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Pevný, Peter Novák, Martin Rehák, the CAMNEP team, Martin Selecký, Štěpán Kopřiva, and
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Abstract

Effective security of today’s transportation infrastructures is difficult to achieve without computer-

aided approach. We develop a set of security-enhancing computational methods for transportation

infrastructures where many independent agents operate on daily basis in presence of an intruder.

Specifically, we consider an interaction between two agents representing two principal conflict-

ing sides: an evading agent (Evader) moving through the infrastructure to reach a destination

and an intercepting agent (Defender), aiming to detect the evading agent and prevent him from

reaching the destination, motivated by scenarios of contemporary maritime piracy, border patrol,

terrorist attacks or drug trafficking.

We model the problem within the game-theoretic framework as a two-player zero-sum game on

a graph in normal form while considering different mobility modes of the Defender. Due to huge

strategy spaces of both players, we utilize iterative oracle-based algorithms to compute a Nash

Equilibrium of the game: we design a set of oracles for each player, we decompose the algorithm

template into two principal phases, provide an extension of the algorithm template to work with

oracle hierarchies, and utilize fast suboptimal oracles without losing optimality guarantees.

We step outside the game-theoretic framework when considering multiple evading agents and

propose grouping mechanism to group agents together when transiting the area, taking into ac-

count their speeds and risk aversion. We design different constraint sets and formulate a bi-

objective mixed-integer linear program to compute optimal grouping.

Finally, we present a computational model of the maritime domain in the form of an agent-

based simulation. We model the maritime traffic in the Indian Ocean with the merchant vessel

adopting the role of the evading agent and with pirates, adopting the role of the intercepting

agent. All algorithms are evaluated within the simulation framework with different space and time

abstractions, with slight violation of assumptions made and with a perturbation of parameters

fixed in the mathematical models. The results show robustness of formal mathematical models

and their possible utilization for scenarios shifted from the original problem.
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Chapter 1

Introduction and Thesis Overview

On thesis motivation, research questions, and outline

I’m a big believer that the unknown is a really wonderful

thing. I know a lot of people who don’t act because

everything is uncertain and so they don’t know where

they’re headed. The wonderful thing about not knowing is

that anything can happen. It might be good and it might be

bad, but being open to finding out is where so many great

experiences come from. I think it’s a good philosophy to

live by.

– Aaron Dignan

Contemporary evolution of the world and the civilizations within steer towards interconnected

infrastructures which are vital for the smooth operation and functioning of our societies. These

infrastructures, being it urban transportation systems, logistics chains or computer networks,

are inherently large, very complex and with many agents using, shaping, or operating the in-

frastructure to reach their own or common goal.

Unfortunately, antagonistic interests of different bodies from disparate societies often stir a

lasting conflict mirrored as a persistent threat in the infrastructure where an intruder is trying

to harm the agents, the infrastructure itself or misuse the infrastructure for his own purposes.

A vital question is how to effectively protect the infrastructure or the agents from the intruder

and prevent him from reaching his goals.

The aim of this thesis is (1) to contribute to a set of methods for modeling the problem,

(2) to extend existing algorithms for design of policies for secure movement of agents within

an infrastructure under a persistent threat of an attack, and (3) to develop a validation frame-

work suitable for the assessment of the quality of computed policies. We are motivated by an

archetypal scenario of contemporary maritime piracy: a substantial part of the Indian Ocean is

now under an imminent threat of a pirate attack where thousands of transiting merchant vessels

sail unprotected and have to choose a route through the area to minimize the probability of a

hijack without any protection. However, techniques presented in this thesis have an overreaching

application to securing sensitive targets in the urban infrastructure, efficient border patrolling

and other scenarios.

The described set of conflicts can be modeled within a game-theoretic framework which was

successfully used in last years for designing of protection policies in various critical infrastruc-

tures, such as airports, harbors or urban networks (Tambe, 2011). Game-theoretic framework

naturally captures possible interaction of two or more agents, considering explicit models of

reasoning processes of the agents as well as their utility models. Practically, all game-theoretic

models guarantee the existence of an equilibrium: a fixed point in strategy spaces of all agents

participating in the game; if one agent plays his equilibrium strategy, it is optimal with respect

1



2 1 Introduction and Thesis Overview

to the type of interaction, the opponent model, and the utility model considered. The main dif-

ficulty typically lies in the design of efficient algorithms for computing the equilibrium strategy

for one or more agents. We present a game-theoretic model of two rational agents representing

two principal sides of the conflict, we capture their interactions and utility model using zero-sum

normal form game model (Fudenberg and Tirole, 1993) and propose an extension of existing

algorithms to compute equilibrium strategies for both players.

Fundamentally, due to the computational complexity of general game-theoretic models, large

scale problems with many independently reasoning agents with differing utility functions are

principally unsolvable (Nisan et al., 2007). If we resign on the explicit consideration of oppo-

nent’s reasoning model and his utility function, we can solve large problems within classical

optimization framework with an implicit opponent model in the form of a risk function and thus

design optimal policies for tens of agents. We present a multi-objective optimization model of

grouping of independent agents moving in the infrastructure and we use the model to compute

optimal groupings of agents subject to a risk function and movement constraints.

One of the limits of game-theoretical and optimization frameworks is the rigid mathematical

frame in which one has to continuously balance the richness of the model and computational

scalability of the model. Typically, a problem is solved with a given set of assumptions which do

not have to be satisfied and with a set of abstractions which do not hold true in reality. To tackle

the limits of formal mathematical models, more expressive, albeit less formal tools can be used

to validate proposed solutions computed from mathematical models. Multi-agent simulation is

one of such tools, allowing a rich modeling of reasoning processes of agents, a rich representation

of the environment and the dynamics of the system, all of which are finer representations of the

real world situation. This approach, of course, comes with a trade-off: the simulation itself is

difficult to be used as the optimization tool providing solutions.

Additional difficulties in empirical evaluation of game-theoretic solutions are inherent com-

plications when setting up an experimental environment (if possible)—monetary, resource and

time costs for field tests are huge, expert evaluation requires focus of an expert group. In both

cases, the repeatability of the experiments is very limited and many human reasoning biases have

to be taken into account when quantifying evaluation results. Evaluation within a simulation

framework elevates all these problems and provides a reasonable compromise between costs and

the quality of evaluation.

We present a computational model of the maritime domain in a form of an agent-based

simulation and utilize it as a validation tool to assess the validity of proposed models, their

robustness in the richer environment and the impact of assumption violation on the quality of

the solution. Designed models and algorithms are implemented within the simulation framework

in the form of decision-processes of the agents and evaluated with different space and time

abstractions, with a slight violation of assumptions made and with a perturbation of parameters

fixed in mathematical models. The results show a robustness of formal mathematical models

and their possible utilization for scenarios shifted from the original problem.
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1.1 Research Goals

The goals of the thesis are directly derived from the motivation described above.

1. Formal model of the problem.To be able to compute policies for agents operating in the

infrastructure, a formal model of the domain, as well as of the conflict is needed. We capture

the structure of the problem with game-theoretic framework. We will thus propose a suitable

model of the environment, we will model the opposing agents as players playing a game against

each other and define their utility functions. To be able to compute an optimal strategy, we

will propose a suitable interaction model capturing mobility of one or both players.

2. Scalable optimal algorithms. Having a game-theoretic model of the problem, we will

focus on finding optimal strategies for one or both players, using the standard concept of

Nash Equilibrium. Due to the mobility of both agents involved, we expect the strategy space

of both players to be large. We will extend oracle-based algorithms (McMahan et al., 2003)

which allow us to solve huge games.

3. Design of models with multiple players. The model proposed above will consider explic-

itly only two players; however, in real-world situations, multiple units of the same side can

play the game independently. Due to the scalability limits of joint strategy spaces, we will

focus on other approaches and we will propose optimal grouping schemes for multiple units

which are trying to minimize the interaction with the other agent, taking into account their

attributes, such as speed and risk aversion.

4. Simulation-based validation. The solution of the game is optimal only with respect to the

mathematical model it has been formulated in. It is thus necessary to validate the quality of

the computed strategy on a richer model which is a more accurate representation of the real-

world. We will focus on the maritime domain and we will create a multi-agent computational

model of the domain. We will capture the conflict between merchant vessels transiting the

Indian Ocean and pirates, roaming the high sees and trying to hijack the merchant vessels.

We will compute optimal strategies for the merchant vessels and the pirates using the game-

theoretic model and integrate it with the simulation. Finally, we will slightly violate some

of the assumptions made, perturb parameters fixed in the formal model and observe the

robustness of the computed strategies.
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1.2 Thesis Structure

The text of the thesis is organized as follows:

� Chapter 2 presents (i) an overview of related work in game theory with a focus on the

most related models and algorithms used to compute Nash Equilibrium of a zero-sum two

player game in the normal form, (ii) grouping mechanisms currently used for related problems

and techniques used to optimize a group assembly and (iii) an introduction into agent-based

simulation concepts together with the most relevant agent-based simulations.

� Chapter 3 addresses the first and the second goal of the thesis: the problem of the se-

cure transit is formalized within the game-theoretic framework with the accent on different

constraints on agents’ movement capabilities. Additionally, the chapter describes the main

improvements designed to be able to solve proposed models, together with implementation

details.

� Chapter 4 addresses the third goal of the thesis: the problem of optimal grouping is moti-

vated by real-world needs of the maritime transport and formalized for different constraint

sets as a bi-objective mixed-integer linear program.

� Chapter 5 describes the agent-based model which captures the main actors in the contempo-

rary maritime-piracy phenomenon and briefly describes the calibration of the complete model.

The model paves the way for the last goal of the thesis: the simulation-based validation.

� Chapter 6 addresses the last goal of the thesis: all algorithms are implemented within the

simulation framework and evaluated on a richer model with some assumptions violated. The

focus lies on the exact replication of the game model proposed within more realistic conditions

and on the observation of perturbation of parameters considered in the game-theoretic model.

We provide a brief summary at the end of each chapter highlighting the main ideas, the most

important results achieved and the contributions to the state-of-the-art of the author.



Chapter 2

Related Work

The first step in making rabbit stew is catching the rabbit.

–Isaac Asimov

The chapter is divided into three main sections, reflecting the decomposition of the problem into

three relatively independent branches: (i) game-theoretic models and algorithms, (ii) grouping

mechanisms and combinatorial optimization, and (iii) agent-based simulations. The first section

focuses on existing game-theoretic models considering similar problems to those being targeted

in this thesis. Additionally, a number of algorithms has been proposed to solve game-theoretic

models (the solution is typically a strategy for one or both players, which they play in a Nash

Equilibrium); we describe only the most relevant — optimal algorithms for finding Nash Equi-

librium in huge normal form games. The second section is focused on algorithms and models

related to grouping and coalition formation. Most of the related problems are modeled within

an optimization framework. We assess both of the branches and we focus on differences pro-

hibiting recycling of existing algorithms and models. The third section summarizes current

and past research done in agent-based simulations. This thesis develops an agent-based com-

putational model of the problem which is used for the validation of solutions provided by the

game-theoretic model, we thus focus on agent-based modeling methodologies and existing closely

related simulation frameworks.

2.1 Game Theory

Game theory (Fudenberg and Tirole, 1993) has been applied to a wide number of problems

and scenarios ranging from economics (auctions, voting, bargaining, oligopolies, social network

formation etc.) through political science (public choice, fair division, war bargaining etc.) and

biology (mainly evolutionary game theory) to military operations (operations research, military

planning, negotiation etc.).

Given the broadness (and depth) of the related research, we will introduce here only its part:

non-cooperative games between two players with antagonistic interests. In a finer focus, the

categorization gets blurry. The names of the games are selected as to describe various capabilities

of the players (e.g., pursuit-evasion game (Parsons, 1976)) and properties of the environment

(e.g., network interdiction games (Washburn and Wood, 1995)) or the area of application (e.g.,

security games (Jain et al., 2010a)) and we cannot construct a clear hierarchy. However, our

5



6 2 Related Work

research can be categorized into a narrow slice between and over game models introduced in

following subsections.

Note on player naming

In different games the players are called differently. The player trying to maximize the probability

of encounter is called Pursuer, Searcher, Seeker, Guard, Patroller. The player trying to minimize

the probability of encounter is called Evader, Hider, Attacker or Transporter. We use different

terms when describing different game models, keeping the original names of the players from

respective game models.

2.1.1 Pursuit-Evasion Games

Pursuit-Evasion games are games between two players, the Pursuer and the Evader. The Pur-

suer, disposing with one or a group of mobile units is trying to catch one or more Evader’s

mobile units, which is visible to the Pursuer. This abstract formulation allows to apply these

game models to a wide range of problems from civil as well as military domains. Pursuit-Evasion

games are basically an extension of art-gallery problem (Chvátal, 1975) to mobile guards. Many

variations exist with a limited view of guards, guards with uncertain sensors, an unknown or

partially known environment etc. (more can be found in a short survey (Cheng, 2003)).

Parsons (1976) introduces a discrete pursuit-evasion formulation whereby the movement of

the players is constrained by a graph. A typical example is a cop and robber game, where pursuers

and evaders occupy nodes on a graph and can see each other. The players move in alternate

turns in which they can move along an edge to an adjacent node or stay at the same node.

If the players meet at the same node, the game ends. The problem is usually formulated as:

how many pursuers are needed to capture the evader? To reach the solution (of this and other

game variants) one has to typically find one of graph properties. Even though pursuit-evasion

graphs are NP-hard on general graphs (LaPaugh, 1993), Ellis and Warren (2008) show that the

solutions for grid-like graphs can be found in linear time (for example an m-by-n grid graph can

be cleared by min(m,n) + 1 pursuers).

Other variants, such as hunter rabbit games—called randomized pursuit-evasion games (Adler

et al., 2002)—pose different questions regarding the minimum time required for the hunter to

catch the rabbit, if the rabbit moves on the same graph (restricted) or is unrestricted, i.e., it

can jump to any node every turn. Vidal et al. (2002) evaluated a variant of the pursuit-evasion

game on a deployed setting on a team of UAV1 and UGV2 in an unknown environment.

The continuous version of the pursuit-evasion game is often solved by the means of differential

game models and it is thus further from our research, focusing on graph-based games. More

information can be found in (Khan, 2007).

1 Unmanned Aerial Vehicle.
2 Unmanned Ground Vehicle.
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2.1.2 Search Games

Search games are basically a variant of Pursuit-Evasion games (or vice versa), where the Pursuer

has no information about the position of the Evader. Gal (1980) provides a systematic intro-

duction (which is later extended by Alpern and Gal (2003)) to all variants of search games in

a continuous space and on an arbitrary graph G. The Searcher (corresponding to the Pursuer)

starts from a fixed point termed origin o and his set of all pure strategies S is a set of all possible

paths leading from o. The Hider (corresponding to the Evader) chooses an arbitrary continuous

trajectory h ∈ H as his pure hiding strategy which he is following with a maximal velocity w.

In case w = 0, the Hider is immobile and its strategy is a single point/node, in case w = ∞,

his movement is unconstrained and the Hider can jump to any point/node in a single turn. Gal

assumes that the Searcher and the Hider cannot see one another until their distance from each

other is smaller than the discovery radius r. For graphs, the discovery radius is set to r = 0,

i.e., the players meet only at the same node. If the players meet, the game ends. A space with r

and w varied in different places is called a non-homogeneous search space. A question is posed:

what is the optimal strategy of the Searcher to find the Hider in minimum amount of time?

The problem is modeled as a two-person zero-sum game and a minimax strategy, i.e., a Nash

Equilibrium of the game is sought to find the optimal strategy for the Searcher. The utility

u(S,H) represents the loss of the Searcher if the Searcher uses a strategy S ∈ S and the Hider

uses strategy H ∈ H.

Washburn (1981) assumes that if one player does not have any information about the position

of the other player, there is no reason to choose one direction of movement over any other.

This insight leads to a two-random-walks model where a detection event occurs with a known

probability, when the Brownian motion of both participants brings them in proximity of each

other.

Brooks et al. (2009) build on this assumption and introduce a representation of a non-

homogeneous environment that is discretized into homogeneous regions, which are then rep-

resented by a node in a graph. The Searcher and the Hider then choose whether to stay in

the current region/node or to move to an adjacent one. They look for a Nash Equilibrium of a

game using standard linear techniques and the resulting strategy of the Searcher is expressed as

Markov policy, i.e., transition probabilities between any two adjacent nodes.

Halvorson et al. (2009) define a problem of a Hider moving through the graph and a Searcher

able to search c subsets of the graph nodes in each step. They model the game as a zero-sum

Bayesian game. Because the strategy space of the Searcher is exponential, they use an advanced,

oracle- based (i.e., column/constraint generation) approach to solve the game (see Section 2.2.2).

2.1.3 Ambush Games

Ambush games are a variation of search games, where the Guard (corresponding to the Searcher)

is immobile and the Evader (corresponding to the Hider) has an additional goal: he has to

cross the area from an origin to a destination (of course, not caught by the Searcher). Ruckle
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introduced several variants of ambush games in continuous (Ruckle, 1981) and discrete (Ruckle

et al., 1976) space and formulates solution of a zero-sum setting for some game models.

More recent Joseph’s work (Joseph, 2005; Joseph and Feron, 2005) on ambush games describes

a scenario of an important person or a convoy (the Evader) that can be ambushed by an immobile

Guard when repeatedly transiting a dangerous area. An optimal randomized strategy of the area

transit is sought for the Evader (the zero-sum formulation gives the same results as in Ruckle’s

work) and the network flow formulation is also successfully used for strategy space reduction.

Joseph also introduces more Guards and extends the game to a multi-stage setting, where the

Guard observes the Evader and can use the information gathered to place the ambush when the

Evader is in the middle of the transit. He solves this problem by means of dynamic programming

and decomposition on a set of relatively small sub-games. This game model is very closely related

to our problem, however, we need to deal with uncertain environments and mobile guards, not

only static ones.

2.1.4 Interdiction Games

Interdiction games—introduced by Washburn and Wood (1995)—-are an extension of ambush

games, where the successful ambush depends not only on the requirement of the Evader to

pass through the node/arc that is inspected by the Guard, however, the Guard detects the

Evader only with a detection probability on the particular place as is our case. The Guard

then searches the strategy maximizing the probability of detection. He proposes a zero-sum

formulation and notes an exponential number of paths required to enumerate, however, using

network flow techniques, he reduces the complexity of the solution to polynomial time. Even

though the game is formulated as zero-sum, most of the scenarios in Washburn’s work are

centered on smuggling and trafficking (i.e., the strategies are sought for the Guard).

2.1.5 Infiltration Games

The infiltration games (Auger, 1991a) are another variant of search games (in more general form

introduced by Gal (1980)), i.e., the Guard has no information about the position of the Evader.

The Evader (as well as in the Ambush and Interdiction games) starts at an origin node O and

has to go through a graph with n arcs to a destination node D (the first formulation was on

graphs with just one arc (Auger, 1991b), i.e., a sequence of connected nodes (Auger, 1991b)).

Every arc consists of x < n nodes and connects only O and D and is not connected with any

other arc. The Evader can in every step stand still or go to a neighboring node. The Guard can

inspect every step one node except O and D. The Evader’s aim is to reach D without being

caught by the Guard within a time interval T . The capture occurs only if both players occupy

the same node in the same time step, however only with a probability 1 − λ (λ is called the

”miss factor” and it is analogous to the probability of detection in Interdiction games).
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This problem was later extended and successfully solved by Alpern (1992) to a game on

arbitrary graphs and Garnaev et al. (1997) provides a solution for cases where the Guard can

inspect at most k nodes in the whole time interval T .

2.1.6 Patrolling Games

Patrolling games share similarities with a large group of search games (i.e., the Patroller is

mobile and the Attacker is immobile), however, the Attacker is not present in the graph from

the beginning of the game; the Attacker enters the graph (in any place/target) at any time step

after the game starts. Bošanský et al. (2011) provides a comprehensive description of patrolling

games: the Patroller has a very limited amount of resources available for the task, i.e., given

all possible targets, the number of deployable units is significantly smaller (typically one). This

means that it cannot be always guaranteed to prevent all the attacks, but the Patroller optimizes

a utility based on the probability of a successful attack. As further noted by Bošanský et al.

(2011), in patrolling games, the attacks are durative. They take a pre-defined period of time,

during which the Patroller can interrupt the attack and save the target. The method employed

by the Patroller therefore consists of repeated visits of the targets that minimize the probability

that a target will not be seen for longer than the defined time period. The solution is mostly

sought in the form of a Stackelberg equilibrium, creating a strategy that is efficient even if it is

known to the attacker.

Agmon et al. (2008a) analyzes the problem of patrolling a perimeter, i.e., the environment is

modeled as a circular graph, where each of the nodes is a potential target. The Patroller strategy

is sought as a simple Markovian policy and as a policy with an additional state representing the

facing of the agent in one of two directions. The crucial assumption here is made about the At-

tacker knowing the strategy used by the Patroller. Basically, the Attacker can wait unlimitedly

long and observe the Patroller and thus infer his strategy. If we limit the Attackers knowledge,

we get a game model analyzed by Agmon et al. (2008b). The perimeter patrol strategies can-

not be directly applied on more general environment topologies. Arbitrary graphs are studied

by Basilico et al. (2009a), where they provide a general model (termed BGA model) for find-

ing the optimal strategy for the Patroller, which is defined as a higher-order Markovian policy.

Further work extending this approach is the analysis of the impact of the Attacker’s knowledge

about the Patroller’s policy on a general graph (Basilico et al., 2009b) and an extension of the

model for multiple Patrollers (Basilico et al., 2010).

Dickerson et al. (2010) define static and dynamic asset protection problem, where the asset

is either stationary, located on vertices in a graph, or mobile, following fixed and widely known

route and has to be protected. They show that a random allocation of resources on a single edge

cut solves this problem for static allocation, the dynamic version is shown to be NP-hard (even

its approximation) and a greedy heuristics is provided and shown to work well in practice.
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2.1.7 Security Games With Stationary Defenders

The previous sections introduced all game models that are relevant to security games (there is

no clear distinction of what is a security game and what is not. The term was first introduced

in work of Teamcore research group (Kiekintveld et al., 2009; Pita et al., 2008, e.g.) and was

later re-used for various game models (Jain et al., 2010a). However, all the models correspond

to problems of securing an infrastructure with limited resources). The Defender is immobile,

placing limited amount of resources (i.e., units) on strategic places to prevent the Attacker from

attacking one of the potential targets T = {t1, t2, . . . , tn}. There are various settings, where there

are more types of Attackers (Bayesian game models), the Attacker can observe the Defender

(Stackelberger game models) or not etc. In security games, in contrast with Patrolling games,

once the Attacker reaches the target, the game ends, i.e., the attacks are instantaneous—the

only way to prevent them is to allocate corresponding resource to protect the target prior to the

attack.

Despite many differences, all the game models have a specific utility function:

� if a target ti is attacked while ti is covered by some Defender resource, the Defender gets

U cd(ti) and the Attacker U ca(ti).

� if a target ti is attacked while ti is uncovered by some Defender resource, the Defender gets

Uud (ti) and the Attacker Uua (ti).

We use ∆Ud(ti) = U cd(ti) − Uud (ti) to denote difference between Defender’s covered and

uncovered utilities. Similarly, ∆Ua(ti) = Uua (ti)−U ca(ti) is the difference for the Attacker. In all

security games holds the following (visualized on the Figure 2.1):

∆Ud(ti) > 0 ∧∆Ua(ti) > 0

Fig. 2.1: Visualization of the Security games utility function property. Courtesy of Z. Yin (Yin
et al., 2010).

For this utility function, Yin et al. (Yin et al., 2010) showed that Nash Equilibrium and the

Strong Stackelberg Equilibrium (Fudenberg and Tirole, 1993) are equivalent and interchange-

able. Note that this definition can be used in zero-sum setting as well.

The model of the security games was successfully deployed in the air traffic security. In

one case, the model was used to propose a randomized schedules for the LAX airport (AR-

MOR) (Jain et al., 2010b), (Pita et al., 2009), (Pita et al., 2008) and to propose randomized

schedules for federal air marshals (IRIS) (Tsai et al., 2009). Recently, the a model of Mumbai
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was developed to propose a schedule for setting up police checkpoints in the city to protect

important buildings (Tsai et al., 2010b), (Jain et al., 2011b).

2.2 Nash Equilibrium Search Algorithm

According to (Ferguson, 2005), we formulate our games (X,Y, A) to be a zero-sum game of

Player 1 and Player 2 with strategies X resp. Y and a real-valued function A defined on X×Y

( creating a game matrix A , i.e., A(x, y) is a real number for every x ∈ X and y ∈ Y). For this

game, we seek a Nash Equilibrium (for zero-sum games equal to minmax or maxmin strategies)

using one of the following techniques.

2.2.1 Linear program for Computation of a Nash Equilibrium

It is possible to find the Nash Equilibrium of the game by solving a linear programming problem

constructed from the game matrix A. Before the formulation, let us define required terms.

A mixed strategy σX for Player 1 is represented by a column vector σX = (p1, p2, . . . , pm)T of

probabilities that add to 1. Similarly, the mixed strategy σY for Player 2 is defined as a row vector

of probabilities σY = (q1, q2, . . . , qn) summing to 1 (pi ≥ 0, ∀pi ∈ σX and qj ≥ 0, ∀qj ∈ σY ).

Then, if both players pursue their optimal strategies, the expected outcome of the game is

V∗ = min
X

max
Y
V = max

Y
min
X
V (2.1)

and the game value can be computed as

V = σX ·A · σY . (2.2)

The linear problem3 can be formulated by maximizing the value of the game

3 We expect the reader to be familiar with Linear Programming and basic methods for solutions of linear

programs, such as Simplex method, Interior point method or others.
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min V (2.3)

V ≥
m∑
i=1

pi ·Ai1

... (2.4)

V ≥
m∑
i=1

pi ·Ain

m∑
i=1

pi = 1 (2.5)

pi ≥ 0 ∀i = 1, . . . ,m (2.6)

where the set of constraints (2.4) are created from the game matrix A (Aij is the element of the

i-th row and j-th column of the game matrix A) and equations (2.5) and (2.6) are probability

constraints.

The solution of this linear program can be found using a wide range of linear programming

algorithms, such as the Simplex method, the Interior point method etc. Solution of linear pro-

grams can be found in a polynomial time, however, if the number of strategies for one or both

players is exponential in size of the problem (e.g., number of nodes/edges in the graph), classical

methods – such as Simplex method – are not scalable in number of constraints or variables. We

thus employ more advanced methods, described in following sections.

2.2.2 Oracle-based Algorithms

The requirement of enumeration of all strategies of both players prior solving the linear program

is a great disadvantage. Several algorithms has been developed (mostly in Operations Research

community) to tackle this problem. Basically, these algorithms start with a small, relaxed linear

sub-program and then iteratively add additional information (i.e., rows or columns) about the

problem. Mostly, not all original information has to be added before the termination of the

algorithm, which results in a smaller version of the original problem that can be solved much

faster with lesser memory requirements.

The Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960) delays the enumeration of

columns (corresponding to variables p1, p2, . . . , pm) by iteratively adding only the variables that

are improving the objective function. Similarly, the Benders’ decomposition (Benders, 1962)

iteratively adds rows (corresponding to constraints in equations (2.4)) that are currently vio-

lated. These techniques are often referenced as column or row (or constraint) generation, which

are transformed into branch-and-price or branch-and-cut algorithms respectively. These meth-

ods are used to solve huge linear and integer programs (Barnhart et al., 1994b), such as crew

scheduling problems (Barnhart et al., 1994a) and many others.

From the perspective of game-theory, the initial small linear sub-program corresponds to a

small sub-game of the original game, the columns of the linear program (the variables) cor-
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Algorithm 1 Single-Oracle Algorithm

Ŷ ← {arbitrary strategy y ∈ Y}, break ← false

σ
(0)
X ← uniform distribution over all X

repeat

(σ
(k)
X , σ

(k)
Y )← compute NE using LP for σ

(k−1)
X and Ŷ

y ← Ω∗Y (σ
(k)
X )

if y /∈ Y then

Ŷ ← Ŷ ∪ {y}
else

break ← true

end if
until not break

respond to strategies of Player 1 and rows (constraints) correspond to strategies of Player 2.

This means that we need to iteratively select strategies of respective players and gradually add

them to the current linear sub-program. These algorithms are termed in the multi-agent com-

munity oracle-based algorithms. If we generate only columns or only rows (i.e., strategies for

only one player while enumerating the complete strategy set for the second player), the algo-

rithm is referred as a single-oracle algorithm (McMahan et al., 2003). If we generate columns

as well as rows (i.e., strategies for both players), the algorithm is referred as a double-oracle

algorithm (McMahan et al., 2003).

Following subsections describe oracle-based algorithms in greater depth, answering posed

questions and uncovering their limitations.

2.2.2.1 Single-oracle Algorithm

Let us consider a two-player normal-form zero-sum game Γ with pure strategy sets X and Y for

Player 1 and Player 2, respectively, and the corresponding mixed strategy sets ΣX and ΣY . The

single-oracle algorithm iteratively constructs a sequence of sub-games [Γ (0), Γ (1), . . .] where each

game Γ (k) consists of the complete pure strategy set X for Player 1 but only a subset Ŷ(k) ⊆ Y

of the full pure strategy set Y for Player 2. In each iteration of the single-oracle algorithm, a

Nash equilibrium (σ
(k)
X , σ

(k)
Y ) ∈ Σ(k)

X × Σ(k)
Y of the current sub-game Γ (k) is first sought. Next,

a Player’s 2 best-response oracle Ω∗Y : Σ
(k)
X 7→ Y is consulted to obtain a pure best-response

strategy y ∈ Y of Player 2 against the Player’s 1 strategy σ
(k)
X ∈ Σ(k)

X ; note that oracle∗Y seeks

the best response in the full game, i.e., considering all pure strategies y ∈ Y. If the resulting

pure strategy y ∈ Y is already in Ŷ, the algorithm terminates and the NE (σ
(k)
X , σ

(k)
Y ) is the NE

of the full game Γ ; otherwise, the strategy y, now termed sub-game expanding strategy, is added

to Ŷ and the algorithm continues. The Algorithm 1 depicts the pseudocode for the single-oracle

algorithm.

In the ideal case, the iterative oracle-based algorithm would only add such pure strategies

y ∈ Y to the pure strategy subset Ŷ that are in the support4 of the Player’s 2 resulting mixed

NE strategy of the full game Γ . Best response calculation by the oracle Ω∗Y can be viewed as

a heuristic for selecting such sub-game expanding pure strategies y ∈ Y that the algorithm

4 The support of a mixed strategy σi is a set of pure strategies {si|σi(si) > 0}.
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Algorithm 2 Double-Oracle Algorithm

break ← false
X̂← {arbitrary strategy x ∈ X}
Ŷ ← {arbitrary strategy y ∈ Y}
repeat

(σ
(k)
X , σ

(k)
Y )← compute NE using LP for X̂ and Ŷ

x← Ω∗X(σ
(k)
Y )

y ← Ω∗Y (σ
(k)
X )

if (x ∈ X̂) AND (y ∈ X̂) then
break ← true

else
if x /∈ X̂ then

X̂← X̂ ∪ {x}
end if
if y /∈ Ŷ then

Ŷ ← Ŷ ∪ {y}
end if

end if

until not break

terminates after as few iterations as possible. The proof of convergence and correctness of this

approach are immediate from the corresponding proofs for Bender’s decomposition (Benders,

1962).

2.2.2.2 Double-oracle Algorithm

The double-oracle algorithm (Algorithm 2) is a direct extension of the single oracle algorithm.

It uses incrementally expanded strategy subsets X̂ and Ŷ for both players.

As in the case of the single-oracle algorithms, the oracles Ω∗X and Ω∗Y provide best responses

to the current mixed strategies σ
(k)
Y , σ

(k)
X respectively and these best response strategies are

added to the current sub-game. Termination condition requires that best responses for both

players are already present in the respective strategy subsets. The proof of convergence to a

Nash equilibrium can be found in (McMahan et al., 2003).

The main requirement for the oracle-based algorithms is fast oracles that can provide the

response in constant, linear or polynomial time. If the computations of the best response prob-

lems are NP-hard, the scalability and performance of these algorithms are significantly de-

creased. However, it is still possible to find solution (optimal or approximate) even for these

problems (Halvorson et al., 2009).

2.3 Grouping Mechanisms

Related work on this subject can be roughly divided into three parts: first, we describe work

related to the dynamic group transit optimization; second, we describe state-of-the-art methods

for optimization multi-objective mixed integer program; and third, we describe limited work

related to the currently deployed fixed GTS deployed in the Gulf of Aden.
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2.3.1 Convoy Movement Problems

Most related work from the domain and method perspective has been done in Convoy Forma-

tion, Routing, and Movement Problems (Kumar and Narendran, 2010) that involve routing and

scheduling military or emergency rescue convoys within strategic constraints. Montana et al.

(1999) solve a typical convoy moving problem: they minimize total movement time of convoys

moving in a directed graph, subject to a set of following constraints: the convoys do not stop

en-route (same requirement), they do not cross each other, they have the same speed and oth-

ers, less relevant to our problem. We need to allow groups to have different speeds and to cross

each other during the transit. Montana et al. additionally focus on convoy scheduling, i.e., the

grouping of trucks into one convoy, posing constraints on the size of the group (similar to our

formulation) and what type of load the trucks transport (which is irrelevant in our problem).

Typical variants of the convoy movement problem are considered to be NP-hard (Goldstein

et al., 2010) and operation research techniques, such as mathematical modeling, are typically

used to find a solution. Montana et al. (1999) use genetic algorithms to find optimum convoy

schedules. Chardaire et al. (2005) model the problem as an integer program; they solve large-

scale instances by using Lagrangian relaxation and evaluation of the dual function and obtain

heuristic solutions for the original formulation. For the problem defined in this thesis, integer

programing is suitable to capture the structure of the problem, however, we are interested

in optimal solutions. Finally, Kumar et al. (2009) address a bi-criteria version of the convoy

movement problem with minimizing total travel time and travel span as objectives. We would

need to capture our objectives as a bi-criterion function as well, however, we will look at travel

time and risk taken and use different solution approach.

2.3.2 Convoy Driving on Highways

We seek inspiration in the research of related problems in the transportation domain. Convoy

driving on public highways is a similar convoy movement in the military domain. Previous

work is motivated mainly by the military or emergency rescue domain. We can find similar

work in classical transportation domain as well where similar convoy driving problem arises on

public highways. Khan and Boloni (2005) formalize the problem of vehicles joining and leaving

a convoy while having an upper and lower speed limit and acceptable utility for being in a

convoy. The formulation is similar to our problem; however, the work does not consider any

temporal constraints. Algorithms are based on coalition formation with non-transferable utility

techniques and solutions reflect optimum decision from the vehicle’s point of view, not from the

social welfare maximization perspective.

One of the frequently solved problems in urban transportation is car pooling (Baldacci et al.,

2004) problem consisting of defining subsets of passengers that will share cars and the paths the

cars should follow, so that number of passengers per car is maximized and the sum of the path

costs is minimized. The goal is to plan a set of minimum cost vehicle routes capable of serving

as many passengers as possible, under a set of constraints arising from the spatial distribution

of the problem. The special case of the carpooling problem with all cars being identical is called
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a Dial-a-Ride Problem (Cordeau and Laporte, 2003). Both problems can be solved heuristically

or exactly using integer programming techniques. Again, even though we plan on a primitive

graph, the methods here cannot be directly reused, as we pose different constraints on the groups

and we cannot group arbitrary agents into a single group.

2.3.3 Grouping and Clustering

Another body of related work examines the Grouped Sweeping Scheduling (GSS) problem (Chen

et al., 1993; Yu et al., 1993). In GSS—frequently used in multimedia storage management—the

problem is to minimize buffer space in retrieval of heterogeneous multimedia streams by dividing

set of streams into groups, subject to a set of constraints posed by the physical architecture of

the disk, which differ from our problem which has to capture the spatial distribution of agents

and their differing attributes (such as speed).

On-line clustering is another approach to group entities arriving in time and it is employed

across a number of domains. Typically, a data stream is clustered into a number of clusters

which arise in time. The clusters are represented as K-Means (Beringer and Hüllermeier, 2006)

or K-Medians (Guha et al., 2000) or as more advanced, density-based models (Chen and Tu,

2007). There is no proper definition of optimality for such techniques as they are designed

for domains with huge amount of arriving entities and another qualities (such ability of trend

capturing, memory efficiency etc.) are aimed for. In our case, the number of entities is not that

large (typically tens or hundreds) and we pose more complex constraints on samples from a

single cluster and on the clusters themselves. Additionally, optimality of the solution cannot be

simply verified, which is, with respect to the size of our problem, unnecessary limiting.

Finally, a canonical problem of spatio-temporal collaboration children in the rectangular forest

is proposed by Luo and Boloni (Luo and Bölöni, 2007). Here, two agents negotiate, how to cross

a rectangular dangerous area, possibly together and which route to take through the area. In our

case, the problem contains multiple agents and the route is given, however, time of the crossing

and speed of the transit matters.

2.3.4 Mathematical Programming and Multi-Objective Optimization

Multi-objective optimization (MOP) is a frequently used set of techniques having roots in the

work of Edgeworth and Pareto in economics (Edgeworth, 1881; Pareto, 1964). Talbi (2009)

explains that the optimal solution for MOPs is not a single solution as for mono-objective

optimization problems, but a set of solutions defined as Pareto optimal solutions. A solution

is Pareto optimal if it is not possible to improve a given objective without deteriorating at

least another objective. This set of solutions represents the compromise solutions between the

different conflicting objectives. The main goal of the resolution of a multi-objective problem is

to obtain the Pareto optimal set and, consequently, the Pareto front. The difficulty in solving

MOPs lies in the following general facts Talbi (2009):
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� There are no commonly used definitions on the global optimality of a solution as in mono-

objective optimization. The order relation between solutions of a MOP problem is partial,

and the final choice depends on the decision maker.

� The number of Pareto optimal solutions increases according to the size of the problem and

mainly with the number of objectives being considered. Indeed, at least all Pareto solutions of

an n-objective problem are necessary Pareto solutions of the same problem with an additional

objective function.

� The structure of the Pareto front (e.g., continuity, convexity, multimodality) depends on the

studied MOP. For instance, the Pareto optimal solutions may be localized on the frontier

and inside the convex hull of feasible solutions. Moreover, most of the MOPs are NP-hard

problems.

2.3.4.1 Formal Framework

Definition 1. Multi-objective optimization problem is defined as (Talbi, 2009)

MOP =


minF (x) = (f1(x), f2(x), . . . , fn(x))

s.t. x ∈ S
(2.7)

(2.8)

where n (n ≥ 2) is the number of objectives, x = (x1, . . . , xk) is the vector representing the

decision variables and S represents the set of feasible solutions associated with equality and

inequality constraints and explicit bounds. F (x) = (f1(x), f2(x), . . . , fn(x)) is the vector of

objectives to be optimized.

The search space S represents the decision space or parameter space of the MOP. The space

in which the objective vector belongs to is called the objective space. The vector F can be defined

as a cost function from the decision space in the objective space that evaluates the quality of

each solution (x1, . . . , xk) by assigning an objective vector (y1, . . . , yn), which represents the

quality of the solution. A partial order relation could be defined, known as dominance relation.

Definition 2. Pareto dominance. An objective vector u = (u1, . . . , un) is said to dominate

v = (v1, . . . , vn) (denoted by u ≤ v) if and only if no component of v is smaller than the

corresponding component of u and at least one component of u is strictly smaller.

A Pareto optimal solution denotes that it is impossible to find a solution that improves the

performances on a criterion without decreasing the quality of at least another criterion. A MOP

may have a set of solutions known as the Pareto optimal set. The image of this set in the

objective space is denoted as the Pareto front.

Definition 3. Pareto optimal set. For a given MOP (F, S), the Pareto optimal set is defined

as P ∗ = {x ∈ S/@x′ ∈ S, F (x′) ≤ F (x)}.

Definition 4. Pareto front. For a given MOP (F, S) and its Pareto optimal set P ∗, the Pareto

front is defined as PF = {F (x), x ∈ P ∗}.
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2.3.4.2 Solution Approach

We introduce only a single method out of many in detail, the reader can find other methods,

such as weighted metrics (Talbi, 2009), goal programming(Charnes et al., 1955), achievement

functions (Wierzbicki, 1980), goal attainment (Talbi, 2009), ε-constraint method (Haimes et al.,

1971) or a range of metaheuristics (Talbi, 2009) in respective references.

Aggregation Method

The aggregation (or weighted) method is one of the first and most used methods for the gen-

eration of Pareto optimal solutions. It consists in using an aggregation function to transform a

MOP into a mono-objective problem (MOPλ) by combining the various objective functions fi

into a single objective function f generally in a linear way (Hwang et al., 1979):

f(x) =

n∑
i=1

λifi(x), x ∈ S (2.9)

where the weights λi ∈ [0, . . . , 1] and
∑n
i=1 λi = 1. The solution of the weighted problem is

weakly Pareto optimal. The final solution is Pareto optimal if λi > 0 for all i ∈ [1, n] or

the solution is unique. The main drawback of this method is that it generates only supported

solution, i.e., solutions on the convex set of the Pareto front.

2.3.5 Group Transit Schemes

Grouping mechanism relevant to our problem set is currently deployed in the International

Recommended Transit Corridor in the Gulf of Aden, where the transiting merchant vessels are

aligned into a corridor and follow a prescribed schedule which assigns to the arriving vessels

five distinct speed levels an arrival time at the beginning of the corridor. This group transit

scheme, together with the description of the International Recommended Transit Corridor, is

well explained by Intertanko (Intertanko, 2009); however, the computation of the currently used

times and speeds for groups is not described—to our best knowledge—in any of the public

sources. In (Hrstka and Vaněk, 2011), we derived formal model of the problem and proposed a

set of algorithms able to compute optimal schedules, however, the approach was not scalable even

though the problem is solvable in polynomial time. We have extended this work by proposing

more compact formal model and we design new scalable algorithm able to compute optimal

fixed schedules for tens of groups in seconds (Vaněk et al., 2013a,b).

2.4 Agent-based Simulations

The use of agent-based or simulation-based models to support policy design and operational

management has a very long-standing tradition in the transportation field. The use of simulation

as a validation or solution quality evaluation tool is relatively novel and not fully explored
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research branch. In this section, we first look at agent-based simulations themselves: multi-

agent simulation design and internals. Then we provide overview of the most relevant simulations

(focusing on transportation domain, infrastructure security and maritime piracy).

2.4.1 Multi-Agent Simulation Concept

Multi-Agent Systems (MAS) provide a description framework that is appropriate for many real

world systems consisting of a set of interacting autonomously deciding actor. Human and animal

societies form prominent and intuitive examples for real-world multi-agent systems. Klügl (2009)

provides very detailed insight into design and “engineering” of the multi-agent simulations. In

every MAS there are four aspects that are relevant for capturing the notion of multi-agent

systems and agent-based software: The Agents forming an Multi-Agent System based on their

Interactions and situated in an Environment.

2.4.1.1 Agent and Multi-agent Systems

Franklin and Graesser (1997) define an autonomous agent as follows:

Definition 5. Autonomous Agent. An autonomous agent is a system situated within and a

part of an environment that senses that environment and acts on it, over time, in pursuit of its

own agenda and so as to effect what it senses in the future.

To understand the concept of an agent, it is necessary to discuss the essential properties asso-

ciated with it more deeply (Klügl, 2009):

1. Situatedness An Agent is situated in the environment,i.e., there is an ongoing interaction

between the agent and its surroundings through sensors and effectors and having form of

manipulation of parts of the environment, environment perceiving or message communication.

The interaction continues over time implying persistence of the agent in the environment.

2. Autonomy An Agent is autonomous in execution of its actions and fulfilling its goals, i.e.,

next actions are determined without direct influence from the outside.

3. Pro-activity and Reactivity An Agent should be pro-active in the environment to attain

its goals and react on percepts from the environment in form of adaptation or learning.

4. Level of Rationality An Agent is working towards its goals in a non-random way, typically

selecting actions with maximum (or satisfiable) expected outcome with respect to its goals.

5. Sociality An Agent is able to interact with other agents by, e.g., communication channels or

through the environment.

6. High-Level Description An Agent’s behavior should be describable by a high-level frame-

work, such as Belief, Desire,Intention (BDI) (Rao et al., 1995) architecture or other anthro-

pomorphic ways of describing agent structure and behavior.

The notion of a multi-agent system is easily given when the term agent is clear: A multi-agent

system is a system that consists of interacting agents with the aim of fulfilling some common or

individual goals (Klügl, 2009).
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2.4.1.2 Environment and Interactions

In general, the environment is everything the agents interact with, more formally (inspired by

FIPA framework5), following components are typically found in the environment: (1) mediators,

facilitators, page servers and other service providers; (2) general infrastructure, such as transport

information and physical transportation bodies (e.g., a bus or a vessel) and (3) resources, such

as information sources, data sources.

Typically, the environment is classified into one of following classes: accessible vs. in-accessible,

dynamic vs. static, stochastic vs. deterministic and continuous vs discrete (Russell et al., 2010).

One of the central aspects of MAS is the way agents interact which could be distinguished

according to frequency, persistence, level and media, variability and goal of interaction (Klügl,

2009).

2.4.1.3 Design of Multi-agent Simulations

As described in Sislak et al. (2009), there are two approaches to agent-based simulations design

– analytic simulation and distributed virtual environments (DVE). The first approach is used

when we need maximum detail and accuracy without any human interaction. The simulation is

required to be deterministic and is thus usually synchronous. The DVE simulations are used to

create an illusion of a real-world environment for training or human user purposes. Thus they

do not usually support an absolute synchronization and often use a human-in-a-loop for the

simulation control.

Following categories are considered when classifying a multi-agent simulation (Klügl, 2009):

time advance paradigm, granularity, goal of the simulation. In temporal category, we can con-

sider following three forms: continuous simulation time, event based simulation and time-stepped

simulations. The continuous time are models consisting of differential equations; the event-based

simulations use events as a basis for it execution – each event is tagged with a time stamp and

sorted into an event-queue; the simulation then triggers events with the earliest time stamp to

determine new states of the agents and the environment to advance the simulation. The time-step

based simulation advanced in predefined virtual time steps and new states of the environment

and agents are computed after each step.

The granularity of the simulation typically determines the level of detail of the model: two

basic forms are micro and macro models. Micro models consist of small entities with separate

state and behavior and the overall simulation behavior is generated as a combination of the

behaviors of the single parts. Macro models conceptualizes the system as a single entity with

a number of state variables and parameters. The state is updated and an output is produced

based on the inputs into the simulation. This approach build on the assumption of homogeneity

of its parts and space.

The goal of the simulation determines the class of the model and simulation properties with

two possible values: explanation and prediction. A much greater level of realism is required for

the latter and it is much harder to achieve. The requirements for explanation of a phenomenon

5 www.fipa.org

www.fipa.org
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are lower, although still challenging. In both cases, proper validation of simulation correctness

is required.

Given the complexity of any multi-agent simulation, we focus on those which are easy to

extend or which can simulate directly a conflict between two adversaries. Moreover, many of

such simulations are designed for military purposes and are thus not publicly available. In

following section, we present the most suitable simulation from various domains, which are

publicly available.

2.4.2 Related Agent-based Simulations

The simulation framework presented in this thesis was developed in context of another two

simulations — Agentpolis and Tactical AgentScout.

Agentpolis6 (Jakob et al., 2012a) is a fully agent-based platform for modeling multi-modal

transportation systems. It comprises a high-performance discrete-event simulation core, a co-

hesive set of high-level abstractions for building extensible agent-based models and a library of

predefined components frequently used in transportation and mobility models. Together with

a suite of supporting tools, AgentPolis enables rapid prototyping and execution of data-driven

simulations of a wide range of mobility and transportation phenomena.

AgentScout7 project (Vokrinek et al., 2010) provides a rich simulation platform based on

ALite (Komenda et al., 2013), an agent-based simulation toolkit of an urban area where an

operation of military forces takes place. The military agents share a common goal and operate

in an unknown environment which is abstracted as a graph. There are adversary agents present

in this environment aiming for disruption of plans of the military agents.

In transportation domain, the vast majority of the work, focuses on ground transporta-

tion (e.g. Boel and Mihaylova, 2006; Seow and Lee, 2010) and, to a lesser extent, on air trans-

portation (e.g. Sislak et al., 2011).

In the maritime domain, applications of similar models are surprisingly scarce. Existing work

either focuses on traffic in ports and national, coastal waters (Hasegawa et al., 2004; Kose

et al., 2003) or uses high-level equation-based models (Bourdon et al., 2007) unfit for capturing

individual-level behavior and inter-vessel interactions essential for modeling maritime piracy.

Furthermore, none of the above models is concerned with the security of maritime shipping

lanes.

As far as the security angle on transportation systems is concerned, existing simulations focus

on modeling activities in and around terminals rather than within transportation networks

themselves. This is true both for airport security (Chawdhry, 2009; Wilson, 2005) and port

security (Koch, 2007). The spatial, network aspect of transportation security has been touched

upon in the work on modeling critical infrastructures (Barton and Stamber, 2000), however, the

emphasis there is mostly on other than transportation types of infrastructures. The problem

of securing transportation infrastructures and logistical networks has only been studied in the

military context (Ghanmi et al., 2011).

6 http://merle.felk.cvut.cz/redmine/projects/agentpolis
7 http://agents.felk.cvut.cz/projects/agentscout/

http://merle.felk.cvut.cz/redmine/projects/agentpolis
http://agents.felk.cvut.cz/projects/agentscout/
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Focusing on the very phenomenon of maritime piracy, existing work is concentrated primarily

in the fields of security studies, international relations and global policy (Onuoha, 2010). Only

recently, initial attempts at applying computational modeling and optimization to maritime

piracy have emerged but focus exclusively on military aspects of the problem: Bruzzone et al.

(2011) model piracy around the Gulf of Aden using the discrete-event simulator PANOPEA. The

authors focus on evaluating the efficiency and effectiveness of different Command and Control

models; only main actors in the Gulf of Aden are considered and the simulation is not scaled to

the Indian Ocean where the merchant traffic model is significantly more complicated.

Tsilis (2011) employs the MANA agent-based modeling framework (Lauren and Stephen,

2002) to identify key factors affecting the escort of vulnerable merchant vessels through the

Gulf of Aden. The escorting scenario is modeled on a tactical level, focusing on positioning of

individual ships and protection of one group of merchant vessels; this is different from our model

which adopts a whole-system perspective and considers the security of maritime transportation

system as a whole. The MANA framework is also used by Decraene et al. (2010) to analyze

requirements on non-lethal deterrents for defending large merchant vessels against pirate attacks;

again, the focus is on the tactical level of modeling a single encounter in detail, rather than the

system as a whole.

Slootmaker (2011) describes Next-generation Piracy Performance Surface (PPSN ) model

which employs meteorological forecasts, intelligence reports and historical pirate incidents to

predict areas conductive to pirate activity around the Horn of Africa. Hansen et al. (2011)

further improve the PPSN model by refining the environment model and adding a probabilistic

behavioral pirate model, resulting into the Pirate Attack Risk Surface (PARS) model. Both

PPSN and PARS models are numerical with only a minor simulation component and are limited

to short-term forecasts (several days). They do not directly model real-world behavior and

interactions of individual vessels; consequently, their applicability for what-if type of analysis is

limited.

Finally, piracy patterns and the effect of countermeasures were also studied using statistical

data analysis and data mining (Bowden et al., 2011). The usability of such results for policy

design and optimization is limited because the insights gained concern the behavior of the

maritime system under current circumstances and are difficult to extrapolate to hypothetical

future scenarios.



Chapter 3

Models and Algorithms for Transportation

Security

On the design of models capturing the interaction of a

transit agent and an intruder with various mobility

capabilities.

Essentially, all models are wrong, but some are useful.

– George Box

The strategic interaction between agents moving throughout the transportation infrastructure

and an agent trying to harm these transiting agents can be best modeled within the game-

theoretic framework. In this chapter, we propose a number of formal models of transit games,

where the attacking agent is subject to a different sets of constraints on his movement1. We

consider different utility models which capture more or less precisely the interaction—exact and

approximate utilities, expressing correct and approximate probability of encounter respectively.

Depending on the utility model, the algorithms design in the next section to find Nash Equilib-

rium (which is considered solution of the game) are more or less complex and harder or easier

to solve.

The algorithms are inspired by current work of McMahan et al. (2003) which introduces

iterative algorithms for the computation of Nash Equilibrium using oracles — modules providing

the best-response for one player for a given sub-game — the game have only a small subset of

strategies for both players (the algorithm is described in detail in Section 2.2.2). The algorithm

iteratively solves the sub-game and adds the best responses, until no oracle can provide a best

response which is not already present in the current sub-game. The solution of the final sub-

game is guaranteed to have the same Nash Equilibrium as the complete game. The oracles thus

stand at the core of the algorithm and their design is a crucial element in the utilization of this

algorithm. Here, a number of oracles is designed to reflect different mobility capabilities and

different utility models of the attacking agent.

We also extend the double-oracle algorithm by considering additional, sub-optimal oracles

providing only better responses, thus speeding up the solution. Finally, the implementation of a

subset of oracles is described — due to the inherent non-linearity of the problem, we move outside

of the typical mixed-integer programming toolkits and utilize classical heuristic algorithms such

as A* and a variants of Branch&Bound algorithms.

1 some of these games are already considered in existing works, we describe them for completeness of the model
with appropriate reference.

23
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3.1 Formalization of the Problem

Typical scenarios of an asymmetric conflict in critical transportation infrastructures (Brown

et al., 2006) contain two opposing sides, i.e., players, having typically antagonistic goals. We

focus on area transit and control scenarios where a transiting agent is trying to transit an

area and reach its destination while being undetected by a second agent, trying to detect the

transiting agent by patrolling in the area.

This general problem can model a wide range of situations, from our perspective, we can be

interested in the computation of optimal strategies in following cases:

� Protection of urban transportation network, where we are interested in designing an

optimal protection strategy to prevent an attacker from reaching sensitive places, such as

hospitals, embassies, government buildings or water treatment sources (Jain et al., 2011a).

� Protection of borders, where we are interested in designing an optimal border patrol

strategy to intercept an unauthorized person crossing the borders.

� Hostile area transit, where we are interested in designing a transit scheme to deliver

humanitarian or medical help through a hostile area controlled by an adversary.

� Maritime transit of pirate infested areas, where we are interested in the design of

randomized shipping routes minimizing the probability of merchant vessel hijack by a pirate.

Independently on the scenarios considered above, we will further term the intercepting player

Defender and the evading player Evader, as stated in the Introduction Chapter.

As a large volume of work has already been done in this line of research (see Section 2.1), we

focus on a subset of scenarios, where both players are mobile, i.e., both players are able to move

through the area/infrastructure. We enrich the model to account for uncertain interceptions,

i.e., we introduce uncertainty about the detection of the other player. Finally, it is important to

denote that we do not explicitly consider different payoffs for different destinations reachable by

the evading player, although it would be trivial to extend the model to account for them. The

complexity of the model lies primarily in the richness of interaction of mobile players and in the

uncertainty of interception.

3.1.1 Transit Area Representation

In scenarios described above, the environment where both payers interact, is either a graph

representing an infrastructure (such as the urban network) or a homogeneous area (such as

ocean, forest, desert etc.), where the important parameter is the line of sight. We directly

discretize such homogeneous environment to regular grids which we represent as graphs as well.

The graph is directed (allowing cycles and bi-directional edges), possibly with loops. We term

the graph transit graph G(N,E), where N = {1, 2, . . . , n} denotes a set of nodes represented

directly by natural numbers, and E = {(i1, j1), (i2, j2), . . . , (im, jm)} where ik ∈ N ∧ jk ∈ N is

the set of edges that define a legal movement of players through the transit area/infrastructure.

Every edge has a unit length. Two special types of nodes are defined on the transit graph:

� origin nodes Norig – the Evader starts its path in any node of this type;
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� destination nodes Ndest – the Evader aims to reach any node of this type;

Uncertain encounters

To provide more expressiveness to the game model, encounters are assumed to lead to intercep-

tions only with a defined location-specific interception probability ρl∀l ∈ N ∩ E. Interception

probability may e.g., reflect the likelihood that the Defender will be able to detect the Evader

and/or will be able to physically apprehend the Evader in a given location. The concept is similar

to the concept of sensors with a probability of detection explored by Brooks et al. (2009).

For certain encounters, some of the models can be solved using known approaches (summa-

rized in Section 2.1). However, for both mobile players, even the certain encounters scenario is

nontrivial and is a subject of this thesis.

3.1.2 Evader Model

The Evader model captures the fact that the Evader aims to transit the area/infrastructure un-

intercepted from the origin to the destination. The set SE of all possible pure Evader’s strategies

is then the set of all walks starting in any origin node and ending in any destination node, with

the nodes in between not being an entry or exit node, i.e.,

SE = {[n0, . . . , nm]|n0 ∈ Nin ∧ nm ∈ Nout ∧ ni ∈ N \ {Nin ∪Nout}∧

(ni, ni+1) ∈ E} ∀i = {1, . . . ,m− 1}} (3.1)

Note that because in general Evader’s walks are unlimited, the above set can be infinite.

However, as observed by Joseph (2005) the Evader cannot get anything by having cycles in his

strategies. We thus consider only paths without the cycles, having the strategy set finite.

3.1.3 Defender Model

The Defender model is slightly more complicated. Typically, the Defender is considered stateless,

i.e., just being present at some places without any explanation or limitation of the possibility of

reaching such places (Joseph, 2005; Jain et al., 2011a; Tsai et al., 2010a,b).

In our model, we explore this variant with uncertain encounters to complement related work,

however, our main goal is to propose a model of a mobile Defender having a base, from which

he conducts periodical walks throughout the area/infrastructure, having limited resources. This

concept captures described scenarios with higher precision, although it complicates the models.

We consider three variants of the problem:

1. fixed-base Defender, having a fixed position of the base in the area. This model corresponds

to pirates starting in harbors, police forces starting every morning in the police station.
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2. mobile-base Defender, having the ability of moving the base in between the explorations.

This model corresponds to pirates with a mobile mothership and a small speed boat or to

border patrols with a helicopter moving over forest areas, in which they conduct patrols.

3. unconstrained Defender, where we do not pose any constraints on the movement of the

Defender, i.e., in every step, he can choose any node/edge to observe. This model corresponds

to a satellite-based surveillance where in each step, the satellite can be focused on a single

area. In this case, the Defender is not constrained by the base and the strategy allows the

highest degree of movement.

3.1.3.1 Static Defender

The static Defender represents a case where static allocations of resources in the infrastructure

are considered. Typical cases are, e.g., allocation of checkpoints in the city of Mumbai (Chandran

and Beitchman, 29 November 2008) to detect an adversary trying to hit sensitive buildings or

an ambush scenario in which an attacker awaits a transiting convoy (Joseph, 2005).

To reflect the static nature of Defender’s resources, the model allows the Static Defender to

allocate its resources only on a node ni ∈ N\{Nin ∪Nout}.
In general, if the Defender disposes of k resources, his pure strategy is a tuple of k distinct

nodes and his strategy space SD is thus a set of all possible tuples:

SD = {n1, . . . , nk |∀i∀j, i 6= j : ni 6= nj ∧ ni ∈ N \ {Nin ∪Nout}} (3.2)

3.1.3.2 Fixed-base Defender

In case of a Defender with a static base, the model reflects scenarios inspired by border patrolling,

maritime piracy or scheduled city patrols with a fixed position of a station.

The fixed-base Defender is—compared to the static Defender—allowed to move through the

graph, however, its movement is restricted by a base—the strategy is a closed path, termed

walk, starting and ending in the base. The path can contain nodes (including the base) and

edges multiple times.

Formally, the set SD of all possible pure Defender’s strategies is the set of all closed walks

starting and ending in the base with the length not exceeding LD:

SD = {[n0, . . . , nm]|m ≤ LD ∧ ni ∈ N ∧ n0 = nm = nb

∧ ni ∈ N \ {Nin ∪Nout} ∧ (ni, nb) ∈ E} (3.3)

Note that if LD is so small that it does not allow the Defender to cross one of the Evader’s

walks, then the Evader will have a deterministic strategy that guarantees a safe transit of the

graph. The threshold for LD under which this is the case depends on the position of Defender’s

base and topology of the transit graph. In contrast to the Evader, who performs his walk only

once, the Defender executes his walk repeatedly2.

2 Defender does not repeat the walk indefinitely, the game ends once the Evader reaches one of the exit nodes.
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3.1.3.3 Mobile-base Defender

This Defender model is motivated by the fact that the base can be mobile, i.e., the base can

change its location through time, however, in a much slower pace than the Defender (or his

units). The scenario is motivated by mobile platforms for unmanned aerial vehicles or pirates

with a skiff as fast mobile units and motherships as mobile bases in huge open waters areas.

The mobile-base Defender is thus not bound to any specific node. The strategy space of the

mobile base Defender is enriched for the base-selection, i.e., its set of strategies is the set of all

closed walks starting and ending in the same node (n0 = nm) which is not entry or exit node:

SD = {[n0, . . . , nm]|m ≤ LD ∧ ni ∈ N ∧ n0 = nm

∧ ni ∈ N \ {Nin ∪Nout} ∧ (ni, nb) ∈ E} (3.4)

3.1.3.4 Unconstrained Defender

For the case of an unconstrained Defender, we do not pose any constraints on his movement,

i.e., he is without a base, he is not limited by the length of the walk and the movement does

not have to be continuous, i.e., he can “jump” between places in the area. The motivation is

satellite-based surveillance where we can schedule a set of places to be photographed/observed—

and the places do not have to be next to each other. A similar scenario arises for a complete

sensor coverage of an area (such as an oil field) with hundreds of cameras deployed on place,

however there is a limited number of operators observing the streams from the cameras: the

system then has to display images only from a small subset of cameras, although he can switch

between them.

The unconstrained Defender is not constrained by the movement constraints which require

a strategy to form a valid closed walk. The strategy space of the unconstrained Defender is a

super-set of the previous mobile base Defender and its strategy is a list of nodes of size LD:

SD = {[n0, . . . , nm]|m ≤ LD ∧ ni ∈ N ∧ n0 = nm ∧ ni ∈ N \ {Nin ∪ Nout}} (3.5)

Having the Evader’s strategy set model as well as various models for the Defender mobility,

we can look at the result of an interaction of these strategies in a form of a utility function.

3.1.4 Utility

Utility theory is used to express preferences of agents about the outcomes of their actions. In

this work, we assume utility-theoretic assumptions, such as utility maximizing agents having a

linear perception of utility value. Shoham and Leyton-Brown (2008) introduce utility through

preferences and lottery and we leave an interested reader to read this book for details. In our

model, we consider a utility function to have the form: U : (s1, s2)→ R.
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Each player has their own utility function and we denote UD utility of the Defender and UE

the utility of the Evader. All considered game models are zero-sum, i.e., UD = −UE we thus

introduce only the Defender’s utility with Evader’s utility being negative.

Interaction of Two Mobile Players

The movement of both players happens simultaneously in synchronized steps. During each step,

a player can move to an adjacent node or stay in the same node. Both players have the same

movement speed and all edges take a single step to traverse. Player’s movement through the

transit graph can be unambiguously represented by a node walk, i.e., a sequence of nodes w =

[n0, n1, . . . , nk]3; we then denote |w| the length of walk w, and w[j] the j-th node on the walk

(for 0 ≤ j ≤ |w| − 1).

The following will be required for the definition of utilities. For any finite walk w, we define

infinite walk repetition w∞[i] = w[i mod |w|] and shifted infinite walk repetition w∞.m = w[(i−
m) mod |w|]. E.g., for w = [1, 4, 7], we have

index . . . [−2] [−1] [0] [1] [2] [3] [4] . . .

w . . . - - 1 4 7 - - . . .

w∞ . . . 4 7 1 4 7 1 4 . . .

w∞.1 . . . 1 4 7 1 4 7 1 . . .

Encounters

We say two walks w1 and w2 have:

� a node encounter at node i ∈ N at step t if i = w1[t] = w2[t] (being at the same node at the

same time step);

� an edge encounter at edge (i, j) ∈ E at step t if i = w1[t] = w2[t] ∧ j = w1[t+ 1] = w2[t+ 1]

(traveling the same edge simultaneously in the same direction) or i = w1[t] = w2[t+ 1] ∧ j =

w1[t+ 1] = w2[t] (traveling the same edge simultaneously in the opposite directions)

� an encounter at location l ∈ N ∪E at step t if w1 and w2 either have a node encounter or an

edge encounter at l at step t.

The encounter sequence of two walks w1 and w2 is a sequence [(l0, t0), (l1, t1), . . . , (ln, tn)] where

∀i ∈ {0 . . . n} w1 and w2 have an encounter at li at step ti and ti ≤ ti+1, i.e., the order in

which the encounter locations appear on walks w1 and w2 is preserved; the encounter location

sequence, denoted as w1 ∩w2, is then the encounter sequence without timestep indices but with

the ordering preserved – [l0, l1, . . . , ln].

3 In a slight abuse of common mathematical notation and to emphasize similarity with the array data structure,
we use brackets to denote sequences and to index sequence items.
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Utility for Static Defender and Mobile Evader

In case of the static Defender and the mobile Evader, the Defender’s walk is a single location4

while the Evader’s walk is a sequence of nodes. Having uncertain encounters, i.e., the encounter

probability for each location ρl, the Defender’s utility is computed as a probability of encoun-

tering the Evader:

UD = 1−
∏

l∈sE∩sD

(1− ρl) (3.6)

where (1− ρl) is the probability of the Evader being undetected on location l with Defender

present.

Utility for Mobile Defender and Mobile Evader

For the mobile Defender (considering a fixed-base, a mobile-base and unconstrained models) the

utility model is constructed by the following reasoning process.

First, given an encounter location sequence I of walks with a specific shift we can express the

probability π(I) that the Evader will be intercepted by the Defender as

π(I) =

|I|−1∑
i=0

p(I[i])

i−1∏
j=0

(1− p(I[j])) (3.7)

where

p(I[i])

i−1∏
j=0

(1− p(I[j])) (3.8)

is the probability that the Defender will not intercept the Evader at locations I[0], . . . , I[i − 1]

and will intercept it at location I[i].

To calculate the interception probability π(sE , sD) of a pair of pure strategies (sE , sD), we

need to determine all possible encounter location sequences that can result from executing these

strategies. Recalling that the Defender has no knowledge on when the Evader enters the transit

area, we have to consider all possible mutual shifts of Evader’s and Defender’s walks; however,

because Defender’s walk sD is perpetually repeated, we only need to consider |sD| shift. The

interception probability can therefore be calculated as

π(sE , sD) =
1

|sD|

|sD|−1∑
i=0

π(I.i) (3.9)

where

I.i = sE ∩ s∞.iD (3.10)

For a given pure strategy pair (sE , sD) ∈ SE × SP , we now define the Defender’s utility

UD(sE , sD) as equal to the interception probability, i.e.,

uD(sE , sD) = π(sE , sD) (3.11)

4 for multiple resources, it is a set of locations
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Defender mode Exact utility Approximate utility

Static 1−
∏

l∈I(sE ,sD)

(1− ρl)
∑

l∈I(sE ,sD)

ρl

Static Base
1

|sD|

|sD|−1∑
k=0

1−
|I.k|−1∏
i=0

(
1− ρI[i]

) 1

|sD|

|sD|−1∑
k=0

|I.k|−1∑
i=0

ρI[i]Mobile Base

Unconstrained

Table 3.1: Defender’s utilities

Approximate Utility Model

The utility models defined above are non-linear and could be difficult to optimize. We can also

consider simpler linear models, used e.g., by Tsai et al. (2010b), where we simply sum up the

encounter probabilities. The approximate utility for static Defender can be then expressed as:

UD =
∑

l∈I(sE ,sD)

ρl (3.12)

and the utility for the Defender with a fixed base, mobile base and the unconstrained Defender

is then:

UD =
1

|sD|

|sD|−1∑
k=0

|I.k|−1∑
i=0

ρI[i] (3.13)

The summary of all considered utility models can be found in Table 3.1 which expresses

utility models for all possible combinations of evader’s and defender’s strategies.

3.2 Solution approach

The models described in previous sections are huge games, containing hundreds of thousands or

even millions of strategies even for small games.

To be able to solve these large games, we use a column/constraint generation approach,

referred as oracle-base algorithms (i.e., single- and double oracle algorithms, described in Sec-

tion 2.2.2). These algorithms work on the assumption that the support set of both players in

Nash Equilibrium (NE) is exponentially smaller than the strategy space of both players. The

goal is to find a minimum set of strategies containing the support set—for one player in case
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of the single-oracle algorithm and for both players in case of the double-oracle algorithm. From

now on, we will consider w.l.o.g. only the double-oracle algorithm unless stated otherwise.

The algorithm starts from a small sub-game containing at least one strategy for each player;

it iteratively adds strategies for both players and checks after each addition whether the Nash

Equilibrium of the small sub-game is a Nash Equilibrium of the complete full game. The algo-

rithm can be thus divided into 3 independent modules: (1) sub-game initialization, (2) sub-game

expansion and (3) termination check.

Sub-game initialization module initializes the sub-game matrix with a set of strategies for

each player. The sub-game should ideally contain most of the strategies which will be in the

support set of the final sub-game or strategies which would allow the expansion module to

quickly add strategies which are in the final sub-game NE support set. Typically, the game is

initialized with a random strategy for each player, as it is in our case.

The sub-game expansion module should be able to enumerate the strategies which will be in

the final support set as quickly as possible. This module can add multiple strategies at once (or

none if not required) and it can use current sub-game as a guide which strategy to pick. Typically,

the expansion module should be able to provide any strategy from the complete strategy set of

the full game.

The termination module checks whether the Nash Equilibrium of the current sub-game is the

Nash Equilibrium of the complete game.

So far, both the sub-game expansion module and the termination module have been handled

by a single algorithm—the best-response oracle. The oracle provided a best-response to the

current sub-game (thus expanding the game). If the oracle cannot provide a best-response which

is not in the sub-game, the current sub-game’s NE is considered the NE of the full game and

the algorithm terminates. McMahan et al. (2003) proved that the sub-game’s NE is indeed the

NE of the full game.

By the decomposition to the sub-game expansion module and the termination module, we

can re-use the best-response oracle for the termination check, however, we can enrich the game

expansion module for additional mechanisms possibly improving the speed of the NE computa-

tion.

In this section, we discuss the extension of the double-oracle algorithm in the form of multiple

sub-game expansion modules—an oracle hierarchy. Then, we discuss oracles for each player of

each model. We express all oracles as mathematical programs. The issue is the non-linearity of

the utility models which prohibits direct utilization of (mixed-integer) linear program solvers,

such as CPLEX(CPLEX, 2005). We use our own implementation based on state space search—

Branch&Bound for Defender’s oracles and A* for Evader’s oracles.

3.2.1 Extension of the Double Oracle Algorithm

The original double-oracle algorithm is depicted in Algorithm 2. The goal of the algorithm is to

find all strategies which are in the support set of both players for any Nash Equilibrium of the

game. The original algorithm uses one oracle for each player to iteratively add strategies to the
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sub-game. We can generalize the algorithm by: (1) let the oracle return more than one strategy

at once and (2) use more than one oracle for each player.

3.2.1.1 Partially Ordered Oracle Sets

The first modification is straightforward and results in a possibly faster search of the strategy

support set. The extension of the algorithm to multiple oracles for each player can speed up

the algorithm if the best-response oracles are not computationally fast and take significantly

more time to compute a best-response than the computation of the Nash Equilibrium of the

sub-game itself (as it is in our case). For each player, we can design a set of suboptimal oracles

which are able to provide a only “better”-response of strategies with the trade-off of being

fast. We introduce partially ordered set (poset) of oracles Ω ordering the oracles in increasing

computational complexity:

Definition 6. Oracle ordering of Ω is defined as Ωi ≤ Ωj if O(Ωi) ≤ O(Ωj).

The effect of this ordering is such that we assume that oracles with a lower computational

complexity are faster, however, they may provide a suboptimal response (i.e, not the best re-

sponse). Note that this fact does not have a direct impact on the number of iterations of the

algorithm. The strategy support set does not necessarily contain the best responses to the sub-

games in each iteration. Intuitively, we hope that the suboptimal oracles will provide us with

most of the strategies of the support set and the computationally intensive best-response oracle

will generate a strategy only to check the termination condition.

Thus, to keep the modified double oracle algorithm optimal, we need the best response oracle

Ω∗ to be in the poset Ω to check the termination condition. The extended double oracle algorithm

is depicted in Algorithm 3.

Theorem 1. If pure strategy sets of both players are finite, the Algorithm 3 with posets Ω1 and

Ω2, containing best response oracles Ω∗1 and Ω∗2 respectively, finds the Nash equilibrium of the

full game.

Proof. The oracles from both posets Ω1 and Ω2 iteratively add strategies to the strategy sets

of both players. The condition of the presence of the best response oracles on both posets

guarantee the optimality of the algorithm, i.e., in the worst case, the oracles add iteratively all

pure strategies to the player’s strategy sets and the final sub-game equals to the full game. If

the algorithm terminated before all pure strategies were added, it means that neither Ω∗1 nor Ω∗2

have found a better response. In that case, the termination condition is equal to the originally

posed condition on the double oracle algorithm (McMahan et al., 2003)—it is satisfied only if

the NE of the sub-game corresponds to the NE of the full game. Hence, this is also true for the

extended oracle algorithm.



3.2 Solution approach 33

Algorithm 3 Extended Double-Oracle Algorithm.

equilibrium found ← false
Ŝ1 ← { arbitrary strategy s1 ∈ S1}
Ŝ2 ← { arbitrary strategy s2 ∈ S2}
repeat

(σ1, σ2)← compute NE using LP for Ŝ1 and Ŝ2

added ← false

for Ω1 in Ω1 do
s1 ← Ω1(σ2)

if not (s1 ∈ Ŝ1) then

Ŝ1 ← Ŝ1 ∪ {s1}
added ← true

break
end if

end for

for Ω2 in Ω2 do
s2 ← Ω2(σ1)

if not (s2 ∈ Ŝ2) then

Ŝ2 ← Ŝ2 ∪ {s2}
added ← true

break

end if
end for

if not added then

equilibrium found ← true
end if

until equilibrium found

3.2.2 Best-Response Oracles

This section provides a mathematical formulation of best-response oracles for each player for

game models proposed in Section 3.1. For the Defender, we have to design a different oracle for

each mobility model, for the Evader’s oracle, we can reduce the number of oracles to two: one for

the static Defender, one for the Defender with any mobility model (i.e., fixed-base, mobile-base,

unconstrained).

3.2.2.1 Defender’s Oracle for Static Allocations

The best-response oracle for the static Defender provides a best response s∗p, given Evader’s

current mixed strategy σE = {x1, . . . , xa, . . . , xn} over the Evader’s path set SE by maximizing

the following criterion:

s∗D = arg max
sD

∑
sa∈SE

xa · u (sD, sa) (3.14)

Uncertain Encounters

For uncertain encounters, the oracle can be formulated as a mixed-integer non-linear program:
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max
∑
sa∈SE

xa · za (3.15)

s.t. za = 1−
K∏
k=0

(1− cl ·Bal ) ∀a ∈ SE (3.16)∑
l

cl ≤ K (3.17)

cl = {0, 1} za = [0, 1] (3.18)

where K is number of Defender’s resources and Bal is a constant indicating that location l

lies on a-th Evader’s path defined as:

Bal =


ρ(l) if location l on a-th Evader’s path

0 otherwise

(3.19)

(3.20)

In this program uncertain encounters make the criterion non-linear (Equation (3.16)) if the

Defender has multiple resources.

Certain Encounters

For certain encounters, the oracle providing the best response is formulated as a linear mixed-

integer program (similarly to Defender’s best-response oracle in the RUGGED algorithm (Jain

et al., 2011a)):

max
∑
sa∈SE

xa · za (3.21)

s.t. za ≤
∑
l

cl ·Bal a = 1 . . . |SE | (3.22)∑
l

cl ≤ K (3.23)

cl = {0; 1} za = [0, 1] (3.24)

Note that for the static Defender with multiple homogeneous resources, certain encounters and

the Evader that does not differentiate between the destination nodes, the solution can be found

without using the oracles (Washburn and Wood, 1995). We introduce this mathematical program

to provide a complete enumeration of all oracles.

3.2.2.2 Defender’s Oracle for a Fixed Base

The formulation of mobile Defenders is a non-trivial program based on flows. Additionally,

thanks to the uncertainty about the time step in which the Evader enters the graph, the Defender

can be shifted for any number of nodes on its walk (see Section 3.1.4). For convenience of the
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notation, we index the walk by location, i.e., we index both nodes and edges on the walk. Each

shift (from one node to another) is thus an increment by two. Nodes have then even indices and

edges have odd indices.

Uncertain Encounters

We formulate a mixed-integer non-linear program for Defender’s best-response oracle for uncer-

tain encounters and for maximum allowed walk length of Ω as follows:

max VΩ (3.25)

VΩ =
∑
sa∈SE

xa · ua (3.26)

ua =
1

Ω

Ω−1∑
j=0

ωja ∀sa ∈ SE (3.27)

ωja = 1−
∏
l∈sa

(
1− zja l · ρl

)
∀sa ∈ SE , ∀j (3.28)

zja l ≥ cj i
l + pia l − 1 zja l ≥ 0 ∀a ∈ SE , ∀l ∈ L, ∀j (3.29)∑

e∈out(b)

cj 1
e = 1 ∀j (3.30)

cj Ω
b = 1 ∀j (3.31)∑

e∈out(n)

cj i+2
e =

∑
e∈in(n)

cj i
e i = 1, . . . , Ω − 2,∀n ∈ N, ∀j (3.32)

cj i+1
n =

∑
e∈in(n)

cj i
e i = 1, . . . , Ω − 2,∀n ∈ N, ∀j (3.33)

∑
l∈L

cj i
l = 1 i = 1, . . . , Ω, ∀j (3.34)

cj i
l = cj+1 i+2

l i = 1, . . . , Ω, ∀l ∈ L,∀j (3.35)

zja l = {0, 1} ∀a ∈ SE ,∀l ∈ L,∀j (3.36)

cj i
l = {0, 1} i = 1, . . . , Ω, ∀j (3.37)

Equation (3.25) is a maximization criterion, rewritten in Equation (3.26) as a sum of products

probability xa of the Evader playing strategy sa ∈ SE which gives the Defender a utility ua.

This utility can be expressed as a sum of interception probabilities over all possible shifts j of

the Defender’s walk ωja weighted by the length of the Defender’s walk Ω (Equation (3.27)).

Equation (3.28) — valid for uncertain encounters — introduces a variable zja l which indicates,

if the Evader and Defender are on the same location l (for j-th shift of Defender’s walk and

a-th Evader’s path). We further introduce a variable cj i
l indicating that a location l is i-th on

j-th shift of the Defender’s path and constant pia l set to 1 if location l is i-th5 on a-th Evader’s

path (Equations (3.29)). Using cj i
l, we can now pose constraints on the Defender’s walk: the

5 More precisely, pia l is set to 1, if the location l is also on positions (i+ Omega), (i+ 2Ω), etc. on a-th Evader’s

path.
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walk has to start and end in the base (Equations (3.30) and (3.31) respectively) and we further

impose typical flow constraints on the Defender’s path (Equations 3.32 – 3.34). Finally, we have

to constrain the shifts of a walk, to correspond with each other, i.e, i-th location of j-th shift

has to be i+ 2-th on j + 1 shift (Equation 3.35).

Additionally, we can add following redundant equations to constrain the problem more (and

solve the problem faster):

∑
e∈out(b)

Ω∑
i=2

cj i
e ≥ 1 ∀j (3.38)

∑
e∈in(b)

Ω∑
i=2

cj i
e ≥ 1 ∀j (3.39)

∑
e∈out(b)

K∑
i=1

cj i
e =

∑
e∈in(b)

K∑
i=2

cj i
e ∀j (3.40)

(3.41)

i.e., number of edges outgoing from the base have to be greater than 0 (Equation (3.38)), number

of edges going to the base has to be greater than 0 (Equation (3.39)) and the number of outgoing

and back-going edges has to be equal (Equation (3.40))6.

Note that we can rewrite the criterion to correspond to the utility formulation (compare with

Table 3.1):

max
∑
sa∈SE

xa ·
1

Ω

Ω−1∑
j=0

(
1−

∏
l∈sa

(
1− zja l · ρl

))
(3.42)

Certain Encounters

For certain encounters, we redefine Equation (3.28) as:

ωja = sgn
∑
l∈sa

zia l ∀sa ∈ SE (3.43)

which can be converted to a linear constraint:

M · ωja −
∑
l∈sa

zja l ≥ 0 ∀j,∀a (3.44)

ωja = {0; 1} (3.45)

where M is a large number. The best response for a fixed length Ω — denoted as s ∗Ω D — is

reconstructed from indicator variables cj i
l and its value is VΩ . We compute the best response

for each Ω = 3, . . . ,K (the length of the sought Defender’s walk) and we pick the one with the

highest value VΩ .

6 Note that the walk can pass through the base multiple times.
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3.2.2.3 Defender’s Oracle for a Mobile Base

For the Defender’s best-response oracle with a mobile base, we can execute the base oracle |N |-
times, i.e, for each node, we can get a best response candidate (by setting the node temporarily

to be a base) and then pick the best from the candidates.

3.2.2.4 Defender’s Oracle for an Unconstrained Movement

The unconstrained Defender’s strategy is a sequence of nodes which he observes. To be com-

patible with the framework above, we add (redundantly) all edges going to every node in the

sequence.

Uncertain Encounters

The best-response oracle for the unconstrained movement can be created from the fixed-base

Defender’s oracle by lifting some of the assumptions on the Defender’s walk:

max Vk (3.46)

Vk =
∑
sa∈SE

xa · ua (3.47)

ua =
1

Ω

Ω−1∑
j=0

ωja ∀sa ∈ SP (3.48)

ωja = 1−
∏
l∈sa

(
1− zja l · ρl

)
∀sa ∈ SP , j (3.49)

zja l ≥ cij l + pia l − 1 zja l ≥ 0 ∀a ∈ SE , l ∈ L, j (3.50)

cj i+1
n =

∑
e∈in(n)

cj i
e ∀i = 1, . . . , Ω − 2, n ∈ N, j (3.51)

∑
l∈L

cj i
l = 1 ∀i = 1, . . . , Ω, j (3.52)

zja l = {0, 1} ∀a ∈ SE , l ∈ L, j (3.53)

cj i
l = {0, 1} ∀i = 1, . . . , Ω, j (3.54)

Equation (3.46) is a maximization criterion, rewritten in Equation (3.47) as a sum of products

probability xa of the Evader playing strategy a which gives the Defender utility ua. The utility

can be expressed as a sum of interception probabilities over all possible shifts of the Defender’s

walk ωja weighted by the length of the Defender’s walk Ω (Equation (3.48)). Equation (3.49) —

valid for uncertain encounters — uses a variable zja l which indicates, if the Evader and Defender

are on the same location l (for j-th shift of Defender’s walk and a-th Evader’s path). We again

use a variable cj i
l indicating that a location l is i-th on j-th shift of the Defender’s path and

constant pia l set to 1 if location l is i-th on a-th Evader’s path (Equations (3.50)). Further

on, to generalize the concept of movement expressed by a combined node-edge- node-edge-

. . . movement in base and no-base Defenders, we include also the edges going to a node which
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is observed (Equation (3.51)). The strategy has no flow restrictions, however, the Defender can

look at most on 1 place at once (Equation (3.52)).

Certain Encounters

The oracle for certain encounters is constructed analogically, by lifting the same assumptions as

above and using the same criterion as in case of a fixed-base Defender’s best-response oracle.

3.2.2.5 Evader’s Oracles

The Evader’s oracle provides a best response s∗E given Defender’s strategy set SD and his mixed

strategy σP = {x1, . . . , xn} by minimizing the following criterion:

s∗E = arg min
sE

∑
sa∈SD

xa · u (sE , sa) (3.55)

Static Defender

For the Evader, given Defender’s static allocation of resources and mixed strategy σP =

{x1, . . . , xn} over these allocations, the best response s∗E is sought in the form of the follow-

ing mixed integer program:

min
∑
a∈SD

xa · za (3.56)

s.t. za =
∏
l∈D

(1− cl ·Bal · ρl) ∀sa ∈ SD (3.57)∑
o∈O

∑
l∈out(o)

cl = 1 (3.58)

∑
d∈D

∑
l∈in(d)

cl = 1 (3.59)

∑
e∈in(v)

ce =
∑

e∈out(n)

ce ∀n ∈ N (3.60)

cn ≥
∑

e∈in(n)

ce ∀n ∈ N (3.61)

Where Bal is set to 1 if Defender’s a-th allocation contains location l.

For certain encounters, the Equation (3.57) is substituted with:

za ≥ cl +Bal − 1 (3.62)

za ≥ 0 (3.63)

za = {0, 1} (3.64)

Mobile Defender

For the fixed-base Defender’s movement as well as for the mobile-base and unconstrained De-

fender’s movement, the Evader’s oracle can be formulated using a single mixed integer program:
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min V (3.65)

V =
∑
sa∈SD

xa · ua (3.66)

ua =
1

|sa|

|sa|−1∑
j=0

ωja ∀sa ∈ SD (3.67)

ωja = 1−
∏
l∈sa

(
1− zja l · ρl

)
∀sa ∈ SD,∀j (3.68)

zja l ≥ c
i
l + pj i

a l − 1 zja l ≥ 0 ∀a ∈ SD,∀l ∈ L,∀j (3.69)∑
o∈O

∑
e∈out(o)

c1e = 1 (3.70)

∑
d∈D

∑
e∈in(d)

K∑
i=2

cie = 1 (3.71)

∑
e∈out(n)

ci+2
e =

∑
e∈in(n)

cie i = 1, . . . ,K − 2,∀n ∈ N (3.72)

ci+1
n =

∑
e∈in(n)

cie ∀n ∈ N, i = 1, . . . ,K − 2 (3.73)

zja l = {0, 1} ∀a ∈ SD,∀l ∈ L,∀j (3.74)

cil = {0, 1} i = 1, . . . , Ω, ∀l ∈ L (3.75)

The program is analogous to the Defender’s best response oracle. Equation (3.65) is a min-

imization criterion, rewritten in Equation (3.66) as a sum of products probability xa of the

Defender playing strategy sa which gives the Defender utility ua. The utility can be expressed

as a sum of interception probabilities over all possible shifts of the Defender’s walk ωja weighted

by the length of the Defender’s walk |sa| (Equation (3.67)). Equation (3.68)—valid for uncertain

encounters—uses a variable zja l indicating, if the Evader and Defender are on the same location

l (for j-th shift of Defender’s walk and a-th Evader’s path). Variable cil does not depend on

the shifts of the Defender’s walks, it indicates that a location l is i-th on Evader’s path and

the constant pj i
a l is set to 1 if location l is i-th on the j-th shift of a-th Defender’s path (Equa-

tion (3.69)). Using cil, we can now pose constraints on the Evader’s path (as in the case of the

Defender), i.e, the number of edges outgoing from the origin nodes o ∈ O have to be equal to

1 (Equation (3.70)), the number of edges ending in any of the destination node d ∈ D has to

be equal to one (Equation (3.71)). We further impose typical flow constraints on the Defender’s

path (Equations (3.72) and (3.73)).

For certain encounters — as in the case of the Defender’s best response oracle—the Equa-

tion (3.68) can be replaced by Equations (3.44) and (3.45).
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3.2.3 Suboptimal Oracles

The sections above described best-response oracles suitable for both the termination module as

well as the expansion module. We term these oracles optimal (in the sense that they provide a

best-response). As it can be seen from the programs above (and as it is proven for a subset of

oracles Jain et al. (2011a)), the responses are hard to compute. We can design faster oracles, that

provide the responses faster, however, cannot guarantee that the response is a best-response from

the complete strategy set and these suboptimal oracles cannot be thus used for the termination

check (unless we want to trade optimality for speed). However, they can be used for the sub-

game expansion module to compute fast responses and enumerate the support set faster than

the optimal oracles.

Computationally faster oracles can be designed in three ways:

1. We restrict the strategy space to contain only a subset of strategies of the full model (and

hope that this subset contains all—or most of—the strategies which are in the final support

set) and let the oracle look for a best response in this subset.

2. We provide the oracle with an approximate (i.e., simpler) model of the problem and let

the oracle look for the best response for this simpler model (in our case, approximate the

computation of the utility and thus linearize the constraints in the mathematical model).

3. We let the oracle look for any strategy which achieves a better utility for the player than the

current mixed strategy and let it return the first better strategy it finds.

These three approaches to a faster oracles design can be combined together and design an oracle

with an approximate model looking through a subset of strategies and returning the first strategy

improving the utility of a player. Of course, the trade-off for the speed of the computation could

be reflected in the convergence rate to the Nash Equilibrium.

The utility approximation significantly reduces the complexity of the oracles.

3.2.3.1 Defender’s Oracles with Approximate Utility

The Defender’s best response oracle for the approximate utility and the static allocation is found

by solving the following program:

max
∑
sa∈SE

xa ·
∑
l∈sa

cl · ρl (3.76)

∑
l∈L

cl ≤ K (3.77)

cl = {0, 1} (3.78)

where Constraint (3.77) limits the number of Defender’s resources to be allocated to at most K.

For the fixed-base, the mobile-base and the unconstrained Defender, the suboptimal oracle

with an approximate utility provides a response by optimizing the following criterion:
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max
∑
sa∈SE

xa ·
1

Ω

|Ω|−1∑
j=0

∑
l∈sa

|sa|−1∑
i=0

cj i
l · p

i
a l · ρl (3.79)

cj i
l = {0, 1} (3.80)

The constraints differ for each type of the Defender’s strategy. For the Defender with a fixed base

and with mobile base, the criterion is optimized subject to constraints posed on the Defender’s

walk given by Equation (3.30) – (3.35). For unconstrained walks, the constraints are given by

Equations (3.51) – (3.52).

3.2.3.2 Defender’s Oracles with a Strategy Subset

For the fixed-base and the mobile-base Defender, we design a fast oracle by considering only

a subset of possible walks: for each node or edge p reachable from the base, we compute the

shortest path from the base pathbase→p count number of steps of the final walk left (using the

maximal length of walk allowed), construct a loop over a node or walk over the edge loop and

connect the components of the walk together:

walk ← base+ pathbase→p + loop+ path′base→p + base (3.81)

where path′base→p is the reversed shortest path from the base to p.

It is crucial to consider both nodes and edges as looping places. The nodes are important to

consider as they block multiple edges at once and edges are important as the movement of the

Defender can be designed to go against the direction of the Evader.

3.2.3.3 Evader’s Oracles with an Approximate Utility

Given Defender’s static allocations, the Evader’s oracle computing with the approximate utility

model can be expressed as the following minimization criterion:

min
∑
sa∈SP

xa
∑
l∈sa

cl · ρl (3.82)

cl = {0, 1} (3.83)

which is subject to constraints posed on the properties of the path, given by Equations (3.58) –

(3.61).

For the mobile Defender with fixed base, mobile base or unconstrained movement, the

Evader’s approximate utility oracle minimizes a criterion in the following form:

min
∑
sa∈SP

xa ·
1

|sa|

|sa|−1∑
j=0

∑
l∈L

K−1∑
i=0

cil · p
j i
a l · ρl (3.84)

subject to the constraints posed on the properties of the path, given by Equations (3.70) –

(3.73).
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3.3 Implementation of Oracles

Due to the non-linear nature of the constraints in the mathematical programs capturing some

of the oracles, we cannot directly implement the oracles using standard (Mixed Integer) Linear

Programming libraries (such as CPLEX (CPLEX, 2005)). Non-linear programming libraries

typically do not guarantee finding the global optimum. We thus implement the oracles using

standard Java SDK using branch&bound algorithms and minimum cost path search algorithms

(such as A*).

3.3.1 Evader’s Oracles

All Evader’s oracles can be implemented using a variant of a constructive algorithm based on

state-space search, additively constructing a minimum-cost path from any origin node to any

destination node. To simplify the origin and destination node selection, we represent all origin

nodes by a single node ORIGIN and all destination nodes by a single node DESTINATION,

and we look for a minimum cost path between these two nodes.

We use A* algorithm with a cost function g(ŝe) = u(σD, ŝe), i.e., the cost function is a utility

of the partial path, given current mixed strategy of the Defender, σD. The heuristic function of

A* estimates a minimal possible encounter probability increment from the current node to any

destination node. For uncertain encounters, h = 0 and the algorithm is thus reduced to the best

first search.

For certain encounters (or for approximate utility models assuming the additivity of prob-

abilities of encounter), we can pre-process the graph to better estimate minimum encounter

probability from a given node to any destination node possible. For each node, we compute the

minimum distance (i.e., the number of nodes on the shortest path) to any destination node. We

denote this number as a node layer. I.e., nodes which are neighbors of the destination node are

in layer 0, nodes which are neighbors of nodes in layer 0 are in layer 1 etc. In this way, we are

able to number all nodes in the graph up to the origin nodes. The layer-based numbering of

the nodes is depicted in Figure 3.1. For each node, we compute the probability of the Defender

being in that node from its mixed strategy σD; we assign a probability of encounter to each

node pσD (n).

We know that any path from any origin node to any destination node has to pass at least once

through each layer. In each layer, we find the minimum probability of encounter, denoted as

pσD
min(l) = min{pσD (n1), . . . , pσD (nm)}|layer(ni)=l. The heuristic function for each node is then

expressed as:

h(n) =

layer(n)−1∑
l=0

pσD
min(l) (3.85)
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Fig. 3.1: Example of graph with nodes numbered according to their layers. The nodes next to
the destination nodes (red) are in the first layer.

3.3.2 Defender’s Oracles

In case of Defender’s Oracle, the problem is to find a maximum cost path of the length varying

from 1 to l, i.e., a path that maximizes the probability of encounter. This problem is NP-hard,

a variant of the longest path problem (Schrijver, 2003).

3.3.2.1 Best-Response Defender’s Oracle

To find a closed walk which maximizes the probability of encounter, we design a Branch&Bound-

based algorithm (Cormen et al., 2001) constructing possible closed walks and bounding unfin-

ished ones by bounds computed from the completed closed walks. This algorithm is used directly

for the fixed-base Defender and is described in Algorithm 4. First, we pre-process the graph to

mark nodes which are reachable from the base. We initiate the best path and a bound by a ran-

dom walk from the base; we compute the maximum possible utility maxUtilPerStep which can

be gained per one step of Defender’s walk. We initiate the openList with partial paths leading

from the base in the form pathi = {base, edge(base, neighbouri), neighbouri}. Then, until the

openList is not empty, we periodically poll a candidate from the list (sorted by maximum utility

of the partial walk constructed). If the candidate is complete, we update the bound, the best

solution found so far and we prune the openList by removing those partial walks which cannot

possibly have the same utility as the bound found so far. If the candidate is incomplete, we

generate all possible walks from this candidate (taking into account the bound and maximum

length of the walk maxLength) and add the children into the openList. Once the openList is

clear, we are guaranteed to have found an optimal closed walk from the base best.

We recycle this approach in case of the mobile-base Defender, where we iteratively change the

position of the base and use returned best responses for a given base in subsequent iterations as

a lower bound.
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Algorithm 4 Template for the static-base Defender’s Branch&Bound Oracle.

graph ← preprocess(graph, maxLength)
best ← randomWalk

bound ← computeBound(best)

maxUtilPerStep ← getMaxUtilPerStep(graph, σ1)
openList ← initPaths(graph)

repeat

candidate ← openList.poll()
if complete(candidate) then

bound ← updateBound(bound, candidate)
best ← updateBest(best, candidate)

openList ← prune(openList,amxUtilPerStep)

else
children ← generateChildren(candidate, maxUtilPerStep, maxLength, bound)

openList ← openList ∪ children

end if
until isEmpty(openList)

return best

Algorithm 5 Template for the static-base Defender’s Branch&Bound Oracle.

graph ← preprocess(graph,σ1)
best ← randomWalk

for length in minLength . . . maxLength do

for place in graph(length) do
walk ← shortestPath(base,place) ∪ loop(length) ∪ shortestPath(place,base)

best ← updateBest(best,walk)

end for
end for

return walk

3.3.2.2 Defender’s Oracle with Subset of Strategy Space Exploration

The suboptimal Defender’s oracle is inspired by the fact that some of the places in the graph

are best to be guarded statically; i.e., the suboptimal oracle construct walks which wait at some

place; then, the optimal best-response oracle fills walks which utilize the movement capability.

The algorithm for the suboptimal oracle is depicted in Algorithm 5. First, we pre-process the

graph to find a set of places which are reachable from the base. Then, for each possible length

of Defender’s walk and for each place pi reachable from the base by a walk with this length,

we construct the path concatenating (1) the shortest path from the base to pi, (2) a path of

waiting in pi and (3) the shortest path from pi to base. The second component of the walk (the

loop) differs for nodes and edges. For nodes, we use the loop (if available—if not, we do not have

to consider nodes), for an edge e(source, target), we construct the loop by adding periodically

e(source, target) and e(target, source). The constructed walk is compared with the best found

so far. After all possible lengths and all possible places have been explored, the best path found

is returned by the algorithm.
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3.4 Evaluation

In this Section, we focus on the evaluation of selected aspects of the solution of the game-

theoretic models formalized in Section 3.1 and on properties of the algorithms designed to find

solutions for the models. We examine the structure of the solution, i.e., the strategies of both

players in Nash Equilibrium of the game. We look at the advantage of Defender’s Mobility and

the role of the walk length in the quality of the solution. We pause to explore the possibility of

the Defender to stop during his walk, quantifying the principal difference between the utilization

of VTOL7 UAVs. and aircraft UAVs. We then explore the properties of oracle-based algorithms,

namely the convergence properties and Scalability of both a simple double-oracle algorithm and

an extended hierarchical double-oracle algorithm.

3.4.1 Structure of the Solution

For non-trivial cases, both the Evader and the Defender play mixed strategy in the Nash Equilib-

rium. In a homogeneous environment (i.e., for certain encounters or for encounters with constant

interception probability) and for the mobile-base Defender strategies, the resulting Evader’s

strategies are homogeneous, i.e., the Evader uniformly randomizes over a subset of paths to

maximize the entropy of his strategy. In the same environment and for the Defender with a

static a base, the Evader’s strategy set is influenced by the position of the base, which is dis-

cussed in more detail in Section 3.4.3.

Another interesting set of observations can be made about the possibility of the Defender to

wait in a node during his walk. This option emulates, e.g., the difference between an airplane-like

UAV8 and a helicopter-like UAV (such as Quadcopters etc.) where the airplanes cannot stop,

however, the helicopters can. We will show that the possibility of waiting on a given node could

significantly help the Defender.

All demonstrations are conducted on rectangular graphs as the structure of the solution is

most readable from the graph. Also, the performance of the oracle-based algorithms was the

lowest, compared to scale-free graphs or random planar graphs.

3.4.2 Evaluation of Defender’s Mobility

An exemplar graph used to demonstrate the advantage of the mobility of both the Defender as

well as the base (compared to static Defender allocation resources either on edges or nodes on

the graph) is depicted in Figure 3.2 (interception probability is 1 on all places). The Evader has

to cross a two-layer graph from left to right. To intercept the Evader, the Defender with static

7 VTOL – vertical take-off and landing unmanned aerial vehicle.
8 Unmanned Aerial Vehicle
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(a) Graph for demonstration of ad-

vantages of the Defender being mo-
bile.

(b) Defender’s strategy is composed

of three pure strategies: loop in n1

and two walks.

(c) Evader’s best response to such

strategy is one of the paths directly
crossing the graph.

Fig. 3.2: Demonstration of the advantage of being mobile (with or without a base). In this case,
static allocation of one resource would result in expected probability of 1/3 of the Defender
catching the Evader (assuming certain encounters). For the mobile Defender, the probability is
increased to 3/7, which is approximately 0.4286.

allocations has to equally randomize between three nodes, e.g., σD = {n0 : 1/3, n1 : 1/3, n2 :

1/3} which results in the probability of 1/3 of catching the Evader9.

If we allow the Defender to move from a static base, he can increase its changes of intercepting

the Evader to 3/7 = 0.4286 (for walk of length l = 7). The mixed strategy of the fixed-base

Defender is depicted in Figure 3.2b. For such a strategy, the Evader can respond with a pure

strategy, which could be any shortest path between origin and destination node (one depicted

in Figure 3.2c). Note that in this example, if the Defender is constrained by a base, the base

has to be positioned in node n1 or n4 for the same length of walk. If we position the base in

either of the corners (i.e., n0, n2, n3 or n5), the length of the walk has to be increased at least

to l = 15 to achieve the same value. However, for the mobile-base Defender, the position of the

base does not matter and with the length l = 7, he can intercept the Evader with probability

3/7.

3.4.3 Evaluation of Walk Length

The length of a walk for mobile Defenders reveals some interesting facts about the movement

of the Defender. Figure 3.3 examines different Evader’s and Defender’s strategies for different

lengths of fixed-base Defender’s walks and Table 3.2 summarizes players’ mixed strategy. Note

that for a static patrolling policy, the probability of encounter (and thus the game value) for

any equilibrium strategy is V = 0.333. The presence of the base restricts the Defender,i.e., some

nodes in the graph which are farther from the base cannot be visited as frequently as required.

However, if enough mobility provided (i.e., the walk can be long enough), it provides the fixed-

base Defender with an advantage against a static allocation. This can be observed in Figure 3.4,

where, for walk length l < 9, the Defender cannot reach the opposite side of the graph and

9 The Defender has to cover a minimum cut of the graph (mincut) of the graph between the origin and destination

nodes—i.e., allocate its resource on each node in the mincut with equal probability.
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(a) Defender’s walk length l = 9.

Game value V = 0.25.

(b) Defender’s walk length l = 11.

Game value V = 0.352.

(c) Defender’s walk length l = 13.

Game value V = 0.357.

Fig. 3.3: Evader’s and Defender strategies (upper and lower row respectively) for different base-
constrained Defender’s walk length (9, 11 and 13) for left, middle, and right column respectively
on a rectangular graph with width = 3 and length = 3, no loops, certain encounters.
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Fig. 3.4: Dependency of the value of the game on graph displayed in Figure 3.3 on the length of
Defender’s walk. The value of the game converges to a stable value (in this case, V = 3.6111)
as the length of the walk is increased.

the game value is 0. For the length l = 9, the Defender can visit nodes on the opposite side

of the graph, however, not as frequently as required, the game value is thus lower than for a

static allocation (V = 0.25). However, if we allow longer walks, the Defender can leverage the

movement to increase the probability of an encounter (V = 0.3611 for l = 23).

The solution for the Defender with a mobile base is always superior to the solution for the

base-constrained Defender (as it can be observed in Figure 3.4). When we compare Defenders’

strategies for walk of length l = 9 (depicted in Figure 3.5), we can see that the fixed-base

Defender can only touch the opposite side of the graph and not spend enough time to catch the

Evader; on the other hand, the mobile-base Defender can position the base as he likes and can

thus cover all required nodes and edges appropriately.
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Table 3.2: Comparison of player strategies when changing the length of the walk.

Walk length 9 11 13

D’s SS size 2 10 10

E’s SS size 1 7 9

Game value 0.25 0.352 0.357

D’s Strategy {n8;n7;n3;n7;n8; }0.5,

{n8;n10;n6;n4;n8; }0.5
{n8;n7;n9;n6;n4;n8; }0.107,

{n8;n4;n7;n8; }0.046,

{n8;n10;n6;n4;n7;n8; }0.065,
{n8;n5;n4;n7;n8; }0.210,

{n8;n7;n3;n4;n7;n8; }0.041,
{n8;n7;n10;n9;n7;n8; }0.032,

{n8;n7;n6;n3;n7;n8; }0.253,

{n8;n7;n6;n3;n4;n8; }0.178,
{n8;n7;n10;n8; }0.009,

{n8;n7;n10;n11;n8; }0.052

{n8;n7;n9;n6;n3;n7;n8; }0.241,

{n8;n5;n7;n3;n4;n7;n8; }0.080,

{n8;n7;n10;n11;n8; }0.089,
{n8;n5;n4;n7;n4;n7;n8; }0.214,

{n8;n7;n10;n9;n7;n11;n8; }0.026,
{n8;n7;n10;n6;n4;n7;n8; }0.026,

{n8;n7;n10;n9;n6;n4;n8; }0.080,

{n8;n7;n10;n6;n3;n7;n8; }0.053,
{n8;n10;n6;n3;n4;n7;n8; }0.133,

{n8;n5;n4;n7;n8; }0.053

E’ Strategy {n0;n3;n6;n9;n12; }1.0 {n0;n4;n6;n10;n13; }0.154,

{n2;n4;n8;n11;n14; }0.140,
{n2;n5;n8;n10;n13; }0.140,

{n1;n3;n7;n11;n14; }0.154,
{n2;n5;n8;n11;n14; }0.028,

{n0;n3;n6;n9;n12; }0.225,

{n2;n5;n7;n9;n12; }0.154

{n0;n3;n6;n9;n12; }0.190,

{n2;n5;n8;n10;n13; }0.023,
{n0;n4;n7;n10;n13; }0.095,

{n2;n5;n7;n9;n12; }0.142,
{n0;n4;n8;n10;n13; }0.071,

{n0;n4;n6;n10;n13; }0.142,

{n2;n5;n8;n11;n14; }0.166,
{n0;n3;n7;n11;n14; }0.142,

{n0;n4;n8;n11;n14; }0.023

(a) Fixed-base Defender. (b) Defender with a mobile base.

Fig. 3.5: Comparison of Defender’s strategies for fixed-base and mobile-base mobility modes.

The mobility of the base gives a significant advantage when the walks are short, however, if

given long enough walk, both Defender modes converge to the same value.

3.4.4 Evaluation of Waiting/Pausing Ability

We demonstrate the difference between the Defender with the ability of waiting over any node

and the Defender without such ability, demonstrating the difference between mobile resources

with and without such capabilities (i.e., airplane vs. helicopter). We do not need to modify pro-
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Fig. 3.6: An example of a graph where the Defender leverages its ability of waiting i given node. If
the Defender can wait in n1, he intercepts the Evader with probability reaching 1 as the length
of walk is increased to infinity. For the Defender without the waiting ability, the probability
cannot be more than 0.5.

posed algorithms, we modify the graph structure where we allow loops (edges e(ni, ni) starting

and ending in the same node). An example of such a graph is depicted in Figure 3.6. In this

graph, there is a single node through which the Evader can reach the destination node from the

origin node. The Defender starts in the base which is connected to a single node n1 between the

origin and destination. We can optionally add a loop edge on n1 emulating the ability to wait.

Without the ability to wait, the Defender periodically moves between the base and n1, reach-

ing probability of 0.5 to catch the Evader. With the loop at n1, the Defender can wait and the

probability of catching the Evader is proportional to the amount of time the Defender can spend

in n1, which is given by the maximum allowed walk length l. The probability of the Evader being

caught is p = (l − 3)/(l − 1). For l → ∞, the probability of the Evader being caught p → 1

(compared to the probability of 0.5 by being caught by a Defender without the waiting ability).

This example demonstrates the superiority of the Defender with the waiting ability (it can

do no worse than the Defender without the waiting ability, as in the worst case, the waiting-able

Defender does not have to wait and thus, e.g., lose time). The transfer of this result into the real

world has to be done carefully, as the graph could possibly represent a richer environment where

the Defender which cannot wait can turn around over the area represented by the node etc. If

we look at larger rectangular graphs used in subsection 3.4.3 to evaluate the structure of the

player strategy sets, we quantify the differences in Figure 3.7. Even though there are differences

in the value of the game, the difference is under 1% for both the Defender with a mobile and

static base.

3.4.5 Evaluation of Double Oracle Algorithms

We evaluate the simple variant of the Double Oracle algorithm (SDO)—as proposed by McMa-

han et al. (2003)—with a best-response oracle for each player, as well as the hierarchical Double

Oracle (HDO) algorithm with multiple oracles for each player, i.e, for the Defender, we utilize

(if possible) the oracle with a subset of strategies (Section 3.2.3.2) and for the Evader, we use

the approximate utility oracle (Section 3.2.3.3). We explore two most interesting versions of the

proposed game model: (1) the fixed-base Defender and (2) the mobile-base Defender. The static



50 3 Models and Algorithms for Transportation Security

●

●

●
● ● ● ●

●

●

● ● ● ●

0.34

0.35

0.36

0.37

11 13 15 17 19 21 23
Walk length

G
am

e 
V

al
ue

strategy
●

●

base
baseLoops

(a) Game values for the fixed-base Defender.
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(b) Game value for the mobile-base Defender.

Fig. 3.7: Comparison of different Defender mobility models on rectangular graph(Figure 3.3)—
with and without the ability to wait in nodes (dashed blue and solid red line respectively). The
difference in general larger graphs is marginal.

version of the Defender is explored in greater detail in joint work with Jain et al. (2011a), the

unconstrained version of the Defender is not scalable even on simplest graphs (i.e., limited by

8GB RAM and 2 hours, the largest graph instance was a rectangular graph of size 3x4 and

Defender’s walk length of 5).

We are interested in convergence properties of the algorithms (Section 3.4.5.1) as well as

scalability of the algorithms (Section 3.4.5.2).

3.4.5.1 Convergence and Runtime Breakdown

We demonstrate the convergence properties of the algorithm on a rectangular graph of the width

w = 4,the length l = 10, with loops and with the mobile-base Defender allowed walk of the length

l = 13. We examine the convergence of the simple double oracle with the best-response oracle

(Figure 3.8) and with a hierarchy of oracles for the Defender (Figure 3.9). The optimal solution

was found in case of the SDO algorithm in 118 seconds and in case of the HDO algorithm in 34

seconds.

First, let us observe the convergence of the algorithm to a Nash Equilibrium, which is depicted

in Figure 3.8 for SDO and in Figure 3.9 for HDO. The red and blue lines depict the value of

strategies provided by the oracles in each iteration of the algorithm, the black line denoted as

CoreLP depicts the value of a Nash Equilibrium of the sub-game.

The dotted and dashed lines depict upper and lower bounds for the final game value in the

Nash Equilibrium of the full game respectively (highlighted by the green ribbon). Note that we

can use the bounds in i-th iteration to estimate maximum error when playing a strategy from

the NE of the sub-game in i-th iteration. Given that the resulting value will be always between

the bounds, the player’s strategy lose no more (w.r.t. the exact game value) than the difference

between the bounds. This fact can be used to terminate the algorithm prematurely with quality

guarantees. In our case, for the SDO, we can end the algorithm after 54nd and 64th iteration

(out of 73) to achieve maximum error of 10% and 5% respectively, saving potentially 10% resp.

6% of total computation time.
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Fig. 3.8: Convergence of SDO algorithm with mobile-base Defender on a rectangular graph of
width w = 4, length l = 10.
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Fig. 3.9: Convergence of HDO algorithm with mobile-base Defender on a rectangular graph of
width w = 4, length l = 10. Number of iterations is higher than in case of the SDO algorithm,
however, the algorithm is faster.

In case of the HDO algorithm, we cannot guarantee the maximum error during the algorithm

run, as the final game value does not have to lie between the bounds provided by the subopti-

mal oracles (as depicted in the detail of Figure 3.9): the bounds cross each other because the

Defender’s oracle provides only suboptimal responses. In this case, the bounds provided by any

oracle (denoted by the green ribbon) cannot be taken into account. However, whenever an opti-

mal best-response oracle provides an answer, we can use the best-responses to establish proper
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Fig. 3.10: Runtime breakdown of the SDO (left) and HDO algorithm (right).

bounds—this is denoted by the blue ribbon in the detail of respective Figure. This uncertainty

in the value of the complete game is the trade-off for the speed of the suboptimal oracle.

Markers above and under convergence lines denote the type of oracle, which has provided

the solution (or if no improving solution was found). In case of SDO algorithm, we can observe

that most of the time, oracles of both players provided a response not contained in the current

sub-game. However, as the strategy space of the Defender is richer, the Defender’s Oracle has

to provide more strategies. In case of the HDO algorithm, we can observe that the suboptimal

oracles can provide response in most cases and that the optimal oracles are not used frequently

(and thus serve as a termination check algorithm). For the Evader, the suboptimal oracle is

equal to the best-response oracle.

The runtime breakdown of both algorithms is depicted in Figure 3.10. We can see that in

case of the SDO algorithm (Figure 3.10 left), the Defender’s oracle consumes most of the time

and it is thus vital to provide a fast suboptimal alternative, which could increase the runtime—

which is done in the HDO algorithm (Figure 3.10 right) where the runtimes of all modules are

comparable. The linear program solving the Nash Equilibrium in each stage is fast, however,

scales linearly with the number of iterations.

Finally, we explore the size of the support set of both players during the algorithm run

(Figure 3.11). As the sub-game increases in each iteration, the ratio of strategies in the support

set falls. This means that the oracles generate strategies which are less likely to be in the final

strategy set. As expected, the HDO algorithm generates more strategies not present in the final

support set, compared to the SDO algorithm. The analysis of the size of the support set could

be used to indicate the quality of the oracles (i.e., how good they are at estimating strategies of

the final support set).

3.4.5.2 Scalability of Double Oracle Algorithm

We evaluate the double oracle algorithm on a set of rectangular graphs, similar to those depicted

in Figure 3.2a. We have tried irregular graphs, such as random scale-free graphs, rectangular

graphs with a missing ratio of nodes and edges. The rectangular graphs are the most difficult

for the algorithms to compute. The graph is defined by its width, the length of the graph is
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Fig. 3.11: Size of the strategy support sets for both players during the SDO (left) and HDO
(right) algorithm execution.

set to length = 2 · width + 1. We randomized the interception probabilities on each node and

edge, which are sampled from a uniform distribution U(0, 1). The origin nodes are on the left

size of the graph, the destination nodes are on the right side of the graph. The base is set to the

position (length− 1/2, bwidth/2c). We varied both the size of the graph (parameterized by the

width parameter) and the length of the Defender’s walk. We allow one processor on computing

nodes with 64bit Java 7 and maximally 6 GB of RAM.

The scalability of the algorithm for the fixed-base Defender is depicted in Figure 3.12. The

runtime of the algorithm is exponential both in the size of the graph and in the length of

Defender’s walk. The number of iterations increases with both the size of the graph and with

the length of the Defender’s walk, however, the number of iterations depends heavily on the

nature of interception probabilities. For equal interception probabilities on all edges and nodes

in the graph, the number of iterations is the highest. Structuring the interception probabilities

helps in the convergence of the algorithm.

An interesting observation can be made about the oracles themselves. The Evader’s oracle

scales exponentially with the size of the graph (as the number of paths in the graph depends

combinatorially on its size) however, are independent on the length of Defender’s walk. The

Defender’s oracle scales exponentially with the size of the graph as well as with the length of the

walk, however, the scalability is worse when increasing the length of the walk. For very short

walks (i.e., 5, 7 and 9), the oracle’s performance is dominated by the implementation overhead,

not by the complexity of the task (which can be observed on the respective graph in Figure 3.12).

A notable phenomenon arises in the situation, where the length of the walk limits the Defender

so that he can reach some places only with a small portion of his walk (i.e., touch one side of

the graph). In that case, the Evader picks his paths to lead through that area and the Defender

cannot intercept the Evader with high enough probability. In that case, the number of iterations

is lower (observable on the iteration charts on Figure 3.12).

For the mobile-base Defender scenarios, the performance of the Defender’s oracle should be

decreased linearly in the number of nodes/edges, however, the performance of other components

should stay the same (Figure 3.13). An interesting phenomenon arises in the number of iter-

ations which increase linearly with the size of the graph, which is not true for the fixed-base

Defender (due to the phenomenon described in previous paragraph). Again the Evader’s oracle
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Fig. 3.12: Scalability of the SDO algorithm on rectangular graphs with uncertain encounters for
the fixed-base Defender while varying the width of the graph and the length of the Defender’s
walk.
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Fig. 3.13: Scalability of the SDO algorithm on rectangular graphs with uncertain encounters
for the mobile-base Defender while varying the width of the graph and the length of the
Defender’s walk.

computation time scales exponentially with the size of the graph, however, it is independent on

the length of Defender’s walk.
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(a) Performance comparison for fixed-base Defender.
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(b) Performance comparison for mobile-base Defender.

Fig. 3.14: Comparison of runtime (log scale) of Simple Double Oracle algorithm (red full line)
and Hierarchical Double Oracle Algorithm (blue dashed line). The graphs are faceted by the
width of the graph.

To compare the performance of SDO and HDO, we limit ourselves on rectangular graphs and

observe the total runtime of both algorithms (depicted in Figure 3.14). We plot only those values,

where at least half of experiments of both algorithms finished in two hours of computation time.

We can observe a steady advantage of the hierarchical double oracle algorithm. The difference

is in average five times faster compared over all instances with a differing length of Defender’s

walk and with a differing graph size, however, for larger instances HDO is faster in order of

magnitudes compared to SDO.
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3.5 Summary

We have proposed a formal game-theoretic model of a randomized transit through guarded areas.

This model can be either used for the design of routes minimizing the probability of encounter

or for design of strategies suitable for the defending agent aiming to maximize the probability

of encounter, as we compute Nash Equilibrium of the model in which the resulting strategies

are optimal (with respect to the utility model) for both players.

Additionally, we have proposed different mobility models which take into account different

guarding capabilities of the defending agent. Some of the models can be reduced to existing

ones, as in case of the static strategy (Joseph, 2005; Jain et al., 2011a), the mobility models

accounting for the base are novel and extend the existing state-of-the-art. Unfortunately, they

pose significant computational difficulties due to the non-linearity of utility function (arising from

the uncertainty of encounters), which—combined with large strategy spaces for both players—

poses a non-trivial problem for Nash Equilibrium computation.

We tackle the NE computation problem by using oracle-based algorithms (McMahan et al.,

2003) and design a set of state-of-the-art oracles providing both optimal and suboptimal best-

responses—strategies for both players which are used iteratively during the NE computation.

Additionally, we broaden the concept of oracles and propose an extension of the double-oracle

algorithm for oracle hierarchies, where the suboptimal oracles can be used to significantly speed

up the solution without the loss of optimality guarantees.

We have evaluated the game-theoretic model with respect to the solution structure and solu-

tion properties, such as the impact of Defender’s mobility, the length of defender’s walk and the

possibility of waiting on one place, focusing mainly on models with base, as they are the main

contribution of the thesis. The results show that resulting strategies are not trivial, however, a

rule of thumb can be extracted for both the Evader and the Defender: (1) The Evader should

randomize fully over possible paths almost uniformly in case of homogeneous environment and

with not significantly constrained Defender, slightly preferring routes farther from the base; (2)

the Defender walks have to intercept every possible Evader’s route at least in one node. The po-

sitioning of the base in a bottleneck of the area has a significant advantage, especially when the

walk length is restricted. For very long walks (with respect to the width of the area bottleneck),

the mobility of the base is not important, for short base, the mobility of the base is vital. The

mobility of the Defender has a positive impact on its expected game value, as well as the ability

to wait on place.

The scalability of the algorithms differs for different Defender models when varying the size

of the graph as well as the length of Defender’s walk. Both parameters influence the runtime

exponentially in case of the mobile-base Defender; for the static-base Defender, the runtime

dependency of the algorithm on the length of Defender’s walk is exponential, the dependency on

graph width is not trivial and depends on other graph properties. We are able to solve problems

for graphs with the size up to approximately hundred of nodes and walks of the length 15–20.

The unconstrained model scales very poorly, as the problem is highly under-constrained and no

suitable heuristics was found to navigate the algorithm to an optimal solution.

The convergence rate of the double-oracle algorithm is not favorable for ε-Nash computation—

typically, we can cut-off the algorithm after two thirds of expected iterations (i.e., save one third
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of the computation time) to get ε = 5% of the expected game value. The convergence rate

of the hierarchical double-oracle algorithm is better, achieving ε = 5% after one third of the

iterations, however, theoretically, without a final termination check with optimal oracles, we

cannot guarantee the final game value.

The formalization of the area transit problem as a security game was published in 2010 (Vaněk

et al., 2010) and extended in the following papers (Vaněk et al., 2011; Vaněk, 2011). The exten-

sion of double-oracle algorithms was published in 2012 (Vaněk et al., 2012).

The methods described in this chapter are utilized for urban security (Jain et al., 2011a)

where we have developed an algorithm for optimal placement of checkpoints in an urban network.

Additionally, we slightly modified the presented concept to design an optimal packet sampling

to maximize the probability of a malicious packet detection in computer networks (Vaněk et al.,

2012b).





Chapter 4

Optimization of Transit Grouping

On the design of algorithms for an optimal grouping of

transiting agents.

The Best for the Group comes when everyone in the group

does what’s best for himself AND the group.

– John Nash

Game-theoretic models of the interaction of two mobile players bring a lot of insight into the

structure of the solution as well as the complexity of the computation of the optimal strategy.

The scalability of the algorithms is limited even for two-player game models. The scalability of

the models with respect to the number of the players is low. We can assume either complete

cooperation on either side—we can model the situation as a two player game each of which

disposes of multiple units (each of which disposes of the complete strategy set)—or we can

assume independent players and solve n-player general sum game in the form of a nonlinear

complementarity problem (Shoham and Leyton-Brown, 2008) which is difficult to solve even in

the case of the possibility of enumeration of all strategies of the players.

We thus approach the problem from a different perspective, we step-out of the game-theoretic

framework and we search for optimal grouping of evading players1 which have to transit the area

in the same time frame. We then consider each group to play an individual game against an

unknown adversary. We are primarily motivated by the situation in the Indian Ocean where a

number of merchant vessels sail daily through the piracy affected waters and try to avoid an

encounter with a pirate ship, fitting the model of a fixed-base or mobile-base Defender. The

crucial property of this problem is the low saturation level of the pirate, i.e., the pirate can

hijack at most one ship at a time. Which implies that if there are multiple vessels transiting

the area, they can form a group to transit together, possibly choosing a route planned using

the game-theoretic model. If the group is encountered by a pirate, the effect of the grouping

is two-fold: (1) as the pirate can attack only one vessel, the unattacked vessels stay unharmed

even after the pirate encounter; (2) the group provides an additional protection in the form of

a better positioning of the weakest vessels and better alertness and awareness of the situation

around the group.

The problem of effective grouping is not trivial. The vessels arrive continuously to the area and

their speeds differ, often significantly. Additionally, some of the vessels are not that vulnerable

and even though they would prefer not to encounter a pirate, they are not willing to wait for

other vessels to form a group with. These requirements lead to a multi-criterion formulation of

the problem.

1 As we are primarily motivated by the maritime domain and we are thus interested more into scale-up in the
number of evaders.

59
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Fig. 4.1: IRTC Corridor in the Gulf of Aden. Ships enter the gulf area from both sides. The
most dangerous area in the middle (denoted by the dark zone) is best to be crossed at night.

We will design an algorithm which groups transiting units together and takes into account

the constraints given by the transit area (such as entry and exit points), the speed of individual

vessels as well as their risk-aversion parameter. We are directly inspired by currently employed

group transits of the Gulf of Aden and our abstract formulation allows to optimize grouping

schemes for randomized transits as well as for a narrow corridor transit.

4.1 Problem Description and Motivation

This problem is heavily inspired by current transit methods employed in the Gulf of Aden

where merchant vessels are grouped into a number of groups according to a Group Transit

Scheme Intertanko (2009): the Gulf of Aden is a narrow area north off the coast of Somalia

with dense merchant traffic in both directions, mostly transporting goods and oil from Asia to

Europe. Current spike in Somali-based piracy poses a serious threat to merchant ships transiting

the area of the Indian Ocean and the Gulf of Aden – hundreds of hijack attempts have been

reported from 2008 till today and tens of ships have been hijacked every year.

4.1.1 International Recommended Transit Corridor

International naval forces were deployed in the area to protect the merchant ships and Inter-

national Recommended Transit Corridor (IRTC) was established to align the traffic into two

lanes—separating the East bound and the West bound traffic—for an easier protection (see Fig-

ure 4.1). The East bound lane begins at the Entry Point (EP) A and is oriented along a straight

line course of 72 degrees. The West bound lane begins at the Entry Point B and is oriented

along a straight line course of 252 degrees Intertanko (2009). The most dangerous area for the

transit is approximately in the middle of the corridor (dark area in Figure 4.1).
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Table 4.1: Gulf of Aden group transit schedule.

Speed Level Entry Time for EP A Entry Time for EP B

10 kn 04:00 18:00

12 kn 08:30 00:01

14 kn 11:30 04:00

16 kn 14:00 08:30

18 kn 16:00 10:00

4.1.2 Group Transit Schemes in the IRTC

In August 2010, a group transit scheme was introduced to further reduce the risk of pirate

attacks (illustrated in detail in Intertanko (2009)). Gulf of Aden Group Transits are designed to

group ships into different speed groups in order to exploit additional protection and assurance

of traveling in a group. Each group is defined by a speed level (i.e., published speed at which all

ships belonging to the group sail) and entry time at which all the ships belonging to the group

have to be at the Entry Point. There is one transit per day for each speed group (shown in the

Table 4.1).

The entry times for different speed groups to enter the IRTC are calculated so that the

groups pass through the most dangerous area at night and they ensure that all ships, regardless

of speed, are together at dawn. The group transit scheme thus groups the ships on two tiers:

first, the ships are grouped according to their speed and second, the groups are grouped again

at the most dangerous area in the Gulf of Aden to transit the area together. This allows the

military forces to best position their assets in the area so as to protect ships against piracy and

to provide assistance in case of attack.

4.1.3 Group Transit Schemes for Randomized Transits

Group transit schemes were originally proposed by maritime authorities for a single narrow

corridor transit, however, the concept, can be directly reused for grouping of agents prior the

game-theoretic randomized routing through adversary-controlled areas: typically, all vessels fol-

low the same route when sailing between the same pair of harbors. Randomization allows them

to select a different route each time to minimize the probability of a pirate attack; the grouping

mechanism allows them to follow this randomized route together with other vessels sailing to

the same port, again decreasing a probability of being attacked.

The same constraints on speed distribution of vessels in one group can be posed (as in case of

IRTC GTS), some constraints (on the aggregation point) can be left out. The following section

formalizes the problem of grouping in a rectangular area (where the length is significantly longer
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than the width) and proposes different constraint sets suitable for different modes of a group

transit scheme.

4.2 Group Transit Scheme Optimization

The dynamic group transit scheme optimization poses a complex problem as it tackles the

grouping problem on a scale of individual ships and thus takes into account constraints imposed

by the spatial distribution and different capabilities of the approaching ships. Additionally, we

have to deal with a—possibly infinite—stream of approaching ships transiting the corridor. The

latter issue can be solved in two ways: (1) the design an algorithm which continuously creates

groups and adds ships on the fly (using, e.g., a rolling horizon approach) or (2) to cluster

approaching ships into clusters and compute group transit separately for each cluster. We will

focus on the latter approach, motivated by the specifics of dangerous areas transits. The vessels

approach the dangerous areas in similar times (due to the fact that some parts of the areas are

best to be transited at night) and are thus clustered to some degree prior the area transit2

4.2.1 Problem Abstraction

Figure 4.2 depicts the abstraction of the environment for the dynamic group transit formation:

the ships transit the area from left to right, reaching the approach zone first. Only the ships in

the approach zone (of length La) are considered for grouping3. The groups are established at the

Entry point A and they follow the corridor (of length L). Additionally, inside the corridor, there

is an aggregation point π, in which all the groups have to meet. Moreover, the aggregation point

has a specific time of the day U assigned, at which the groups have to arrive at the point. The

last two conditions place additional constraints on the problem and can be relaxed in similar

models without such requirements.

To express the advantage of a ship being in a group, we use a term risk. If a ship does not

take part in the group transit, it is facing an increased risk of hijack, because it does not obey

the required time of transit of the most dangerous area or it does not sail at the recommended

group speed (or both). We model the increased risk with a risk aversion Rj ∈ [0, 1] parameter,

set individually for each ship. For Rj = 0, the ship does not gain anything by being in a group,

for Rj = 1, the ship suffers maximum penalty for being left out of the GTS.

2 similar situation naturally arises for the Gulf of Aden transit: typically, vast majority of the ships arrive from
or continue its journey to the Strait of Suez. Strait of Suez employs its own traffic system, structuring all ships

transiting the strait into groups which transit the strait once per day. For details, see Strait of Suez Traffic System
website: http://www.suezcanal.gov.eg/sc.aspx?show=13. This means, that the daily transit of ships through
the Strait of Suez forms a cluster for which we design the dynamic group transit scheme.
3 The length of the approach zone determines the number of ships for the group transit scheme computation and
its length has a significant impact on the size of the problem (and thus on the ability to compute the optimal

solution).

http://www.suezcanal.gov.eg/sc.aspx?show=13
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Entry Point A Aggregation Point Π 

Traffic Direction 

Approach Zone Corridor (Length L) 

Fig. 4.2: Abstraction of the dynamic group transit setting.

Table 4.2: Notation used in mathematical model of the dynamic GTS.

Symbol Definition

s ∈ N number of speed levels

n ∈ N number of ships in the approach zone

Π coordinates of the aggregation point [GPS]

ν ∈ R+ minimum approach speed of any ship [kn]

µ ∈ N minimum group size

τ ∈ R+ current time (typically set to 0)

∆V ∈ R+ maximum allowed speed difference in one group [kn]

A coordinates of the entry point [GPS]

P ∈ Rn position of ships (Pj is position of the j-th ship) [GPS]

V ∈ Rn speed of ships (Vj is speed of the j-th ship) [kn]

T ∈ Rn the earliest time the ship can arrive to the entry point A [h]

R ∈ [0, 1]n risk value, expresses the risk aversion of a ship (Rj is risk aversion oftje j-th
ship)

U ∈ Rm vector of admissible times to be at the aggregation point Π w.r.t. the minimum
approach speed ν and current time τ [h]

L ∈ R+ length of the corridor [nm]

4.2.2 Formal Model

The parameters and notation used throughout the section are summarized in the Table 4.2. We

formulate the problem of dynamic group transit as a bi-objective optimization problem with two

objective functions: delay and risk, which are subject to a set of constraints on the schedule

properties and ship abilities:

min (delay(x), risk(x)) (4.1)

s.t. x ∈ X (4.2)
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where X is a set of feasible solutions defined by a set of constraints. We scalarize the multi-

objective criterion into a single linear combination of the two functions, weighted by γ parameter

(see Section 2.3.4.2 for details):

min γ · R+ (1− γ) ·D (4.3)

where the delay function D has two components D = Da + Dt; Da is the delay caused by

the lower speed of the ships in the approach zone and Dt is the delay caused by lower speeds

of grouped ships when transiting the corridor. R is the overall risk aggregated over all ships.

The solution is not unique due to the counter-going objective functions, as delay and risk are

inversely proportional; we thus look for a set of Pareto-optimal solutions—i.e., the Pareto front—

by varying the γ ∈ [0, 1] parameter.

We define the terms in the criterion 4.3 as:

Da =
∑
j∈n

ωj (4.4)

Dt =
∑
i

∑
j∈n

∑
k∈m

Uk · yijk (4.5)

R =
∑
j∈n

Rj · (1−
∑
i∈s

xij) (4.6)

where ωj is the entry time of j-th ship at the entry point A (capturing the approach delay Da),

yijk is an indicator variable set to 1 if the j-th ship in the i-th group would sail through the

aggregation point Π at time Uk (capturing the transit delay Dt). The equation (4.6) expresses

the risk as a sum of individual risks of all ships which are not assigned to any group (variable

xij indicates that j-th ship is assigned to i-th group and the expression (1 −
∑
i∈s xij) is 1 if

and only if j-th ship is not assigned to any group).

Criterion (4.3) is optimized subject to a number of constraints capturing structure of the

grouping mechanism. First, we impose a set of constraints for correct grouping, expressed as:∑
i∈s

xij ≤ 1 ∀j ∈ n (4.7)∑
j∈n

xij ≥ µ−M · ai ∀i ∈ s (4.8)

∑
j∈n

xij ≤ 0 +M · (1− ai) ∀i ∈ s (4.9)

xij ∈ {0, 1} ai ∈ {0, 1}

Constraint (4.7) specifies, that each ship can be at most in one group, Constraint (4.8) restricts

the group size to be greater than or equal to a pre-specified minimum group size µ and Con-

straint (4.9) allows the group to be of size 0 (thus having no ship assigned). The binary variable

ai indicates that only Constraint (4.8) or (4.9) can be active at the same time for i-th group

and M is a large number.

To capture the requirement of group formation at the entry point A, we introduce variable

wi capturing entry time of i-th group with the following constraints:
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ωj ≥ wi −M(1− xij) ∀i ∈ s;∀j ∈ n (4.10)

wi ≥ −(1− xij) ·M + τ + Tj ∀i ∈ s;∀j ∈ n (4.11)

wi ≤ (1− xij) ·M + τ +
|Pj −A|

ν
∀i ∈ s;∀j ∈ n (4.12)

wi ∈ R+ ωj ∈ R+

Constraint (4.10) links the entry time ωj of the j-th ship to the i-th group, i.e., if the j-th

ship is in the i-th group, then (due to the minimization criterion) ωj = wi. Constraint (4.11)

expresses the fact, that the group cannot be established at the entry point A earlier than every

ship reaches the entry point A (relative to the current time τ), posing a lower bound restriction

on wi. For j-th ship, the earliest arrival time Tj can be pre-computed as Tj = |Pj − A|/Vj4.

Constraint (4.12) poses an upper bound restriction on wi by assuring that no ship violates the

minimum approach speed requirement (given by ν)5.

Finally, we incorporate the restriction given by the requirement to aggregate the groups at

the aggregation point Π:

∑
k∈m

yijk · Uk − wi ≥
|Π −A|
Sj

· xij ∀i ∈ s;∀j ∈ n (4.13)

∑
k∈m

yijk · Uk − wi ≤
|Π −A|
Sj −∆V

+M · (1− xij) ∀i ∈ s;∀j ∈ n (4.14)∑
k∈m

yijk = 1 ∀i ∈ s;∀j ∈ n (4.15)

yijk ∈ {0, 1}

As stated, variable yijk indicates that the j-th ship in i-th group will be present at the aggrega-

tion point Π at time Uk. Constraint (4.13) states that the speed of a group cannot exceed the

speed of any ship which belongs to this group (i.e., the time needed for the i-th group to reach

Π is given by
∑
k∈m yijk ·Uk −wi and the time needed for the j-th ship to reach Π is given by

|Π −A|/Sj). Constraint (4.14) restricts the spread of the speeds of ships in one group to be at

most ∆V . Constraint (4.15) states that only one time of passing Π is admissible for any group.

The equations above fully capture the problem, however, we can add additional redundant

constraints to speed-up the solution process:

xij 6= xil iff |sj − sl| > 2 ·∆V ∀i ∈ s; j, l ∈ n; j 6= l (4.16)

xij 6= xil iff etj > ltl OR etl > ltj ∀i ∈ s; j, l ∈ n; j 6= l (4.17)

i.e., no two ships can be in one group, if the difference of their speed is greater than 2 · ∆V
and no two ships can be in one group if the earliest time etj of one ship to arrive to A is

greater than the latest time ltl when the other ship has to leave A (given by the minimum

4 The distance between two points given in GPS coordinates is computed to be in nautical miles to correspond

with other units.
5 It is trivial to account for different minimum approach speeds for each ship. For each ship, we can introduce

νj variable and directly use it in constraint (4.12).
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approach speed requirement) or vice versa. The times are computed as etj = dist(Pj , A)/sj and

ltj = dist(Pj , A)/ν, where dist(Pj , A) is orthodromic shortest path between Pj and A.

4.2.3 Group Transit Scheme Relaxations

Having the full problem formulation, we can relax or restrict any of the constraints to customize

the dynamic GTS. Variations with minor modifications as well as with more fundamental ones—

removing restrictions posed by the aggregation point Π and/or by the approach buffer (i.e., the

groups are assembled directly at the entry point A)—have been considered.

4.2.3.1 Mandatory grouping

We modify Constraint (4.7) to account for a mandatory assignment of every ship into any

group, i.e.,
∑
i∈s xij = 1. Having this restriction, the risk summand in the criterion function

is redundant and can be left out. However, the problem cannot be always feasible, due to the

requirements of the minimum approach speed (Constraint (4.12)) and maximum speed difference

in one group (Constraint (4.14)). These constraints have to be either relaxed or the program

has to be solved multiple times while decreasing the minimum allowed approach speed ν and/or

increasing maximum speed difference ∆V .

4.2.3.2 Group size limit

We can additionally limit the size of the group to be at most η6 by introducing a constraint∑
j∈n xij ≤ η. In this case, the number of groups should be proportionally increased to create

enough groups and not to be penalized for the risk of ships that cannot be placed in any group

because of this constraint.

4.2.3.3 No Aggregation Point

By relaxing constraints (4.13) – (4.15), we do not pose any aggregation requirements on the

group transit scheme and the groups are established at the entry point A as soon as possible.

Additionally, all groups sail at the group speed equal to the speed of the slowest ship of the

group. To reflect these facts in the mathematical model, we consider explicit group speeds which

are not linked to the aggregation point. We reformulate the transit delay Dt to:

Dt =
∑
j∈n

σj · L (4.18)

6 Where η ≥ µ. When setting the η = µ we get groups of the exact size.
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where L is the length of the transit corridor and σj is the inverse transit speed7 of j-th ship in

a group, subject to the following constraints:

σj ≥ gi −M · (1− xij) ∀i ∈ s, j ∈ n (4.19)

gi · L ≥ xij ·
L

sj
∀i ∈ s, j ∈ n (4.20)

gi · L ≤
L

(sj −∆V )
+ (1− xij) ·M ∀i ∈ s, j ∈ n (4.21)

gi ∈ R+ σj ∈ R+ (4.22)

Constrain (4.19) links the speed of the j-th ship to the inversed speed of the i-th group gi,

constraint (4.20) restricts the group speed gi to be lower than the speed of the slowest ship in

the group and constraint (4.21) allows one group to have ships with maximum speed difference

∆V .

4.2.3.4 No Approach Zone

For some dynamic group transit schemes, we do not have to consider the approach zone, i.e.,

we consider all ships to be at point A at the beginning of the grouping, similar to the Convoy

Scheduling Problem formulation. We can then relax constraints (4.11) and (4.12). However, it

is recommended to leave variables wi in constraints (4.13) and (4.14) to allow groups to start

their route with a delay wi. Otherwise, if the meeting times Uk are too sparse, a solution may

not be found.

4.2.3.5 No Aggregation Point, No Approach Zone

Finally, we can relax the restriction on the aggregation inside the corridor and consider the ships

to be ready at point A. The delay caused is given only by the transit delay Dt in the form of

Equation (4.18), which is restricted by constraints (4.19) – (4.22). Together with constraints (4.7)

– (4.9), they form a complete constraint set for this problem8.

4.3 Evaluation

We evaluate the quality of solutions of the Group Transit Scheme (GTS) optimization problem.

We use both synthetic and real-world data and we are interested in the structure of the solution,

a relative improvement against the current group transit scheme, and in the scalability of al-

gorithms for dynamic grouping. The algorithms were evaluated on a Quad-core 64-bit PC with

7 We define variables as inverse to keep the mathematical formulations linear. The final speed of j-th ship a in
a group is equal to 1

σj
. Term σj · L expresses directly the corridor transit time of j-th ship.

8 We do not have to consider group delays wi before transit, as the transit is not restricted by the aggregation
times Uk.
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4GB available RAM; implementation was done in Java 1.7 and we used CPLEX 12.3 to solve

the mathematical programs.

We compare 4 variants of the algorithm designed in Section 4.2.

1. AggregationApproach – considering constraints of the original problem statement (aggregation

at point Π and approach zone considered).

2. Approach – considering only approach constraints, as described in subsection 4.2.3.3 (no

aggregation point Π; ships are spread through the approach zone).

3. Aggregation – considering only aggregation constraints, as described in subsection 4.2.3.4

(aggregation at point Π; all ship starting at point A).

4. None – considering no aggregation and no approach constraints, as described in subsec-

tion 4.2.3.5 (no aggregation point Π; all ship starting at point A).

We look at the structure of the optimal dynamic group transit. We further explore the Pareto

frontier and evaluate the scalability of the algorithm with respect to main algorithm parameters.

Finally, we compare the dynamic group transit to the currently deployed fixed schedule.

We generate synthetic scenarios where ships are spread uniformly in the approach zone which

should imitate the hardest possible conditions (i.e., the worst case) for successful grouping. Note

that in real-world, the ships would be often significantly clustered and will be grouped farther

from the entry point A, thus the solutions would be significantly better (in terms of number

of ships grouped). We generate ship speeds from a uniform distribution, again emulating worst

case possible. If not stated otherwise, tested values of parameters are set by default to: length

of the approach zone La = 600 nm, number of ships n = 25, number of groups s = 5, minimum

approach speed ν = 8 kn, maximum speed difference in a group ∆V = 2 kn and minimum group

size µ = 2.

4.3.1 Structure of the Solution

The structure of the solution differs significantly when computed by each algorithm for default

parameter setting and risk weight γ = 0.5.

The solution is displayed on two figures for each algorithm (see Figure 4.3). We can observe

that for all algorithms except None, some ships are left ungrouped (red squares in plots). In

case of the AggregationApproach algorithm, the ships which are either slow or very close to

the entry point A cannot slow too much to meet the minimum approach speed constraint. For

the Approach algorithm, not all ships can be grouped because of the minimum approach speed

constraint as well.

Some groups in solutions computed by AggregationApproach and Aggregation algorithms have

slower speed than the speed of the slowest ship in the group. This is caused by the restriction

of a specific set of times of arrival at the aggregation point Π.

Solutions computed by Aggregation and None algorithms neglect the arrival positions of the

ships, considering all ships to be at the entry point A.
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Fig. 4.3: Structure of Solutions for different constraint sets. The upper row of graphs show group-
ing in speed and distance from entry point dimensions. For Aggregation and None algorithms,
the distance dimension is not used. The lower row shows group speeds (dashed lines) and their
range (i.e., maximum speed difference in one group.). The ships which are not assigned to any
group are denoted as red squares.

4.3.2 Pareto Frontier Evaluation

In the optimization problem defined by a Criterion (4.3), we weigh two functions through a pa-

rameter γ. While varying γ, we reach different solutions with different risk and delay caused by

the dynamic GTS. Figure 4.4a captures Pareto frontiers computed by AggregationApproach al-

gorithm for default parameter values for n = {10, 15, 20, 25, 30} ships. The Pareto frontier curves

are almost linear with non-smooth transitions due to the binary property of group membership.

The scalability of algorithms with respect to γ is described in the next Section.

4.3.3 Scalability

The performance of the algorithm depends on the number of parameters: the number of ships, the

number of groups, risk aversion coefficient, maximum speed difference in one group, minimum

approach speed and minimum group size. Here we focus on the first three parameters as they

have the greatest impact on the speed of the algorithm. We have generated 100 random instances

of the problem for each parameter setting and averaged the computation time needed to find

a solution. The dependency of solution time on the number of ships and the number of groups

is depicted in Figure 4.5. For all 4 algorithms, we are able to find solutions for up to 20 ships

and 4 groups. For the Aggregation algorithm, when increasing the number of ships or number

of groups, some generated problem instances are not solvable within 4GB of RAM.
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Fig. 4.4: (a) Pareto frontiers for number of ships n = {10, 15, 20, 25, 30}. Solutions which are not
Pareto efficient, would lie above the curve, as the criterion is minimized. (b) Scalability of the
algorithms with respect to risk weight coefficient γ. Note the significantly lower performance of
the Aggregation algorithm.

For the current IRTC transit constraints, the AggregationApproach algorithm is able to find

solution for 25 ships and 5 groups in under 10 minutes in average. The largest problems instances

solved in hundreds of minutes by AggregationApproach were with 30 ships and 6 groups, however,

in some cases, the memory was the bottleneck and the solution could not be found. The maximum

solvable problem size is heavily dependent on the solver of the program.

The scalability of the algorithms with respect to the risk weight coefficient γ is captured in

Figure 4.4b. We varied γ from 0 to 1 for a setting with n = 20 ships and s = 5 groups, while

having all other parameters fixed at default values. For larger risk weights (i.e., γ > 0.9), the

time needed to find a solution does not vary significantly anymore, as the risk summand in the

criterion outweigh the delay summand and if a ship can be in a group, the algorithm places the

ship in a group.

Algorithms without aggregation constraints peak for intermediate values of γ (Approach for

γ = 0.7 and None for γ = 0.5). After this peak, when increasing γ, the computations time is

lower again, converging to a constant value. Algorithms with aggregation constraints (Aggre-

gationApproach and Aggregation) do not have the property described above and converge to a

constant value.

4.3.4 IRTC Case Study

To compare the dynamic GTS with current GTS, we measured the delay caused and the number

of ships left ungrouped (by either not satisfying the minimum approach speed constraint or –

in case of the current GTS– being alone in the group) for both the grouping transit schemes.

We have set the minimum approach speed ν = 8 for both schemes. For dynamic GTS, we have

set the risk weight coefficient to γ = 1 to force maximum grouping with possibly increased
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Fig. 4.5: Scalability of Algorithms while modifying number of ships and number of groups. For
the Approach algorithm, the y-axis is in different range. Not that the error bars depict standard
error.
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Fig. 4.6: (a) Comparison of delays caused by the currently deployed GTS and by the dynamic
GTS (lower is better); (b) comparison of number of ungrouped ships for fixed and dynamic GTS
(lower is better). The error bars depict standard deviation.

delay, the number of groups to be created to s = 5 and the maximum speed difference in one

group to ∆V = 2 to be equal the currently deployed fixed GTS. We have varied the number of

approaching ships from 5 to 25 and run 100 samples for each setting.

The results are depicted in Figure 4.6. We can observe, that the delay caused by the dynamic

GTS is lower for less ships, however, as the number of approaching ships increases, the delay
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caused by both groupings is comparable, as all groups are filled and given constraints given by

the aggregation point Π, the delay caused is converging to a stable value. The average time

saved by the dynamic grouping is approximately 1 hour, equaling to approximately 8% of the

transit time9. In Figure 4.6b we can compare the average number of ungrouped ships for both

schemes. Dynamic GTS has steadily lower number of ungrouped ships (which is preferable). For

high number of ships, the ungrouped ships typical do not meet the minimum approach speed

requirement.

4.4 Summary

Due to inherent scalability problems in the number of independent players in a game-theoretic

model, we step outside the game-theoretic framework and propose grouping schemes which

aggregate transiting agents into groups which transit the problematic area together. The groups

are then considered to be a single agent playing the game. To find optimal grouping for a set

of agents with differing attributes, we inspire ourselves with group transit schemes currently

deployed in the Gulf of Aden and we design a set of grouping models taking into account both

speed and risk-aversion of (i.e., the willingness to transit the area in a group) the transiting

agents.

We propose a state-of-the-art grouping model with different constraint sets, considering area

entry points and aggregation points. We model the problem as a bi-objective optimization prob-

lem and propose a linear mixed-integer program with a scalarized criterion function which is

able to capture trade-off between the delay caused and the willingness to transit the area alone.

The structure of optimal groups of the grouping problem is non-trivial, most frequently

grouping ships with speeds in the beginning and in the middle of the approach zone and ships

which are further from the entry point of the area (especially in case of an aggregation point

constraint). The algorithm scales to tens of vessels, where the number of vessels influences the

runtime of the algorithm the most—the dependency is exponential, which is expected, given the

NP-hardness of the problem.

Finally, we compare the delay caused and the number of vessels grouped by our grouping

mechanism with the currently deployed fixed grouping scheme for the Gulf of Aden transit—

we show the superiority of our approach in both the delay caused and the number of vessels

grouped.

The first, static model of group transit optimization in corridors placed in pirate infested

areas was proposed in 2011 (Hrstka and Vaněk, 2011). The dynamic version of the problem was

first described in 2013 (Vaněk et al., 2013b) later extended to different constraint sets (Vaněk

et al., 2013a).

9 Observe rather high standard deviation for 5 and 10 ships which is caused by a low number of groups created.
In many cases, there is only a single group; for a single group, the delay can be either high or low, depending
on the speed level of the group. For higher number of ships, higher number of groups is created and the delay

averages out over all speed levels of all the groups.



Chapter 5

Agent-Based Model of Maritime Piracy

On the design of the agent-based model of maritime traffic

A good simulation, be it a religious myth or scientific

theory, gives us a sense of mastery over experience. To

represent something symbolically, as we do when we speak

or write, is somehow to capture it, thus making it one’s

own. But with this appropriation comes the realization

that we have denied the immediacy of reality and that in

creating a substitute we have but spun another thread in

the web of our grand illusion.

–Heinz R(udolf) Pagels

Having designed mathematical models capturing the game-theoretic interaction between two

agents, algorithms allowing to get a solution in the form of a strategy and optimized grouping

mechanism to cope with multiple independent players, the next step is to validate its robustness

and suitability for the real-world deployment. This step is often neglected in similar prob-

lems (Jain et al., 2010b; Pita et al., 2009) however, we consider this step to be crucial before

the deployment in real-world conditions, where not all assumptions of the mathematical model

are met.

We thus propose an additional step between abstract mathematical model and the real-world

deployment: simulation-based validation. The simulation can bridge the gap between a rigorous

(however expression-constrained) mathematical model and an uncertain, unpredictable (and

expression-rich) real world. Agent-based simulations are especially suitable for this approach—

they provide a rich set of tools to capture the realistic behavior of involved actors and incorporate

solutions from the mathematical model.

We develop AgentC, an agent-based simulation of the maritime traffic in piracy infested

areas which is trying to emulate realistic behavior of all actors involved. We then implement

agents with decision making processes derived from the game-theoretic model—however, the

agents act in a more realistic environment where not all conditions—e.g., discrete time, syn-

chronous movement, equal speeds etc.—assumed by the mathematical model are met. This

allows us to quantify deviations from the theoretical guarantees given by the mathematical

models and assess the robustness of the model.

5.1 Problem Description

Maritime traffic simulation can serve to many purposes: analysis of traffic properties (such

as congestion, transit scheme effectiveness, quality of routing/route planning), trace generation

(synthetic data generation) and others. In our case—even though the scope of use of the designed

73
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simulation is very broad—we use the simulation for purposes of a simulation-based validation:

we want to assess the quality (such as robustness and effectiveness) of the mathematical models

designed in previous sections in a more realistic environment.

5.1.1 Why Agent-Based Simulation?

Klügl (2009) summarizes advantages of agent-based simulations (ABS) compared to traditional

approaches—such as a macroscopic simulation (Van Dyke Parunak et al., 1998), event-based

simulations (Davidsson, 2001), queuing networks (Allen, 1990), petri nets (Murata, 1989), cel-

lular automata (CAs, 2007) and others—as follows: (1) ABS is suitable for dynamic and flexible

local interaction which can capture the heterogeneousness of the environment and actors (and

their populations), (2) ABS captures perfectly locality a situatedness (together with constraints

arising from these concepts) of actors, (3) ABS is able to capture decision-making processes on

different levels (such as asset allocations vs. reaction on a pirate attack), (4) ABS can capture

partial group-based interaction (utilized by merchant vessels) and others.

5.1.2 Agent-based Modeling Methodology

We employ an individual-centric modeling approach, in which the behavior of the modeled

system is represented at the micro-level of individual vessels. Vessels are modeled as autonomous

agents (Russell et al., 2010) capable of moving freely within the navigation boundaries of ocean

waters while interacting with the maritime environment, other vessel agents and other actors

(such as shipping operators or traffic coordinators).

Based on the literature and discussions with domain experts, we identified merchant vessels,

pirate vessels and navy vessels as main vessel classes which are therefore explicitly represented

in our model as vessel agents. For most of the time, each vessel agent pursues its individual

goals, however, there are situations where multiple vessel agents interact—such interactions are

either non-cooperative (such as pirate attacks or navy warship counter-pirate interventions) or

cooperative (such as merchant vessel agents’ requests for help to navy vessel agents). Vessel

agent interactions play a critical role in the dynamics of maritime piracy and make the agent-

based, micro-simulation approach vital for accurately modeling the effect of piracy on maritime

transportation, primarily because it allows capturing phenomena and providing the detail of

analysis not attainable with macro-level equation-based methods (Van Dyke Parunak et al.,

1998).

In line with the agent-based modeling approach, the model for each class of vessels consists

of an individual vessel behavior model and a vessel population model. The vessel behavior model

represents the executable behavior of an individual vessel agent; such behavior can depend on

vessel parameters assigned to each individual vessel. The vessel population model specifies how

many vessels of each class are generated and how the values of vessel parameters are assigned.
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The choice of vessel parameters is based on relevant literature (Bruzzone et al., 2011; Tsilis,

2011; Decraene et al., 2010) and was discussed with domain experts; their influence (i.e., impor-

tance) was also explored using sensitivity analysis (described in Section 5.3.2).

5.1.3 Simulation Scope

To capture all essential parts of the maritime piracy phenomenon, we have to consider all actors

involved, together with the environment influencing their behavior and strategies. We decompose

the model into following parts:

1. Environment model – captures all structures representing data about the environment,

such as coastal lines, areas of navigable waters, weather conditions and sea conditions and

transiting schemes deployed in the area (such as corridors and grouping schemes).

2. Merchant traffic model – captures the population of merchant vessels sailing through the

area and individual behavior in the form of a route planner and actions related to piracy

activity.

3. Piracy model – captures the areas of pirate activity, their main hubs and the population as

well as the decision making process when choosing an attack area and interaction with other

agents.

4. Navy operations model – captures the allocation mechanism of assets in the area and the

decision making process when a pirate activity is reported

These models can be parameterized to be configurable for various scenarios or there can be mul-

tiple different models for each module, which can be exchanged when scenarios differ significantly

(and the difference cannot be captured within the parameters of one model).

The simulation emulates situation in the Indian Ocean, focusing on the phenomenon of mar-

itime piracy as of 2011 (all data sources were gathered for this year). We have calibrated the

simulation on these data-sets, the simulation can be re-calibrated for differing datasets if re-

quired.

The game-theoretic setting, i.e., merchant vessel randomized route planner for a predefined

area (or set of routes) and pirate strategic behavior, is implemented in form of different modules

of merchant traffic and piracy models. The simulation scope is limited—we do not employ the

naval assets model and we let only one or a few vessels to interact.

To construct the agent-based simulation, we have followed the simulation design guidelines

described by Klügl (2009) (see Section 2.4 for details).

Note on Naming

In the military domain, merchant vessels are denoted as MV, pirate vessels—recently mainly

operating as a group of one mothership and multiple accompanying speedboats—are denoted

as pirate attack group (PAG) and navy vessels as coalition forces (CF). We denote the vessel

classes as M, P and N respectively. Furthermore, although we use the term vessel and vessel

agent rather interchangeably, we use the latter if we want to stress the behavioral aspect of vessel
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Fig. 5.1: Key actors, activities and environmental features represented in the AgentC model
of piracy affected waters.

description. With some simplification, vessel agent can be viewed as the shipmaster controlling

a respective vessel.

5.2 Domain Model

The AgentC model represents the movement and other activities of selected categories of

vessels in piracy-affected waters of the Indian Ocean (we focus on piracy with origins in Somalia,

affecting the Gulf of Aden, the Arabian Sea and the West Indian Ocean). A visual overview of

the model and its constituent entities is given in Figure 5.1.

5.2.1 Maritime Environment Model

The environment model represents the physical maritime environment in which the vessels op-

erate. It consists of two principal components:

� geography, bathymetry—represent the geography of the maritime environment in terms of a

set of polygons representing land masses, shallow waters and other obstructions that limit

navigability. It also contains locations of ports and anchorages used in merchant shipping and

pirate activities.

� weather—represents the environmental conditions affecting the behavior of modeled vessels,

specifically, wave height, wind speed and currents. Wave height plays an important role in

pirate’s decision making; currents and wind slightly alter routes of small vessels (e.g., pirate

boats).
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5.2.2 Merchant Shipping Model

Merchant vessels are large ocean-going vessels carrying cargo over long distances between world’s

major ports. Merchant vessels are the primary targets of pirate attacks. In order to be useful

for what-if analysis of different counter-piracy measures, strategies and policies, the merchant

traffic model has to produce realistic traffic patterns even for the situations which diverge from

the current status quo in terms of pirate operations and the configurations of piracy counter-

measures deployed. The merchant traffic model therefore cannot solely mimic current real-world

merchant vessel routes but it has to be capable of generating realistic shipping traffic from more

fundamental principles. We therefore adopt the approach of separating the modeling of trans-

portation demand from traffic routing. Demand is considered given and fixed while the routes

are generated dynamically, based on the assumption that merchant vessel agents maximize their

utility and take the most advantageous route possible. Such an approach is widely used in ground

transportation modeling, its application to global maritime shipping, however, is novel.

5.2.2.1 Merchant Shipping Origin–Destination Matrix

The demand for merchant transportation is represented in terms of an origin-destination matrix

(O-D matrix) which specifies the volume of merchant traffic between world’s major ports. The O-

D matrix is used to generate origins and destinations for individual merchant vessel voyages and

the voyage planning module is then used to find optimum routes connecting voyage endpoints.

Unfortunately, in contrast to ground traffic modeling, no data explicitly and completely cap-

turing the merchant shipping O-D matrix is available; we were therefore forced to estimate the

matrix from several partial sources. We have extracted the most important ports in and near the

observed area from CI-online database and Ports&Ships1 portal. We then estimated the O-D

matrix by fitting generated traffic to known real-world traffic densities (see Section 5.3.3).

5.2.2.2 Voyage Planning

A fundamental part of the merchant vessel operation is voyage planning. Voyage planning is

primarily used in the model of merchant vessels to generate realistic merchant traffic from the

merchant shipping O-D matrix; however, it is also used in the operation of the other two vessel

classes.

Voyage planning is modeled as an optimization problem of finding an optimal route between

two points on a sphere, given vessel-specific route optimality criterion, a set of constraints

imposed by geographical obstacles and physical properties of the vessel, and a spatial piracy risk

function (the latter only when voyage planning is performed for merchant vessels). Geographical

obstacles are represented by spherical polygons, each defined by a list of points. The route

optimality criterion function L is expressed as a weighted sum of the route length and the

aggregate risk along the route (computed as the sum of risk values on n route segments):

1 http://www.ci-online.co.uk, http://ports.co.za/

http://www.ci-online.co.uk
http://ports.co.za/
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Fig. 5.2: PARS model for October 1st, 2011, provided by NATO Shipping centre—green, yellow,
red colors correspond to low, medium and high risk of attack respectively. Plans are generated
for each O-D matrix entry with risk aversion coefficient α = 0.5.

L =

n∑
i=0

((1− α) li + αrili) (5.1)

where li is length of the i-th segment in nautical miles and ri is risk value on the i-th segment,

having values from interval [0, 1]. The weight in this sum is the risk aversion coefficient α ∈ [0, 1],

capturing how a respective merchant vessel agent weights risk against the length of the route2.

The risk aversion coefficient can be set individually for each merchant vessel agent based, e.g.,

on the level of on-board security, vessel cruising speed or the value of its cargo.

We formalize the problem as path-finding on a graph: we construct a spherical visibility graph

from the spherical polygons by adding an edge between any two polygon vertices connectible

by a geodesic3 which does not intersect any polygon. The spatial risk function is represented by

a discrete cell-grid called piracy risk map, assigning a piracy risk value in the interval [0, 1] to

each cell according to piracy threat-level maps provided by, e.g., the NATO Shipping Centre4,

synthetically generated, or provided by the user.

An optimal vessel route is then computed using the A* algorithm (Russell et al., 2010) with

orthodromic distance5 heuristics and with the cost function equal to the merchant vessel criterion

function (5.1). For illustration, vessel routes generated by the route planner between all pairs
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Table 5.1: Merchant vessel parameters

Parameter Values Description

Origin port id Origin port of vessel voyage

Destination port id Destination port of vessel voyage

Docking time [0, 3] days Docking time of a merchant vessel

Cruising speed [10, 20] kn Vessel travel speed unless participating in a group
transit

Ship size [30, 250] m Size of the ship

Alertness [0, 60] hr−1 Frequency of checking for an approaching pirate

of ports considered in the AgentC model are shown in Figure 5.2. Risk aversion coefficient

α = 0.5 and a risk model obtained from the NATO Shipping Centre were used.

5.2.2.3 Merchant Vessel Population Model

The merchant vessel population model instantiates a population of merchant ships of size #M

with a realistic distribution of key vessel attributes, i.e., speed and size. It then samples the

merchant shipping O-D matrix in order to assign each vessel a port of origin and a destination

port to reach. All merchant vessel attributes specified by the population model are listed in

Table 5.1. 2000 merchant vessels with speed and size distribution taken from a data-set of 2700

real-world vessel samples6 were used in the simulation to replicate real-world shipping density

in the Indian Ocean in Year 2011.

5.2.2.4 Merchant Vessel Agent Behavior Model

The behavior of a simulated merchant vessel is straightforward. Given a pair of origin–destination

ports at the beginning of the simulation, the merchant vessel agent invokes the route planner

to plan vessel’s voyage, taking into account corridors and group transit schemes along its route.

The merchant vessel then sets on cruising along the route. After the destination port is reached,

a new port is sampled from the O-D matrix and a new route is planned. This basic behavior is

interrupted if the vessel is attacked by a pirate vessel, in which case the merchant vessel agent

reports attack to nearby merchant vessel agents, notifies the closest navy vessel agent and em-

ploys self-defense measures modeled by alertness and awareness parameters (see Section 5.2.5).

Activities and transitions of the merchant vessel agent behavior are depicted in Figure 5.3.
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Pirate spotted 

Hijack 

Destination reached 

Dock/Wait 

Hijacked Cruise Plan route 

Request for help * 

Fig. 5.3: Merchant vessel agent behavior model. The entry point is the Dock/Wait state. After
docking in a port, the merchant vessel plans a route and cruises to its destination. If a pirate is
spotted, a request for help is sent. In case the vessel is hijacked, the hijacked state is terminal
and the merchant vessels is under the control of the pirate.

5.2.3 Navy Operations Model

Navy vessels represent military vessels operating in piracy-affected waters and capable of using

force to deter and disrupt pirate activities. AgentC focuses on modeling the part of Navy

vessel operation consisting in providing assistance to vessels subject to pirate attacks. It does

not model active search and area patrolling operations, although such extensions can easily be

incorporated in the model assuming data about such operations (which are typically classified)

are obtained.

5.2.3.1 Navy Vessel Population Model

Navy vessel population model instantiates #N navy vessel agents with specified deployment

locations. The deployment locations can be specified manually by a human expert or obtained

as a result of an optimization process (see below). All navy vessel parameters are listed in

Table 5.2.

5.2.3.2 Navy Vessel Behavior Model

The basic behavior of a navy vessel comprises staying in its deployment location waiting for

possible distress calls from nearby merchant vessels threatened by pirates. If a distress call is

received, the navy vessel agent responds by dispatching a helicopter (if available) and by moving

at its cruising speed to the attacked merchant vessel, trying to intercept the attack. Once the

response has been completed, the navy vessel returns to its original deployment position. More

2 The α coefficient is scalarization constant for bi-objective optimization function as in case of the grouping

problem in Section 4.2.
3 The shortest path between two points on a surface of a sphere.
4 NATO Shipping Centre website: http://www.shipping.nato.int
5 The shortest distance between any two points on the surface of a sphere.
6 The data-set is a subset of the Vesseltracker (http://www.vesseltracker.com) database.

http://www.shipping.nato.int
http://www.vesseltracker.com
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Table 5.2: Navy vessel parameters

Parameter Values Description

Helicopter Y/N Presence of helicopter on board the navy
vessel

Patrolling location GPS Coords. Area at which the navy vessel is located and
from where it can respond to nearby pirate
attack

Action radius [100, 200] nm Distance on which the navy vessel reacts to
distress calls

Response speed [20, 30] kn Speed at which the vessel sails to intercept
pirate attack

Helicopter Speed [140, 170] kn Speed of the on-board helicopter

Abort mission 

Disruption 

Request for help 

Patrolling Return to post Disarm pirate 

Move to MV Deploy Heli 

* 

Fig. 5.4: Navy vessel agent behavior model. The entry point is the Patrolling state. The navy
vessel reacts on a request for help by deploying a helicopter (if available) and cruises towards
the merchant vessel. If the navy vessel or the helicopter arrives before the merchant vessel is
hijacked, the pirate is disarmed and the vessel (and helicopter) returns to its assigned location.
The intervention terminates unsuccessfully if the pirate successfully completes the hijack of the
merchant vessel.

details about navy vessel involvement in pirate attacks are given in Section 5.2.5. The behavior

model of the navy vessel agent is depicted in Figure 5.4.

5.2.3.3 Navy Vessel Location Assignment Model

Similarly to the merchant traffic model, the navy operations model cannot solely replicate ex-

isting real-world deployment locations, but it needs to be able to take into account hypothetical

merchant traffic flows in diverse evaluated what-if scenarios. We have therefore developed a

navy vessel location assignment algorithm which takes the number of vessels and the density of

merchant traffic as input and produces navy vessel deployment locations. The choice of loca-

tions aims to maximize the proportion of merchant traffic that lies within the response radius

of deployed navy vessels. Technically, the problem can be reduced to a standard set coverage

problem which, which is NP hard, however, greedy algorithms are able to achieve the best

approximation by a polynomial algorithm (Lund and Yannakakis, 1994). We use an iterative
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Table 5.3: Pirate vessel parameters

Parameter Values Description

Home anchorage base id Base from which the pirate vessel embarks and to which
it returns

Cruising speed [8, 14] kn Normal speed when traveling long distance between the
base and a target location

Pursuit speed [25,30] kn Speed during the attack on a merchant vessel

Endurance [7, 21] days The number of days the pirate vessel can stay at sea

Visibility radius [5, 12] nm Maximum distance of a merchant vessel which the pirate
can spot

Attack time 30 min Duration of attack attempt

Cool-down time [1, 4] hr Time needed for recovery after an unsuccessful attack

Navy knowledge [0, 1] Probability of knowledge about navy vessel position

Hijack prob. ρu [0, 1] Probability of successful hijack of a merchant vessel
cruising at 10 nm unaware of the pirate attack

Hijack prob. ρa [0, 1] Probability of successful hijack of a merchant vessel
cruising at 10 nm aware of the pirate attack

greedy algorithm to determine navy vessel locations—in each iteration, a new vessel is placed

at a position that maximizes the amount of merchant traffic covered within the action radius of

all already allocated navy vessels, until all navy vessels are placed.

5.2.4 Pirate Activity Model

Pirate vessels range from small skiffs up to large motherships acting as a floating base from

which speedboats are launched to attack. We model piracy at the level of individual pirate

attack groups which are represented by a single pirate vessel agent having its home anchorage

and operating in and around main shipping lanes, where it attempts to attack, board and hijack

passing merchant vessels.

5.2.4.1 Pirate Population Model

The pirate population model is currently simple and is only used to generate #P pirate agents

and to assign them their home-anchorage parameter. The assignment is based on reported

estimates of the number of pirate attack groups operating from each known pirate anchorage.

All parameters of the pirate are listed in Table 5.3.
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Fig. 5.5: Pirate vessel agent behavior model. The entry point is the Select target area state. After
the pirate reaches the target area previously selected, it looks for a suitable merchant vessel to
approach and hijack. The hijack attempt can be unsuccessful, interrupted by a navy vessel—in
which case the pirate is disarmed and sails home—or successful, in which case he sails with the
merchant vessel to its home base.

5.2.4.2 Pirate Vessel Agent Behavior Model

The pirate vessel agent behavioral cycle consists of three stages:

1. Cruising—the pirate vessel moves directly to its selected target area and looks for a suitable

merchant vessel to attack. If the pirate vessel agent spots a navy vessel, it steers away tem-

porarily. When the pirate vessel reaches the target area, it moves at a low speed and changes

its course randomly from time to time.

2. Attack—If a suitable merchant vessel is spotted, the pursuit starts (described in detail in

Section 5.2.5).

3. Recuperation—After a successful attack or when running out of supplies (endurance param-

eter), the pirate agent navigates back to its home anchorage. After an unsuccessful attack,

the pirate recovers (cool-down time parameter) and looks for a merchant vessel again.

Activity diagram of pirate vessel agent behavior is depicted in Figure 5.5. Note that we do

not model the economic aspect of piracy, such as ransom negotiation and other processes taking

places after a hijacked vessel is brought to shore.

5.2.4.3 Target Attack Area Selection Mechanism

A key part of the pirate vessel decision-making is choosing its target area where it will look for

a merchant vessel to attack. Again, in order to have the pirate activity reflect the simulated

scenario, the target area cannot be predefined based on attack locations currently observed

in the real world but needs to be determined dynamically from more fundamental principles.

AgentC therefore implements a mechanism that determines attack locations dynamically from

the assumption that the pirates aim to maximize their utility and choose such locations which
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maximize their chance of a successful hijack (with some exploration). Pirate’s target area is

selected based on the following inputs: weather conditions, merchant traffic density (depicted in

Figure 5.7a) and (partial) knowledge about navy vessel positions.

In the first phase, a subset of regions with acceptable weather conditions7 is selected. In the

second phase, navy vessels positions—if known—are combined with merchant traffic density

map and an area is randomly selected with a probability proportional to its expected reward.

5.2.5 Pirate Attack Model

Pirate attack is a complex interaction between all three classes of vessels; we therefore provide

its standalone description that complements the description of the attack from the perspective

of individual vessel agent behaviors. Parameters directly influencing the course and the outcome

of the attack are depicted in Table 5.4 and are a subset of parameters of individual vessel classes,

except the M awareness binary parameter which is well-defined only during the attack phase. All

interactions taking place during a pirate attack are depicted in Figure 5.6. The attack consists

of three phases:

1. pre-attack/approach—this phase begins after a merchant vessel is spotted by a pirate vessel

agent; the pirate vessel agent starts a pursuit at its pursuit speed. The merchant vessel

agent checks for an approaching pirate vessel several times per hour (parameterized by the

alertness parameter capturing the probability of spotting an approaching pirate). If a pirate

vessel is spotted during its approach, the awareness parameter is set to true, meaning that the

merchant vessel is not taken by surprise by the attacking pirate and can deploy self-defensive

countermeasures. Furthermore, upon spotting the attack, the attacked merchant vessel agent

broadcasts a distress call and notifies nearby merchant vessel agents about the danger (their

awareness is then set to true). If there is an idle navy vessel within the navy vessel action

radius, the navy vessel responds by moving towards the attack. If the navy vessel carries

an on-board helicopter, it dispatches the helicopter to prevent the pirate from hijacking the

merchant vessel.

2. attack—the pirate vessel agent attempts (repeatedly, for a time period, specified by the

attack-time parameter) to board the merchant vessel and seize control. The probability of

success depends on the speed s of the merchant vessel, its alertness a and subsequently

on its awareness. The average probability of a merchant vessel being hijacked without any

navy vessels present in the model can be computed as ph = a · pa(s) + (1 − a) · pu(s),

where pa(s) and pu(s) are the probabilities of hijacking an aware and unaware merchant

vessel, respectively, traveling at speed s. The hijacking probabilities are linear functions (with

threshold) of merchant vessel speed: pa(s) = max{0, (2 − s/ν)ρa}, pu(s) = max{0, (2 −
s/ν)ρu}, where ρa and ρu are base probabilities specifying the probability of hijacking a

merchant vessel cruising at ν ≥ 10 kn (minimum cruising speed of a merchant vessels in our

model is 10 kn).

7 Based on the correlation of attack frequencies and weather conditions in 2011, we have estimated the acceptable
wave height for piracy operations to be up to 1.25 m.
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Fig. 5.6: Sequence diagram of the pirate–merchant–navy vessel interaction during a pirate attack.
The attack takes a predefined amount of time and is terminated either by the successful hijack
of the merchant vessel or by the arrival of a navy vessel or its helicopter.

3. post-attack—if the attack is successful, the hijacked vessel is taken to the pirate’s home

anchorage; if the attack is aborted by the pirate (after attacking unsuccessfully for a period

given by pirate’s attack time parameter), the merchant vessel continues its voyage according

to the original plan; the pirate vessel recovers from the attack for a specified period of time

(cool-down time parameter) and then it looks for another target to attack. If the attack

is interrupted by the navy, the pirate is disarmed and sails to its home anchorage without

further trying to attack any merchant vessels.
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Table 5.4: Parameters affecting the outcome of a pirate attack.

Parameter Values Description

M Cruising speed [10, 20] kn Cruising speed of the merchant vessel

M Alertness [0, 60] hr−1 How often the merchant vessel checks for pirate
presence in its vicinity

M Awareness Y/N Merchant vessel’s knowledge about an ap-
proaching pirate (element of surprise)

P Visibility radius [5, 12] nm Maximum distance at which a merchant vessel
can be spotted

P Pursuit speed [25,30] kn Cruising speed of the pirate

P Attack time 30 min Maximum time for which the pirate attacks a
merchant vessel

P Hijack prob. ρu, ρa [0, 1] Probability of hijack of (un)aware merchant ves-
sel

N Helicopter Y/N Presence of helicopter on board the navy vessel

N Action radius [100, 200] nm Navy vessel distress call response radius

N Helicopter speed [140, 170] kn Speed of navy vessel’s on-board helicopter

N Cruising speed [20, 30] nm Speed of a navy vessel

5.2.6 Piracy Countermeasures Model

Merchant and navy vessels can engage in various piracy countermeasures designed to increase

the security of passage through piracy-affected waters. Most of such measures require the coop-

eration between multiple vessels and can be viewed as multi-agent coordination mechanisms that

augment standard, single-agent vessel behaviors. Based on discussions with the maritime secu-

rity community, we support the following operational piracy countermeasures in the AgentC

model:

� Recommended transit corridors, which concentrate merchant traffic along a defined route con-

necting a sequence of waypoints. Such concentration of traffic facilitates protection from navy

vessels; however, it also makes targeting transiting vessels easier for pirates. The corridors

are modeled as extensions of the merchant voyage planner.

� Group transit schemes, which coordinate the timing of merchant vessel transit so that vessels

pass high-risk piracy areas in groups. This improves mutual awareness and facilitates navy

response; however, it makes the transit take longer as vessels have to follow a predefined

schedule and may have to reduce their cruising speeds to match the speed of their respective

transit group. The group transit schemes are modeled as an extension of the voyage planner;

they assign time marks to a subset of waypoints in a plan and the merchant vessels is then

required to be at those waypoints at given time.
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Table 5.5: Piracy countermeasures considered, with sets of parameters by which they are speci-
fied.

Countermeasure Parameters

Transit corridor Sequence of GPS waypoints

Navy vessel deployment Set of locations

Group transit scheme corridor, Speed levels, transit schedule (per speed
level)

On-board security team Alertness of merchant vessels

� Navy vessel deployments, which deploy navy vessels in strategic locations from where they

can provide assistance to nearby merchant vessels in case of a pirate attack. We consider only

stationary deployments (see Section 5.2.3).

� On-board security teams consists in deploying armed security personnel on-board of vessels

transiting high-risk areas capable of deterring attackers and denying them access to the vessel.

This countermeasure is currently modeled by the alertness and awareness parameters of the

merchant vessel.

Each countermeasure is parameterized by a set of parameters (see Table 5.5). Except for route

randomization, all above measures are currently actively used, although convoy schemes are

operated rather sporadically by national navies on an ad-hoc basis. The usage of transit corridors

and group transits is currently limited to the Gulf of Aden.

5.2.7 Simulation Model Outputs

By its very nature, the agent-based micro-simulation model allows recording and evaluating,

at different levels, the multitude of information about the behavior of the modeled maritime

transportation system.

At the lowest level, each simulation run produces a detailed log of all events generated by ves-

sel agents and their interactions among themselves and with the modeled maritime environment.

One year of simulated maritime traffic generates hundreds of thousands of events recording ves-

sel locations in time, state-transition events (e.g., destination-reached event, target-area-selected

event etc.) and events generated during vessel interactions (e.g., pirate-spotted event, pirate-

attack event, pirate-attack-disrupted event and many others). Events logs can be used for study-

ing micro-level behaviors involving one or more individual vessels. They can be also used for an

on-line visualization of individual simulation runs, which is crucial for the presentation and face

validation purposes.

Micro-level event logs are aggregated in time and/or space into meso-level spatio-temporal

output reports describing the occurrence of specific event or a set of events over time or in

geographical space. A particularly important type of the output report at this level are density

maps which capture the frequency of occurrence of a specific event in a grid-discretized space (as
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an example, see Figure 5.8a for a density map of pirate attacks). Meso-level reports are useful

for understanding how a certain phenomena is geographically distributed, how it is changing in

time or both.

Finally, at the highest-level, event logs and spatio-temporal reports are aggregated into simple

numerical statistics summarizing the activity in the piracy-affected waters. Both security-related

and operational output quantities are evaluated. The former includes pirate attack count, i.e,

the number of all attacks over a given time period (e.g., a year), and attack success ratio, i.e,

the number of successful attacks (i.e., hijacks) divided by the number of all attacks; the latter

includes average transit distance and average transit duration, which can be used to estimate

operational shipping costs. The high-level statistics are used to gain the insight into the global

behavior of the modeled system under different circumstances and are also crucial for model

calibration.

5.3 Model Calibration

The AgentC model contains a wide range of parameters that needs to be specified. Most of

these parameters were set based on the consultation of domain sources and experts. There are,

however, also parameters which significantly affect the behavior of the model and for which no

reliable sources exist—the values of these parameters were therefore determined through the

calibration against the real-word data.

In the following sections, we describe the calibration and validation process employed. Specif-

ically, we describe the calibration methodology selected, the sensitivity analysis, the calibration

of the merchant traffic sub-model, and the calibration and the validation of the complete model.

5.3.1 Calibration Methodology

The purpose of the calibration step is to set the values of key model parameters so that the

behavior of the model most closely reflects the behavior of the real system; this closeness of

the model is measured in terms of several fitness criteria. Due to limited supply of computing

resources, we performed greedy iterative calibration—in each iteration, we chose a subset of

parameters most influencing the fitness criteria, found the optimal value of these parameters

and fixed them in subsequent iterations. To further speed up the calibration, we used different

calibration fitness metric in each step. The ordering of steps and the choice of calibrated variables

and fitness metrics in each step was based on the results of the sensitivity analysis. Depending

on the standard deviation of the selected fitness criterion, we executed between 50 and 100

simulation runs (with a different random generator seed) for each model configuration (i.e., each

combination of model parameters – see Table 5.6).

In order to compare the spatial outputs of the model, we used spatial success rate (SR) curves

as described by Chung and Fabbri (2003). Spatial success rate curves give a concise account of

the performance of a spatial model. Specifically, the curve specifies what percentage of space a
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given spatial model needs in order to cover a given percentage of real-world occurrences of the

event of interest (e.g., pirate attacks). The smaller the area required to cover a given percentage

of the events, the tighter the fit and the better the model. The SR curve is constructed by

discretizing the modeled area into a finite-size cells and then sorting the cells according to the

relative frequency of the event occurring in the cell (e.g., relative frequency of pirate attacks).

The SR percentage value for x percent of covering cells is determined by taking the x percent of

the highest-frequency cells and counting the percentage of events occurring within these cells.

SR curves can be modified in order to be used for comparing spatial models against spatial

event density maps rather than sets of discrete events. In this case, coverage is counted as the

fraction of the overall mass8 of the density map covered by a given proportion of highest-ranking

cells. We further define the SR curve index as the percentage of the area under the SR curve

with respect to the overall rectangular plot area (i.e., the area below and above the curve).

The interpretation of SR curves is illustrated in the captions of Figures 5.7 and 5.8. To our

knowledge, this is the first use of SR curves for the calibration of simulation models.

5.3.2 Sensitivity Analysis

Before the actual calibration, we performed the sensitivity analysis in order to understand how

the variation of key model parameters affects model outputs: (1) attack distribution, (2) attack

frequency and (3) attack success ratio. Table 5.6 summarizes the sensitivity of each output to

the variation of the given model parameter, measured in terms of the coefficient of variation9 of

a given output variable when varying a given model parameter. For each of the model outputs,

we have selected the most sensitive parameters which were then varied while the rest of the

parameters remained fixed.

Table 5.6: Coefficients of variation for each criteria and model parameter. The bold-faced values
correspond to parameters which were varied when calibrating the model for each criterion

Parameter Attack Dist. Attack Freq. Hijack Ratio

#N 0.15 0.24 0.32

#P 0.046 0.74 0.041

P Visibility radius 0.052 0.26 0.11

M Alertness 0.053 0.075 0.20

P Hijack prob. ρa, ρu 0.057 0.078 0.16

P Navy knowledge 0.1 0.085 0.14

8 Where the mass of a density map is the sum of density values in all cells. Note that we assume the space is

discretized into finite-sized cells.
9 Coefficient of variation is defined as a ratio of standard deviation and mean: cv = σ

µ
.
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Algorithm 6 OD matrix Calibration

1: max, step
2: SRindex←∞
3: AMV ER← AMV ER density map
4: ODmatrix← U(ones)
5: best← 0
6: changed← true
7: while changed do
8: changed← false
9: for entry ∈ U(ODmatrix) do

10: while entry < max do
11: entry ← entry + step
12: SRindex← (AMV ER,ODmatrix)
13: if SRindex < best then
14: entry ← entry − step
15: break
16: else
17: best← SRindex
18: changed← true
19: end if
20: end while
21: end for
22: end while

5.3.3 Merchant Traffic Sub-Model Calibration

In the first calibration step, we calibrated the merchant traffic sub-model of the AgentC model,

i.e., the model consisting solely of merchant vessels. The calibration involved estimating all

entries in the O-D matrix (see Section 5.2.2.1) together with the risk aversion parameter α ∈ [0, 1]

(see Section 5.2.2.2). We used a canonical average risk map modeling the piracy risk as a function

of the distance from main pirate anchorages for risk-aware routing. We used the SR curve index

between the simulated merchant traffic density and reference 2011 traffic density map provided

by AMVER10 (see Figure 5.7b) as the calibration fitness metric in this step.

The calibration of the O-D matrix required setting the number of voyages between all pairs of

20 major world ports, i.e., altogether almost 400 entries so that the generated merchant traffic

matches well the reference AMVER traffic density map. Such a number of parameters coupled

with non-linearity of the fitness metrics (the SR index) made the optimum solution intractable;

we therefore employed a greedy approach with random restarts to determine locally optimum

values for each origin-destination pair.

The algorithm is depicted on Algorithm 6. The O-D matrix is initialized with ones in entries

over the diagonal. Then, for each entry in the upper triangular matrix, the algorithm tries to

increase its value as long as the SR index is increasing, until no entry can be increased. Then,

the procedure is repeated for the created OD matrix by subtracting step from every entry if

it increases the SR index. The randomization part is in the ordering of the entries, which are

accessed on the 9-th line of the algorithm. The O-D matrix calibration was repeated 100 times

10 Automated Mutual-Assistance Vessel Rescue System (AMVER), http://www.amver.com.

http://www.amver.com
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Fig. 5.7: Merchant traffic sub-model calibration. (a) Density map for merchant traffic sub-model.
(b) Reference AMVER 2011 traffic density map. (c) SR curves for the merchant traffic sub-
model (blue solid line) and the AMVER density map (red dashed line). The red SR curve of the
AMVER model captures the theoretical upper-bound achievable for a given spatial resolution of
the model: 20% of the AMVER top ranking cells cover 70% of the AMVER traffic; 20% of the
AgentC merchant traffic sub-model top ranking cells cover approximately 64% of the AMVER
traffic.

for each risk aversion coefficient α = {0, 0.1, . . . , 1}. The best fit was achieved for α∗ = 0.6; the

resulting traffic density map for α∗ and the associated SR curve are given in Figures 5.7a and

5.7c, respectively. Minor discrepancies can be observed around Kenyan and Tanzanian coast and

in the Mozambique channel; overall, the fit is very good.

5.3.4 Complete Model Calibration

Following the calibration of the merchant traffic sub-model, we calibrated the complete model

containing all three categories of vessels. The complete model was calibrated to fit the situation in

the Indian Ocean in 2011, where there were 181 attacks (source: IMB 2011 reports), from which

28 were hijacks (15.4% hijack success rate). Even though some of the attacks are unreported and

thus the IMB 2011 reports are incomplete, it is to our best knowledge the most comprehensive

report source. The calibration consisted of the following steps:

In the calibration process, we need to compare the output of the model to the reference real-

world data to assess the accuracy of the model. We thus constructed 2D regular rectangular

grid G defined over the observed area with a predefined cell size. A grid serves as an underlying

discretization structure to create density maps G(E): 2D histograms, storing a value in each cell

and thus capturing spatial distribution of various phenomena E (e.g., hijacks, traffic density)

which are described by a list of spatial events E = e1(lat1, lon1), ..., en(latn, lonn) (created from

data sets or from the simulation output). Each event ei(lati, loni) is mapped onto the grid G

by either increasing the value of a cell c which contains the point (lati, loni) (direct mapping)

or mapped also to a set of cells surrounding c (smoothed mapping, taking e.g., into account the

spatial uncertainty of the event).
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Fig. 5.8: Complete model calibration—attack spatial distribution fitting. (a) Density map for the
complete model. (b) IMB 2011 Reports. (c) SR curves for the complete model (blue solid line)
and IMB 2011 reports (red dashed line). The red SR curve for IMB 2011 reports was measured
by transforming the incidents into a density map on which the SR curve was measured. This
IMB density map thus serves as a theoretical upper-bound 20% of the densest cells in the IMB
density map covers approximately 72% and 20% of the AgentC model density map covers 61%.

A density map G(E) can be compared with another density map G(Ē) using a num-

ber of metrics for comparing two histograms or images, e.g., Kullback-Leibler divergence

KL(G(E), G(Ē)) (Kullback and Leibler, 1951) or Symmetric Image Ratio SIR(G(E), G(Ē)) (Yang

and Mueller, 2008). We use the second metric which can account for zero values of cells. The

SIR value is in the interval [0,1] where higher values correspond to more similar density maps.

Additionally, a similarity of a density map G(E) with an event set Ē (which is, e.g., too

sparse to create an accurate density map) can be quantified by integrating the area under a

prediction-rate curve (Chung and Fabbri, 2003).

5.3.4.1 Attack Spatial Distribution Fitting

First, the complete model was calibrated with regards to the spatial distribution of pirate attacks.

The number of navy vessels #N (0 − 500) and pirate’s P-navy-knowledge were the calibrated

variables; the SR curve index (see Section 5.3.1) between the attack density map produced by

the model and the IMB 2011 reports was used as the fitness metrics. The best fit was found for

#N = 50 and P-navy-knowledge = 0.4. The attack density map produced by the model and the

SR curve for the best values of calibrated parameters are given in Figure 5.8, along with the

reference IMB 2011 reports.

Two directly observable discrepancies between the AgentC model and the situation in 2011

can be observed: the attacks in the AgentC model are concentrated in the East Arabian sea, not

spreading to the North. Additionally, due to the sparse AgentC merchant traffic in the West

Indian Ocean, there are no attacks in that area, however, the AgentC pirates are attacking the

traffic under the southern tip of India, which did not happen in 2011.
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5.3.4.2 Pirate Attack Frequency Fitting

Second, the complete model was calibrated with regards to the overall number of attacks. The

number of pirates #P (0–5) and pirate’s P-visibility-radius (5–12 nm) were the calibrated pa-

rameters; the fitness metric was a difference between the overall number of attacks produced by

the model and the reference real-word value of 181 based on the IMB 2011 reports. The best

fit was obtained for #P = 2 and P-visibility-radius = 6 nm, producing on average 182 attacks

with the standard deviation of 16.1.

5.3.4.3 Pirate Attack Success Ratio Fitting

Finally, the complete model was calibrated with regards to the attack success ratio. Two pa-

rameters influencing the outcome of the merchant vessel-pirate interaction were calibrated: M-

alertness∈ [0, 1] and P-base-hijack-probability ρa, ρu ∈ [0, 1] (defined in Section 5.2.5); the fitness

metric was the difference to the reference success ratio based on IMB 2011 report statistics, was

0.15. Best fit was obtained for M-alertness= 0.5, ρa = 0.2 and ρu = 0.5, estimating the prob-

ability of a hijack with navy vessels (#N = 50—fixed in the previous calibration phase) to be

0.15 and without any navy vessels to be p = 0.35. The probability of a pirate being disrupted

by a navy vessel is then 43%, according to our model—this is an example of an insight which

cannot be directly inferred from the collected attack reports alone.

5.3.5 Validation

Face validation was performed repeatedly throughout the model development process. We con-

sulted experts and officials from the industry, government and military, including International

Maritime Organization, U.S. Naval Research Lab, U.S. Naval Postgraduate School and several

maritime security providers. The feedback received on structural walkthroughs and visualized

simulation runs confirmed structural and behavioral plausibility of the proposed model.

Unfortunately, due to lack of the data on the behavior of the maritime transportation system

under varying circumstances (e.g., the exact number of pirate attack groups and/or deployed

naval warships), we were unable to statistically validate the model. The model should not there-

fore be treated as reliable for quantitative prediction and should be used for gaining qualitative

insights only.

5.4 Summary

We have developed an agent-based model of the maritime traffic in piracy infested areas in

the form of a step-based simulation with three main agent classes taking part in the problem:

merchant vessels, pirates and naval patrols. We have integrated various data sources to capture

most relevant layers of the environment, such as geographical boundaries, weather conditions and
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transit schemes deployed in the area. We decompose the agent model into a population model—

parametrized by a set of parameters configuring complete population of one agent class—and

an individual behavior model—parametrized by a set of parameters configuring an individual

behavior of each agent, together with its decision-making process. This decomposition allows

us to implement various behaviors and strategies for each agent, being it an intelligent route

planner for merchant vessels or game-theoretic spot selection for pirates.

The scope of the simulation is much wider than a single purpose of the evaluation of interaction

of two (or more) agents. The simulation can be calibrated on given dataset (e.g., pirate activity

and transit scheme for year 2011) and a sophisticated what-if analysis can be conducted to

reveal potential impact of, e.g., different allocation naval patrols, the introduction of additional

transit corridors, the modification of existing grouping schemes etc. The what-if simulation

module (Vaněk et al., 2012a; Vaněk et al., 2013c) is out of scope of this thesis, however, the

calibration is briefly described to provide an overview of main methods, parameters, and metrics

used.

The computational model was developed throughout the span of four years, with periodical

technical reports for the first three years (Jakob et al., 2009, 2010b, 2011b), additionally, we have

published increments on the Autonomous Agents and Multi-agent Systems conference (Jakob

et al., 2010a, 2011a, 2012b) and simulation-focused workshops (Vaněk et al., 2012a) periodi-

cally. Additionally, first results were published as a journal article (Vaněk, 2010), and periodical

overviews of the framework have been reported to the community in imapcted periodicals (Jakob

et al., 2011c; Vaněk et al., 2013c).



Chapter 6

Simulation-based Validation

On the evaluation of the robustness of the proposed

models using the agent-based simulation of maritime

piracy.

A mind is a simulation that simulates itself.

–Erol Ozan

We have stated in Chapter 5 that a necessary step between the mathematical model solution

and the real-world deployment is a validation in a richer environment, which is closer to the

real world, however, at the same time, which allows us to implement the solutions proposed

by the mathematical models. In our specific case, the role of this link will be played by the

agent-based simulation, enabling the implementation of the game-theoretic strategies into a

rich simulated reality of maritime traffic and the evaluation of robustness and properties of

the strategies in a more realistic environment, thus allowing us to estimate suitability for the

real-world deployment.

6.1 Comparison of Models’ Fidelity

The level of abstraction and parameterization of the model which is used to provide a solu-

tion to a defined problem strongly correlates with model’s accuracy and robustness. Table 6.1

summarizes the main differences between the real-world problem of maritime piracy—i.e., the

phenomenon of merchant vessel hijacks by pirate boats—and its representation using the game-

theoretic model or simulation framework. The phenomena are divided into following categories,

which are inspired by the agent-based approach to world representation: (1) environment model

parameters, (2) agents’ physical model, (3) agents’ mental model, (4) agents’ interaction model.

The space-time continuum of the real-world is represented in the game-theoretic model by a

graph with nodes and edges and units steps between the nodes, the simulation formalizes the

space as a 2D surface of the sphere and (as it is step-based simulation) the time is discretized

into predefined quanta.

The visibility of another player depends in reality on many factors, mainly on the properties

of the environment, such as the sea state, the aerial visibility/fogginess and possibly on the

detection equipment. And the visibility decreases non-linearly with the distance of both agents.

In the game-theoretic framework, the agents have to be at the same edge or node to detect each

other; the environmental conditions can be represented by the interception probability param-

eter. In case of the simulation, the visibility is defined by a radius, where inside of the radius,

the visibility is set to 1 and to 0 outside of the radius. The probability of the interception is in

95
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Table 6.1: Parameters of the game-theoretic and simulation model compared to the real-world.

Parameter Real-World Game-theoretic
Model

Simulation

Space 3D space graph globe surface

Time continuous discrete unit-length
steps

discrete unit-time
steps

Visibility function of distance of
vessels/state of envi-
ronment

edge/node radius

Interception prob. result of complex
micro-interaction

probability-based probability-based

Position of base shore/floating node in graph shore/floating

Player’s Model 3D object point in graph 3D box

Player’s Mobility speed+acceleration unit-step speed speed

Player’s Reasoning behavioral rational rational/adaptive

Player’s Knowledge experience-based perfect/none perfect/partial

Action Execution stochastic execution deterministic exec. deterministic exec.

reality a result of complex micro-interaction between both players, given physical constraints of

the vessels (berth size, maneuverability etc.) and deterrence/attack abilities of people involved.

In the game-theoretic model as well as in the simulation framework, we represent this micro-

interaction by an interception probability, which—in case of the simulation—is computed using

the sea-state, merchant ship speed and awareness of the merchant ship parameters. The inter-

ception probability is closely related to the mobility model of agents, where in reality, the vessels

sail at differing speeds and we have to take into account acceleration models as well as the ma-

neuverability of the (especially) larger vessels to properly predict interception probability. In the

game-theoretic model, the ships are represented as points, the maneuverability is unrestricted

and we consider an equal speed for both agents, transiting one edge per time-step. In case of

the simulation framework, the ships are represented by 3D boxes, however, the maneuverability

is unrestricted as well; we can, however, consider differing speeds for both agents.

The positioning of the pirate’s base is on the shore, possibly far from the main shipping lanes

or—in case of pirate’s mothership utilization—in the open ocean. In case of the game-theoretic

model, the base is part of the graph, i.e., the base is positioned in one of the nodes. In the

simulation framework, we can specify the position of a base anywhere (i.e., on the shore or in

the ocean, representing a mothership).

An important (if not crucial) distinction of the models lies in the representation of the

decision-making process of the agents. In the real-world, we can assume that the merchant

ships are rational and use significant computation resources as well as mental effort to design

a route which would decrease possible risk of attack (however, given resource constraints, costs

of shipping and insurance premiums). On the other hand, the pirates have, based on first-hand
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anecdotal evidence (Hutchins, 2013), their reasoning process more or less simplified; additionally,

cultural and religious factors take a substantial part in the decision-making process. They posses

neither complex computational infrastructure nor the decision-making knowledge to compute an

optimal strategy. Additionally, both players are subject to uncertainty about the other player’s

payoffs, strategy space and reasoning process.

The game-theoretic framework simplifies greatly many of the real-world aspects described

above, mostly the space-time representation and the reasoning process of the attacking player.

The game-theoretic framework, by its nature, assumes utility-optimizing agents with more or

less rational behavior, unlimited computation resources (and time), the decision being made

based on the player’s utility captured by the game model itself and a perfect knowledge about

the game and about the other player reasoning process as well (even though there are some

models considering an uncertainty in knowledge or the game being played (Kiekintveld et al.,

2011, 2013)).

The simulation framework stands in-between the mathematical abstraction provided by the

game-theoretic model and does not aim to take role of a model able to provide solutions, its

primary aim is to verify solutions designed by simpler, more abstract models. The reasoning

process of the simulated pirate (when verifying the solution computed for the merchant ship)

has to reflect the reasoning process of the real-world pirate to some degree (i.e., the pirates have

some mechanism for knowledge representation); however, we can assume worst-case scenarios,

such as perfect knowledge of past routes of merchant vessels or faster speed of the pirate for any

sea state.

6.2 Experiment Design

In the first phase, we design a test-case that tries to imitate the abstract game-theoretic model

as much as possible. Second, we perturb some parameters—such as the relative speed of vessels

or visibility range—and violate some of the assumptions made—such as the number of vessels

participating in the transit and knowledge representation of the pirate.

We fix some of the parameters of the simulation to remove biases being caused by them:

(1) we set the probability of hijack to zero, i.e., every pirate attempt is unsuccessful, which

mitigates decreasing number of merchant vessels throughout the simulation execution and we

set the interception probability to 1 in the game-theoretic to simplify results interpretation, (2)

we fix pirate’s reaction after an attack: the pirate sails home without attacking anyone to account

for game end and strategy reset; merchant vessels continue their journey normally (and cannot

be caught again before arriving to the destination). We set pirate’s speed to 15 nm and we set

the merchant vessel’s speed to 15 nm in scenarios with equal speeds and sample the merchant

vessel’s speed from a uniform interval U(10, 20) when measuring the impact of relative speed.

We do not directly deal with the synchronization of the agents, i.e., the simulation is not

able to provide sufficiently strong sychronization device—in the game-theoretic model, all edges

have an equal length and the agents traverse one edge per step, which is the elementary unit

of time. In the simulation framework, a simulation step corresponds to a parameterized time

quantum, set to 1 minute of simulated time. Even when the agents start at the same time (which
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Fig. 6.1: Placement of the game-theoretic model in the simulation.

is not desirable) with the same speed, their movement de-synchronizes after a few steps in sense

of graph node visits—the edges do not have equal lengths as we discretize the space using a

rectangular grid1.

For the game-theoretic settings, we use five different game-theoretic graphs with width

w = {4, 5, 6, 7, 8} with respective walk lengths maxLength = 4 · w + 1 which are displayed

on Figures B.1 – B.5 in the Appendix B respectively.

We overlay the graph used in the game-theoretic model over the earth surface. The area is

defined as a rectangular polygon with 180 nautical miles width, placed over the Indian Ocean

spanning from the Gulf of Aden to the Maledives, covering the main shipping lane from south-

east Asia to Europe (see Figure 6.1). The vessels follow trajectories sampled from their mixed

strategies—they follow lanes through the graph (i.e., the polygon), transiting the Indian Ocean.

Origin and Destination nodes are interchangeable, we allow the vessels to sail from both ends

of the graph.

In the game-theoretic setting, the game ends after the transport transits the area or is at-

tacked/captured. In the simulation framework, we simulate a certain time frame, in which both

the merchant vessel as well as the pirate operate repeatedly; i.e., after the area transit or an

attack, both the vessels continue in their strategy execution. We simulate three months of the

simulation time and we count the number of transits of all vessels, the number of attacks and

the number of pirate’s journeys. Parameters varied throughout the evaluation are described in

each subsection in the experiment setup.

Expected Biases of the Simulation

We assess some of the expected biases of the simulation prior the simulation execution compared

to the real world behavior. These biases have to be taken into account when interpreting results:

1 Possible solution using hexagonal grids would prohibit the agents to follow straight line, making the traversal
of graph—an important ability of the pirate—longer than necessary.
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1. simulation-finiteness bias—the simulation runs for a limited amount of time. The simula-

tion can theoretically terminate after the merchant vessel is attacked but does not finish its

journey—i.e., the ratio of attacks vs. journeys is not correct.

2. simulation-start bias—at the start of the simulation, the vessels start at their starting points.

If the pirate is much slower, compared to the merchant vessel, the hijack probability drops,

as the pirate can spend the majority of the simulation around the base.

3. contingency bias—the pirate sails directly to the base after the attack, lowering the frequency

of attacks (there is no contingency planning in the game-theoretic model included). This bias

rises due to the simulation time-frame, which is different from the game-theoretic time frame.

4. time-discretization bias—the discretization of time gives rise to situations where the merchant

vessel’s trajectory crosses the circle given by the visibility radius of the pirate within one

simulation time step and thus is not noticed by the pirate which leads to (very slight) decrease

of attack frequency.

6.3 Statistical Parameters of the Simulation

The simulation framework is stochastic, driven by a set of probability distributions used for

the sampling of agent’s behavior parameters (such as the waiting time in a dock), for decision-

making (e.g., which strategy to select) and for resolving interactions between the agents (e.g.,

visibility range). This section aims to evaluate the level of stochasticity when modeling the game-

theoretic interaction in the simulation, evaluate resulting distributions of key observed variables

and compute estimation on the number of samples needed to provide conclusive results.

Experiment Setup

We use a simple scenario which varies two parameters—the visibility radius and the speed of the

merchant vessel—to analyze the level of stochasticity, given following random variables: (1)the

dock waiting time of the merchant vessel, sampled uniformly from U(0, 100) hours and (2) the

strategy, sampled from the probability distribution over simple paths in the graph (computed

by the game-theoretic model). It represents the smallest amount of stochasticity required for

reasonable game-theoretic model evaluation.

We observe two variables: the number of transits of the merchant vessel and the number of

attack attempts on the merchant vessel. From these two variables, we compute the final variable:

the attack frequency, which we compare with the expected value of the game.

We set the visibility radius to r = {1/0.8, 1, 1/1.2, 1/1.5, 1/2} of the edge length and the

speed of merchant vessel to sMV = {10, 12, 15, 18, 20}. We thus get 25 parameterizations of the

scenario and we run 500 instances of each.

Results

Figure 6.2 shows the distribution of samples in attempts/transits space. The data can be fitted

neither with Poisson nor with Binomial distributions.



100 6 Simulation-based Validation

0 5 10 15 20

15
20

25
30

35
40

Attempts

Tr
an

si
ts

Fig. 6.2: Distribution of samples in attempts/transits space w.r.t. two basic parameters – speed
of the merchant vessel and the visibility range. The samples are jittered to accent their density.

MV speed 10 MV speed 15 MV speed 20

0.0
0.1
0.2

0.0
0.1
0.2

0.0
0.1
0.2

0.0
0.1
0.2

0.0
0.1
0.2

1/0.8 edge
1 edge

1/1.2 edge1/1.5 edge
1/2 edge

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Attempts

F
re

qu
en

cy

(a) Distribution of attack attempts.

MV speed 10 MV speed 15 MV speed 20

0.00
0.05
0.10
0.15
0.20

0.00
0.05
0.10
0.15
0.20

0.00
0.05
0.10
0.15
0.20

0.00
0.05
0.10
0.15
0.20

0.00
0.05
0.10
0.15
0.20

1/0.8 edge
1 edge

1/1.2 edge1/1.5 edge
1/2 edge

10 20 30 4010 20 30 4010 20 30 40
Transits

F
re

qu
en

cy

(b) Distribution of transits.

Visibility 1 1/0.8 1/1.2 1/1.5 1/2

Fig. 6.3: Distribution of key measured values w.r.t. the perturbation of visibility and merchant
vessel speed.

A closer look, decomposing the output variables by the merchant vessel speed and visibility,

reveals elementary distributions when fixing all parameters to a single value (See Figure 6.3a

for the distribution of the number of attack attempts while varying visibility and the merchant

vessel speed and Figure 6.3b for the distribution of the number of transits while varying the same

parameters). The distribution of attack attempts should be influenced mostly by the underlying

strategy sampling variable (an be closer to Poisson distribution), the distribution of transit is

influenced mostly by a uniform sampling of waiting time of the merchant vessel and should be

thus close to a uniform distribution as well. Differences from the expected distributions can be

explained by the imprecise pseudo-random generator of Java (Knuth, 2006), the impact of the

strategy sampling on the number of transits (where some sampled paths are shorter than others)

or by the simulation biases.

We further explore the distribution of the attack frequency on Figure 6.4, which cannot be

fitted with any standard distribution as well. The distribution results from the combination of
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Fig. 6.4: Distribution of attack frequency (i.e., ratio between number of attacks and number of
transits) w.r.t. perturbation of visibility and merchant vessel speed.

number of attack attempts and the number of transits and thus combines distributions of those

two variables.

The standard deviation varies from σmin = 0.065 to σmax = 0.10 and mean varies from

µmin = 0.16 to µmax = 0.45. To achieve a relative standard error of the mean RSEM ≤ 5% and

assuming the worst case (i.e., standard deviation of 0.10 and mean of 0.16), we have to conduct

Nmax = ( σmax

SEM )2 = 175 experiments per parameter set. When assuming the best case, we have to

conduct approximately Nmin = 10 experiments. Due to constraints on computational resources,

we conduct N = 100 experiments per parameter set in every scenario, unless stated otherwise,

relative standard error of the mean RSEMavg = 3% in an average case (in a scenario with the

variation of the merchant vessel speed and visibility and two random variables involved).

6.4 Validation of Game-theoretic Transit and Grouping Mechanisms

This section summarizes a set of scenarios focused on the evaluation of the robustness of the

proposed mathematical model. Each scenario modifies one or more parameter of the problem

and quantifies the results. The results should not be used for an estimation of the exact value

(i.e., the probability of an attack), however, for a demonstration of trends and sensitivity of the

observed variable when perturbing parameters of the problem
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6.4.1 Space/Time/Visibility Abstraction Validation

In this scenario, we aim to calibrate the visibility parameter to account for a different space-time

abstractions in game-theoretic and simulation setting.

Experiment Setup

The representation of space and time is fixed in the simulation—the space is continuous and

the time is step-based. The design of the simulation core prohibits a direct modification of these

representations.

The vessels are not synchronized—the merchant vessel waits in the origin node to start its

journey at a random time. Additionally, the edges do not have a unit length (the diagonal edges

are longer) which, even when the vessels would start at the same time, would introduce an

additional dis-synchronization during the transit (note that even for other space tilings such

that a triangular tiling where all the edges have the same length, the curvature of the Earth

would dis-synchronize the movement of the vessels ultimately).

The visibility parameter is set to the same value for both vessels, however, plays an important

role for the pirate vessel, which detects and attacks merchant ships in this visibility radius. The

visibility can be interpreted in the following ways:

1. Real-world visibility—simulates the curvature of the earth and the visibility by naked eye—

approximately 7 nautical miles for 2-meter high vessel.

2. Full-edge visibility—as soon as both vessels start sailing against each other on the same edge,

they see each other. Here, another issue arises: the vessels oversee each other on two distinct

edges, when close together. This, however, could account for spatial spread of the node.

3. Part-of-edge visibility—this setting represents a compromise between a local and full-edge

visibility, i.e., we assume that the vessels can see each other only on the same edge at a

certain distance.

For each graph, we have varied the visibility v = {1/2, 2/3, 4/5, 1, 4/3} of the length of the

vertical edge.

Results

Figure 6.5 shows the result for each graph, having the width from w = 4 to w = 8. The

dotted lines represent a theoretic expected attack frequency. We can deduct, that the best

correspondence with the probability of encounter predicted by the game-theoretic model is

achieved for the visibility equal to the length of the edge in the graph.

We thus set the visibility parameter to the length of a vertical edge in the evaluated graph

for subsequent scenarios.
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Fig. 6.5: Variation of visibility parameter in each graph (w = {4, 5, 6, 7, 8} from upper left to
lower right). The dotted lines denote expected frequency of attacks.

6.4.2 Speed Variation

In this experiment, we vary the relative speed of both vessels and we would like to demonstrate

the sensitivity of the solution to the assumption of an equal speed of both agents.

A higher relative speed of the pirate vessel should lead to increased probability of catching

the merchant vessel and lower relative speed of the pirate vessel should lead to the probability of

static patrolling, with the simulation start bias (where the pirate starts in the base), which intro-

duces another drop in the frequency of attacks and with an after-attack bias, which introduces

another drop.

Experiment Setup

We fix the pirate to sail at speed spirate = 15 knots and we vary the speed of the merchant vessel

smerchant = {10, 12, 15, 18, 20}, together with the visibility range of the pirate. We evaluate the

setup on the graph with width w = 4 which has a slightly higher frequency of attacks for the

visibility of the vertical edge length.

Results

Figure 6.6 confirms an increased frequency of attacks, when the relative speed of the merchant

vessels is lower than the speed of the pirate. And, on the contrary, the frequency of attacks

is lower when the merchant vessels sail faster than the pirates. For extreme sailing speeds of
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Fig. 6.6: Dependence of frequency of attacks w.r.t. change in visibility and merchant vessel speed
on a graph of width w = 4.

merchant vessels (i.e., spirate << smerchant > 50 knots), the simulation biases (see Section 6.2)

would significantly influence the solution and the evaluation would not provide correct results

and trends.

6.4.3 Multiple Merchant Ships and Pirates

The game-theoretic model assumes a single evading and a single intercepting agent. We can

violate this assumption in both directions and evaluate the quality of the solution for multiple

evading agents, multiple intercepting agents, or both.

Experiment Setup

We vary the number of merchant vessels present in the simulation MV = {1, 2, 5, 10, 20} and the

number of pirates P = {1, 2, 4}, all operating independently from each other (i.e., without the

grouping scheme or any other communication device). We evaluate this setting on four graphs

(w = {4, 5, 6, 7}) and observe the number of attacks.

Results

The results confirm expected trends: when increasing the number of pirates, the frequency of

attacks rises. When increasing the number of merchant vessels, the observed variable is subject

to two trends: (1) it is decreasing as the number of merchant vessels rises—the attacks are

so frequent that after the attack, the pirate returns to the base without the ability to attack

anymore, which allows other vessels to pass without any risk; (2) a slightly increasing attack
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Fig. 6.7: Multiple Merchants and Pirates

frequency, as the number of merchant vessels goes from 1 to 2, visible especially when the number

of pirates is high: for some merchant vessel strategies the merchant vessel passes through the

base. As the pirates are synchronized (their walks have the same length and they start at the

same time at the beginning of the simulation), they all attack the vessel in the base and the

number of attacks rises sharply. This effect is, however, overweighted by the first (decreasing)

trend.

6.4.4 Mobility Abstraction Validation

We further explore the mobility capabilities of the fixed-base Defender when modifying the

length of his walk—in game-theoretic model, the length of the walk had a significant impact

on the expect value of the intercepting agent. In this setting, we have to take into account the

problem of the simulation time frame vs. the game-theoretic time frame: the execution ends after

the interception or area transit in case of the game-theoretic model—the outcome is independent

on the distance between the attack location and pirate’s base. However, the simulation is not

stopped after the attack and/or area transit: the pirate has to return to the base and the overall

frequency of attacks thus depends on the distance between the attack location and pirate’s base;

i.e., for long walks, we can assume that this bias would lower the expected frequency of attacks.

Experiment Setup

To empirically evaluate the influence of the length of the walk on the probability of encounter,

we compute optimal Defender’s and Evader’s strategies on a graph of width w = 4 for Defender’s

walk length l = {13, 15, 17, 19} and create a simulation scenario with a merchant vessel and a
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Fig. 6.8: Mobility comparison for single merchant vessels and single pirate for different lengths
of pirate’s walk. Horizontal lines denote predicted values.

pirate following the computed strategies where we set the visibility of both agents to the width

of the edge.

Results

Figure 6.8 captures the results measured in the simulation. The results do not exactly confirm

predicted probabilities, however, capture the predicted trend. The increased value for the simu-

lated scenario with pirate’s length of 13 is caused by the fact, that the merchant vessel follows a

route which passes through the nodes farthest from the base in the graph. Due to the visibility

radius, the pirate spends over 1/5th of the time in an area, where he can spot the merchant

vessel. The same effect can be observed for the length l = 15, where the merchant vessel passes

with higher probability through the nodes farthest from the base. The effect is almost mitigated

for longer walks (i.e., l = 17 and l = 19), where the values are closer to those predicted by the

model.

When increasing the number of merchant and pirates vessels, we can observe the same trend,

described in the previous paragraph (Figure 6.9). Additionally, the saturation trend (i.e., when

many merchant vessels are present, the pirate attacks frequently, however, he has to return to

the base after the attack without a possibility to attack again, thus wasting some time) when

multiple merchant vessels transit the area, is observable.

In this setting, the simulation model contradicts the behavior predicted by the game-theoretic

model, which is due to the imprecise relation between different visibility assumptions in both

models and due to the contingency bias present in the simulation.
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Fig. 6.9: Influence of the length of pirate’s walk on the frequency of attacks while varying number
of merchant vessels and number of pirates.

6.4.5 Grouping Influence

In this experiment sets, we explore the impact of grouping on the probability of an attack. The

grouping should lower the number of attacks due to the following reason: the nature of the

pirate’s attack prohibits the pirate to attack multiple targets (i.e., merchant vessels) simultane-

ously. When a pirate attacks a group of merchant vessels, he picks one at random2 and attacks

it. After the attack, the pirate interrupts the strategy execution and returns to the base3. This

behavior enhances the strength of a group, because if the pirate attacks a group, he will attack

only a single vessel and other merchant vessels in the group stay unharmed during the transit.

Experiment Setup

We evaluate the grouping mechanism on graphs of width w = {4, 5, 6, 7, 8}. We sample merchant

vessel speeds sampled from uniform distribution U(10, 20) knots and we turn the grouping

mechanism on or off (denoted as TRUE/FALSE). The parameters of the grouping mechanism

are as follows: we do not assume any aggregation point and any approach zone, the maximum

speed difference in groups is 2 knots, the minimum group size is set to 2, the risk coefficient is

set to the maximum value to prefer grouping if possible (see Section 4.2.3.5). The number of

merchant vessels is varied from 10 to 50 (where the upper bound is given by the limitation of

the grouping algorithm).

2 the pirate prefers to attack slower vessels when multiple in sight, however, all merchant vessels sail at the same

speed, the pirate is thus indifferent.
3 in real world, the pirate takes some time to recuperate and moves to a different area as the attack is reported

to authorities.
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Fig. 6.10: Influence of grouping mechanism on the frequency of attack, measured on graphs with
differing width and for a different number of merchant vessels.

Results

Figure 6.10 quantifies expected results. Grouping significantly reduces the frequency of attacks;

additionally, the positive effect of grouping is stronger when more vessels are available: the

frequency of attacks drops more than three times for 50 vessels employing the grouping compared

to the ungrouped transit.

When comparing the results for 10 merchant vessels, the frequency of attacks is approximately

equal for the graph of width w = 7 without grouping and for the graph of width w = 4 with

grouping. This observation brings insight into the trade-off between the aggregation of vessels

into groups and the spatial distribution of vessels in a region during the transit.

6.4.6 Aggregate Knowledge Model

We modify the decision-making process of the pirate to be able to utilize the information about

the merchant vessel movement from the merchant traffic density map. The pirate is driven by

following algorithm:

1. Destination Selection – the pirate selects a cell from the density map using epsilon-greedy

strategy with ε = 0.1.

2. Destination Transport – the pirate sails directly to the center of the selected destination cell.

It is in search mode, i.e., when a merchant vessel is spotted, the pirate attacks the vessel.

3. Cell Patrolling – the pirate stays in the destination cell for a predefined amount of time,

moving randomly within the cell’s bounds. If no ship is spotted, the pirate selects another

cell to move to. In case the same cell is selected, the pirate continues patrolling in this cell.
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Fig. 6.11: Traffic density heatmaps for different graphs.

4. Timeout – if the total amount of time allowed for the merchant vessel search is spent, the

pirate returns home (again, in search mode, potentially attacking merchant vessels along the

way) and selects another destination.

6.4.6.1 Knowledge Representation

Pirates’ knowledge about the merchant vessel movement can be represented on two levels: (1) on

a finer level of the individual vessel movement, as is the case of the game-theoretic interaction or

(2) on the aggregate level of traffic density in the given location. The second representation can

be expressed as a density map mapped over the observed area. In general, a density map is a

two dimensional grid with square cells of a predefined size. Each cell contains a numerical value

capturing frequency of an observed event—in our case, a relative frequency of transits through

the cell.

To construct the merchant traffic density map, we define a polygon over the observed area,

discretize the polygon into a grid with defined cell size cellSize = 50nm, we run the simulation

with thousands of vessels transiting the area according to a given transit scheme, such as the

game-theoretic strategy for a particular graph. We record the number of transits in each cell.
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After the simulation, we normalize the values in the cells to be from interval [0, 1] by dividing

value in each cell by the maximum value in the grid.

Figure 6.11 captures recorded merchant traffic density heatmaps for different game-theoretic

graphs.

Evaluation

Experiment Setup

We have evaluated this scenario on rectangular graphs from width 4 to width 8 with default

strategies. Merchant vessel speeds were uniformly sampled from an interval 10-20 knots. We

have evaluated the aggregate knowledge impact against the game-theoretic setting assuming

perfect knowledge about the discretization etc. We did not use any grouping of the merchant

vessels and their number was varied from 1 to 20. We have measured pirate’s dockings d and

the number of attacks a of the pirate. We then computed pirate’s probability of attack per a

single trip as p = a/d.

Results

Figure 6.12 displays the results from the comparison of the game-theoretic and the adaptive

pirate. The aggregate knowledge representation is denoted as TRUE, the game-theoretic as

FALSE. The game-theoretic pirate clearly surpasses the adaptive pirate, having over a 2.5 times

higher chance of attacking a merchant vessel (in average over all parameters). As stated above,

we have used ε-greedy strategy for decision making, bringing potentially 10% sub-optimality

into the results for the aggregate knowledge pirate.

6.5 Summary

We have described the process of simulation-based validation of solutions computed using mod-

els and algorithms described in Chapters 3 and 4. We consider the simulation to be a necessary

validation tool serving as an inter-step between an abstract mathematical model and the real-

world. As the languages and the level of expression of mathematics, the agent-based simulation

and the real-world differ significantly, we provide a brief comparison of each world and de-

sign sets of experiments moving from the replication of the game-theoretic model as exactly

as possible through a slight parameter perturbation and assumption violation to a different

knowledge/strategy representation of the intercepting agent, which shows the robustness of the

game-theoretic tools developed.

The validation of the grouping mechanism shows an expected superiority of agent aggregation

compared to plain individual decision-making without considering other, possibly coordinating

agents. Even though a validation of the grouping mechanism against optimal game-theoretic

joint plans is not possible, the approach shows that for multiple agents present, it is necessary

to take into account a possible collaboration of agents.
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Fig. 6.12: Comparison of attack probability from pirate’s perspective on a graph of width w = 6
while varying number of merchant vessels and number of pirates, with grouping disabled and
using different representation of knowledge. Precisely, we display probability of an attack per
pirate’s trip given that the time of a trip is equal for the adaptive and game-theoretic pirate.

The results of the simulation-based evaluation was presented as part of the simulation frame-

work Jakob et al. (2011c, 2010a) as well as the game-theoretic model Vaněk et al. (2010).





Chapter 7

Conclusions

Concluding remarks, a summary of the work done and

goals achieved

Finally, there are no solutions for the most urgent

problems but only restatements without promising

perspectives.

W. Provost

The goal of the thesis was to contribute to a set of methods for modeling the problem of

security of a transportation system under a persistent threat of an attack, to extend existing

algorithms for the design of policies for secure movement of transportation agents, and to develop

a simulation-based validation framework and use it for the assessment of quality of computed

solutions.

We have proposed a formal game-theoretic model of a randomized transit through guarded

areas. This model can be either used for the design of routes minimizing the probability of

encounter or for the design of strategies suitable for the defending agent aiming to maximize the

probability of encounter. We introduce a concept of oracle hierarchies and the decomposition of

the oracle-based algorithms into an expansion and termination check phase. This step opens up

a lot of promising research directions quantified below.

The evaluation of the model shows that resulting strategies are not trivial, however, a rule

of thumb can be extracted for both the Evader and the Defender: (1) The Evader should fully

randomize over possible paths almost uniformly in case of homogeneous environment and with

not significantly constrained Defender, slightly preferring routes farther from the base; (2) the

Defender walks have to intercept every possible Evader’s route at least in one node. The posi-

tioning of the base in a bottleneck of the area has a significant advantage, especially when the

walk length is restricted. For a very long walk (with respect to the width of the area bottleneck),

the mobility of the base is not important, for a short walk, the mobility of the base is vital.The

mobility of the Defender has a positive impact on its expected game value, as well as the ability

to wait on place.

To cope with a possibly large number of transiting players, we assume single-attack saturation

property of interceptor’s behavior and propose a grouping mechanism aggregating transiting

agents into groups, taking into account varying speeds and an individual risk-aversion weight

for each agent. The structure of optimal groups of the grouping problem is non-trivial, most

frequently grouping agents with speeds in the middle of the interval and agents who are further

from the entry point of the area (especially in case of an aggregation point constraint). The

algorithm scales to tens of agents and the number of agents has the biggest impact on the runtime

of the algorithm—the dependency is exponential, which is expected, given the NP-hardness of

the problem. We additionally demonstrate the superiority of our grouping mechanism to the

113
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currently deployed fixed grouping scheme for a secure vessel transit through the Gulf of Aden

with respect to the delay caused and the number of vessels grouped.

Finally, we design a simulation of one of the problem domains—an agent-based simulation of

maritime traffic in the high seas infested with maritime pirates. The simulation is able to simulate

a year of movement of thousands of vessels and tens of pirates in tens of minutes. We decompose

the agent model into a population model—parameterized by a set of parameters configuring a

complete population of one agent class—and an individual behavior model—parameterized by

a set of parameters configuring an individual behavior of each agent, together with its decision-

making process. This decomposition allows as to implement various behaviors and strategies for

each agent, being it an intelligent route planner for merchant vessels or a game-theoretic spot

selection for pirates. The scope of the simulation is much wider than a single purpose of the

evaluation of interaction of two (or more) agents: the simulation was successfully deployed in the

Naval Research Laboratory in Monterey where it is used for the prediction of pirate activity. We

use the simulation for the validation of the designed solution of transit security: the robustness

of the game-theoretic strategies is high with respect to the assumption violation as well as the

scenario parameter modification; this shows a high potential for the utilization of game-theoretic

models for real-world security.

Contributions presented in this thesis open multiple research questions: (1) the decomposition

of the oracle-based algorithms into sub-game expansion check and termination check allows to

integrate methods for the support sets search (Porter et al., 2004); additionally, if we relax the

optimality requirement, we can focus on the design of very fast oracles proving suboptimal re-

sponses very quickly. Also, parallelization of oracle-based algorithms should be straightforward

and would lead to considerable speedups—the question of load-balancing and exchange of par-

tial solutions and strategies is, however, non-trivial and unanswered. (2) Grouping mechanisms

present a wide range of problems which can be solved within the optimization framework and al-

low us to use all available approaches, including a wide range of metaheuristics; the exploration

of this branch would allow us to define more complex criterion functions as well as imposed

constraint sets. (3) Simulation models allowing non-trivial evaluation of designed solutions are

required for many domains, their design is often, however, ad hoc, leading to proprietary design

and validation methodologies. The final goal of the thesis is to inspire researchers to contribute

to the field of simulation-based validation methodology.
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7.1 Thesis Achievements

This section summarizes the contribution of the thesis to the state-of-the-art of transportation

security. The achievements are the following:

1. Formal model of transit security with two mobile players termed transit game. The model

is based on a two-player zero-sum game in a normal form and considers a mobile defender

with a fixed or mobile base and an unconstrained defender, modeling various scenarios with

different movement constraints of the defender. The utility model is probabilistic and considers

uncertain encounters to account for limited capabilities of the intercepting player or inherent

detection uncertainty in the environment. This achievement successfully fulfills the first goal

of this thesis. The complexity of the utility function and size of players’ strategy spaces makes

the second goal of the thesis non-trivial.

2. Design of oracles for both players which would allow to utilize double-oracle algorithms for

solving large games (as is this case). For each mobility model (and for both players), a

novel oracle able to provide best-response for any game considered was designed. As the

computational complexity of the oracles is high, suboptimal, faster oracles were designed to

achieve a higher scalability of the double-oracle algorithm.

3. Proposition of oracle hierarchies as an extension of oracle-based algorithms used to solve large

two-player zero-sum games in a normal form. Oracle hierarchies allow to use faster, suboptimal

oracles without the loss of optimality guarantee thanks to the idea of the decomposition of

the algorithm into sub-game expansion and termination check phases. The suboptimal oracles

can be used in the sub-game expansion phase, thus speeding up the algorithm, whereas the

optimal oracles are still needed for the termination check phase. Together with previous

achievement, this state-of-the-art contribution fulfills the definition of the second goal, even

though, due to the exponential size of players’ strategy spaces and complexity of the oracles,

the scalability remains limited.

4. Formalization of the optimal grouping problem and design of mathematical bi-objective prob-

lem able to solve the problem for different parameters. The grouping model is motivated by

current needs of merchant vessels in pirate-infested areas and considers exact constraints

posed on the simpler grouping mechanism currently deployed as well as more relaxed vari-

ants suitable for scenarios without restrictions posed by narrow corridors. The algorithm is

scalable to tens of vessels for all constraints set as evaluated on a number of scenarios and

guarantees a better grouping for existing corridor transits with respect to both the delay

caused and the number of vessels grouped. This contribution resolves the third research goal

of solutions for models with multiple players.

5. Design and implementation of agent-based simulation of the maritime domain with all actors

involved in the conflict of maritime piracy, calibrated on real-world data. The simulation is

scalable, modular, with easy-to-implement agent behavior architecture in a form of activity

diagrams which allow the reuse of the simulation for different scenarios. This achievement

paved the way for the fourth goal of the thesis, the simulation-based evaluation. Additionally,

the simulation was successfully deployed in Naval Research Laboratory in Monterey to predict
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pirate activity in the Indian Ocean based on weather reports and behavior models of pirates.

6. Integration of strategies computed using the game-theoretic models and grouping mechanism

into the simulation and validation of its robustness with respect to violation of assumptions

made and parameter values considered. The evaluation shows a robust behavior of game-

theoretic strategies, its superiority with respect to simpler knowledge models, however, also

difficulties in the estimation of the final expected quality of the solution for either of the

players. This achievement contributes to the fourth and final goal of the thesis and opens

many new research questions about iterative model refinements using the simulation-based

validation.
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1. Ondřej Vaněk, Ondřej Hrstka, and Michal Pěchouček. Improving group transit schemes

to minimize negative effects of maritime piracy (submitted). Transactions on Intelligent

Transportation Systems, 2013. (80%)
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Bošanský, B., Lisý, V., Jakob, M., Pěchouček, M., 2011. Computing time-dependent policies for patrolling games

with mobile targets. In: 10th International Conference on Autonomous Agents and Multiagent Systems.

Bowden, A., Hurlburt, K., Aloyo, E., Marts, C., Lee, A., 2011. The economic costs of maritime piracy. Tech. rep.,

Oceans Beyond Piracy, One Earth Future Foundation.

Brooks, R. R., Schwier, J., Griffin, C., 2009. Markovian Search Games in Heterogeneous Spaces. IEEE Trans.

Sys. Man and Cyber. B 39 (3), 626–335.

Brown, G., Carlyle, M., Salmerón, J., Wood, K., 2006. Defending critical infrastructure. Interfaces 36 (6), 530–544.

Bruzzone, A., Massei, M., Madeo, F., Tarone, F., Gunal, M., 2011. Simulating marine asymmetric scenarios for

testing different C2 maturity levels. In: Proceedings of the 16th International Command and Control Researh

and Technology Symposium. pp. 12–23.

CAs, O.-D., 2007. Modeling dynamic systems with cellular automata. Handbook of Dynamic System Modeling.

Chandran, R., Beitchman, G., 29 November 2008. Battle for Mumbai Ends, Death Toll Rises to 195. Times of

India.

Chardaire, P., McKeown, G., Verity-Harrison, S., Richardson, S., 2005. Solving a time-space network formulation

for the convoy movement problem. Operations Research 53 (2), 219–230.

Charnes, A., Cooper, W. W., Ferguson, R. O., 1955. Optimal estimation of executive compensation by linear

programming. Management science 1 (2), 138–151.

Chawdhry, P., 2009. Risk modeling and simulation of airport passenger departures process. In: Proceedings of

the 2009 Winter Simulation Conference. IEEE, pp. 2820–2831.

Chen, M., Kandlur, D., Yu, P., 1993. Optimization of the grouped sweeping scheduling (gss) with heterogeneous

multimedia streams. In: Proceedings of the first ACM international conference on Multimedia. ACM, pp.

235–242.

Chen, Y., Tu, L., 2007. Density-based clustering for real-time stream data. In: Proceedings of the 13th ACM

SIGKDD international conference on Knowledge discovery and data mining. ACM, pp. 133–142.

Cheng, P., 2003. A Short Survey on Pursuit-Evasion Games. Department of Computer Science, University of

Illinois at Urbana-Champaign.

Chung, C., Fabbri, A., 2003. Validation of spatial prediction models for landslide hazard mapping. Natural

Hazards 30 (3), 451–472.
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Jakob, M., Vaněk, O., Bošanskỳ, B., Hrstka, O., Pěchouček, M., 2010b. Adversarial modeling and reasoning in

the maritime domain year 2 report. Tech. rep., ATG, CTU, Prague.
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Jakob, M., Vaněk, O., Urban, S., Benda, P., Pěchouček, M., 2009. Adversarial modeling and reasoning in the

maritime domain year 1 report. Tech. rep., ATG, CTU, Prague.

Joseph, F., 2005. Path-planning strategies for ambush avoidance. Ph.D. thesis, MASSACHUSETTS INSTITUTE

OF TECHNOLOGY.

Joseph, F., Feron, E., 2005. Computing the Optimal Mixed Strategy for Various Ambush Games.

Khan, M., Boloni, L., 2005. Convoy driving through ad-hoc coalition formation. In: Real Time and Embedded

Technology and Applications Symposium, 2005. RTAS 2005. 11th IEEE. IEEE, pp. 98–105.

Khan, M. E., 2007. Game theory models for pursuit evasion games. Tech. rep., University of British Columbia,

Vancouver.

Kiekintveld, C., Islam, T., Kreinovich, V., 2013. Security games with interval uncertainty. future 27, 15.
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Vaněk, O., 2010. Agent-based simulation of the maritime domain. Acta Polytechnica 50, 94–99.
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Appendix A

Mathematical Programs for Oracles

Defender Oracle: Static Defender — Exact Utility

max
∑
sa∈SE

xa · za

za = 1−
K∏
k=0

(1− cl ·Bal ) ∀a ∈ SE∑
l

cl ≤ K

cl = {0, 1} za = [0, 1]

Fig. A.1: Defender Oracle: Static Defender — Exact Utility — Uncertain Encounters

max
∑
sa∈SE

xa · za

za ≤
∑
l

cl ·Bal ∀a = 1 . . . |SE |∑
l

cl ≤ K

cl = {0; 1} za = [0, 1]

Fig. A.2: Defender Oracle: Static Defender — Exact Utility — Certain Encounters
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Defender Oracle: Fixed-Base Defender — Exact Utility

max
∑

sa∈SE

xa ·
1

Ω

Ω−1∑
j=0

1−
∏
l∈sa

(
1− zja l · ρl

)
zja l ≥ cj il + pia l − 1 zja l ≥ 0 ∀a ∈ E, ∀l ∈ L, ∀j∑

e∈out(b)

cj 1
e = 1 cj Ωb = 1 ∀j
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∑
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l i = 1, . . . , Ω,∀l ∈ L, ∀j

zja l = {0, 1} ∀a ∈ E,∀l ∈ L, ∀j

cj il = {0, 1} i = 1, . . . , Ω,∀j

Fig. A.3: Defender Oracle: Fixed-Base Defender — Exact Utility — Uncertain Encounters
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∑

sa∈SE

xa ·
1

Ω
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j=0

ωja

M · ωja −
∑
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ωja = {0; 1}

zja l = {0, 1} ∀a ∈ E, ∀l ∈ L, ∀j

cj il = {0, 1} i = 1, . . . , Ω,∀j

Fig. A.4: Defender Oracle: Fixed-Base Defender — Exact Utility — Certain Encounters
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Defender Oracle: Unconstrained Defender — Exact Utility

max
∑
sa∈SE

xa ·
1
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j=0
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1− zja l · ρl

)
zja l ≥ cij l + pia l − 1 zja l ≥ 0 ∀a ∈ E, l ∈ L, j

cj i+1
n =

∑
e∈in(n)

cj i
e ∀i = 1, . . . , Ω − 2, n ∈ N, j

∑
l∈L

cj i
l = 1 ∀i = 1, . . . , Ω, j
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Fig. A.5: Defender Oracle: Unconstrained Defender — Exact Utility — Uncertain Encounters
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Fig. A.6: Defender Oracle: Unconstrained Defender — Exact Utility — Certain Encounters
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Defender Oracle: Approximate Utility

max
∑

sa∈SE

xa ·
∑
l∈sa

cl · ρl

∑
l∈L

cl ≤ K

cl = {0, 1}

Fig. A.7: Defender Oracle: Static Defender — Approximate Utility
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Fig. A.8: Defender Oracle: Fixed-Base Defender — Approximate Utility
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Fig. A.9: Defender Oracle: Unconstrained Defender — Approximate Utility
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Evader Oracle: Static Defender — Exact Utility

min
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Fig. A.10: Evader Oracle: Static Defender — Exact Utility — Uncertain Encounters
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Fig. A.11: Evader Oracle: Static Defender — Exact Utility — Certain Encounters
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Evader Oracle: Fixed-Base, Unconstrained Defender — Exact Utility
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Fig. A.12: Evader Oracle: Fixed-Base, Unconstrained Defender — Exact Utility — Uncertain
Encounters
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Fig. A.13: Evader Oracle: Fixed-base, Unconstrained Defender — Exact Utility — Certain
Encounters
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Evader Oracle: Approximate Utility
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Fig. A.14: Evader Oracle: Static Defender — Approximate Utility
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Fig. A.15: Evader Oracle: Fixed-Base, Unconstrained Defender — Approximate Utility





Appendix B

Computed Strategies for Merchant Vessel and

Pirate in the Simulation-based Evaluation

Fig. B.1: Graph of width w = 4 with computed Merchant Vessel and Pirate strategies used in
the experiments.
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Fig. B.2: Graph of width w = 5 with computed Merchant Vessel and Pirate strategies used in
the experiments.

Fig. B.3: Graph of width w = 6 with computed Merchant Vessel and Pirate strategies used in
the experiments.
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Fig. B.4: Graph of width w = 7 with computed Merchant Vessel and Pirate strategies used in
the experiments.
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Fig. B.5: Graph of width w = 8 with computed Merchant Vessel and Pirate strategies used in
the experiments.
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