

away without any profit.1

When we retain both properties, the algorithms designed in [5, 7, 34] do not perfectly fit.

We can certainly use [7, 34] but it can lead to different moduli vector on each node. If we

still want to ensure rebalancing, then every member of the transformed result vector has

to have its own moduli vector and has to be transformed according to that vector because

of result vector elements migration. This is the reason why we have decided to design our

own parallel implementation of MRC where we can preserve the moduli vector and ensure

the sequence for transformation to be the same for all the elements of the vector.

Our algorithm is based on the same base as the algorithm published in [34]. The basic

idea is to divide the problem of finding the representation in R space when having a RNS

representation of n dimensional vector y. We can then perform the MRC separately for

each element of y. Thus when we have p processes and a vector of dimension n, every

process would evaluate MRC transformation for n/p elements of y.

5.2.2.1 Total distributed ordering

The first of our requirements we try to satisfy is the total distributed ordering of the

moduli set. To be able to set up the ordering, we have used the principles and mechanisms

of ordering the events in distributed systems published in [20]. The events we need to order

are the SLC results generation. To get the total ordering we need to order a concurrent

result of the same logical time gained on different nodes. This is done by using the ordering

according to the moduli of the result. The total ordering → is then defined as:

y1 → y2 ⇔(C(y1) < C(y2))∨

(C(y1) = C(y2) ∧M(y1) < M(y2))
(5.2)

where C(y) is a logical clock function meaning the time in which result y was obtained

and M(y) returns the modulus of the y result. Generally C(a) is the logical time of any

event a.

Example 5.2.1. We will show some example of the ordering we want to get. Figure

5.1 represents the timelines of five processes in the computation. The originating times

1This problem does not burden the SLC solution itself. In this part it does not matter whether the
specific SLC of specific module is solved.
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of the results in the processes are marked with r labels. These are indexed with the

process number and the sequence number in the process. The messages passed between

the processes are indicated by dashed lines.

r1,1

r2,1

r4,1

r2,2

r3,1

P1

P2

P3

P4

P5

t

Figure 5.1: Example of results ordering

Table 5.1 expresses the moduli of different results. They are also needed to state the final

results ordering.

Table 5.2 shows the events and the times that events occur in a specific processes. The

result generation is denoted by ri,j and receiving of the result message is denoted by Mri,j.

As we can see, the only conflicting results, meaning results becoming from the same logical

time, are r2,1 and r3,1. If we take into account the moduli of the results with respect to 5.2

the final ordering of the results will be [r1,1, r2,1, r3,1, r4,1, r2,2] because m2,1 < m3,1.
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Table 5.1: Moduli of results of example 5.2.1

result modulus

r1,1 m1,1 = 11

r2,1 m2,1 = 13

r2,2 m2,2 = 31

r3,1 m3,1 = 17

r4,1 m4,1 = 19

Table 5.2: Results ordering of example 5.2.1

P1 P2 P3 P4 P5

C1 e1 C2 e2 C3 e3 C4 e4 C5 e5

0
... 0

... 0
... 0

... 0
...

1 r1,1 0
... 0

... 0
... 0

...

1
... 3 Mr1,1 3 Mr1,1 3 Mr1,1 3 Mr1,1

1
... 4 r2,1 4 r3,1 3

... 3
...

5 Mr3,1 5 Mr3,1 4
... 5 Mr3,1 5 Mr3,1

6 Mr2,1 5
... 5 Mr2,1 6 Mr2,1 6 Mr2,1

6
... 5

... 5
... 7 r4,1 6

...

6
... 8 Mr4,1 8 Mr4,1 7

... 6
...

6
... 9 r2,2 8

... 7
... 6

...

6
... 9

... 8
... 7

... 8 Mr4,1

10 Mr2,2 9
... 10 Mr2,2 10 Mr2,2 10 Mr2,2

11 Mr4,1 9
... 10

... 10
... 10

...
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Paper [20] describes the “happened before” relation followed by the clock condition. This

is out of scope of this thesis. We just denote the implementation rules resulting from these

definitions:

1. Each process Pi increments Ci between any two successive events.

2. (a) If a is the sending of message m by process Pi, then the message m contains a

timestamp Tm = Ci(a).

(b) Upon receiving the message m, process Pj sets Cj greater than or equal to its

present value and greater than Tm.

Now we can describe the algorithm itself. It consists of a few rules that each process has

to follow.

1. When the result is obtained it is broadcast to all the other nodes with actual times-

tamp Ti.

2. When the process receives the result message with timestamp Ti it sends the confir-

mation message with timestamp Ti + 1.

3. All the results with time Tj where Tj ≤ Ti can be ordered and processed when the

process has received the message with timestamp Tk where Tk ≥ Ti from all the other

processes.

It is straightforward that when each process follows the presented rules, it leads to the

desired total ordering of the SLC results. It is necessary to have logical clocks in each

process where the events to be noticed by the clock mechanism are obtaining of the SLC

result and the confirmation message, no matter whether the event comes from the process

itself or it comes from another process by means of receiving of the appropriate message.

Also a mechanism to hold the times of the latest messages received from specific processes

is required for each process.

5.2.2.2 Precision Resolving – Round Robin

The basis of precision resolving and processing finalization is stated in 3.1.5. For the

early implementation it was the responsibility of the master process to perform the MRC
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conversion and also the precision resolving as stated in 3.2.6. It is straightforward that when

we do not have the master process and all the processes are “equal”, the precision resolving

has to be done in a distributed environment like all the other parts of the processing.

As every process is responsible for the MRC conversion of the part of the result vector,

all the processes have to make an agreement that all the elements of the mixed radix

representation are equal to zero from a certain step. This is achieved by a virtual ring

implementation. There are two types of messages described in the following paragraphs.

• want-finish message: The want-finish message represents the fact that the sending

process has achieved a sufficient precision of its part of the result vector. This message

carries the information of the step of the whole MRC conversion when it was gener-

ated. When the message of this type runs through its virtual circle, it means that

all the processes have agreed that the MRC step carried by this message represents

the sufficient precision of the MRC conversion.

• finish message: This means that all the processes agreed on the sufficient precision

and it is possible to finish the processing. It carries the information of which step of

the MRC conversion should be the final one.

A detailed processing of these messages is described in 5.3.4.3.

5.3 Experiments and Evaluation

It is straightforward that the implementation of the new MRC along with decentralization

of the whole processing will not be a minor change. So, we have decided to redesign the

whole project and subsequently to rewrite it from scratch. The language selected for the

implementation of the second version is C++. It has been chosen for the possibility of

Object oriented design and it is still a compiled language and offers sufficient performance.

In the following two sections we present the results for the problems drawn in 5.2. The

next sections describe the overall design of the new implementation of the system and its

complexity analysis.
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5.3.1 Prime number generation

The new implementation for the prime number (moduli) generation has a disadvantage.

Specifically, it has to find all the primes and skip some of them. Thus the process of

finding the next prime is done more than once. Instead of one pass through the prime

generation there will be p steps performed (one for each of the processes). We decided to

use this implementation because in comparison with the rest of the computation the prime

generation is negligible in time.

There is another aspect of the prime number generation. A fear of a sufficient number of

primes can arise. For a homogeneous environment the problem does not occur because

all the nodes acquire approximately the same count of primes. This is analogous to the

original implementation. The situation is different in a heterogeneous environment where

the processes could run with a very different speed on each node. It can lead to unbalanced

acquiring of prime numbers and the concerns are eligible.

To defend the procedure we will express the number of primes available and state that the

count of primes is sufficient.

According to the Prime Number Theorem (PNT) (can be found in [13]) the number of

prime numbers less than x is

π(x) ∼ x

lnx
(5.3)

Because we use the 26 bit moduli (meaning the numbers with 26 valid bits) we can write

pcnt = π(226)− π(225) =
226

ln 226
− 225

ln 225
= 1787402 (5.4)

This means that for one hundred processes we still have almost 18 thousand prime numbers

for each. This is the foundation of our claim that even after the prime numbers space split,

the computation will not run out of primes.

Moreover, when running on a highly heterogeneous cluster there is still the possibility of

employing some negotiation for passing a part of the prime number set of slower nodes to

the faster ones.
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Table 5.3: MRC conversion timings

dim
linsolve new SNB

2 3 4 2 3 4 2 3 4

10 0.0098 0.0130 0.0166 0.0220 0.0202 0.0228 0.0333 0.0243 0.0187

20 0.0177 0.0180 0.0270 0.0187 0.0165 0.0222 0.0590 0.0090 0.0176

50 0.0300 0.0517 0.0680 0.0178 0.0206 0.0240 0.0155 0.0094 0.0148

100 0.0758 0.1433 0.1789 0.0326 0.0292 0.0373 0.0278 0.0284 0.0338

200 0.2544 0.4591 0.5351 0.0904 0.0949 0.0966 0.0780 0.0879 0.1010

500 2.5301 4.1442 6.0595 0.8321 0.8546 0.8744 0.7551 0.9488 0.9903

5.3.2 Mixed Radix Conversion

The mixed radix conversion algorithm presented in 5.2.2 has been implemented as an in-

separable part of the whole system. Nevertheless, to test the performance of this algorithm

some changes took place in a way how the SLC solutions are obtained. They are not com-

puted for the performance test but just loaded from the previous run of the solver. This

adjustment has been done in the original implementation, too. As a reference algorithm

we have taken the algorithm called Single Node Broadcast (SNB) from [7] which we have

implemented.

Then a set of tests has been passed for different dimensions of vector (SLE). All the

measurements have been repeated 10 times to exclude the external influences of the other

system components. The results of the measurements are summarized in table 5.3 and

presented in figure 5.2 as well. The measurements have been performed on the Intel R©

Core
TM

2 Duo CPU T9400 running at 2.53GHz frequency which has two physical cores.

Table 5.3 shows the average timings for the test runs. There have been measurements for

two, three and four processes and different dimensions. We have to bear in mind that

there were just two physical cores which led to the results presented. For the original

implementation it means that the master process has to share the processor time with

other processes, which means a significant slowdown of the whole processing. For the other

implementations the slowdown is not so considerable due to the fact that every process

participates on the MRC conversion, thus sharing the processor time is not a significant

drawback. Nevertheless, figure 5.2 represents just two process variants of the tests.

From figure 5.2 and table 5.3 we can see that the implementation of the algorithm presented
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in 5.2.2 is a little bit slower than the SNB implementation but still comparable. We have

to say that the overhead of our new implementation is not negligible. As stated, this

implementation arises from the whole system implementation with small modifications. It

means that we are still using the architecture described in 5.3.4 including several threads

and the communication scheme. On the contrary, the SNB was implemented directly for

the tests in the simplest way.

5.3.3 System Architecture

The whole system is designed as almost homogeneous. The only exceptions where the

processes are not equal are:

• loading the task including transformation into integer numbers.

• result verification

• storing the results

The reason of this inconsistency is that the performance improvement will be negligible. We

can also assume that the task is available at one node locally and for other computational

nodes it would be loaded throughout the network anyway.

Thus we can still talk about master and slave processes where the master process loads

the task at the beginning, transforms it into the integer number range Z and then broad-

casts the task in this form to all the other nodes while the slave is just receiving the task.

At the end of the computation the master receives all the partial results and performs

their verification followed by storing the results, while slaves just send their part of the

result vector to the master. We can see that this is a reasonable degree of asymmetry.

5.3.4 Process architecture

As we decided to change the implementation language we also decided to involve the

threading mechanisms. Each of the processes has several “independent” threads. Two of

them perform computations directly and the other one is designated for receiving all the

different messages from other processes.

The communication between processes is split into two different types of messages:
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• A direct message addressed to the specific node. Often these messages are broadcast

to all the processes

• The virtual ring messages, where the messages are passed across the virtual ring

made from processes by sorting them according to their number.

The type of individual messages is given in section 5.3.4.3, where the different types of

messages are described.

Figure 5.3 shows the overall new architecture of the system and all its processes.

In the following sections we present the control flow of each kind of thread from figure 5.3,

that is involved in finding the solution itself more deeply.

5.3.4.1 SLC solver thread

The main task of this thread is to solve the SLCs repeatedly.

Algorithm 4 SLC solver thread

1: while not finished do
2: while cachedResults() > cResults do
3: wait()
4: end while
5: mod = getNextPrime()
6: slc = toMod(sle, mod)
7: result = solve(slc)
8: send(result)
9: end while

Algorithm 4 is straightforward but to clarify we describe it in a few sentences. The thread

is running in an “endless” while loop where it checks whether there are a lot of results

cached (results still unprocessed by the MRC thread). If so, the thread waits on the

condition variable which would be set at the moment when the count of cached results

lowers under the specified cResults value. This value is configurable easily. If the count of

cached results is lower then cResults the thread continues to the SLC solution itself. First,

the thread obtains the next prime. Then it performs the transformation from the Z to Zn
representation. Subsequently, the obtained SLC is solved through Gaussian elimination

and finally, the result is sent (broadcast) to all the other nodes.
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Figure 5.3: The process architecture - The system consists of n processes. Only one process
performs the input (loading and initial transformation of SLE) and output (verification
and storing the results). All the processes includes SLC solver, MRC thread and message
processing thread (MSG). The SLC solver performs the solution of single SLCs. The MRC
thread performs the mixed radix conversion for the appropriate part of the result vector.
The message processing thread handles all the received messages and takes appropriate
actions.
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5.3.4.2 MRC thread

This thread is responsible for a mixed radix conversion including the initiation of the

computation finalization.

Algorithm 5 Mixed Radix Conversion thread

1: while (not finished) or (precision not sufficient) do
2: res = getNextResult()
3: if res then
4: canFinish = mrcStep(res)
5: if canFinish then
6: send(wantFinishMessage)
7: end if
8: end if
9: end while

The steps of algorithm 5 should be described in more details. The MRC thread runs in an

“endless” while loop as the SLC solver thread does. Line number 2 checks for the result

that was obtained in the “past” and thus can be processed in MRC. If such a result exists,

the execution thread will perform one MRC step described theoretically in 3.1.5. As the

result of this step we get the information whether the particular results have a sufficient

precision, and if they do, the want-finish message is sent.

5.3.4.3 Message processor

This thread is simply responsible for receiving all the messages and processing them. The

processing is different for each type of message. The following list describes the most

important messages and their processing.

• result message: This is the message containing a result for some SLC. Processing this

message means storing the result and confirming its receiving.

• confirm message: The confirm message is bound closely to the result message and

it says that the process received the result. There is no additional processing for a

message of this type.

• want-finish message: The want-finish message is sent whenever the MRC process

draws the conclusion that the precision is sufficient for its part of the result vector.
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After receiving such a message, the sufficiency of precision for the receiving process

is checked. If the receiving process has a sufficient precision, too, and the message

does not originate in this process (meaning it has not passed the whole virtual ring),

the message is forwarded into the next process in the virtual ring. A special case

is, when the precision of the receiving process is declared sufficient, but for the later

step of the MRC conversion. In this case the message is replaced with receiving

process’s own want-finish message containing its finalization step. If the message

comes from the receiving process, it means that all the nodes have agreed on finishing

the computation and a finish message is sent. When the precision is not at all

sufficient for the receiving process, the message is dropped.

• finish message: This message is sent after all the processes agree on sufficiency of

precision. It is just forwarded in the virtual ring and the final step for the MRC

conversion is set.

There is a check for results with timestamp that has already passed with every message

receiving because it always generates a tick for logical clock thus it always results in a

clock step (it can be more than one step) and every message also has the timestamp which

means that the sending process would never send the message with timestamp smaller than

received. Thus there could be new results to be passed into the MRC processing.

5.3.4.4 Process architecture summary

As it was described in the previous section, the process consists of three “independent”

threads of execution. The SLC solving thread which autonomously solves the SLCs for

different moduli. The second one is the thread performing the MRC including the initiation

of the execution finalization. The last thread handles all the received messages.

At the beginning of the second implementation we did not have the conditional wait in

the SLC thread. The initially proposed solution of results cumulation was to set the lower

priority using the nice to the SLC solver thread which should ensure that the MRC would

be prioritized. But when solving the real problem for the Astronomical Institute of the

Academy of Sciences of the Czech Republic we quickly hit the point from where the MRC

processing was more complex then the SLC solution and we finished up with up to two

times more SLCs solved than was necessary. Thus the necessity to control the SLC solver

thread arose and we brought the conditional wait into the algorithm.
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5.3.5 Complexity

This section focuses on complexity of the new implementation from different points of view.

Its structure is similar to the structure of 3.3.

5.3.5.1 Time complexity

Time complexity of almost all the parts of the processing is the same as in 3.3.1. The only

difference is in the generation of prime numbers where the new implementation performs

the generation independently on all the nodes. The time complexity analysis is done for a

homogeneous distributed environment.

Transformation to real numbers The transformation to real numbers using the MRC

conversion algorithm presented in 5.2.2 has the same overall complexity as expressed in

3.3.1.3 by formula 3.23. On the other hand, the MRC conversion is processed in parallel

where every process performs its proportional part. Then the complexity can be expressed

by formula 5.5.

O(m2n · p−1) (5.5)

The whole computation The complexity for the whole computation differs much the

original implementation. Because all the processes are similar there will be no difference

among them, thus, there will be no condition on processor or moduli count to avoid starva-

tion of slave processes. The complexity of the whole computation is expressed by formulae

5.6.

O
(
n2 +

m2n+m · n3

p

)
(5.6)

The first element (n2) of 5.6 represents the conversion into integer numbers as in 3.24. The

fraction then represents the sum of the MRC conversion and the SLC solving where those

parts are performed in parallel, thus divided by the number of processors.
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5.3.5.2 Memory consumption

The memory demands of the processes have changed due to the distribution of the MRC

conversion algorithm. In this case, the data used for the MRC are also distributed through

the processes.

The demands described in sections 3.3.2.1 and 3.3.2.2 have not changed but we state

once more that at this time they fit to all the processes. The total memory consumption

expressed for performing the computation on a single computer expressed in 3.3.2.4 still

holds, too.

Transformation to real numbers Additionally the MRC conversion demands are ap-

propriate to the size of the processed part of the vector. This part is also allocated in all

the processes. The memory demands are the same as expressed in formulae 3.30 but when

split to the p processors, we obtain formula 5.7.

mbt = k ·m · n · p−1 (5.7)

Also it is necessary to count on the mixed radix coefficients for both negative and positive

representations which gives m · 2(n + 1) · p−1. When we use 32-bit type for moduli, the

mixed radix coefficients are also 32-bit wide.

5.3.5.3 Communication complexity

The communication is more complex than in the original case described in 3.3.3. It can

be split into several parts. The first part is the task distribution which, of course, has the

same complexity. The second part is the distribution of the results. This part has the same

complexity too, even it is not so obvious. And the last part is the agreement protocol for

processing finalization. This part has not been present in the previous design at all.

Task distribution As we have said, there is no difference in this part of the algorithm.

Thus the complexity is the same as in 3.3.3 specifically O(n2).
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Results distribution The complexity of results distribution is almost the same as in

3.3.3. It is due to the fact that the result is split into separate parts and every part is sent

to the appropriate node which is responsible for this MRC part. More than that, we will

save the sending of a part belonging to the originating process which is not sent through

the network. Therefore the complexity is O(m · (1−
⌊
n
p

⌋
)n).

Finalization agreement We present the complexity for several situations. The worst

case is when all the processes will send both (want-finish and finish) messages and each

of these messages runs almost the whole virtual circle. For the want-finish message, the

longest run can be of 2(p − 1) length because this type of message can be replaced by

the brand new message of the receiving process which has to go through the whole circle

again. For the finish message the longest run is clearly p − 1. We can see that 3(p − 1)p

messages of constant size (messages of those types carry only a modulus) are sent. On the

other hand, the best case is when one process sends the want-finish message which passes

the whole circle and in consequence the finish message is sent and it also passes the circle.

The complexity of this case is 2p.

Rationale In the following paragraphs we defend the statement that the communication

complexity is relatively low in comparison to the computation itself. Table 5.4 presents the

size and theoretical time consumed by sending the set of linear equations as the distribution

of the task and the size and sending time for one result vector of one SLC.

Table 5.4: SLC and result vector sizes and timings for different bandwidth networks

dim SLCsize[Mb] T100Mb/s [s] T1Gb/s [s] RESsize[Mb] T100Mb/s [s] T1Gb/s [s]

1000 122 1.221 0.119 0.030 3.05E-4 2.98E-5
1500 274 2.747 0.268 0.046 4.58E-4 4.47E-5
2000 488 4.883 0.477 0.061 6.10E-4 5.96E-5
2500 762 7.629 0.745 0.076 7.63E-4 7.45E-5
3000 1098 10.986 1.073 0.092 9.16E-4 8.94E-5
12000 17578 175.8 17.17 0.366 3.66E-3 3.58E-4

The communication passes in three phases described in the preceding paragraphs. For the

first phase (the task distribution) the communication complexity would be a defining one

for its overall complexity. But the second phase, where the SLCs are solved and the results
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are sent among processes, we can compare the timings for sending the result from table

5.4 with timings for solving the SLC from table 4.3, the communication complexity would

be negligible.

With the growing dimension of the SLE the time needed for solving one SLC grows with

third power of dimension whilst the result vector size grows only as fast as the dimension.

Thus, the only thing which could increase the communication complexity is the growing

number of processes. But, for example, when having 100 processes and solving the SLE of

dimension 1000 we get 100 results at a given time, thus every half a second and we have

another half of second to send them but the time for sending one result, on the standard

100Mb/s network is 0.0003, thus for 100 result the time needed is 0.003 which obviously

is less than the SLC timing (0.003 < 0.466).

5.3.6 Architecture impact

The two problems described in section 5.1 are solved by the new architecture of the system.

As of memory demands, it is obvious that when the architecture is homogeneous the

memory demands are the same on all the nodes. In the following charts we demonstrate

the elimination of slave nodes starvation phenomenon.

Chart 3.3 shows the process utilization for the problem of dimension 500 solved by the use

of 24 nodes (processes). We can see the gaps for the slave processes (red color) caused by

the overloading of the master process (blue color).

The results of the distribution of the MRC process through all the computational nodes

meaning the use of architecture presented in section 5.3.4 are presented in chart 5.4. This

chart shows the same 500 dimension problem solution on the same 24 processes but using

the new designed system. To make it clearer we have preserved the colors to the operations,

meaning that the SLC solving is red color, MRC is blue. For completeness we have also

logged the utilization of the message processor thread, using green color.

As we can see, there are no gaps in the screen to give a better image so we present the

detail of a specific time close to the end of the computation for new architecture in figure

5.5.

By comparison of figures 3.3 and 5.5 we can observe that the new architecture is much better

in usage of the whole cluster, especially, for data where the one master node architecture

leads to starvation of slave processes due to the overload of the master node with MRC
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Figure 5.4: An example of the node workload for new architecture (n = 500, p = 24) - The
meaning of colours remains the same as in 3.2. Message processing is marked with green
colour.

process. There is no visible starvation in ongoing computation.

5.3.7 Scalability

In this section we present the results achieved by MPI use and with distribution of the MRC

process to all nodes. Table 5.5 shows timings for solution of SLEs of different dimensions

using different number of computational nodes. The results presented here were obtained

on the STAR cluster2.

The timings of linsolve run from table 5.5 are presented in logarithmic scale at figure 5.6.

From table 5.5 and figure 5.6 we can observe that the system scales well. For small di-

mension the running time can grow when we use more processes. The reason for such

behaviour can be the increased complexity of algorithms used, especially, the agreement

on computation finalization can take more time when exposing more processes. The mea-

surement shows such behaviour for dimensions 100 and 200. The conclusion can be that

we devote some time to problems of small dimensions but we gain a significant speedup

2More information about the cluster are available at [1]
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Figure 5.5: An example of the node workload for new architecture ( n = 500, p = 24) - A
detail close to the end. The meaning of colours remains the same as in 5.4. Even in the
detailed view the nodes are busy almost all the time.

for problems of large dimensions.

5.4 Summary

This chapter deals with the design of a new homogeneous system for solving linear equation

systems. We have developed an algorithm for the MRC in a distributed environment which

fits our needs. This algorithm is able to compete with other distributed MRC algorithms

and, in addition, it can be performed during the SLC solution. Thus it can help us state

the sufficient precision of the results and stop the processing.

By developing homogeneous architecture we have eliminated the problem of starvation

of slave processes when the master is overloaded which is described in 3.3.1.4. Also the

processes are now well balanced from the memory demands point of view.

Results contained in this chapter have not been prviously published.
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Table 5.5: Timings for parallel run SLE solution T[s]

p
dimension

100 200 500 1000 2000 5000

2 0.082 0.430 12.465 N/A N/A N/A
4 0.065 0.274 11.429 N/A N/A N/A
8 0.070 0.278 6.787 97.556 N/A N/A
12 0.100 0.226 5.222 71.944 1188.25 N/A
24 0.243 0.348 3.079 37.360 635.63 27263.42
48 0.630 0.712 2.362 22.148 342.12 13993.17

6 Application

In the past year we have been cooperating with the Astronomical Institute of the Academy

of Sciences of the Czech Republic, namely with Dr. Miroslav Bárta and Jan Skála. We

are solving a system of equations provided by them.

They are studying plasma multi-scale processes in solar plasma by magnetohydrodynamic

(MHD) simulations, namely magnetic field reconnection and its multi-scale nature. The

MHD set of partial differential equations (PDEs) is solved by the Least-Squares Finite

Element Method (LSFEM) from which a system of linear equations arises. The LSFEM is

able to solve an overdetermined system of PDEs, which allows to include the Gauss’s law

for magnetism to MHD equations and keep the simulation ’divergence free’ (no magnetic

charge). Unfortunately, it leads to an ill-conditioned set of equations at a later stage

of system evolution. The resulting system of equations is solved by iterative solver –

Conjugate Gradient Method (CGM).

The simulation results shows a possible problem with precision of CGM solution at places

where the current density (curl of magnetic field) become high. We want to clarify this

question by solving this system by means of the RNS method and checking the precision

of CGM. The LSFEM implementation of the MHD numerical solver is described in [32].

Recently, we have been able to solve the problem of the dimension of approximately twelve

thousand. We are optimizing the code for solving problems of greater dimensions. As the

system has been designed for solving dense matrices there are several possibilities for further

optimization of sparse matrix processing. We have to focus on memory optimizations and

to optimization of the MRC process. The results for the currently solved systems show
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Figure 5.6: The linsolve parallel run timings in dependency on process count for different
dimensions of SLE

that our system gives a slightly better accuracy but the data obtained by the CGM are

also sufficiently accurate.

Note 6.0.1. We have solved the problem of dimension 12243. This solution took 211640

seconds (2.5 days) and ran on 48 nodes of STAR cluster. The solver used 46010 moduli

to gain accurate results, where the solution of one SLC took one second (It corresponds to

table 4.4). Thus, when using 48 nodes the solution of separate SLCs should take a thousand

seconds. We can see that the MRC process complexity gets to front and the SLC solution

is almost negligible.
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7 Conclusions

This thesis describes a consecutive development of the system for solving linear equation

systems. The system was originally developed as a diploma project. Further, the project

was optimized in the way of space and time complexity. Those optimizations were pub-

lished in several papers [A.1, A.2, A.3, A.6] and are presented in chapter 4. Afterwards,

some problems in the system architecture were discovered and they had to be solved. The

problems were the starvation of the slave processes solving SLCs when the master process

is overloaded. Another problem with the master-slave architecture was the imbalance in

memory demands. The solution of those problems was a completely different architecture

of the system which is homogeneous and thus the imbalance disappeared and the prob-

lem of starvation was eliminated due to the distribution of the MRC process. The new

architecture, including its detailed analysis, is presented in Chapter 5.

We have used various optimization techniques over the time. The first type was the usage

of the machine code oriented language. The floating point unit was engaged consequently

for multiplication with reduction. This seems unusual but gives a better performance. The

next reasonable step was the usage of SIMD instruction extension of common processors

which gives a significant speedup, as well. Finally we have chosen a different way of

avoiding the expensive division operation the Montgomery domain representation, which

gives an even better performance. From the memory demands point of view, the system

has been redesigned to eliminate the redundant demands of auxiliary structures. The

main contribution of this part is the multiplication with reduction using SSE2 floating

point instructions giving the second best performance. A better implementation is only

the Montgomery domain using the SSE2 integer instructions.

The architecture of the system has been completely changed. The new design is “entirely”

homogeneous. This design gives more flexibility in usage of resources, eliminates problems

related to the heterogeneous architecture and gives the possibility of a better future bal-

ancing. The outcome is a more complex design, which was difficult to realize and reveals

errors made during the realization. The main contribution of this part is a new distributed

algorithm for a mixed radix conversion with dynamic moduli ordering suitable for usage

during the SLC elimination processing with sufficient results precision determination taken

into account.
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8 Future Work

We suggest the following themes for future work:

• There is a space for optimization of the processing for sparse matrices. We have

already faced the problem of solving the SLE where the matrix of coefficients is

sparse. In this case, the memory demands become limiting because we store a huge

amount of zero elements of the coefficient matrix. Some of the special sparse matrix

storing formats should be used for sparse matrices, like, for example, Compressed

sparse row (CSR).

• The processing of the partial algorithms using General-purpose computing on graph-

ics processing units (GPGPU). The Graphics processing units (GPU) are nowadays

capable of massive multiprocessing, which could be advantageous and lead to a bet-

ter performance. Our research group has already made some progress in this matter

[15].

• The new implementation described in Chapter 5 leads to the usage of more than one

SLC solver thread in the process. The opportunity of adding some solver threads

should be investigated and if at all possible tested, too.

• Chapter 5 describes the MRC algorithm designed with view to the rebalancing pos-

sibility. Unfortunately, the rebalancing itself has not been developed yet. This could

be another direction of future research. Also, there is a possibility of further opti-

mization of this algorithm.

• Another possible step for the future is the optimization of the mixed radix conversion

process itself. We have observed that for some tasks the complexity of mixed radix

conversion overgrows the complexity of the SLC solving process.
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Department of Computers and Informatics of FEI, Technical University Košice. ISBN
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80-969202-2-7.



SECTION 11. UNREFEREED PUBLICATIONS OF THE AUTHOR 81

11 Unrefereed Publications of the Author
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SLE Set of Linear Equations
RHS Right-Hand Side
LHS Left-Hand Side
RNS Residual Number System
SLC Set of Linear Congruencies
MRC Mixed Radix Conversion
CRT Chinese Remainder Theorem
PNT Prime Number Theorem
CPU Central Processing Unit
FPU Floating Point Unit
GPU Graphics Processing Unit
GPGPU General-Purpose computation on Graphics Processing Units
SIMD Single Instruction Multiple Data
SSE Streaming SIMD Extension
SSE2 Streaming SIMD Extension 2

MMX
TM

“MultiMedia eXtension”
MPI Message Passing Interface
API Application Programming Interface
HPC High Performance Computing
SNB Single Node Broadcast
SMP Symmetric MultiProcessing
SHM SHared Memory
IPC Inter-Process Communication
HT Hyper-Threading
AVX Advanced Vector eXtensions
AVX2 Advanced Vector eXtensions 2
MHD MagnetoHydroDynamic
LSFEM Least-Squares Finite Element Method
CGM Conjugate Gradient Method
PDE partial differential equation
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B Montgomery domain

B.1 Introduction

The Montgomery domain is a representation of integer numbers focused on efficient pro-

cessing of the multiplication with reduction. It was introduced By Peter Montgomery in

his article [26]. This representation does not affect the efficiency of other operations.

We are trying to find an alternative to the common multiplication with reduction B.1 which

would not use the division operation.

c ≡ a · b mod n. (B.1)

Because numbers have to be converted to and from the Montgomery domain, a single

modular multiplication performed using a Montgomery reduction is actually slightly less

efficient than a common approach. However, for more complex processing like modular

exponentiation or, in our case, Gaussian elimination, the conversion should be made once

at the start and once at the end of the whole process. In this case, the greater speed of

the Montgomery steps should outweigh the need for extra conversions.

B.2 Formal statement

We have modulus m which is a positive integer (m > 1). We have radix R which is coprime

to m (gcd(m,R) = 1) such that R > m. Let R−1 be the multiplicative inverse modulo m

of R. Then for T such that 0 ≤ T < Rm the Montgomery reduction of T modulo m with

respect to R is defined by following formula:

T ·R−1 mod m. (B.2)

The algorithm for getting Montgomery reduction is much more efficient then common

remainder modulo m operation using division.
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B.3 Rationale

We wish to calculate c such that B.1 holds. Rather than working directly with a and b, we

define the residue (common residue multiplied by radix R).

a ≡ aR mod m

b ≡ bR mod m
(B.3)

The number R has to be greater than and coprime to the modulus m. It is chosen so that

the operations of division and remainder are easy to perform. An obvious choice is a power

of two for machine processing. Then these operations correspond to the shift right and

bitwise mask, respectively. When the R is chosen as power of two it is sufficient when m

is odd to fulfill the relative primality.

For such a representation the operations addition and subtraction does not change:

xR + yR ≡ zR mod m ⇐⇒ x+ y ≡ z mod m. (B.4)

It is very important not to affect the efficiency of other operations like addition and sub-

traction. It would not be beneficial if we had to transform the data during computations

back from and into Montgomery domain due to the overhead of such transformations.

To define the multiplication operation we need the modular inverse of R, R−1 such that

R ·R−1 ≡ 1 mod m

R ·R−1 = km+ 1

k =
R ·R−1 − 1

m

(B.5)

where k is a positive integer and its value can be expressed from the last formula in B.5.

To find c such that formula B.1 holds we have to find its representation in the Montgomery

domain c ≡ cR mod m :

c ≡ cR ≡ (a · b)R ≡ (aR · bR)R−1 ≡ (a · b)R−1 mod m (B.6)

Formula B.6 states that to gain the c we perform the ordinary multiplication and then we
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perform the Montgomery reduction T ·R−1 mod m.

To get the c we transform c from the Montgomery domain by another Montgomery reduc-

tion operation.

c ≡ cR−1 mod m. (B.7)

This rationale leads to the following algorithm.

B.4 Description of Algorithm

The Montgomery reduction algorithm 6 calculates T ·R−1 mod m.

Algorithm 6 Montgomery reduction

Require: m such that m > 1; R such that R > m and gcd(m,R) = 1; k such that
k = (RR−1 − 1)/m ∧RR−1 ≡ 1 mod m

Ensure: For T such that 0 ≤ T < R ·m return T ·R−1 mod m
1: p← (T mod R)k mod R
2: t← (T + pm)/R
3: if t ≥ m then
4: return t−m
5: else
6: return t
7: end if

We can observe that algorithm 6 does not contain remainder modulo m operation. There

are only multiplication, addition, subtraction, division by R and remainder modulo R

operations. When the radix R is well chosen the last operations become the bitshift right

and bit mask and those are inexpensive as well as the other mentioned operations.

To validate algorithm 6 observe the following

• pm ≡ Tkm mod R. By the definition of R−1 and k B.5, km + 1 is a multiple of

R, so T (km + 1) ≡ Tkm + T ≡ 0 mod R thus Tkm ≡ −T mod R. Therefore,

(T + pm) ≡ 0 mod R; in other words, (T + pm) is divisible by R without remainder

and so t is an integer.

• Moreover, tR = (T + pm) ≡ T mod m; then, t fulfills required relation B.2.
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• When 0 ≤ T < Rm then t < 2m because p < R⇒ pm < Rm, thus T + pm < 2Rm.

Consequently the final result of algorithm 6 is always less than m.

This method is less efficient for calculation of a simple multiplication with reduction alone,

due to necessary transformations into the Montgomery representation and back. But when

the processing is more complex and requires more than just one multiplication, like modular

exponentiation or Gaussian elimination, in our case, the efficiency of single Montgomery

reduction comes to front. We can say that this method is suitable for processing where the

benefits of Montgomery reduction outweigh the overhead of transformations.
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