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Abstract

Our work aims at processing of ECG signals using Independent Component

Analysis (ICA). ICA serves in many biomedical applications as a preprocessing

or feature extraction technique. These applications are listed in state-of-the-

art chapter, which describes ICA algorithms in general and also presents basic

algorithms and their applications in processing of various biomedical signals.

ICA represents a solution of the Blind Source Separation (BSS) problem, which

can be stated as extraction of signals based merely on their mixtures. In our

work we used JADE algorithm for solving two problems: de-noising of elec-

trocardiographic (ECG) signals and beat detection. The de-noising algorithm,

which we have developed, is an automatic method capable to deal with strong

uncommon noises, present in nearly every holter ECG recording. The method

is based on detection of noisy components and their removal from ECG data.

The results show that our method is able to reduce both normal and uncom-

mon noises. The algorithm for beat detection is based on extraction of ECG

activity from noisy recording using JADE algorithm. The method is an exten-

sion of the well-known Christov’s beat detection algorithm, which detects beats

using combined adaptive threshold on transformed ECG signal (complex lead).

Our extension adds estimation of independent components of measured signal

into the transformation of ECG creating a signal called complex component,

which enhances ECG activity and enables beat detection in presence of strong

noises. This makes the beat detection algorithm much more robust in cases of

unpredictable noise appearances typical for holter ECGs and telemedical appli-

cations of ECG. Methods were tested and compared with other state-of-the-art

methods using standard databases.
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Chapter 1

Introduction

Independent Component Analysis (ICA) represents one solution of the Blind Source Sep-

aration (BSS) problem, which is the extraction of the set of signals based merely on their

mixtures. The BSS/ICA methods were successfully applied in wide variety of problems

ranging from economy to medicine. One of the main research areas, in which ICA methods

were used is biomedical signal processing.

For the last decade ICA methods have been employed in variety of biomedical applica-

tions. Most works use only limited number of ICA algorithms such as SOBI [1], FastICA

[2] or JADE [3]. In addition, separation performance of electro-physiological sources is

still unknown. Due to this uncertainty a single best method for biomedical area cannot be

selected [4].

At present many problems in biomedical engineering have been solved by application

of ICA. The main research area is electroencephalography (EEG) followed by functional

magnetic resonance imaging (fMRI) analysis and electrocardiography (ECG). These three

mainstream application fields are followed by several minor research areas such as magnetic

resonance spectroscopy (MRS) or electromyography (EMG).

In ECG signal processing there are several problems, which are yet unsolved optimally

and one of them is noise reduction/removal. Due to the nature of noises presented in the

ECG recording one can employ traditional techniques, which perform well in controlled

environment, however these methods do not work properly with holter and telemedical ap-

plications. ICA provides the solution for dealing with unpredictable and uncommon noises

– it can separate the ECG activity and the noises presented in recording thus enabling

further processing. It has been observed [5, 6, 4] that ECG activity has super-Gaussian

distribution and due to this nature it is easily separable from other signals (noise and arte-
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1. INTRODUCTION

facts) presented in normal ECG recording. Thus we can employ it in tasks that require

cleaning of ECG signals (noise reduction, beat detection, etc.).

Our work aims at using ICA algorithm in ECG signal processing. First we developed a

de-noising algorithm for ECG recordings. We created method for detection and estimation

of noise in records. This method is then compared to the state-of-the-art methods and its

efficiency is proven.

Second we developed the enhanced Christov’s beat detection algorithm, which detects

beats on transformed ECG signal (complex lead) using combined adaptive threshold. Our

offline extension adds estimation of independent components of measured signal into the

ECG transformation creating a signal called complex component, which enhances ECG

activity and enables beat detection in presence of strong noises. We compared our algo-

rithm with the performance of our implementation of the Christov’s and Tompkins’s beat

detection algorithms.

Following chapters are organized as follows. Chapter 2 covers the Aims of the Thesis.

Chapter 3 deals with state-of-the-art in biomedical signal processing using ICA. Chapter 4

sumarizes medical minimum required for understanding ECG signals. Following two chap-

ters describes our proposed algorithms. Chapter 7 describes evaluation methodology and

referential methods used for testing of developed methods. Chapter 8 summarizes results

of our evaluation process. Finally Chapter 9 contains conclusions of the thesis.

2



Chapter 2

Aims of the Thesis

The main aim of the thesis is to propose and implement a new methods based on ICA that

enable ECG processing with higher accuracy. The aim can be divided into several control

points covering the whole problem:

Create state-of-the-art of ICA applications in Biomedical Engi-

neering research area with main focus on application in ECG sig-

nal processing.

As the Independent Component Analysis is the general tool for signal processing and

analysis, extensive research has been done in the field of biomedical engineering using the

ICA algorithms. This implicates the necessity for creation of state-of-the-art of the most

common algorithms and their applications. We provide such a state-of-the-art and we

summarize briefly the merits and flaws of ICA algorithms family. We will also discuss the

reproducibility of research results. Based on state-of-the-art we will be able to propose

modifications and new algorithms that will avoid the flaws of ICA.

Propose and develop an algorithm for denoising of ECG signals

using ICA.

Since noise presence in measured ECG signal is one of the most common problems, espe-

cially in case of holter and telemedical ECG recordings, we decided to create an algorithm

for ECG de-noising based on ICA. The algorithm should be efficient in case of common

noises (50/60 Hz grid noise, breathing and muscle artefacts, etc.), in addition it should

3



2. AIMS OF THE THESIS

provide filtering capability in case of uncommon noises, which can be added to ECG

measurement in case of holter ECG. The algorithm should preserve the morphology in

temporo-spatial domain and also the waveform of the ECG in order to keep ECG infor-

mative for medical personnel. It should be also fully automatic to enable deploying in

situation, when the trained personnel is not available.

Propose and develop an algorithm for beat detection using ICA.

The beat detection is one of the most important preprocessing steps in ECG signal analysis.

Without beat position no other analysis could be done. One needs to identify positions of

beats in order to measure other waves such as P wave or T wave. Their morphology provides

the medical personnel with important information. Beat detection is the second step in

ECG processing chain – the first one is filtering, which should reduce noises presented

in ECG, but sometimes the filtering fails or could not be done. In that case one needs

to deploy algorithm, which is efficient to detect beats in noise corrupted ECG data. We

decided to develop such an algorithm with help of ICA. The algorithm should have same or

better sensitivity and specificity as the most common algorithms (Pan-Tompkins algorithm,

Christov’s algorithm), but it should be able to work in presence of strong uncommon noises.

In order to evaluate algorithm efficiency we will use freely available data from Physionet.org

database [7].

Develop a testing framework for evaluation of proposed algo-

rithms.

Developed algorithms must be tested by standardized procedure, which provides us with

information about their performance compared with other state-of-the-art methods. This

implicates the necessity for developing a testing framework, which will be easily modifiable

for different tasks performed in ECG signal processing chain.

4



Chapter 3

Independent Component Analysis

and its applications in biomedical

engineering

3.1 The principles of ICA

Independent Component Analysis (ICA) is described in detail in many publications, for

example [2, 8, 9]. ICA represents one solution of the Blind Source Separation problem

(BSS), which is the extraction of a set of signals based merely on their mixtures. In

particular let us mention ECG, which is a mixture of signals from nodes presented in the

heart, or EEG, which is a mixture of neurological activity of centres in brain. Basic ICA

model assumes linear combination of source signals (called components):

X = AS, (3.1)

where X is a mixture of source signals, A is the mixing matrix that characterizes environ-

ment, through which source signals pass, and S are the source signals. X and S get the size

n x m, where n is number of sources and m is length of record in samples. Mixture matrix

A is then of size n x n (in general A does not need to be square, but many algorithms

assume this ”property”). Figure 3.1 shows schematic representation of the mixing process.

Components can be obtained using the following expression:

S = A−1X = WX, (3.2)

5



3. INDEPENDENT COMPONENT ANALYSIS AND ITS APPLICATIONS
IN BIOMEDICAL ENGINEERING

where matrix W is inverse to matrix A. From Equation 3.2 it is obvious that estimation

of a components is reduced to search of matrix W.

Figure 3.1: Schematic representation of a signal mixing process. It shows a demonstrative
example used for ICA explanation - cocktail party problem. Three speakers (left side of the
figure) speech is recorded on three microphones (middle of the picture). On each record
the mixture of 3 speeches is presented. ICA de-mixes these records and obtains ”original”
speakers speech on each component(right side of the figure)

The BSS/ICA methods try to estimate components that would be as independent as

possible and their linear combination is original data. Estimation of components is done

by iterative algorithm, which maximizes function of independence, or by a non-iterative

algorithm, which is based on joint diagonalization of correlation matrices.

ICA has one large restriction, which is based on principle of the method - the original

sources must be statistically independent. This is the only assumption we need to

take into account in general. As other methods, ICA has also certain disadvantages:

• We cannot specify order of components

The order of rows in matrix S and columns in matrix A could be randomly changed

without any effect on the result. Formally permutation matrix P and its inverse

can be substituted into Eq. 3.1: X = AP−1PS, where PS is the original source in

another order and AP−1 is new unknown mixing matrix.

• We cannot estimate energy of components

This problem arises because we have no prior information about matrices A and S -

multiplication of random row with scalar value in matrix S and division of competent

column in matrix A with the same value leads to random change of the amplitude of

components. This problem can be partially fixed by reducing variance to one. But

this still does not solve the problem with ± sign (in sense of multiplication by ±1)

of the components.

6



In many ICA algorithms it is assumed that the data is centred and whitened.

Without loss of generality data could be centred:

x = y − E{y}, (3.3)

where y is original data, E{} is expectation of data and x is centered data.

Whitening can be expressed by:

z = Vx = VAs, (3.4)

where z is whitened data, V is whitening matrix, x are mixed signals, A is mixing matrix

and s are desired source signals. Whitening operation removes correlation between signals

(note that correlation does not mean signals are independent)[2]. So correlation matrix of

pre-whitened data z is: E{zzT} = I.

3.2 Algorithms

This section provides the quick overview of fundamental ICA algorithms. These are as

follows:

• Fast Independent Component Analysis (FastICA)

• Fourth-Order Blind Identification (FOBI)

• Joint Approximate Diagonalization of Eigen matrices (JADE)

• Algorithm for Multiple Unknown Source Extraction based on EVD (AMUSE)

• Second-Order Blind Identification (SOBI)

Last two are not in proper sense ICA algorithms because they use only second order statis-

tics for source estimation. They estimate sources without using independence and they

solve BSS problem. These algorithms are widely used and are fundamental for other ICA

algorithms, therefore we mention them here.
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3. INDEPENDENT COMPONENT ANALYSIS AND ITS APPLICATIONS
IN BIOMEDICAL ENGINEERING

3.2.1 FastICA

FastICA algorithm was introduced by A. Hyvärinen [2] and it has a couple of modifications

based on target function. The introduced separation algorithm is based on maximizing non-

Gaussianity function.

This algorithm is based on the idea of using central limit theorem as a measure of

independence. Central limit theorem states: The distribution of a sum of independent

random variables tends toward a Gaussian distribution [10]. We can say that sum of

two independent random variables has a distribution that is closer to Gaussian than the

original two random variables. So maximizing non-Gaussianity leads to obtaining more

independent signals.

Non-Gaussianity can be measured in many ways. One way is to use kurtosis, which is

basically normalized version of fourth-order moment [8]:

kurt(y) = E{y4} − 3(E{y2})2, (3.5)

where y is a random signal. In our case y is normalized to unit variance so Equation 3.5

simplifies to kurt(y) = E{y4} − 3.

Basic algorithm needs gradient of kurtosis:

∂|kurt(wTz)|
∂w

=

sign(kurt(wTz))

(
E{(wTz)4}

∂w
− 3(E{(wTz)2})2

∂w

)
=

sign(kurt(wTz))
(
4E{z(wTz)3} − 12E{||wT ||2}E{wT}

)
=

4sign(kurt(wTz))[E{ z(wTz)3} − 3w||w||2].

(3.6)

Since w is calculated on unit sphere it needs to be normalized in every step. Last term

in previous equation changes only norm of w and thus it could be omitted. Using (3.6) an

algorithm was obtained:

1. w(t) = w(t− 1) + αsign(kurt(w(t− 1)Tz))E{ z(w(t− 1)Tz)3}

2. w(t) = w(t)
||w(t)||

The algorithm stops when the criterion on kurtosis reaches the desired value. In some

cases algorithm cannot reach specified desired value and in order to avoid infinite loops the

maximal loop count value is specified. This another stopping criterion enables algorithm

8



to work properly in difficult cases of similar signal distributions.

This basic algorithm is converted to fast fixed point algorithm by equating the gradient

of kurtosis with w. This means we obtain:

w = α[E{ z(wTz)3} − 3w||w||2], (3.7)

this equation suggests the following algorithm:

1. w(t) = α[E{ z(w(t− 1)Tz)3} − 3w(t− 1)]

2. w(t) = w(t)
||w(t)||

3.2.2 FOBI

FOBI was proposed by Cardoso [11]. Consider quadratically weighted covariance matrix:

Ω = E{zzT ||z||2}, (3.8)

where z is pre-whitened data (see Eq. 3.4). Assuming data pre-whitened by ICA model it

follows:

Ω = E{VAssT (VA)T ||VAs||2} = WTE{ssT ||s||2}W, (3.9)

where VA is orthogonal and W = (VA)T . Using independence and unit variance (it does

not affect independence property of signals) of si matrix Ω stands for:

Ω = Wdiag(E{s2i ||s||2})W =

Wdiag(E{s2i
n∑
j=1

s2j})W =

Wdiag(E{s2i (s2i +
n∑

j=1,j 6=i

s2j)})W =

Wdiag(E{s4i }+
n∑

j=1,j 6=i

E{s2i }E{s2j})W =

Wdiag(E{s4i }+ n− 1)W

(3.10)

Last equation shows that matrix W can be obtained by eigenvalue decomposition of

matrix Ω, which is decomposed to diagonal matrix consisting of the fourth order cumulants

of si and to orthogonal matrix W. This algorithm is the most efficient algorithm for ICA

9
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computation. FOBI has restriction, under which it works, namely all ICs must have

different kurtosis.

3.2.3 JADE

JADE [3] is an extension of FOBI. For whitened data, we can write fourth-order-cross-

cumulant tensor [8] as:

F (M) = E{(zTMzzzT )} − 2M− tr(M)I, (3.11)

where M is eigenmatrix of cumulant, z is whitened data, I is unit matrix and tr(M) is

trace of matrix defined as:

tr(M) =
n∑
i

mii. (3.12)

Using (3.11) whitened correlation matrices can be defined alternatively as:

Ω = F (I) = E{||z||2zzT} − (n+ 2)I. (3.13)

Thus we can take a matrix M and replace matrix I in FOBI algorithm. This matrix would

have a linear combinations of cumulants of independent components as its eigenvalues. Now

we take more than one matrix, jointly diagonalize them and find the best result.

3.2.4 AMUSE

AMUSE [12] is an algorithm based on prior knowledge of data structure - data are signals

so they are time dependent. Let us denote lag-time covariance matrix as:

Cx
τ = E{x(t)xT (t− τ)}, (3.14)

where x is vector of signals samples in time t and τ is lag-time.

An issue is that whitening data does not make data independent. The key for solv-

ing this problem is time-lagged covariance matrix, it can be used instead of high-order

statistics. Using this time-lagged covariance matrix gives us certain extra information to

estimate model, under certain conditions (samples of signals must be taken at the same

times and delayed correlations between different output signals vanish), and no high-order

10



information is needed. AMUSE uses the simplest case with only one time lag τ . Mostly

τ equals 1.

Consider whitened data z, then we can write for separating matrix W:

Wz(t) = s(t),

Wz(t− τ) = s(t− τ),
(3.15)

where s are samples of signals in given time. Next consider lagged covariance matrix:

Cz
τ =

1

2

[
Cz
τ + (Cz

τ )T
]

(3.16)

Substituting z from (3.15) we get:

Cz
τ =

1

2
WT

[
E{s(t)sT (t− τ)}+ E{s(t− τ)sT (t)}

]
W = WTCs

τW (3.17)

Due to the independence of signals si(t) the covariance matrix Cs
τ is diagonal, name it D

and rewrite previous equation:

Cz
τ = WTDW (3.18)

We can see that mixing matrix W is a part of eigenvalue decomposition of Cz
τ . From the

previous the following algorithm could be constructed:

1. Whiten data x to z

2. Compute eigenvalue decomposition of Cz
τ .

3. Rows of matrix W are given by eigenvectors.

3.2.5 SOBI

SOBI [1] is an extension of AMUSE algorithm. It uses more than one time-lag τ . The

diagonalization of all corresponding lagged covariance matrices is needed. Because the

covariance matrices got different eigenvalues, the formulation of functions, which express

the degree of diagonalization of matrices, is needed.

Simple function for measuring this degree of diagonalization of matrix M is:

off(M) =
∑
i 6=j

mij, (3.19)

11
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which is the sum of off-diagonal elements. Minimization of sum of off-diagonal elements in

several matrices is desired. Denoting S a set of chosen time lags τ criteria for minimization

stands for:

J (W) =
∑
τ∈S

off(WCx
τW

T )2, (3.20)

where J (W) is objective function, W is separating matrix, Cx
τ is time-lagged covariance

matrix of data x. Minimization under this constraint gives the estimation method and it

is performed by gradient descend method or simultaneous estimation of eigenvalue decom-

position for several matrices.

3.3 Example

As an example serves us mixture of ECG signal and uniformly distributed random noise

(Figure 3.2). Both signals are 10 seconds long. Signals have zero mean.

Figure 3.2: Example signals - upper is ECG signal, lower is uniformly distributed random
noise.
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Next both signals were mixed with randomly generated mixing matrix of size 2x2:

A =

(
0.416494 0.374777

0.652350 0.885340

)
(3.21)

The mixing result is shown on (Figure 3.3). It is obvious that noise totally corrupted

useful signal.

Figure 3.3: Mixture of signals from Figure 3.2. Noise corrupted signal completely. Both
signals look similar, but they are different. If we look at the y-scale, we can observe the
difference in amplitudes.

Figure 3.4 shows resulting signals computed using estimated de-mixing matrix (result

of FastICA algorithm):

Ŵ =

(
−0.184404 −0.002134

0.135876 0.002434

)
(3.22)

The ECG signal is separated from noise. Results in Figure 3.4 show two disadvantages of

ICA. First - scale of resulting signal is the not same as of original data. Second - signal
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is ”inverted” by x axis. Both problems are caused because ICA cannot estimate energy of

results. These problems are rather minor when compared with ICA usefulness. Simplest

way to estimate separation quality one can compute multiplication of matrices A and Ŵ

and than create ratio between diagonal and offdiagonal elements of resulting matrix. The

resulting matrix should be identity matrix and the ratio should be 0, but any sufficiently

small number still means good separation quality. The ratio number in our case is 0.000959,

which is a good result.

Figure 3.4: Result of ICA source separation.

3.4 Applications

This section covers wide variety of ICA application covering research areas such as EEG,

ECG signal processing or more uncommon research areas such as fMRI or EGG signal

processing. The section is divided in to several parts each dealing with one part of ICA

biomedical applications.
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3.4.1 ECG applications

At present only few ECG problems have been addressed. First problem, on which ICA

was applied, was artefact and noise removal. Pioneer work of Wisbec et al.[13] in

1998 deployed Fast ICA algorithm for breath artefacts removal. It presents preliminary

results. The ECG with artefacts were measured by a non-standard electrode system and

the method was tested on 10 records. The results are interesting - breathing artefact has

sub-Gaussian distribution and it was separated in one component.

In the same year Barros et al.[14] presented their work, where ICA was implemented

using neural networks. ICA gradient based algorithm was adapted for neural network with

self-adaptive step size calculation. Performance of the algorithm was measured on artificial

data created using MIT-BIH noise stress database, which contains 3 types of noise. The

data have been preprocessed by high pass filter. Resulting algorithm provides faster con-

vergence than standard ICA algorithm because of neural network deployment. Researchers

employed a measure for separation quality based on knowledge of mixing and demixing

matrix.

After these two works other researchers provided their solutions of noise removal prob-

lem based on ICA [5, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. From them we selected

as the most interesting the following ones:

• He et al. [5] (2006) proposed an automatic method based on JADE algorithm. ECG

records used in this study were measured from three electrodes. The noise removal

technique for selection of noisy components is based on thresholding of kurtosis and

variance of components. The presented algorithm deals only with low amplitude

noises.

• Chawla et al. [15] (2008) deployed JADE algorithm on three channel ECG. No

comparable results were reported and the method is vaguely described, so the re-

producibility of research is limited. This work employed kurtosis and variance for

detection of noisy component in the same way as He et al.[5].

• Milanesi et al. [17] (2008) deployed FastICA and its modification for motion artefact

removal from holter recordings. They studied ICA for convolutive mixtures and con-

strained ICA. The study proposes two measures of noise elimination - error estimate

and correlation coefficients. It also employed statistical analysis of results obtained

on data from 9 patients, which are over 5 minutes long.
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• Chawla [20] (2011) presents and summarizes his latest work. This article contains

approach for noise removal presented by Milanesi et al. [17] and combines it with

author’s own PCA-ICA method. His technique is tested on CSE database [27].

• Acharyya et al. [22] (2010) deployed FastICA algorithm on MIT-BIH 3 channel ECG

database in order to remove artefacts from electrocardiogram. They developed an

algorithm for detection of component containing ECG based on Pearson correlation

coefficient. This approach does not deal with signal reconstruction and noise reduc-

tion. The ECG morphology changes were not discussed.

• DiPietroPaolo et al. [23] (2006) used TDSEP [28] algorithm in magnetocardiography

(MCG) analysis in order to reduce artefacts accompanying the MCG measurement.

For detection of artifact-containing components three rules have been used. They are

based on kurtosis, Pearson’s correlation coefficient and power spectra computation.

The authors used data from rest and exercise MCG.

• Oster et al. [25] (2009) applied JADE algorithm for detection of ECG in recordings

done during magnetic resonance imaging (MRI). The data are strongly corrupted by

MRI artefacts and the JADE algorithm in combination with wavelet transform is

able to extract ECG from the measured signals.

Further ICA application area in ECG processing is extraction of fetal ECG (fECG) from

records obtained by electrodes placed on mother body. Lathauwer et al. [29] presented

his pioneer work in 1994. Here blind separation of fECG was based on 4th order cumu-

lants. Researchers mathematically formulated problem of fECG estimation and presented

an example of extracted signals. In 2000 Lathauwer et al. [30] continued their work, ex-

tended database of records and discussed applicability of ICA on twin fECG. Cardoso [31]

worked on this problem in 1998 and showed usability of ICA in this problem. Zaroso et al.

[32] (2001) presented their method based on Givens rotations and compared their method

with method based on Adaptive Noise Canceller filter. For comparison they projected

extracted sources from the component domain back to the signal domain showing contri-

bution of different electrodes to fECG. In 2006 Sameni et al. [33] proposed their method

based on JADE algorithm for fECG extraction. The work tries to interpret independent

components and compares them with vector cardiogram. The researchers reported good

separation quality. Another application of JADE algorithm for fECG arose in 2009 when

Lee et al. [34] proposed their method for fetal magnetocardiogram (fMCG) extraction.
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The automatic method selects components containing fMCG based on their kurtosis. In

2011 Camargo-Olivares et al. [35] presented their method based on multidimensional ICA

(MICA) approach. In order to get better fECG separation results, they estimated mater-

nal ECG and used it as another input to ICA method. In MICA algorithm different ICA

algorithms were used (JADE, FastICA, πCA), but the results were considered as similar.

Another application is extraction of atrial activity for atrial flutter analysis.

In 2000 Rieta et al. [36] applied ICA for QRST cancellation problem. They used syn-

thetic and real data for evaluation of algorithm effectiveness. Data were preprocessed by

notch and bandpass filter in order to remove noises before extracting atrial activity. Re-

searchers compared their method with other two standard methods. Research uncovered

that ICA based separation is better. In following years they extended their work and in

2003 presented FastICA application on extraction problem [37]. Finally in 2004 a summary

paper [38] was released comparing different algorithms (FastICA, JADE, AMUSE). This

paper also explains why ICA can be applied to this problem and introduced ordering of

separated components based on kurtosis. Presented analysis was done on 7 recordings of

different patients. Castells et al. [39] (2005) continued work of Rieta and they introduced

two stage separation algorithm based on FastICA and SOBI. Their paper also introduces

measures for estimation of separation quality - Root-Mean-Square error, correlation coeffi-

cients and degree of spectral content around main peak. Another work came from Zaroso

et al. [40] (2008). Paper proposed RobustICA method in framework defined by Castells

et al. [39]. Chang et al. (2010) extended the methodology proposed by Rieta and Castells

[36, 37, 38, 39]. They used JADE and SOBI algorithm in order to extract sources con-

taining atrial fibrillation and then used these sources for classification of atrial fibrillation.

The method increased specificity of atrial fibrillation classification. In 2011 Donoso et al.

[41] proposed method for atrial fibrilation extraction based on FastICA algorithm. They

reported preliminary results on data from 4 subjects. In the same year (2011) Taralunga

et al. [42, 43] applied JADE algorithm in combination with Event Synchronous Canceller

(ESC) on data from St. Peterburg DB [7]. They proved that ESC enhanced the JADE

algorithm ability for extraction of atrial activity.

Application of ICA in ECG signal classification is another biomedical research area

with increasing number of research papers. The first papers proposed by Yu et al. [44, 45]

in 2007 and 2008 presented an application of FastICA for beat classification combining

independent components and RR interval as a feature vector for different classification

systems. Yu et al. [46] proposed beat classification based on selection of independent com-
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ponents obtained by FastICA or JADE algorithm. The classification itself is done by SVM

[47] classifier on MIT/BIH Arrhythmia Database [48]. In 2011 Wu et al. [49] presented the

SVM based classification of ECG using features extracted by FastICA algorithm. Finally

in 2012 Huang et al. [50] proposed method for beat classification using ECG extracted

features combined with features obtained from independent components computed by Fas-

tICA algorithm.

Newly emerging application of ICA is ECG beat detection. The very first research has

been done by Wiklund et al. [51] in 2007. The researchers present beat detection method

for smart clothing application. The first step of method is preprocessing of data done by

FastICA algorithm. Next work proposed Chawla et al. [52] in 2008, who presented PCA-

ICA R-peak detection algorithm using JADE for denoising and PCA for estimation of data

segment. The paper discusses the method only. He continues his work and presented new

results in 2011 in [6].

Previous papers represent main-stream research in ECG applications of ICA, but there

are several other papers presenting other applications:

• Vetter et al. [53] (2000) presented application for measuring cardiac output based on

ICA applied on RR and QT intervals.

• Zhu et al. [54] (2008) presented a method for separation of interesting waveforms

into different components using 98 channel ECG data obtained from 6 subjects. The

method reported several components containing waves of interest. Content of other

components was not discussed.

• Owis et al. [55] (2002) applied convolutive ICA for classification of arrhythmias.

Independent components serve as input for k-NN, Bayes and minimum distance

classifiers. Data from MIT-BIH Arrhythmia database were cropped into 3 second

segments.

• Granegger et al. [56, 57] (2009) used JADE algorithm in application with data col-

lected on ICU patients during cardio pulmonary resuscitation (CPR). The work aims

at CPR artefact removal in order to enhance work of automatic external defibrillator.

The authors used algorithm based on kurtosis calculation.

• Ostertag et al. [58] (2011) proposed method for reconstructing ECG precordial leads

using FastICA algorithm. They developed a patient specific transformation, which

provides good results.
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• Monasterio et al. [59] compare several BSS techniques and other separation tech-

niques for multilead T-wave alternans detection. They conclude that BSS algorithms

are not well suited for this type of task.

3.4.2 EEG applications

Electroencephalographic and magnetoencephalographic (EEG/MEG) signal processing us-

ing ICA was its first application in biomedical field. Many researchers use the same prin-

ciples in their work and thus we will review only selected papers representing the funda-

mentals of EEG ICA applications.

The first application of ICA was event related potential (ERP) detection and

analysis. The first works were published by Makeig et al. [60, 61] in 1996 and 1997. Re-

searchers used InfoMax algorithm [62] for separation of EEG activities (alpha, theta) for

detection of ERP. Experiments were performed on 10 recordings containing 30 minutes of

EEG. Makeig’s work was extended by Jung et al. [63, 64] (2000, 2001). Database used for

ERP analysis contains 50 patient recordings and researchers used ERP image technique for

evaluation of separated components. Vigário et al. [65] (2000) applied FastICA algorithm

to EEG data for ERP and ocular artefacts detection and removal. This paper summed up

their research and did not contain results. In 2003 Richards [66] used extended Infomax

algorithm [62] for source localization from 128 lead EEG measurements. The algorithm

was tested on 5 simulated datasets and the author concludes that ICA is better for source

localization task than PCA. Two years later Debener et al. [67] (2005) used RUNICA al-

gorithm within the EEGLab [68] framework in order to detect auditory ERP. The patients

were split into two groups differing with strength and frequency of tones, which were played

to them. The algorithm clustered components obtained from RUNICA into two groups

corresponding to patients groups. In 2008 Debener et al. [69] used the Infomax algorithm

for source localization in patient with cochlear implant during the auditory ERP trial.

They showed that cochlear implant patient used the same sources for resolving auditory

events as ”normal” patients. Liu et al. [70] in 2011 presented comparison of several ICA

algorithm for ERP detection in presence of noise. They conclude that SOBI algorithm

outperforms all other ICA algorithms in solving ERP task. Finally Chen et al. [71] (2012)

used Infomax for ERP extraction. The identification of independent components contain-

ing ERP is based on standard deviation computation.

Artefact removal in EEG by ICA was first reported by Vigário [72] in 1997. Fas-

tICA algorithm was applied on simulated and real children data preprocessed by bandpass
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filter. Research reported separation of ocular artefacts and K-complexes in different com-

ponents. Following first paper in this area several others appeared [73, 74, 75, 76, 77, 78,

79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90]. We selected the most interesting ones:

• Tang et al. [73, 74] (2002) applied SOBI algorithm on 122 channel MEG data in

source localization and artefact removal issues. The data from 4 patients were first

preprocessed and then components were obtained. The papers explores possibilities

of SOBI usage in MEG data processing.

• Ossadtchi et al. [75] (2002) used Infomax algorithm for preprocessing during epileptic

spikes localization task. Components with artefact activity were discarded for next

steps of the algorithm. The algorithm was tested on 4 patients and provides efficient

way to deal with epileptic spikes detection.

• Porée et al. [76] (2006) used FastICA for hypnogram estimation from EEG, EOG

and EMG data obtained from 14 patients. Researchers reported very good results in

their study.

• Hu et al. [77] (2007) deployed FastICA algorithm for identification and removal of

scalp reference signal in intracranial recordings of three patients. The method for

selection of relevant components is fully automatic.

• Joyce et al. [78] (2004) proposed automatic method for EOG artefacts reduction in

EEG data. They employed SOBI algorithm for independent components estimation.

• McMenamin et al. [79] (2011) validated approach of ICA applying for EMG artefact

removal from EEG data. Infomax algorithm was used for estimation of independent

components. Researchers concluded that ICA can deal with strong artefacts, but it

could not be used as only one noise removal technique.

• Le Van et al. [82] (2006) deployed FastICA in combination with Bayess classifier for

detection of epilepsy seizures. Researchers used wide variety of features computed on

independent components in order to identify correct epileptic seizure components.

• Cao et al. [83] (2003) developed a new algorithm for high-level additive noise ex-

traction from EEG signals. Researchers used variation of EASI algorithm [91], which

works very efficiently with sub- and super-Gaussian distributions.
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• Milanesi et al. [84] (2008) developed a modification of FastICA algorithm for dealing

with convolutive mixtures. The key idea is that convolution changes into linear

mixing in frequency domain and ICA could estimate sources as usually. The FastICA

needs to be adapted for dealing with complex values. The paper show interesting

result obtained by the application of algorithm to 9 EEG recordings.

• Korhonen et al. [86] (2011) used FastICA modification for large muscle artefacts

removal from transcranial magnetic stimulation (TMS). The TMS artefacts have

been completely removed by the applied algorithm.

• Ma et al. [87] (2011) used SOBI and Infomax algorithm for detection of EOG artefact

using comparison of components with artefact pattern. The detection of components

with EOG is based on Euclidian distance and it is patient and threshold dependent.

• Cong et al. [90] (2010) employed FastICA modification for de-noising of EEG. The

key idea of modification lies in re-computation of de-mixing matrix after each learning

step according to filtering of components. The final de-mixing matrix is then de-

mixing and denoising matrix. Proposed method was tested on 102 patients.

Preceding two research areas represent a main stream research in EEG ICA applications.

Following papers represent the other published works dealing with EEG using ICA in

other than previous applications:

• Zhukov et al. [92] (2000) proposed a method for multiple source localization based on

ICA. They used simulated 32 channels data for validation of the approach. Results

proved that ICA is able to extract extra information from the data.

• Tang et al. [93] (2005) applied SOBI algorithm on 128 channel EEG in order to test

its abilities on high-density EEG. The paper concludes that SOBI algorithm could be

used in several applications such as noise reduction, neuronal sources extraction, SNR

improvement in somatosenzory evoked potentials or for source activity localization.

• Cichocki et al. [94] (2005) used AMUSE algorithm for detection of early stages of

Alzheimer’s disease.

• Swan et al. [95] (2011) used Infomax algorithm for blink artefact removal during

Deep Brain Stimulation of the subthalamic nucleus within the Parkinson’s disease

patients.
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• De Lucia et al. [96] (2008) deployed FastICA algorithm for epileptic spikes detection.

The researchers used independent component domain features for classification task

using Bayess classifier.

• Selvam et al. [97] (2011) used Wavelet-ICA algorithm (Wavelet transform + SOBI

algorithm) for detection of brain tumors from 19 lead EEG. Again researchers used

features computed on independent components for classification using multilayer feed

forward neural network.

3.4.3 Other biomedical applications

This part deals with minor biomedical research areas, in which has been BSS/ICA methods

used.

3.4.3.1 EMG applications

Electromyography (EMG) is another research area, where ICA has been successfully de-

ployed. There are several papers describing research efforts in processing EMG using ICA:

• Costa Jr. et al. [98] (2010) employed FastICA algorithm in order to remove ECG

artefact from EMG recording of lumbar muscles. He reported two approaches - one

failed in separation of ECG and EMG and second based on using time-delayed signals

was successful in separating activities.

• Mak et al. [99] (2010) used also FastICA algorithm for removal of ECG from trunk

muscle surface EMG. Researchers tested their approach on simulated data and re-

ported good separation results.

• Ahsan et al. [100] (2010) reviewed the applications of ICA in EMG signal processing

in context of improvement of quality of live for elderly people.

• Ren et al. [101] (2010) deployed ICA for extraction of motor units activities within

the EMG recording.

• Farina et al. [102, 103] (2004,2008) applied SOBI algorithm for separation of two

muscle activities during the force-varying task.

• Subasi et al. [104] (2010) used FastICA algorithm for dimension reduction during

the detection of muscle fatigue task. Artificial neural network was deployed for

classification task and ICA served as preprocessing step.
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• Willigenburg et al. [105] (2012) deployed FastICA for ECG removal from EMG

recordings. Researchers compared ICA technique to high-pass filtering and adaptive

filtering and concluded that ICA performs better in several cases. The performance

of ICA algorithm strongly depended on type of data.

3.4.3.2 fMRI and other medical image processing applications

Another application fields of ICA are functional Magnetic Resonance Imaging (fMRI) and

Magnetic Resonance Spectroscopy (MRS). In last decade there were several papers pub-

lished in this field:

• McKeown et al. [106, 107] (1998) first used ICA in fMRI application. Researchers

used Infomax and JADE algorithms for detection of region of interest in fMRI images.

ICA increased accuracy of separation and localization of sources.

• Calhoun et al. [108] (2003) published review paper comparing performances of JADE,

FastICA and Infomax algorithms. Researchers used their own data for the evalua-

tion of the ICA algorithms. The comparison criteria was based on Kullback-Leibler

divergence [109].

• Pulkkinen et al. [110] (2005) published a work about application of FastICA algo-

rithm on MRS data. FastICA was used for tumour detection.

• Debener et al. [111] (2006) written an overview of methods for analysis of simul-

taneously recorded EEG and fMRI. Researchers mentioned ICA as one method for

separation of non-brain signals from EEG during the trial.

• Wang et al. [112] (2012) presented Fast-FENICA algorithm for detection of func-

tional networks in fMRI data. ICA increased the detection rate.

• Rodriguez et al. [113] (2012) used Infomax algorithm for denoising fMRI data. The

approach was tested on 16 patient and the noise reduction was increased.

• Zhang et al. [114] (2012) employed Infomax and ICASSC (modification of FastICA)

algorithms in fMRI stop signal task. BSS/ICA increased ability to localize cognitive

centres within the brain in all 59 patients.

• Lei et al. [115] (2011) used FastICA algorithm for blink removal in EEG and region

detection in fMRI during the analysis of EEG-fMRI analysis of subcortical regions

of brain.
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• Kim et al. [116] (2011) employed FastICA for detection of regions during fMRI

semantic decision task. Research reported increased number of regions detected.

• Moeller et al. [117] compared ICA with General Linear Model analysis in application

within EEG-fMRI recordings. Both methods have similar results.

3.4.3.3 Abdominal phonograms application

In year 2009 Jiménez-González et al. [118] initialized research of abdominal foetal phono-

grams using Single-channel Independent Component Analysis (SCICA) which combines

ICA algorithm TDSEP with back projection of components in order to obtain informa-

tion from a single channel recording. Research was extended and the deeper analysis of

resulting components [119, 120].

3.4.3.4 EGG applications

Another minor application field of ICA is EGG signal processing. There have been several

papers published in this research area:

• Wang et al. [121] (1997) applied neural network implementation of FastICA for

detection of EGG activity within the recording contaminated by respiratory, motion

and ECG artefacts.

• Peng et al. [122] (2007) compared FastICA with ICA with reference algorithm for

extraction of slow gastric wave. Both methods increased the probability of correct

extraction of gastric wave.

• Mika et al. [123] used FastICA algorithm for extraction of normogastric rhythm from

the EGG measurement.

3.4.3.5 Measuring HR and temperature from video

Finally ICA is used for analysis of video sequences in order to estimate heart rate (HR)

by Poh et al. [124] in 2010. ICA was able to extract enough information from RGB video

images of face to estimate the HR correctly. Another paper from this interesting research

area comes from Tsouri et al. [125] (2012). ICA was able to extract pulse rate from video

using constrained ICA.
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Chapter 4

Electrocardiography and signal

processing

Although the main focus of the thesis is on ICA application to ECG signals, we also need

to describe briefly the heart and its function. This chapter is written for this purpose

- it summarizes basic facts about heart anatomy, its function and the basics of ECG

measurement and showing the most common lead system used in electrocardiography. All

figures used in this section are from [126], which provides every picture freely available for

any use.

4.1 Anatomy and function of human heart

The heart (Fig. 4.1) is an organ, which pumps oxygenated blood throughout the body to

important organs and deoxygenated blood to lungs. It can be understood as two separate

pumps - one pump (left) pumps the blood to peripheral organs, and second pump (right)

pumps the blood to lungs.

Left and right sides of the heart consist of two chambers - an atrium and a ventricle.

For controlling of the blood flow there exist four valves - tricuspid, pulmonary, mitral and

aortic. The mitral valve separates left atrium and ventricle and the tricuspid valve sep-

arates right atrium and ventricle. Pulmonary valve control the blood flow from heart to

lungs and the aortic valve directs blood to the body circulation system.

Walls of the heart are formed by cardiac muscle (myocardium). This muscle is responsi-

ble for the mechanical work done by the heart (= pumping the blood). For controlling the

pumping process specialized muscle cells that conduct electrical impulses evolved. These
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impulses are called action potential and they are responsible for forming the ECG waveform

on the body surface.

Figure 4.1: Basic heart anatomy schema - there are four chambers, two on the left (right
heart) side responsible for pumping the blood to lungs and two on the right (left heart)
responsible for pumping the blood to body. Picture used with permission from [126].

In order to distribute oxygen to whole body human heart never stops. It works in

periodic cycles. A cycle works as follows: Deoxygenated blood flows through supererior

vena cava to the right atrium. When the atrium is contracted, blood is pumped to the

right ventricle. From the right ventricle the blood flows through pulmonary artery to

the lungs. Lungs remove carbon dioxide from blood cells and replace it with oxygen.

Oxygenated blood returns to the left atrium and after another contraction it is pumped

to the left ventricle. Finally the blood is forced out of the heart through aorta to the

systemic circulation. The contraction period is called systole, during which the heart fills

with blood. The relaxation period is called diastole. From electrical point of view the cycle

has two stages - depolarization (activation) and repolarization (recovery).
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4.2 The conduction system of the heart

To maintain the cardiac cycle the heart developed a special cell system for generating

electrical impulses and by these impulses mechanical contraction of the heart muscle is

ensured. This system is called conduction system (Fig. 4.2). It conveys impulses rapidly

through the heart. Normal rhythmical impulse, which is responsible for contractions, is

generated in the sinoatrial (SA) node. Then, propagates to the right and left atrium and

to the atrioventricular node (AV). The impulse is delayed in the AV node in order to allow

proper contraction of the atria. Thus all blood volume in the atria is forced out to the

ventricles before its contraction. Atrium and ventricles are electrically connected by bundle

of His. From here, the impulse is conducted to the right and left ventricle. The pathway

to the ventricles is divided to the left bundle branch and right bundle branch. Further, the

bundles ramify into the Purkinje fibers that diverge to the inner sides of the ventricular

walls.

The primary pacemaker of the heart is the sinoatrial node. However, other specialized

cells in the heart (AV node, etc.) can also generate impulses but with lower frequency.

If the connection from the atria to the atrioventricular node is broken, the AV node is

considered as the main pacemaker. If the conduction system fails at the bundle of His, the

ventricles will beat at the rate determined by their own region. All cardiac cell types have

also different waveform of their action potentials (Fig. 4.3).

4.3 Generation and recording of ECG

Human body is a good electrical conductor, hence electrical activity of the heart can be

measured using surface electrodes. Electrodes record the projection of summary resul-

tant vector, which describes the main direction of electrical impulses in the heart. The

projection is named electrocardiogram. Different placement of electrodes provides spatio-

temporal variations of the cardiac electrical field. The difference between a pair of elec-

trodes is referred to as a lead. A large amount of possible lead systems has been invented;

depending on a diagnostic purpose, a lead system is chosen and electrodes placed on accu-

rate position. The most commonly used system is standard 12-lead ECG system defined

by Einthoven [127]:
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Figure 4.2: Conduction system of the heart consists of Sinus node, Atrioventricular node,
Bundle of His, bundle branches and Purkinje fibers. Picture used with permission from
[126].

• Three bipolar limb leads (I, II, III) - electrodes are placed to the triangle (left arm,

right arm and left leg) with heart in the center (Fig. 4.4). This placement is called

the Eithoven’s triangle.

• The augmented unipolar limb leads (aVF, aVL, aVF) - electrodes are placed on same

positions as in case of leads I, II and III. The difference is in the definition of leads.

Leads are calculated as the difference between potential of one edge of the triangle

and the average of remaining two electrodes (Fig. 4.5).

• Unipolar precordinal leads (V1-6) - leads are defined as the difference between po-

tential of electrode on chest and central Wilson terminal (constant during cardiac

cycle and is computed as average of limb leads). For details see Fig. 4.6.
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Figure 4.3: Schematic representation of ECG waveform generation by summing of different
action potentials. Picture used with permission from [126].

Figure 4.4: Schematic representation of Einthoven triangle electrode placement. Picture
used with permission from [126].
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Figure 4.5: Schematic representation of augmented limb leads calculation. Picture used
with permission from [126].

Figure 4.6: Precordial leads electrodes positions. Picture used with permission from [126].
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4.3.1 ECG wave form description

As we mentioned earlier ECG wave is formed as a projection of summarized potential

vector of the heart. ECG wave has several peaks and ”formations”, which is useful for its

diagnosis (Fig. 4.7). These are:

• P wave - Represents the wave of depolarization that spreads from the SA node

throughout the atria, and is usually 0.08 to 0.1 seconds (80-100 ms) length.

• PR interval - Reflects the time the electrical impulse takes to travel from the sinus

node through the AV node and entering the ventricles. Usually 120 to 200 ms long.

• PR segment - Corresponds to the time between the end of atrial depolarization to

the onset of ventricular depolarization. Last about 100 ms.

• QRS complex - Represents ventricular depolarization. The duration of the QRS

complex is normally 0.06 to 0.1 seconds.

• Q wave - Represents the normal left-to-right depolarisation of the interventricular

septum.

• R wave - Represents early depolarization of the ventricles.

• S wave - Represents late depolarization of the ventricles.

• S-T segment - Following the QRS is the time at which the entire ventricle is de-

polarized and roughly corresponds to the plateau phase of the ventricular action

potential.

• Q-T interval - Represents the time for both ventricular depolarization and repolariza-

tion to occur, and therefore roughly estimates the duration of an average ventricular

action potential. This interval can range from 0.2 to 0.4 seconds depending upon

heart rate.

• T wave - Represents ventricular repolarization and is longer in duration than depo-

larization.
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Figure 4.7: Normal ECG waveform. Picture used with permission from [126].
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Chapter 5

Independent Component Analysis for

ECG de-noising: proposed method

5.1 Introduction

During recording of ECG the recorded signal is disturbed with interferences coming from

both technical and biological sources, thus the very first step of any ECG analysis is noise

reduction. Any noise reduction technique must be very accurate in order to preserve as

much information in data as possible. At present many ECG applications are connected

with holter measurement and telemedicine applications. In these cases various types of

uncommon noise disturb the useful signal. Many techniques are used for noise reduction in

ECG - current most used techniques are traditional filtering (basic digital filters, adaptive

filters) and wavelet filtering. As we presented in Chapter 3 there are still many problems in

current algorithms, which result in imperfect noise reduction or distortion of useful signal.

These facts led us to the idea of a new algorithm proposal satisfying our requirements on

de-noising.

We developed an algorithm for solving the problem of electrode cable movement (ECM)

artefact, which appears during ECG measuring with a holter device. This artefact mimics

normal ECG activity in frequency domain (Fig. 5.1) thus standard filtering cannot be

used because it also removes ECG. Our method deploys the JADE algorithm, which is a

well-known BSS algorithm based on joint diagonalization of cumulant matrices. The JADE

is able to separate ECM artefact from ECG activity in component domain. Combination

of JADE and basic classifier for noise component detection provides us with framework

capable to deal with ECM artefact.
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The work described here is based on several other authors publications [128, 129] and

it is available at http://bio.felk.cvut.cz/~kuziljak/.

Figure 5.1: Power spectra of noise signal and ECG data. Both spectra are overlapping and
noise is mimicking normal ECG signal.

5.2 Proposed Algorithm

As we said before the main concept of our algorithm lies in performing JADE separation

algorithm on ECG signal containing noise. The resulting components can be divided into

two groups - components containing mostly noise and components containing mostly ECG

activity. Because of well-known permutation indeterminacy of ICA the order of components

is random and thus one needs to develop a detection algorithm for identification of noise

components. The algorithm work-flow is shown in Algorithm 1. Next we will describe each

important step of the algorithm.

Algorithm 1 De-noising algorithm

Input: ECG signal
1: Pre-process (subtract mean of signals)
2: Estimate components using JADE
3: Compute features
4: Detect noisy components using CART
5: Set noisy components to zero
6: Transform components back to signal domain
7: Post-process

Output: Filtered ECG signal
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5.2.1 Preprocessing and component estimation

Very first step of the algorithm contains mean subtraction. Next independent components

are estimated using JADE algorithm. The algorithm is based on joint diagonalization of

fourth order cross-cumulant tensor and is explained in the section 3.2.3.

5.2.2 Feature computation

In order to detect noise containing components the algorithm computes set of features for

each component. These features are chosen based on prior knowledge of data. The selected

feature set contains these features:

• Mean of component samples – mean is defined as:

x =
1

N

N−1∑
i=0

xi, (5.1)

where xi is the i-th sample selected from component x with length N .

• Variance of component samples – unbiased estimate of variance is defined as:

var(x) =
1

N − 1

N−1∑
i=0

(xi − x)2. (5.2)

• Kurtosis of component samples – kurtosis is normalized version of fourth-order mo-

ment:

kurt(x) = E{x4} − 3(E{x2})2, (5.3)

where E{} is the expectation of component x. Kurtosis has been chosen because it

was shown that ECG has super-Gaussian distribution [5, 6, 4].

• Correlation coefficient of component with 50 Hz sinus wave and p-value of hypothesis

of no correlation. Pearson correlation coefficient is defined as [130]:

ρx,y = corr(x, y) =
cov(x, y)

σxσy
=
E{(x− x)(y − y)}

σxσy
, (5.4)

where cov(x, y) is covariance of signal x and y and σx,σy are their standard deviations

defined as:

σx =
√
var(x). (5.5)
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P-value for hypothesis of no correlation between signals is estimated using t value

[130]:

t =
r

sr
, (5.6)

where r is correlation coefficient and sr is standard error of correlation coefficient:

sr =
√

1−r2
n−2 .

• Standard deviation of peak-to-peak distances and number of detected peaks – this

feature is used, because ECG has periodical rhythm with dominant R peaks, thus

we can asume that ECG component standard deviation is smaller than standard

deviation of noisy component deviation, which has no dominant peaks by its nature.

Peaks were detected using Pan-Tomkins detection algorithm (see section 7.3.1.2).

For the same reason the number of peaks detected in the recording normalized by

the length of recording were used.

5.2.3 Noise component detection using CART algorithm

Features discussed in previous section are then classified using a classification tree, which

has been learned with CART algorithm using Gini’s impurity index [131] using annotated

components data obtained by application of JADE to recordings from MIT/BIH Arrhyth-

mia Database. The algorithm constructs a binary tree by splitting data into left and right

node using maximalization of decrease of impurity defined as:

id(t) = i(t)− pLi(tL)− pRi(tR), (5.7)

where i(t) =
∑J

j=1 p(j|t)(1 − p(j|t)) = 1 −
∑J

j=1 p
2(j|t) with j = 1, 2, ..., J and J is the

number of items in the training set, pL(pR) is the proportions of data in left (right) node.

Gini’s impurity index is the measure how often a randomly chosen element from the set

would be incorrectly labelled if it were randomly labelled with one label in the set according

to the distribution of the labels in the set. It reaches zero when all cases fall into one

category.

After constructing the CART tree we deployed 10-fold cross-validation in order to estimate

best level for tree pruning. The error from cross-validation is shown on Fig. 5.2 with

selected number of nodes. Pruning is performed as removal of n lover levels of binary

tree according to selected level from cross-validation. Resulting tree is shown on Fig.5.3.
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We can see, that only two features were selected for classification of components, namely

kurtosis and standard deviation of RR intervals.

Figure 5.2: Result of 10-fold cross-validation used for estimation of tree pruning level. The
best choice is selected by error and number of terminal nodes.

Figure 5.3: Resulting binary classification tree for noise component detection. (0 – ECG
component, 1 – Noise component)

5.2.4 Removing noisy components and backward transform

Components identified as noise containing are removed by setting their values to zero.

This leads to removal of these components from all ECG signals in signal domain after

backward transform. Zeroing can be performed also as zeroing corresponding column in
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mixing matrix. This leads to the same result. The backward transform is performed

by multiplying components with the mixing matrix, which is computed as inverse to the

de-mixing matrix.

5.2.5 Postprocessing

After removal of components containing noise and transforming them back to the signal

domain the high frequency noise sometimes appears. Therefore the final step contains the

low pass filter with first zero at 117 Hz, delay 5 samples and gain 0.93. Filter frequency

response is shown on Fig. 5.4.

Figure 5.4: Frequency response of postprocessing low pass filter
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5.3 Algorithm summary

The algorithm works with signal in predetermined way. First the mean value is subtracted

from the data, then independent components using JADE algorithm are estimated. After

estimation of components the algorithm points out those containing noise corrupting the

ECG using decision tree and finally the components with noise are set to zero. After zero-

ing data are projected back into signal domain and smoothing filter is applied.

Our method is efficient to deal with electrode cable movement artefact, for which it has

been developed, but its performance is good in presence of other noises. Its main disad-

vantage is wrong estimation of independent components, which could lead to reduction of

useful signal. This problem could be solved by applying different BSS/ICA algorithm.

Experiments with developed algorithm are described in Chapter 7 and the results are

presented in Chapter 8.
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Chapter 6

Independent Component Analysis for

ECG beat detection enhancing:

proposed method

6.1 Introduction

Beat detection is the most fundamental task in electrocardiography, the positions of QRS

or ventricular beats serve as a basis for further analysis of electrocardiogram (ECG). It is

for example the most crucial task in heart rate variability (HRV) analysis, which analyses

RR interval changes during long periods of time in order to detect heart disorders. The ne-

cessity of correct detection arises with each application of QRS detection algorithms. Many

researchers proposed large variety of methods for solving this task, eg.[132, 133, 134, 135, 6].

The most commonly used in the real world applications are Pan-Tompkins QRS detection

algorithm [134] and its modification introduced by Hamilton and Tompkins [136] or Chris-

tov’s beat detection algorithm [135].

Pan-Tompkins and its modification Hamilton-Tompkins algorithms are based on patient-

specific detection threshold. The algorithms work on single lead ECG, which is modified

by set of preprocessing digital filters in order to enhance positions of QRS complexes.

More recently, Christov released his beat detection algorithm, which is based on com-

bined adaptive threshold and transformation of multidimensional ECG signal in to single

complex lead data. The complex lead transformation is more robust in presence of noise

corrupting useful ECG and the algorithm is more stable.

In many applications strong artefacts from biological or technical sources could appear
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and cause distortion of ECG signals. Many algorithms for beat detection perform much

worse in that case. Christov’s detection algorithm deals with noise that accompanies the

ECG by transforming the ECG signal to signal called complex lead, which enhances posi-

tion of QRS complex and reduces effect of common artefacts presented in ECG. But this

algorithm has its limits, too. We try to improve its performance by transforming ECG

signal to components using Independent Component Analysis (ICA).

In our study we used JADE [3], which is from the family of joint diagonalization based

ICA algorithms. It works with fourth order cross-cummulant tensor in order to obtain best

solution for BSS problem.

The offline algorithm successfully combines ICA method JADE with Christov’s beat

detection algorithm creating a signal called complex component, on which beats were de-

tected using combined adaptive threshold. The transformation to complex component is

similar to transformation to the complex lead, but it introduces one more step - inde-

pendent components estimation and selection of ECG activity. Thus the algorithm works

properly in presence of strong artefacts and noises.

This algorithm has been published in [137] and all source codes are available at http:

//bio.felk.cvut.cz/~kuziljak/.

6.2 Christov’s beat detection algorithm

The Christov’s beat detection algorithm has been developed in 2004 for purpose of beat

detection in multidimensional ECG. It combines information from every available ECG

signal (originally from orthogonal lead system X-Y-Z) in recording creating so-called com-

plex lead, which is used for detection of beat positions. This algorithm contains several

processing steps as it is shown on work-flow chart in Fig. 6.1. In the next subsection we

will describe each step in detail and at the end we will summarize the algorithm and its

efficiency.
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Figure 6.1: Christov’s beat detection algorithm work-flow

6.2.1 Signal preprocessing

At the very first beginning ECG signals are processed by set of moving average (MA) filters

in order to remove power line interference and electromyographic noise:

• Power line interference moving average filter has first zero on frequency of power grid

(for EU is 50 Hz).

• Electromyographic moving average filter average over 28 ms interval of ECG signal,

which means that the first zero of the filter is around 35 Hz.
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We implemented both filters using recursive moving average defined by equation:

y[n] =
x[n]

N
− x[n−N ]

N
+ y[n− 1], (6.1)

where y is the output signal, x is the input signal, n is the signal sample index and N is

the filter order. The main advantage of recursive filter is its smaller impulse response and

faster computation. On the other hand it could be unstable because it is an IIR filter. The

order of filter N can be computed using: N = fs
fn

, where fs is sampling frequency and fn

is frequency of noise. The frequency response of filter is shown on Fig. 6.2 for fs=500 Hz

and fn=50 Hz.

Figure 6.2: Frequency response of recursive MA filter with first zero at 50 Hz for fs=500
Hz.
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6.2.2 Complex lead transform and post-processing filtration

The Christov’s beat detection algorithm is based on complex lead transform, which is

defined as follows:

X[n] =
1

L

L∑
j=1

|xj(n+ 1)− xj(n− 1)|, (6.2)

where X[n] is nth sample of signal calculated by complex lead transform, L is number of

measured ECG leads, xj(n) is nth sample from jth lead. The transform can be seen as

average difference calculated from all leads. Example of calculated complex lead is shown

in Fig. 6.3.

After complex lead transform the signal is filtered with MA filter with first zero around

25 Hz in order to suppress noise created by differentiation procedure in complex lead

transform. We again used the recursive MA implementation defined by Eq. 6.1.

Figure 6.3: Complex Lead (down) estimated from ECG (top)
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6.2.3 Combined adaptive threshold for beat detection

After the calculation of complex lead Christov employed combined adaptive threshold

MFR (see Fig. 6.4 for example) to find peaks, which correspond to beat positions. The

combined adaptive threshold is calculated as sum of three thresholds:

• Threshold M (adaptive steep-slope threshold) - reflects the amplitude of currently

detected beats

• Threshold F (adaptive integrating threshold) - reflects the presence of high frequency

noise in data and increases the combined threshold in that case

• Threshold R (adaptive beat expectation threshold) - intended to deal with heartbeats

of normal amplitude followed by beats with very small amplitude

Figure 6.4: Complex Lead with combined adaptive threshold MFR

6.2.4 Algorithm summary

The algorithm can work in two modes, namely real-time and pseudo-real-time, which

performs back search in case of no detection for long time. The algorithm is then pushed

back to last detected beat and starts search with lowered combined adaptive threshold.

Christov’s algorithm is robust against the presence of common noises (base line wander,

grid noise, EMG, etc.), because of MA filters used in preprocessing step of the algorithm.

On the other hand its performance in presence of non-standard noises is not sufficient.

The algorithm time performance is strongly affected by back search procedure and our

implementation in MATLAB needs around 6.4 seconds for 30 minutes 2-lead ECG to

process it.
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6.3 Proposed algorithm

The main idea, which lies behind our proposed algorithm is the question - can we enhance

ECG activity before ECG is transformed into complex lead? The algorithm, which en-

hances the activity, should have extracted ECG from unknown mixture of ECG and other

signals (power line interference, breathing, etc.) and passed this extracted sources into the

complex lead transform.

The problem formulation contains the answer: use method for solving BSS such as

ICA to enhance ECG activity. The algorithm is then easily derived from preceeding one –

instead of using the ECG use selected components obtained by JADE algorithm and these

components transform into complex component (similar to complex lead). JADE preserves

overall spatial distribution of ECG activity and separates it from other activities. The al-

gorithm work flowchart is shown in Algorithm 2. At first the algorithm looks the same as

original Christov’s algorithm, however our change is hidden in the method for estimation

of complex lead - it is replaced with method for estimation of complex component.

Algorithm 2 QRS detection algorithm

Input: ECG signal
1: Estimate complex component (see Alg. 3)
2: Initialize thresholds (M, F, R) and their buffers
3: for all samples of complex component do
4: Update weights (M, F, R)
5: if current sample > (M + F + R) (beat detected) then
6: Update thresholds buffers and thresholds
7: Store detected beat position
8: else if beat is not detected for longer than twice average RR interval then
9: Start detection again from last detected beat with lowered threshold
10: end if
11: end for
Output: Beat positions

6.3.1 Complex component transform

Complex component transform is our modification of complex lead transform described in

Christov’s original paper. The preprocessing using recursive MA filters remains the same.

The change lies in adding one more step between preprocessing and complex lead transform

– the component estimation step.
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As we mentioned above the algorithm used for component estimation is JADE. This

algorithm is fully described in Section 3.2.3. Here we will use only basic notation for ICA

formulation:

S = WX, (6.3)

where S are estimated components, W is demixing matrix and X are originally measured

ECG signals containing ECG and noise. After the components estimation we need to iden-

tify components containing ECG and noise. Because JADE is data driven transformation,

we never know, in which order and with which scale we obtain the estimated components.

In order to make the algorithm fully automatic, one needs to create a robust decision sys-

tem for detection of ECG activity.

Our decision algorithm is based on the observation that ECG has super-Gaussian dis-

tribution [5, 6, 4], thus the values of its kurtosis are larger than kurtosis values of other

presented signals (e. g., EMG is nearly Gaussian with kurtosis close to zero). Kurtosis is

defined as:

kurt(s) = E{s4} − 3(E{s2})2, (6.4)

where E{} is the expectation and s is one of estimated components. Now we need to

identify ECG components in S. Because JADE is data driven algorithm, we need to

normalize kurtosis in order to find general solution for component identification:

kurti =
kurti∑N−1
j=0 kurtj

, (6.5)

where kurti is kurtosis of one component and N is the number of components.

Using combination with sorting this normalization enables us to find components, whose

sum of kurtosis is larger than 75% of sum of all kurtosis values. All components found by

previous algorithm are identified as ECG activity and used for computation of complex

lead using transform defined by Eq. 6.2. After computation the recursive MA filter is

applied similarly to application in original algorithm and the resulting signal is returned

to main procedure. Algorithm for computing complex component transform is depicted in

Algorithm 3.

6.3.2 Algorithm summary

The algorithm works in pseudo-realtime mode, which contains search-back procedure for

identification of low amplitude beats.
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Algorithm 3 Algorithm for complex component estimation

Input: ECG signal
1: Pre-process input signal (Remove mean; Filter power line interference and muscle

artefacts)
2: Estimate components using JADE algorithm
3: Calculate kurtosis of components
4: Normalize values of kurtosis with maximal kurtosis calculated
5: Sort descending normalized values of kurtosis and permute components accordingly to

order of their normalized kurtosis
6: Select first n components whose sum ≥ threshold
7: Calculate complex component from n selected components
8: Post-process complex component (Filter noise magnified by complex lead transforma-

tion)
Output: Complex component

Our method adds one more step between filter preprocessing of original signals and

complex lead transform to original Christov’s algorithm. This step estimates the ECG

activity using JADE algorithm, which makes (see in next Chapters) the algorithm much

more robust in presence of strong noises and artefacts. Our implementation with JADE

algorithm is slower than original Christov’s algorithm. This is understandable and the

algorithm needs 7.6 seconds to complete the detection on 30 minutes 2-lead ECG.
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Chapter 7

Evaluation of proposed algorithms

This chapter summarizes the experiments with our proposed algorithms. First we will

speak about used data and procedure for creation of noise in them. Next the evaluation

criteria will be mentioned and the state-of-the-art algorithms will be discussed.

7.1 Data

7.1.1 Databases

In the evaluation experiments we used data freely available on MIT medical data storage

Physionet [7]:

• MIT-BIH Arrhytmia database [48] - contains 48 half-hour two channel ambulatory

ECG recordings digitized at 360 samples per second with 11-bit resolution over 10

mV range annotated by two or more cardiologist. All recordings contain modified

limb lead II. Second lead is usually modified lead V1, occasionally V2 or V5 and in

one instance V4. Four recordings contain paced beats.

• Normal Sinus Rhythm database [7] - contains 18 long-term two channel ECG record-

ings of subjects with no significant arrhythmias digitized at 128 samples per seconds

per channel with 12-bit resolution over 10 mV range.

• European ST-T database [138] - contains 90 long-term two channel ambulatory ECG

recordings of subjects with myocardial ischemia diagnosis or suspicion. The record-

ings were digitized at 250 samples per second with 12-bit resolution over 20 mV

range.
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• Long Term ST database [139] - contains 86 lengthy ECG recordings of 80 subjects

with significant ST changes. Individual recording contains two or three ECG leads.

Each signal was digitized at 250 samples per second with 12-bit resolution over ± 10

mV range.

• QT database [140] - contains 105 fifteen minutes two channel ECG recordings without

significant baseline wander or artefacts. Recordings were digitized at 250 samples per

second.

• MIT Long Term database [7] - contains 7 long term two or three channel ECG

recordings digitized at 128 samples per second.

• MIT-BIH ST Change database [141] - contains 28 ECG two channel recordings of

different length recorded during exercise and exhibiting ST depression. Signals were

digitized at 360 samples per second.

7.1.2 Simulated noise

According to [132] one can expect various kinds of noise presented in ECG. The most

common ones are:

• Power line interference - consists of 50 Hz (60 Hz in U.S.) pickup and its harmonics,

typical amplitude is up to 50 percent of peak-to-peak ECG amplitude

• Motion artifacts - transient baseline changes caused by changes in electrode-skin

impedance, the cause of impedance change is the slow motion of electrode on the

body surface, typical amplitude is up to 500 percent of peak-to-peak ECG amplitude

• Muscle contraction - generates artefactual millivolt-level potentials, its standard de-

viation is around 10 percent of peak-to-peak ECG amplitude

• Baseline drift and ECG amplitude modulation with respiration - is represented as

slow sinusoidal component at respiration frequency, its amplitude variation is 15

percent of peak-to-peak ECG amplitude and typical frequencies at 0.15 Hz to 3 Hz

In addition to these four noises we observed noise typically generated by electrode

cable movement during holter recording of ECG. This noise has large amplitudes up to

200 percent of peak-to-peak ECG amplitudes and typical power spectra with peaks at 1.5,

3.16, 6.3 and 8 Hz.
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Figure 7.1: Examples of artefacts artificially added to ECG signals

In order to test performance of the algorithm we artificially added noises to ECG

recordings. The noises were artificially generated as follows:

• Electromyographic noise - is simulated as random Gaussian signal with deviation

around 10 percent of peak-to-peak ECG amplitude

• Power line interference - 50 Hz sinusoid with amplitude 0.333 mV

• Baseline wander - slow sinusoid (0.333 Hz) with the amplitude around 1 mV

• Electrode cable movement - generated as sum of sinusoids with different amplitudes

and frequencies ranging from 0.1 to 1 mV and 1.5 to 8 Hz

Each type of simulated noise is added to ECG at four different levels: 25, 50, 75, 100

percent of the maximum amplitude. The noise is added to each lead of ECG with different

amplitude estimated from ECG amplitude. The examples of generated noises are shown

in Fig. 7.1.

7.2 Evaluation criteria

This section describes evaluation criteria used for ”scoring” algorithms performance. First

we will speak about de-noising performance criteria and then about QRS detection perfor-

mance criteria.
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7. EVALUATION OF PROPOSED ALGORITHMS

7.2.1 De-noising algorithm

For evaluation of de-noising algorithm we used Root-Mean-Square Error (RMSE), which

is good statistical index for case, when the original clear signal is known. RMSE is defined

as:

RMSE =

√√√√ 1

N

N−1∑
i=0

(xi − yi)2, (7.1)

where xi is the i-th sample of original signal, yi is the i-th sample of filtered signal and

N is the number of samples in both signals. The values of RMSE close to 0 means that

filtering technique reduces noise efficiently with minimal changes in useful signal.

7.2.2 QRS detection algorithm

For evaluation of QRS detection algorithm we used standard statistical indices [142] Sen-

sitivity (Se), Positive predictivity (P+) and F-measure (F ), which are derived from three

parameters:

• Correctly detected beats (True positives=TP )

• Falsely detected beats (False positives=FP )

• Undetected beats (False negatives=FN)

Sensitivity is the parameter describing how many beats are correctly detected. Thus its

value is calculated using this equation:

Se =
TP

TP + FN
. (7.2)

Positive predictivity characterizes the algorithm in sense of the false detection of beats. Its

value is estimated as follows:

P+ =
TP

TP + FP
. (7.3)

The F-measure statistics is defined as harmonic mean of Sensitivity and Positive predic-

tivity:

F = 2
Se ∗ P+

Se+ P+
. (7.4)

All statistical indices range from 0 % (worst) to 100 % (best). The values over 95 % are

considered as good results.
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7.3 Evaluation methods

This section provides detailed review of referential methods used for comparison with our

algorithms. Then we will describe the testing methodology.

7.3.1 State-of-the-art methods

Here we describe the state-of-the-art methods used for comparison with our methods. First

we will describe de-noising algorithms and then beat detection algorithms.

7.3.1.1 De-noising algorithms

Standard filtering algorithm is based on set of filters designed for suppression of each

common type of noise.

First deployed filter is single-frequency adaptive noise canceller (ANC) [143]. This type

of adaptive filter is based on LMS algorithm. The structure of filter is depicted on Fig.

7.2. The ANC filter has two inputs: measured distorted signal x and noise model signal u′.

Signal u′ is phase-shifted by π
2

and both original u′ and shifted signal u′′ are multiplied by

weights computed by LMS algorithm. Signals are then summed up into signal u and added

to measured signal x with switched sign. Resulting error signal e is the desired filtered

signal and also serves as input to update LMS rule for weights w1 and w2. The update

equation has form:

w[n+ 1] = w[n] + µe[n]

[
u′[n]

u′′[n]

]
, (7.5)

where w =

[
w1

w2

]
is weight vector, e is error signal, µ is convergence constant and u′, u′′

are input noise model signals.

Second filter in the set is notch filter for EMG artefact suppression. Notch filter is

band-stop IIR filter with transfer function [144]:

H(z) =
1

2

(1 + a2)− 2a1z
−1 + (1 + a2)z

−2

1− a1z−1 + a2z−2
, (7.6)

where:

a1 =
2 cos( 2πfn

fs
)

1+tan( 2πBW
2fs

)
,

a2 =
1−tan( 2πBW

2fs
)

1+tan( 2πBW
2fs

)
,

(7.7)
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7. EVALUATION OF PROPOSED ALGORITHMS

Figure 7.2: Single-frequency adaptive noise canceller

Figure 7.3: Notch filter frequency response for fn=33 Hz, BW=0.8 and fs=500 Hz

where fn is noise frequency, BW is bandwidth and fs is sampling frequency. Frequency

response of notch filter used in set is shown on Fig. 7.3.
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Last filter deployed in the set is a median filter for suppression of baseline wander. The

algorithm of applying of median filter follows:

• Decimate ECG signal with decimation factor 20.

• Filter resulting signal with median filter of length 10.

• Interpolate filtered signal into original length with low-pass interpolation. Interpo-

lated signal represents base line wander.

• Subtract interpolated signal from original ECG.

Median filter removes any remaining parts of ECG remaining in data and the signal could

be considered as base line wander. Median filter is defined by equation:

y[n] = median{x[n+ i], i = 0, ..., N − 1}, (7.8)

where y represents filtered signal, x represents original signal and N is length of filter.

Wavelet decomposition based algorithm is described in [145]. The wavelet decom-

position is widely used algorithm for denoising of various signals, thus we decided to use

it as one of the comparison methods. The algorithm contains three steps:

• Wavelet decomposition step – choose wavelet and perform wavelet decomposition of

the signal at level N

• Threshold detail coefficients using hard thresholding method

• Wavelet reconstruction step – perform reconstruction based on original approxima-

tion coefficients and modified detail coefficients

Wavelet transform is defined as [146]:

Wf(u, s) =

∫ ∞
−∞

f(t)
1√
s
ψ∗(

t− u
s

)dt, (7.9)

where u is translation constant, s is scale of transform, f(t) is the original signal and ψ is

a wavelet function.

Inverse wavelet transform is then defined:

f(t) =

∫ ∞
−∞

Wf(u, s)
1√
s
ψ(
t− u
s

)dt, (7.10)
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7. EVALUATION OF PROPOSED ALGORITHMS

The signal thresholding algorithm was developed by Donoho [147]. We used hard-

thresholding of detail wavelet coefficients. Hard thresholding is defined as follows:

f(n) =

X, for |X| > λ,

0, for |X| ≤ λ,
(7.11)

where X is the detail coefficient and λ is defined threshold.

In our study we used Daubechies wavelet DB6, which is depicted on Fig. 7.4.

Figure 7.4: Daubechies wavelet DB6

7.3.1.2 QRS detection algorithms

Christov’s beat detection algorithm was described in Chapter 6. It is a basis of our

algorithm for beat detection and it was used as one state-of-the-art method for evaluation.

Pan-Tompkins beat detection algorithm was published in 1985 [134]. It is one of

the most commonly used algorithms. The algorithm works on one dimensional signal

(preferred is lead II). It works as shown in Fig. 7.5 – first the signal is transformed by set

of filters in order to enhance beat position and second the adaptive threshold is deployed

for detection of correct positions.
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Figure 7.5: Pan-Tompkins beat detection algorithm work-flow

The set of filters starts with low-pass filter for reduction of muscle and power line noise.

Its transfer function is as follows:

H(z) =
(1− z−6)2

(1− z−1)2
. (7.12)

This low-pass filter has cut-off frequency about 11 Hz and gain is 36. Filter processing

delay is five samples. Filter frequency response is shown on Fig. 7.6.

Next the signal is passed through high-pass filter, which has low cut-off frequency

around 5 Hz, gain 1 and group delay is 16 samples (frequency response is shown on Fig.

7.7). Its transfer function is:

H(z) =
−1 + 32z−16 − 32z−17 + z−32

1− z−1
. (7.13)
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Figure 7.6: Low-pass filter frequency response for fs=200 Hz

Figure 7.7: High-pass filter frequency response for fs=200 Hz
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Figure 7.8: Derivative filter frequency response for fs=200 Hz

After band-pass filtering (implemented by low-pass and high-pass filter) the signal 5-

point derivative is taken using derivative filter with transfer function:

H(z) =
1

8
(2 + z−1 − z−3 − 2z−4). (7.14)

The derivative approximates ideal derivative between dc and 30 Hz and has group delay

2 samples. Filter frequency response is shown on Fig. 7.8.

The output of derivative filter is squared and finally it is filtered by MA filter of length

30 samples. Its frequency response is shown on Fig. 7.9.

After averaging resulting signal (for example see Fig. 7.10) is passed to second step of

algorithm, which detects beat position using adaptive thresholds. Thresholds are computed

from two parameters:

• SPKI - running estimate of signal (ECG) peak,

• NPKI - running estimate of the noise peak.
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Figure 7.9: MA filter frequency response for fs=200 Hz

Figure 7.10: Example of ECG transformed by filter set used in Pan-Tompkins algorithm
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These two parameters are recomputed every time the peak in ECG is found (PEAKI). The

parameters are recomputed as follows:

SPKI = 0.125PEAKI + 0.875SPKI, if PEAKI is ECG

NPKI = 0.125PEAKI + 0.875NPKI, if PEAKI is noise.
(7.15)

Every time the SPKI and NPKI parameters are recomputed adaptive thresholds are

recomputed:

TH1 = NPKI + 0.25(SPKI −NPKI),

TH2 = 0.5TH1,
(7.16)

where TH1 is basic detection threshold and TH2 is threshold used during search-back

procedure, when no ECG beat is detected for long duration of time. The time duration

required for starting search-back procedure is determined as 1.66∗average of last eight RR

intervals.

7.3.2 Evaluation algorithm

The evaluation procedure was developed in order to test ECG processing algorithms on

standard ECG databases (mentioned above) contaminated with different types of noise

with different strength. Our methodology provides general framework for this testing. The

evaluation algorithm work flow is shown in Algorithm 4. Basically the method has three

main parts:

• Noisy recording creation part - in which the noise is created and added to ECG

records according to procedure described in Section 7.1.2.

• ECG processing algorithms part - in this part all tested algorithms ”do their work”

and the results are stored.

• Evaluation criteria computation part - here the evaluation criteria for tested algo-

rithms are computed according to Section 7.2.
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7. EVALUATION OF PROPOSED ALGORITHMS

Algorithm 4 Algorithm for complex component estimation

Input: ECG signal database
1: Noisy recording creation and adding to ECG signals
2: ECG processing using evaluated algorithms
3: Evaluation of results

Output: Results according to selected criteria
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Chapter 8

Results of proposed algorithms

This Chapter summarizes results of our algorithms compared to state-of-the-art methods.

First we will present the de-noising algorithm and its results and then the beat detection

algorithm. Results are demonstrated using graphs showing the important information at

a glance.

8.1 Denoising algorithm

This section describes results obtained by our de-noising algorithm and the referential

methods. First part of the section describes results using graphical description and all

available ECG databases. Second part provides testing conclusions.

8.1.1 Results

Figures 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7 and 8.8 show summarized results of our algorithm,

basic filtering algorithm and Wavelet de-noising algorithm. Each figure shows the evolution

of RMSE according to the percentage of noise amplitude added to signals (Section 7.1.2).

For more detailed results see Appendix A. This section is divided into subsections according

to databases used for algorithm testing. The last subsection shows performance of tested

algorithms on all available data.
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8. RESULTS OF PROPOSED ALGORITHMS

8.1.1.1 Results on MIT-BIH Arrhythmia Database

Figure 8.1 shows summarized results on MIT/BIH Arrhythmia Database. First observa-

tion shows us that our de-noising algorithm is similar or better in presence of all noises

than other methods - basic filtering has problems in presence of strong EMG artefact and

electrode cable movement and the Wavelet based de-noising algorithm has difficulties with

base line wander and the electrode cable movement.

The main purpose, for which the algorithm was designed, was removal of electrode

(a) Power line interference (b) Base line wander

(c) EMG (d) Electrode cable movement

Figure 8.1: Summarized values of RMS for the developed algorithm and different types of
artefacts on MIT/BIH Arrhythmia Database. We can observe that our algorithm performs
correctly in presence of all noises. The filtering method has problem with strong EMG
artefact and Wavelet method with Base line wander artefact.

cable movement artefact and we can observe that our algorithm is the only one, which was

able to reduce noise from ECG, thus we can say our algorithm is more stable in presence

of uncommon noise than the other tested algorithms but it works properly in presence of

any type of tested noise.

In presence of standard noises state-of-the-art algorithms work properly - filters remove
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the power line interference. The biggest surprise is the result of Wavelet method on base

line wander artefact, but this problem is probably due to the simulation of noise using

sinus wave. Wavelet decomposition uses different basis than sinus wave and thus the sinus

wave is split into several details and could not be properly removed. The basic filtering

method has difficulties with EMG artefact. EMG has normal distribution and the artefact

covers large frequency band in spectrum. Thus the filters designed for suppression of exact

frequencies can not work properly.

(a) Power line interference (b) Base line wander

(c) EMG (d) Electrode cable movement

Figure 8.2: Summarized values of RMS for the developed algorithm and different types
of artefacts on Normal Sinus Rhythm Database. Again we can observe similar results as
on MIT/BIH Arrhythmia Database. Our algorithm works sufficiently in presence of any
artefact type.

8.1.1.2 Results on Normal Sinus Rhythm Database

Figure 8.2 shows summarized results on MIT Normal Sinus Rhythm Database. Again

we can observe similar performance of our algorithm as in case of MIT/BIH Arrhythmia

Database. Again we can say that our algorithm is very successful in presence of electrode
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cable movement artefact and it works similar or better in presence of common noises. One

exception is base line wander artefact, where our algorithm has slightly worse performance

than standard filtering method. Wavelet method has difficulties with base line wander and

electrode cable movement. On the other hand basic filtering shows that it has problems

with EMG and power line artefacts.

(a) Power line interference (b) Base line wander

(c) EMG (d) Electrode cable movement

Figure 8.3: Summarized values of RMS for the developed algorithm and different types
of artefacts on European ST-T database. We can observe results similar to previous
databases. Our algorithm works properly in presence of all noises types. Wavelet method
again fails in case of base line wander and electrode cable movement and standard filtering
fails in case of EMG.

8.1.1.3 Results on European ST-T database

Figure 8.3 shows the results on European ST-T database. As in previous case we observe

similar results - our algorithm works similar or better than tested referential methods. In

case of power line interference our algorithm performance is slightly worse than performance

of Wavelet method and in presence of base line wander than performance of basic filtering.
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8.1.1.4 Results on Long Term ST database

Figure 8.4 shows the results on Long Term ST database. The performance of our algorithm

and referential methods on Long Term ST database is similar to performance on previous

tested databases. ICA base algorithm works similar or better than other tested methods.

Wavelet de-noising performance is reduced in case of base line wander. Probably due to

simulation of artefact by slow sinus wave. Standard filtering technique has difficulties with

EMG because of covered frequencies by EMG artefact.

(a) Power line interference (b) Base line wander

(c) EMG (d) Electrode cable movement

Figure 8.4: Summarized values of RMS for the developed algorithm and different types
of artefacts on Long Term ST database. The results are self-explanatory - the algorithm
works similar or better than referential methods. Our method performed better in case
of 3 artefacts (power line, EMG and electrode cable movement) and slightly worse than
standard filtering in case of base line wander. Wavelet filtering and standard filtering was
unable to reduce electrode cable movement artefact efficiently.
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8.1.1.5 Results on QT database

Figure 8.5 shows the results on QT database. Our method performance is slightly worse

than standard filtering method in presence of power line artefact and base line wander,

but its performance is still comparable with it. We can again observe that our algorithm

excelled in reduction of electrode cable movement artefact.

(a) Power line interference (b) Base line wander

(c) EMG (d) Electrode cable movement

Figure 8.5: Summarized values of RMS for the developed algorithm and different types of
artefacts on QT database. In presence of all four tested noises our algorithm performance
is similar or better than performance of referential methods.
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8.1.1.6 Results on MIT Long Term database

Figure 8.6 shows results on MIT Long Term database. Again the results of our algorithm

are similar to previous results. Our algorithm is capable to deal with all tested noises.

In presence of EMG and base line wander our method performance is slightly worse than

better of referential methods.

(a) Power line interference (b) Base line wander

(c) EMG (d) Electrode cable movement

Figure 8.6: Summarized values of RMS for the developed algorithm and different types
of artefacts on MIT Long Term database. The results are similar to results on previously
mentioned databases.

8.1.1.7 Results on MIT-BIH ST Change database

Figure 8.7 shows results on MIT-BIH ST Change database. Results on MIT-BIH ST

Change database are similar to previous results. All algorithms work similarly to the

case of MIT Long Term database. Our method, which was designed for electrode cable

movement artefact, is capable to deal with all tested types of noise presented in signal.

Wavelet de-noising performs slightly worse than filtering in case of power line interference.
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(a) Power line interference (b) Base line wander

(c) EMG (d) Electrode cable movement

Figure 8.7: Summarized values of RMS for the developed algorithm and different types of
artefacts on MIT-BIH ST Change database. The results are similar to previous results and
we can observe that our algorithm performed similar or better than referential methods.

8.1.1.8 Summary results on all databases

Summary results obtained across all databases show (Fig. 8.8) that our algorithm, which

was designed for purpose of removal of electrode cable movement artefact, is suitable for

removal of all types of noises. We can observe that our algorithm performs accurately in

general. The method has one big advantage - in case of no artefact/noise presented our

method distorts the resulting the ECG signal of at least. This is very desirable property

in case of any medical signal.
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(a) Power line interference (b) Base line wander

(c) EMG (d) Electrode cable movement

Figure 8.8: Summarized values of RMS for the developed algorithm and different types of
artefacts on all databases. We can observe that our algorithm performs well on all types
of artefact. The wavelet de-noising performance is reduced on data containing base line
wander and electrode cable movement artefact. Basic filtering performs worse on EMG
and electrode cable movement artefact containing data.

Wavelet de-noising works well in case of power line interference and EMG noise, but

fails in case of base line wander and electrode cable movement noise. This is probably due

to the simulation of base line wander noise using sinus wave. Wavelet decomposition uses

different basis than sinus wave and thus the sinus wave is split into several details and

could not be properly removed.

Basic filtering procedure performs very accurately on data containing power line inter-

ference and base line wander. The problem arises with EMG and electrode cable artefact.

EMG artefact was simulated as random vector with normal distribution and it influences

all frequency bands in spectrum. Thus the filters designed for suppression of predefined

frequencies can not filter whole EMG activity. The same problem is with electrode cable

movement artefact, which covers different frequencies than filtered frequencies and artefact

was not reduced.
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8.1.2 Conclusions

We have developed an ICA based de-noising ECG algorithm for dealing with uncommon

noises presented in data during holter and telemedicine applications. This algorithm is

able to deal with very strong noises and preserves as much information as possible. Our

method connects the well-known JADE algorithm with decision tree in order to identify

noise and reduce it.

Method behaviour was tested on standard databases available freely on-line and it

was compared to common filtering and Wavelet threshold de-noising techniques. Tests

were performed using simulated noises (3 common and 1 uncommon). The uncommon

noise tests algorithm ability to deal with unpredictable noise events common for nowadays

holter and telemedicine applications.

Our method performs much more stable than other methods – it outperforms both

state-of-the-art methods in unpredictable noise events and it works similarly to both meth-

ods with ECG data contaminated with base line wander or EMG.

Time requirements of our algorithm is increased due to computational complexity of

JADE algorithm and Pan-Tompkins beat detection algorithm (used in feature extraction

step), but changing the BSS or QRS complex detection algorithm will lead to better time

performance. Memory requirements are also slightly increased but the advantage of our

method outperforms its flaws, especially with nowadays hardware development.

8.2 QRS detection algorithm

This section describes results of our QRS detection method based on Christov’s beat detec-

tion algorithm and referential methods. Results are presented using graphs of F-measure,

which is harmonic mean of Sensitivity and Specificity (Section 7.2.2). Last part of the

section provides testing conclusions.

8.2.1 Results

Figures 8.9, 8.10, 8.11, 8.12, 8.13, 8.14 and 8.16 show summarized results of our algorithm,

Tompkins algorithm and Christov’s algorithm. Each figure shows the evolution of F-

measure according to the percentage of noise amplitude added to signals. For more details

see Appendix B.
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8.2.1.1 Results on MIT-BIH Arrhythmia Database

Figure 8.9 shows summarized results on MIT/BIH Arrhytmia Database. The first obser-

vation shows that the Tompkins algorithm performance is strongly independent on the

noise presence and its power. This is due to the algorithm nature – it uses set of filters in

combination with differentiation procedure, which efficiently reduces all types of noise.

(a) Power line interference (b) Base line wander

(c) EMG (d) Electrode cable movement

Figure 8.9: Summarized values of F-measure for the developed algorithm and different
types of artefacts on MIT/BIH Arrhythmia Database. The results prove stability of our
developed method against presence of strong noises. We can observe that our algorithm
performance is slightly reduced in presence of base line wander artefact.

On the other hand the Christov’s algorithm performance is more affected by introduced

noise. Algorithm fails in presence of non-standard noises. The presence of non-standard

noises is typical for holter ECG and telemedicine applications, which are by their nature

more affected by wide range of noises. The Christov’s algorithm performance is then very

easily affected by their presence.

Our algorithm is designed to increase stability and robustness of Christov’s algorithm
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in presence of unpredictable events (artefacts). This goal is achieved.

Our algorithm is very successful in presence of noise, which mimics the QRS complex

activity in frequency domain (electrode cable movement artefacts). Its stability is caused

by extraction of ECG activity during computation of complex component signal, which is

the basis for QRS complex detection.

8.2.1.2 Results on Normal Sinus Rhythm Database

Figure 8.10 shows summarized results on MIT Normal Sinus Rhythm Database. We can

observe, again, that Tompkins algorithm performance is stable in presence of any noise

presented in ECG. The performance of Christov’s algorithm is similar to our method with

exception of electrode cable movement artefact. In such a case the Tompkins algorithm

(a) Power line interference (b) Base line wander

(c) EMG (d) Electrode cable movement

Figure 8.10: Summarized values of F-measure for the developed algorithm and different
types of artefacts on Normal Sinus Rhythm Database. Our algorithm works much more
stable in presence of any type of noise. We can also observe that the separation of Base
line wander artefact was correct – the results are better than on MIT/BIH Arrhythmia
Database.
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outperforms the Christov’s beat detection algorithm. This shows us that Tompkins algo-

rithm is designed as more independent on data and it performs much better in presence

of unpredictable events than Christov’s algorithm, which is designed to deal with common

noise events. Our algorithm works similar to the performance on the MIT/BIH Arrhytmia

Database.

8.2.1.3 Results on European ST-T database

Figure 8.11 shows the results on European ST-T database. We can observe that our

algorithm outperforms all referential methods used in our study in presence of all tested

artefact types.

(a) Power line interference (b) Base line wander

(c) EMG (d) Electrode cable movement

Figure 8.11: Summarized values of F-measure for the developed algorithm and different
types of artefacts on European ST-T database. We can observe that our algorithm works
very efficiently and in case of electrode cable movement significantly outperforms other
methods.
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We can also observe that the performance of Christov’s detector is similar or worse than

the performance of Tompkins detector. The most significant difference lies in detection of

QRS complex in presence of electrode cable movement artefact.

8.2.1.4 Results on Long Term ST database

Figure 8.12 shows results on Long Term ST database. We can again observe that our

algorithm performance is stable in presence of all noise types and outperforms the perfor-

mance of reference methods, whose results are similar to those on previous European ST-T

database.

(a) Power line interference (b) Base line wander

(c) EMG (d) Electrode cable movement

Figure 8.12: Summarized values of F-measure for the developed algorithm and different
types of artefacts on Long Term ST database. Again we can observe that Tompkins and
Christov’s algorithms has lower F-measure than our algorithm, which means that our
algorithm is better.
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8.2.1.5 Results on QT database

Figure 8.13 shows summarized results on QT database. As in previous cases, we can observe

that our algorithm works very accurately. Referential methods perform with significantly

lower accuracy in presence of electrode cable movement artefact and slightly worse in

presence of stronger common noises. The performance of Christov’s algorithm is similar

or slightly worse in presence of standard noises to Tompkins algorithm, on the other hand,

its performance in case of electrode cable movement artefact is strongly affected by this

artefact. We can observe that Tompkins algorithm is nearly independent on presence of

standard artefacts in ECG.

(a) Power line interference (b) Base line wander

(c) EMG (d) Electrode cable movement

Figure 8.13: Summarized values of F-measure for the developed algorithm and different
types of artefacts on QT database. The performance of our algorithm is less affected by
all types of noise due to extraction of ECG activity resulting in better performance than
referential methods.
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8.2.1.6 Results on MIT Long Term database

Figure 8.14 shows results on MIT Long Term database. We can observe that our algorithm

accuracy is significantly increased due to ECG extraction step performed by JADE. On the

other hand we can observe that Christov’s algorithm accuracy is significantly decreased.

We need to keep in mind that results on this database is affected by its size, which is only

7 recordings. Thus the information value of results is small. Again we can observe that

Tompkins algorithm accuracy is nearly independent on what type of noise is presented in

data – the signal transform performed by set of filters including differential filter makes

the algorithm stable.

(a) Power line interference (b) Base line wander

(c) EMG (d) Electrode cable movement

Figure 8.14: Summarized values of F-measure for the developed algorithm and different
types of artefacts on MIT Long Term database. On this database we can observe that
Christov’s algorithm performance is reduced. We still need to keep in mind that this
database contains only 7 recordings, thus the results cannot be viewed as general perfor-
mance.
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8.2.1.7 Results on MIT-BIH ST Change database

Figure 8.16 shows results on MIT-BIH ST Change database. We can observe, again, that

our method is able to detect QRS complexes much more accurately than the other tested

methods and thus outperforms them in sense of F-measure characteristics.

(a) Power line interference (b) Base line wander

(c) EMG (d) Electrode cable movement

Figure 8.15: Summarized values of F-measure for the developed algorithm and different
types of artefacts on MIT-BIH ST Change database. Again our algorithm outperforms
others on data contaminated with different types of noise.

8.2.1.8 Summary results on all databases

Figure 8.16 shows results across all databases. We can observe that performances of all

algorithms are stable across all databases. Our algorithm is significantly less affected by

electrode cable movement artefact than the others. The performance of both referential

algorithms works similar in general on large scale data. One difference between them is

in presence of electrode cable movement artefact, which affects significantly harder the

performance of Christov’s algorithm.
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8. RESULTS OF PROPOSED ALGORITHMS

The final summary testing of our algorithm concludes with same result as testing on the

partial data – the algorithm performs very stable and is very successful in beat detection.

(a) Power line interference (b) Base line wander

(c) EMG (d) Electrode cable movement

Figure 8.16: Summarized values of F-measure for the developed algorithm and different
types of artefacts on all databases. We can observe that enhancing Christov’s original
algorithm with JADE in order to enhance the ECG activity leads to significantly increased
detection rates.

8.2.2 Conclusions

We have developed an extension of the well-known Christov’s beat detection algorithm,

which enables dealing with ECG signal highly corrupted by artefacts. Our method intro-

duces JADE algorithm into the complex lead estimation step separating the ECG activity

outside the other uninteresting activities, which can be considered as noises in case of beat

detection. The JADE algorithm estimated independent components in sense of 4th order

statistics.

Algorithm properties were tested on standard databases and its properties were com-

pared to Christov’s like beat detection algorithm and Tompkins like detection algorithm.
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Tests were performed using simulated noises - power line interference, base line wander,

EMG and electrode cable movement. First three noises are common types presented in

recorded data and the last one is uncommon one. We decided to add this, because we

are dealing with holter ECG recordings and this data contains many unpredictable noise

events, which are not usual at all.

Our enhanced version of Christov’s beat detection algorithm performs much more sta-

ble in presence of noise and it outperforms Christov’s and Tompkins like algorithms, which

are designed for the typical cases of resting ECGs.

Time requirements of our algorithm is increased only by computational complexity of

JADE algorithm, which is one of the fastest BSS algorithms (it runs in milliseconds on 30

minutes 2 lead ECG sampled with sampling frequency 500 Hz, computational complex-

ity could be found in [4, Ch. 18]). So the benefit of ECG activity estimation is much

greater than loss of computational time. The amount of space required for data storing is

also slightly increased - JADE algorithm stores several matrices with cumulants and the

amount of data stored is dependent on number of ECG leads.
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Chapter 9

Conclusions

We have developed new algorithms for de-noising and beat detection of ECG signals. We

also created extensive state-of-the-art of ICA applications in biomedical research area. This

chapter summarizes our results.

Create state-of-the-art of ICA applications in Biomedical Engi-

neering research area with main focus on application in ECG sig-

nal processing.

We provided a review of most frequent ICA algorithms and their applications to biomedical

signal processing. In detail it is described in Chapter 3.

Independent Component Analysis is a general tool, which could uncover hidden pro-

cesses within the biomedical signal. The last decade in research proves that ICA has been

successfully used in many research areas ranging from traditional areas such as EEG or

ECG research to more unconventional such as fMRI or EGG signals analysis.

The power of ICA lies in its basic assumptions - thus it can found processes that can-

not be found by any other technique. However results of separation by ICA should be

investigated carefully. ICA is a data driven technique and results could seem great but the

opposite might be true. The knowledge about data is necessary for differentiation of good

and bad separation result. For example we need to be able to differentiate between noise

and ECG activity within the estimated component and we need also identify problematic

separation, which could have great impact on results.

Many algorithms for solving ICA/BSS task emerged, but only few are commonly used

in biomedical research. The best method for biomedical area cannot be selected and one
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should test several algorithms when searching for the best suited one for the researched

application. Each algorithm has different assumptions, which need to be satisfied. Loosing

assumptions from mind could lead to wrong conclusions.

We went through a large amount of papers covering most of the biomedical research

using ICA. Several questions arose during this work. First and most crucial question is

the reproducibility of experiments – many papers provide relatively clear algorithm expla-

nation, but the algorithm testing is performed on unpublished data, which were collected

by the authors of those papers. So the main problem is that nobody could say whether

the implementation of proposed method works correctly because it cannot be tested on

the same dataset. With this problem several others come – there are not many standard

databases freely available online. Of course there are well-known exceptions such as Phy-

sionet.org databases. The most reasonable solution is to make data freely available or to

test algorithms on both data – own and standard data.

Another problem that many papers have is lack of time and memory requirements of

the developed method (algorithm). Also there are missing crucial information such as

computer and software specifications, on which the experiments were performed.

According to our opinion, the best solution for solving all these problems is to make

implementations of the algorithm freely available to download. This will solve many ques-

tions and difficulties, which nowadays researchers deal with. For ICA algorithms there

exists an online database of ICA algorithms implementations - ICALAB [148], which could

serve as an example to others.

The idea we posted here is not new. We can mention a very interesting paper written

by Patrick Vandewalle [149], which deals with similar questions in the area of signal pro-

cessing.

Based on our extensive analysis of current research efforts in biomedical ICA applica-

tions we decided to develop two algorithms. One for de-noising of ECG signals obtained

during measuring of holter ECG and second for beat detection in cases of noisy ECG

recordings.
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Propose and develop the algorithm for denoising of ECG signals

using ICA.

We created an algorithm for artefact reduction from ECG. Our algorithm is capable to

deal with strong noise in ECG data and enables QRS detection and visual examination

(for details see Chapter 5). The algorithm deals with uncommon noises presented in ECG

data during holter and telemedicine applications. Our method connects well-known JADE

algorithm with decision tree in order to identify noise and reduce it.

Method behaviour was tested on standard databases and it was compared to common

filtering and Wavelet threshold de-noising techniques. Tests were performed using simu-

lated noises (3 common and 1 uncommon).

Our method performed similar or better than both referential methods in presence of

all common types of artefacts. Our method was the only one method that successfully

reduced the electrode cable movement artefact. In that case both referential methods per-

formance was decreased with stronger noise presented.

JADE based filtering has one advantage against both referential methods – our method

least distorts the resulting signal in case of no noise presented in data. This ability is

very valuable in medical applications. Time requirements of our algorithm is increased

due computational complexity of JADE algorithm and Pan-Tompkins beat detection algo-

rithm (used in feature extraction step), but changing the BSS or QRS complex detection

algorithm will lead to better time performance. Memory requirements are also slightly in-

creased but the advantage of our method outperforms its flaws, especially with nowadays

hardware development.

Propose and develop the algorithm for beat detection using ICA.

We have developed an extension of the well-known Christov’s beat detection algorithm,

which enables dealing with ECG signal highly corrupted by artefacts (for details see Chap-

ter 6). Our method introduces JADE algorithm into the complex lead estimation step

separating the ECG activity outside the other uninteresting activities, which can be con-

sidered as noises in case of beat detection.

Algorithm properties were tested on standard databases and its properties were com-

pared to Christov’s like beat detection algorithm and Tompkins like detection algorithm.

Tests were performed using simulated noises - power line interference, base line wander,
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EMG and electrode cable movement. First three noises are common types presented in

recorded data and the last one is uncommon one. We decided to add this, because we

are dealing with holter ECG recordings and this data contains many unpredictable noise

events, which are not usual at all.

Our enhanced version of Christov’s beat detection algorithm performs much more stable

in presence of noise and it outperformed Christov’s and Tompkins like algorithms, which

are designed for the typical cases of resting ECGs.

The computational complexity of our algorithm is increased only by computational

complexity of JADE algorithm, which is one of the fastest BSS algorithms. So the benefit

of ECG activity estimation is much greater than loss of computational time. The amount

of space required for data storing is also slightly increased - JADE algorithm stores several

matrices with cumulants and the amount of data stored is dependent on number of ECG

leads.

Develop a testing framework for evaluation of proposed algo-

rithms.

We developed the standardized procedure, which enables us to test performance of our

algorithms against the state-of-the-art methods (see Chapter 7). This procedure is versatile

and modular, thus we used it in testing of both methods. The information was easily

obtained and analysed. Our framework enables us effective tuning of the methods.

Final remarks and future work

All goals we formulated were successfully fulfilled. We proposed two algorithms – one for

de-noising of ECG recording containing noise and second the algorithm for beat detection

with noisy ECG recordings. Both algorithms were tested using our testing framework

against the state-of-the-art methods and results are good. Both algorithms are capable

to deal with common types of noises and also with uncommon ones. This makes them

very useful in applications within telemedicine issues and holter recordings, where the

environment is rapidly changing and the distortions corrupting ECG signals could be very

different for those normally present in ECG within laboratory or ambulatory measurement

of ECG.
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Our future work will aim at extensive testing of our developed algorithms. We will

also test different ICA algorithms within our developed methods in order to test their

dependency on performance of used BSS algorithm. We also plan to test new decision

algorithms for recognition of noisy components in order to enhance algorithms performance.
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Appendix A: Detailed results of

de-noising algorithms

Tables show detailed results visualised in graphs plotted

Tables are organized as follows: each type of noise corresponds to one row of the table,

each column of the table corresponds to one type of algorithm and noise level (for details

see. 7.1.2) used during testing. On top of every four columns, which corresponds to one

tested algorithm, one can find performance of corresponding algorithm on clear signal.

We can observe the same results as in above mentioned graphs. Our method is capable

to deal with strong noises and also reduce the electrode cable movement artefact efficiently.

We can also observe that our method is stable in presence of any type of noise.

ECG signals values is in units of mV , thus the values of RMS around 40 µV should be

considered as very good result. They mean that the noise reduction in ECG signal is good

enough to preserve ECG signal diagnostics. We can observe that our method provides

slightly worse results, but these results are stable in presence of any noise of any strength.

This is very desired feature of any ECG signal processing algorithm.

RMS [µV]

ICA filter Basic Filtering Wavelet denoising

Clear signal 34.40 123.97 56.98

Noise type
Noise level [%] Noise level [%] Noise level [%]

25 50 75 100 25 50 75 100 25 50 75 100

Power Line Interference 65.58 68.83 67.19 66.64 123.97 123.97 123.97 123.97 66.28 67.20 67.41 67.60

EMG 47.43 63.27 75.96 91.31 131.46 148.33 170.28 195.32 62.79 72.40 82.69 92.86

Base Line Wander 148.07 191.22 198.85 196.15 126.54 132.14 138.87 146.03 189.08 360.17 534.82 710.49

Electrode Cable Movement 155.52 195.36 206.56 210.91 203.88 330.21 465.11 603.35 201.24 385.12 571.72 758.67

Table 1: Detailed summary results on all databases
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RMS [µV]

ICA filter Basic Filtering Wavelet denoising

Clear signal 40.59 167.55 53.73

Noise type
Noise level [%] Noise level [%] Noise level [%]

25 50 75 100 25 50 75 100 25 50 75 100

Power Line Interference 68.22 56.38 51.69 49.60 167.55 167.55 167.55 167.55 62.65 63.48 63.60 63.79

EMG 53.19 63.47 78.24 92.36 171.32 181.59 196.68 215.25 57.82 66.20 75.81 85.45

Base Line Wander 152.82 196.45 207.80 205.55 169.66 174.42 180.23 186.47 187.30 359.12 534.09 709.94

Electrode Cable Movement 163.78 217.77 208.39 218.47 234.13 351.42 481.53 616.81 199.61 383.98 570.82 757.84

Table 2: Detailed results on MIT/BIH Arrhythmia Database

RMS [µV]

ICA filter Basic Filtering Wavelet denoising

Clear signal 41.36 96.01 66.60

Noise type
Noise level [%] Noise level [%] Noise level [%]

25 50 75 100 25 50 75 100 25 50 75 100

Power Line Interference 74.71 63.72 71.50 69.07 96.01 96.01 96.01 96.01 82.34 85.01 85.22 85.36

EMG 50.71 63.13 84.81 98.38 103.23 121.18 145.22 172.82 72.40 82.56 94.98 108.29

Base Line Wander 140.86 152.15 160.26 151.70 97.18 101.92 108.64 116.27 191.04 361.05 535.39 710.92

Electrode Cable Movement 142.42 152.63 149.84 151.88 180.19 312.26 450.71 591.46 202.92 385.88 572.46 759.51

Table 3: Detailed results on Normal Sinus Rhythm Database

RMS [µV]

ICA filter Basic Filtering Wavelet denoising

Clear signal 31.84 140.13 46.29

Noise type
Noise level [%] Noise level [%] Noise level [%]

25 50 75 100 25 50 75 100 25 50 75 100

Power Line Interference 65.37 67.99 63.82 62.02 140.13 140.13 140.13 140.13 54.28 54.65 54.82 55.01

EMG 45.00 58.16 67.17 80.35 146.98 162.37 182.29 204.97 52.38 61.51 70.62 79.16

Base Line Wander 152.36 196.43 192.80 189.36 142.03 146.52 152.08 158.07 184.63 357.65 533.09 709.19

Electrode Cable Movement 159.95 189.42 198.31 201.99 213.44 336.42 469.54 606.66 196.94 382.61 569.74 756.83

Table 4: Detailed results on European ST-T database

RMS [µV]

ICA filter Basic Filtering Wavelet denoising

Clear signal 26.56 119.86 57.39

Noise type
Noise level [%] Noise level [%] Noise level [%]

25 50 75 100 25 50 75 100 25 50 75 100

Power Line Interference 55.22 62.96 62.74 64.83 119.86 119.86 119.86 119.86 65.89 66.18 66.32 66.49

EMG 36.35 55.64 71.98 89.62 125.96 141.08 161.64 185.50 62.80 72.38 83.03 93.50

Base Line Wander 140.05 185.75 190.66 195.30 122.48 127.98 134.58 141.62 188.42 359.79 534.56 710.31

Electrode Cable Movement 146.93 185.35 213.00 204.55 202.84 329.69 464.58 602.78 200.83 385.18 571.85 758.80

Table 5: Detailed results on Long Term ST database
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RMS [µV]

ICA filter Basic Filtering Wavelet denoising

Clear signal 38.37 83.78 52.14

Noise type
Noise level [%] Noise level [%] Noise level [%]

25 50 75 100 25 50 75 100 25 50 75 100

Power Line Interference 67.43 76.04 73.28 72.16 83.78 83.78 83.78 83.78 61.76 62.79 63.04 63.27

EMG 49.33 67.74 76.76 92.43 95.64 118.87 146.75 177.20 58.98 68.93 78.85 88.71

Base Line Wander 141.17 167.44 181.08 167.93 87.49 95.15 103.95 113.01 188.23 359.76 534.53 710.26

Electrode Cable Movement 148.07 175.63 182.35 189.02 176.22 311.40 451.07 592.24 200.13 384.14 570.82 757.92

Table 6: Detailed results on QT database

RMS [µV]

ICA filter Basic Filtering Wavelet denoising

Clear signal 29.78 176.82 75.57

Noise type
Noise level [%] Noise level [%] Noise level [%]

25 50 75 100 25 50 75 100 25 50 75 100

Power Line Interference 57.75 76.90 80.57 85.11 176.82 176.82 176.82 176.82 88.28 93.34 94.64 94.81

EMG 98.60 108.73 126.04 144.77 184.99 205.51 233.45 266.14 83.80 97.91 112.94 128.60

Base Line Wander 164.79 288.66 292.64 272.36 179.68 186.17 193.99 202.16 193.61 362.39 536.28 711.59

Electrode Cable Movement 173.65 299.37 297.49 272.79 244.06 360.36 489.42 624.22 205.77 387.67 573.90 761.21

Table 7: Detailed results on MIT Long Term database

RMS [µV]

ICA filter Basic Filtering Wavelet denoising

Clear signal 38.41 123.38 99.37

Noise type
Noise level [%] Noise level [%] Noise level [%]

25 50 75 100 25 50 75 100 25 50 75 100

Power Line Interference 81.89 90.05 93.15 92.71 123.38 123.38 123.38 123.38 111.29 113.62 113.93 114.09

EMG 56.34 76.69 91.08 108.26 131.51 151.04 177.01 206.67 105.28 116.60 130.00 143.65

Base Line Wander 165.03 241.71 269.39 284.80 126.02 131.09 137.19 143.95 208.61 371.37 542.54 716.36

Electrode Cable Movement 171.68 252.84 282.56 319.58 203.72 329.45 464.57 602.99 220.20 396.70 580.90 766.86

Table 8: Detailed results on MIT-BIH ST Change database
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Appendix B: Detailed results of beat

detection algorithms

Tables show detailed results visualised in graphs plotted on Fig.

Tables are organized as follows: each type of noise corresponds to one row of the table,

each column of the table corresponds to one type of algorithm and noise level (for details

see. 7.1.2) used during testing. On top of every four columns, which corresponds to one

tested algorithm, one can find performance of corresponding algorithm on clear signal.

Again we can observe the same results as in above mentioned graphs. Our method

proves to be more robust to noises than other beat detection methods with one exception

- the base line wander artefact, when the estimation of components converge to solution

with divided sinus wave into several components with kurtosis higher than standard ECG

activity.

We can observe that our method has same performance as original Christov’s algorithm,

but its strength lies in suppression of irregular types of noises, for which the original

Christov’s algorithm was not designed.

F-measure [%]

Christov’s algorithm + ICA Christov’s algorithm Hammilton’s algorithm

Clear signal 98.81 93.88 93.99

Noise type
Noise level [%] Noise level [%] Noise level [%]

25 50 75 100 25 50 75 100 25 50 75 100

Power Line Interference 98.81 98.80 98.80 98.81 93.89 93.83 93.82 93.76 93.90 93.44 92.98 92.57

EMG 98.85 98.78 98.79 98.39 93.12 91.37 88.69 86.13 93.29 92.10 90.60 89.01

Base Line Wander 99.11 98.09 97.17 96.69 93.05 92.58 91.82 90.81 93.98 93.98 93.98 94.00

Electrode Cable Movement 99.08 99.13 99.19 99.20 80.71 71.87 67.14 64.21 93.77 92.48 90.57 87.91

Table 9: Detailed summarized results on all databases
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F-measure [%]

Christov’s algorithm + ICA Christov’s algorithm Hammilton’s algorithm

Clear signal 99.07 94.02 96.61

Noise type
Noise level [%] Noise level [%] Noise level [%]

25 50 75 100 25 50 75 100 25 50 75 100

Power Line Interference 99.07 99.07 99.07 99.07 94.03 93.82 93.81 93.80 96.52 96.43 96.04 95.86

EMG 99.04 99.02 98.70 98.52 93.15 92.52 88.92 85.85 96.37 95.41 94.45 92.86

Base Line Wander 98.30 96.49 96.18 96.04 93.93 93.33 90.67 89.65 96.61 96.61 96.59 96.59

Electrode Cable Movement 98.99 99.09 99.24 99.22 79.81 69.12 64.71 62.47 95.89 95.23 93.05 90.63

Table 10: Detailed results on MIT/BIH Arrhythmia Database

F-measure [%]

Christov’s algorithm + ICA Christov’s algorithm Hammilton’s algorithm

Clear signal 99.17 99.24 95.17

Noise type
Noise level [%] Noise level [%] Noise level [%]

25 50 75 100 25 50 75 100 25 50 75 100

Power Line Interference 99.17 99.17 99.17 99.17 99.24 99.24 99.24 99.24 95.00 94.73 94.22 93.87

EMG 99.17 99.11 98.98 98.93 98.46 99.02 97.86 96.02 94.90 94.36 93.68 92.98

Base Line Wander 99.22 99.22 99.11 99.00 99.15 98.34 97.85 97.40 95.18 95.16 95.16 95.15

Electrode Cable Movement 99.23 99.22 99.24 99.24 91.96 87.00 79.19 72.98 94.87 94.94 94.98 94.31

Table 11: Detailed results on Normal Sinus Rhythm Database

F-measure [%]

Christov’s algorithm + ICA Christov’s algorithm Hammilton’s algorithm

Clear signal 98.55 92.76 92.50

Noise type
Noise level [%] Noise level [%] Noise level [%]

25 50 75 100 25 50 75 100 25 50 75 100

Power Line Interference 98.53 98.52 98.52 98.52 92.65 92.62 92.54 92.53 92.33 91.66 90.67 90.52

EMG 98.65 98.56 98.95 98.04 91.36 89.52 85.46 81.46 91.48 90.11 87.77 85.51

Base Line Wander 99.28 97.67 96.52 96.08 92.04 91.28 90.66 90.29 92.50 92.50 92.53 92.55

Electrode Cable Movement 98.93 99.10 99.20 99.14 75.12 67.18 62.94 60.76 92.27 90.50 87.75 84.25

Table 12: Detailed results on European ST-T database

F-measure [%]

Christov’s algorithm + ICA Christov’s algorithm Hammilton’s algorithm

Clear signal 98.72 94.46 93.93

Noise type
Noise level [%] Noise level [%] Noise level [%]

25 50 75 100 25 50 75 100 25 50 75 100

Power Line Interference 98.71 98.71 98.71 98.71 94.62 94.54 95.14 94.99 93.88 93.61 93.39 92.84

EMG 98.69 98.52 98.34 98.21 94.09 91.92 90.32 89.02 93.61 92.89 91.83 90.58

Base Line Wander 98.83 98.51 97.19 96.35 93.35 92.62 92.41 91.53 93.93 93.93 93.93 93.94

Electrode Cable Movement 98.87 98.87 98.88 98.99 84.60 74.57 69.33 65.73 94.00 92.92 91.66 89.37

Table 13: Detailed results on Long Term ST database
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F-measure [%]

Christov’s algorithm + ICA Christov’s algorithm Hammilton’s algorithm

Clear signal 98.75 94.23 93.84

Noise type
Noise level [%] Noise level [%] Noise level [%]

25 50 75 100 25 50 75 100 25 50 75 100

Power Line Interference 98.76 98.76 98.76 98.76 94.22 94.15 94.14 94.13 93.87 92.45 92.68 90.94

EMG 98.89 99.26 99.05 98.61 92.85 91.64 88.19 85.63 91.45 87.77 86.06 84.63

Base Line Wander 99.94 97.33 96.77 96.44 94.16 93.66 91.27 87.71 93.82 93.70 93.70 93.77

Electrode Cable Movement 99.94 99.77 99.87 99.86 77.75 68.32 63.98 61.08 92.97 90.49 86.85 84.12

Table 14: Detailed results on QT database

F-measure [%]

Christov’s algorithm + ICA Christov’s algorithm Hammilton’s algorithm

Clear signal 99.94 84.85 94.93

Noise type
Noise level [%] Noise level [%] Noise level [%]

25 50 75 100 25 50 75 100 25 50 75 100

Power Line Interference 99.94 99.94 99.94 99.94 84.85 84.86 80.28 80.29 94.98 94.77 94.78 95.12

EMG 99.92 99.80 99.94 99.94 87.39 80.29 79.95 79.85 94.33 92.98 91.47 90.79

Base Line Wander 99.96 99.95 99.96 99.96 80.25 84.83 84.80 80.20 94.95 94.94 94.94 94.96

Electrode Cable Movement 99.96 99.94 99.87 99.63 76.34 69.03 67.08 65.74 94.75 94.22 93.88 90.14

Table 15: Detailed results on MIT Long Term database

F-measure [%]

Christov’s algorithm + ICA Christov’s algorithm Hammilton’s algorithm

Clear signal 99.57 95.82 96.87

Noise type
Noise level [%] Noise level [%] Noise level [%]

25 50 75 100 25 50 75 100 25 50 75 100

Power Line Interference 99.57 99.57 99.57 99.57 95.83 95.87 95.86 95.83 96.90 96.89 96.84 96.74

EMG 99.57 99.57 99.58 99.59 95.81 95.58 95.15 93.83 96.65 96.18 95.44 94.56

Base Line Wander 99.60 99.62 99.61 99.58 95.80 95.87 95.85 95.72 96.88 96.89 96.89 96.89

Electrode Cable Movement 99.61 99.63 99.62 99.61 91.49 85.06 80.77 77.88 96.64 95.83 95.28 94.15

Table 16: Detailed results on MIT-BIH ST Change database
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