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ii



Abstract

In this thesis we investigate tracking methods in mobile networks and their prin-

cipal limits.

We study various methods of tracking (i.e., periodical positioning) of a number

of mobile network users. We consider two basic options of tracking methods in mobile

networks — terminal-based and network-based. Terminal-based techniques require user’s

cooperation and special hardware or software on the side of the localized mobile terminal.

Network-based tracking, generally reaching all subscribers, is implemented in the network

in either active or passive manner. Active tracking is based on queries of the network

about the tracked device, whilst passive tracking uses operating data, which are generated

and stored automatically by the network for all users.

Our original contribution to the area of network-based active tracking is a detailed

study of a particular method of active tracking, the SMS-based one, using our proof-of-

concept tracking platform connected to a live mobile network. Based on a large-scale

measurement, we build a model of tracking process, and simulate how many users a

tracking platform is able to track simultaneously without overloading the mobile network.

Finding out that the principal limitations lie in the radio access network, we express

the scalability of the method at various network-infrastructure levels and point out some

pitfalls of active tracking, such as user mobility.

To the area of network-based passive tracking we significantly contribute by deriv-

ing a novel, probabilistic Inter-Call Mobility model, which overcomes the main limitation

of passive tracking data — the poor temporal granularity of Call Data Records (CDRs).

Our Inter-Call Mobility model spatio-temporally fits the aggregated mobility behavior of a

large user-pool and significantly improves the CDR-based deduction of user’s presence at

some place in time: from the timestamped cell coordinates of mobile phone communication

records, to a probabilistic distribution of user’s position in between consecutive communi-
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cation records, over time. On the example of user-proximity probability we demonstrate

large disproportions in expected user’s position in space and time among different mobil-

ity models, concluding that the Inter-Call Mobility model outperforms existing modeling

techniques.

Finally, we investigate the limits of cooperative terminal-based tracking (crowd-

sensing) in discovering the mapping of mobile-network cell identifiers to geographic lo-

cations. Based on a real-world trace, we propose a novel data-driven mobility model to

express the number of unique mobile-network cells a user is capable of visiting during one

day. The model describes users’ daily patterns, captures the fine-grained temporal char-

acteristics of human movement during a day, and quantifies daily user-cell associations.

Synthetic traces of user mobility from the model serve as an input for a large-scale simu-

lation in an approximation of a mobile network. We show how crowdsensing may serve as

a fight-back solution against a particular mobile-network-topology obfuscation method.

These three topics, studied in this thesis, illustrate the extent to which a par-

ticular technology or tracking method is applicable. Individually, they present relevant

information about exploring and modeling human mobility based on mobile-network data,

and the proposed mobility models can be used in future research.
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Abstrakt

V této dizertačńı práci zkoumáme metody sledováńı uživatel̊u v mobilńıch śıt́ıch

a limity těchto metod.

Pojmem
”
sledováńı“ rozumı́me opakované zjǐst’ováńı polohy účastńıka mobilńı

śıtě. Podle mı́sta, kde prob́ıhá zjǐstěńı a vyhodnoceńı pozice uživatele, rozlǐsujeme dvě

základńı metody sledováńı: terminálové a śıt’ové. Terminálové metody využ́ıvaj́ı mobilńıho

telefonu (terminálu) uživatele, k čemuž je obvykle zapotřeb́ı spolupráce uživatele, nebo

speciálńı technické či programové vybaveńı sledovaného zař́ızeńı. Śıt’ové metody jsou rea-

lizovány uvnitř mobilńı śıtě, využ́ıvaj́ı jejich specifických možnost́ı a umožňuj́ı zjǐstěńı po-

lohy obecně libovolného uživatele śıtě. Zp̊usob sledováńı pomoćı śıt’ových metod je dvoj́ı:

aktivńı a pasivńı. Během aktivńıho sledováńı se śıt’ aktivně dotazuje na polohu účastńıka,

resp. jeho terminálu, pasivńı sledováńı využ́ıvá provozńıch dat, která jsou v mobilńı śıti

automaticky vytvářena a ukládána.

Náš p̊uvodńı př́ınos do oblasti aktivńıho śıt’ového sledováńı spoč́ıvá v detailńım

zmapováńı konkrétńı metody založené na pośıláńı textových zpráv (SMS), kterou zkoumá-

me na existuj́ıćı implementaci připojené do mobilńı śıtě. Pr̊uběh zjǐstěńı polohy účastńıka

modelujeme pomoćı diskrétńı simulace s parametry źıskanými na základě rozsáhlého měřeńı.

Simulace slouž́ı ke zjǐstěńı kritického množstv́ı uživatel̊u, které by bylo možné sledo-

vat v śıti najednou, bez negativńıch d̊usledk̊u pro mobilńı śıt’. Podrobně se věnujeme

stěžejńım limit̊um aktivńıho sledováńı, které prameńı z omezené kapacity rádiového roz-

hrańı př́ıstupové śıtě, a popisujeme, do jaké mı́ry je nasazeńı aktivńıho sledováńı použitelné

v aplikaćıch náročných na velký počet uživatel̊u.

K výzkumu v oblasti pasivńıho śıt’ového sledováńı významně přisṕıváme vy-

tvořeńım pravděpodobnostńıho Inter-Call Mobility (ICM) modelu, jenž popisuje pohyb

uživatele mobilńı śıtě mezi mı́sty, kde komunikoval. Tento model překonává základńı nedo-

statek provozńıch dat mobilńıch śıt́ı — záznamů voláńı (Call Data Records) — jejichž velké

v



časové rozestupy znemožňuj́ı dostatečně přesné určeńı polohy uživatele kdykoli během

dne. ICM model je založen na agregovaných datech pohybu mnoha uživatel̊u; významně

rozšǐruje možnosti použit́ı záznamů voláńı pro zjǐstěńı polohy uživatele mobilńı śıtě: od

zaznamenaných poloh uživatele ve chv́ıli komunikace až po pravděpodobnostńı rozložeńı

předpokládané polohy mezi dvěma po sobě následuj́ıćımi záznamy. Použit́ı a výhody mo-

delu ilustrujeme na př́ıkladu odhadu pravděpodobnosti setkáńı uživatel̊u a ukazujeme, že

ICM model překonává současné zp̊usoby modelováńı pohybu uživatel̊u na základě záznamů

voláńı.

V posledńı části dizertačńı práce zkoumáme limity sledováńı účastńık̊u za použit́ı

terminálových metod, konkrétně použit́ı kooperativńıho sběru dat z mobilńıch telefon̊u,

tzv. crowdsensing. Crowdsensing je často použ́ıván ke zmapováńı topologie mobilńı śıtě,

tj. přǐrazeńı geografických souřadnic jednotlivým buňkám śıtě, a t́ım pádem k vytvořeńı

databáze buněk pro lokalizačńı služby. Na základě rozsáhlého záznamu pohybu uživatel̊u

v mobilńı śıti odvozujeme model, který umožňuje odhadnout počet buněk, které uživatel

navšt́ıv́ı během jednoho dne. Tento model popisuje vzorce chováńı uživatele z pohledu

jeho přesun̊u mezi buňkami mobilńı śıtě, zachycuje tendenci k přesun̊um v pr̊uběhu dne,

a vyč́ısluje očekávaný počet buněk, ke kterým je terminál uživatele během dne připojen.

Pomoćı modelu generujeme charakteristické chováńı uživatele během dne a tento výstup

simulujeme v uměle vytvořené topologii mobilńı śıtě. Výsledkem je odhad za jak dlouho

může určitý počet uživatel̊u navšt́ıvit předem stanovené množstv́ı buněk v śıti. Závěrem

ukazujeme úspěšnost kooperativńıho sběru dat v př́ıpadě, že je v mobilńı śıti použita

konkrétńı metoda zabraňuj́ıćı mapováńı poloh buněk.

Výše uvedená tři témata, kterými se zabýváme v této dizertačńı práci, ukazuj́ı,

pro které aplikace a do jaké mı́ry je konkrétńı technologie sledováńı uživatele v mobilńı

śıti vhodná. Jednotlivě prezentuj́ı řešené problémy významný př́ınos do oblasti zkoumáńı

a modelováńı lidské mobility na základě dat z mobilńı śıtě. Představené modely mobility

mohou být použity v daľśı výzkumné práci.
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Chapter 1

Introduction

According to the International Telecommunication Union there were 6 billion

mobile-phone subscriptions worldwide by the end of 2011, and mobile phone penetration

topped 100% of population in many countries [111]. This huge worldwide mobile-phone

pervasiveness is increasingly turning the mobile network into a gigantic ubiquitous sensing

platform, enabling large-scale analysis and applications exploiting data acquired from the

network. In recent years, mobile data-based research has reached important conclusions

about various aspects of human characteristics, such as human calling patterns [99, 202],

virus spreading [197, 102], social networks [40, 192, 213, 68], human daily activity pat-

terns [164], urban and transport planning [194, 196], network design [211] and others.

Particularly, information about movement of network users is of utter interest to many

researchers [88, 212, 108, 95] because mobility description and prediction may have a pro-

found effect on various fields of science, including telecommunications [64], human and

time geography [21], urban studies [20] and energy-efficient networks [65]. Examples of

practical applications of user-tracking using mobile phones are roaming optimization [66],

tracking criminals and suspects [178], traffic-monitoring [41] and targeted advertising [136].

For the purpose of acquiring data about movement of users, we consider the

task of simultaneously tracking a high number of mobile network users or, more specifi-

cally, of their mobile terminals. By tracking we mean collecting continuous information

on the user’s geographical position by means of various positioning techniques. The out-

come of this process is a timestamped history of users’ positions in the network and their

geographical coordinates. The main problem with tracking in a mobile network is that

suitability of existing methods for large-scale tracking, network-wide application, and their

technological limits are often not discussed or remain unknown.
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There are two principal technology options for tracking users in mobile networks:

� Network-based methods rely on the mobile-network infrastructure, which performs

measurements and calculates the position of a subscriber;

� Terminal-based methods refer to the terminal’s activity in carrying out the measure-

ments and position calculation.

Network-based tracking methods hold the advantage that they are generally ap-

plicable to all network users. Two main approaches to network-based tracking can be

used:

� Active tracking is based on queries of the network about the tracked device, so the

network actively gathers information about users’ terminal physical coordinates.

� Passive tracking uses operating data, such as Call Data Records (CDRs) or network

logs, which are generated and stored automatically by the network for all users for

billing and network troubleshooting reasons, without causing additional traffic in

the network.

Terminal-based solutions are suitable for smartphones and evolving mobile devices, but

often require user’s cooperation or software installation, which prevents universal coverage.

1.1 Motivating Problems

The problem we solve in this thesis is to find and describe particular limits of

the three tracking methods above—network-based active tracking, network-based passive

tracking and terminal-based tracking.

Network-based active tracking delivers the position of mobile-network users

with unprecedented temporal granularity, which has proved useful for tracking of criminals

and suspects [178], and studies about mobility patterns [20] and urban dynamics [155].

However, it is a complex process that involves many nodes in the mobile network and

wastes resources at the air interface between cell towers and a mobile terminal. Although

computing power of network nodes and bandwidth are not usually limiting, the air interface

is still a valuable resource that is hard to scale. The main question we try to answer is

“How many users can be tracked simultaneously in a mobile network, and how often?”

This is becoming a serious issue when thousands of subscribers are to be tracked in order to
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deliver representative and statistically significant studies of human mobility and location-

based services. Knowing such limits would help to adjust the number of users or their

tracking interval to a level that would not hamper the usual network traffic.

Network-based passive tracking has become immensely popular as a unique

source of large-scale data about individual mobility [88], calling patterns [99], patterns of

tourists’ spatial mobility [21] and urban analysis [173], mainly because of the lack of appro-

priate active-tracking solutions or the cost of active tracking. Posterior interpretation of

large-scale CDR datasets is perhaps even more important for purposes such as urban and

transport planning [194, 196], network design [211], opportunistic spectrum access [202]

and user mobility [95]. Unfortunately, whereas spatial precision of such passive-tracking

data is acceptable, the accuracy in temporal dimension is substantially low. The main rea-

son is that the position of a user is recorded only at places where the user’s communication

events occur (text messages, calls, data sessions), thus it depends on the communication

frequency of an individual. During time of no communication activity it is not clear where

the user is geographically located. This represents a problem for applications or analyses

assuming ubiquitous and continuous user-tracking capability, such as opportunistic data

dissemination [97] or epidemiology [102].

Terminal-based tracking remains a viable alternative to network-based meth-

ods when active-tracking infrastructure and passive tracking data are not available. It is

advantageous in delivering rich data from contemporary sensor-enabled smartphones, and

therefore is often sought after in academic research [68], but also in environmental [67],

infrastructure [103, 147, 144] and social [69, 174] applications, in which interest groups ac-

tively participate on data collection—a method called crowdsensing. Crowdsensing proved

useful especially in mapping fixed structure of mobile network cells and wireless-network

access points to reference databases [52, 90], which are subsequently used for geolocation

of mobile terminals and various other location-based services. The quantitative limits of

such approach, however, remain in question: “What is the required minimal size of a user

group needed for obtaining a critical mass of knowledge about the mobile infrastructure?

And, how much time is needed to do so?” The answers may help in deciding whether

crowdsensing is a viable solution for mapping country-wide networks infrastructure, for

example for building a new geo-location business such as [52], or a hint for mobile network

providers, whether they should try to monetize their costly infrastructure and apply mech-

anisms [62, 201, 30] preventing unauthorized use of such geo-location in their networks.
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1.2 Objectives of the Thesis

We aim to deliver convincing results about limits of mobility-related data-collection

methods, which may help understand the extent to which a particular technology or track-

ing method is applicable. The work presented in this thesis concentrates on addressing

the above-mentioned problems and related limits. The primary objectives of this thesis

are:

� Limits of network-based active tracking—to show, on an existing tracking solution

in a live mobile network, how many users can be tracked simultaneously and how

often. To understand the scaling ability of the active-tracking method in country-

wide applications.

� Passive tracking data utilization—to examine the accuracy of network-based passive-

tracking data in spatial and temporal dimensions and to propose an extension of the

data towards more accurate interpretation.

� Coverage capabilities of crowdsensing—to assess how effective may crowdsensing be

in mapping a mobile network infrastructure, measured in the size of a user-pool and

the time needed to map critical mass of knowledge about the mobile network.

1.3 Outline of the Thesis

In Chapter 2, we introduce some basic background knowledge about mobile net-

works, together with a detailed description of different tracking methods and of the existing

work related to particular topics investigated in this thesis.

In Chapter 3, we study the limits of network-based active tracking from various

points of view, using an existing active-tracking solution. Based on a measurement on

a large-scale tracking, we describe performance statistics of the tracking platform and

of the adjacent network nodes. We implement a faithful model of the tracking process

by means of a queuing network and run a discrete-time simulation which shows that

our tracking solution is capable of tracking thousands of users with a period of minutes.

We analyze various limiting factors of active tracking, including basic constraints of the

method, constraints of the location server and of the mobile network, finding out that

the principal limitation of network-based active tracking is the radio access network. We

calculate the limitation of the radio access network on different network-infrastructure
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levels, and show how mobility of tracked users, and thus their possible concentration at

one place, may affect the performance of the radio access network. Finally, we show our

contribution on roaming optimization in mobile networks—a practical use-case of active

tracking.

In Chapter 4, we address the limits of passive-tracking data—their limited ac-

curacy in temporal dimension—by building a probabilistic model of users’ position in

between communication events. Through the analysis of coarse-grained CDR-based tra-

jectories and corresponding finer trajectories of user-cell associations we show that the

nature of human mobility between communication events is in strong contrast with as-

sumptions of existing modeling methods. We formulate a new probabilistic Inter-Call

Mobility (ICM) model, spatio-temporally fitting the aggregated mobility behavior of users

in a real-world trace. Finally, on the example of user proximity probability we demonstrate

that the ICM model outperforms different existing mobility models.

In Chapter 5, we study the limits of terminal-based tracking from the point of

view of its potential for mapping of mobile network cells to geographic locations. Based

on a detailed dataset, we build a model which describes user-cell association in a mobile

network over a day. Using the model we generate thousands of synthetic yet realistic traces

of user movement applied by a large-scale simulation to an approximated mobile network

topology. By this we determine the fraction of mobile-network cells visited by a fixed

number of users over a time interval. We apply the results to a practical use-case in which

crowdsensing serves as a fight-back method against a particular method of mobile-network

topology obfuscation.

Finally, in Chapter 6 we conclude and we outline possible future objectives of

research work in the field of mobile data acquisition and utilization.
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Chapter 2

Preliminaries

This chapter presents the general background knowledge and the state-of-the-art

on which our work is based on.

Section 2.1 briefly introduces the structure of mobile networks. In Sections 2.2

and 2.3 we summarize the main approaches to network-based and terminal-based tracking,

respectively. In Section 2.4 we review previous research and related works in the areas

relevant to this thesis.

2.1 Mobile Network Primer

A mobile network is a wireless network made up of a number of radio cells—

the basic geographic units of cellular systems—each served by at least one fixed-location

transceiver. In this section we show the basic structure of mobile networks, location

management and positioning methods, on the example of a Global System for Mobile

communication (GSM) network. Although the share of contemporary and evolving net-

works such as Universal Mobile Telecommunications Service (UMTS) and Long Term

Evolution (LTE) is constantly increasing, GSM technology has by far the widest reach

and covers more than 85 percent of the world’s population today [74].

2.1.1 GSM Network Structure

The network structure is divided into the Network Switching Subsystem (NSS)

(often called core network) and the Base Station System (BSS) [96], see Figure 2.1.

The Network Switching Subsystem is a wired backbone that enables basic func-

tionality of the mobile network—communication between mobile terminals and with ter-
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Figure 2.1: GSM network structure.

minals in other networks. Core network consists of the Mobile Switching Center (MSC),

which are primary service delivery nodes responsible for handling voice calls and other

services. A special type of MSC is a SMS-Center (SMSC), which supports sending and

receiving text messages—Short Message Service (SMS). In addition, various databases are

present in the core network: the Home Location Register (HLR) is a central database that

manages information about users authorized to use the network; Visitors Location Regis-

ter (VLR) are databases of temporary data about users currently present in a particular

set of cells.

The Base Station System, which consists of the Base Transceiver Stations (BTSs,

also known as cell towers or simply base stations) and Base Station Controllers (BSCs),

operates the radio part of the network and handles traffic and signaling between mobile

terminals and the core network. Each cell in the network is uniquely identified by a Cell

Global Identity (CGI) number which consists of four numeric fields: Mobile Country Code,

Mobile Network Code, Location Area Code and Cell Identifier (Cell-ID).

GSM networks are controlled by signaling protocols, carried out-of-band, in sepa-

rate signaling links that use message switching [117]. Signaling protocols used in telecom-

munication networks worldwide are grouped in the Signaling System Number 7 (SS7)

standard [109].

2.1.2 Location Management in Mobile Networks

At any time a mobile terminal is connected to a network over a single serving

cell. However, for bandwidth-saving and overhead reasons, networks do not continuously

8



2.1. Mobile Network Primer

maintain information about terminal association at the level of individual cells. More

complex mechanisms are thus used to find a cell that the user is currently attached to.

Location management in cellular networks incorporates the location update and

paging mechanisms (see Figure 2.1). Location update is a process of reporting the mobile

terminal’s serving cell to the network and storing its code in network registers. This

is performed when a user crosses boundaries of the so called location areas (these are

geographically large, consisting of tens to hundreds of cells) or after a significant time (on

the order of hours). Paging is a procedure of actively searching for a terminal within the

last known location area. It is performed every time the mobile-terminated communication

(call, SMS, data) is being established. Therefore, when no communication is in progress,

only the location area in which the mobile terminal idles is known. The accurate knowledge

of a serving transceiver in the network is thus guaranteed to be up-to-date only when paging

is performed or the user is actively communicating.

2.1.3 Positioning in Mobile Networks

Positioning, the act of obtaining an approximate geographical position of a mobile

terminal and its user in the mobile network, can be achieved by several techniques. These

can be classified as network-based or terminal-based, depending on the site that performs

measurements and calculates the position. A hybrid approach, called terminal-assisted, is

possible when the measurements are made by the terminal and the position is calculated

by the network.

Terminal-based positioning methods require special hardware or software in

the terminal and usually rely on external satellite infrastructure.

The best known representative is the Global Positioning System (GPS) [114],

which provides high accuracy but poor availability (as observed in [126]), mainly because

GPS does not work inside buildings.

Assisted Global Positioning System A-GPS [114], utilizes additional assistance

information from the mobile network which leads to shorter time to fix the first position

of the terminal. It provides better accuracy than GPS and increased receiver sensitivity.

Location pattern matching or fingerprinting [112, 47], uses received signal strength

from mobile base stations or wireless access points nearby to match it with terminal’s

physical coordinates. Reference database of the beacons’ patterns and corresponding

positions allows for estimating the terminal position with high accuracy [126].
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Less accurate, but always available when in mobile network signal coverage, is

the Cell-ID positioning [124]. Every mobile terminal knows the Cell Identifier (Cell-ID) of

the cell it is currently attached to, and thus no additional hardware is needed. Since the

mobile terminal does not have the information about cell tower coordinates, it is provided

by third parties’ Cell-ID databases [52, 18].

Terminal-assisted positioning methods, such as Enhanced Observed Time

of Difference (E-OTD) [14] in GSM networks or Observed Time Difference of Arrival

(OTDoA) [12] in UMTS networks, work on a combination of circular or hyperbolical

lateration with timing measurement – the terminal computes its position from signals

emitted by a number of base stations. To achieve this, a Location Measurement Unit

(LMU) has to be deployed at every (or every third, fifth [1]) base station in the network for

measuring time offsets and achieving a posteriori synchronization between base stations.

Network-based positioning methods differ in the extent of network updating

needed and face the trade-off between positioning accuracy and implementation costs.

Uplink Time Difference of Arrival (U-TDOA) [16, 13] is based on hyperbolic

lateration similar to the terminal-assisted E-OTD method. But conversely to it, the time

measurements are applied in the uplink, which means that the signal emitted from a

terminal is observed by the network. Just as for the E-OTD method, the network has to

be equipped with LMUs.

The Cell-ID method relies on the fact that the mobile terminal can be attached

to only a single cell at a time. Knowing the Cell-ID, the actual physical coordinates of a

mobile terminal within the cell can be approximated by the position of the corresponding

cell tower, or estimated from the expected cell coverage. The accuracy of the reported

position varies, depending on the cell size [189].

The Timing Advance (TA) [3, 15] improves accuracy of Cell-ID positioning by

combining it with auxiliary measurements—TA is used in GSM/GPRS networks to com-

pensate for the propagation delay as the signal travels between a mobile terminal and a

serving base station, and thus roughly corresponds to the distance between them. The

Cell-ID+TA enhancement is, however, limited by the fact that they are always calculated

by the serving base station, so the distance information can not be obtained from three

or more base stations to enable lateration.

The last option, the Adaptive Enhanced Cell-ID (AECID) [200] method, combines

knowledge about Cell-IDs of the serving base station and of the neighboring cells, the
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measured TA and the quantized signal strength measurements to automatically build a

radio fingerprint of the whole network. The AECID method yields better accuracy in

comparison with the plain Cell-ID+TA method [181], but is more complicated and it

utilizes a dedicated BSSAP-LE [17] protocol, which must be implemented in the network.

2.2 Network-based Tracking Methods

Two main approaches to network-based tracking can be recognized: passive and

active [20]. Active tracking is based on network-based positioning queries of the network

about the tracked device, so the network actively gathers information about users’ terminal

physical coordinates or its presence in end nodes of network segments, for example in

cells. Conversely, Passive tracking uses operating data, such as billing records or network

logs that are generated and stored automatically by the network for billing and network

troubleshooting reasons.

2.2.1 Active Tracking

To obtain the user’s actual position, the network must actively seek it, which

brings additional traffic. The easiest way to approximately locate a user within a mobile

network is to obtain the Cell-ID of a cell the user is currently attached to. To track

a mobile terminal using Cell-ID positioning means that information about the current

serving cell must be kept up-to-date to be obtained from the network registers at any

time, which is not a default feature of the mobile network (as explained in Section 2.1.2).

To achieve this, the network must be forced to page the terminal every time the position

is requested, to propagate the Cell-ID of its current serving cell into the network registers.

Such proactive stimulation of the mobile terminal is called active tracking.

There are several options how to force a network to perform terminal paging. The

latest standards of contemporary mobile networks propose signaling primitives such as the

Any Time Interrogation (ATI) message in GSM [10] or the paging request in UMTS or LTE

networks [11], that are capable of triggering the terminal paging procedure. Nevertheless,

these primitives are often enabled in the core network infrastructure only according to

former standards. Their advanced capabilities are not necessary for providing the basic

call and data services and are thus considered expendable.
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A general method to force a network to page any terminal is to invoke the mobile

terminal’s communication. In [66] we proposed an SMS-based solution that delivers an

“invisible” network-originated text message to the user’s terminal.

The SMS-based solution exploits a special class of text messages, SMS Class 0

(Message Waiting Indicator Group [6]), which is usually used to set the indication of voice

mail, fax and e-mail active or inactive. The key advantage is that its delivery cannot be

prevented or rejected by the user’s mobile terminal. Moreover, SMS has been supported

by all mobile networks and all mobile terminals since it became available in a very early

version of GSM.

Apart from the SMS-based solution above, other methods of invoking mobile

terminal communication activity could be considered:

Data oriented approach refers to the fact that one could try to send an ICMP

echo request (known as a ping) to the user’s IP address to make the mobile terminal

communicate, which forces the network to page the terminal and leads to the current

Cell-ID information propagation among core network registers. This method, however, is

only applicable to data-active users.

USSD oriented approach uses UnStructured Service Data (USSD) that pro-

vides a two-way session-oriented exchange of textual data in mobile networks. USSD is

a capability of all terminals [2]. An approach that exploits USSD messages for providing

location information is described in patent [31]: an empty USSD message can be sent to

a mobile terminal which results in a paging procedure initiated by the network.

CAMEL protocol [4] provides the Any Time Interrogation (ATI) and Provide

Subscriber Info (PSI) signaling messages that would include the ”current location” and

”active location retrieval requested” parameters respectively to immediately invoke the

paging procedure [154]. Nevertheless, in spite of other useful features, a full implementa-

tion of the CAMEL protocol is not commonly present in mobile networks.

Fake handover procedure can be established by a BSC by sending a han-

dover command to a mobile terminal to simulate the necessity of handover [16]. The

terminal tries to co perform handover procedure, however the BSC suppresses the han-

dover acknowledgment—after a certain period the procedure is evaluated as failure but

communication with the mobile phone has been established.
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2.2.2 Passive Tracking

Passive mode of user tracking means that no additional data transition within the

mobile network is needed in order to obtain user’s position. This technique either relies

on the network logs about users’ communication events, or an installation of a passive

probe on network interfaces (connection links between executive parts of the network) is

required.

Call Data Records (CDRs) store an information about every mobile phone’s

call (received or made) or service used (SMS, MMS, data). Its fields contain the commu-

nication type (voice, SMS), timestamp, duration, calling and called party numbers, etc.,

but also the Cell Global Identity and thus also the approximate spatial information where

the communication has been established and where it terminated. CDRs are stored in

network registers and used for billing purposes and legal reasons. They are considered

strictly private, however, they are often shared between mobile providers and researchers

in an anonymized or aggregated form [20, 21, 88, 107, 34].

Interface Monitoring can provide useful information about users’ location and

communication activity within a mobile network. The A interface between the MSC and

the BSC (see Figure 2.1) is capable of capturing location updates in the network, handovers

between cells during calls, and the Cell-ID of the cell the user was attached to when a call

(SMS) has been made (sent) or received. A probe on the Abis interface between the BTS

and the BSC can provide the average signal quality, received signal strength and timing

advance (TA). These are network parameters that can be used to calculate distance of

the mobile phone from the corresponding BTS and thus can serve for better positioning

estimation, as explained in Section 2.1.3.

2.3 Terminal-based Tracking Methods

Terminal-based tracking, a particular use of mobile phone sensing [127], is a

process of continuous collection of geographical coordinates from the mobile terminal’s

(A)GPS, Cell-IDs of cells the terminal is attached to, or beacons from the surrounding

wireless access points, out of the position of the mobile terminal is then calculated or

estimated. To enable terminal-based data collection, numerous sensing applications and

platforms are available to maintain data recording and its offload to a remote server to pro-

cess. Simple mobile-network cell-switching can be recorded for example by CellTrack [81]
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or Netmonitor [161] applications. Complex sensing systems include for example Mobile

Context Toolbox [128] for Symbian S60, and Funf [29] and MobiSens [204] for Android.

Mobile sensing platforms such as PEIR [150] and Medusa [169] use mobile terminals to

collect and upload data to server-side models that generate the web-based output for each

participatory sensing participant and enable achievement of a collective task, respectively.

An obvious disadvantage of software add-ons is that they reduce the target user

group of any data-collection campaign to cooperating users, only precluding universal

population coverage. Even the quality of terminal-based data is often disputable: users

tend to forget their mobile terminals at home, battery drain precludes data collection for

hours till the next recharge, and even malicious users can do harm to data integrity.

Promising research activities span the area of crowdsensing and participatory

sensing. Crowdsensing [85] refers to a process of collecting data from mobile phones that

has become popular in the academic environment [29] and various interest groups [90]. As

an addition to it, participatory sensing represents the vision of distributed data collection

and analysis at personal, urban, and global scales, in which participants make key decisions

about what, where, and when to sense [36].

In recent years, Location-Based online Social Networks (LBSNs) [215], such as

Google Latitude [89] or Foursquare [83], have become very popular and even giving rise

to a plethora of new research work [23, 198]. These applications drive the evolution

of geo-location based services, but require software installation, enlisting in a particular

LBSN, and rely on mobile terminals or even on direct user activity. The granularity of

user-triggered tracking with LBSNs is much more limited than for example network-based

periodic active tracking.

2.4 Related Work

In this section we provide the overview of the existing work related to particular

topics investigated in this thesis.

2.4.1 Active Tracking

In Chapter 3 we demonstrate an implementation of SMS-based active tracking

in mobile networks, a method that utilizes Cell-ID based positioning. We explore limits

of the method and show its practical application.
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Positioning of mobile entities in networks is a well-studied problem. Works [171]

and [124] summarize the main approaches to positioning, including the Cell-ID technique.

Alternative positioning techniques are discussed in [168, 126, 184, 210]. Comparison of

network-based positioning techniques is available from sources [73, 91, 124, 162, 167, 190].

The limits of Cell-ID positioning in terms of positioning accuracy are discussed

in [189, 209]. Authors of [20] provide a short study of Cell-ID+TA-based active-tracking

accuracy as a trade-off between the tracking interval and tracking costs. The impact on

power consumption of a tracked mobile terminal has been measured and discussed in [63].

In this thesis we focus on the properties of active tracking with Cell-ID positioning and

its impact on the network in general.

Recent works describe different methods of mobile terminal activity excitation, a

necessary prerequisite for active tracking. A similar approach to the SMS-based method

has been used in [178] under the name “blind SMS”. Apart from methods summarized in

Section 2.2.1, a method of using signaling primitives in mobile network for mobile phone

positioning was proposed in [55]. However, the authors propose a modification of the exist-

ing signaling primitives, which is almost impossible in a live mobile network. Compared to

all options available, SMS-based active tracking we use in our work has important advan-

tages over other network-based active tracking methods. Data oriented approach is more

demanding because a complicated radio connection would have to be established, so the

method would use radio resources much more extensively. USSD method [31] is generally

faster than SMS, but an SMS-based solution offers the additional advantage of recognizing

whether the mobile terminal is out of its home network and thus reduces interconnection

costs and wasting of network resources. Other methods such as CAMEL-protocol ap-

proach [4] and fake handover procedure [16] require dedicated signaling protocols, which

are not usually present by default in all networks. The SMS-based solution described in

this thesis is advantageous in that it can be used in any mobile network technology such

as GSM, UMTS and LTE, since the Short Message Service is supported across all types

of mobile networks.

There have been significant standardization efforts [7, 157, 148] and corporate

initiatives [35, 73] for Location Based Service (LBS). A prominent example of a LBS

platform is the Ericsson Mobile Positioning System [72], which complies with the latest

LBS standards. In comparison, the tracking solution presented in this thesis is simpler,

but lightweight and deployable by adding only a single node into the network.
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A proof-of-concept tracking solution can be built on various signaling platforms.

These comprise complex, ready-to-deploy solutions [105], as well as developer-oriented

solutions [100, 57]. Development on these platforms is either provided by the vendor or

limited by the platform Application Programming Interface (API). Unlike these robust

and business-ready platforms, we use off-the-shelf hardware equipped with basic signaling

configuration—a solution which is intended to be lightweight and suitable for proof-of-

concept applications in research and academic environment.

The use of active-tracking data in mobility and human activity research is still

sporadic, mainly for the lack of active-tracking solutions and the costs. Researchers in

Tallinn used active tracking to investigate daily-activities and mobility patterns of city

inhabitants and commuters [20], but found the method costly. Similar research, based on

data collected using the active-tracking platform we describe in this thesis, was focused on

urban dynamics [155]. A study of mobility patterns was presented in [88]. Schmitz [178]

used the SMS-based active tracking for tracking of criminals and suspects. Although the

possibility of studying roamer retention in GSM network were discussed in [63, 66], in this

thesis we propose the formalization of the tracking process and visualization of the data

using a novel cell-weakness metric.

2.4.2 Passive Tracking and Available Datasets

In Chapter 4 we deal with extending the utility of passive tracking data by

building a mobility model for a-posteriori analysis of Call Data Records.

Two principal sorts of passive tracking data exist—location updates and CDRs [199].

Both methods work with Cell-ID-precision in spatial dimension, but differ in the frequency

in temporal dimension, depending on user’s mobility and calling patterns.

Monitoring location updates proved to be helpful in transportation for automat-

ically deriving origin–destination matrices in a studied region [39] and in various appli-

cations of intelligent transportation systems [120]. However, location-update data are

strongly limited by user mobility since they are recorded only when a user crosses borders

of location areas1.

In recent years, mobile operators shared Call Data Records with researchers and

academia either directly [88, 173, 21, 211, 214], or in data-mining contests [158, 34, 143].

1Periodic location updates apply, but the interval is in the range of tens of minutes to several hours,
depending on network settings.
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Nevertheless, although many dataset resources exist, for example in [121], a publicly avail-

able large-scale CDR dataset is still not present, except for few recordings of individual

enthusiasts [33, 78]. For the reasons above in this thesis we use a substitution for CDRs

derived from a real-world trace, the Reality Mining Dataset [68].

Our approach in extending the utility of passive tracking data by describing the

user’s movement between the places of communication is novel. There were several at-

tempts in describing movement of an entity in space and time between two places in

general, for example by means of linear weighted interpolation [92], space-time prisms [94]

and probabilistic variants of space-time prisms [203]. However, the assumptions behind

these models are contradictory to the nature of Call Data Records, as we demonstrate in

Chapter 4. Gonzalez at al. [88] analyze human mobility patterns from CDRs and deliver

a general point of view on the nature of human movement, whilst we focus on a finer

level of detail. The idea behind our methodology is similar to the work of Pfoser and

Jensen [163] [163]—they proved that increasing the sampling rate of GPS lowers the local-

ization error. We adopt their conclusion as we compare coarse-grained call records with

finer-grained ground-truth data from cell transitions to deliver more accurate movement

description. The uncertainty in user’s trajectories has been studied in [123, 122, 61], but

with respect to classic time-geography, which hardly applies to CDRs. The description of

spatio-temporal trajectories using a Gaussian Mixture Model, similar to the method we

use in this thesis, was demonstrated in [42] on training humanoid robots.

Many authors focused on limitations of CDRs from different points of view. Ran-

jan et al. [172] discuss a potential source of bias in CDRs for human-mobility studies,

authors of [88] observed a heavy-tailed distribution of time between user’s communication

events, Zang and Bolot [212] analyzed the privacy risks of sharing CDRs. In this thesis we

focus on the principal limitation of Call Data Records, their poor temporal granularity,

and address it with a probabilistic refinement in both temporal and spatial dimensions.

2.4.3 Crowdsensing and Modeling Human Mobility

In Chapter 5 we explore the limits of crowdsensing in the ability to map a mobile

network topology. In other words, we aim at quantifying the sufficient amount of users to

discover all cells in a mobile network.

Crowdsensing represents an important tool for collecting network associations

and activity of mobile phones by volunteer individuals. An example of a publicly available
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dataset is the Reality Mining Dataset (RMD) [68], other datasets are bound with legal

consent [143] or were kept unpublished in a raw form [156]. We use the NRC-Lausanne

dataset, which has been made available for participants of the Mobile Data Challenge [143],

to obtain information about mobility of network users.

There were numerous attempts to describe user’s movement. Random models,

such as Random Way Point, Random Walk [130], Random Direction and Truncated Levy

Walk [175], use some probability distribution to determine next user’s waypoint. Vari-

ants of random models, Markovian Way Point [104] and Gaussian-Markov [137] models,

introduce Markovian probability description between waypoints. Freeway and Manhattan

mobility models [28] and the Obstacle Model [113] incorporate geographic constraints to

restrict the movements of users. Social models describe mobility of particular social groups,

such as student at a university [119, 146], or user’s attraction to particular landmarks or

geographical nodes [139]. Except the mobility models mentioned so far, human mobility

patterns are described in [88], or the models are extended to better capture human nature

in visiting similar places in Self-similar Least Action Walk (SLAW) model [131].

In this thesis, we propose a trace-based mobility model for user-cell association

that differs from the existing large body of mobility-modeling work in that it describes

users’ daily patterns, captures fine-grained temporal characteristics of human movement

during a day and quantifies daily user-cell associations. According to a recent survey [115],

there is no mobility model available that provides all the above-mentioned features con-

currently. Existing models are used to predict future places of user’s presence [64] or to

recognize significant places in the mobility trace [125, 208], but these work usually on

short-term outlook. On the contrary, the model presented in [182] captures user-place

association and the strength of such ties, but it is designed for long-term mobility predic-

tions on the order of months. Models focusing on important places reflect the fact that

humans usually spend their time only at few locations during a day. However, spatial

prediction often takes priority over temporal prediction [48]. The NextPlace model [176]

claims to forecast users’ next place as well as their arrival time and residence time. Sim-

ilar results can be achieved by using a time-variant community model [101]. Closest to

our approach in mobility modeling is the methodology recently proposed in [179], which

examines human mobility on the basis of motifs from network theory [26]. Similarly to the

WHERE [108] and Time-variant community (TVC) [101] models, we use a real trace and

generate new, synthetic traces; but WHERE uses CDRs and focus only on metropolitan
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scales, and TVC demands a large number of parameters, which were not derivable from

the dataset we used.

Limits of crowdsensing have been studied in [205] from the perspective of hard-

ware heterogeneity, burden placed on users and network bandwidth demands. The prob-

lem of finding a large-enough user-pool for crowdsensing applications is addressed with

various incentive schemes [135, 207]. Energy-efficiency in continuous sensing has been ex-

amined in [140, 142, 53] and addressed with various energy-efficient sensing solutions [133,

151, 118, 216]. The capability of a userpool in gathering data and other tasks has been

addressed in [191] by developing statistical tools for reasoning about trade-offs between

time and completeness. In this thesis we explore the limits of crowdsensing in its ability

to map a mobile network topology, which may be interesting for various crowdsensing

communities [90, 52, 18], mobile network providers [116] and hardware vendors [35].

The given problem, i.e., characterizing sufficient number of users to cover a given

fraction of cells in a cellular network during a limited time, is related to some classical

problems: the cover time, the coupon collector’s, and the cardinality estimation problems.

The Cover Time Problem

The cover time problem represents coverage the capability of a random walk on

a graph. Let us consider an undirected graph G = (V,E), |V | = n, |E| = m, and let the

probability to go to any of neighbors of u be the same, and is 1
deg(u) . Let τn denote cover

time, the expected number of steps of a random walk to visit every vertex of the graph

starting at an arbitrary node in a graph with n nodes. It holds that for any graph with n

nodes τn ≥ (1 + o(1))n log n and τn ≤ (1 + o(1))4/27n3 [75], and, for example, a complete

graph has τn ≈ n log n.

Crowdsensing in a mobile network can be modeled as cover time of u independent

random walks, representing movement of u users, in a mobile network represented by an

undirected graph—vertices denote cells and edges stand for possible handovers between

cells. A direct application of cover time results to the crowdsensing capabilities is, how-

ever, limited by several reasons. First of all, it has been demonstrated that random walks

hardly suffice to describe human’s mobility [88, 131, 182]. Second, transition probabilities

between cells are not time-homogeneous as they vary depending on the time of the day.

Next, time in a random walk is described by the number of steps between nodes, whilst

in real life, the number of cell transitions does not necessarily correspond to the time
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measured in hours and minutes. Finally, because more users are involved in crowdsensing,

a study of independent random walks traversing the graph concurrently would be nec-

essary. Although some work on the impact of multiple random walks on coverage time

exist [54, 24], they are restricted to random walks on a graph.

The Coupon Collector’s Problem

The coupon collector’s problem is the following: Let us have a set of n different

kinds of coupons. Assume a person wants to collect all the n different kinds, by randomly

picking one coupon with probability 1/n, until all different kinds have been selected at

least once. What is the expected number of coupons that need to be picked to collect at

least one coupon of each type? It can be shown, that the expected number of coupons

drawn until at least one coupon of each type is present is n · Hn, where Hn =
∑n

i=1 1/i

denotes the n-th Harmonic number. Since it holds log n ≤ Hn ≤ log n + 1, we basically

have to buy n log n lots. The general case of a nonuniform probability distribution are

more complicated [177, 82].

Direct application of the coupon collector’s problem to our problem related to

crowdsensing could be formulated as follows: let us have a finite set of users and let each

user discover exactly one cell out of n cells equally likely. How many users do we need

to discover all cells in the network? This formulation, however, does not reflect reality

because a user of a mobile network is typically connected to more than one cell during the

day. So, let us assume that a user discovers exactly k cells during a day. This corresponds

to an extension of the coupon collector’s problem in which the coupons are drawn into

random packs of k different coupons [76]. Then, the expected number of users to discover

all cells in the network corresponds to the expected number of packs we have to draw to

collect all n coupon kinds. Since it is not likely that each user would discover exactly the

same number of cells k, we found the extended coupon collector’s problem not applicable.

The Cardinality Estimation Problem

The cardinality estimation problem (also known as distinct counting) is a funda-

mental problem of estimating the number of distinct values in a set from a small sample.

This is important for example in the database community to estimate the number of dis-

tinct values in a table [93], as well as in biology to estimate the number of species [45],

or in crowd-sourced enumeration queries to reason about query completeness [191]. The
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problem is as follows: a sample is drawn at random from a population (e.g. the entire

population of animals in an area) and based on the frequency of observed items (species),

the number of unobserved items (number of missing species) is estimated. Several meth-

ods have been proposed in the last decades, including sampling-based approaches [93], and

extrapolation techniques [51].

Let us assume we have a group of users who use their mobile phones for discov-

ering cells in a mobile network. The cardinality estimation helps us to guess what is the

total number of unique cells in the network, so when can the cell mapping be considered

finished. This is, however, difficult due to non-uniformities in the arrival of the crowd-

sensed data, i.e., users typically discover only a limited number of cells and they visit

some of the cells more likely than others ones. The role of the different distributions of

human’s responses has been studied in [191]. The authors use the Chao92 estimator [45],

which uses sample coverage and coefficient of variance of the underlying distribution to to

predict the total number of distinct elements, and make it more resilient against highly

skewed distributions by eliminating significant outliers in the data. Cardinality estimation

thus can be used to reason about the total number of cells in a network, but the number

of users necessary to discover all the cells in the network would remain unknown.
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Chapter 3

Active Tracking in Mobile

Networks

Active tracking is a promising approach in tracking any mobile-network user

with unprecedented temporal granularity. In this chapter we present the SMS-based ac-

tive tracking—a particular type of network-based active tracking using Cell-ID positioning

with SMS-based paging excitation. Cell-ID positioning represents the easiest way to ap-

proximately locate a user within a mobile network. It is available in all environments

(indoor, rural and urban) when the terminal is on signal. Moreover, Cell-ID positioning

and SMS-based paging excitation do require neither any dedicated functionality in the

mobile terminal not any update to the mobile network, thus they work with any mobile

terminal in any mobile network.

SMS-based active tracking enables numerous services, such as tracking suspects

and offenders [178], mobility and human activity research [66, 20], mobile network user

tracking for signal coverage diagnostics and roaming optimization [66, 63]. However, im-

plementation and deployment of this method brings questions about its limits in terms

of the number of users that can be tracked simultaneously and the impact on network

performance when a large-scale tracking would run in the network. In this chapter we

focus on addressing these concerns by carrying out an extensive study of the limits of

SMS-based active tracking in mobile networks.

In the initial Section 3.1, we describe the principle of SMS-based active tracking.

In Section 3.2 we demonstrate functionality of this method by describing our academic

proof-of-concept implementation running in a live GSM network. Next, Section 3.3 shows
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the fundamental limits of the baseline implementation by simulating the tracking process

and comparing the results with theoretical laws. In Section 3.4 we show the limiting

factors of SMS-based active tracking from various points of view, including fundamental

constraints of the method, the location server constraints and the mobile network con-

straints. Issues regarding radio access network capacity, scalability and user mobility are

examined in detail. Finally, Section 3.5 shows a particular use-case of active tracking in a

mobile network—improvement of the roaming traffic.

3.1 Principle of SMS-based Active Tracking

We briefly describe the SMS-based tracking process in a GSM network, according

to works [63, 66, 80].

The Cell-ID of a cell currently serving a user can be obtained by sending three

MAP1 primitives in the network. The only input is the Mobile Subscriber ISDN Number

(MSISDN) of the user whose Cell-ID is to be retrieved. Figure 3.1 shows the types of

messages and their ordering, described in detail as follows:

First, the VLR currently maintaining the user record in the network needs to be

found, which is done by the Send Routing Info (SRI) request from the Location Server

to the user’s HLR (message 1). If the user’s mobile phone is off, the HLR responds with

an error, otherwise the response message (message 2) contains the user’s International

Mobile Subscriber Identity (IMSI) and VLR number. The mobile network of the current

user’s residence (home network, abroad, rival operator) can be determined from the VLR

number.

Second, if both the positioned user and the Location Server reside in the same

network2, the messageflow continues with a request to send an “invisible” SMS Class 0

to the user by the SMS-Center, using the Forward Short Message (SMS) (messages 3–

4) message. The process of SMS delivery (messages 5–18), performed by the SMSC in

cooperation with HLR, VLR, MSC and the SMS recipient, is a standard GSM procedure.

It involves paging the user’s mobile terminal (messages 9–14) which results in updating the

location information (CGI of the cell where the user is located) in the VLR (messages 12).

1Mobile Application Part (MAP) is the topmost part of the SS7 stack, it enables applications in the
GSM core network

2It is possible to position the mobile terminal in an arbitrary network, however, because of intercon-
nection costs between rival networks and restrictive agreements between rival operators, the messageflow
usually stops at this point when the mobile terminal is located in the rival network.
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Figure 3.2: Interconnection of SS7Box into a mobile network.

Finally, an up-to-date Cell-ID and Age Of Location (AOL) is retrieved using a

Provide Subscriber Info request (messages 19–20). The AOL value contains age of the

location information in minutes; it is set to zero if the SMS was successfully delivered to

the mobile terminal.

3.2 Implementation and Deployment

In this section we describe the implementation of an active tracking application

called SS7Tracker, which we have built during our Master degree as a proof-of-concept of

SMS-based active tracking [63, 66].

The SS7Tracker has been implemented on top of a modular signaling platform

for fast telco application prototyping, called SS7Box, developed at Research and Devel-

opment Centre (RDC) at the Czech Technical University in Prague [193]. The SS7Box is

a universal signaling platform based on the SS7 protocol suite on top of which applica-

tion modules realize business logic of telecommunication-oriented applications. A detailed

description of the SS7Box is available in [80].

The SS7Box is interconnected with a live GSM network of Vodafone Czech Re-

public, and utilize no additional hardware or software elements in the core network. It

resides in the RDC perimeter, together with its own MSC to which it is connected us-

ing one E1 line with one Pulse-Coded Modulation timeslot. The line is monitored by

Tektronix K1205 network analyzer (see Figure 3.2).

Figure 3.3 shows the relation between the SS7Tracker modules, the services they

implement are described as follows.
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Figure 3.3: SS7Box architecture. Modules and important data flows of SS7Tracker.

The Cell-ID retrieval service, implemented in the Query Cell-ID module, deals

with getting the location information from the network. It works according to the process

described in Section 3.1.

The Tracking service periodically requests the Query Cell-ID module for the

user’s current cell identifier and returns a timestamped history of user-cell associations.

The service is implemented in the Tracker module.

The User selection service, implemented as part of the Location Update Feed

Filter (LUFF) module, provides the numbers (MSISDNs) of all users currently subscribed

to the network. The list is based on Location Update events which are recorded on-line by

the network operator during user movement between different location areas. The LUFF

module filters the MSISDN feed according to the target group for tracking, and forwards

it to the Tracker module.

Apart from those presented, the SS7Box platform runs other modules: MAP and

MAP-User handle the SS7 and MAP protocol messages, and Management, Timer and

Log are system modules maintaining operation of the platform.

3.3 SS7Tracker Performance Evaluation

In this section we examine the performance of the SS7Tracker in terms of the

maximum number of users to track simultaneously.

The tracking process of a set of users is characterized by two main parameters.

These are (1) the number of unique users tracked, denoted N , and (2) the tracking in-
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terval δ, i.e., the time between consecutive Cell-ID retrievals per single user. While it

is usually desired to maximize the number of users served, the tracking interval typically

depends on the tracking purpose and varies from tens of seconds to several minutes [66, 13].

We present the performance evaluation in the sense of a minimum deployment

unit—the SS7Box’s interconnection to the GSM network is realized by only a single E1 line

with one timeslot (link) for signaling. This limits the data rate to 64 kbit/s and, moreover,

the link utilization policies must be applied. According to ITU-T recommendation [110],

each signaling link should provide extra capacity and thus its utilization ρ must not exceed

a value of maximum utilization ρmax, which usually lies between 0.2 and 0.4. Thus, only

such a tracking process that utilizes the interconnection link to less than ρmax is allowed.

In the rest of this section we provide estimation about how many users it is

possible to track simultaneously, and how often, while utilizing the interconnection line

at safe level. Since it may be harmful for the network to arbitrarily set the tracking

parameters, measure the interconnection link utilization and adjust the parameters a pos-

teriori, we propose a simulation model for system performance evaluation under different

tracking parameters. First, we analyze network behavior, i.e. distribution of relevant ser-

vice response times (Section 3.3.1). Afterward, simulation using measured distributions

is performed to find values of tracking parameters N and δ that meet the interconnec-

tion link utilization limits (Section 3.3.2). Finally, the simulation is validated against link

utilization measured by the network analyzer during tracking (Section 3.3.4).

3.3.1 Tracking Measurement

To familiarize ourselves with time dimension values in the Cell-ID retrieval mes-

sage flow (Figure 3.1), we have executed several measurements. Traces from the network

analyzer monitoring the signaling link interconnecting SS7Box into operator mobile net-

work have been analyzed in order to retrieve all time durations T? from Figure 3.1 as well

as lengths of the sent and received messages. We focused particularly on service response

time distributions of adjacent network nodes (HLR, SMSC, VLR), SS7Box working time

and message lengths variance. Except where explicitly specified, all data in this section

come from a single measurement during 6 hours on a sample of 500 users with a tracking

interval of 2 minutes. Thus, the total count of sent and received messages is about 700,000.

Table 3.1 summarizes network service response times of adjacent network nodes

(HLR, SMSC, VLR), Figure 3.4 shows the corresponding distributions. The length of

28



3.3. SS7Tracker Performance Evaluation

Network service response time [s]
min median 0.95-q max stdev

THLR 0.2822 0.3567 0.4918 0.8212 0.0046
TSMSC 0.3613 0.4397 0.5328 0.8434 0.0027
TVLR 0.0667 0.1418 0.1824 0.2790 0.0006

Table 3.1: Measured network service response time
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Figure 3.4: Measured distributions of network service response times. The distribution
of TVLR is multimodal, in contrast to the other distributions. Detailed analysis [80] of PSI messages
revealed that the PSI response messages are sent by eight different Mobile Switching Centers,
which are geographically distributed within the entire network, thus the response time depends on
location of the currently tracked user in the network.

request messages sent from the SS7Box to the network is constant, the length of the

response messages varies—see Figure 3.5. Interestingly, the network service response time

for messages of various lengths differ more than the theoretical transmission time necessary

to transmit a larger message. Figure 3.6 depicts and explains the difference in network

service response time according to message length.

The working time of SS7Box modules, i.e., time between receiving message re-

sponse from the network and sending a new request message, is summarized in Table 3.2.

Different types of messages are processed by the SS7Box side with different distributions

as depicted in Figure 3.7.
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Figure 3.5: Message length distribution per message type. The lengths of request messages
sent from SS7Box differ in one or two Bytes according to the MSISDN parameter length and
message padding. The length of response messages differ significantly as a result of network nodes
technological diversity and settings—some network nodes generate additional message fields.
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Figure 3.6: Measured service response time as a function of response message length.
The main difference for HLR response time results from different message processing on the
network-node side, noticeably for messages of length 125 Bytes. These messages contain addi-
tional “protocol version info” field, which takes longer time to obtain from the core network.
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Figure 3.7: Measured distributions of SS7Box working time. Time between receiving
a response from the network and sending a new request. Distribution of TSRI SMS differs from
TSMS PSI and TPSI SRI because the SMS request is sent immediately after the SRI delivery whilst
between other types of messages a system timer is called. As depicted in the messageflow in
Figure 3.1, between SMS and PSI messages a fixed TSMS delay is set to enable the SMS propagation
in the network, and between PSI and SRI messages are divided by the tracking interval δ. The
timer call results in context switching and re-scheduling of the module process in the operating
system, thus a normal-like distribution can be expected.

SS7Box working time [s]
min median 0.95-q max stdev

TSRI SMS 0.0474 0.0859 0.1418 0.3583 0.0010
TSMS PSI 0.0385 0.1779 0.2585 0.4006 0.0021
TPSI SRI 0.0591 0.2220 0.3123 0.4696 0.0028

Table 3.2: Measured SS7Box working time
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Figure 3.8: Simulation model. The communication link is modeled as a pair of queues for
transmission and reception direction respectively, each with one server that processes messages with
time of service equal to the ratio of message length and data rate. Network nodes are modeled as
queues with unlimited number of servers thus no waiting time is applied. SS7Box working times,
TSMS time and tracking interval δ are modeled in the same way.

3.3.2 Simulation of the Tracking Process

We have modeled the communication process during active tracking in Mat-

lab R2008b and SimEvents Library 2.3 using discrete-time queuing network simulation,

schematically depicted in Figure 3.8. The model is probabilistic and closed, explained as

follows.

The arrival process to each queue in the queuing network represents a particular

message type in the active tracking message flow (recall Figure 3.1). Initial seed of pro-

cesses corresponds to the tracking settings: the number of processes equals to the number

of tracked users, all processes enter the model at the point denoted “IN”. Seeded arrival

processes keep circulating in the model, entering the network-nodes queues and SS7Box

queues according to the particular message type, and being delayed in the queues accord-

ing to the particular service time distributions (Figures 3.4 and 3.7). The length of the

message is selected from the corresponding distribution per message type (Figure 3.5).

Signaling link utilization in one direction is interpreted as server utilization ρ , i.e., the

proportion of the time the server is busy. According to [110], the direction (transmission

or reception) with higher utilization stands for the overall signaling link utilization.

The reason for using a discrete-time simulation instead of application of queuing

theory comes from the fact that common signaling link characteristics calculation based on

M/G/1 models, recommended by [110], is not viable because of a violation of inter-arrival
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time distribution and the arrival process assumptions. The most general G/G/1 model

is also inappropriate because the inter-arrival process distribution of Cell-ID retrieval

messages is too complex and, besides, some of the service time distributions at network

nodes and SS7Box working time are even multimodal (see Figures 3.4 and 3.7), making

the summary statistics as the mean and standard deviation of service time deceptive.

3.3.3 Simulation Results

Figure 3.9 shows the dependency of signaling-link utilization ρ on the number of

tracked users N and the tracking interval δ. As expected, a shorter tracking interval or an

increasing number of tracked users cause higher utilization. Within the relevant intervals

δ ∈ [30, 180] and N ∈ [200, 2000], ρ can be closely approximated by a function that depends

linearly on the number of users N and is inversely proportional to the tracking interval δ:

ρ = aNδ−b. (3.1)

Using robust linear least-squares fitting, we found the values of coefficients to be a =

0.0208 ± 0.0003 and b = 0.8768 ± 0.0032 (95% confidence interval). The fit statistics

R2 = 0.9998 indicate that the fit explains 99.98% of the variance, and the near-zero root

mean squared error RMSE = 0.0020 implies that the fit is useful for prediction.

Figure 3.10 indicates which combinations of the number of users and tracking

intervals are allowed with respect to ρmax. We conclude that SS7Tracker implementation

of SMS-based active tracking yields sufficient performance to track thousands of users with

a period of minutes.
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The simulation allows studying attributes not covered in standard queuing the-

ory, such as the limits of signaling card in the SS7Box in terms of concurrently established

outgoing dialogs. The hardware limit of the Dialogic SPCI4 card we use is 4,096 simul-

taneous outgoing MAP/TCAP dialogs [58]. This can be considered a significant limit,

however, Figure 3.11 shows that the number of communication dialogs established at the

same time is surprisingly not a concern at all.

3.3.4 Model Validation and Discussion

We validated the key simulation output, the signaling link utilization, against

both live measurement and theoretical foundations.

We compared the results with measurements taken by the Tektronix K1205 ana-

lyzer Erlang application that computes signaling link utilization on-line, during live track-

ing. Utilization has been simulated with exactly the same input parameters as recorded

on the analyzer during the tracking. The comparison between the simulated utilization

and the measured utilization found the simulation result relative error to be 3.98%.

For the theoretical validation we used the Utilization Law by Buzen [38] that

calculates the utilization U of an arbitrary device, without any assumption on inter-arrival

time or service-time distributions, as:

U =

Throughput︷ ︸︸ ︷(
Completions

Total Time

)
×

Mean Service Time︷ ︸︸ ︷(
Busy Time

Completions

)
=

Busy Time

Total Time
(3.2)

The theoretical value of utilization for the same parameters as in the measured

tracking, computed from this Utilization Law, is about 2.51% and 6.39% higher than the
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measured and the simulated utilization, respectively. This difference we attribute to real

user behavior during the real tracking: their migration between local, rival and foreign

mobile networks leads to an incomplete message flow and thus a lower number of sent

messages (as described in Section 3.1). A lower number of messages naturally leads to

lower utilization of the signaling link.

The operation region of the model, established by the measurement presented in

Section 3.3.1, could be a source of inaccuracy between simulation and a real, live measure-

ment on a bigger tracking extent (for example, 5,000 users). We claim that the simulation

provides an upper bound of interconnection link utilization and that it will provide simi-

larly accurate results even if the simulation ran with input parameters different from its

operation region. Should we admit that one can hardly expect shortening of service and

working times when tracking more users, the potential increase of the measured T∗ values

will definitely not affect negatively the key simulation performance characteristics: the

signaling link utilization. This conclusion comes from the closed nature of the simulation

model: every new location retrieval of a user can be provided if and only if the previ-

ous request for the same user was processed. Thus, the simulated utilization is the upper

bound even if the T∗ values rise. Longer service time decreases the total number of Cell-ID

retrievals (”Completions” in Equation 3.2) during the observation time, but with no effect

on utilization (see Equation 3.2). Moreover, fewer SMS per minute will be sent, which is

favorable for the network. Although the number of TCAP dialogs, opened at the same

time, will rise because of the longer message round-trip in the network, the total count of

available dialogs may be considered acceptable.

3.4 Limiting Factors of SMS-based Active Tracking

In the previous section we have presented limits of a particular active-tracking so-

lution. This section surveys the fundamental limits of SMS-based active tracking from the

network perspective in terms of the minimal tracking interval size, interconnection to the

network, constraints in the core and radio access networks, and scalability of the method.

3.4.1 SMS-based Active Tracking Constraints

The SMS-based active tracking principle is limited in terms of the achievable

minimum time between two consecutive Cell-ID retrievals. The tracking history of a
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Time [s]
min median 0.95-q max stdev

TN 0.7595 0.9405 1.0714 1.7284 0.0109
TLS 0.2167 0.4923 0.6422 0.8204 0.0077
TSMS 3.6514 4.6888 5.8253 5.9649 0.2913

Table 3.3: Active tracking time characteristics

mobile terminal is a timestamped sequence of Cell-IDs, in which the time interval between

consecutive timestamps ti, ti+1 is not constant, i.e.,

|ti+1 − ti| = δ + TN + TLS + TSMS, (3.3)

where δ denotes the fixed tracking interval, TN denotes the variable network response time,

TLS denotes the variable Location Server working time, and TSMS is the SMS delivery delay.

While the tracking interval δ can be arbitrarily small, the network response time

TN = THLR + TSMSC + TVLR (3.4)

is a sum of service response times of the adjacent network nodes and thus depends on

the mobile network architecture and technology. Similarly, working time of the Location

Server

TLS = TSRI SMS + TSMS PSI + TPSI SRI (3.5)

is dependent on implementation. Finally, the TSMS delay is set to a fixed value on the

order of seconds during which the SMS is most likely to be delivered.3

Based on the experimental tracking measurement from Section 3.3.1, Table 3.3

summarizes the total network response time and the SS7Box’s working time in variables

TN and TLS respectively. The delay corresponding to the SMS delivery process, TSMS,

has been measured during a shorter experimental measurement on 64 text messages with

SMS delivery report enabled.

Considering the maximal values of the measured network response time (TN ≈
2 s), the SS7Box working time (TLS ≈ 1 s) and the SMS delivery time (TSMS ≈ 6 s), we

find that, for a zero-length tracking interval δ = 0, the minimum time between two con-

secutive Cell-ID retrievals is limited to an approximate value of 9 seconds in our baseline

3 Although an SMS-delivery report message may be used to inform the Location Server that the SMS
has been delivered, and thus the location information is updated and can be requested, the fixed TSMS

saves valuable bandwidth of the signaling link.
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implementation. Such a value is not limiting for the vast majority of tracking applica-

tions [66, 178, 5], which are satisfied with longer response times (2 minutes and more).

3.4.2 Location Server Constraints

System-wide limits of the SS7Box platform, on top of which runs the SS7Tracker

active tracking application, are determined mainly by operational memory usage, CPU

utilization and signaling hardware limits. We examined these areas in detail in study [80],

concluding that demands of the SS7Tracker on RAM and CPU are negligible. Hardware

limits of the Dialogic SPCI4 signaling card are not a concern either—the card limit in terms

of the number of simultaneous active outgoing dialogs (up to 4,096 according to [59])

is far from being even approached for most of the reasonable combinations of tracking

parameters, as shown in Section 3.3.3, Figure 3.11.

The principal limitation of the Location Server is its connection to the mobile

network. We express this constraint in terms of the number of location retrievals that can

be made through the minimal interconnection option, which is one timeslot with 64 kbit/s

data rate. Assuming a zero-error condition on the link and no other communication

proceeding concurrently on the signaling link during the tracking, the maximum number

of location retrievals during a time period depends only on the signaling link speed. Let

Ltx (Lrx) denote the sum of length of all messages transmitted (received) over the link

during one single location retrieval. Then, the number of location retrievals over time

period T and a signaling link with data rate S equals

bTSρmax/Lc , (3.6)

where ρmax is the maximal allowed signaling link utilization and L = max (Ltx, Lrx).

According to the ITU-T [110], the direction (transmission or reception) with higher load

is considered for calculation.

Let us consider Ltx to be the sum of the most frequent lengths of request messages

in the outgoing direction, i.e.,

Ltx = SRIreq + SMSreq + PSIreq = 107 + 130 + 100 = 337 bytes, (3.7)

according to Figure 3.5. Similarly, let Lrx be the sum of the most frequent lengths of
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responses arriving from the network;

Lrx = SRIres + SMSres + PSIres = 121 + 107 + 145 = 373 bytes. (3.8)

From Equation 3.6 it follows that the maximum hypothetical number of location retrievals

through one 64 kbit/s link during one minute is about 514 (equation parameters T = 60 s,

S = 8,000 B/s, ρmax = 0.4, and L = 373 bytes). Tracking a higher number of users is

possible only at the cost of lengthening the tracking interval δ, nevertheless, the number

of position retrievals per time unit would remain the same.

The implementation and the signaling hardware are easily scalable. Contempo-

rary high-throughput signaling hardware, for example Dialogic DSI SS7G32 [60], supports

up to 192 links with 64 kbit/s data rate and could thus yield almost 10,000 location

retrievals per minute. In addition, such hardware offloads signaling processing from ap-

plication servers and thus saves their computing resources. Apart from the SS7 signaling

we use, a similar performance could be achieved by enabling signaling over IP with the

Stream Control Transmission Protocol (SCTP) by the SIGTRAN working group [50].

3.4.3 Network Constraints

The principal limits of SMS-based active tracking arise mainly from the con-

straints of the mobile network technology itself. In this section we examine the constraints

of the different core network nodes and of the radio access part of the network.

Core Network

Active tracking based on sending SMS is a complex process that in GSM networks

involves many core network nodes like HLR, VLR and MSC. Each of these nodes and

their interconnections can be potential bottlenecks. However, nodes are usually designed

for high performance and at least duplicated to guarantee availability in case of failure.

The interconnection between nodes is capable of handling hundreds of millions of text

messages and voice calls at peak times such as Christmas or New Year’s Eve.

The SMS-Center may represent a bottleneck, but contemporary high-throughput

solutions enable up to 25,000 SMS per second [106] which is easily sufficient for most

tracking scenarios. The SMSC storage-buffer capacity is not a concern either, for the

positioning procedure (described in Section 3.1) stops every time the mobile phone is off
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Number of signaling Typical cell configuration
channels per cell 1 4 12

No. of SMS per minute 15 60 180

Table 3.4: Approximate number of deliverable text messages

or out of signal coverage (which precludes the SMS delivery) and thus the SMS is not

stored in the SMSC for later delivery.

The tracking process definitely represents an overhead for the core network, but in

comparison to average SMS/voice/data traffic, the impact is small. One location retrieval

request amounts to one half of signaling messages needed for a mobile-to-mobile SMS [9],

and to about three-fifths of the Mobile-Terminated Call signaling messages count [96].

Radio Access Network

The narrowest bottleneck of SMS-based active tracking in GSM networks is the

Air interface between the Base Transceiver Station (BTS) and the mobile terminal [188].

SMS-based active tracking involves two dialogs transmitted over the Air interface at dif-

ferent scale: (1) Paging, transmitted by all BTSes in the location area where the tracked

user resides, and (2) SMS delivery, performed at a particular BTS the user is attached to.

These dialogs may result in potential congestion in a location area or in a cell. The max-

imum number of paging requests that can be served by a single BTS is dependent on the

BTS configuration and ranges between 1,740 and 7,740 paging commands per minute [70].

Table 3.4 summarizes the approximate number of SMSes deliverable to one GSM cell per

minute. This number depends on the cell configuration, i.e., the number of Standalone

Dedicated Control Channels (SDCCHs) which carry SMS traffic and voice call establish-

ment, and the fact that one SDCCH channel is typically occupied for 4–5 seconds during

one SMS delivery [152]. Every SMS sent beyond these values would occupy signaling chan-

nels, thereby preventing voice traffic to or from the cell. We provide a detailed analysis in

Section 3.4.4.

3.4.4 Scalability

The radio-access-network operation can easily be disrupted by high network-

traffic load when tracking a high number of users residing in either the same cell or the

same location area. However, mobile networks are planned and dimensioned to guarantee

certain level of availability, the so-called Grade of Service (GoS), to all users. GoS, often
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called blocking rate or blocking probability, represents the maximum allowed ratio of

requests blocked over a time period. In this section we show on an example of GSM

network4 how SMS-based active tracking changes the GoS with a growing number of

tracked users, i.e., the scalability of the method.

Impact on Cell Capacity

First, we consider a particular GSM cell configuration5, a cell with 2 Transmit-

ters/Receivers (TRX). Since each TRX provide 8 TDMA carriers (timeslots), there are

2× 8 = 16 timeslots among which the traffic channels (TCHs) and control channels (such

as SDCCH) are assigned according to the so called SDCCH configuration. We consider an

SDCCH/8 configuration for a 2-TRX cell, which is composed of Broadcast and Common

Control Channels in the first timeslot and 8 SDCCH sub-channels in the second timeslot,

thus leaving 14 timeslots for TCHs.

Second, knowing the number of the signaling and traffic channels and the desired

GoS6 (0.5% for SDCCH), we use the Erlang B Table [160] to determine the maximum load

capacity of SDCCHs and TCHs in the cell, which is capSDCCH = 2.73 E, and capTCH =

8.20 E, respectively. To estimate the load offered to SDCCHs and TCHs in a busy hour,

we apply the BAS-1 Traffic Model which represents an average network according to

Ericsson [71]. SDCCH resources are required by many events, such as Call Setup, SMS,

Location Updates, Periodic Registration and IMSI Attach/Detach, whose load adds up.

In total, the SDCCH load per user in an average cell (including 20% load margin for traffic

peaks added) is estimated in the model to be loadSDCCH = 2.60 mE; the TCH traffic per

user is estimated to be loadTCH = 20 mE.

Next, user capacity of SDCCH, i.e., the number of users that can be served

by SDCCHs during busy hour, is calculated as a ratio of the channel capacity and the

estimated load per subscriber: usrSDCCH = b2.73 E/0.0026 Ec = 1050 users. Similarly,

user capacity of TCH equals usrTCH = b8.20 E/0.0200 Ec = 410 users. In order to perform

a successful call setup, user capacity of SDCCH must be higher than the user capacity of

TCHs:

usrSDCCH ≥ usrTCH. (3.9)

4Dimensioning for UMTS or LTE networks, which consider multi-class data traffic, is more complicated
yet feasible [183].

5Similar methodology can be directly applied to any possible cell configuration [71].
6Conventionally used GoS values in GSM networks are 2% for Traffic Channels (TCHs) and 0.5% for

SDCCH signaling control channels.
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Figure 3.12: Impact of SMS-based active tracking on SDCCH GoS in a cell. Tracking
interval is denoted δ.

Finally, the additional load caused by SMS-based active tracking, offered to SD-

CCHs over an hour, can be expressed as

NT̄SMS/δ (3.10)

where N denotes the number of tracked users in the cell, T̄SMS denotes mean SMS delivery

time (4.68 s, see Table 3.3) and δ is the tracking interval in seconds. A simple calculation

shows that tracking one user with a 60 s tracking interval brings an additional load of

78 mE during busy hour, which corresponds to SDCCH load offered by 30 users during

busy hour.

Figure 3.12 depicts GoS for SDCCHs as a function of the number of tracked

users N and of the tracking interval δ. We assume there are 410 users in the cell, i.e.,

the maximum TCHs capacity at 2% GoS, and that exactly N of these users are tracked.

The graph is calculated using the Erlang B formula for 8 SDCCHs and the offered traffic

being a sum of the tracking load and the estimated load from all users in the cell. The

impact of the increasing number of tracked users in the cell is significant: only 21 users,

tracked every 60 seconds in the cell, suffices to exceed the desired GoS of SDCCHs. With

60 tracked users, the SDCCH blocking probability is above 10%, precluding every 10th

user in the cell from being served on average. Although lengthening the tracking interval

by every 60 s allows to track approximately 20 users more (at 0.5% GoS), the number of

tracked users still remains only a fraction of all users in the cell.
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Impact on Location Area Capacity

Positioning of an idle mobile terminal is always preceded by finding the cell

the terminal is attached to. This is achieved by the paging procedure: a base station

controller (BSC), serving a location area where a mobile terminal is registered, sends

a Paging Command to all cells belonging to the location area and the mobile terminal

responds from its actual serving cell. In the following paragraphs we show that periodic

positioning increases paging load to such an extent that only a fraction of network users

can be tracked with a considerably short tracking interval.

There are two principal types of components in the radio access network which

can handle only limited paging load: base transceiver stations (BTSs) and base station

controllers (BSCs). Paging capacity of a BTS ranges from 28 to 129 Paging Commands

per second, depending on the cell configuration and paging strategy assumptions [70].

The BSC can be provided with paging capacity of about 8,500 Paging Commands per

second [70]. Tracking is network-safe unless the number of Paging Commands per second

remains below both the BTS and BSC maximum paging capacity.

Let us assume we have a BSC that serves a location area with 250 cells (BTS),

each cell equipped with 2 TRX and configured as specified in the example in Section 3.4.4.

Since one TRX can roughly carry 4.10 E of traffic during busy hour (Erlang B Table,

14 TCHs at 2% GoS), the total traffic capacity of the location area is 4.10 E/TRX ×
250 cells × 2 TRX/cell = 2,050 E. Provided that, on average, one user offers load of 20 mE

during busy hour [71], the location area can accommodate approximately 2,050/0.020 =

102,500 users, i.e., about 410 users at each cell on average.

According to the BAS 1 Traffic Model, paging load in the network may reach

0.0083 Paging Commands per second and Erlang traffic [70]. The paging load in the loca-

tion area is then 2,050 E × 0.0083 Paging Command/(s×E) = 17.02 Paging Commands/s

per BTS. Since there are 250 cells in the location area, a simple calculation shows that

the BSC handles 17.02 × 250 = 4,255 Paging Commands/s.

Additional paging load, caused by periodic positioning of N users with tracking

interval of δ seconds, can be expressed as

1.25 ·N/δ (3.11)

where N/δ represents the number of paging attempts per second and the multiplier 1.25
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Figure 3.13: Impact of SMS-based active tracking on paging load. Tracking interval
is denoted δ. BTS paging capacity is 129 Paging Commands per second, BSC paging capacity is
8,500 Paging Commands per second.

provides for the fact that on average 25% of paging attempts result in a second paging [70],

thus the number of Paging Commands is higher.

Figure 3.13 shows the paging load during tracking as a function of the number

of tracked users N and of the tracking interval δ. The number of Paging Commands rises

with the number of tracked users, yet longer tracking interval results in slower growth.

The graph provides a useful insight: since fewer tracked users suffice to exhaust the BSC

capacity before the BTS capacity is exhausted, the bottleneck in the location area is the

BSC. For example, tracking 820 users in the location area with 60 s tracking interval would

disrupt the BSC paging functionality. Although 820 may seem a high number, it represent

only 0.8% of all users in the location area. However, it could mean thousands or tens of

thousands of users in the whole network, depending on the number of location areas in

the network.

Interestingly, under the assumption of positioning an idle mobile terminal in the

circuit-switched domain, similar results hold for all state-of-the-art network-based po-

sitioning methods (review in Section 2.1.3). Since every positioning method needs to

establish a connection with the mobile terminal, the paging procedure is always necessary

to locate mobile terminal’s cell within a last known location area. We conclude that nei-

ther SMS-based active tracking nor any of the state-of-the-art network-based positioning

methods can be used for large-scale tracking scenarios, such as tracking all users of a

mobile network at the same time.
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3.4.5 User Mobility

Mobility of tracked users who reside in the same geographical area, such as em-

ployees of one company or tourists, may represent a significant problem. As demonstrated

in Section 3.4.4, a dense concentration of tracked users at one cell or at the same location

area brings additional signaling load due to active tracking, which might render that par-

ticular network part inoperable. In this section we show that network congestion due to

active tracking, caused by mobility of tracked users and their increasing concentration at

a single cell, can happen on the order of minutes. In addition to that, we examine how

to ease such situation by adopting a leaky-bucket traffic-shaping algorithm on the side of

the Location Server.

We consider a cell with 2-TRX and the SDCCH/8 configuration, serving 300 users,

in which the number or tracked users constantly increases over time as they arrive into the

cell from the neighbor cells. Let λ denote the intensity of arrival of tracked users in the

cell. Figure 3.14 shows, with solid lines, how GoS degrades over time when the tracked

users keep concentrating in the cell. In consistence with results presented in Section 3.4.4,

with λ > 16 tracked users arriving in the cell every minute, the desired SDCCH GoS can

be exceeded in less than 2 minutes. Such intensity of arrivals can be observed for example

before sport events, when tens of thousands of fans meet at a stadium within an hour or

two.

To deal with the adverse impact of active tracking on signaling capacity in the

cell, we suggest adopting a leaky-bucket traffic-shaping mechanism to limit the number of

positioning requests. A leaky bucket [186] can be represented as a queue with the input

flow of positioning requests. Arriving requests are enqueued, and then removed from the

queue at a fixed rate r. Thus, the Location Server generates only r positioning requests

per minute at a cost of lengthening the desired tracking interval δ. Figure 3.14 shows,

with dashed lines, how traffic shaping with rate r = 6 positioning requests/min helps to

keep GoS under the desired limit. However, because the arriving users bring additional

signaling and traffic load, and not only the SDCCH load caused by active tracking, GoS

degrades proportionally to the number of users in the cell nonetheless.

Figure 3.15 depicts the impact of the increasing concentration of tracked users

at a cell on GoS of the traffic channels. Since active tracking brings additional load to

SDCCHs only, the increase in TCH load and therefore the worse GoS is caused purely by

new users in the cells. The TCHs load reaches 2% GoS when 410 users are present in the
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Figure 3.14: Impact of increasing number of tracked users on SDCCH GoS in a cell.
An example for 300 users in the cell, δ = 60 s tracking interval. The arrival rate λ of new users in
the cell varies, traffic shaping is set to 6 positioning requests/min.
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Figure 3.15: Impact of increasing number of tracked users on TCH GoS in a cell.

cell. The most important observation is that the expected SDCCH GoS for a particular

λ hits the SDCCH GoS limit long after the TCH GoS limit is reached. As a result, active

tracking with the leaky bucket traffic shaping mechanism can spare signaling capacity of

the cell, but since arriving users would bring additional voice traffic load, the limiting

factor becomes the capacity of the traffic channels nevertheless.

3.5 Case Study: Improving Roamer Retention

In this section we show how the network-based active tracking can serve as a tool

for roaming optimization, and present our contribution to recognizing weak places in a

mobile network in terms of roaming traffic.

Migration of mobile-network users between different countries and thus between

different networks, simply called roaming, represents a significant revenue for mobile net-
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(a) Records of user’s active tracking. (b) Visualization on a map.

Figure 3.16: User-Cell-ID association tracking output. Figure (a) shows a timestamped
history of user-cell associations for two users. The log contains MSISDN, the mobile number of
the user, Visitors Location Register number from which the provider’s network is recognized, and
Cell-ID of the cell the user was attached to. Mobile phone switched off is recognized by the missing
VLR number, switch to a rival network is indicated by a different VLR number. Visualization on
a map in Figure (b) shows that one user visited 3 cells and then switched the mobile phone off,
while the other user visited 5 cells and then switched to a rival network; the last cell before lost is
depicted with dotted and dashed lines, respectively.

work providers. New means of mobile network optimization, that would bring better

roaming clients retention and thus a competitive advantage, are highly desired by network

operators. Motivated by their needs in detecting places where inroamers (foreign roam-

ing clients that subscribed to their network) leave to a rival network, we have used the

SS7Tracker to track inroamers in a live GSM network in the Czech Republic and delivered

a methodology to detect weak places in the network.

The goal of roaming optimization is to deliver recommendations for network

planners where the weak places in their network are, in terms of possible insufficient

signal coverage or unsuitable inter-cell handover scheme configuration. Network-based

active tracking can deliver a list of cells, which has been visited by an inroamer, and a

place where the user switched to a rival operator or lost the mobile signal (see Figure 3.16).

However, the last Cell-ID before the inroamer is lost to a rival network is not

enough to draw conclusions about the cell’s contribution to roaming losses. The reason

is straightforward: because a user is tracked with period in the order of minutes, the

geographical distance traveled by the user between the last known cell and the place of

the actual loss to a rival network, recognized only later after the tracking interval, represent

a significant measurement bias. Figure 3.17 illustrates that the last tracked cell before lost

is not necessarily the cell that causes the inroamer’s loss. Shortening the tracking interval

is possible, but there is an obvious trade-off between length of the tracking interval and

the number of tracked users, as presented in Section 3.3.3.
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Figure 3.17: Misleading conclusion drawn from the “last cell before lost”. The dashed
line represents a trajectory of a tracked user, the circles mark the real user’s position in a cell.
The last tracked cell before lost is marked with a square. However, the real switch of user’s mobile
terminal to a rival network happened later at different place, denoted by the black cross. This loss
may be caused by a weak signal from neighborhood cells, thus, the weak area spans more cells
(indicated by the dashed cloud).

We address the above observation by formalizing the active tracking process,

stating the problem of finding a weak place, and proposing a cell-weakness metric and an

appraisal function that puts together weakness metrics for cells in the neighborhood to

point out the geographical area of a weak place.

3.5.1 Active Tracking Formalization

Let L ⊂ R2 denote a set of sites (BTS locations) and let C ⊂ N be a set of all

Cell-ID’s in a studied network. For a given cell identifier c ∈ C we denote a cell an area

served by an antenna located at site lc ∈ L. Let U ⊂ N denote a set of users (inroamers)

subscribed to the studied network in the studied region. And let S ⊂ N denote a set of

the following user’s states: subscribed to the studied network (Ss) and subscribed to one

of the rival networks in the studied region (Sr); i.e., S = (Ss ∪ Sr).

The output of an active tracking of a user u is a timestamped history of state-cell

relations

T u = {(ti, si, ci)}ni=1 (3.12)

described as follows: ti denotes a timestamp (consecutive timestamps’ difference corre-

spond to the tracking interval); si ∈ S denotes a state; and

ci =


c ∈ C if si = Ss,

Ø if si ∈ Sr.
(3.13)
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Accordingly, we denote TU =
⋃
u∈U T

u as active tracking of a set of users U . Then

(tui , s
u
i , c

u
i ) corresponds to i-th member of tracking T u.

3.5.2 Problem Statement

The problem of revealing weak locations for roaming traffic is given as follows:

Given a set L of site locations, a set C of cell identifiers, and an active tracking TU of

a set of users U , define an appraisal function FM : (R2 × P(C)) → R incorporating a

cell-weakness metrics M : C → R.

Weak locations will then be determined as a set of coordinates W ⊂ R2 satisfying

∀x ∈W : FM (x,A) > h for a given threshold value h and a set of cells A ⊆ P(C).

3.5.3 Cell-weakness Metric

We incorporate two basic facts in the cell-weakness metric:

(F1) users subscribed to a rival network will not generate any revenue for the provider of

the studied network, and

(F2) places visited by a non-trivial number of users are supposed to achieve earlier return

of resources invested in the network enhancement.

The cell-weakness metric M is then defined as follows:

M(c) =

( F1︷ ︸︸ ︷∑
u∈Uc

∑
(i,j)∈I

|tuj − tui |
)α
·

F2︷︸︸︷
|Uc| , (3.14)

where the set I contains indices of time intervals that a user u spent in rival networks

after visiting the cell c until her return back to any cell in the studied network, i.e.,

I = {(i, j)|i, j ∈ 1, 2, ..., |T u|, i < j;

cui = c ∧ ∀k = i+ 1, i+ 2, ..., j : suk ∈ Sr ∧ suj+1 = Ss}, (3.15)

a set Uc represents the users who visited the cell c,

Uc = {u ∈ U |∃i ∈ 1, 2, ..., |T u| : cui = c}, (3.16)
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Figure 3.18: Visualization of suspicious weak locations. Suspicious weak locations in a
live GSM network in the Czech Republic, according to the cell-weakness metric [79]. Color scale
corresponds to different threshold values of the appraisal function that puts together metric values
at each cell. The measurement has been conducted on 500 roaming users during 6 hours with 2
minutes tracking interval.

and α ∈ R is a parameter which adjusts the weighted influence of the time factor7 of the

metrics.

3.5.4 Appraisal Function

We choose the appraisal function FM (x,A) for cell-weakness metric values from

all cells to be a weighted kernel density estimator [195] with a Gaussian kernel and the

proposed “cell-weakness” metric M as a re-weighting function:

FM (x,A) =
∑
c∈A

M(c)
1

|A|Kh(x− lc) (3.17)

The kernel bandwidth parameter Kh controls the smoothness of the estimate. Using this

type of function, an intuitive visualization of weak places in a mobile network can be

prepared using a 2D-histogram, see Figure 3.18.

3.6 Conclusion

In this chapter, we have presented SMS-based active tracking in the mobile net-

work, a network-based method for obtaining positioning data of users’ terminals. We have

7Note that the time factor can be interpreted in the roamer-day units, explained as one day spent in a
rival network by one roamer; similarly to an industrial unit of production, man-day.
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demonstrated that a practical platform can be implemented and deployed in a live GSM

network, using off-the-shelf computing equipment and common signaling hardware.

We have measured and described working and service response times of the track-

ing platform and adjacent mobile network nodes. These values were used in a discrete

simulation of the tracking process, revealing the key performance characteristics of the

tracking platform in terms of viable combinations of the number of tracked users and the

tracking interval. The baseline implementation is capable of tracking thousands of users

periodically on the scale of minutes.

Our study on SMS-based active tracking brings insight into the principal limita-

tions of the method and how feasible it is to deploy it in large-scale tracking scenarios. On

the basis of tracking measurement in a live network, we have estimated the minimal value

of tracking interval and the maximal number of positioning retrievals achievable with the

limited connection throughput. A detailed analysis of mobile network constrains revealed

that the mobile-network radio access technology is the most limiting factor in active track-

ing because the number of SMSes and paging requests deliverable per transceiver of the

radio access network cannot be increased beyond a relatively low technology-specific value.

Nevertheless, considering the fact that there are thousands of transceivers in the mobile

network, the total number of tracked users in the whole network could be on the order of

tens of thousands.

The final part of the chapter presents a particular use-case of active tracking on

roaming optimization in mobile networks. We have proposed a cell-weakness metric to

express the losses in roaming clients from the cells, and a demonstrative visualization of

weak places in the network.

The SMS-based active tracking represents a solution for tracking a large number

of mobile network users with unprecedented temporal granularity. From the research

perspective, it can be used to build and verify accurate models for user mobility within

mobile networks as well as among different geographic areas. Thanks to its fruitful features,

mainly that it does not depend on user communication mode or terminal type, the active

tracking may be adopted by a broad class of applications: network diagnostics, crime

prevention, energy-consumption control, urban planning or sociological studies.
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Chapter 4

Extending Utility of Passive

Tracking Data

Passive tracking data, mainly the Call Data Records (CDRs), represent a vast

amount of easy-to-collect data about every mobile network user, for they are automatically

generated by telecommunication systems and archived for billing purposes and network

troubleshooting. Whereas spatial precision of CDRs is determined the network-cell size,

the accuracy in temporal dimension is substantially low. The reason is that the position

of a user is recorded only at places where the user performs a communication event (SMS,

call, data session). An average time between two communication events is 8.2 hours, as

measured by [88] on a large-scale sample, which means that user’s location is known on

average only three-times during a day. During time with no communication activity it is

not clear where the user is geographically located.

CDRs constitute an event-based motion description of a mobile user in space and

time—we denote it a call trajectory and the communication event simply a call. It is a

sequence of places, related to a single user, where a call (or text message) has been made

(sent) or received, thus describing user’s “hop” movements as he/she makes call after call.

A natural refinement of the call trajectory is its corresponding ground-truth movement

trajectory, i.e., a continuous trace with geographical coordinates of user’s position (see

Figure 4.1). GPS traces of users’ movement provide great spatiotemporal accuracy but

limited availability: one study found only 4.5% user-time coverage in tests with the device

carried in users’ pockets during a day [126]. A movement trajectory from active tracking

of network users by the network provide offers identical spatial accuracy as CDRs but is
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(b) Movement trajectory
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(c) Trajectories superimposition

Figure 4.1: Call and movement trajectories explanation. (a) Six communication events
(square marks) constitute a call trajectory in a space-time cube. The x - and y-axes represent
space, the z -axis represents time. Line segments connect consecutive communication events—
vertical line segments stand for stay at a certain location, sloped line segments indicate movement.
(b) Movement trajectory of the same user, in this example made from cell transitions. Each dot
represent geographical location and time of a cell the user was attached to. (c) Superimposition
of trajectories clearly shows that the user does not follow a simple straight line between two
consecutive communication events.

advantageous in higher granularity in the temporal dimension. However, its acquisition

is bounded by network technological limits [80] and tracking costs [20]. The CDR-based

call trajectory, despite it’s temporal sparseness, is thus often the only source for numerous

contemporary studies, such as on virus spreading [197], individual mobility and calling

patterns [88, 99], urban and transport planning [194, 196], or network design [211].

Modeling techniques are used to describe the expected user position in between

calls. Linear interpolation, a straight line between two points in space and time, is popular

in movement objects databases [92]. However, this method is accurate only for sufficiently

dense sampling of events, which calls definitely are not—for example, every other mobile

user calls less than once per day [211]. Another model, the space-time prism [94], repre-

sents locations reachable by users, given only their origin and destination positions and

maximum speed. Unfortunately, the maximum speed cannot be set for all users in general,

which limits the model applicability.

In this chapter we present a probabilistic model that describes user’s position

between their consecutive communication events (call or SMS), the Inter-Call Mobility

(ICM) model. This model enables sampling of user’s geographical location at a particular

time in between communication records and, vice versa, given geographical coordinates,

probability of user’s presence at a particular position over time can be derived. The

model is based on a comparison between two representations of user’s movement: the

coarse-grained, CDR-based call trajectory, and the movement trajectory derived from

ground-truth network-cell transitions. The rest of this chapter is organized a follows:
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First, in Section 4.1 we shortly present the dataset we used. Second, we describe major

observations of user inter-call mobility in Section 4.2. Next, in Section 4.3 we show how

the model is build from the dataset and demonstrate how to use it with an arbitrary

CDR dataset. In Section 4.4 we evaluate model’s precision by comparing it with other

state-of-the-art models. Finally, in Section 4.5 we show model’s applicability on example

of inferring proximity probability of two users.

4.1 Data Acquisition and Processing

To study users’ inter-call movement, both call trajectory and its corresponding

movement trajectory are needed. Mobile network providers, who may be willing to share

CDR databases, do not record actual positions of their users for they lack the required

trace-collecting technology and, in fact, do not need such fine-grained information. Pub-

licly available datasets (e.g. in [121]) seldom contain both the call trajectory (CDRs with

geographical coordinates of the network-cells) and a corresponding finer-grained movement

trajectory.

At the time of writing this thesis, there was only one publicly available dataset

providing data suitable for inter-call mobility analysis—the Reality Mining Dataset (RMD).

The RMD is a real-world trace recorded at MIT that contains history of communication

activity and network associations of mobile phones used by many volunteer individuals

over several months [68]. This dataset contains call records, network-cell transitions and

other records, but it originally lacks the geographical coordinates of user mobility—either

GPS traces or positions of mobile network cells towers the users were attached to.

We have spatially extended the RMD by pairing cell identifiers in users’ traces

with their corresponding geographical coordinates (obtained from the Location API by

Google [49]), we removed spatial outliers using a novel heuristic approach to agglomerative

clustering, and provided a methodology to extract representative chunks of trajectories.

This process, described in detail in Appendix A, delivers users’ call trajectories and their

corresponding ground-truth movement trajectories represented by the cell transitions (see

an example in Figure 4.2).

In order to deliver a general description of user’s position in between communi-

cation records, we describe user’s mobility and detours relative to the inter-call distance.

Therefore, in the rest of this chapter, we study only pairs of consecutive communication
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Figure 4.2: Difference between call and movement trajectories. The difference is demon-
strated on a trip between San Jose and San Francisco downtown made by a user from the Reality
Mining Dataset [68]. Call trajectory connects places of two consecutive communication activities:
at 4 a.m. near San Jose, and around 7 p.m. in San Francisco downtown. Movement trajectory
represents user’s transitions between mobile network cells. It shows that around 2 p.m. the user
moved to Stanford and went back to San Jose at about 5 p.m.

records at distinct places. Such selection is also based on our observation from the RMD

that in the time interval between two consecutive communication events at the same place,

a user does not, on average, depart from a call place further than 0.2 km (0.99-quantile

≈ 0.8 km). Therefore we can assume users to be static between communication events at

same places. For our purposes, we consider distinct places to be places more than three

kilometers apart. Conclusions drawn from lower inter-call distance can be affected by the

accuracy of Cell-ID positioning method that delivers user’s position only as an approxima-

tion of the geographical coordinates within a cell, while the exact position is not known1.

We do not address movement between distinct call places less then 3 km apart for the

limited Cell-ID-based positioning accuracy.

We work with an aggregated view of user movement between calls, derived as

follows: first, we divide each call trajectory into pairs of consecutive events, which are

geographical positions at the time a call (or text message) has been made (sent) or re-

ceived2 (see Figure 4.3a). The call trajectory reduces to a straight line between two points,

1Several studies, such as [189, 212], demonstrated the expected positioning error of Cell-ID-based po-
sitioning to be 400–500 meters in urban areas, 700 meters in suburban and 1 km in rural areas.

2For the lack of data-active users in the dataset, we have used only call and text message communication
events. It is obvious that data sessions in Call Data Records could significantly improve the accuracy of
user’s position in time [172], for the data-active users generate more fine-grained footprint in network
records in time. However, even for data connection that is always on, a mobile device with no data to send
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Figure 4.3: Example of user’s inter-call trajectories aggregation. (a) Four call places
divide the call trajectory in three segments, the movement trajectory is divided by call segments in
three inter-call trajectories. Each segment determines a separate reference frame (dashed boxes),
the orientation of the coordinates is given by the direction of the segment. (b) Each inter-call
trajectory is translated to coordinates origin. (c) Inter-call trajectories are scaled into a common
reference frame, a normalized space-time cube.

but the corresponding movement trajectory represents a fine-grained inter-call trajectory.

Further on, we transformed each inter-call trajectory to have a common reference frame

(Figure 4.3b). Finally, we normalized the trajectories to have uniform origin A and desti-

nation B in space and time, (xA, yA, tA) = (0, 0, 0) and (xB, yB, tB) = (1, 0, 1), as indicated

in Figure 4.3c.

In the Reality Mining Dataset, there are 901 inter-call trajectories, made by

56 users out of the 94 user sample Figure 4.4 shows these inter-call trajectories aggregated

in the common reference frame. Such normalization brings an aggregated distance-time

view of a position in between calls, but, at the same time, does not limit further inference

from the data and allows for easy application to arbitrary CDRs, as demonstrated later

in Section 4.3.4.

resides in a standby mode which implies that no information about its current cell is available within the
current location area.
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Figure 4.4: Aggregated inter-call trajectories. Each point repre-
sent user’s position between calls (places A and B in normalized common
reference frame) after aggregation of inter-call trajectories from the Re-
ality Mining Dataset.

A

B

Figure 4.5: Spatio-temporal characteristics of inter-call move-
ment. Kernel density estimation of the spatio-temporal probability dis-
tribution of users’ position between calls (places A and B in normalized
common reference frame). Isosurfaces enclose 0.5- and 0.9-quantiles (dark
and light gray, respectively).

A B

Figure 4.6: Inter-call movement in time-slices. Kernel density estimation of the PDF of finding a user at a position (x, y) at a time t between two
consecutive communication records at distinct places A and B. Hot places represent higher concentration of users. The 2D-histogram bin size is 0.01×0.01
of normalized inter-call distance.



4.2. Inter-Call Mobility Observations

4.2 Inter-Call Mobility Observations

In this section we examine the spatio-temporal properties of user’s movement

between consecutive calls at distinct places, based on the aggregated inter-call trajectories

from the Reality Mining Dataset, and we describe in detail our findings in the temporal

and spatial dimensions separately.

4.2.1 Spatio-temporal Analysis

Figure 4.5 shows the kernel density estimation of the spatio-temporal probability

distribution of user’s inter-call movement: as time passes, users move from origin A towards

destination B and take detours from the straight A−B direction. The distribution shows

three important aspects of inter-call mobility:

1. Unskewed behavior in spatial dimension. About half of users closely follow

the direct A − B linear interpolation line. This is observable in the symmetry of

the 0.5-quantile projection on the xy- and yt-coordinate planes—it implies unskewed

behavior with respect to detours from the straight A−B course.

2. Straight course between calls. Some users take approximately the shortest path

from the origin call-placeA to the destination placeB. This is indicated by symmetry

in the spatial dimension (xy-coordinate plane) which does not change in time (yt-

coordinate) and the fact that the 0.5-quantile projection on the xt plane encloses

the direct A−B interpolation line.

3. Staying behavior at call places. From the shape of the projection on the xt-

coordinate plane at points xA = 0 and xB = 1 it follows that some users tend to

stay at the origin call-place A before they move to destination B, or they leave the

origin soon after the act of communication and stay in the vicinity of the destination

place B. This may be more obvious from Figure 4.6 that depicts time-slices of

the volumetric representation (in Figure 4.5) and thus represents the conditional

Probability Density Function (PDF) of finding a user at a position (x, y) at time t.

For example, at time t = 0.5 (half-way in between calls), about 12% of all users are

still present at the origin call-place and 17% have already arrived at the destination

call-place.
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Figure 4.7: Schematic representation of
inter-call trajectory. Trajectories between
two call places A and B, for the sake of clarity
with the spatial dimension limited to x coor-
dinate. Time tdep denotes departure after call,
tarr is time of arrival before call.
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Figure 4.8: Empirical CDF of the propor-
tion of inter-call time T : τdep = (tdep− tA)/T ,
τarr = (tB − tarr)/T .

4.2.2 Temporal Dimension Analysis

In this section we describe in detail the staying behavior at call places, introduced

in Section 4.2.1.

We consider a user to be leaving the origin call-place A = (tA, xA) at time tdep

(see Figure 4.7) when he/she leaves the δ-neighborhood of xA and does not return back

into it before the consecutive act of communication at the destination call-place B =

(tB, xB). This “not returning back” request naturally excludes the so-called cell oscillation,

a situation in which the mobile phone of a static user attaches itself to a different cell that

can be even hundreds of meters apart. Similarly, the arrival time tarr at the destination

call-place B = (tB, xB) is counted as the first entering of the δ-neighborhood of xB after

the preceding communication at the origin call-place A. We use δ = 0.5 km as we consider

it a reasonable value for the limited Cell-ID-based positioning accuracy, caused by variable

cell size within urban and rural areas, albeit we understand that such threshold may be

inconvenient for specific use-cases.

Figure 4.8 shows the CDF of τdep and τarr, the proportions of inter-call time T in

which users leave the origin (after the call) for the last time and arrive at the destination for

the first time (before making the call), respectively. With this simple classification, basic,

but very useful observations about inter-call mobility can be made: on average, after 29% of

inter-call time a user does not return to the original call place anymore, and he/she reaches
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the consecutive call place by 67% of inter-call time. More precisely, for another example,

if a user communicates at work at 6 p.m. and the consecutive call record is at 8 p.m.

from home, there is a 50% chance that he/she left work after 6:18 p.m.: T = 120 minutes,

P (τdep > τ ≈ 0.15) = 0.5 (see Figure 4.8), thus τdep · T > τ · T = 0.15 · 120 = 18 minutes

and so tdep > 6:18 p.m.. Similarly, with the same chance, he/she arrived home before

7:36 p.m.: P (τarr ≤ τ ≈ 0.8) = 0.5 thus τarr · T ≤ τ · T = 0.8 · 120 = 96 minutes and so

tarr ≤ 7:36 p.m..

The τdep and τarr can be approximated by beta distribution:

P (τ∗) =
τα−1
∗ (1− τ∗)β−1

B(α, β)
=

τα−1
∗ (1− τ∗)β−1∫ 1

0 u
α−1(1− u)β−1du

, (4.1)

with parameters α, β in Table 4.1. We have performed the Kolmogorov-Smirnov (KS)

test and compared empirical data with the fitted distribution and 5,000 synthetic data

sets generated from the best beta fit. At α = 0.05 significance level the hypothesis that

empirical and synthetic data are from the same distribution was rejected (p-value 0.0438

for τdep and p-value 0.0236 for τarr). Despite this fact, we consider this approximation close

enough to rapidly improve time accuracy of CDR-based deduction of user’s presence at

call places over time: from a single timestamp of communication activity to an analytical

expression of probability distributions of τdep (departure from call place) and τarr (arrival

at consecutive call place).

4.2.3 Spatial Dimension Analysis

Because users do not move linearly over time between places of communication,

the näıve approach of expressing user’s position with the call trajectory and linear inter-

polation only suffers from a significant positioning error.

Figure 4.9 explains how much the “expected” position of a user, computed from

the linear interpolation betweenA andB, and the actual position of a user, differ. It follows

that about 20% of real user’s positions are more than 10 km away from the corresponding

τdep τarr
α 0.39± 0.04 1.11± 0.10
β 0.96± 0.11 0.58± 0.06

Table 4.1: Beta distribution parameters with 95% confidence intervals.
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point at the straight A − B line. In other words, relative to the total distance between

calls, 20% of real user’s positions is more than half the inter-call distance away from the

position “expected” by the linear interpolation (see inset in Figure 4.9).

Figure 4.10 shows the positioning error as a function of time. The relative distance

between call and movement trajectory rises in the interval from 0 to 0.5 of inter-call

time and culminates exactly in the middle of the inter-call period. However, the highest

deviation of positioning error happens at relative time 0.2 and 0.8, for some users move

soon after communication at the next-call place, and some stay at the origin place and

move shortly before the next communication event, respectively. This observation supports

our evidence about user’s staying behavior at call places, described in Section 4.2.2.

4.3 Inter-Call Mobility Model

In this section we present the Inter-Call Mobility (ICM) model—a spatio-temporal

probability distribution of user’s position in space and time between two consecutive com-

munication records at distinct places. The ICM model, simply an approximation of the

aggregated inter-call trajectories of the RMD user-pool, is based on a finite Gaussian

mixture model [145].
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4.3.1 Gaussian Mixture Model Primer

A Gaussian mixture model (GMM) is a weighted sum of Gaussian PDFs, which

are called mixture components. Let Z denote a set of d-dimensional random variables z,

i.e., Z = {z1, z2, . . . ,zN} where zi ∈ Rd. The PDF of Gaussian mixture model of K

components is given by

p(zi;θ) =

K∑
k=1

πkN (zi;µk,Σk), (4.2)

where πk is a mixing proportion or weight of the kth component N (zi;µk,Σk), which is

a Gaussian distribution defined by mean vector µk and covariance matrix Σk:

N (zi;µk,Σk) =
1√

(2π)d det(Σk)
e

1
2

(zi−µk)TΣ−1
k (zi−µk). (4.3)

The mixing proportion πk can be interpreted as a priori probability that a value of a

random variable comes from the kth component, thus 0 ≤ πk ≤ 1, (k = 1, . . . ,K), and∑K
k=1 πk = 1. A GMM of K components is completely defined by the vector θ with all

unknown parameters, represented as

θ = (π1,µ1,Σ1, π2,µ2,Σ2, . . . , πK ,µK ,ΣK). (4.4)

The parameters θ of the mixture model are usually estimated by the Expectation-

Maximization (EM) algorithm [56]. For a given number of components K, it performs

maximum-likelihood estimation of unknown parameters. The number of components K in

a Gaussian mixture must be carefully determined. More components yield better fit, but

more parameters are needed to fully define the mixture: the GMM of K components with

non-restricted covariance matrices is given by n = K(d+ 1
2d(d+ 1)) + (K−1) parameters,

where d is the dimension of observation points. To select the “best” model from a set of

candidate models with different number of components, various criteria are available (e.g.

in [37]). The most commonly used are the Akaike Information Criterion (AIC) [22] and

the Bayesian Information Criterion (BIC) [180].

4.3.2 Fitting GMM to the Reality Mining Dataset

We represent aggregated inter-call trajectories from the RMD as a dataset Z =

{zi}Ni=1 of N spatio-temporal records zi ∈ R3, where each datapoint zi = {zs,i, zt,i}
comprise spatial coordinates zs,i ∈ R2 and a temporal value zt,i ∈ R. The initial estimate
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Figure 4.11: Gaussian mixture model fits.

of mixture parameters θ, needed by the EM algorithm, is given by K-means clustering.

This technique divides the data in K partitions, according to the point-to-cluster-centroid

distances, from which the initial estimation of πi, µi, and Σi are computed. Finally, we

run the EM algorithm and retrieve the mixture parameter estimates and the values of

model-fit criterions.

We fitted a set of GMMs with K = 5, . . . , 20 components to the RMD inter-call

trajectories and compared the resulting fit criteria AIC and BIC in Figure 4.11. Since a

lower criterion value indicates a better fit, a model with the lowest criterion value is usually

selected. In our case, it is the model with 19 components, which are fully described by

nK=19 = 189 parameters. Nevertheless, we prefer the model with 10 components, for it

needs significantly lower number of parameters (nK=10 = 99) at a cost of only slightly

worse fit. The parameters are given in Table 4.2. Their standard error, estimated with

parametric bootstrap ([145], p.68–70) with 1200 replications, is approximately three orders

of magnitude lower than the parameter value.

4.3.3 Inter-Call Mobility Model Definition

We define the ICM model as follows. Given the origin position (xA, yA, tA) =

(0, 0, 0) and the destination position at (xB, yB, tB) = (1, 0, 1) , the probability Φ(x, y, t)

of finding a user at coordinates (x, y) ∈ R2 at a time t ∈ R, 0 ≤ t ≤ 1, is defined as a

Gaussian mixture

p(z = (x, y, t)T ;θ) =
K∑
k=1

πkN (z;µk,Σk) (4.5)

of K = 10 components with parameters θ in Table 4.2.

Figure 4.12 provides a visual representation of the ICM model. As the model

approximates the inter-call trajectories of the RMD user-pool, its shape is similar to the

estimation in Figure 4.5. Detailed model evaluation is presented in Section 4.4.
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Figure 4.12: Inter-Call Mobility model. A spatio-temporal probabil-
ity distribution of user’s position between two communication records at
distinct places A and B. Isosurfaces enclose 0.5- and 0.9-quantiles (dark
and light gray, respectively). Dashed lines restrict areas of worse fit.
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B

Figure 4.13: Components of the ICM model. There are 10 three-
dimensional Gaussian components whose mixture constitutes the ICM
model. The orthogonal projections on xt- and xy-coordinate planes are
depicted in the upper left and lower right corner, respectively.

k πk µk · 102 Σk · 103

1 0.0418
[

0.00
0.00
21.64

] [
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 43.11

]
2 0.0314

[
0.01
−0.03
22.75

] [
0.00 0.00 0.00
0.00 0.01 −0.01
0.00 −0.01 46.12

]
3 0.0844

[
0.70
0.10
34.47

] [
0.67 0.02 0.07
0.02 0.48 0.20
0.07 0.20 53.54

]
4 0.0890

[
11.04
0.07
15.97

] [
13.61 −0.08 3.23
−0.08 3.09 0.11
3.23 0.11 6.61

]
5 0.3590

[
47.84
−0.25
48.95

] [
141.13 −0.98 15.05
−0.98 23.05 0.79
15.05 0.79 46.94

]

k πk µk · 102 Σk · 103

6 0.0514
[
49.66
0.00
42.86

] [
96.17 0.00 52.10
0.00 0.00 0.00
52.10 0.00 71.09

]
7 0.0419

[
58.97
−7.55
48.67

] [
694.24 36.82 39.27
36.82 367.05 −16.10
39.27 −16.10 64.53

]
8 0.0944

[
91.77
0.13
80.40

] [
11.40 −0.23 2.61
−0.23 2.21 0.24
2.61 0.24 12.59

]
9 0.0532

[
99.83
0.10
68.52

] [
0.08 −0.01 −0.11
−0.01 0.05 −0.08
−0.11 −0.08 54.56

]
10 0.1535

[
100.00
0.00
78.20

] [
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 43.85

]
Table 4.2: Inter-Call Mobility model parameters. An indication of position and shape of the components is depicted in Figure 4.13.
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4.3.4 Using the Inter-Call Mobility Model with CDRs

The ICM model can be easily used with an arbitrary CDR dataset. Because

the ICM model uses normalized coordinates, a transformation of the model’s origin and

destination places to the particular CDR-based call places is needed. Such transformation

exists: the multivariate Gaussian distribution is invariant under affine transformation

with an invertible matrix and thus the ICM model, as a mixture of multivariate Gaussian

distributions, allows for this transformation as well. Affine transformation of Gaussian

distribution works in the following way: if Y = c + DX is an affine transformation of

X ∼ N (µ,Σ) with translation vector c ∈ Rm×1 and transformation matrix D ∈ Rm×n,

then Y ∼ N (c+Dµ,DΣD−1).

Let us now have the CDRs, i.e., a sequence of time and place of user’s com-

munication activity, and let us select any two consecutive records A = (xA, yA, tA) and

B = (xB, yB, tB) at distinct places, i.e. (xA, yA) 6= (xB, yB). Then the joint transforma-

tion for all Gaussian mixture components in the ICM model is given by the translation

vector c and the transformation matrix D = SR that combines scale (S) and rotation

(R) matrices:

c =

[
−xA
−yA
−tA

]
S =

[
d|xy(A,B) 0 0

0 d|xy(A,B) 0
0 0 tB−tA

]

R =

[
cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

]
=

[ xB−xA
d|xy(A,B)

− yB−yA
d|xy(A,B)

0

yB−yA
d|xy(A,B)

xB−xA
d|xy(A,B)

0

0 0 1

]
, (4.6)

where d|xy(A,B) =
√

(xB − xA)2 + (yB − yA)2 is Euclidean distance in spatial dimension

and ϕ denotes the angle of rotation counter clockwise about the origin.

The probability ΦAB(x, y, t) of finding a user at coordinates (x, y) ∈ R2 at a

time t ∈ R, tA ≤ t ≤ tB is then a Gaussian mixture from Equation 4.5 with parameters

θAB = (π1, c+Dµ1,DΣ1D
−1, π2, c+Dµ2,DΣ2D

−1,

. . . , πK , c+DµK ,DΣKD
−1), (4.7)

where πk, µk, and Σk come from the original ICM model parameter vector θ (Table 4.2).

Two main applications of the ICM model—sampling users’ positions between

their calls and conditioning in spatial and temporal dimensions—are described in detail

in the following paragraphs.
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Figure 4.14: Example of sampled user’s position. Each black dot represents a probable
position of a user between call places according to the ICM model.

Estimating user’s position

Sampling from the ΦAB(x, y, t) distribution delivers user’s position between the

communication events at places A andB. It can be achieved by common means of sampling

from a mixture model in two steps: first, probabilities πk represent the probability that a

sampled point comes from the kth component; second, mean vector c+Dµk and covariance

matrix DΣkD
−1 define the kth component, a three-dimensional normal distribution from

which sampling is usually done by applying the Cholesky decomposition.

Figure 4.14 shows an example of 500 user’s positions sampled from the ΦAB(x, y, t)

distribution between two real-world call places A = (14.86, 50.31, 6:27:41 PM) and B =

(15.16, 50.55, 6:58:08 PM).

Conditioning in the Spatial Dimension

To estimate user’s position at a particular time t, i.e., where the user is at a

particular time in between consecutive calls, the ICM model allows for expressing condi-

tional spatial distribution p(zs|zt = t). For each mixture component N (z;µk,Σk), the

corresponding spatial and temporal components can be expressed separately as

µk =

µs,k
µt,k

 , Σk =

Σss,k Σst,k

Σts,k Σtt,k

 . (4.8)

Given a temporal value t, the expected spatial distribution Φt(x, y) is then

p(zs = (x, y)T |zt = t) =

K∑
k=1

βkpk(zs|zt), (4.9)
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Figure 4.15: Example of conditioning in the temporal dimension. Φt(x, y) for different
values of t.

where βk = p(k|zt) is the probability that the kth component contains values for a partic-

ular temporal value zt,

βk =
p(k)p(zt|k)∑K
i=1 p(i)p(zt|i)

=
πkN (zt;µt,k,Σtt,k)∑K
i=1 πiN (zt;µt,i,Σtt,i)

, (4.10)

and pk(zs|zt) is the expected spatial distribution of the kth component given a temporal

value zt,

pk(zs|zt) = N (zs; µ̂s,k, Σ̂ss,k), (4.11)

µ̂s,k = µs,k + Σst,k(Σtt,k)
−1(zt − µt,k), (4.12)

Σ̂ss,k = Σss,k −Σst,k(Σtt,k)
−1Σts,k. (4.13)

Figure 4.15 shows and example of the expected spatial distribution Φt(x, y) for

different values of t, derived as explained above.

Conditioning in the Temporal Dimension

For the case when the time estimation for a particular position is needed, i.e.,

one wants to know when a user will be at a particular position, we derived the expected

temporal distribution Φxy(t) for spatial coordinates (x, y):

p(zt|zs = (x, y)T ) =
K∑
k=1

γkpk(zt|zs), (4.14)
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where γk = p(k|zs) is the probability that the kth component contains values for particular

spatial coordinates zs,

γk =
p(k)p(zs|k)∑K
i=1 p(i)p(zs|i)

=
πkN (zs;µs,k,Σss,k)∑K
i=1 πiN (zs;µs,i,Σss,i)

, (4.15)

and pk(zt|zs) is the expected temporal distribution of the kth component given spatial

coordinates zs,

pk(zt|zs) = N (zt; µ̂t,k, Σ̂tt,k), (4.16)

µ̂t,k = µt,k + Σts,k(Σss,k)
−1(zs − µs,k), (4.17)

Σ̂tt,k = Σtt,k −Σts,k(Σss,k)
−1Σst,k. (4.18)

4.4 Inter-Call Mobility Model Evaluation

In this section we discuss the ICM model’s fit to the empirical RMD data, and

compare the ICM model with an existing state-of-the-art model.

4.4.1 Goodness-of-fit Test

We performed a goodness-of-fig (GOF) test to examine the hypothesis that data

sampled from the ICM model and the original RMD data share the same parent distribu-

tion, i.e., that the model provides true description of user’s inter-call positions. We per-

formed a multivariate distribution-free GOF test, based on the mixed-sample method [98].

The hypothesis that the RMD-empirical and the ICM-model distributions are

identical was rejected at 95% confidence level, i.e., from a statistical point of view the two

distributions differ. Such a result is not so surprising because even a visual comparison of

Figures 4.5 and 4.12 shows that the model is an approximation of the empirical data. The

model fits worse at the very beginning and end of the time budget (about the first and

last 5% of total inter-call time), as it over-generalizes the position in the spatial dimension

around the origin and destination places of the normalized inter-call trajectories.

More than 10 components (Gaussian mixtures) in the model would bring a bet-

ter fit, but would add another 10 parameters per component and a risk of overfitting.

We observed better fit when multivariate Student t-mixtures [145] were used instead of

Gaussian ones in the ICM model. However, additional parameters are needed for the

description of t-mixtures and working with a t-mixture model (sampling, conditioning)
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is more complicated. Therefore, we sacrifice the accuracy of the fit for the ICM model’s

fruitful features of sampling from Gaussian mixtures, conditioning in both spatial and

temporal dimensions and simple application to any CDR traces.

We have used the Gaussian mixture model for it is a well-established method of

statistical modeling, and it yields far the most accurate results among other approaches

that we applied to approximate the aggregated inter-call trajectories of the RMD user-pool.

A Hidden Markov Model [170] may be useful in better description of temporal variations

of the data as it captures the transition probabilities between the Gaussian mixtures.

However, such approach describes only a fixed number of temporal vales and is thus more

suitable for learning and direct application, rather than building a general model. Inspired

by Winter [203], who described his mobility model as a bivariate Gaussian distribution

parameterized by a function of time, we tried to fit each time-slice of inter-call mobility

distribution (Figure 4.6) separately as a two-dimensional Gaussian mixture. However, it

led to an unacceptably wide range of standard errors in distribution parameters and thus

we use the three-dimensional GMM.

4.4.2 Comparison with Other Models

To the best of our knowledge, there are no existing models describing inter-

call mobility. Instead, only models that explain user’s movement between two places in

general are available, but they lack conditioning on communication activity at origin and

destination places. Such models are as follows:

� Linear weighted interpolation [92], simply a straight line between two places, do not

describe the real user’s position precisely enough as demonstrated in Section 4.2.3.

� Space-time prism [94] represents positions reachable by a user in space and time as

a volume in a space-time cube that a user is able to visit given his/her origin and

destination positions, time budget, and maximum speed. Space-time prisms allow

only for evaluation of binary statements: for example, the potential for encounter

between two moving users exists if their corresponding space-time prisms intersect.

Therefore, the space-time prisms are not comparable with the probabilistic ICM

model.

� Probabilistic extension of space-time prism is the current state-of-the-art model by

Winter [203]. It describes a non-uniform probability distribution within the space-
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A

B

Figure 4.16: Probabilistic extension of space-time prism. Theoretical model of spatio-
temporal probability distribution of user’s position between two distinct places (A and B) by
Winter [203]. Isosurfaces enclose 0.5-, 0.9- and 0.99-quantiles (dark to pale blue, respectively).
Figure show distribution for user’s maximum normalized speed vmax = 1.3.

time prism (see Figure 4.16). The model is based on a biased random walk that

creates a bivariate normal distribution of user’s position at time t. Winter’s model

holds under the assumption that movement from origin to destination is linear over

time. It implies that users are locally not more likely to be faster than slower (or

vice versa) when compared to their average speed. Therefore, the observation of

the ”staying at call places” behavior of users within RMD (in Section 4.2.2) is in

high contrast with the assumptions of the Winter’s model, and is the reason why

the shapes of volumetric representations in Figures 4.5 and 4.16 differ so strikingly.

Figure 4.17 shows the root-mean-square error (RMSE) measure of difference

between the observed spatial probability distribution from the RMD, computed for 50

linearly-spaced time moments between calls, and the distributions given by different mod-

els. Based on this measure, the ICM model fits the empirical RMD data better than both

the Linear interpolation approach and the state-of-the-art theoretical model by Winter.

4.5 Case Study: Inferring Proximity Probability

In this section we show how the Inter-Call Mobility model can be used for inferring

proximity probability of mobile network users, based on their Call Data Records. We

demonstrate, on the example of users’ proximity probability in two hypothetical scenarios,

that using the ICM model yields better performance than the general, theoretical model
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Figure 4.17: Comparison between models. The lower the RMSE value, the better accuracy
of the model.

by Winter [203]. This is caused mainly by the fact that the ICM model captures the

time variability in late departures and early arrivals, which is crucial for inferring user’s

position in between communication events.

Proximity probability is important for example in studies on Bluetooth viruses

spreading [197] or opportunistic data dissemination [97]. Unlike the authors in [197], who

computed the proximity probability from the expected number of users in a mobile network

cell and the area covered by the cell, we use inter-call mobility characteristics3. Given

CDRs, the ICM model can deliver probability of user’s position between consecutive calls

at particular time t, as we demonstrated in Section 4.3.4. By sampling a large number of

positions between call places for two different users, and measuring the distance between

sampled pairs of position, the proximity probability can be calculated as a fraction of

tuples with distance shorter than a value given by a proximity definition.

By the term proximity we understand that two users are closer then x percent of

the inter-call distance. Specifically, example in Figure 4.18 shows 5% proximity probabil-

ity computed from the ICM model, Winter’s model, and from the estimation of inter-call

distribution from the RMD in Figure 4.5. The probability was computed using a Monte

Carlo simulation with 107 sampled positions at 50 linearly-spaced time moments between

calls. The overall proximity probability, computed as integration over the temporal do-

main, would result in only a single number, but we aimed to show where, over the inter-call

time, the highest difference between mobility models and empirical data is. Figure 4.18

shows the proximity probability of two users between their calls in two hypothetical sce-

narios:

3Note that the distances considered in our proximity modeling are greater than those of Bluetooth
proximity, but we are more concerned with general observations on modeling user proximity rather than
this particular application.
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Figure 4.18: Proximity probability of two users. Users u and v travel between their calls at
places Au, Bu and Av, Bv in two hypothetical scenarios (a) and (b). We assume that both users
depart and arrive at the same time and travel the same distance.

Scenario (a), in which users travel towards each other, shows that the RMD data demon-

strate several times higher proximity probability than the Winter’s model, over majority

of time. It is a consequence of user’s staying behavior at communication places: both users

can simply meet even at the very ends of the time budget, at the origin and destination

places. Shapes of the ICM model and of the RMD data differ slightly, mainly because the

Gaussian components fail in capturing rapid changes in space-time domain.

Scenario (b), with non-identical user origin and destination places, shows a significantly

lower meeting probability for the ICM model and the RMD in comparison to Scenario

(a). It follows from the fact that a meeting chance at origin or destination places, here

impossible, contributes highly to the overall proximity probability. The assumption of lin-

earity over time in Winter’s model causes much higher meeting likelihood in the path-cross

area—but in reality users tend to stay at their origin and destination places.

Note that the proximity probability in both scenarios is so low because we do not

use any geographical background (roads, streets) to support the RMD data or the ICM

model with - it is a general description of movement in space.

4.6 Conclusion

In this chapter, we have introduced the Inter-Call Mobility model, a spatio-

temporal refinement of modeling user’s movement between consecutive mobile communi-

cation records. It significantly improves the CDR-based deduction of user’s presence at

some place in time: from a single timestamped call coordinate to a probabilistic distri-
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bution of user’s position between calls. Using a finite Gaussian mixture model, the ICM

model approximates the ground-truth of users’ inter-call movement, mined from the Re-

ality Mining Dataset. It reflects three main findings in inter-call mobility: (1) unskewed

behavior in spatial dimension, (2) straight course between calls (3) staying behavior at

call places.

The ICM model outperforms two existing state-of-the-art models of movement in

space and time, the linear weighted interpolation and the probabilistic extension of space-

time prism, yet mainly because the assumptions of the models are incompatible with the

characteristic inter-call behavior of the users.
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Chapter 5

Exploring the Limits of

Crowdsensing

In this chapter we investigate the limits of crowdsensing in discovering the map-

ping of mobile network Cell-IDs to geographic locations. More specifically, we focus on

characterizing sufficient number of users to cover a given fraction of cells in a cellular

network during a limited time.

Crowdsensing techniques are often utilized by communication market players such

as Google and Apple to discover the structure of mobile networks. GPS-enabled phones

of customers send their current GPS coordinates and Cell Identifiers (Cell-IDs) to a server

that collects, clusters, fingerprints, and stores such data from all customers. Such a Cell-

ID database can subsequently lead to the geolocation: given a Cell-ID, an approximated

position inside the cell is returned. This enables services such as localization or friend

proximity lookup, even for mobile phones without GPS receivers.

In this chapter we solve the problem of discovering the cells in a network, which

means that only one GPS coordinate per Cell-ID is considered sufficient to represent the

cell position. However, in a Cell-ID database, more GPS measurement could be associated

with one Cell-ID and vice versa, even for one GPS coordinate there can be different Cell-

IDs. A problem of identifying the Cell-ID for a cell, whose coverage is dominant over a

given GPS coordinate with the largest probability, is not in the scope of this chapter.

We pose two key questions: What is the required minimal size of a user group

needed for obtaining a critical mass of knowledge about the mobile infrastructure? And,

how much time is needed to do so? We assume a probabilistic model of user mobility,
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infer parameters of the model using a real-world mobility trace, and simulate the model to

estimate the fraction of cells visited by a fixed number of users over a time interval. This

is vital to judge the ability of crowdsensing to build a new Cell-ID database, or rapidly

update an inadequate, malfunctioning or obsolete Cell-ID database.

The rest of this chapter is organized as follows: First, in Section 5.1 we present

describe our method, based on building and simulating a mobility model, and the available

dataset. Second, in Section 5.2 we build a mobility model, based on the NRC-Lausanne

dataset [129], that reflects both the temporal properties of human mobility patterns and

the number of user-cell associations. Such model is necessary for sampling a high number

of artificial, yet realistic user mobility patterns to serve as simulation input. Third, in Sec-

tion 5.3 we perform a large-scale simulation of mobile user movements in an approximation

of a mobile network, counting the number of distinct cells users visit over a period of time.

Such simulation is vital because basic statistics on user movement (average number of

unique cells visited during a day) cannot be used alone to form the mobility patterns, as

different users are likely to visit the same cells during the day. Next, in Section 5.4 we sum-

marize the simulation results. We discuss validity of the results with respect to the dataset

and the simulation settings we used. Finally, in Section 5.5 we provide detailed analysis

of simulation results to demonstrate the ability of crowdsensing to deal with obfuscation

of the network topology by a particular mechanism, called Dynamic Cell-ID method.

5.1 Method Description

Any dataset that contains information about user-cell association over time gives

away the coverage capabilities of the user pool for the time period in an area. However,

the size of the userpool is critical, for tens of users cannot cover the whole mobile network

(which typically consists of thousand of cells), so several-times more users’ traces are

necessary in a study of this kind. Therefore, we try to infer general coverage capabilities

of the population. We build a model that captures general features of users’ movement

within the network to generate a high number of synthetic, yet realistic traces. Using

simulation we apply the model-based traces of user movement to an approximation of a

mobile network topology. By this we determine the fraction of mobile-network cells visited

by a fixed number of users over a time interval.
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5.1.1 Assumptions

We make three key assumptions regarding the act of crowdsensing in discovering

the mapping of mobile network Cell-IDs to geographic locations.

A1) The crowdsensing campaign is short, at most one day long. This assumption pre-

cludes excessive use of users’ mobile phone resources for a long time, thus preventing the

battery drain. Moreover, for the motivating use-case of Cell-ID crowdsensing, described

in Section 5.5, longer campaigns are useless.

A2) GPS receivers serve as the only tool for reporting geographical positions of the user.

This approach represents the simplest terminal-based positioning solution. Although other

positioning techniques or phone-sensed data may be available (such as WiFi beacons), we

assume this wide-spread and accurate method.

A3) Mobile phones only report the Cell-ID of the currently attached cell. This assump-

tion comes from the fact that the knowledge of neighboring Cell-IDs, although feasible to

obtain, would not immediately bring any advantage and it needs more data to be trans-

mitted between the mobile phone ad the Cell-ID database. Neighbor cells may be used in

some future extensions to deliver the approximate position of a cell within the network.

5.1.2 Dataset

The data we use come from the NRC-Lausanne dataset, which consists of infor-

mation about 168 users who participated in the Lausanne Data Collection Campaign [129].

This dataset was released for the purpose of the Nokia Mobile Data Challenge [143] and

for specific reasons, it was divided in several parts. We were provided with a part which

consist of information about 38 users, in the following text we will call it simply a dataset.

It contains a timestamped sequence of Cell Global Identities (CGIs) per user with one

record per every cell change during the campaign period (referred to as cell trace). Also,

there is a timestamped GPS log for each user, yet it contains numerous gaps and does

not cover the entire campaign period (we call it a GPS trace). The dataset covers a large

part of Switzerland, including major cities and the countryside, as depicted in Figure 5.1.

Table 5.1 provides basic summary statistics about the dataset.

Since there are only 38 users in the dataset, the concerns about validity of any

statistics measured from such a small set of users could arise. Is the userpool with 38 users

capable of providing relevant information about the network, i.e., could we estimate the

75



Chapter 5. Exploring the Limits of Crowdsensing

Geneve

Bern

Zurich

Lugano

Lausanne

France
Germany

Austria

Italy

Switzerland

Figure 5.1: NRC-Lausanne dataset coverage. Each black dot represents one cell tower a
user from the dataset was attached to. The map shows the coverage capability of 38 users during
one year.

min 0.25-q mean 0.75-q max stdev

Days in survey per user 94 179 282 371 533 116.09
Cell transitions per user 2,540 7,781 16,899 23,212 38,187 9,314
Unique cells per user 202 684 1,206 1,758 2,723 693
Ratio of cells with GPS coords per user 15.67% 44.85% 68.12% 86.70% 97.73% 22.21%

Table 5.1: Summary statistics for the NRC Lausanne dataset. The total number of users
is 38, period of collection from 30-Sep-2009 to 31-Mar-2011.

total number of cells in the network at least? This is related to the cardinality/species-

richness estimation problem, presented in Section 2.4.3. Let us consider that each user

represents an independently selected sampling unit that reports visited cells as incidence

data, i.e., each visited cell in the network is simply noted as being present. Then, we can

use such incidence data from multiple samples (users) in aggregate to estimate the total

number of cells in the whole network. The estimator, conveniently named Chao2 [44], is

defined for estimating species richness as:

Sest = Sobs +

(
t− 1

t

)
q2

1

2q2
, (5.1)

where Sobs is the number of species observed in t samples, and q1 and q2 represent the num-

ber of species that occur in exactly one sample or in exactly two samples, respectively [51].

In our case and the dataset we use, Sobs = 23,638 is the number of unique cells observed

by t = 38 users, and q1 = 17,141 and q2 = 2,265 are the numbers of cells observed by

exactly one or by exactly two users, respectively. The estimated number of unique cells in

the network is then Sest = 86,791±44 cells (with 95% confidence interval). Such a number

seems adequate to the area of dataset cover: As reported in [129], all 168 participants of

the Lausanne Data Collection Campaign observed in total 46,082 cells during the whole
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mg

t Sobs Sest g = 0.9 g = 0.95 g = 0.99 g = 1

38 users 23,638 cells 86,791 cells 279 users 376 users 602 users 5,161 users

Table 5.2: Estimated sampling effort to discover all cells in the network. Abbreviations
are: t, number of users (samples) in the NRC Lausanne dataset; Sobs, observed number of unique
cells; Sest, estimated asymptotic number of unique cells; g, target fraction of Sest; mg, the number
of additional users needed to reach 90% (g = 0.9), 95% (g = 0.95), 99% (g = 0.99), and 100%
(g = 1), respectively, of Sest.

period. So, how many users are required to reach the asymptotic number of unique cells

estimated by Chao2 estimator? In [46], Chao derived that to reach a fraction g of Sest for

sample-based data, the required number of additional samples mg is

mg ≈
log
[
1− t

t−1
2q2
q21

(gSest − Sobs)
]

log
[
1− 2q2

(t−1)q1+2q2

] . (5.2)

Table 5.2 illustrates the calculation of mg, the number of users needed to achieve gSest for

the period of Lausanne Data Collection Campaign. As a result, we conclude that more

users than 38 in the dataset we use would be more suitable for a mobility-related study,

however, such a large dataset were not publicly available.

5.2 Data-driven Mobility Model

In this section we present our approach to building a data-driven mobility model.

5.2.1 Model Objectives

We aim to model user mobility patterns in terms of the number of unique cells

visited during one day, starting from midnight. A common denominator of users’ daily

mobility is their presence at some places, such as home, work, the cinema, etc. for a

substantial amount of time. Each of these places (which are not usually many in one day)

is covered by a cell or a set of cells. A key observation here is that the transitions between

places account for most of the total number of unique cells visited by a user during a day.

The objective of the mobility model is to capture

F1) the total number and ordering of places as they are visited by a user during a day,

F2) the start time of all user’s transitions between places in the day, and

F3) the duration of transitions and their length, measured in the number of unique cells

visited during the transition.
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Such model would differ from the large body of similar work (see [115] for a

survey and Section 2.4.3 for previously proposed models) in that it incorporates all of

the features F1–F3 concurrently. As a result, it would describe the users’ daily patterns

(F1), capture fine-grained temporal characteristics of human movement during one day

(F2), and quantify daily user-cell associations (F3). It is not an objective to capture any

real-world counterparts of places, their semantic labels, geographical position or mutual

distance. Instead, the metric of distance we use is the number of unique cells during

transition, which we consider sufficient to simulate user-cell associations over a time period.

5.2.2 Model Description

We assume the following mobility model. We define a place as a set of neighboring

cells (details are given later in Section 5.2.3) in which the user cumulatively spends a

significant amount of time during a day. A transition between places is the act of leaving a

place and visiting another, or the same place subsequently some time later. We enumerate

places in each day-sequence according to the time of the first visit with numbers L =

{1, 2, . . . }.

Users’ daily patterns are represented by the number and ordering of different

places visited by a user during a day. For example, a typical daily pattern for the majority

of users would be 1—2—1, where 1 could represent “home”, 2 could stand for “work” and

dash (—) denotes transition between places. A user visits these places with different

probabilities during the day. By pt̃i,j we denote the probability that a transition between

places i, j ∈ L starts during the time period t̃, where t̃ ∈ {1, . . . , T} represents one of

T equidistant time slots in a quantized structure of time during the day. Note that this

next-place selection process is not a time-variant Markov chain and that probabilities pt̃i,j

for a given t̃ do not constitute a transition probability matrix: Since it is possible to make

a transition from a place i to the same place i, i.e., pt̃i,i 6= 0, the probability that a user

stays at a place i is then 1 −∑j∈L p
t̃
i,j . Moreover, the probability pt̃i,j is conditional on

a set of places L′ the user visited during time t = 1, . . . , t̃ − 1, and thus it does not have

memoryless property.

The duration of transitions, measured as a fraction of a day, is given by distri-

butions fnew, fsame, fold, according to the transition classes. We distinguish three different

transition classes, depending on the relationship between the origin Oi and destination Di

places during the day: A transition is classified as new if it ends at a new, not previously
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visited place, same if it starts and ends at the same place, and old if it is between places

already visited. The length of transitions, expressed in the number of unique cells visited

during the transition, is given by distributions by gnew, gsame, and gold.

To describe user’s movement during a day, we define a transition sequence TS =

{(Oi, Di, ti, δi, li)}Ni=1, where N denotes the total number of transitions during one day,

Oi, Di ∈ L are the origin and destination places of the i-th transition, ti, δi ∈ [0, 1] ∈ R

represent the time (by a fraction of the day) of the transition start and its duration, and

li ∈ N is the length of the transition expressed in the number of unique cells visited during

the transition. The TS is empty for a user who spends the entire day at one place and

makes no transitions. In consistency with the description above, δi ∼ f∗ and li ∼ g∗,

where ∗ denotes transition class according to Oj , Dj for j = 1, . . . , i. Figure 5.2 shows an

example of one day-sequence with three transitions T1–T3 of a user from the dataset. Its

corresponding transition sequence1 is as follows:

TS = {(Oi, Di, ti, δi, li)}3i=1

= {T1,T2,T3}

= {(1, 2, 11:40, 1:10, 43), (2, 1, 16:10, 01:30, 64), (1, 2, 21:20, 00:50, 46)}.

5.2.3 Data Processing and Recognizing Places

We process the data by dividing the cell trace of each user into day-long sequences,

each starting at midnight. Days where the mobile phone was off were excluded. Because

the daily routine of users and their mobility significantly differ between weekdays and

weekends, these must be handled separately. Without loss of generality we restrict the

dataset to weekdays only, however, weekends can be modeled in a similar manner. Finally,

we consider all of the day-long weekday sequences to be independent, even when belonging

to the same user. Handling the data in such way is viable because the mobility model is

to describe only a period of one day and so weekday correlations need not be reflected.

There is a total of 6,667 day-sequences in the dataset.

Important places for a user are recognized from mobile data by clustering meth-

ods [125, 208, 149]. Clustering is vital because a place is typically covered by overlapping

1Please note that time in the sequence is written in HH:MM format for better readability.
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Figure 5.2: Example of a transition sequence. User’s movement in one day-sequence is
captured in a space-time cube. Dots represent user-cell association, solid lines stand for transitions
between cells, and dotted line represents orthogonal projection on coordinate plane. Rectangles
with labels 1 and 2 enclose sets of cells which represent places—the user visited two places (1 and
2) during the day. There are in total three transitions between the places during a day: T1 and
T3 between places 1 and 2, and T2 between places 2 and 1.

cells, and the mobile phone connects to them even when the user is not moving (so called

cell jitter). We use time-based clustering to recognize user’s places, because the GPS trace

covers only 32% of all cells in the cell trace which precludes spatio-temporal clustering.

We define a place as a set of neighboring cells in which the user cumulatively spends more

than 60 minutes anytime during a day. A transition between places is the act of leaving

a place and visiting another, or the same place subsequently at least 4 minutes later.

5.2.4 Inferring Model Parameters

In this section we explain how transition sequences TS, obtained from the dataset,

were used to infer model parameters.

We express the model features F1 and F2 by mining the transition probabilities

between places, pt̃i,j , depending on time of day. We simplify the structure of time by

quantizing the day into T = 288 5-minute equidistant time slots t̃ ∈ {1, . . . , T}. So, for

example t̃ = 2 represents a time period from 12:05 a.m. to 12:10 a.m. Then, pt̃i,j is

estimated from transition sequences TS as ni,j/(
∑L

j=1 ni,j + ni,�), where ni,j denotes the

number of occurrences of transitions from a place i to a place j in all transition sequences,

and ni,� denote the number of cases when no transition starts when at place i during

time period t̃. Figure 5.3 shows the transition probability pt̃i,j , derived from the data, on
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(b) 12:00–12:05
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Figure 5.3: Transition probability pt̃i,j at different time of the day. The y-axis contains
labels i for places of transition origin, the x -axis contains labels j for places of transition destination,
height of each bar denotes the transition probability pt̃i,j from a place i to a place j during the

time period t̃. In the morning (a), the probability of visiting new places (with higher place label)
is noticeably high. Around noon (b) the probabilities are concentrated on the main diagonal,
which means that users leave a place and return to the same place again later. In the evening
(c), users tend to return to previously visited places, which is indicated by transition probabilities
concentrated under the main diagonal.

three examples at different times of day. The number of data points needed for computing

each row of the transition matrix can be computed using Thompson’s formula [187] for

estimating sample size n in multinomial proportions:

n = argmin
c≥1

{
1
c (1− 1

c )χ
2
[1,α/c]

d2

}
, (5.3)

where α is the type I error, and where d denotes the prescribed accuracy, i.e., the maximal

difference allowed between any element of the theoretical probability distribution and its

empirical estimation. Thomson has also computed the so called “surreal numbers” d2n

for various values of α and showed that n depends only on α and d; for α = 0.05 the

surreal number d2n = 1.2736. Having α = 0.05, obtaining precision d ≤ 0.05 for pt̃i,∗

would have required at least n = 1.27359/(0.052) = 510 users who were during the time

interval t̃ at place i. Here, the drawback of the small number of users in the dataset we

have used becomes obvious. On the other hand, since it is extremely rare for a user to

visit a large number of distinct places during one day (see Figure 5.11 at page 86), one

can hardly expect to gather a dataset of enough size for high-precision estimations for the

whole transition matrix.

Duration of a transition (model feature F3) is estimated from the transition

sequences by probability density functions fnew, fsame, fold. Figure 5.4 shows the distribu-

tions of transition duration in each of the transition classes. The figure provides a useful
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Figure 5.4: Probability density function of transition duration. The dotted lines represent
a log-normal fit. Parameters µ and σ with 95% confidence bounds are provided in Table 5.3.
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Figure 5.5: Correlation of transition duration and transition length.

insight: while distributions for classes new and old are quite similar, there are more short

transitions in class same. As depicted, transition duration can be approximated by a

log-normal distribution, although the Kolmogorov-Smirnov test (KS-test) did not reject

the null hypothesis that the empirically observed distributions come from the distribution

found as its log-normal fit. Table 5.3 provides fit parameters with 95% confidence bounds,

KS statistics and critical value at α = 0.05 significance level.

Length of transitions (number of unique cells) is positively correlated with du-

ration of transitions (see Figure 5.5), however, there is a significant variation between

transition lengths having the same transition duration. One may attribute this to the var-

ious means of transport or to the fact that the density of cells varies widely in the mobile

µ σ KS stat KS critical

fnew ∼ lnN (µ, σ) −1.1380± 0.0007 0.7879± 0.0005 0.0340 0.0077
fold ∼ lnN (µ, σ) −1.2353± 0.0009 0.7906± 0.0007 0.0480 0.0094
fsame ∼ lnN (µ, σ) −1.4635± 0.0011 0.8940± 0.0008 0.1004 0.0101

Table 5.3: Transition-duration distribution parameters
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Figure 5.6: Estimation of parameters for transition-length distributions.

network between urban and rural areas, thus making it possible to discover a different

number of cells during the same period. Unfortunately, the data do not provide sufficient

information for supporting these hypotheses: the GPS trace does not cover the whole cell

trace and the network topology can not be reconstructed from the sparse cell trace pre-

cisely enough. We approximate the transition lengths by a truncated2 Normal distribution

N (µ, σ) with the mean and standard deviation parameters dependent on the duration of

the transition δ and its class. We denote these distributions by gnew(δ), gsame(δ), and

gold(δ). Figure 5.6 depicts how we estimated the dependence of µ and σ on transition

duration in transition length distribution: transition lengths are summarized in boxplots,

each boxplot corresponds to transition durations from one of equally spaced bins (width

= 10 minutes). Each boxplot then represents a Normal distribution3. Parameters µ and

σ in distributions gnew(δ) and gold(δ) are linear functions of δ whereas in gsame(δ) the

dependence is expressed by an exponential function for parameter µ and a linear function

for parameter σ. Table 5.4 provides fit parameters with 95% confidence bounds and R2

statistics of the goodness of fit.

2Because transition length must be non-negative, integer value, we round the value towards positive
infinity and take the maximum from the sampled value and zero.

3Our intuition for approximating the transition lengths by a Normal distribution is based on graphical
testing for normality (Q-Q plots). In addition to that, we have performed Lilliefors test [138] of the default
null hypothesis that the transition lengths in the equally spaced bins come from a distribution in the normal
family, against the alternative that it does not come from a normal distribution. At the 5% significance
level, one third of the bins passed the Lilliefors test.

µ σ
a b R2 c d R2

gnew(δ) ∼ N (aδ + b, cδ + d) 29.13± 3.04 3.38± 3.29 0.98 10.31± 1.41 1.64± 1.53 0.97
gold(δ) ∼ N (aδ + b, cδ + d) 24.59± 2.09 4.62± 2.06 0.98 10.19± 1.43 1.79± 1.41 0.96

gsame(δ) ∼ N (aebδ, cδ + d) 2.56± 0.82 1.45± 0.22 0.97 5.64± 1.56 1.55± 1.54 0.86

Table 5.4: Transition-length distribution parameters
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Algorithm 1 Generation of a synthetic transition sequence TS

Input: pt̃i,j for all i, j ∈ L and t̃ ∈ {1, . . . , T},
fnew, fsame, fold, gnew(δ), gsame(δ), gold(δ)

Output: TS = {(Oi, Di, ti, δi, li)}Ni=1

t̃← 1, i← 1
D0 ← 1 . first place is 1
L′ ← {1, 2} . set of reachable places
while t̃ < T do

if no transition (prob. 1−∑j∈L p
t̃
Di−1,j

) then

t̃← t̃+ 1
else

Oi ← Di−1,

Di ← d ∈ L′ with probability
pt̃Oi,d∑

j∈L′ p
t̃
Oi,j

+(1−
∑
j∈L p

t̃
Oi,j

)

if Di = max(L′) then . new place has been visited
L′ ← L′ ∪max(L′) + 1 . in the next time period new place can be visited

end if
ti ← uniformly sampled from interval t̃
δi ← sampled from f∗, ∗ denotes transition class
l̂i ← sampled from g∗(δi), ∗ denotes transition class
li ← max(0, dl̂ie)
t̃← nearest time period after ti + δi
i← i+ 1

end if
end while

Generation of a new, synthetic transition sequence from the above parameters

works according to Algorithm 1.

5.2.5 Model Validation

In this section we show by comparing the features F1–F3 that the synthetic

traces from the model correspond to the NRC-Lausanne dataset. We compare the original

transition sequences and 6,600 synthetic transition sequences generated by the model.

Users’ daily patterns, the model feature F1, represent the number and ordering

of different places visited by a user during a day. For example, a typical daily pattern for

the majority of users would be 1—2—1, where 1 could represent “home”, 2 could stand

for “work” and dash (—) denotes transition between places. Figure 5.7 compares the most

frequent patterns in the dataset with the synthetic traces generated from the model, show-

ing a high correspondence in the frequency. Figure 5.8 shows that the distribution of users’

daily patterns is heavy-tailed, i.e., a small number of patterns occur often while numerous

patterns are rare. As depicted, the model captures this daily pattern distribution.
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Figure 5.7: The example of the 20 most
frequent daily patterns. Interestingly, the
most frequent transition pattern represents
staying at a place for the whole day.
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Figure 5.8: Heavy-tail distribution of dif-
ferent daily patterns.
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Figure 5.9: Probability of transitions during day.

The fine-grained temporal characteristics of human movement during one day,

the model feature F2, are depicted in Figure 5.9. It compares transition probabilities pt̃i,j

during a day per each of the three transition classes. It shows that in the morning users

commute to new, previously not visited places (pnew in Figure 5.9a), in the afternoon they

return to previously visited places (pold in Figure 5.9b), while during the day they tend to

leave the place and return to the same place later (psame in Figure 5.9c).

Daily user-cell associations, the model feature F3, are depicted in Figure 5.10.

Clearly, the model quantifies the total number of cells visited during a day well. A two-

sample Kolmogorov-Smirnov test for the goodness of fit passed—at α = 0.05 significance

level the hypothesis that empirical and synthetic data are from the same distribution

could not be rejected (p-value 0.1873). This is achieved by the fact that the synthetic

transition sequences approximately follow similar distributions of total number of the

places visited during a day (Figure 5.11) and the total number of transitions between the

places (Figure 5.12) from the dataset.
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Figure 5.10: Distribution of the total unique cells during a day.
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Figure 5.11: Distribution of the total
places during a day. Almost half of the tran-
sition sequences contain only two places.
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Figure 5.12: Distribution of the total
transitions during a day.

5.3 Simulating User-Cell Association

5.3.1 Mobile Network Representation

We model a mobile network with c cells as a Voronoi tessellation [27] of a unit

square simulation area where a spatial Poisson process of constant intensity represents the

cells’ positions4. Connectivity between cells (and thus possible handovers) is expressed

by the Delaunay triangulation DT = (V,E) [27], the dual of Voronoi tessellation: if cells

u, v ∈ V are neighbors, there exists an edge (u, v) ∈ E.

4To obtain a more realistic network, we can use a non-homogeneous Poisson process in which higher
density of cells corresponds to the cities, or even apply any relevant background knowledge, such as
population density, transportation networks (roads, railways) and commuting patterns in the studied
region.
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5.3.2 User Movement

We simulate the movement of a set of users U = {1, . . . , n} in the network as a

discrete-time walk on the DT graph, with probabilities of transitions between nodes and

their selection given by transition sequences TSu = {Oi, Di, ti, δi, li}Ni=1. These are sampled

independently from the mobility model, one transition sequence for each user u ∈ U . As

the users traverse the DT graph, the number of distinct nodes visited corresponds to the

number of cells they have been associated with.

Let pu,v,k = {u = c0, c1, c2, ..., ck−1, ck = v} denote a simple path (without cycles)

between nodes u, v ∈ V of length k ∈ N in the DT = (V,E) graph, i.e. ∀i, i = 0, 1, . . . k :

(ci, ci+1) ∈ E. By the length of k we mean that the simple path has exactly k edges and

k − 1 unique nodes in the path excluding u and v. And, let S ∈ N|V |×|V | be an all-pairs

shortest path matrix for the DT graph with unit edge-weights.

The simulation consists of four steps, explained below by the example of a single

user.

Step 1—Selecting places. Let us consider a user’s transition sequence TSu =

{Oi, Di, ti, δi, li}Ni=1. The user’s place labels are mapped to DT nodes by a randomly

selected one-to-one function

m : L→ v, (5.4)

where L = {O1}∪{Di|i = 1, . . . , N} and v ⊂ V . Function m should be found with respect

to the lengths of the paths between places in the user’s TS, such that

∀i∃pu,v,k : u = m(Oi) ∧ v = m(Di) ∧ k = li + 1. (5.5)

However, finding a simple, k-length path pu,v,k is known to be NP-hard (can be reduced

to the Hamiltonian Cycle problem), and even probabilistic algorithms [25] are too slow on

large graphs. Therefore, we relax the requirement on path length k in this step and select

the function m such that

∀i∃pu,v,k : u = m(Oi) ∧ v = m(Di) ∧ k ≥ Su,v ∧ k ≤ min(li + 1,max
w∈V

(Su,w)). (5.6)

Such selection of path length k guarantees triangle inequality with respect to all path

lengths between places for a simple method of construction of the function m: The function

m can be found by selecting the first node that corresponds to O1 uniformly, by random,
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and then by traversing the TSu from i = 1 to i = N and randomly selecting vertices u and

v in corresponding distance k using the pre-computed all-pairs shortest path matrix S.

Step 2—Finding transition cells. A randomly selected path piu,v,k, such that

u = m(Oi), v = m(Di) and k = max(Su,v, li + 1), is considered to be a sequence of nodes

(cells) the user visits between places Oi and Di during the i-th transition. For the same

reasons as above (finding k-length simple path is NP-hard problem) we simplify this task

and look for a path p̃iu,v,k = {u, . . . , w, . . . , v} with a maximal number of unique nodes and

the desired length, i.e., it holds

w ∈ argmin
x∈V

(pu,x,Su,x ∩ px,v,Sx,v) and Su,w + Sw,v = k. (5.7)

Using the pre-computed all-pairs shortest path matrix S to find the node w is fast, al-

though it can result in a non-simple path.

Step 3—Processing handovers. We express the user-cell association during

the i-th transition (Oi, Di, ti, δi, li) as a sequence

Ai = {(τj , cj)}li+1
j=0 , (5.8)

where τj denotes the time of the change of association to the j-th cell cj in the path

piu,v,k = {u = c0, c1, c2, ..., ck−1, ck = v} between Oi and Di. Assuming that the speed

of the user is constant on the whole path, then the user-cell association in time changes

proportionally to the distance between the nodes in the path. Further, we assume that

a user-cell association change happens on the boundary between cells. Since the shortest

distance between nuclei of two adjacent Voronoi cells to their common boundary is equal

(by definition of the Voronoi tessellation), the cell-association changes when the user is

in the middle of the Delaunay triangulation edge between the cells’ nuclei. Thus, the

elements of the sequence Ai are as follows:

τ0 = ti (5.9)

τj = ti + δi

(∑j−1
l=1 dl + dj/2∑n

l=1 dl

)
, (5.10)

where dl is the Euclidean distance between nodes cl−1 and cl on the l-th edge (cl−1, cl).
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Figure 5.13: Ratio of cells observed during a day.

Step 4—Results. Let Cu denote the set of all cells a user u visited during all

transitions in the transition sequence, i.e.,

Cu = {v ∈ V |∃i, j, Aiu = {(τj , cj)} : τj ≤ T ∧ v = cj}. (5.11)

The number of unique cells a user u visits by the time T is the cardinality of the set Cu.

A higher number of users in the simulation at one time is handled independently, so the

total number of cells visited by n users is simply |⋃n
u=1Cu|.

5.4 Simulation Results and Discussion

Assume we have a mobile network that consists of c cells, there are n users in-

volved in crowdsensing, and the crowdsensing campaign starts at midnight. How long does

it take the users to visit x% of all cells in the network? We have simulated the movement

of users in a network with c = 5,000 cells and number of users n = {0.25c, 0.5c, . . . , 5c}.

Figure 5.13 shows a relationship between the ratio of cells observed during a

day and the number of users involved in crowdsensing. We can see that at least n =

1.25c = 6,250 users are needed to observe at least 99% of all cells by the end of the day.

Additionally, there is a significant difference between the times to visit all cells as the

number of users increases from n = 1.25c to n = 3.5c. Because of a low number of users

who travel during the early morning, about n = 3.5c users are needed to visit 99% of the

cells by 07:00. Markedly, having more than 3.5c users yields only minor improvements.

The presented results pose several issues. First, it is questionable whether any

third-party can persuade a user-pool of at least three-times the number of cells in the
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network to participate in crowdsensing. Consider the Czech Republic with 10.5 million

inhabitants living in approx. 78,000 km2 ∼= 30,500 sq mi. Each of the three biggest

mobile operators has about c = 14,000 cells in the network [90], so about n = 3c = 42,000

users are needed to visit 99% of the cells by 8 a.m. Let us assume the sensing software

is built on the Android platform, and the smartphone penetration (50%) and Android

share on the smartphone market (48%) are similar to the U.S. [153]. Then a calculation

(10,500,000× 1/3× 0.5× 0.48 = 840,000) shows that every twentieth user of an Android

smartphone (per each operator) should participate in crowdsensing, making it seem viable.

Other issues are related to the model proposed and the process of simulating

user-cell associations.

The model presented in this study may seem limited by the lack of any spatial

relation to a real geographic background. However, because it captures user’s movement

in a mobile network in terms of cell transitions without conditioning on the real-world

cell tower locations, the model is area-independent. As such, it is not limited to the area

covered by the dataset and can be applied to any arbitrary cellular network topology—

either a real one or an artificial one. Nevertheless, the parameters of the model may

change with different network technology (GSM, UMTS and LTE) or with a larger and

more representative user-pool.

Apparently, working with a real-world mobile network topology would bring more

concerns about the simulation settings. First, the number of cells that constitute user’s

places varies from one to about 10 cells per place, depending o cell jitter in cell-dense

areas. The number of cells per place should be correlated with cell density in the studied

region and then reflected in the simulation. This change can shorten the time to observe

a particular ratio of cells in the network. Second, commuting patterns in the studied

region should be considered and mined from the data [84] to obtain more realistic user-

places distribution than the random one we use. Finally, any background information

on transportation networks such as roads or railways would positively affect not only the

distribution of user’s places but also the selection of a path between places. Frequent

commuting patterns and similar paths taken by users between places would result in

smaller number of cells visited by the users. Our approach to the simulation in this work

is minimalistic, mainly for the reason that the dataset is too sparse to support any of the

simulation enhancements above.
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5.5 Case Study: Dealing with the Dynamic Cell-ID Method

In this section we provide detailed analysis of simulation results to demonstrate

the ability of crowdsensing to deal with obfuscation of the network topology by a particular

mechanism, called the Dynamic Cell-ID method.

Today, user location is delivered for free by third parties (e.g., My Location ser-

vice by Google) exploiting the fact that the Cell-ID assignment is static and the signal

covers a given geographic area. The Dynamic Cell-ID mechanism, described in three re-

cent patents [30, 62, 201] and allegedly considered for deployment by China Mobile [141],

may alter the situation. The key idea is to mask part of the static Cell Global Identities

by providing different, dynamically generated Cell-IDs. A new, dynamic Cell-ID is cal-

culated by the base station and is transmitted to the mobile device, while the original,

static Cell-ID remains intact in the core network (see Figure 5.14). From time to time

(patent [201] suggests once a day), all dynamic Cell-IDs are permuted among the network

cells. This process is achieved by an unspecified, time-dependent, invertible function that

maps static Cell-IDs to the dynamic ones and vice versa. Such mapping function can be

arbitrarily complicated, or it may even represent a simple random permutation, so one can

assume that the mapping function can not be discovered by simply observing the changes

of dynamic Cell-IDs over time. Dynamic Cell-ID thus represents network topology obfus-

cation and makes geographical conversion extremely hard for an outside party. Only the

mobile operator knows (and stores) the present static to dynamic Cell-ID mapping and

the GPS coordinates of the cells. With frequent, for example daily changes, third-party

Cell-ID databases such as [52, 18] would have difficulty maintaining the correct Cell-ID in-

formation, enabling network operators to commercialize the mapping of dynamic Cell-IDs

to geographical coordinates.

Deploying Dynamic Cell-ID would have consequences. GPS-less devices, still a

majority of all mobile phones (62% in 2011 [32]), rely on network-based (Cell-ID) posi-

tioning. Third-parties would fail to provide free localization applications, unless they paid

operators for the Dynamic Cell-ID mapping, influencing customer’s end price. A-GPS-

enabled phones would be affected by having a longer time-to-first-fix (order of minutes),

as commercial Secure User Plane Location (SUPL) servers would not be able to advise

the A-GPS receiver on the approximate satellite positions (based on the current Cell-ID of

the user) because SUPL-server databases would become outdated every time the dynamic

91



Chapter 5. Exploring the Limits of Crowdsensing

UE Node B RNC CN
Uu Iub Iu

UTRAN

static Cell-ID to 

dynamic Cell-ID

1

dynamic Cell-ID to

 static Cell-ID

4

static Cell-ID

5

dynamic Cell-ID
3

dynamic Cell-ID
2

Figure 5.14: Principle of dynamic Cell-ID in an UMTS network according to [62].
The Cell-ID (specifically, Cell-ID, LAC or both these parts of the CGI) are changed at the Radio
Network Controller (RNC) level (1). Node B works normally, i.e., it passes the dynamic Cell-ID
(instead of the static one) to the User Equipment (UE) (2). The UE communicates with the Node
B using the dynamic Cell-ID (3). Finally, in RNC the dynamic Cell-ID is transformed back to its
corresponding static value (4). The static Cell-ID is then used within the Core Network (CN) (5).

Cell-IDs are changed. Finally, various cell-fingerprinting methods [200, 159], popular in

research and academia as cheap and reliable positioning methods, would be rendered in-

operative.

There are two principal ways to deal with Dynamic Cell-ID. Either the mapping

may be bought from the mobile operator, which might be costly or the operator might not

be willing to sell it. Or, third-parties can assign coordinates to Cell-IDs by wardriving5 or

crowdsensing methods. While wardriving is time-consuming and limited in resources (ve-

hicles, drivers), crowdsensing is advantageous in time and coverage, especially when many

mobile users are involved. Nevertheless, two questions arise: How many crowdsensing

participants are needed? And, how long does it take them to scan the entire network?

We use the mobility model from Section 5.2 and run the simulation described

in Section 5.3 to obtain an estimation of Cell-ID-crowdsensing performance. Figure 5.15

shows the results for c = {2,500, 5,000, 15,000, 25,000} users in a network that consists

of 5,000 cells. By comparing Figures 5.15a–5.15d we see, unsurprisingly, that collecting

network Cell-IDs takes a shorter time when more users are involved. However, users’

mobility during a day significantly affects the duration of the network scan: in the morning

5Wardriving is the act of searching for WiFi hotspots and other information, such as mobile network
Cell-IDs, at particular locations by driving around.
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Figure 5.15: Impact of dynamic Cell-ID renumbering time on cell discovery in a
network with 5,000 cells. Example A shows that in case the dynamic Cell-ID renumbering
occurs at midnight, 5,000 users visit 90% of all cells at 08:00 (after 8 hours from midnight).
Higher number of users results in shorter discovery time and more cells discovered: under similar
conditions, three-times more users visits in the same period 99% of all cells (example B). Examples
C and D show the Cell-ID-crowdsensing performance in the time of the day with high user mobility.
If the dynamic Cell-ID renumbering occurs at 06:00, then 5,000 users discovers 90% of all cells in
4 hours (at 10:00) , whereas with 15,000 users 99% of all cells are discovered in 3 hours (at 09:00).

and afternoon users commute and travel more, resulting in a shorter scan time. On the

contrary, it takes longer to scan the network during the night and around noon, as mobility

of users is low. This may be a clue for when operators should renumber the dynamic Cell-

IDs to strike at the heart of third-party Cell-ID databases the most.

Crowdsensing as a fight-back method against the Dynamic Cell-ID method is

quite a powerful tool, but as our results show it significantly depends on the user-pool

size. Apparently, having the network scanned within couple of hours anytime during a

day is possible, but with an almost unrealistic number of users. As a result, with Dynamic

Cell-ID adopted, a third-party service relying on a crowdsensed Cell-ID database may

suffer from bad localization performance for hours-long period.
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5.6 Conclusion

In this chapter, we have presented a method of obtaining the limits of crowdsens-

ing in discovering the mapping of mobile network Cell-IDs to geographic locations.

Based on the NRC-Lausanne dataset, we have built a mobility model which

describes user-cell associations in a mobile network over a day. Using the model we have

generated thousands of artificial yet realistic traces of user movement, which show high

similarity with the original dataset in three key features: users’ daily patterns (visited

places and transitions between them), temporal characteristics of varying human mobility

during one day, and quantification of daily user-cell associations in terms of unique cells

visited.

We applied the model-based traces of user movement by a large-scale simulation

to an approximation of a mobile network topology. The results show that crowdsensing

is quite a powerful tool: for example only 25% more users than cells suffices to map 99%

cells of a mobile network to geographic locations over a day. With 3 times more users

than cells it is possible to map 99% cells in a couple of hours anytime during a day.

The application of crowdsensing in discovering the mapping of mobile network

Cell-IDs to geographic locations may be particularly interesting for Cell-ID-based location-

services providers. These may want to use the “power of the crowd” to build, maintain

and repair their Cell-ID databases—a matter essential to their business.
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Chapter 6

Conclusions

In this thesis, we have investigated the principal limits of tracking methods in

mobile networks. Tracking data, simply a timestamped history of mobile users’ positions

in the network, is a sought-after and still scarce source of information for research studies

in telecommunications, human and time geography, transportation, urban studies, network

design, cloud computing, and other fields of science.

The main problem with tracking methods in mobile network is that their suitabil-

ity for large-scale tracking, network-wide application, and their technological limitations

are often not discussed or remain unknown. Three principal methods of tracking can be

considered. Network-based active tracking enables to collect data selectively in desired

continuity and extent, at the price of possible impact of extra load on network perfor-

mance. Network-based passive tracking, based on Call Data Records, represents a source

of user mobility-related data at unprecedented scales, but is limited by communication

frequencies of an individual. Terminal-based tracking may deliver content-rich data to-

gether with positioning information, but it can only be deployed to cooperating users of

mobile phones and its network-wide span is in question.

We have addressed the following topics related to the limits of tracking methods

in mobile networks: (1) technological limits of network-based active tracking; (2) user

mobility-characteristics between communication places and extensions beyond the low

temporal granularity of passive tracking data; and (3) the scaling limits of cooperative

terminal-based tracking in terms of mapping a mobile-network infrastructure to geographic

locations.
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6.1 Limits of Network-based Active Tracking

We have studied a particular method of active tracking in a mobile network,

the SMS-based one, in a live GSM network. Using our own existing tracking solution

(implemented before our Ph.D. studies [63, 66]) we have conducted a tracking measurement

and described performance characteristics of the tracking platform and the network nodes.

We have modeled and simulated the tracking process to obtain possible combina-

tions of the number of users to be tracked simultaneously and the corresponding tracking

interval. We have shown that even with the minimal interconnection configuration, the

baseline implementation is capable of tracking thousands of users periodically on the scale

of minutes.

We have estimated the limits of SMS-based active tracking in terms of mini-

mal tracking interval, showing that the minimum time between two consecutive Cell-ID

retrievals is limited to an approximate value of 9 seconds in a GSM network. The con-

straints of the Location Server come primarily from its interconnection to the mobile

network, which limits the quantitative performance to about 500 location retrievals per

minute. Compared to other state-of-the-art positioning methods, SMS-based Cell-ID po-

sitioning performs better then all contemporary methods but the Cell-ID+TA, which

however needs a dedicated protocol to work with.

We have examined and discussed the limitations of the core and radio access

networks. Whereas core network does not seem limited by the additional tracking load,

radio access network can deliver only a limited number of SMSes per each cell over a fixed

time interval, on the order of tens of SMSes.

To learn about scalability of the method, we have carried out a detailed calcu-

lation of the impact of tracking on the GSM network-infrastructure capacity at different

levels—network cells and location areas. The impact on a single cell capacity is significant:

the number of tracked users should be only a fraction of all users in the cell. Higher num-

ber of tracked users causes a fast rise of GoS on signaling channels, above an acceptable

level. Impact on the location area depends on paging capacity of the serving Base Station

Controller—at certain level the BSC is the bottleneck because its capacity is exceeded

before the limiting value of GoS at location-area cells is reached.

We have shown that mobility of the tracked users represents a significant problem

when they meet at the same cell—even after a couple of minutes the cell may be rendered
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inoperable. A simple solution to prevent such situation, a token bucket mechanism that

would spread the positioning requests in time, could spare the signaling capacity of the

cell, but since the arriving users would bring additional voice traffic load, the capacity of

the traffic channels would become the limiting factor anyway.

Finally, we have demonstrated a practical use-case of active tracking—roaming

optimization in mobile networks—and proposed a metric to assess weak cells in terms of

roaming traffic. A Gaussian kernel-density estimator with the cell-weakness metrics as a

re-weighting function represents a simple yet powerful visualization of weak places in the

network.

6.2 Extending Utility of Passive Tracking Data

Because network-based active tracking is still not widely adopted by mobile oper-

ators, passive tracking data represent a significant basis of contemporary research in many

areas.

To provide new insights into mobility of users, based on the basis of Call Data

Records, we have proposed to compare the coarse-grained CDR trajectories with some

corresponding ground-truth trajectories representing a continuous trace with user’s posi-

tions. We have used existing publicly available data, the Reality Mining Dataset, from

which we have derived a substitution for both CDRs and a finer trajectory of user-cell

associations. To achieve this, we have significantly extended the dataset with spatial co-

ordinates of cell towers by using the Google Location API and our novel LAC-clustering

algorithm for spatial outlier detection from GSM cell-tower data.

We have provided a detailed analysis of user inter-call behavior, i.e., user move-

ment characteristics between two consecutive communication locations. We have found

three key inter-call mobility attributes: (1) unskewed behavior in spatial dimension, (2)

straight course between calls, and (3) staying behavior at call places. We have shown

that these findings are in strong contrast with the assumptions of the existing modeling

methods, the linear weighted interpolation and the probabilistic extension of space-time

prism, and therefore these models cannot be used for precise posterior CDR analysis.

To improve the accuracy of CDR-based deduction of user’s presence at call places

over time, we have formulated a new probabilistic Inter-Call Mobility (ICM) model, spatio-

temporally fitting the aggregated mobility behavior of the Reality Mining Dataset users.
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Using a finite Gaussian mixture model, the ICM model approximates the ground-truth of

users’ inter-call movement: from a single timestamped call coordinate to a probabilistic

distribution of user’s position between calls. The ICM model is expressed analytically and

thus reusable and general enough for practical application to any CDR traces. Moreover,

the ICM model allows for description of user’s position at a particular time in between

calls and, vice versa, given geographical coordinates, probability of user’s presence at a

particular position over time can be derived.

Finally, we have shown the ICM model applicability on the example of user prox-

imity probability. This is largely applicable for example in studies of virus spreading [197].

6.3 Exploring Limits of Crowdsensing

We have studied the limits of terminal-based tracking from the point of view of

its potential for mapping of mobile-network cells to geographic locations.

Since there exists no mobility model which would count user-cell associations over

a time period, we have proposed a trace-based mobility model to quantify the users’ ability

to detect a number of cells in the network. We have used the NRC-Lausanne dataset to

extract the information about users’ places, i.e., significant locations in terms of time

spent at the corresponding cells, and the transitions between places during one day. We

have quantified (1) the total number and ordering of places as they are visited by a user

during a day, (2) the start time of all user’s transitions between places in the day, and

(3) the duration of transitions and their length, measured in the number of unique cells

visited during the transition. The trace-drive model uses the statistics above to generate

artificial traces, in which the following features are similar to the original dataset: users’

daily patterns (visited places and transitions between them), temporal characteristics of

varying human mobility during one day, and quantification of daily user-cell associations

in terms of unique cells visited.

Using a large-scale simulation, we have applied the model-based traces of user

movement to an approximation of a mobile network topology. By this we have determined

the fraction of mobile-network cells visited by a fixed number of users over a time interval.

Under the assumption that the user’s mobile phone reports its GPS coordinates and the

Cell-ID of a serving cell, the results show that crowdsensing is quite a powerful tool: for

example with only 25% more users than cells sufficing to map 99% cells of a mobile network
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to geographic locations over a day. With 3 times more users than cells it is possible to

map 99% cells in a couple of hours anytime during a day.

We have discussed the applicability of crowdsensing as a fight-back method

against obfuscation of the network topology by the Dynamic Cell-ID method, which is

based on periodic changes of Cell-IDs in the network to prevent unauthorized geo-location

services offered by third-parties. We have found that users’ mobility during a day sig-

nificantly affects the duration of the network scan: in the morning and afternoon users

commute and travel more, resulting in a shorter scan time. On the contrary, it takes

longer to scan the network during the night and around noon, as mobility of users is low.

Our study on crowdsensing limits may be particularly interesting for contemporary and

new Cell-ID-based location-services providers. At the same time, it can serve to the mo-

bile network providers as a hint whether they should try to monetize their costly network

infrastructure and apply the network-infrastructure obfuscating mechanisms.

6.4 Future Research Directions and Open Issues

The SMS-based active tracking method, examined in this thesis, does not scale

well in GSM networks because their per-transceiver limit of paging requests and deliverable

SMSes cannot be increased beyond a relatively low technology-specific value. Strategies to

prevent overloading of signaling channels exist [71], but yield only a minor improvement

in terms of cell capacity, and represent a trade-off between the count of communication

and traffic channels. A prediction of future user-cell association such as [64] could be used

to adjust the rate of positioning requests into the high-loaded cells, thus making active

tracking less demanding for the network. Contemporary mobile network such as UMTS

and LTE perform better with the SMS-based active tracking, mainly because radio-access

technology is more efficient. In UMTS networks, the Wideband Code Division Multiple

Access (W-CDMA) radio access technology is employed to better utilize the frequency

spectrum and yield higher bandwidth. A complex study that analytically estimates the

maximum number of simultaneous signaling services, such as SMS or Paging, is available

in [166]. The authors calculate that more than 700 text messages can be delivered in

one second to one cell (42,000 SMS/min), which is about 230 times more than in GSM

networks. LTE networks, with their data-oriented architecture based on IP Multimedia

Subsystem (IMS) [43], are expected to be deployed in a transition scenario where Circuit-
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Switched (CS) legacy networks live side by side with LTE, enabling the provisioning of

Voice and SMS services through reuse of the legacy networks, called CS-fallback [8]. In

this case, the SMS-based active tracking limits are the same as for GSM networks. How-

ever, future LTE-enabled terminals will be mainly data-oriented and will eventually use

the voice and SMS in a fully all-IP manner over the SIP protocol [134], making the SMS-

based active tracking antiquated by less demanding alternatives [87]. Apparently, the

trend in positioning towards convergence of radio access technologies and hybrid meth-

ods seems inevitable [73], but their complexity is in direct contradiction to our approach

to active tracking. We believe that SMS-based active tracking with Cell-ID positioning

remains important for two reasons. First, although being substituted with evolving net-

works, GSM covers more than 85% of world’s population and still is the most-utilized

technology in the majority of countries. And second, in terms of revenue, 9 out of the

top 20 telecommunication markets are in developing countries [111], thus a cheap and

easy-to-deploy solution may be in their interest.

In our analysis of passive-tracking data, we have considered only calls and text

messages to be the communication events in Call Data Records. Similar methodology

to express the inter-call mobility could be applied to CDRs with data sessions, which

are finer-grained in the temporal dimension. However, because most of the subsequent

events would happen at the same cell, a GPS track would serve better then a user-cell

associations we used. A related aspect to study is to overcome the spatial limitation

of the ICM model. In this thesis we have considered places of communication events

at least three kilometers apart, mainly because of the limited accuracy of the Cell-ID-

based movement description. This constraint may be removed when a more accurate

movement trace is available. Finally, since the ICM model gives out one position of a

user between places of its communication activity, other approaches based on fitting the

CDR-based call trajectory with different interpolation methods could deliver a continuous,

approximate trajectory. A strong enhancement of our model would be the application of

background information, such as road networks, similar to the work on space-time prisms

using uncertainty [123]. The spectrum of potential applications of the ICM model is not

limited to the proximity probability of two users, as demonstrated in this work, but can

be useful for any a-posteriori interpretation of CDRs.

Future extension of our study on the limits of crowdsensing may relax the as-

sumptions posed in our work and utilize the information about cells surrounding the actual
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serving cell during the crowdsensing process. This may have a strong effect on estimating

the actual accuracy of the mapping of Cell-IDs to geographic locations, in terms of geo-

graphical distance, which we were not focused on in this work. In addition to that, using a

different, state-of-the-art mobility model with an overlaying mobile-network topology may

be particularly interesting to compare with our results. However, a mobility model which

would consider different scales (urban, rural areas), mobility properties (visiting time, re-

turn time) and temporal and spatial mobility patterns concurrently, is still awaited to be

discovered. In this work, we did not aim to make our trace-based model parsimonious—an

elegant way to overcome this has been recently proposed in [179] by describing motifs of

human movement and expressing only user’s probability of not being at a “home” place.

Finally, applying any relevant background knowledge, such as population density, trans-

portation networks (roads, railways) and commuting patterns in the studied region would

bring the simulation results even closer to reality.

Open issues in the area of user tracking in mobile networks are related to the

utilization of tracking data. The spectrum of potential applications, based on the tracking

data, is wide: from network energy-efficient performance, roaming-customer retention, to

the design of content-distribution strategies. Network-based active tracking may acquire

better insight in network migration in the geographical, commercial or technological sense.

Emerging virtual operators may benefit from the knowledge about users’ preferences in

visiting different access networks over time, roaming in different countries or selecting

particular network technology (UMTS, LTE, WiFi). Self-adaptive pricing policy, based

on network usage and predicted user-behavior may be interesting for all network providers.

6.5 Research Contributions

The topics covered in this thesis were published in several conference and journal

papers. The details of our original research contributions and the relevant publication

record are as follows.

Chapter 3: Active Tracking in Mobile Networks

� A model describing SMS-based active tracking in mobile networks has been pre-

sented, its parameters come from a large-scale measurement on a real tracking plat-

form, connected to a live mobile network. Limits of the implementation have been

simulated using a discrete-time simulation of the tracking process.
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� Limits of SMS-based active tracking have been deduced and described: basic con-

straints of the method, constraints of the location server and of the mobile network.

Principal limitations of the GSM radio access network have been derived.

� A metric of cell-weakness in terms of roaming traffic has been proposed and used for

roaming optimization with active tracking.

Works related to these results are:

� Ficek, M.; Pop, T. & Kencl, L. Active Tracking in Mobile Networks: An In-depth

View. The International Journal of Computer and Telecommunications Networking,

Elsevier, 2013, in press. [Online]. Available: <http://www.sciencedirect.com/

science/article/pii/S1389128613000996>

� Ficek, M.; Pop, T.; Vláčil, P.; Dufková, K.; Kencl, L. & Tomek, M. Performance

Study of Active Tracking in a Cellular Network Using a Modular Signaling Platform.

In Proceedings of the 8th international conference on Mobile systems, applications,

and services (MobiSys ’10), ACM, 2010, pages 239–254.

� Ficek, M. & Kencl, L. Improving roamer retention by exposing weak locations in

GSM networks. In Co-Next Student Workshop ’09: Proceedings of the 5th inter-

national student workshop on Emerging networking experiments and technologies,

ACM, 2009, pages 17–18.

Chapter 4: Extending Utility of Passive Tracking Data

� A heuristic approach to spatial outlier detection from GSM mobility data has been

presented. The existing dataset has been spatially extended to enable a comparative

study between trajectories from Call Data Records and from user-cell associations.

� Detailed analysis of users’ mobility behavior in between their communication places

(calls, text messages) has been presented. It shows that the nature of human mobility

between communication events is in strong contrast with the assumptions of the

existing modeling methods.

� A probabilistic spatio-temporal refinement of Call Data Records, the Inter-Call Mo-

bility (ICM) model, has been presented. The model is analytically tractable and can

be used for practical application to any CDR traces to describe the spatio-temporal

mobility behavior of mobile-network users between their communication events.
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Works related to these results are:

� Ficek, M. & Kencl, L. Inter-Call Mobility Model: A Spatio-temporal Refinement

of Call Data Records Using a Gaussian Mixture Model. In Proceedings of IEEE

INFOCOM 2012, IEEE, 2012, pages 469–477.

� Ficek, M. & Kencl, L. Spatial extension of the Reality Mining Dataset. In Mobile

Adhoc and Sensor Systems (MASS), 2010 IEEE 7th International Conference on,

IEEE, 2010, pages 666–673.

Chapter 5: Exploring the Limits of Crowdsensing

� A data-driven mobility model has been proposed to express the number of unique

mobile-network cells a user is capable of visiting during one day. The model describes

users’ daily patterns, captures fine-grained temporal characteristics of human move-

ment during a day, and quantifies daily user-cell associations.

� A large-scale simulation of users’ movement in an approximation of a mobile network

has been conducted to assess the coverage capabilities of a user pool for the time

period in an area.

� Limits of crowdsensing in discovering the mapping of mobile-network cell identifiers

to geographic locations as a method against mobile-network-topology obfuscation

has been presented.

Works related to these results are:

� Ficek, M.; Clark, N. & Kencl, L. Can Crowdsensing Beat Dynamic Cell-ID? In

Proceedings of the Third International Workshop on Sensing Applications on Mobile

Phones (SenSys ’12), ACM, 2012, pages 10:1–10:5.
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Appendix A

Spatial Outlier Detection from

GSM Mobility Data

In [77] we published a method that spatially extends the Reality Mining Dataset,

i.e., it pairs the Cell-IDs in the dataset, to which the users were attached, with their

geographical positions. The method is based on querying the Google Location API that

returns an approximate mobile phone location, even when GPS in the device is not en-

abled [49]. The Location API may be requested not only from the mobile phone, but also

from a plain computer over the Internet, as demonstrated by many authors [19, 132, 165].

We examined the spatial accuracy of the cell-tower positions from the Google Location API

by comparing a cell tower database, obtained from our cooperating mobile provider, and

positions retrieved from Google. We observed that the locations from Google are unbiased,

and so they are suitable for approximate location estimation with Cell-ID granularity.

The main obstacle in spatial extension of the Reality Mining Dataset is that the

dataset has been recorded in 2005 and we retrieved locations for its Cell-IDs in 2009. This

time period represents four years of mobile networks evolution, change, cell renumbering,

and it induces a number of wrong or missing values in the Google Cell-ID database. That

is the main reason why only 46.75% of all unique cell locations from the Reality Mining

Dataset were retrieved with geographical coordinates.

Figure A.1 depicts all geographical positions retrieved from the Google Location

API for the Reality Mining Dataset. Contrary to our expectations, the locations are

distributed all around the world and are not related only to Boston, USA, where the

user-pool comes from. We observed that dense areas of visited locations are present not
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Figure A.1: Cell locations of the Reality Mining Dataset retrieved from the Google
Location API.

only within the USA (San Francisco, New York, Chicago, San Diego), but also in Europe

(London, Helsinki, Milan, Paris, Budapest) and Asia.

Nevertheless, many locations in Figure A.1 are placed in an unlikely or even im-

possible position on the map. For this reason we proposed a novel algorithm, called LAC-

clustering, that detects and removes outliers in such data. LAC-clustering is a heuristic

enhancement of general agglomerative hierarchical clustering [185]. It is based on the ob-

servation that cells with the same Location Area Code, i.e., belonging to the same location

area, must be close enough to each other to ensure seamless communication handover.

LAC-clustering removes spatial outliers from cells that belong to the same loca-

tion area in steps as follows:

Algorithm 2 LAC-clustering

1: Select cells with the same LAC. . Process for each Location Area Code
2: Compute proximity matrix.
3: Let each cell location be a cluster.
4: repeat . Create hierarchical cluster tree
5: Merge the two closest clusters.
6: Update the proximity matrix.
7: until only one cluster remains
8: Use distance criterion for forming clusters. . Hierarchical cluster tree pruning
9: Select one Location Area cluster representative.

First, a proximity matrix based on the Euclidean distance metric is computed

(line 2) for all cells with the same Location Area Code (LAC). Second, a hierarchical

cluster tree is created (lines 4–7) with linkages based on the single linkage method (also

called nearest neighbor), where proximity of two clusters is defined as the smallest distance

between two objects in the two different clusters. Next, the hierarchical cluster tree is

pruned to partition the cell coordinates into clusters with the clustering criterion being
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Figure A.2: Cell locations of the Reality Mining Dataset clustered according to Lo-
cation Area Code.

the distance between cells (line 8). Finally, a single cluster with the highest number of

locations is selected as a representative of the location area.

We selected the Euclidean distance metrics as a planar approximation of a real

distance between geographical coordinates. The key factor in cluster construction is the

appropriate distance selection. We choose the 35 km distance, which is the technological

limit in GSM networks for successful communication between a mobile station and a cell

tower. Therefore, all cell locations in one single cluster are simply points with a maximum

distance of 35 km from each other. LAC-clustering is discussed in a detailed manner

in [77], including correctness in terms of false positives and false negatives and the quality

of clustering measured in the Location Area shape similarity.

Figure A.2 shows the result of applying LAC-clustering to the locations in the

RMD retrieved from the Google Location API.

We have shared the spatially extended Reality Mining Dataset with several re-

searchers to support their work on energy-efficient continuous context sensing [151], routing

protocols in delay-tolerant networks [86] and opportunistic content sharing [206].
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