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Annotation

The thesis first summarizes various position-velocity-time (PVT) estimation and fil-
tering algorithms in global navigation satellite systems (GNSS), second proposes a
novel low complex PVT filtering algorithm using the factor graph (FG) theory, and
third delivers a simulation and experimental comparison of the new method with
the existing ones. The overviewed algorithms are either implemented in commer-
cial receivers or a subject to research due to their computational complexity and
insufficient verification of their precision and robustness. These classical estimation
algorithms include least squares (LS) and weighted least squares (WLS), whereas
the Bayesian filtering algorithms include extended Kalman filter (EKF), unscented
Kalman filter (UKF), grid-based filter (GF), and particle filter (PF).

The operations of the PVT estimation/filtering algorithms used in practice in-
volve matrix operations which complexity grows significantly with the increasing
number of measurements. On the other hand, the algorithms such as UKF, GF, PF
do not suffer from such dependency issue even though they work on vector data, but
their performance is strictly violated if a relatively large number of representative
samples are not selected.

Here, we propose a novel suboptimal iterative method that operates only on
scalars, employs simple arithmetic operations and is fully distributed. Hence, the
algorithm can be implemented in parallel processing units, each for a tracked satel-
lite. The scalar nature of the algorithm and simplicity of the arithmetic operations
facilitate the requirements on the navigation processor which does not need to in-
clude libraries for matrix operations any more. The distributed nature additionally
enables to move the algorithm to hardware logic and hence minimize the CPU’s load.

Simulations comparing precision and convergence of the proposed FG-based PVT
filtering method with the most commonly implemented method - EKF are delivered
in the text. It is demonstrated that the FG-based method features similar precision
and stability at number of visible satellites larger than 16. These methods have
already been implemented into a real-time GNSS receiver developed at CTU and
tested. A case study is presented.
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Introduction

Global Navigation Satellite Systems (GINSS) The first global navigation satel-
lite systems (GNSS) - US GPS [1-3], Russian GLONASS [4] were originally developed
for military applications. However, their civil liberalization opened new prospective
of these systems to be employed in civil aviation, maritime, geodesy, car navigation
and others. High performance, low size and power consumption of today’s electronic
circuits enabled incorporation of GNSS receivers in hand-held devices.

The widespread dependency on GNSS systems, massive market penetration, in-
creasing demand on position awareness with higher precision, availability, continuity
and integrity motivated governments all over the world to modernize their position-
ing systems (GPS, GLONASS) or spawn new ones - European Galileo [5], Chinese
BeiDou [6]. In parallel, satellite-based augmentation systems (SBAS) and regional
navigation satellite systems (RNSS) were developed to support areas of countries or
parts of continents - US WAAS [7,8|, European EGNOS [9,10], Japanese QZZS [11]
etc. Larger number of visible space vehicles, monitoring of local atmospheric effects
and GNSS system performance, possibility of higher data rate transmission, and
combination of these systems all contribute to much higher precision and robustness
of receiver position, velocity, and time (PVT) estimation.

The time-of-arrival (TOA) measurements, which GNSS positioning is designed
for [12,13], are negatively affected by unknown biases caused by the earth’s atmo-
sphere, inaccurate satellite ephemeris and clock prediction. Nonetheless, these biases
are common to receivers close to each other. If one of the receivers knows precisely
its own position, it can estimate the sum of the biases to each visible satellite and
augment other receivers with this information which is named as differential GNSS.
Some areas are equipped with local fixed transmitters with identical signal structure
as the GNSS have to augment the user with other radio beacons fostering geomet-
ric diversity with high power signals that can penetrate indoor buildings. Such
transmitters are called pseudolites. Taking benefit of cellular mobile network TOA
measurements, hybrid GNSS (H-GNSS) positioning is implemented by several chip
vendors.
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Measurement Data Increase and Nonlinear Effect The constantly increas-
ing number of visible space vehicles (SV) and other radio beacons (RB), such as
pseudolites and cellular mobile stations, challenges not only the design of digital sig-
nal processors providing standard outputs of pseudoranges, pseudorange rates and
navigation data [14-19], but also the design of the position-velocity-time fusion al-
gorithm handling large vector data, various coordinate systems and time references.
The operations of the PVT estimation /filtering algorithms used in practice involve
matrix operations which complexity grows significantly with the increasing number
of measurements [20,21]. These algorithms, including least squares (LS), weighted
least squares (WLS), extended Kalman Filter (EKF), strictly rely on first order Tay-
lor linearization of the geometry matrix composed of position vectors between the
user and the radio beacons. The linearization works well for distant SVs and low user
dynamics. If distances to narrow RBs are measured or the user maneuvers quickly,
the geometry changes rapidly with respect to the time step of PVT estimation and
the basic assumptions of the model simplification are violated.

The algorithms such as unscented Kalman Filter (UKF), grid-based filter (GF),
and particle filter (PF) can model the nonlinearity based on the representation of
the probability density function (PDF) by a finite number of samples [22-27|. These
methods are mostly of quadratic or linear dependency on the number of visible RBs
even though they work on vector data, but their performance is strictly corrupted if
a relatively large number of representative samples are not selected.

Factor Graph Modeling In this study, we introduce a novel PVT estimation
and filtering method derived from a graphical representation of the relations among
the system variables using the factor graph (FG) framework [28,29]. We first model
the relations among the vector variables and derive the well known matrix algo-
rithms such as WLS and EKF. We then split the vector nodes into scalar nodes,
thus creating cycles in the graph, and derive novel distributed iterative algorithms
with scalars. We then investigate precision, convergence, and complexity of these
algorithms. In the study, we limit ourselves to Gaussian PDF representation (=first
order Taylor representation), measurements only to distant SVs and user velocity
dynamic model.

Factor graph modeling and so called sum-product algorithm (SPA) were chosen
since a wide variety of algorithms developed in artificial intelligence, signal process-
ing, and digital communications can be derived as specific instances of the SPA,
operating in an appropriately chosen factor graph [28,29]. Examples include itera-
tive decoding of low-density-parity-check codes (LDPC) and turbo codes, the Viterbi
algorithm, the Kalman filter, and certain fast Fourier transform (FFT) algorithms.
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Factor graphs were first adopted to localization of a mobile station (MS) in wire-
less communication systems in 2003 [30,31]. The MS therein estimates signal TOA
from base stations with standard radius of 5km. After a simple initialization, 2-D
position is iteratively estimated using a simple easy-to-implement message-passing
algorithm (MPA) with relatively high precision in comparison with the complex max-
imum likelihood (ML) algorithm. Later contributions incorporate similar approaches
to time-difference-of-arrival (TDOA) or angle-of-arrival (AOA) localization [32], [33].
In [34], the authors propose a method for non-line-of-sight (NLOS) positioning in
wireless communications using FG. The messages are therein represented by sam-
ples of the estimated PDF. The update rules for the vertices are accomplished using
importance sampling. A universal algorithm based on FG, called SPAWN, has been
developed for cooperative localization in wireless networks [35]. This promising algo-
rithm takes into account the history of the measurements, motion model and is fully
distributed. The tests were conducted using ultra-wideband (UWB) radios indoor
buildings. A hybrid GNSS/UWB extension for cooperative localization is presented
in [36]. However, this algorithm operates on vectors.

The Witch Navigator As a parallel line of the PhD study topic, the student con-
tributes to an SDR receiver project, named the Witch Navigator (WNav) [37-41].
The aim of the project is to develop a software GNSS receiver that can process most
of the civil GNSS signals. Current version of the receiver software can process GPS
L1 and GLONASS L1&L2 signals. The student is responsible for data demodula-
tion&decoding, pseudorange formation, navigation data storage and PVT estima-
tion. The receiver is perfectly matched to the thesis requirements of algorithm’s
verification under real scenarios, therefore served as the main testing platform for
the conducted research. Its hardware concept further allows real-time implemen-
tation of advanced receiver architectures such as vector tracking, direct positioning
using either FPGA universal correlators [42|, powerful multi-core CPUs or massively
parallelized graphic processing units (GPUs), which are gradually being integrated
with CPUs and deployed into low power hand-held devices.
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’ Use Case \ Benefits \ How ‘
CPU’s offload Low-end CPU HDL directly,
to HW logic SW/HW tradeoffs C-to-HDL, C-to-RTL

Higher number
of SVs to track

Higher stability Faster PVT updates
at high dynamics in a vector tracking
Avoiding inertial sensors architecture
CPU’s Smaller code size No matrix
implementation | Smaller data memory library in use

Lower OS requirements

Table 1: Use cases and benefits of the proposed algorithm

Use Cases of the Proposed Algorithm

The primary motivation of the thesis was to find an algorithm which can facilitate
the CPU’s requirements on the PVT algorithm by any means. The found algorithm
enables us to offload the CPU to HW logic thanks to its distributive nature or if
implemented in the CPU, no matrix operations are needed.

The former enables us to use a lower-end CPU and tradeoffs between the SW/HW
can be made using either the new algorithm or the existing algorithm. Dedicated
hardware logic may incorporate more satellite channels than a low-end CPU. The
longer development of programmable logic is about to be overcome in FPGAs with
new tools by Xilinx (C-to-HDL) and Altera (C-to-RTL) who claim to instantiate
HDL entities directly from C code using special directives. The bus communication,
address map a device drivers will be autogenerated.

In higher dynamic applications, the PVT estimates can be generated more fre-
quently if they run in HW compared to the sequential processor. This becomes
beneficial in vector tracking architecture where the PVT estimates are used to con-
trol the tracking loops, hence increasing the system stability and avoiding need for
inertial sensors.

If the algorithm runs under a CPU, no matrix libraries imply smaller code size
and lower requirements on the operating system or standalone application. Thanks
to the iterative nature of the proposed algorithm and the necessity to store only
means and variances, the data memory requirements are lowered.

Use cases and benefits of the proposed algorithm are summarized in Table 1.
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Contribution of the PhD Thesis

The contributions of the PhD study can summarized as follows:

Summary of various stand-alone GNSS PVT estimation/filtering methods is
given, including those being implemented in commercial receivers and those
being a subject to research.

The FG-based method of 2-D localization of MS in mobile communications
[30,31] is extended to account for GNSS SVs and other radio beacons, receiver
clock offsets to the GNSS systems and velocity estimation.

Novel FG-based Bayesian filtering method for various PDF representations, is
proposed. The method is distributed, therefore suitable for implementation in
parallel processing units.

FG-based Bayesian filtering method with Gaussian PDF is further developed
and analyzed. It employs no matrix operations, and uses simple arithmetic
operations such as summation, subtraction, multiplication and division. Com-
promises can be made about complexity, precision, and robustness.

Simulation and measurement results of this FG-based algorithm for Gaussian
PDFs and GNSS SVs are delivered. Complexity, precision, convergence com-
parison with the EKF and GPS L1 SVs are available.

Significant contribution to the GNSS SDR receiver project WNav by the stu-
dent enables other researches to verify their new algorithms, which were tested
only in a simulation, in real scenarios and fill thus a gap between theory and
engineering practice.

The bit-true Monte Carlo simulations carried out at the sampling rate to inves-
tigate behavior of tracking loops and other signal processing modules involving
correlation can be bypassed by so called semi-analytic models. The student
has contributed to this topic by establishing a universal framework for descrip-
tion of GNSS modulations by linear multi-dimensional modulations (LMDM),
extended the simulation methods to account for feed-back delay, phase noise,
finite bandwidth, and slowly fading multipath effects.
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Document Structure

In Chapter 1, we first very generally address the topic of position-velocity-time (PVT)
estimation in satellite navigation, defining basic quantities and establishing notation
necessary throughout the text. We will show how the process of PVT estimation is
modularized in a conventional receiver, discussing complexity of each step and spec-
ifying the study topic. Not always hold the basic assumptions about the communi-
cation channel and assumptions about the physical conditions. On that account, we
list negative phenomena that a GNSS receiver is subjected to, sum up performance
properties as well as properties important for future receiver development.

In Chapter 2, the testing platform for the study is introduced. Starting with
the Witch Navigator (WNav) project description, open source philosophy, receiver
hardware and software, we overview the current state of the project and discuss how
it is used within this work. To conclude the topic of receivers, we forecast future
WNav features and pinpoint student’s project tasks and responsibilities. The project
is described in [16].

Chapter 3 gives an overview of basic estimation theory concepts and properties.
The chapter is a brief digest of [43] with minor modifications. In Chapter 4, we briefly
discuss the sample-based nonlinear Bayesian filtering algorithms - UKF, GB filter,
PF. The theory of factor graphs (FG) and the sum-product algorithm (SPA), the
framework for derivation of the proposed algorithms, are summarized in Chapter 5.
An example FG with SPA is added to facilitate the problem understanding. This
chapter has been inspired by [28,29]. Chapter 6 shows how the Kalman filter, or
the extended Kalman filter can be derived using FG. The approach to the proposed
suboptimal scalar iterative KF or EKF is then presented.

In Chapter 7, we overview the existing PVT estimation /filtering methods - namely
LS, WLS, EKF, UKF, and PF. Cramer-Rao lower bound (CRLB) for the classical
estimator and posterior CRLB for Bayesian estimator are derived. The adopted user
motion models, based on Gauss-Markov process modeling, are also discussed. In the
same chapter, we derive the proposed FG-based method of PVT estimation /filtering
with Gaussian PDF representation. Simulation and experimental results are pre-
sented for this case in comparison with the EKF in Chapter 8.

The hierarchy of the document, purpose of the chapters, novelty and author’s
publications are summarized in Table 2.
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’ Chapter Purpose Novelty \ Publications ‘
1 Define quantities GNSS Modulation [44, 45|
GNSS Receiver Define system model
Sum up architectures
2 Justify 40% of SW [16, 3840, 46]
HW Testing the Experiments
Platform
3 Theory of
Estimation “commercial”
Theory WLS, EKF + (P)CRLB
4 Theory of
Nonlinear “scientific”
Bayesian Filters UKF, GF, PF
5 Background to
Theory of derive FG-based
FG and SPA filters
6 Derive existing N-dimensional [47,48]
Bayesian (E)KF on FG extension of scalar
Filtering on FG update rules for Gaussian
densities to [49]
Derive novel New algorithm with [47,48|
scalar iterative (E)KF no matrix operations,
simple arithmetic,
is distributed =
can run in HW
7 Substitute model from Final formulae [48]
Overview of Chap. 1 to methods of the new algorithm
PVT Algorithms from Chap. 3, 4, 6 for GNSS PVT filter
8 Simulate algorithms Convergence, accuracy, [48]
Simulations and from Chap. 7 scenario analysis
Experiments Perform a case study Tests in a [48]
with HW platform real-time GNSS
from Chap. 2 receiver

Table 2: Hierarchy of the document, purpose of the chapters, novelty and author’s

publications
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Notation

We denote vectors and matrices with bold emphasize throughout the text. All vectors
are column vectors. We denote ith element of vector a as [a],. Similarly, we denote
the element at ith row and jth column of matrix A as [A]; ;. To denote ith row of
matrix A, we use [A], , for jth column [A] ;. All estimates of values are denoted
with hat - an estimate of vector a is denoted as a. The mean value of random vector
a is denoted as E [a] = p,, the covariance matrix as C, = E | (a — p,) (a — p,)" | or

equivalently C,,. Additionally, the covariance matrix between two different vectors
of the same size, say a and b, is denoted as C,p, = E [(a — o) (b — ub)T} . Diagonal

matrices with elements a; 1,..., ayn, N € N on the main diagonal are denoted as
[a1; O ... 0 0 ]
0 agp
A= SR : £ diag (a1.1,-.., an.y) - (1)
0 . oan—in-1 O
| 0 0o ... 0 an,N |

If vector a represents a measurement in additive noise w, then asterisk denotes the
noiseless value a*
a"=a—w. (2)

With notation N, (pt,, Ca) we mean that random vector a has multivariate Gaus-
sian (normal) distribution with mean p, and covariance matrix C,. The inequality
between two matrices means elementwise inequalities, e.g.

A>B (3)
means Vi € {1,... M} AVj € {1,... N} it holds that
[Al;; > [Bl; (4)

if A, B are M x N matrices. Time average of either continuous time a(t) variable
or discrete variable a,, is denoted with Av [.] such that

Avia(t)] = limT_m% /_Ta(t)dt (5)
Avia,] = limN_mﬁ Z ay,. (6)

+ 1 n=—N
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The operator AvE [.] is then a composition of ensemble and average AVE [.| = E[Av [.]] =
Av[E[]]. The first partial derivative of M-dimensional vector function g(0) =
[g1 ... gn] with respect to p-dimensional vector @ = [f; ...6,], Jacobian matrix, is
denoted as follows

) d

= SRR (8)
99N 99N
96, " 06,

Partitioning vector 0 for 1 < r < p as

o= 5] [wln] .

we define the second order partial derivative of g (61, 85) with respect to 8, and to

0., respectively, as
ngg (01, 63) = Vg, [v£2g(91, 92)} . (10)

If g(x1,...7K) is a scalar function of variables 1, ..., zx, we denote the integral
over all the variables except for z, where 1 < k < K as

/ g(xq,...xx)dey ... dog —/ / g(x1,...x dacl dag. (11)
Tk except for T

In the factor graph theory, we denote a message from variable node v to factor node
F as \,_,r, and message from factor node F' to variable node v as pup_,,.



Chapter 1

GNSS Software Receiver and its
Architectures

In this a very general chapter, we discuss various aspects of a design of a GNSS re-
ceiver. We deliver an approach describing all the signal processing steps in a GNSS
receiver assuming reader’s background in digital communications [50|, spread spec-
trum communications [51], estimation and detection theory [43,52], and the theory
of synchronization and equalization [53,54|. It crucial to understand the overall
process of the signal processing up to the PVT estimation /filtering to efficiently de-
sign algorithms. A limited overview might result in a situation where effort would
be devoted to improve performance of an algorithm in a specific signal processing
step that could be much easily improved by a simple improvement in another step.
Such would be the case when discussing various receiver architectures in Section 1.2.
Tracking sensitivity of a GPS L1 C/A receiver can be improved by 7 dB using the
vector tracking architecture with prefilters [55] that introduces no significant resource
overhead, but its implementation requires good knowledge of the signal tracking and
PVT estimation algorithms and all aspects connected with it. In Section 1.3.2, we
discuss common receiver hardware concepts. The tendency of integration highly par-
allel DSPs with powerful CPUs on a chip opens new possibilities of implementation
so called direct positioning methods that need to operate at signal samples iteratively
which is not possible with traditional GNSS receiver concepts. The direct positioning
methods are very advanced - all the signal processing steps merge. The engineers
are challenged to understand the overall system well.

18
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1.1 Signal Processing Algorithms in GNSS Receiver

In this section, we firstly address the problem of position and velocity estimation in
GNSS. We do not derive methods of estimation based on particular criteria such as
least squares, maximum likelihood, minimum mean square error (MMSE) etc. In-
stead, we state the measurement equations that are used for such estimations. The
specific algorithms will be discussed in Chapter 7. Then, we introduce the considered
channel model and the signal structure to continue with discussion on signal condi-
tioning and description of modularization of a traditional receiver. It is unavoidable
to mention the aspects of all GNSS signal processing steps of a traditional receiver,
since they may influence the final PVT estimation in different ways. Concerning
the channel model, we do not assume phenomena such as multipath, phase noise,
fadings, but we discuss how these are dealt with a traditional receiver at a very top
level.

1.1.1 Position Estimation

Let xg; = [rs, Ys. zs,i]T denote the position of ith SV at the time of transmission
ts; according to the system time, xy = [zy 2|7 the user position at the time of
reception t;; according to the system time. All position vectors are referenced to an
carth-centered earth-fixed (ECEF) coordinate system (CS). The distance the signal
travels between the user and sth SV is then

Ixv —xs4| = R
= c(ty —tsi) (1.2)

where ¢ is the speed of light. Since the receiver time is biased to the system time
by an a proiri unknown shift 0ty = ty — ty;, the receiver can only measure so called
pseudorange p; to 1th SV which is the true range R; biased by the clock offset in
meters b = ¢ - 0ty

pi = C- (tU — tS,i) (13)
= ¢ (t'y —tgy)+c- oty )
= R;+b. (1.5)

Provided the receiver knows the system time of transmission of at least four SVs
{ts;}L_,, their positions at that time {xg,;}/_; and its own time fy so that it can
form the pseudoranges {p;}/_, using (1.7), the user position x;; and clock bias b can
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Xgit1(tsiv1) = [Tsit1Ysit1 28ir1)" Xgit2(tsive) = [Tsit2Ysite 2sive)”

SiJrl Si+2

Rivo=c- (ty —tsit2)
Xs,i+3(tsi+s) = [Tsi+s Ysits 25i+3]"
Si+3

Rij1=c- (ty —tsit1)

Xs,i(ts:) = [TsiYs Zs,i]T
S;

Ripz=c-(ty —tsita)
L =tu —oty, xu(ty) = [zvyu zu]"

Figure 1.1: Position estimation using TOA measurements in GNSS

be estimated by solving the set of nonlinear equations for ¢ =1,...,1

Vaw — w6 + (g — s + (0 — 250 +b = (L6)

where I denotes the number of visible SVs. The situation is depicted in Figure 1.1. If
I > 4, the solution of the nonlinear equations is said to be overdetermined. However,
the measurements of pseudoranges are always embedded in some noise w,; being a
random variable

Pi = Ri+b+wm. (17)

Hence, one has to resort to the estimation theory [43] to optimally determine the
estimates of user position Xy = [y 9y 2¢|T and the clock bias b.

1.1.2 Velocity Estimation
The user velocity vy = [Zy ¥y 2v]? can be estimated from the measurements of
the frequency shifts of the 'incoming signals. The frequency shift of the incoming
signal from ith SV f;; can be modeled as a sum of the Doppler frequency shift fg;,

2oscillator frequency offset —df and the known residual intermediate frequency (IF)

Estimating user velocity from differences of pseudoranges is much less precise [12,13].
2The negative sign is due to the difference of the input frequency and the frequency of the local
oscillator when downconversion.
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frr from the local oscillator

Jsi=Jai—0f+ fir. (1.8)
Note that the range derivative Rz is related to the Doppler shift f;; as
- Jai
Ri=—"="c 1.9
fc,i ( )

where f.; is the carrier frequency of ith SV. As long as the same local oscillator
(LO) is used for down conversion and local time measurement stamping so that the
clock drift b is related to the oscillator frequency offset 0 f as

b= .
fc,i

the noiseless pseudorange first derivative, named as pseudorange rate, is related to
the Doppler frequency as follows

c (1.10)

pi = Ri+b (1.11)
—ff’f e+ };f, ¢ (1.12)
= ——fs’if_‘f” el (1.13)

It should be noted that noiseless pseudorange rate and frequency shift without the
known IF are related via a scaling constant. Taking the first derivative of the range,
we get the relation of the range rate, the user velocity vector vy and the velocity
vector of 1th SV Vsi = [j:S,i yS,i Z.S,i]T
: 9 [lxv — Xl
R, = 5 (1.14)
= —17 - (v — vs.) (1.15)

where 1; is the unit line-of-sight vector between the user and the SV

Ty —Ts,i Yu — Ysi U — ZS,i

1 . =

(1.16)

3We index carrier frequencies for different SVs, since we consider more GNSS systems. However,
even for one GNSS system, the carrier frequencies can vary over received signals - e.g. GLONASS
uses frequency division multiple access (FDMA), or signals at multiple frequencies from different
SVs can be combined.
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Consider noisy frequency shift measurements and assume that the velocity vector of
the SV at the time of transmission is known to the user. We can get the estimate of

the user velocity vy and the estimate of the clock drift b based on the following set
of equations i =1,...,1

Jsi— JiF ~c:—1iT-(VU—VS,i)+b+wﬁ,i (1.17)

fc,i
where w;; is a random variable representing the noise contribution. From this time
on, we will consider the pseudorange rate being noisy from the frequency shift mea-
surement so that

Pi = _11T . (VU — Vsﬂ') + b + Wp,s- (118)

1.1.3 Channel Model

Let s;(t, q) € C denote the complex envelope of the transmitted signal by ith SV at
time ¢ with encoded data message q denoted as a vector of channel symbols q;, € R,
N, € N generated at times k7T where k£ € N is the discrete time index and 7y is the
period of channel symbols

a=[..q...]". (1.19)

The signal propagates to the user that receives noisy baseband signal y(t) € C
being a composition of all the transmitted signals delayed in time by 7, = ty — tg;,
attenuated due to energy dissipation, atmospheric attenuation and other effects by
a constant ; € R, shifted in frequency by f;; due to the Doppler effect, residual IF
and oscillator frequency offset, having unknown carrier phase offset p; € R, and is
embedded in noise n(t) € C

I
y(t) =Y aiexp (j (2 foit +@1)) si (t — 75, @) +n(t). (1.20)
i=1
The noise n(t) can be successfully modeled as a band-limited complex white Gaussian
noise (WGN) with single sided power spectral density (PSD)?

- 2NU> ’f‘<BR
Sn(f) = { 0, else.

where f is the frequency, Ny € R and Bpg is the receiver filter bandwidth. As
the geometry of the user and the SVs evolves over time, parameters 7;, fs;, ¢,

4Not considering interference.
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a;, No change. GNSS systems are designed for the situation where these parameters
change slowly with respect to T, being abbreviated as slowly time-varying parameters
(STVP). Such a channel is named as linear additive WGN channel with STVP and
synchronization techniques can be employed [53,54] to either estimate or eliminate
the channel parameters to get the estimate of the transmitted data. Since we are
interested in estimating the signal delay 7; and frequency shift f;;, elimination of ¢;,
«;, Ny may be adopted. In practice, the elimination takes place at the early stage
of the receiver synchronization to simplify the process of obtaining coarse estimates.
Parameters «;, Ny are then needed as a signal quality measure for optimizing the
PVT estimation and control of the synchronization process. Carrier phase tracking
of ¢, = 27 f, it + p; can increase the probability of correct data detection using soft
decision algorithms and can be incorporated to the PVT estimation process with
additional reference receiver to get local precise PVT estimates [12,13,50] or can be
used stand-alone at long observations [56, 57

1.1.4 Signal Structure

GNSS signals are designed as direct-sequence spread-spectrum (DS SS) modulated
signals with code or frequency division multiple access (CDMA, FDMA) to differen-
tiate the SVs of a system [50,51]. The typical modulations are the binary-phase-shift
keying (BPSK) or binary-offset keying (BOC) [13,58-60], in some cases with minor
modifications such as separate pilot and data signals in the inphase or quadrature
components, or multiplexed in time (GPS L1A, L2C), code (Galileo E1) or fre-
quency (GLONASS L1/12). The most challenging signal is the alternate BOC (Al-
tBOC) modulated signal transmitted at Galileo E5 band with reference bandwidth
of 50 MHz, offering decimeter level precision of delay tracking [5,41,59,61-63].

The primary reasons for selection of these signals are the sharpness of the signal
autocorrelation function ensuring high precision of the delay tracking, suppression of
the distanced reflected signals, resistance to both narrowband and wideband interfer-
ence, short occasional signal fadings or ionospheric scintillation [13]. The pilot signals
can be used to increase receiver sensitivity or precision thanks to the possibility of
using discriminators that are sensitive to data bit transitions and the possibility of
long coherent integration times. However, the transmitted power must be shared be-
tween the data and pilot signals, therefore the probability of correct data detection is
lowered. If the signal power is as low as synchronization of the data signal cannot be
maintained, but the synchronization of the pilot signal is still possible, the benefit of
the pilot signal is that no reacquisition is needed to restore the data signal tracking.
The GNSS signals are always transmitted with constant envelope to fully utilize the
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Figure 1.2: Modulation impulse of GPS L1 C/A code signal. Symbol T, denotes chip
period, symbol N, the number of chips within a code period, symbol Ny the number
of code periods per a channel symbol.

power available on board the SVs.
Any GNSS signal, or its data or pilot component, can be generally described as
a special case of a linear multi-dimensional modulation (LMDM) [37,45]

s(t) =AY qih(t - kT,) (1.21)

where A is the signal amplitude, q,, is a vector of channel symbols and h(t) € CV is
a vector of modulation impulses that are essentially nonzero for t € (kT, (k + 1)T%)
where Ty is the period of the channel symbol. For GPS L1 C/A signal, the channel
symbol is scalar q; = [gx1]7 and contains the Hamming-encoded data bit with period
T, = 20 ms. The modulation impulse is also scalar containing 20 periods of the Gold
code. The amplitude of the modulation impulse is normalized so that the energy
of h(t) is unit. The situation is depicted in Figure 1.2. Examples how to represent
BOC, AltBOC, inphase and quadrature signals are given in [45|. The advantage of
such description is its universality to derive common signal processing algorithms or
performance characteristics using either theory or simulations.

1.1.5 Signal Conditioning

Before the received signal is processed by the digital signal processors (DSP), it must
be first conditioned and compromise must be made about the digitized signal quality,
receiver size, costs and power consumption. The antenna should be of a hemispheric
radiation pattern so that it does not receive ground-reflected signals and amplifies
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the direct signals. The signal should then be preamplified by a low noise amplifier
(LNA) as soon as possible to get the lowest possible noise figure, and then coarsely
filtered. However, filtering before LNA may help to prevent the LNA from being
overdriven by strong signals within the antenna and LNA operation bandwidth, but
will likely increase the overall noise figure due to its insertion losses. On condition
that the bandwidth of the signal that LNA should amplify is large, the LNA will have
to be of high dynamic range with high power consumption. Strong signals within
the band will easily overdrive the amplifier. Hence, compromises must be found for
various environments and signal spectrum allocation.

The signal is then downconverted and filtered with a narrowband filter. One or
two other amplifiers are cascaded to the signal path with at least one of variable gain
for automatic gain control (AGC) in order to optimally fit the input signal into the
range of the analog-to-digital converter (ADC). One of the amplifiers has typically
high gain (e.g. 75 dB) since the input signal is buried in noise. For down conversion,
superheterodyn receivers or direct conversion concepts are typically used. The former
typically splits the down conversion into two steps to increase the receiver selectivity
and sampling is performed at higher Nyquist zone. The latter is not fitted to a
particular frequency plan and is thus more suitable for reception of signals at various
frequencies thanks to the existence of no mirror frequencies.

The stability of the local oscillator is another crucial parameter in GNSS receivers.
It determines the frequency range of the signal acquisition and consequently the time
to first fir (TTFF), performance of PVT filtering algorithm, the time range for which
warm start may be performed since the last position fix and others. Since GNSS
is based on TOA measurements, the local oscillator is said to be the heart of the
receiver. It is a must in GNSS receivers to derive all the clock signals and mixing
frequencies from a common LO so that the number of unknown parameters for the
PVT estimation/filtering is kept minimal.

The sampling frequency of receivers that receive only the inphase component
should be always larger than twice the filtered signal bandwidth, for receivers that
process both inphase and quadrature components, it should be at least the filtered
bandwidth of the signal. The benefit of using solely the inphase component for e.g.
GPS L1 C/A is the lower complexity of the signal processing, since complex multipli-
cation involves four real multiplications and two real additions. However, the sam-
pling frequency must be doubled. Larger filter bandwidth and sampling frequencies
challenge the design of DSPs, but enable implementation of multipath mitigation
techniques such as narrow correlator [64], multipath-estimating delay-locked loop
(MEDLL) [65] or other multipath techniques based on direct positioning [66,67].

It has been proved that using 1-bit signal representation introduces only 1.96 dB
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degradation, 2-bit representation 0.55 dB and 3-bit representation 0.16 dB degrada-
tion of the code tracking precision [13]. The advantage of using higher bit quanti-
zation is the ability to better mitigate the interference and jamming effects. Some
receivers use techniques to mitigate the effect of narrowband interference by measur-
ing the statistics of the sampled signal - J/N meter [68] or using a bank of digital
filters. The necessary condition for such interference mitigation is the linear func-
tionality of the RF chain and prompt AGC reaction to the increasing signal power.

1.1.6 Modularization of Traditional GNSS Receiver

As long as the input signal is properly conditioned, it can be further processed to
obtain the PVT estimates. If the signal parameters 7;, fs;, @i, a;, Ny are STVP in a
linear additive WGN channel, the signal samples y,, = y (nT},) are sufficient statistics
for the estimation of these parameters and the transmitted data symbols [53, 54]
meaning that no information is lost by sampling. Symbol 7, denotes the sampling
period. All the signal processing is done in discrete time.

In a traditional receiver, the overall signal processing steps are modularized as
follows, making a solution with acceptable complexity and feasible in real time,

e signal acquisition

signal tracking and bit synchronization

frame synchronization, data demodulation and decoding

navigation data handling and pseudorange formation

PVT estimation/filtering.

1.1.6.1 Signal Acquisition

In order to track the channel parameters of the input signal and get the estimates of
the data symbols, coarse estimates of signal delay 7; and frequency shift fs; must be
obtained®. The process is named as signal acquisition®. The nature of DS SS signals
implies that search techniques must be used [51]. The most common techniques based
on maximum likelihood (ML) criterion include serial search where the signal replica

5Strictly speaking, we estimate the fractional part of the code delay due to the periodic nature
of the pseudorandom codes. We will come to this point when discussing the pseudorange formation
algorithm.

61n fact, signal acquisition is a process of both signal detection and channel parameter estimation.
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is periodically shifted in time, correlated with the incoming signal and threshold
crossing is detected, parallel search where the input signal is correlated with all
sufficient number of replicas at the same time and the highest value is compared
with the threshold, and hybrid search which is a linear scale between the serial and
the parallel search. These techniques can be implemented using the DSP correlators.

However, parallel search techniques based on fast Fourier transform (FFT) such
as parallel code space search (PCSS) and double block zero padding (DBZP) are
becoming dominant thanks to their lower complexity, availability of FFT libraries
for DSPs, CPUs, GPUs, ASICs or FPGAs. When implementation of the FFT-based
acquisition methods, the signal delay 7; must be extrapolated to the time of transition
to the tracking. If the transition time is high, the user-to-SV pseudorange rate may
change and a serial search in significantly smaller delay range is usually adopted to
align the replica with the incoming signal.

An interesting method based on iterative message passing on a cycle factor
graph has been proposed to efficiently acquire pseudorandom sequences of long
codes [69-71| and adopted to GNSS [72]. The method is an analogy to decoding
of low-density-parity-check (LDPC) codes in digital communications, but is strictly
dependent on the spreading code structure. For codes with short cycles in their
graphical representation, the method suffers from sensitivity degradation. In case of
GPS L1 C/A Gold codes, the sensitivity degradation is about 7 dB compared to the
maximum likelihood method based on parallel search.

1.1.6.2 Signal Tracking and Bit Synchronization

The signal tracking in a traditional GNSS receiver is accomplished using code and
carrier tracking loops - delay-locked loop (DLL), frequency-locked loop (FLL) and
phase-locked loop (PLL). These loops are an implementation of an iterative ML es-
timator of the code delay 7;, frequency shift f,;, and carrier phase offset ¢;, respec-
tively [53,54]. A separate tracking loop can be analytically described as a feed-back
system (FBS) with its equivalent model and its basic characteristics such as dis-
criminator characteristic, discriminator gain, equivalent loop noise autocorrelation
function, loop filter order and its bandwidth. An implementation of the FBS setup
differs for various receiver stages. Right after the acquisition, DLL and FLL with
relatively wide equivalent loop noise bandwidth are employed in order to promptly
align the replica with the incoming signal and enter the steady state. Afterwards,
the bandwidth is lowered to filter out the noise. To improve precision, the tracked
frequency from the carrier tracking loop is often fed to the code tracking loop of the
same SV channel and multiplied by a scaling constant to remove all the dynamics
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from the code tracking loop and lower the bandwidth down to 0.1 Hz. The carrier
measurements are less noisy that the those on code. The FLL can further assist PLL
to track the dynamics of the carrier phase so that the PLL bandwidth can be also
lowered.

The derivation of the iterative ML estimate of the STVP channel parameters in-
troduces sufficient statistics in the form of the cross-correlation between the received
signal and its replica or the first derivative of its replica. Practical implementation
is an approximation of the replica derivative by a difference of the early/late (E/L)
replicas [53,54]. The time difference between the E/L replicas 2A7, and the coherent
integration time T are the crucial parameters influencing the analogue bandwidth
of the FBS. The correlation and replica generation are the most computationally
demanding operations, the sampling frequency and the number of quantization bits
should hence be considered with care.

Common DLL discriminators are the normalized early-minus-late power discrim-
inator and the normalized dot-product discriminator since they are insensitive to a
data bit transition and carrier phase offset. Normalization is employed to eliminate
the unknown signal amplitude influencing the overall FBS gain and consequently its
bandwidth. The drawback of the discriminators insensitive to the bit transition is
that they suffer from squaring loss which can be minimized by increasing the co-
herent integration time. Code discriminators relying on the carrier phase estimate
are not common in GNSS receivers, since the PLL has worse sensitivity than the
DLL. A cycle slip in PLL would then result in a loss of lock of the DLL. The FLL
discriminators are based on the difference between the current phase shift estimate
and its previous value, thus approximating the first derivative of the carrier phase.
They can be either sensitive to the data bit transition, but must be employed only
between the intervals of the data bit transition, or insensitive to data bit transition
and used at all times. The latter is a common choice for signals with secondary code
where the data bit transition may occur every primary code period. Although higher
integration time lowers the squaring loss of the DLL tracking jitter, it lowers the FLL
pull-in range. In practice, FLL operates at lower integration time because of that
reason. The PLL discriminators should be always insensitive to the data bit transi-
tion, except for those tracking pilot signals with secondary code in synchronization.
Commonly, the atan discriminator for data signals and atan2 discriminator for pilot
signals are used due to their linear characteristics and independence of C'/N, over
the operating range.

It should be noted that a design of the tracking loops is a compromise respecting
user dynamics, requirements on sensitivity, tracking jitter, mean time to synchroniza-
tion failure and others. For high dynamic applications, FLL-aided DLLs are desired
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with FLL having higher order loop filters so that they do not produce systematic
errors of the tracking jitter caused by higher derivatives of the delay. In case of
ionospheric-free combinations, the DLL tracking jitter should be minimized not to
degrade the advantage of such compensation.

Before data demodulation and decoding, the data bit transitions must be contin-
uously localized within the flow of the correlator output values. A common approach
for the signal without secondary code is to create a histogram of carrier phase re-
versals and find that with the highest count. The histogram may serve also as an
indicator of loss of lock if there is no bin with dominant count. For modernized
GNSS signals with secondary codes, it is much more straightforward to find the bit
boundaries in a different way assuming carrier phase in lock. For every new corre-
lator output value, binary hypothesis if the bit boundary is present or not is tested
using a Neyman-Pearson detector that correlates the secondary code with the in-
phase correlator output values and decides according to the threshold crossing. To
improve the probability of detection, results for more secondary code periods can be
noncoherently combined. No threshold crossing is an indicator of loss of lock.

To measure the signal quality, the quantity signal power C; = %AVE [|oz,~s,~ (t)|2}
to noise PSD Ny, abbreviated as C/Ny, is estimated in GNSS receivers. There are
two techniques commonly used to estimate C'/Ny. One dedicates a single correlator
to correlate the input signal with a replica that is not certainly contained in the input
signal and estimates thus the noise PSD NVy. The signal power is estimated based on
the correlator output values being linearly dependent upon the signal amplitude at
high C'/Ny. Another approach uses a combination of several correlator output values
to estimate both C' and Ny. The variance of the correlator output values is in direct
relation to N.

1.1.6.3 Frame Synchronization, Data Demodulation and Decoding

The transmitted data of older GNSS signals (GPS L1 C/A, GLONASS L1/L2) are
protected by relatively short Hamming codes to correct one-bit error and detect
two-bit error in about 30-bit words. Hard estimates of transmitted data bits are
produced based on a simple decision of the bit reversal. A synchronization pattern
is periodically inserted into the transmitted data symbols to successfully detect the
beginning of a frame. A Neyman-Pearson detector can be used to decide about the
presence of the frame start. Parity of the buffered symbols are then checked for data
words within the frame.

Modernized GNSS signals (GPS L2C, GPS L5C, EGNOS, WAAS, Galileo INAV/|
FNAV) are first protected with a CRC' over the whole frame, then convolutionally
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encoded, optionally interleaved (Galileo signals) and finally extended with a synchro-
nization pattern at the beginning of the frame. The convolution code significantly
lowers the bit error ratio (BER), and the interleaving protects the signal against fad-
ings. All of these signals adopt the same convolution encoder with constrain length
K = 7 and identical CRC encoder of 24 bits. The difference is in the encoded signal
size, presence of tail bits and bit inversion of one of the branch in the convolution
encoder. To decode convolutionally encoded signals, soft decision algorithms should
be adopted such as Viterbi algorithm taking the inphase” correlator outputs as a
metric.

GPS L1C signal is planned to incorporate an LDPC' code featuring optimized
BER. The decoding will be based on iterative message passing techniques on a factor
graph representing the encoding matrix.

1.1.6.4 Navigation Data Handling and Pseudorange Formation

Successfully decoded navigation data bits are stored into a navigation data storage.
The navigation data storage must be designed to carefully check data validity and
consistency. This, more programming than mathematical, task is in practice imple-
mented using separate data structures for the incoming data and for the stored and
consistent data being used for PVT estimation. For SBAS systems, the old data
structures might be needed because the SBAS corrections cannot apply to the new
data due to the law of causality.

The GNSS SVs transmit both data corresponding to the SV and data correspond-
ing to the system or corrections to other systems. The SV data include ephemeris,
clock corrections, health, and alert flags for integrity purposes. The data common
to the system include almanac and health of other SVs, ionospheric corrections (by
a global map), time conversion parameters, and others. Every decoded frame en-
tity contains the time of transmission of the first bit in the frame. The frames are
transmitted synchronously from all the SVs according to the local time scale, but
the actual times differ due to the biases of the onboard oscillators.

The navigation data storage should also provide functions for calculation of the
PVT of a SV for a given time of transmission, functions for time, ionospheric, tropo-
spheric corrections and functions for conversion between various coordinate systems.

In order to calculate the time of transmission of ith SV tg;, the following algo-
rithm can be used. When a time mark corresponding to the beginning of the frame

"Strictly speaking, the PLL must be locked and the correlator output values should be also
correlated with the secondary code. These values can then be used as a signal metric.
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is detected, this time® is remembered tr and an accumulator starts counting the
number of elapsed data bits and their fractional part up to the time epoch of PVT
estimation. The number of bits IV, ; are available from the bit synchronization pro-
cess and its fractional part AN, ; is known from the code NCO accumulators. The
time of transmission then equals

tsi =tp 4+ (Npi + ANy;) Ty (1.22)

where T}, is the bit period. For histogram-based bit synchronization, one bit delay is
introduced. The user time ty must be also related to the system time scale. After
the receiver is switched on after a long time, this time might be significantly biased
and can be initialized as

tU = tS,i’ + Rmm/c (123)

where i’ = argmax; {tsﬂ-}i[:l and R, is the distance between a zenith SV and the
user on the Earth’s surface which is a constant. The pseudorange can then be formed
according to (1.7).

1.1.6.5 PVT Estimation/Filtering

As the pseudoranges and pseudorange rates are formed, the positions and velocities of
the SVs are calculated, user PVT can be estimated. The simplest practical method is
the least squares (LS) linearized about the last position fix. For the first estimation,
the initial position is selected as the center of the Earth. On condition that the
user is on Earth or in the atmosphere, this initial condition along with the user time
initialization from Section 1.1.6.4 always converges for all GNSS constellations [13].

Since some of the pseudoranges and pseudorange rates are of better quality than
others, C'/Ny threshold can be applied to exclude noisy measurements. Next, satel-
lites with low elevation angles suffer from severe multipath and ionospheric refraction
difficult to remove without dual frequency measurement. Elevation mask of 5° to
reject low elevation satellites from PVT measurement set is a standard practice. If
the geometric diversity of the visible constellation is poor so that the position estima-
tion precision would be much worse than pseudorange standard deviation, the PVT
is not estimated at all. Typically, position-dilution-of-precision (PDOP) threshold
equal six is used in GNSS receivers.

To improve the performance of the PVT estimation, weighting can be incorpo-
rated to the least squares criterion (WLS). A straightforward approach is to construct
the weights based on C'/N, estimates. However, these estimates reflect more how

8This time is called z-count for GPS signals.



CHAPTER 1. GNSS SW RECEIVER AND ARCHITECTURES 32

the pseudoranges are noisy, but other significant sources of errors such as ionospheric
errors after correction for single frequency receivers (0-7.5 m), multipath error (1 m),
ephemeris and clock prediction errors (1.5 m), become dominant if the tracking loops
are properly designed. Weighting using elevation angles is suggested because of these
reasons.

A priori knowledge about user dynamics can be embodied into the estimation
process. Typically, the extended Kalman filter (EKF) is used with various Gauss-
Markov models of the user PVT. In airborne application, even acceleration models
are used. The measurement covariance matrices should be constructed respecting
also other errors than noise to get the best filtered values. For velocity and higher
order motion models, a large oscillator drift rate can limit the filtering performance.

For safety-of-live (SoL) applications, it is desirable to identify if any of the
measurements are much more inaccurate than expected and can significantly bias
the PVT estimates. A technique named receiver autonomous integrity monitoring
(RAIM) estimates the PVT excluding one measurement of a SV and remembers
the result. The same is repeated for other SVs. If one of these PVT estimates is
distanced by an unexpected amount to the others, it is excluded from the PVT es-
timation process. To lower the complexity, QR factorization can be used to get the
statistics for all the SVs at once.

1.2 Receiver Architectures

In this section, we discuss various receiver architectures - conventional architecture,
vector tracking architecture, and direct positioning architecture. The attention will
be paid to construction of measurement equations for these architectures, coopera-
tion of the tracking loops with the PVT estimator and the consequent performance
aspects.
Let us first define the following vectors: a vector of signal samplesy = [yo . . . yK_l]T,

the vector of pseudoranges p = [p; ... pI]T, the vector of pseudorange rates p =
[p1...p1]", and the PVT vector

v = : (1.24)

We will generally denote an estimate of random variable a at time k& with hat a,
prediction with tilde a. We further distinguish noiseless pseudoranges values with
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asterisk a*. For example, the noiseless pseudorange to ith SV p! equals

pi = Pi — Wy, (1.25)
the noiseless pseudorange rate is then
pi = pi — Wy (1.26)

1.2.1 Conventional Architecture

The conventional architecture comprises local tracking channels for each SV provid-
ing pseudoranges and pseudorange rates to be used as observables by the navigation
processor estimating the user PVT, see Figure 1.3(a). Each local tracking channel
estimates the parameters separately and independently based on the NCO accumu-
lator states of the code and carrier tracking loops and pseudorange formation block
using time marks from the navigation data. Since the estimation process is split
between two steps, it is often called as two-step approach.

1.2.1.1 Measurement Equation for Estimation of Pseudoranges and Pseu-
dorange Rates

In a conventional receiver, the pseudoranges {p;}._, and pseudorange rates {p;}._,
are first calculated taking the received signal samples y = [y .. .yK,l]T as a mea-
surement for k=0,..., K —1

I ¥
U = Zaiexp (j (27T (—%fc,i + f1F> kT, + 901)) si (T, — pi/c) +ng. (1.27)
i=1

Let us assume that 7, = 1/Bpg, the noise component ny = n(k7,) can then be
modeled as complex WGN with single sided PSD 2N, /T, for k =0,..., K — 1. Let
vir (pf, pf) be a time-dependent function that shifts the transmitted signal in time
7, = p;/c and in frequency by fs; = (—p; fei/c+ fir) so that

Vik (07> P;) = exp (27Tj (—p_cifc,i + f]F) k'Tp> si (KT, — pi/c) (1.28)

and let € (ay;, ;) be an exponential with phase ¢; and scaling «;. The received signal
can then be expressed as

vk = Y €, @) vik (05, 55) + e (1.29)

i
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Figure 1.3: Receiver architectures: (a) conventional architecture, (b) vector tracking
architecture, (c) vector tracking architecture with prefilters, (d) direct positioning
architecture. Lines denoted as dash operate at low rate (navigation update rate -
typically 0.1 s or 1 s), whereas solid lines operate at much higher rate.
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Defining a vector of complex WGN noise n = [ny .. .nK_l]T and a vector of shifted
signal v; (p}, pf) = [vio- ..I/i’K_l]T, a set of (1.29) can be rewritten as, forming
the measurement equation for estimation of noiseless pseudoranges and pseudorange
rates,

y = ela, i) vi(p}, f}) +n. (1.30)

1.2.1.2 Measurement Equation for PVT Estimation

Substituting (1.1) into (1.7), we can rewrite the equation for pseudorange measured
to 1th SV as

pi = |lxv — xgil + b+ wy. (1.31)
Let us now define a function gx; (xu, b) = ||xy — xg,|| + b = p; that calculates the

noiseless pseudorange to ith SV from the user position xy, let gx = [gx1 - - .gx,I]T
be a concatenated vector function of gx,. Defining a vector of pseudoranges p =
[p1-.. pI]T, the measurement equation for the estimation of user position x; and

clock bias b can be formed as
p=gx(xu, b) +w, (1.32)

where w, = [w,1 ... w,;]" is an additive noise vector.

Similar steps can be applied to derive the measurement equation for estimation
of user velocity vy and clock drift b. Let us define function gvi(vy) = —17 -
(Vo — Vg,) + b = pf that calculates the noiscless pseudorange rate pf to ith SV so
that (1.18) can be rewritten as

fi = Gvi <vU, 6) iy, (1.33)

Let g, (VU, b) = [gv1--- ng]T be a concatenated vector function of gy ;. Defin-
ing a vector of pseudorange rates p = [p; .. .p[]T, a measurement equation for the
estimation of user position vy and clock bias b can be formed as

pP=28y <VU, b) +w, (1.34)

where w, = [w;1...w;]" is an additive noise vector.
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1.2.1.3 Estimator Decomposition

The estimation process of the PVT is decomposed into two steps - estimation of

: el v .
noiseless pseudoranges {p;},_, and pseudorange rates {p;},_, separately and inde-
pendently for each SV not considering signals from other SVs, since they are almost
orthogonal due to CDMA. The considered measurement equation for ith SV from
(1.30) simplifies to

y =€, wi) v (pi, pi) + n. (1.35)

The estimates of noiseless pseudoranges and pseudorange rates, being the pseudor-
anges and pseudorange rates for i = 1, ..., I, respectively,

po= p (1.36)

pi = pi (1.37)

are then used as observations for the PVT estimation in (1.32), (1.34).

1.2.2 Vector Tracking Architecture

The fact that the tracking loops and the PVT estimator operate decoupled is the
most straightforward way of implementation being feasible with current technology
and education of GNSS engineers. However, a concept of suboptimal cooperation
between the tracking loops and the PVT estimator yielding increased sensitivity,
named as vector tracking, has been proposed [73-76]. After the first decoupled PVT
estimate, the receiver is switched to an architecture where the PVT estimates or
predictions to the next epoch are used to drive the NCOs of the tracking loops, thus
closing a global feed back. The architecture is depicted in Figure 1.3(b). The main
benefit of such architecture is that the satellite channels of the receiver are controlled
by the PVT estimator and are hence more resistant to signal fadings and can operate
under much lower C'/Ny, since the channels automatically support one another.
The main drawback that the PVT estimator has to operate at the same rate
as the sampled outputs of the correlators has been removed by so called prefilters
filtering the discriminator outputs [55,77-79], see Figure 1.3(c). Common approaches
are the LS and KF combining both code and carrier measurements [55, 80, 81]. It
was demonstrated that 7 dB sensitivity gain [55,80,82,83| can be obtained because
of this global feed back in a GPS L1 C/A receiver and 3 dB are due to the prefilters.
In [84], it was shown that the vector tracking architecture is more resistant to
interference due to the coupled channels. A theoretical framework for performance
analysis has been opened in [83,85]. Since the channels of higher signal power support
the low power channels, a C'/ N, estimator able provide unbiased estimates at tracking
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threshold is needed. A suitable estimator using solely the correlator output values has
been proposed in [80]. In practice, the channels under a certain C'/N, threshold are
rejected for PVT estimation in order to eliminate the bias of the C'/N, estimator. Low
power channels contribute negligibly to the overall PVT estimate, anyway, even if
they are properly weighted or filtered. A phenomenon that biases of the pseudorange
and pseudorange rate measurements contribute negatively to the other channels has
been identified and has been investigated yet. This would be the case e.g. for severe
multipath.

The measurement equation for the vector tracking architecture remain unchanged
from those for conventional receiver in (1.30), (1.32), (1.34). However, the method
how the pseudoranges and pseudorange rates are estimated changes. The method is
not ML iterative anymore - no FBSs are present. The predicted values driving the
replica NCOs become a linearizing point for the discriminators. The fact that the
measurement equations are unchanged is reflected in no accuracy improvement at
high C'/N, operation compared to the conventional architecture. On the other hand,
the sensitivity gain stems from a stable linearizing point for discriminators, which
outputs are then filtered by the prefilters.

Despite the fact that the promising vector tracking architecture was introduced
in early eighties, it has never been implemented in a commercial receiver. The
reason for this is often said to be a lack of engineers skilled in both signal tracking
and navigation. Parallel with digital communications, the cooperation of individual
receiver layers is expected to boom in the very near future.

1.2.3 Direct Positioning Architecture

The division between the tracking channels and the PVT estimator can be removed
and a single estimator can be derived. The measurement equation can be obtained
by substituting for the noiseless pseudoranges and pseudorange rates in the measure-
ment equation (1.30)

€(ai, pi)vi (p, pj) +m (1.38)

I
.MN

=1

I
\M“

€ (i, i) Vi (gx (xv, b); gv (VU, b)) + n. (1.39)

=1

Estimation of user position X, clock bias l;, user velocity vy, and clock drift b from
the vector of signal samples y is named as direct position estimation (DPE). The
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architecture is depicted in Figure 1.3(d).

In [86-88], fundamental CRLB for direct positioning was derived. It is shown
that the DPE performs better than the conventional architecture when some of the
satellite signals are at low power. For the same C/Ny ratios of all satellites, both
CRLBs for position estimation are nearly identical. Direct positioning estimators
based on WLS, ML, and particle filters have been proposed in [66,86,89,90]. It was
shown that there is a large improvement of multipath mitigation/estimation when
using DPE approach compared to the conventional architecture.

The implementation of the DPE is suitable for pure SDR receivers, because sev-
eral iterations on the same large data vectors are needed which could not be done with
real-time correlators. The overhead of this method is large. So far these methods
have been implemented in SDR receivers working on powerful PCs with multi-core
CPUs [66] in postprocessing mode.

1.3 Receiver Hardware Concepts

Nowadays, two hardware concepts are employed in GNSS receivers - traditional con-
cept with real-time hardware correlators and software-defined-radio concept. The
former is a practical solution of commercial receivers reducing size, power consump-
tion and costs, whereas the latter is at the time of writing a solution for researchers
and special applications. In this section, we discuss these two concepts in more
detail, looking mostly on how they can accommodate various receiver architectures
(Section 1.2) and future outlooks in conjunction with the developing technology.

1.3.1 Traditional Concept with Real-Time Hardware Corre-
lators

The traditional concept of a GNSS receiver is depicted in Figure 1.4(a). The sampled
signal (y) is being processed by a bank of correlators, each of which performing the
signal replica generation, Doppler removal, multiplication of the signal with its replica
and the accumulation. The accumulated results are stored into a buffer when the
code replica generator overflows its period, this time is named as PRN TIC. At time
intervals shorter than a code period, named TIC, these accumulated results are sent
to a processor closing the feedback of the tracking loops. The flag of PRN TIC, TIC
value and NCO values sampled at TIC time are also transferred to the processor.
The processor calculates the discriminator functions, loop filtering and sends the
control words to the HW correlators for the code and carrier NCOs.
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Depending on the performance of the processor, the other processing steps such
as bit synchronization, data decoding&demodulation, pseudorange formation, navi-
gation data storage, and PVT estimation may or may not be accomplished therein.
Another host processor can be added. The acquisition can be done by the HW cor-
relators, as a serial or hybrid search, or an acquisition unit for parallel search is often
added.

The HW correlators run in parallel and are mostly implemented in an ASIC or
FPGA. The communication between these parallel digital circuits and the processor
must be in real-time, with latency shorter than the time between two successive
TICs, which is less than 1 ms for most of the GNSS signals. If an operating system
is accommodated in the CPU, it must have real-time capabilities.

Typical commercial GNSS receiver features ASIC correlators and a host processor
in a single chip - being a low size, low power consumption and low cost solution. The
limitation is in no possible reconfiguration of the ASIC correlators. On the one hand,
implementing the correlators into an FPGA will increase the size, power consumption
and variable costs, but on the other hand will enable reconfigurability and shorten
the development process. Xilinx has recently introduced an architecture, named
Zynq |91], where a large capacity FPGA is integrated in a single chip with a dual
core 800 MHz ARM-based processor - dual Cortex A9. The two CPUs may run in an
asymmetric multiprocessing mode where one of the processors uses a convenient OS
- e.g. Linux, and the second processor has no OS (bare-metal mode) or a real-time
OS to catch-up with the fast data. A big advantage of this architecture is that the
FPGA can be reconfigured by the processor.

Except for the conventional architecture, the traditional concept can also incorpo-
rate the vector tracking architecture. The challenging task lies more in programming
issues where the data from the PVT estimation must be transformed to the control
words of the NCOs.

1.3.2 Software-Defined-Radio Concept

The concept of a software-defined-radio (SDR) GNSS receiver is depicted in Fig-
ure 1.4(b). The signal samples (y) are stored into a memory at large blocks. The
processor then accesses this data as a whole and performs all the processing steps
itself. One of the advantage of the SDR concept is its easy reconfiguration and avail-
ability of the development tools, specifications, compilers, debuggers, etc. Another
advantage is that it can accommodate any of the receiver architectures introduced
in Section 1.3, since the same sampled data can be accessed many times unlike in
real-time HW correlators.
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Even though some of the SDR concepts running on a single CPU in real-time
with 1-bit quantization and low sampling frequency appeared in history, most of the
today’s research receivers rely on a massive parallelism offered by graphic processing
units (GPU) [14,92-96] or on powerful multi-core processors [66]. The authors of
GPU-based GNSS receivers [14,92-96] implemented their algorithms into NVIDIA
GPUs using CUDA language for not only graphic purposes. The fact that NVIDIA
GPUs are solely integrated in personal computers or in laptops did not allow this
concept penetrate the mass market of embedded devices. Nonetheless, several CPU
vendors claimed that they are about to integrate GPU on a single chip with the
CPU, thus spawning a platform for various advanced embedded applications such as
GNSS receivers.

A GPU is composed of a large number of relatively simple arithmetic and logic
units (ALUs), local caches and control logic that can operate in parallel, whereas
a CPU has a large cache, control logic and a small number of powerful ALUs [97].
The GPUs are suitable for signal processing algorithms where simple arithmetic and
logic operations are needed.
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Figure 1.4: Receiver hardware concepts: (a) traditional concept with real-time hard-
ware correlators, (b) software-defined-radio concept



Chapter 2

Testing Platform - the Witch
Navigator Receiver

In this section, we discuss the Witch Navigator project. Its development is another
crucial part of the study. We will demonstrate the high universality of the receiver
and show that it can easily serve as a testing platform for the proposed algorithms
in the thesis.

The Witch Navigator can implement both the traditional concept with HW cor-
relators and the SDR concept. Similar university research projects include: the open
Namuru GNSS receiver [98,99] based on an Altera FPGA and a host processor be-
ing on a small board but with limited performance and reconfigurability, the ipexSR
receiver [15], the receiver developed by the PLAN group at the University of Cal-
gary [95] and others, e.g. [66,93,96], based on GPU or multi-core signal processing.

2.1 The Witch Navigator Project

The Witch Navigator (WNav) is an open source project aiming to develop a low-cost
high-performance GNSS software receiver capable to process most of the present and
future GNSS signals [16,38-40].

The receiver consists of an ExpressCard receiver (Fig. 2.1), hosting two highly
reconfigurable RF front-end channels [100] and FPGA-based universal correlators
optimized to process majority of the GNSS signals [42], and PC or notebook. The
high throughput and prompt communication over the PCI Express interface enables
that the PC (or notebook) can serve as a control unit for the correlators, accomplish
the acquisition, data decoding and PV'T estimation. Optionally, the signal snapshots
may be continuously transferred to the PC in real time, and fully processed there.

42



CHAPTER 2. TESTING PLATFORM - WNAV 43

Figure 2.1: The Witch Navigator - ExpressCard photo

The flexible architecture enables layering FxpressCards, thus increasing the num-
ber of RF channels and number of correlators. Undoubtedly, WNav becomes a
multi-system, multi-frequency, and multi-antenna GNSS receiver. The receiver fur-
ther features connectors for inertial sensors and external frequency standard.

In other words, WNav can adopt all the receiver architectures discussed in Sec-
tion 1.3. For utilization of the SDR concept, the ExpressCard(s) should be connected
to a powerful PC with a multi-core CPU or with a GPU suitable for general purpose
computing. The receiver is intended for education, research, scientific and small scale
applications.

2.2 Open Source Philosophy

The open source philosophy of the project stems from the following facts. All the sup-
porting source code is freely downloadable and home-reeditable. The communication
driver and application programs are developed in the C language for the Linux oper-
ating system with real-time patch. These and all other development tools, including
the hardware part, are also free of charge.

2.3 Hardware

The block diagram of a single ExpressCard is depicted in Figure 2.2, PCB layout in
Figure 2.3. Each card contains:
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Figure 2.2: The Witch Navigator - ExpressCard block diagram

e two direct conversion receivers

e two dual channel 8-bit ADCs

e Spartan 6 FPGA with PCle bus

e configuration flash

e highly stable quartz oscillator (20 MHz, 1 ppm)

e linear voltage regulators

e connector for interconnection of the receivers to the large system

e connector for external sensor or device.

44

The direct conversion receivers (MAX2120), can each be reconfigured from the
PC. Their synthesizer’s frequency spans over the range of 925 + 2175 MHz with
4 + 40 MHz adjustable baseband filter.
controlled amplifier with 75 dB dynamic range, and 20 dB reconfigurable baseband
amplifier. Active antenna should be connected to the RF channel inputs (CH1, CH2)
via MMCX connector.

The block diagram of the FPGA processor is depicted in Fig. 2.4. The univer-
sal correlators (UCorIP) communicate with the PC via the PCI express interface

The integrated circuits feature voltage
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Figure 2.3: The Witch Navigator - ExpressCard PCB photos

(PCIellIP, PCle), clocked by phase lock loop (PLL125). The I2C controller serves as
an interface between the direct conversion receivers and the PC, control and status
data words are there wrapped into PCle packets.

The Universal correlator (UCorIP) is an economic implementation of the QPSK
E-L correlator. It utilizes RAM-based PRN generators of maximal length of 10230
chips. Each PRN memory can be loaded with data from the PC when in operation.
The signals that can be processed are listed in Table 2.1. The currently used FPGA
(Spartan 6) has 24 of these E/L correlators. In other words, a single ExpressCard can
process up to 24 QPSK signals in parallel using the FPGA. Another part of UCorIP

20 MH, PCle

—_—>
ADC L
SGe] UCorIP {of PCIElIP [ PCle [
—>

| {125 MHz
12 100 MH
e 10 PLL125 | o MEs

Controller

Figure 2.4: The Witch Navigator - FPGA processor
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Table 2.1: Universal correlators - possible signals to process

System Signal Support. No. Note
of
Correl.
GPS L1 C/A Yes 1 Verified
L2C Partially 1 Data channel only
L5 Yes 1
L1C Partially 1 BOC(1,1)
component only
GLONASS L1 Yes 1 Verified
L2 Yes 1 Verified
L1 K Not 12 GLONASS K sat.
known sig. not specified
L K Not 12 GLONASS K sat.
known sig. not specified
Galileo Elb & Elc Yes 1 QPSK method,
BOC(6,1) sig.
neglected, verified
E5 Yes 2 Two QPSK sub-
carriers [41]
E5SA Yes 1 Verified
E5B Yes 1 Verified
COMPASS B1 Yes 1 Verified
B2 Yes 1 Verified

46
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is the signal capture unit which captured samples (=snapshots) are transmitted on
the PCle bus using direct memory access (DMA) at every time interval counter
(TIC) event, occurring every 0.8 ms. After the DMA transfer finishes, the PC is
interrupted by the FPGA and software handling begins. The situation is depicted
in Fig. 2.6. The control words produced by the PC are sent back on the bus at the
end of the software handling, which is not illustrated in the figure.

The block diagram of a Universal correlator is depicted in Figure 2.5. The received
signal samples y,, are first multiplied by the complex conjugate of the estimated car-
rier replica and then by the PRN code sequences (Early/Late, Inphase/Quadrature).
The results are integrated for the time of one PRN code period (=memory length).
The results are dumped at the events of PRN code overflow (PRN TIC Early/Late).
The correlator output values are then exported when the TIC increments. At that
time, new values of carrier and code control words (bearr, beode) are loaded to the
corresponding NCOs and the actual phases of the NCOs are exported as carrier and
code measurements, respectively. The late replicas are generated by shifting the
early ones as well as the PRN TIC Late is just a shifted version of PRN TIC Early.
The distance (Corr. space) can be set at multiples of sampling period (7, = 50 ns).
The exported values of a Universal correlator include the real and imaginary part
of the integrated values at the last PRN TIC event, flags PRN TIC Early/Late, the
value of the TIC, and NCO carrier and code phase measurements. The feed back of
the tracking loops is closed via the host PC where discriminators and loop filter are
implemented.

2.4 Software

The PC software is primarily designed for the conventional architecture (=UCorIP
in use). Transition to the pure software-defined-radio architecture is straightforward
(=processing fully by the PC).

The requirements on low latency interrupt handling routing and open source
project resulted in selection of the Linux operating system (OS) with real-time (RT)
preemptive patch. RT preemptive patch changes a standard Linux kernel into a soft
RT kernel. Soft RTOS is an OS that does not guarantee the RT behavior, however,
with a high probability will behave like RTOS. The advantages it brings are

e 10 extra RT application programming interface (API) is needed
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Figure 2.6: The Witch Navigator - time relations of the data transfer

e the user is unconstrained to utilize common standard libraries, compilers, de-
buggers, etc.

In case of an occasional outage, an error handling routine is implemented.

The PC software diagram is depicted in Fig. 2.7. The developed PCI Express
driver operates in the kernel space while other processes, including the FPGA han-
dling process, acquisition process, and PV'T process are accessible in the user space.
The FPGA handling process is a real-time process with the highest priority. The
interrupt handling routine is implemented as a blocking read cycle, which is being
unblocked by the interrupt. The interface between the user and the running software
is provided via a monitoring process with its graphical user interface.

2.5 Current State

At the moment, the Witch Navigator is able to estimate its PVT using GPS L1
C/A, and GLONASS L1&L2 signals. A single ExpressCard has been used so far
and the following combinations are now functional - GPS L1 C/A and GLONASS
L1 multi-constellation receiver or GLONASS L1&L2 dual frequency receiver. GPS
L2C, Galileo FNAV, INAV modules are under construction, yet the acquisition and
tracking modules of Galileo E1, E5, COMPASS B1, B2 signals have been developed.
The acquisition supports both serial, and parallel algorithms based on FFT (PCSS,
DBZP). The tracking module is implemented using separate DLL/FLL/PLL. The
PVT estimation module has implemented the least squares (LS), weighted least
squares (WLS), extended Kalman filter (EKF) algorithms, and a novel iterative
factor-graph-based (FG) filtering algorithm with Gaussian PDF representation. The
receiver supports cold and hot start, warm start is being implemented.

2.6 Future Plans

In the very near future, the project is planned to undergo the following changes:

e cooperation of multiple ExpressCards
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employment of a higher capacity FPGA
development of OpenCL libraries for fast acquisition and tracking

at some user space programs transition to an object-oriented programming
language (C++, Python,...)

Long term plans include:

reception of other GNSS signals, namely GPS L5C, COMPASS signals
reception of SBAS signals, including EGNOS, WASS, QZSS
implementation of vector tracking

implementation of RAIM

implementation of multipath mitigation techniques, non-line-of-sight position-
ing techniques

join of other enthusiastic people, organizations cooperating on the development.

We recall that the main application area of the Witch Navigator lies in education,
research, and scientific small scale applications. The project does not aim to compete
with commercial companies, but will likely provide materials useful for the develop-
ment of their projects. The project is not funded by any institution and is politically
independent.

2.7

Student’s Project Tasks and Responsibilities

The proposing student has the following responsibilities and tasks concerning the
Witch Navigator project:

RF front-end control

frame synchronization, data decoding & demodulation
navigation data storage and pseudorange formation
postprocessing signal acquisition, tracking, bit synchronization

PVT estimation/filtering
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e cooperation on the selection of RTOS and on the interprocess communication

(IPC)
e others (web design, templates, logos,...).

e involvement of the university undergraduate students.



Chapter 3

Overview of Estimation Theory

In this chapter, we overview the estimation theory, mostly citing [43] - “the bible of
estimation theory for engineers”. We address the problem of parameter estimation,
discuss desired estimator properties, and basic performance characteristics. Two
types of estimators - classical and Bayesian are briefly introduced. For both types
of estimators, we discuss the fundamental lower bounds of a minimum square error,
so called Cramer-Rao lower bound (CRLB), that the best estimator can attain if it
exists. In most cases, other algorithms either suboptimal or with different optimality
criterion must be employed which we discuss, as well.

3.1 Problem Definition

The problem of estimation theory is to extract the useful information from noisy
continuous time signals. However, discrete time signals are processed by today’s
digital signal processors and also continuous time signals can be represented with
discrete signals using an appropriate orthogonal transformation [101]. Suppose that
we have N-point data set arranged in a vector x = [xgzy... 2 N_l]T which depends

on a unknown, generally vector of p x 1 size, parameter 8 = [6; ... GP}T which we
wish to determine from the data set or define an estimator
6=g(x) (3.1)

where g is some p-dimensional vector function. Given the signal model, its PDF
description, we would like to derive somehow an estimator being optimal in some
sense, e.g. would minimize the mean square error (MSE)

mse 8] | (0~ 6)’]. (32

53



CHAPTER 3. OVERVIEW OF ESTIMATION THEORY 54

It is desirable to have estimators that on average converge to the true value - are
unbiased

E [é} — 9. (3.3)

For such estimators, the minimization of their variance also minimizes their MSE,
since it can be easily shown that

mse [@] = var [@} + b? (9) (3.4)

where b (é) =F [é] — 0 is the bias of the estimator. If an unbiased estimator cannot
be found, we wish to have an estimator that is at least asymptotically unbiased

limy o E [é} —9 (3.5)
and its variance goes to zero for a large number of observations
lim oo var [é] =0. (3.6)

Such estimator is said to be consistent.

In classical estimation theory, it is assumed that @ is a deterministic param-
eter. The complete description of the signal model is then the likelihood PDF
p (x]0). In Bayesian philosophy, the estimators have some a priori knowledge about
0 that can improve the performance of the estimator significantly. The complete
description of the model is then the joint PDF of the data and the parameter
p(x, 0) = p(x|0)p(0). For either class of estimator, the bound of minimum achiev-
able variance of an unbiased estimator can be derived using the Cramer-Rao lower
bound (CRLB) theorem. An estimator that attains the bound is said to be efficient.

If the data come to the estimator gradually and the estimates are to be obtained
for every new observation, to lower the dimensionality one should resort to sequential
estimation where the current estimate is calculated using the previous estimate or its
statistical description, and only the new data. In Bayesian philosophy, the parameter
often depends on time. If estimates at the current time are obtained using the a priori
knowledge about the parameter at that time and the current data, this is referred
as filtering. If older estimates are recalculated from the new data, this is named as
smoothing. Extrapolating estimates to the future is referred as prediction.

In Bayesian estimators, the use of a priori PDF sometimes allows us to eliminate
parameters that we do not want to estimate or cannot estimate. These parameters
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are called as nuisance. If the vector parameter @ can be partitioned into a vector of
nuisance parameters @,, and a vector of parameters of our interest 6,

o=lo =1 0] &0

the nuisance parameters can be eliminated from the joint PDF as follows
px8) = [p(x.6. 6,46, (38)
- / p(x. 6,10,)p (6,)d6,. (3.9)

In signal processing, our signal s (@) depending on the true parameter 6 is mostly
embedded in additive noise w, denoting as

x=s(0)+w (3.10)

where s is an N-dimensional deterministic function, w is an N x 1 random variable
with some statistical description. The situation is depicted in Figure 3.1. A tractable
and often well representing model is that w is Gaussian with mean p and covariance
matrix C

p(w) = Nw(p, C) (3.11)

B (2m)2 jleté C] P (_% (w—p)' CH(w- u)) : (3.12)

Especially for observations where the covariance matrix does not change over ele-
ments, the noise is modeled as zero mean white Gaussian noise (WGN). The covari-
ance matrix is then diagonal with o2 > 0

pw =0 (3.13)
C = Io% (3.14)

Not always can the explicit formula of performance be derived in a closed form.
The most straightforward approach is then to employ Monte Carlo simulations and
get the first and second order characteristics of the estimator. It is crucial to use a
sufficient number of repetitions to trustfully estimate the characteristics [52]. Along
with the performance, we are always interested in complexity of the estimator. Typi-
cally, how many floating-point operations (flops) it requires, what is the total memory
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W
9 s(8) é} X 9

Figure 3.1: Estimator of a signal s depending on the parameter of our interest 6
embedded in noise w. The estimator takes the input signal x and gives estimates of
the parameter 0 through a function g. The signal model is denoted with full lines,
whereas the estimator part is denoted dashed.

consumption, etc. Furthermore, we are also interested in how the algorithm is dis-
tributed or how it can be parallelized. The other questions are how complicated
operations must be adopted and what is the minimal bit width for the operations.
These parameters are important when implementation not only in FPGAs, ASICs
or GPUs.

In practice, engineers have limited background depending on their focus and
cannot implement all existing algorithms, even though they have equipment to do
so. The intellectual complexity plays, undoubtedly, an important role when deciding
to implement an algorithm.

3.2 Classical Estimators

3.2.1 Minimum Variance Unbiased (MVU) Estimator
and Cramer-Rao Lower Bound (CRLB)

The most common requirements we can have on the estimator is that it is unbiased
and of minimum variance of the estimate. Such estimators are called as minimum
variance unbiased (MVU) estimators. The conditions we have are

~

6 — argmingE | (6 - 0)’] (3.15)
E[é} — 0. (3.16)

However, such estimators do not always exist, since the covariance matrix of the
estimate may depend on the true parameter 8 and may yield various estimators for
different values of 0. It is not clear which estimator is the best, since we do not know
the true value. If the variance is smaller for some 0 and for some 6 larger, the MVU
estimator cannot be found, see Fig. 3.2.
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var i A

<Y

Figure 3.2: Existence of the MVU estimator (a) exists - variance of 0, is always larger
than variance 0 (b) does not exist - variance of 0, is for some ¢ larger than variance
6, and for some 6 lower.

If the estimator exists, we may not be able to find it. Standard procedures to
find such an estimator are in order:

e determine the CRLB and check to see if some estimator satisfies it

e apply Rao-Blackwell-Lehmann-Scheffe (RBLS) theorem

e restrict the estimator to be linear (produces the estimator only if the MVU
estimator is linear in data).

The Cramer-Rao lower bound (CRLB) is a fundamental bound in classical estimation
which gives the minimal variance that can have the best estimator. There cannot be
any estimator with better performance, except for those using a priori knowledge. If
6 is an unbiased estimator of 0, then

Cy >J71(0) (3.17)

where J () is the p x p Fisher information matrix

3(0)], = —E [%{;z@} . (3.18)

Further if the following regularity condition holds

E [%ﬁ;'e)] =0 (3.19)
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an estimator may be found that attains the CRLB C, = J~' () if and only if

Oln p (x|6
Ap &) _ 3.(0) (g x) - 0) (3.20)
00
and the estimator is 0 = g (x).
If the signal model is linear
x =HO +w (3.21)

where H is N x p matrix and w ~ N (0, C), the estimator that attains the CRLB
can be found in a closed form

6= (H"C'H) 'HTC 'x (3.22)
and the covariance matrix is

-1

C, = (H'C'H) (3.23)

Also it holds that X
6~N (6, (H'C'H)). (3.24)

The CRLB for a transformed parameter o« = g (0) where g is an r-dimensional
function can be found as

og’ (0)
00

In the case of Gaussian observations where the mean and the covariance may depend
on 6

(3.25)

x ~ N (11(8), C(8)) (3.26)
the Fisher information matrix can be obtained as
_ [0mO@] 1y [01(0)
s, = |52 cre |
L[y, €O, CO)
+ 2tr [C (9) a0, C(0) a0, } (3.27)

For wide-sense stationary (WSS) processes, the Fisher information matrix can be
asymptotically approximated as

81n5 0) O S, (f, 0)
), = N/l Tl (3.28)

L\)
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where S, is the PSD of zero mean z,,.

For a large number of estimators, it is sufficient to operate with a reduced-
dimensionality function T (x) instead of large data x. Function T (x) is sufficient, if
p (x|T (x), €) does depend on 6. If it did, we could infer some additional information
about @ from x compared to the knowledge of T (x). In this case, T (x) is called
sufficient statistic for 8. The Neyman-Fisher factorization theorem states that if we
can factor the PDF p (x]0) as

p(x]6) = g (T (x),0)h(x) (3.29)

where g is a function depending on x only through T (x), an r x 1 statistic, and also
on 0, and h is a function depending only on x, then T (x) is a sufficient statistic for
0. Conversely, if T (x) is a sufficient statistic for 6, then the PDF can be factored
as in (3.29).

The Rao-Blackwell-Lehmann-Scheffe (RBLS) theorem then gives an approach
how to find a MVU estimator based on the sufficient statistic: If @ is an unbiased
estimator of @ and T (x) is an r x 1 sufficient statistic for @, then § = E 6T (x)]
is a valid estimator for @ not dependent on 6, unbiased, of lesser or equal variance
than that of 8. Additionally, if the sufficient statistic is complete, then 0 is the MVU
estimator. Completeness means that for a v (T), an arbitrary r x 1 function of T, if

Efv(T)] = /v (T) p (T|0)dT = 0 (3.30)

for all @, then it must be true that
v(T)=0 (3.31)

for all T.

3.2.2 Best Linear Unbiased Estimator (BLUE)

If it is impossible to derive the MVU estimator or the evaluation is complex, it is
straightforward to find a minimum variance unbiased estimator that is linear in data.
We suppose the estimator has the form

6 = Ax (3.32)

where A is a p X N matrix. The condition that the estimator is unbiased can be
expressed as

E [é} — AE[x] = 6. (3.33)
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In order to satisfy (3.33), the measurement equation must be linear
x=HO0+w (3.34)

and w is zero mean E [w]| = 0, but generally non-Gaussian. The BLUE is identical to
the MVU for the linear model with Gaussian noise in (3.22) with the same covariance
matrix (3.23).

3.2.3 Maximum Likelihood Estimator (MLE)

Maximum likelihood estimator is a practical solution if the MVU estimator is difficult
to find, cannot be found or is complex to implement. It attains the CRLB for large
data vectors. The estimator maximizes the likelihood function p (x|@)

6 = argmax, p (x|6) (3.35)

or equivalently the log-likelihood function In p (x|0)

A

0 = argmaxy Inp (x|0) . (3.36)
The necessary condition
Olnp (x|0)
——F= =0 3.37
50 (3.37)

to find the global maximum must hold. The MLE asymptotically attains the CRLB
6N (0,37(9). (3.38)

If a MVU estimator exists, MLE will produce it. The MLE is invariant to a transfor-
mation. If & = g (@) and 0 is a MLE of 0, then & = g (é) is the MLE of a. Since

the likelihood function can be evaluated for the observed data, the maximum of it
can be found numerically. There are common iterative procedures assuming appro-
priate initial guess. These include Newton-Raphson method, scoring approach, and
the expectation-maximization (EM) algorithm. The Newton-Raphson method tries
to solve (3.37) iteratively

Jdlnp (x|0)
0)=——F,— 3.39
g(6) = =L (339)
by first order Taylor approximation about previous guess 8; from ith iteration
dg (6
20)=50)+ B 0-6) (3.40)

0;
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The new quess is obtained by solving (3.40) with g (8) =0

dg (9)

] ] g(0,). (3.41)

0i1=0;— [

The scoring method approximates the second derivative of the likelihood function by
the negative of the Fisher information matrix

P?Inp (x|0)
0’0
where the equality holds if x are independent and identically distributed (IID). The

fact that the second derivative is substituted by its expected value may increase
stability of the iterations. The method is then

~ —J(6) (3.42)

0,1 =0,+J"1(0,)g(6). (3.43)

The EM algorithm ensures at least convergence to a local maximum under some mild
conditions. We suppose that the complete data x can be decomposed into incomplete
data sets yi,...,ynm where M € N and there is a many-to-one incomplete to complete
data transformation x = g (y1,...,ym) = g(y). Instead of maximizing In py(x|0),
the expected value of In py (y|@) is maximized as a conditional expectation

Eyix [lnpy (y16)] = / I py (y16)p (31, 6) dy. (3.44)

Instead of using 0 that we do not know, we use i¢th guess 0;. We then have the
following iterative algorithm:
Expectation:

U (6]6,) = / Iy (y10)p (v]x, ;) dy. (3.45)

Maximization:
0,1 = argmaxyU (6)6;) . (3.46)
It is sometimes the case that the data are Gaussian p(x|@) = N (0, C) and
large, and maximization of the PDF would be computationally demanding due to
the inverse of large C. If x is a wide-sense stationary (WSS) process, the covari-

ance matrix C is Toeplitz, the derivative of the log-likelihood can be asymptotically
approximated as

alnp x|9 o N/ { 8282))} Gge(if)

df (3.47)
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Figure 3.3: Newton-Raphson iterations for scalar parameter

where P,(f) is the periodogram of the data

2

1 zrpexp (—j2nfn) df (3.48)

and S, (f) is the PSD of the data.

3.2.4 Least Squares (LS)

The approach of least squares (LS) minimizes the least squares between the data and
the useful signal. No statistical knowledge about the data is needed, only the signal
model. However, the statistical performance cannot be assessed. The LS method is
widely used since it is easy to implement. Assume the following signal model

x=s(0)+w (3.49)

where s is purely deterministic signal depending on @ and w is a random variable.
The LS estimator (LSE) minimizes the sum of the squared difference between the
measured and the deterministic signal

A

6 = argming (x—s(8))" (x—s(8)).

The approach is reasonable when the noise is zero mean E[w] = 0. If the signal
model is linear, there is a linear dependence of s on @ via an N x p matrix H

s = H. (3.50)
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It is said to generate a linear least squares problem that can be solved in a closed
form

0= (H"H)  H'x. (3.51)

Conversely, a nonlinear least squares problem is obtained which is mostly solved
iteratively or via a grid search. If the signal is linear in some of the parameters
of vector 8 and in some nonlinear, a separate least squares problem is generated.
Weighting can be applied to the squares that are minimized so that we minimize

LS(0) = (x—5(0)TW (x —s(0)) (3.52)

where W is a diagonal N x N weighting matrix w;; > 0. The linear least squares
problem is then solved as

0= (H"WH)  H"Wx. (3.53)

If the covariance of a zero mean noise w is known, commonly W = C~!. The
minimum least squares error is then

£5(8) =x (W - WH (H'WH) ' H'W) x. (3.54)

The least squares can be solved recursively in two ways. If even the signal model
is unknown, it can be approximated by a polynomial which number of coefficients
is increased and estimated with new observed data [43], known as order-recursive
least squares. Provided the signal model is known, the new estimate can be obtained
recursively for the incoming data. The problem is named as sequential least squares.
It can be used only for uncolored noise, or C must be diagonal. Assuming that

C, = diag(g,...,070) (3.55)
. Hn—l _ nxp

m, = [B ][] 336)

X, = |zo... 2] (3.57)

yields a recursive estimator in the following form

A A

0, = 0, ,+K, (xn . hfé,H) (3.58)

anlhn
K, = 3.59
0-721 + hZanlhn ( )

X, = (I-K.hy) X, (3.60)
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where x,, = C @n) is the covariance matrix of the estimate at time n. Note that
no matrix inversion is needed. To initialize the recursion, x_; may be chosen large

and 9,1 of zeros.
If the parameter is constrained by a linear equation

A6=hb (3.61)

where A is an r X p matrix b is an r x 1 vector, it can be regarded at least squares
criterion to minimize the following Lagrangian

LS (é) — (x —HO)" (x — HO) + A" (A0 — D) (3.62)
where X is an r X 1 vector. The constrained estimate éc is then
R . _ _ -1 .

6.—6— (H'H)"' A" (A (H'H)'AT) (A0 -D) (3.63)

where @ is obtained from (3.51).
The nonlinear least squares problem can be solved if the following transformation
from nonlinear to linear signal model exists

a = g(0) (3.64)
s(@(a)) = s(g ' (o)) =Ha (3.65)

where a is a p x 1 vector and g is a p-dimensional function with inverse g~—! which
must exist. We can find the estimate in two steps

& = (H'H) 'H'x (3.66)

0 = g (a). (3.67)

The second case of the nonlinear least squares problems discussed is when the
parameters can be separated into linear e and nonlinear 3 so that

s=H(a)3 (3.68)

o= |5 ]-[7 569

and H is an N x ¢ dependent matrix on «. The problem then reduces to

where

Q
I

argmax, x H (a) (H" (o) H (Ot))_l H” (a)x (3.70)
B = (H'(a)H(a) 'H (@)x
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Figure 3.4: Gauss-Newton iterative solution to nonlinear least squares problem.

There are two common iterative methods for nonlinear least squares. The Newton-
Raphson method iteratively solves the equation of the derivative of the least square
criterion that should be zero as a necessary condition for an extreme. It results in
the following iterations, with index k& denoting the number of the iteration,

o - o @)(o) - Ee ) - 4)])
- (9k) (X . @k)) (3.72)

where
o), - 5 (3.73)
G.(0)], - 399 | (3.74)

The Gauss-Newton method linearizes s(@) about the previous estimate 01

o o ~ o -1 ~ o

0= 0,1+ (H” () H(06)) H"(8:) (x—s(84)) (3.75)
where H () is obtained as in (3.73). The algorithm is depicted in Figure 3.4. Both
iterative methods may face similiar convergence problems. They can either converge
to any other extreme than a global minimum or may converge slowly or even not at

all if the previous estimate is not in a close vicinity of the true value. Therefore, an
initial estimate must be selected with care.
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3.2.5 Method of Moments

The method of moments produces an estimator that is easy to implement and has
good results for long data vectors because the estimator is usually consistent. But
the estimator has no optimality properties, however, mostly it can be approximated
using a Taylor series expansion [43]. The method of moments can be used to initialize
iterative estimators. To obtain the method, let us define kth moment of the observed
signal x,,, that is a WSS process,

=B |(2)"] (3.76)
and a function h; that calculates the kth moment from the parameter
e = hy, (0) . (3.77)
Defining vectors, for K as the maximum number of considered moments,

M1 h1(6)
p=| : | =h(9)= : (3.78)
1K hx (6)
and assuming that h™! exists, we can summarize the method of moments as
6=h"'(p) (3.79)
where Nt
N Zn:O T,
: : (3.80)

N-1 K
% Zn:O (l’n)

o
I

3.3 Bayesian Estimators - Minimum Mean Square
Error (MMSE) Estimator and Maximum a Pos-
teriori (MAP) Estimator

We assume that @ is a random variable which particular realization we have to
estimate. We can incorporate the a priori knowledge to the estimation to improve
the performance. If the MVU estimator cannot be found, we can assign prior PDF
to @ to find an estimator that minimizes the MSE. Such estimator is then said to
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be optimal “on the average” and always exists. The MSE in classical estimation is

defined as )
mse [9} = / <é—9> p(x]0)dx (3.81)

whereas in Bayesian philosophy as

Bmse [9} = // (9 - 0>2p(x, 0) dxde (3.82)

— B, [mse [é” (3.83)

Note that mse [é] can generally depend on 6, whereas Bmse [é] cannot, since it is

“averaged over @”. The Bayesian MSE estimate can be derived to be the ensemble
of the parameter conditioned on the data [43]

A

6 = E[f|X] (3.84)
= / 0p (6]x) d6. (3.85)

The estimator is named as the minimum mean square error (MMSE) estimator. The
posterior PDF can be obtained from the likelihood PDF p (x|@) and the prior PDF
p (0) applying the Bayesian rule

b0 — 200 (0) 550

~ [p(x0)p(0)de
with the denominator being just a normalizing factor ensuring proper scaling of the
posterior PDF.
If the signal model is linear with Gaussian PDF, the estimator can be found in a
closed form. Assume the linear model as in (3.21)

x = HO + w (3.87)

where 6 is now a random parameter with prior Gaussian PDF N (ug, Cg) and w is
a noise vector independent of @ with PDF N (0, Cy,). Then the posterior PDF is
also Gaussian with mean

E[6]x] = py + CoH' (HCoH" + CW)*1 (x — Hpy) (3.88)

and covariance

Cojx = Co — CoH" (HCoH” + Cw)71 HC, (3.89)
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where H need to be full rank.

Generally, there is no need to restrict ourselves to a class of Bayesian estimators
where just the MSE is minimized. Denoting € the estimate error € = 0— 0, we could
also minimize E [||€||] instead of E [H(-:HQ} which would lead to a different estimator.

Defining C (€) as a cost function, a general Bayesian estimator is said to minimize
Bayesian risk BR
BR = EI[C(€)]. (3.90)

If C (€) = ||€||?, we get the MMSE estimator. The cost function C (€) = ||€|| penalizes
all errors equally. Another example “hit-or-miss” cost function can be defined as

Cle) = {O lell > (3.91)

1 el <o

where 6 > 0. These cost functions are depicted in Figure 3.5 for a scalar parame-
ter 6. It can be shown that the Bayesian risk for the absolute value cost function is
minimized for the median of the scalar parameter 6 conditioned on the data x

/ p(9|x)d9:/éoop(0|x)d9 (3.92)

—00

whereas the “hit-or-miss” minimizes the Bayesian risk for maximum of the posterior
PDF, considering scalar parameter 6,

~

0 = argmax,p(0|x) (3.93)
= argmax, ]% (3.94)
= argmax,p (x]0)p (). (3.95)

This estimator is named as mazimum a posteriori (MAP) estimator. To summarize
this point, we recall that the posterior PDF p (0|x) is a crucial statistics for deriving
Bayesian estimators. For the square cost function, the case of MMSE estimator,
the mean of the cost function is calculated. In the case of the absolute value cost
function, the median is needed, and for the “hit-or-miss” cost function, the case of
MAP estimator, the mode must be found.

Sometimes, we are interested in a MMSE estimate of scalar parameter, say 6; for
0 < ¢ < p, having the vector parameter 8. There are two equivalent approaches to
get the scalar estimate. The first one is to take the scalar parameter estimate from
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Figure 3.5: Exemplary cost functions for a scalar parameter 8. Dotted line denotes
the quadratic cost function €2, the dashed line denotes the norm cost function €|,
the full line denotes the cost function defined in (3.91).

the corresponding element of the vector parameter estimate so that

~

b, = / 0,p (0]x) dO (3.96)

— /.../Qip (0]x) df; ... do,. (3.97)

But more efficient might be to marginalize the desired parameter by eliminating the
other parameters assumed as nuisance

~

0, = /in(eilx)dﬁi (3.98)

p(0;]x) = //p(a\x) de, ...dé,. (3.99)

except for d;

The MMSE estimator is invariant to linear transformation. If o« = A6 4+ b where A
is an r X p matrix and b is an r x 1 vector, then

& =A6+b. (3.100)

The MAP estimate of a vector parameter 8 can calculated as the MAP estimate
of all marginalized posterior PDFs of #; as in (3.98), (3.99)

~

0; = argmaxy p (0;]x) . (3.101)

It should be noted that maximizing the posterior PDF of the vector parameter 6
does not generally produce the same estimator as the MAP estimator. However, a
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vector MAP estimator can be proposed, and it can be shown that it minimizes a
different Bayesian risk, R
0 = argmax, p (0]x) . (3.102)

If 8 and x are jointly Gaussian, then the mean and the peak of the posterior PDF
merge and both MAP and MMSE estimators are identical. The covariance matrix
of a Bayesian estimator must be regarded to the “averaged” parameter and can be
derived to be

M, = Eq [me} : (3.103)

If & and x are jointly Gaussian, the estimate and its covariance matrix are
6 = E[0] + CoxCLl (x — E[x]) (3.104)
M, = Cgg — CpxCri Cxo- (3.105)

3.3.1 Linear MMSE Estimator and Wiener Filter

Similar to BLUE estimators, we might restrict the estimator to be linear and of the
MMSE (LMMSE) for that case. The motivation for this approach is again lower com-
plexity of the estimator. Clearly, the estimator will be suboptimal, except for cases
leading to a linear estimator, and will depend only on the mean and the covariance
matrix. No PDF is needed to derive the estimator. The LMMSE estimate and its
covariance matrix is identical to the MMSE estimate for the jointly Gaussian case as
in (3.104), (3.105). Bayesian Gauss-Markov theorem states that if the signal model
is linear as in (3.87) with general PDFs having the same mean and the covariance
matrix as the Gaussian case there, the optimal linear estimator is given by (3.104)
with (3.105) covariance matrix.

A sequential LMMSE estimator can be derived, named as Wiener filter. As-
suming the Bayesian linear model of the data, diagonal covariance matrix C,, =
diag (0¢,..., 0%_,), and the following notation for time index n < N

M, = E [(én . en)T (én . 0”)1 (3.106)

H,_ n X

the recursion to obtain the estimate and its MSE matrix can be summarized as
follows:
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Estimator Update:
0, =0, +K, <xn - hgén_l) (3.108)

where M. L
K, = n17n 3.109
02 +hTM,_h, ( )

Minimum MSE Matrix Update:
M, = (I-K,h])) M, _;. (3.110)

The common way to initialize the estimator is to set 0 ,=FE (0], M_; = Cgg. Note
that no matrix inversions are needed. Interesting results arise for the case where
x = 0 + w where both 8 and w are zero mean. It can be shown that the filter
becomes time invariant for large n and its impulse response can be found based on
the autocorrelation properties of @ and w. An interested reader should consult [43].

3.3.2 Kalman Filter (KF)

The Kalman filter can be said to generalize the Wiener filters. They apply to nonsta-
tionary signals that may be vectors in a time. If the signal and noise are jointly Gaus-
sian, the Kalman filter is an optimal MMSE estimator, else is an optimal LMMSE
estimator.

We always assume that the parameter is the vector Gauss-Markov process

0, = A0, +B,u, (3.111)

where A, is a p X p nonsingular state-transition matrix with eigenvalues smaller
than one in magnitude, u, is an r-dimensional vector being a Gaussian random vari-
able uncorrelated over time, named as driving noise, with zero mean and covariance
matrix Q,

0 n#m

Q. nm (3.112)

E [un+mu£] = {
and B,, is a pxr matrix. The initial value of the parameter is assumed to be Gaussian
0_1 ~ N (ug, Co) and independent of u,, for n > 0. The equation (3.111) is termed
as the state-space model. The state-space model describes how the parameter of our
interest 6,, randomly evolves over time based on its previous realization 8, ;. The
larger the elements of Q,,, the more rapidly 6,, changes.
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If x,, is an M x 1 observation vector modeled by the Bayesian linear model at
time n
x, = H,0,, + w, (3.113)

where H,, is M x p known matrix, w,, is M X 1 zero mean Gaussian observation
vector, w,, ~ N (0, C,,), uncorrelated over time with covariance matrix C,

0 n+m
E [Wyimw, ]| = {C . i . (3.114)

the sequential MMSE estimator of 6,,, named as Kalman filter, can be summarized
by the following recursion, denoting @, prediction of random vector q, at time n
and Cg, covariance matrix of the prediction:

Prediction:

0, =A.0, .. (3.115)
Minimum Prediction MSE Matrix:

M, = A,M,AT + B,Q,BL. (3.116)
Kalman Gain Matrix:
N N 1
K, = M, H? (HnMnﬂf + Cn> . (3.117)
Correction: A . )
0, =0, +K, (xn - Hnen) . (3.118)
Minimum MSE Matrix: .
M, =(1-K,H,)M,,. (3.119)

The recursion is initialized with 9_1 = Ug, M_1 = Cp.

If the dimension of the state-space vector p is less then the observation vector
M, a more efficient form of the Kalman filter can be obtained. It is referred to as
information form. The number of flops for the filter (3.115)-(3.119) grow cubicly
with the dimension of the observation vector M due to the inversion in (3.117). The
informative form, thanks to matriz inversion lemma applied to (3.117), changes the
number of flops so that it depends on p cubicly and on M quadraticly. The matrix
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inversion lemma is in (A.1). The number of flops for the standard form of the Kalman
filter is, using the expressions for complexity of matrix algebra in Table A.1,

2
OkF., Stand. (P, M, 1) = gM3 + 5p* + 4AM?p + 4Mp* + 2p°r + M?* (3.120)

—3p® —2Mp+pr+ M +p—1 (3.121)

where p is the size of the state-space vector 0,,, M is the size of the observation
vector x,,, and r is the size of the driving noise vector u,,. For the information form
of the KF, we get the complexity of

17
(OKF7 Inform. (p> M7 T) = §p3 + 10Mp2 + 2M2p + 2p27“ (3122)
—p? —M?* — Mp+pr+2M+p—1. (3.123)

It should be noted that matrices A, B of the state-space model are usually sparse
so that the complexity of the Kalman gain matrix, correction and minimum MSE
matrix dominate.

3.3.3 Extended Kalman Filter (EKF)

It is sometimes the case that the signal or the state-space model are not linear. In

spite of this fact, a suboptimal version of the Kalman filter can be constructed using

first order Taylor approximation. Such filter is referred to as extended Kalman filter

(EKF). Its performance is strictly dependent upon the accuracy of the linearization.
Suppose the state-space and the signal model

0, = a,(0,1)+Bu, (3.124)
x, = h,(6,)+w, (3.125)

where a,, is a p-dimensional function and h,, is an M-dimensional function. The EKF
recursion is then similar to (3.115)-(3.119) except for prediction and correction:

Prediction:

9, = a, <9n_1> . (3.126)

Correction:

0,=0,+K, (xn —h, <én>> . (3.127)



CHAPTER 3. OVERVIEW OF ESTIMATION THEORY 74

In (3.116), (3.117), (3.119), we substitute

~ 0a,(0)

A, = . (3.128)
_ 0h,(9)

H, = — . (3.129)

3.4 Posterior Cramer-Rao Lower Bound (PCRLB)

Cramer-Rao lower bound (CRLB) can be found with respect to parameter 6 as
a random vector. The covariance matrix is then “averaged over all 8”, whereas
CRLB for a classical estimator depends on particular value of 8. We can define the
Bayesian Fisher information matrix as

(3.130)

Il = —Fyo [alnp_(xﬁ)} |

00,00,

It can be shown that the covariance matrix is always greater or equal than the inverse
of the Bayesian Fisher information matrix [102]

Cy 2 Eyp [(é . 9) (é - 9>T] > J5l (3.131)

Bayesian estimator is said to be efficient when it attains PCRLB. It can be derived
that Jg can be decomposed into an addition of mean classical Fisher information
matrix J, named as data matrix Jp, and the prior matriz Jp

Jeg=Jp+Jp (3.132)
9?Ilnp (x|0)
[JD]i,j = Eq {—Exe {WH (3-133)
B 9*Inp(0)
[JP]Z‘,j = —Eo [—aeiaej } - (3.134)

The data matrix Jp represents a contribution of data, whereas prior matrix Jp is a
contribution of the prior knowledge about parameter 6.

If we consider the incoming data over time, the dimensionality of Jg grows. To
prevent this, a recursive algorithm for determining the PCRLB can be derived. Let
us define the following notation

Bl:n = {01, ey gn} (3135)
X1 = {X1,...,X,} (3.136)
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where 0,, is p x 1 vector and x,, is M x 1 vector. Next, we assume a generalized
state-space and signal model of (3.124), (3.125)

0, = a,(0, 1, u,) (3.137)

x, = h,(x,, w,) (3.138)

where h,,, a,, p (6y) are known and u,, w,, independent. The PCRLB for the filtered
output at time n is then defined as

Co, = Ex, 0, {(én (X1.) — Gn) (é (X1.) — en)T} > J;l. (3.139)

The estimator is said to be statistically efficient if it attains the bound. The recursive
computation of the PCRLB can be summarized by the set of the following equations

J.1 =D?—-D?(J,+DL) ' D2 (3.140)
where
D! = Eo,0.., [~28'Inp(6,:1]6,)] (3.141)
D2 = Eg 0., |[-A0Inp(6,.1]6,)] (3.142)
D? = Eg, 0., |-A0, np(0,1110,) (3.143)
- o) _ (3.144)
D2 = Eg 0., |20 np(0,1110,) (3.145)
o, |~ 00D (K1 [00s1) (3.146)
Jo = Eg, [-AInp(6y)] (3.147)

where Agff (61, 62) = Vo, [V, f (61, 62)] is the second order partial derivative of
function f (64, 05).

If the state-space model is linear and the useful signal is embedded in additive
Gaussian noise

x, = h,(0,)+ w, (3.149)

the recursion can be simplified as
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Jo = Qg (3.150)
D' = ATQ 'A, (3.151)
D? = —ATQ;! (3.152)
D?” = Q,'+Ee,,, H,,C, H.]. (3.153)

Based on the prior knowledge about 8,,.; from its previous estimate, the ensemble
in (3.153) can be approximated using Monte Carlo integration, see Section 4.3 for
details. In many cases, Q,, is singular and cannot be inverted. Using matrix inversion
lemma A.1, the recursion can be rewritten to the following form

I =X, (X, +Y,)Y, (3.154)

where X, = (Eg [HZ,,C;1 H,11]) " and Y, = Q, + A, J; AT,



Chapter 4

Nonlinear Bayesian Filters

In this chapter, we briefly introduce the nonlinear Bayesian filters that have already
been investigated in connection with the PVT estimation in GNSS. These include
the unscented Kalman filter, the grid-based filter and the particle filter. While the
complexity of the unscented Kalman filter is said to be comparable to the EKF [22,
23], grid-based methods and particle filters are mentioned to introduce an overhead
due to a large number of samples needed for PDF representation [26,27].

We assume Markovian state-space model

P (8]0, 1, - 00) = p (8,16, 1) (4.1)

meaning that no additional information about the current state is contained in the
old states but the previous state. Next, we suppose that observations depend only
on the current state

Note that the KF, EKF follow these assumptions as well.
The following equations then summarize the Bayesian recursion for a general PDF
representation fulfilling our assumptions |25, 26].

Prediction:

pOulxint) = [ p82]61-1)p(ofxi1) 8, (4.3)

Update:
p(xn|9n)p(0n|xlzn—1)
Onlxin) = : 4.4
p( | : ) fp<xn‘9n)p<en‘xlznfl) dgn ( )

7



CHAPTER 4. NONLINEAR BAYESIAN FILTERS 78

The MMSE estimate can then be obtained as

~

0, = E[0,|x1.,] (4.5)
- /0np (0,,|x1.,) dO,,. (4.6)

and the vector MAP estimate as

~

en = argmaxg p (0n|X1:n) . (47)

4.1 Unscented Kalman Filter (UKF)

The unscented Kalman filter [22] is based on so called unscented transform (UT)
which aims to compute the statistics of a random vector at the output of a nonlinear
system. It deterministically selects a set of points of the random vector of our interest,
named as sigma points, and propagates the set through the nonlinear transformation.
Based on the output points, the UT proposes a mean and a covariance matrix. In
the unscented Kalman filter (UKF), the estimate of the mean of the posterior PDF
is used to approximate the MMSE estimate and the covariance matrix measures the
quality of the estimate.

4.1.1 Unscented Transform (UT)

Assume that a is a random variable with mean p, and covariance matrix C,. Suppose
a propagates through, generally, a nonlinear system b = g (a) where g is a vector
function describing that system. We represent a with 2n, + 1 sigma points {AZ}ZS

selected deterministically as

AO = HMa (48)
A = y,a—i—[ (na+ﬁ)Ca]", i=1,..., na (4.9)
A = p,a—[ (na+H)Ca]., i =na+1,...,2n, (4.10)

where L = /A denotes such a matrix L that A = LL”. Matrix L can be ob-
tained using Choleski decomposition if A is nonsingular. To select x, commonly the
following expression is employed [22]

K=K (Na + K2) — Na (4.11)
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where k1 = 1073, k9 = 0. The associated weight points are defined as
K

= 4.12

Wo i (4.12)

W, = 0-5 , 1=1,..., 2n, . (4.13)
K+ Ny

The weights are thus normalized so it holds that

> Wi=1 (4.14)

To get the output statistical description, we calculate the sigma points representing
the output random variable b as

Bi=g(A), i=0,..., 2n,+1. (4.15)

The mean p,, and the covariance matrix Cy, of the output variable is then estimated

2Na

m, = > Wb (4.16)
=0

2Na

Cp = Z Wi (B — p,) (Bi — Mb)T- (4.17)

4.1.2 Unscented Kalman Filter (UKF)

The UKF assumes that the posterior PDF is Gaussian concentrated about the MMSE
estimate with MSE matrix as the covariance matrix

p <9n71‘X1:n71> = NO,L,l (9,1,17 Mnfl) . (418)

The distribution is approximated as a set sigma points with the corresponding
weights {Z!_,, WZLA}?ZS obtained by the UT. The UKF equations follow [22]

Zl = a,(2.) (4.19)
6, = %w;_lé,g (4.20)
~ R 2ne ) ~. ~ ~. -~ \T

M, = Qﬁgwgl (z;—en) (z;—9n> (4.21)

0, = 0,+K,(x,—%,) (4.22)
M, = M, -K,S,K? (4.23)
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where
2ng ~
%, = Z h, (Z;) (4.24)
K” C~nxn n 4.25
S, = Cix.x, +Cw, 4.26)
where
2ng ' _ ~ _ T
i=0
2ng

Co = Wiy (i (2) ) (e (2) %) 29

4.2 Grid-Based Methods

The grid-based methods adopt the approach where the posterior PDF is sampled
at deterministically selected points and assign weight to these points equal to their
PDF at these points. Suppose N, selected values of the parameter to be estimated

{0;—1}5\;51’ then , ,
Pr [07171 = 0;71|X1:n,1} £ w%fl (429)

so that we approximate the posterior distribution at time n — 1 as
N
P Oni|X1n1) = > wh 16 (0,1 — 6, ,). (4.30)
i=1
The prior distribution is then approximated as
0 ’X1 n— 1 Z (4-31)

where N
W, 2wl p (0,167 ). (4.32)
j=1

To finish the recursion the posterior distribution is estimated as

p(0,]x1.0) = Zw 5(@ (4.33)
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where , )
N w,,p (an:z)
" Z;V:sl wnp (anfz)

The samples {0;}511 can be taken the same as {0;_1}2151 . However, if the samples
at time n— 1 represent a concentrated PDF and in the next step the mean of the PDF
will change abruptly, the estimator might perform poorly. A resampling technique
should be employed. We will reveal this topic in the next section.

(4.34)

4.3 Particle Filtering

The lack of diversity when representing a PDF by deterministically selected samples
may be overcome by generating the samples randomly with respect to its PDF. Ad-
ditionally, Monte Carlo methods can then be suitably fitted to the marginalization
and evaluation of the ensembles. This forms the basic principle of particle filter-
ing [24-26|. Occasionally, the samples can be randomly generated directly from its
PDF. Hence, the concept of importance sampling is introduced to generate the sam-
ples from a proposing density that must be somehow related to the density we want
to sample from. Such particles, after several iterations, will anyway either exhibit
low weight or collapse to a single point. Resampling techniques have been proposed
in the literature to deal with this problem [26]. It should be noted that particle
filters perform well when the signal is not “too deterministic”. In that case, the
diversity of the particles is difficult to obtain and Monte Carlo methods fail. For
state-space models that can be partitioned to a linear and nonlinear set of equations,
Rao-Blackwellization may be adopted yielding “a hybrid particle and Kalman filter”
with reduced complexity and with lower risk of divergence. Another advantage of
particle filters appearing in the literature is their high level of parallelism; we will
try to touch this topic in the thesis.

In this section, we will first introduce the Monte Carlo integration principle, then
explain how the importance sampling methods can be used to generate samples and
follow with sequential importance sampling methods bringing us to the recursion of a
particle filter. Next, we discuss resampling and deliver an example of a particle filter
where the importance density equals the prior density, the Bootstrap filter. This is
an easy way of implementing a particle filter, since the prior distribution may be
assumed Gaussian for our application. The drawback is that the current observed
data are not regarded when generation of new particles. Again, this might result
in poor performance, if the prior density is not matched well. Therefore, attention
must be paid to the selection of the importance density.
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4.3.1 Monte Carlo Integration

The Monte Carlo integration principle can be incorporated to recursively estimate
P (0o.n|X1.n) o1 p(0,]X1.,) and its associated expectations. If g, (6o.,) is a function
of By.,,, the expectation of that function I (g,) is

1(9.) = E[gn(00:)]X10] (4.35)
= /gn (00:n> p (90:n\X1;n) deo;n. (436)

Assume we can generate N, 11D samples {BE:H}Z],V:I from p (6¢.,,|X1.n), meaning these
values attain the PDF, the estimates of the distribution and its expectation are

DPs (00:n|xlzn) - _26 Oon 0611 (437)
Is(9.) = / 9n (00:n) Ps (O0:n|X1:0) dOon (4.38)
1 & .
= 290 (00.) (4.39)
S =1

We add lower index s to denote that we approximate the PDF or expectation with
samples. Strictly speaking, we approximate the PDF with discrete values and we
hence obtain a sum of Dirac pulses. If the PDF is continuous, the values are dif-
ferent to what we get. Since we are interested in evaluating the expectation, such
approximation is acceptable.

It can be proved that the estimate of the expectation is asymptotically unbi-
ased [24]

Pr[limy, yoo (Is(gn) =1 (gn))] = 1. (4.40)

If the variance of the function g, converges
Ogn = / (gn (00:71) -1 (gn)>2p (90:n’X1:n) d00:71 (441>
— [ G280 Bulxin) B0 — 1 (3,)" < 50 (4.42)

the asymptotic distribution of ensemble estimation error is Gaussian with variance
equal to the variance of g,

my, oo/ Ns (I (gn) — I (g0)) ~ N(0,02). (4.43)
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4.3.2 Importance Sampling

It is not always possible to sample from a distribution, since it can be a complicated
and explicitly unknown function. Suppose we can generate samples from a density
7 (00.n|X1.n). The function 7 (0., |x1.,) is called the importance density. It then
holds

I(gn) = /gn (OO:n)p(OO:n‘X1:n> ng:n (444)
p(e():n|xl n)
= n (00.n) ——————=7 (0. |X1.0) dOp., 4.45
90 1000) H G R Ounlin) 00 (445)
= /gn (00 n)w(00:n)ﬁ<00:n|xlzn) dOO:n (446)
where we define weights

- p(OO:n|X1:n)
W Q) = Lol XLin) 447
( o ) (00:n|xlzn> ( )

If we draw N, samples {9 n} from 7 (6., |x1.,), We can approximate the ensemble

zs(gn):izw

=1
where w (6},,) are normalized weights of w (6;,,)

65..) 9n (64, (4.48)

w (65, = (4.49)

4.3.3 Sequential Importance Sampling

The disadvantage of the importance sampling (IS) method is that it is not sequential.
For every new data the estimation process is started from scratch and the dimen-
sionality grows. The sequential IS methods solve this issue. In compliance with the
importance density and weights definition it holds that, dropping index s denoting
approximation,

N

1 . .
P (Bonlxin) = 1~ > w(8).,) 0 (6o — 65,) (4.50)
8 =1
where ;
w (6, P (Obnlxin) (4.51)

™ (ng ’Xlin)
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Symbol o denotes equality up to a scaling factor. If we choose 7 (0¢.,|x1.n) to

factorize
T (00:n|X1:n) = 7 (0n|00:n—17 Xl:n) ™ (001n—1|xlm_1)
= 7(60y) HW (01]00:k-1, X1:1)
k=1

then we can draw 0 ~ 7 (0,|00.n—1, X1.n). If

p (00:n|X1:n) op (Xn|0n) p (0n|0n—1) p (00:n—1|X1:n—1>

where p (6g) = p (X0]6o), then

Ns
P (Onlx1n) = > wh6 (6, — 6})
i=1
™ (9n|00:n—1’ Xl:n)
The MMSE estimate is then v

The covariance of the estimate is

Neoo O NT
C"":;wn <9n—9n) (en—an).

To ensure the asymptotic convergences of the Monte Carlo methods with SIS

Pr [ths—woﬁ (0n|X1:n) —p (0n|X1:n)] =1
it must hold that [25]
Tset = 10,18 p x 1|7 (0,|x1.,) > 0}

PSet = {en is p X ].’p (0n|xlzn) > O}
DSet g TSet -

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)
(4.61)
(4.62)
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4.3.4 Resampling

Variance of the importance weights can only increase over time which is called as
degeneracy problem. After a certain number of sequential steps, values of normalized
weights equal only 0 or 1. It is essential to keep particles with significant weight and
remove those that hardly contribute to the estimation. Effective number of samples

can be defined as [26]
1

sz‘vzsl (w%)Q
based on the variance of the weights. It always holds that 1 < Neﬂ‘ < N,. If Neg is
low, new samples should be generated to avoid the degeneracy problem. A practical
threshold for the effective number of samples is 2Ng/3. When resampling with low
process noise, a phenomenon where particles that have high weights w?!, are selected
many times should be avoided. This phenomenon is called sample impoverishment.
For very low process noise, the particles will likely collapse to a single point. Since
particle filters are designed as Monte Carlo methods based on statistical diversity,
deterministic nature of the measurement process will not ensure proper behavior.
A resampling algorithm is described in Algorithm 4.1.

N = (4.63)

4.3.5 Particle Filter with Bootstrap Filter

The Bootstrap filter is a straightforward implementation of a particle filter where
the importance density is selected such that it equals the prior density

n (071'02—17 Xl:n) =p (en‘gz_l) . (464)

It is a suboptimal solution, as current data are not regarded when generating the
samples. The algorithm can be summarized as follows [27]

1. Get the new predicted particles by sampling from the prior PDF
6~ p (0,16:_,) (4.65)
for initialization @ ~ p (6y), all weights unit.
2. Assign the particle a weight
W), = p (x,65) (4.66)
normalize weights

w = —— (4.67)
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Algorithm 4.1 Resampling algorithm [26]

N

Outputs: {G{L}jzl, {wgl}jv:sl

N5

Inputs: {Oi}izl, {w;}fvzsl

1.

2.

Initialize the CDF: ¢; =0
Fori=2,..., N,
e Construct CDF ¢; = ¢;_1 + w,

Start at the bottom of the CDF: 7 =1

. Draw a starting point: u; ~ UD (0, N;1)

S

.Forg=1,..., N;

e Move along the CDF: u; = u; + N, 1 (5 — 1)
e While u; > ¢

—1=1+1
e Assign sample: 67 = 0’,

e Assign weight: w/ = N !

estimate the states

0,=> w0 (4.68)

Resampling: Get Neg from (4.63), if Neg < 2N;/3, perform resampling - gen-
erate new particles 8, and the corresponding weights w! according to Algo-
rithm 4.1.



Chapter 5

Theory of Factor Graphs and the
Sum-Product Algorithm

In this chapter, we briefly define the factor graph and describe the sum-product
algorithm. Factor graph (FG) is a bipartite graph that represents relations among
variables of a system [28,29|. The system is assumed to be described by a compli-
cated global function that factors into simpler local functions, each of which having
arguments from a subset of the system variables. The sum-product algorithm (SPA)
is a generic message-passing (MP) algorithm which operates in a factor graph and
attempts to compute various marginal functions associated with the global function.

Here, we restrict factorization and marginalization to multiplication and integra-
tion, respectively. The global and local functions will be represented by the probabil-
ity density functions (PDF). Although the factor graph framework applies to more
general problems, such constraint will make our approach to PVT filtering more
illustrative.

Let’s assume that global function p(X) > 0 of K system variables X = {z1,...,zx}
where VE € {1,...,K}: = € Ay : A C R factors into a product of local functions

{p;(X;): j e JAp;j(X;) >0}

p(X) =[] pi(X;)

jed

for X, being a subset of the global function arguments X; C X and j denoting the
index of the corresponding local function in set J of such indices. Factor graph is
a bipartite graph that visualizes the factorization using three types of components:
variable nodes - each representing the system variable xy, factor nodes - each repre-
senting the local function p;(X;), and edges - connecting the variable nodes zj, and

87
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)\12—>A($2)‘ ‘MA—>12 (xQ) A1‘4—’3(1’4)‘ [/’LB—'14 (.1‘4)

Agi—A@)Y | lpa—zs (x3) Azz—B(T3)
@ - R

-—
MHA—zq (131) A AIe,4>A($3) MB—zx3 (3;3) B

Figure 5.1: Example FG with MP for global function p(x1, zs, x3, x4) that factors into
local functions pa(xy, z9,x3), p(xs,z4) in the following manner p(xq, zo, x3,74) =
pa(zy, T2, x3) - pp(x3,24). The direction of the messages is denoted with arrow.

factor nodes p;(X;) if and only if z;, € X;. An example FG where global function
p(z1, o, x3, 24) factors into local functions pa(xy, z2, x3), pp(xs,z4) is in Fig. 5.1.

The marginal function p;(x;) is defined as a summation of the global function
p(zy,...,rx) over all arguments except z;, denoted by ~ z;,

pilz) = / p(z1, ..., xx)de; .. deg

/N pxpax.

In the given example, e.g. the marginal function p3(x3) would be computed as

p3($3) :/ / / P($1,l’2,$3>$4)d1’1d$2d1’4-
21€A1 Jaxo€As Jry€ A

The key property that multiplication distributes over summation is adopted in a
cycle-free F'G to distributively compute the resulting marginal function p;(x;) from
marginalized local functions [ p;(X;)dX;, where Nje; X; = z; V 0,

niw) = [ pX)ax
= /V [[ri(X)dx

Ti jeJ

= 11 (/NI Pj(Xj)de> :

jeJ
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In the given example

P3($3) = </ / pA(I1,$2,$3)dI1d$2>
r1€A Jx2€AL
(/ pB($3,964)d$4) : (5.1)
r4€AY

Computation of a single marginal function in a tree FG is then a “bottom-up” proce-
dure that starts at the leaf vertices. The leaf vertices send trivial identity functions
to their parents which wait for messages from all their children before they start
calculation of the local marginal functions. When the marginalization is completed
in a vertex, it becomes a child and sends the results to its parents. The algorithm
continuous until the target marginal function is obtained.

In our example (Fig.5.1), in order to get the resulting marginal function ps(z3),
variable nodes x1, x5 first send simple identity messages Ay, a(21), Azysa(22) to
factor node A, and so sends the variable node x4 message A\, ,5(z4) to factor node
B. The local marginals, the expressions in parenthesis in (5.1), are evaluated and
information about the results is send in messages fia—.4(23), Bz, (23) to variable
node z3. According to (5.1), the resulting marginal function is a product of these
local marginals, symbolically,

P3(%3) = Hasas (T3) - hB—as(T3).

We use the term “symbolically”, since the massages passed in a FG represent infor-
mation about a PDF, not necessarily the PDF itself. However, it is instructive to
use these messages to denote the corresponding marginal PDFs.

The sum-product algorithm is a generalization of the MP algorithm for efficient
calculation of all the marginal functions associated with the global function. The
summary is given in Algorithm 5.1. Messages from factor node to variable node are
denoted with p, whereas messages from variable node to factor node with .

In a tree factor graph, the beliefs truly represent the marginals of the global
function. However, when cycles appear in the graph, vertices infinitely wait for
results from each other. A solution to this problem might be to initialize the messages
and let the sum-product algorithm iterate on the FG. The convergence is mostly
difficult to prove. Nonetheless, “appropriate” initial conditions usually succeed.
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Algorithm 5.1 The sum-product algorithm

Let x denote a variable node, F' a factor node, and n(z), n(F') the sets of neighbors of
variable node x and factor node F', respectively. Symbol pr denotes a local function
corresponding to factor node F'. The messages sent in a FG are recursively computed
according to the following algorithm [28]:

Variable Node to Factor Node:

Aeor(@) =[] #ooel(@)

Gen(x)\{F}

Factor Node to Variable Node:
proale) = [ o) T Aerl)ix
~r yen(F)\{z}

where X is a set of all arguments of pp. The marginalized version of the global
function with argument x is named belief and is evaluated as

B(x): H /’LG%:E(Z.)'

Gen(x)




Chapter 6

Bayesian Filtering on the FG

In this chapter, we show how a general Bayesian filter can be modeled on the FG and
how smoothing and prediction algorithm can be smartly derived from it. We derive
the Kalman filter assuming all PDFs Gaussian and explain how the FG with the
update rules can be simply modified to approximate a nonlinearity by the extended
KF. Then, we introduce a novel iterative filter, named as scalar Kalman filter. The
filter operates on scalars and features lower complexity and simple arithmetic oper-
ations than that of the vector KF. The scalar version of the extended Kalman filter
is also introduced.

To create a factor graph for Bayesian filter, we first factorize the posterior PDF
of 6y, using (4.3) and (4.4)

P (00:n[x1:0) < p (60) Hp (x1|0k) p (01]0k-1) - (6.1)
k=1

The posterior p (0g.,|x1.,) Will be the global function of the FG and the marginalized
version of this posterior p (8,,|X1.,) is to be calculated recursively as

P (0,|x1.) < p(x,|6,) /p(0n|0n_1)p(On_1|X1:n_1) do,,_;. (6.2)

The corresponding FG is depicted in Figure 6.1. The algorithm starts at the left-
most vertex. The message representing the PDF of 6 is sent to variable node 6
where it passes through to the next factor node

1Po—a, (00) = Agy—p1 (60) - (6.3)
The marginalized message of 6, is then sent to variable node 6,
tpi—e, (01) = /p (01]600) Aoy p1 (80) A6y (6.4)
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L1 Ln
p(x1|01) p (anen)

PO P1 P2 Pn
D /0-0\ D 01 D e
p(eo) U p(91|90) U P(92\91) p(9n|9n—1)

Figure 6.1: Factor graph for Bayesian filtering

where this message is combined with the likelihood message

B (01) = ppi-e, (01) - ir10, (61) (6.5)
and MMSE or MAP estimate is obtained based on the calculated belief
éMMSE . f 918 (91) dgl

— 6.6
! [ B(6,)d6, (6:6)
éllwAP = argmaxgy, B (6;). (6.7)
This belief is sent to the conditional factor node
Ao, p2(01) = B(0y). (6.8)

and so continuous the algorithm.

Depending on the PDF representation, the marginalizations and combinations
may have different forms. Note that the FG does not contain cycles and no iterations
are needed. The messages obtained from the current measurement might be sent back
on the graph and using the same update rules, smoothed estimates can be obtained.
When propagating the current messages to the future branches, disconnecting the
future likelihood factor nodes and edges, predictions can be calculated.

6.1 Kalman Filter on the FG

Kalman filter is a special case of Bayesian filtering with Gaussian PDF representa-
tion, linear spate-space model (3.111) and linear measurement equation (3.113), see
Section 3.3.2. It is then sufficient to represent the messages with their mean p and
covariance matrix C, since all the derived PDFs on the FG must be Gaussian [49].
We can then derive update rules for both factor and variable nodes depending solely
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upon these quantities. The same holds for the belief and the MAP and MMSE
estimate.

The update rules for the FG modeling the Kalman filter are summarized in
Fig. 6.2. The update rules applied to the FG in Figure 6.1 can be used to de-
rive the Kalman filter, smoother, and predictor. The MMSE and MAP estimates
are identical for Gaussian distributions and can be obtained as the mean of the be-
lief which is to be sent from the current variable node 0,, to the future factor node
P(n+1).

The Kalman filter recursion can be derived' supposing that the initial value of 8
is distributed as a Gaussian random variable

p(60) ~ N (19, Co) (6.9)

which mean and covariance matrix is sent from its factor node PO through its variable
node to the factor node P1

P06, (B0) = Aeg—p1 (60) = {#g, Co} - (6.10)
Since the state-space model is Gauss-Markov and of the first order (3.111)
p(6:160) = N (Apy, BQBY) (6.11)
the message will be
1pise, = {Apg, ACoA” + BQB”}. (6.12)
Even though the likelihood function has the following PDF
p (x]61) = Nx (HO,, C,) (6.13)

the message must be represented by the following mean and covariance matrix, de-
rived in Figure 6.3,

prise, (60) = {(HTCI'H) 'HTC'x, (HTC'H) '} (614)

So continuous the algorithm for n > 1.

'We do not denote dependence of A, B, Q, H and some other quantities on time for simplicity.
The level of variable time generalization applies to this FG model analogically.
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{H’lv Cl}

C=(Cr'+Gy)

p=C(Cr'p +Cylu,)

{I“27 CZ}
F2
(a)
{“’iv Ci} {l"ov Cg} Co - ACzAT + CF
OSSO
F Ho = AIJ‘l
pr (000:) = No, (Ap;, Cr)
(b)
{y'z C; } {IJ’O C } CO - BCZBT
DG
Ho = Bu’z
pr (0016:) = 5( 6:)

()

-1
e © {uo Co} C, = (AT(Ci+Cp) ' A)
0,
()— ,
Ko = o 2

i

pr (6i]6,) = (Auo, Cr)
(d)
{1 C) c, = (B'C;'B) "
D ARC
Ko = CoBTCiil“i
pr (0,10:) = 5( 6:)

(e)

Figure 6.2: Update rules for a FG modeling Kalman filter - (a) variable node, (b)
factor node with state-space model forward direction, (c) equality factor node forward
direction, (d) factor node with state-space model backward direction, (e) equality
factor node backward direction. Messages comprise mean g and covariance matrix C.
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[1F2 p(s|61) =6 (s — HO,)

l{ (HTC;1H>71 HC;'x, (HTCT'H) 71}

@

Figure 6.3: Likelihood factor node model for Kalman filter on the FG
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6.2 Extended Kalman Filter on the FG

The EKF filter algorithm can be also simply derived on the FG by assuming that
all the PDFs are Gaussian and first order Taylor linearization is applied as in Sec-
tion 3.3.3. The calculation of covariance matrix will remain unchanged in the algo-
rithm compared to the KF algorithm on the FG, however, the mean of the conditional
PDF factor node will change so that

p(0:1600) = N (a (o) BQBT) (6.15)
with message
pise, = {a(py), ACoA" + BQB™} . (6.16)

The likelihood message will represent Gaussian PDF with shifted mean by the lin-
earizing value s = h (a (u,))

10, (01) = {a () + (H'CI'H) " HIC,! (x —5), (HC'H) '} (6.17)

The update rules are identical to those in Figure 6.2.

6.3 Proposed Scalar Iterative Kalman Filter on the
FG

To construct a scalar iterative Kalman filter on the FG, we use a similiar approach
to [103,104]. We split all the vector variables into scalars and create a FG for them.
Cycles will appear resulting in a certain suboptimality and necessity to investigate
convergence and accuracy.

The state-space model for the KF can decomposed as

p (0n|9n71> = /p (an‘gnfla un) p (un> du, (618)
where

p(en‘gn—la un) =

p
1=

D T
0 (97171' - i1, — Z bi7juj> (6.19)
j=1 j=1

1

where a; ; = [A]
we get

bij = [B]; ;- Suppose Q being diagonal Q = diag (02,...,02),

1,77

p(u,) = HNU (0, 02). (6.20)
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If matrix Q is not diagonal, singular value decomposition (SVD) [43,105] can be
adopted to describe vector u as
u="In (6.21)

where mn is 7 X 1 Gaussian vector with zero mean and diagonal covariance matrix, I"
is r x r matrix that desirably correlates the elements of vector 1. Then, we would
get

p©,16:1) = [ 0(6,16,-1 m,)p (n,) d, (6.22)
where
p p r
p(046,-1,m,) =[]0 <9m— D LEED Y Cz'JUj) (6.23)
i=1 j=1 j=1
where ¢; ; = [BT] i Suppose the variance of ¢th element of vector n is O'%i, then

p(mn) =[N (0, 02) . (6.24)
i=1
We can decompose the likelihood function in a similiar manner

p(xn]60,) = /p (X000, W,) p (W,,) dw,, (6.25)

where
M M
P (Xn|0n7 Wn) = H (5 (In,i — Z hi7j9n,j — wl> (626)
i=1 Jj=1
where h;; = [H],

i If we suppose that w, has diagonal covariance matrix C,, =
diag (03}1, .02 ), then

wpz

M

p(w,) = HN'UJi (0,02,) . (6.27)

=1

If w,, is correlated over elements, the same procedure as for the state-space model can
be incorporated to describe w,, as a product of a matrix and a zero mean Gaussian
noise vector with diagonal covariance matrix.

The factor graph can then be constructed as follows. The vector vertices are split
into scalar vertices each of which representing the corresponding vector element. The
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FG of the state-space model, see Figure 6.4, is then constructed based on substituting
(6.19), (6.20) into (6.18) resulting in

p p T
P (0n|0n71> = / . /H(S <0n,z — Zamﬂn,u — Zb,-Juj)
i=1 j=1 Jj=1

TV (0, 02) duy ... du,. (6.28)
=1

Similarly, the FG representing the likelihood function, see Figure 6.5, is constructed
by substituting (6.26), (6.27) into (6.25) resulting in

M M
p(xn|0n) = / . /H5 (flfr,w‘ — Zh@j@nd - wl) Nwi (0, O',LQU) dw1 PN de
i=1 Jj=1

(6.29)
The update rules for the factor and variable nodes are depicted in Figure 6.6. Note
that these are just special cases of those for the vector vertices in Figure 6.2, respect-
ing more inputs. To derive the update rules for multiple input nodes, we resorted to
a recursive evaluation of the update rules for a pair of input nodes.

The advantage of the scalar Kalman filter is that the update rules operate on
scalars and simple arithmetic operations unlike the vector case. The complexity
of the algorithm is quadratic in the number of states and linear in the number of
observations. This is not true for the vector KF where the complexity is cubic in
states and cubic or quadratic in observations depending on the form of the KF.
However, the sum-product algorithm in the scalar case does not yield truly the
MMSE estimates of the parameter 6,,, since the cycles are present in the graph. The
complexity then will be a multiple of the number of iterations and the accuracy with
convergence will have to be investigated for every single implementation of the scalar
Kalman filter.

The message passing algorithm starts at variable nodes 6y 1,..., 6y, where the
messages sent to factor nodes P, 1,..., P, comprise the mean and variance of the
%initial distribution g, ,p,, (004) = {po4, 05} for i, j € {1,..., p} where po; =
[1o); and o3, = [Col;;. The messages from variable nodes ug; are also sent to
the factor nodes Pp1,..., Pip Ay op, (1) = {0, Ui,i} and updates are calculated
according to Figure 6.6. The branches to variable nodes 6, 1, ..., 0; , are disconnected
and the resulting messages are sent back towards the variable nodes 6y 1,. .., 0y, and

2The initial cross-correlation between the parameter is not assumed. To regard it, one can resort
to SVD decomposition.
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On,p

Figure 6.4: FG for state-space model of scalar KF
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Figure 6.5: FG for likelihood function of scalar KF

{1, o2

pr (001, 0) =0 (a9 S aka)
(b)

Figure 6.6: Update rules for scalar vertices of KF - (a) variable node, (b) factor node
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the iterations start. When the last iteration, the branches to the variable nodes
011,...,01, are connected, the messages are sent to them. The observed values are
sent to the likelihood factor nodes A, -z, , (¥ni) = {@n4, 0} for i € {1,..., M}
and so do the noise variable nodes Ay, 1., (Wn;) = {0, 07}. Next, the messages
from the previous state-space factor nodes P, i,..., Pi, are sent through variable
nodes 0, 1,...,0;, to the likelihood factor nodes L ,...,L;, and the updates are
therein calculated. The results are then sent back to variable nodes 6 1,...,60,, and
then updated taking the unchanged messages from factor nodes Fyi,..., Py ,. The
branches to the future factor nodes Ps,..., P, remain disconnected. The updated
messages are sent towards factor nodes Ly 1, ..., L, and iterations are started in this
way. The iterations are finished after the last updates at variable nodes ¢, 1,...,01,
for which the future variable nodes Ps1,..., P», are now connected. The messages
sent to these factor nodes represent the beliefs and the means can be used to obtain
the approximated MMSE estimates. And so continuous the algorithm sequentially.
The number of flops required to calculate one recursion is

OSKF (p7 M7 T, NIter., Ss.y ]\Z’Iter.7 Lh.) - NIter., Ss. (5192 + 5p7" + p)
+ (NIter., Ss. 1) (4]32 + 4p7“)
+  Nier. Ln (9pM 4+ 6M) (6.30)

where p is the size of the state-space vector 0,,, M is the size of the observation
vector X, r is the size of the driving noise vector u,,, Nier., 1n. is the number of the
iterations among the likelihood factor nodes and the state variable nodes, Nier. 1.
is the number of the iterations among the nodes.

6.4 Proposed Scalar Iterative Extended Kalman Fil-
ter on the FG

The extended Kalman filter can be also approximated on the scalar FG. Suppose
that

aq (Onyl, ey anp)

a(6,) = s (6.31)

and

h(6,) = : . (6.32)
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Let us next assume that h;; = [H],; and a;; = [A];;. The conditional PDFs
p(0,]0,-1, 0,), p(x,]0,, w,) both can be approximated for the EKF as Gaussian

p

p <0n|0n—17 un) = H o (en,i —a (‘gn—l,h cee 9n—1,p) - Z bz‘,j“j) (6-33)
i=1 j=1

M
P (%n|0n, wo) =[] 6 (@ni = hi Ons, .., Onp) — wi). (6.34)
i=1
The update rules of the scalar variable node remain unchanged compared to the
KF’s. However, the mean of the factor node update will change and the variance
will remain unchanged. Assume the situation in Figure 6.6(b). Next, assume the
PDF (=factor function) pr (0|61, ..., 0x) will have the following form

pr(0)01,...,0k) = 0(ab — f(04,..., 0k)) (6.35)
K
~ 0|a (9—(5 — ag Hk—ék> (636)
(¢(0=9) - (1)
where f is K-dimensional function and é, 51, cee O are constant linearizing points
such that 5 y 5
9:f<01,...,0K>. (6.37)

The updated mean will have the following form

= 0+ (i ay (uk — §k>> /a. (6.38)

k=1

In the scalar EKF, the linearization will generally take place in both state-space
and likelihood factor nodes. The linearizing points for the state-space model nodes
will be the estimated parameters from the previous time én_l,i where i € {1,..., p}.
The linearizing points for the likelihood nodes will be the means of the output mes-
sages from the state-space model nodes. This complies with the vector EKF where
predictions are used to linearize the nonlinear observation function h.

The complexity of the scalar EKF is slightly higher than that of the scalar KF
due to the necessity of evaluation of the Jacobians A, H if they depend on time. The
number of flops might be increased if functions a, h are complicated. The linearizing
point can be updated after every iteration to improve the convergence which requires
the evaluations of the Jacobians.



Chapter 7

Overview of PVT
Estimation/Filtering Algorithms

In this chapter, we derive the commonly used PVT estimation /filtering algorithms
based on the general formulae from Chapters 3, 4, 6. These include the LS, WLS,
EKF, UKF, and PF algorithms. In addition to it, the CRLB is derived for both the
classical estimator and the Bayesian filter. Strictly speaking, the LS and WLS are
of iterative nature and only approximate such estimates. Other classical estimation
approaches such as MVU and ML are not discussed. The MVU estimator is difficult
to derive due to a complicated form of the likelihood PDF. If considering Gaussian
uncorrelated pseudorange and pseudorange measurements, as for the EKF, the WLS
algorithm becomes the ML algorithm. We resort to the LS approach respecting
conventions.

Finally, we incorporate the proposed algorithms of the scalar iterative EKF into
the PVT problem. We show that by disconnecting the factor nodes representing the
state-space model, a FG approximating the WLS algorithm can be obtained.

In the following text, we concatenate the vectors of pseudoranges p and pseudo-
range rates p, their observation functions gy and g, and the noise vectors w, and

b ggf(iZZ ?) ] Wb [gz } (7.1)

HHETE

The covariance of the noise vector is denoted as C. In case of the filtering methods,
time index is associated with the corresponding quantities.

103



CHAPTER 7. OVERVIEW OF PVT ALGORITHMS 104

7.1 Classical Estimators

7.1.1 Cramer-Rao Lower Bound

Let us assume the measurement equation in the following form

E=h(y)+w (7.2)

where the likelihood function of the observations is Gaussian

plv) = Ne(h(v),C).

The elements of Fisher information matrix of the CRLB can be obtained using (3.27)
as

Oh(1)]" o1 [FR (1)
Iy = o |2
1 C C
—tr |C'—C 1 — 7.3
Tt [ i 3%‘] (73)
h(y)]" h
_ [8 ("/)] -1 {3 (7)} | (7.4)
i 0
by extension to the matrix case, we get that
J(y)=H"(v)C'H(y). (7.5)
If further C is assumed to be diagonal C = diag (02,,..., 02, 03,,--., 03), the

evaluation of (7.4) would not require the matrix inversion. It should be noted that
the CRLB of « depends on the direction cosines.

7.1.2 Least Squares

Since the signal model for PVT estimation is nonlinear, see (1.30), the estimator must
be iterative. Typically, the Gauss-Newton iterations are adopted due to simple im-
plementation and fast convergence after the initialization discussed in Section 1.1.6.4.
Let us denote the initial estimate as 7, and kth estimate as 7. The estimate is then
obtained recursively, for £k = 1,..., K where K is the number of iterations, as

Yp = A+ (HFH,)  HE (6 -h (%)) (7.6)
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where Hy, is 21 x 8 matrix such that

h
m, = M0 (7.7)
Tl
It can be easily shown that
|Gy O
no [0 ] -

where Gy, is I x 4 matrix called as geometry matrix

—17 (xpp_1) 1
G = : f (7.9)

17 (kpp1) 1

since 1Z-T (Xpk—1) is the direction cosine vector between the user at position Xy ;1
and the ith SV calculated according to (1.16). Note that the measurement equation
is nonlinear for position and linear for velocity. In addition to it, matrix Hy, is of the
form that the velocity measurements do not support position estimates. Hence, we
first iteratively estimate the user position and clock bias for k =1,..., K

Xuk | _ | Xvk-1 T\ LT (o Xy -1
][ weraen () e

and the user velocity and clock drift after the last iteration

s 17 (xp k) - vsa
[ g ] = (G};GK)*1 GL|p— : : (7.11)

b .
—17 (xpk) - vsr

7.1.3 Weighted Least Squares

To regard for signals with different quality, weighting can be incorporated to the least
squares. The weighting matrix is typically constructed either based on the estimated
C'/Ny values or based on the elevation angles as discussed in Section 1.1.6.5. Let
W, be the weight matrix for current the pseudorange measurements, and let W,
be the weight matrix for the current pseudorange rate measurements, the weighted
least squares estimates of the user position and clock bias are for k=1,..., K

][ e e oo [ £]) o
k

bk—l bk—l
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and the estimates of the user velocity and the clock drift are

oo —17 (xp k) - vsa
[ f ]:(eﬁveK)leiwv b~ z BNCat)

b .
—17 (xpx) - vsr

7.1.4 Proposed Scalar Iterative Weighted Least Squares

The algorithm derived for scalar iterative extended Kalman filter using FG in Sec-
tion 6.4 can be simplified to exclude the state-space model by disconnecting the state
variable nodes across time. The estimation is then based only on the iterations on
the FG in Figure 6.5.

7.2 Bayesian Estimators

7.2.1 Motion Models

The state-space model for a moving object with a stand-alone GNSS receiver has
typically one of the three forms - position, velocity, and acceleration Gauss-Markov
motion models. In all the cases, the driving noise vector u has diagonal covariance
matrix Q constant in time, and matrix B transforming the driving noise vector from
the east-north-up (ENU) coordinate frame into the ECEF coordinate frame. This
allows us to model the motion with respect to the local coordinate frame. Typically,
z user position coordinate changes less in time than x, y coordinates. However, to
keep our approach simple we will model the motion directly in the ECEF coordinate
frame letting B be the identity matrix.

The position motion model is intended for situations where the user moves slowly
or does not move at all. It does not provide velocity estimates. The user PV'T vector
simplifies to

Xy
v = { b ] . (7.14)
The state-transition matrix is just the identity matrix

A =TI, (7.15)

and the driving noise covariance matrix has four elements modeling the perturbation
in position coordinates and the clock bias

Q = diag (O’ix, e Ui,b) . (7.16)
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The observations contain just the pseudoranges

£=p. (7.17)

The measurement equation has the following nonlinear function projecting the true
user position and clock bias into the noiseless pseudoranges

h(v) = gx (xv, b). (7.18)

The noise vector then simplifies to w = w,.

In most of the commercial GNSS receiver, the wvelocity motion model is imple-
mented. We inherently use the notation to account for such situation throughout
the text. The PVT estimation vector is 8 x 1 vector containing the user position
coordinates, clock bias, velocity coordinates, and clock drift.

Xy
b
v = . (7.19)

Vu

b

The state-transition matrix models the relation between the position and its deriva-
tive - velocity

A — |: I4><4 TN : I4><4 :| (720)

04><4 I4><4

denoting the elapsed time between two successive PVT estimation updates with Ty .
The perturbation is modeled only within the first derivative components

Q = diag (o,...,o, 02 4nn, 02 b) . (7.21)

The measurement vector comprises the pseudorange vector and the pseudorange rate
vector

5:[’.’}. (7.22)

The measurement function complicates to

. (VU> 6)> ] (7.23)

with noise vector

w = { Ve } . (7.24)
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The acceleration motion model is typically used in airborne applications. The
user PVT vector is the 12 x 1 vector

Xy

b
N = VbU (7.25)
ay

b

where ay is the user acceleration a; = Xpy. The state-transition matrix and the
driving noise covariance matrix are then

I4><4 TN ' I4><4 T]%[/2 ' LL><4

A= 04 ILixs JANES VI (7.26)
O4x4  Oyxs | e
Q = diag (o, 0,02 0 6) . (7.27)

The measurement equation remains as for the velocity motion model.

7.2.2 Posterior Cramer-Rao Lower Bound
Let us assume that the motion model is the first order Gauss-Markov model
¥, = Ay, 1 +u, (7.28)

with the measurement equation

€, = hy(v,)+w, (7.29)

where w,, is a zero mean WGN vector. Due to the fact that matrix Q,, is singular,
the Fisher information matrix must be recursively calculated using the form based
on matrix inversion lemma 3.154

Tt = (HZHC;}AH”H)_I | (Q+ AT AT) (7.30)
where we deduced that

Bopir [Hon (Y1) CotiHnsr (V1)) = Hapy (Yai1) CopaHogt (,04)731)

= H}.,C, H,1. (7.32)
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Operation X ||'Y of square matrices X and Y of the dimension denotes an anology
to calculation of parallel resistance in electrical circuits

X|[|[Y=XX+Y)'Y. (7.33)

The sum X+Y must be nonsingular. It is interesting to note that inverse of the Fisher
information matrix is a parallel combination of CRLB for the classical estimator, see
7.5, and contribution of the prediction uncertainty of the previous estimate.

7.2.3 Extended Kalman Filter

The following equations summarize the recursion of the EKF for PVT estimation.

Prediction:
F0 = A4y (7.34)
Minimum Prediction MSE Matrix:
M, = AM, AT + Q. (7.35)
Kalman Gain Matrix:
~ _ -1
K, = M, H’ (Cn + HnMnH§> . (7.36)
Correction
Minimum MSE Matrix 3
M, =(1-K,H,)M,,. (7.38)

For a large number of the tracked SVs, the information form of the EKF would more
efficient since the matrix C,, is diagonal. Furthermore, matrix A is very sparse and
the evaluation of v,,, M,, would involve significantly less operations than for a general
matrix A. The decomposition of matrix H,, according to (7.8) into two zero I x 4
matrices and two I X 4 geometry matrices may also lower the overall number of flops
of the algorithm.

7.2.4 Scalar Iterative Extended Kalman Filter

Using the procedures discussed in Section 6.4, we can deduce the FG for PVT filtering
as in Figures 6.4, 6.5. Thanks to the sparse element representation of matrix A, the
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Figure 7.1: FG for the state-space model of the scalar EKF of PVT estimation.

state-space model FG will not contain cycles, see Figure 7.2, and the prediction can
be accomplished in a single iteration. The likelihood FG, see Figure 7.1, does contain
cycles and iterations will be needed to approximate the posterior distributions. The
iteration will take place separately for the position and velocity parts of graph, as
the likelihood function for the PVT vector v can be decomposed as

p(Eh) = p(plx, b)p (plve, b) (7.39)

where
p(plxu, b) = N(gx(xv, ), Cp) (7.40)
p (p|vU, b) — N (gv (vU, b) , C,-,) . (7.41)

7.2.5 Unscented Kalman Filter
Assume that {Zi w }?Zg, represent 2n., + 1 sigma points and weights of ~,,_;

n—1»
with covariance matrix M,,_;, respectively. The sigma points propagated through
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Figure 7.2: FG for the state-space model of the scalar EKF of PVT estimation.
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the state-space model can be obtained as
~0

ZTL
Z, 2 : =AZ, ;. (7.42)
= 2n~+1

zZ

n

The prediction of the PVT vector 4, and its covariance matrix M, are then

2n~+1 )
Y = D>, ZW (7.43)
i=1
~ 2n~+1 ~ ~ T
=0

To get the estimate of the PVT vector 4,, and its covariance matrix M,,, substitute
0, = Yns On =7, Qn =Q, x, =&, Cy, = C,, in recursion 4.22-4.28. After the
recursion is finished, sigma points for the next step and its weights are generated
using the UT on mean “,, and covariance matrix M,,.

7.2.6 Particle Filter (Bootstrap Filter)

The implementation of the Bootstrap particle filter is straightforward. The samples
are generated from the previous estimate 4,_; and its covariance M,,_;, which are
assumed to be Gaussian, according to 4.65

Yo~ A (Y1 + Loimy) (7.45)

where 0!, ~ N (0, Igyg) in case of the assumed velocity motion model, and L, _;
is a matrix such that M,,_; = L, ;LI |. The particle is assigned the weight by
substitution into the likelihood function as in 4.66

i = e (—3 (€~ () € (€ -1 (1)) (70

The particles are then normalized according to 4.67. The effective number of samples
Ny is calculated. If N,gy is less than 2N, /3, resampling from 4.1 is done. The final
estimate is obtained according to 4.68, covariance matrix as for the UKF
Ne—1
M, = > wh (¥, = 4,) (Vi —4.)" (7.47)
i=0

Samples ¢ are regenerated at every time step.



Chapter 8

Simulation and Experimental Results

In this chapter, we investigate the performance of the proposed suboptimal scalar
iterative EKF using FG. This method is compared to the “standard” EKF. Nonlinear
methods such as UKF, GF, PF are not included to facilitate the simulation and
development time. The motivation for this is to build evidence that the tedious
derivations throughout this study can meet practical implementations. We focus
on two crucial characteristics - convergence, accuracy. In real life, the model of our
parameter or our channel does not always reflect reality, therefore we also investigate
the cases where the state-space model is designed for much lower dynamics than the
user moves with.

In Figure 8.1, we plot the number of flops of the FG-based filter for the first three
iterations and the number of flops of the EKF when implemented efficiently in the
information form. Note that the number of flops is lower for the FG-based filter with
a single iteration, for two iterations both curves are close to each other, and for three
iterations the EKF has lower number of flops. During the simulation results, we will
notice that a single iteration can offer similar accuracy to the EKF in low dynamic
scenarios, but the performance improves with iterations as the dynamics increase
and the EKF can be outperformed. Hence, the FG-based filter offers compromises
in accuracy and complexity.

Firstly, we deliver a simple simulation where the convergence and accuracy in a
scalar tracking architecture is investigated using Monte Carlo methods, being the
subject of Section 8.1. In Section 8.2, the filters are incorporated into a vector
tracking architecture. The former simulation assumes Gaussian uncorrelated mea-
surements of pseudoranges and pseudorange rate, whereas the latter produces mea-
surements that are correlated and biased by randomly generated values depending
on the satellite elevations. Section 8.3 presents few case studies of the experiment

113
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Figure 8.1: Complexity comparison of the PVT filtering algorithms. Symbol O(I)
denotes the number of floating point operations (flops) depending on the number of
SVs denoted as [

with a real-time receiver - WNav, working in the scalar tracking architecture and in
the traditional concept.

8.1 Simulation - Scalar Tracking Architecture

In this simulation, we investigate convergence and accuracy of the EKF and the
FG-based scalar iterative EKF algorithm. The model we adopt is basic. The pseu-
doranges and pseudorange rates are Gaussian and uncorrelated without any biases.
The goal is to evaluate the preliminary performance characteristics in a simple man-
ner and over a large number of realizations. In the first subsection, we introduce
the simulation scenario, in the next two subsections the convergence and accuracy
results are discussed and finally summarized in the last subsection.

8.1.1 Simulation Scenarios

We consider from 16 to 64 visible SVs randomly distributed over the open sky, sce-
narios with low dynamics (¢ = 0.1m/s?) and scenarios with moderate dynamics
(a = 1m/s?). The user moves in a circle on the surface of the Earth with radius
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1 km, velocity 10 m/s for low dynamics and 33 m/s for moderate dynamics. The
estimates were updated every ten times per second Ty = 0.1 s.

The standard deviation of the generated pseudorange measurements was o, =
1 m, and o, = 0.05 m/s of the pseudorange rate measurements. These quantities
were generated as uncorrelated Gaussian random variables with mean equal to the
noiseless values with respect to the geometry and clock offsets. The standard de-
viation of the elements of the driving noise vector was assumed constant - either
o, = 0.01 m/s for high filtering or o, = 0.1 m/s for low filtering. We repeated each
simulation 1000 times and simulated over 1000 s. The convergence and accuracy
were examined for various number of iterations Nier. = Niter. Lh. 5 Niter. 55, = 1.

To evaluate the performance characteristics, we define the total position error
(TPE) of the position and clock bias estimation as

N L
_ 1 \/ 124 50 — y0y2 4 (20— 2002 4 (GO — 02

(8.1)
where n is the time index, IV is the number of observations in time, [ is the index of
the realization, L is the number of realizations. Similarly, we define the total velocity

error (TVE) as

VE=NT Z Z VED =002 + GO — gy + GO — 502 4+ (B9 — 0.

n=1 [=1

We claim that the divergence is reached if TPE>100 m or TVE>2 m/s.

8.1.2 Convergence

The convergence histograms of the EKF and FG-based scalar iterative EKF algo-
rithms are depicted in Figure 8.2. In Figure 8.2(a), the driving noise std. equals
the change of the velocity vector in magnitude over an epoch. In this case, we can
infer that the convergence probability is strictly dependent on the number of visible
SVs and is always worse for the FG-based EKF filter than for the standard EKF
filter. In Figure 8.2(b), the same scenario is assumed for a larger number of SVs. For
the number of visible SVs equal sixteen and more, no divergence has been observed
in 1000 repetitions. This fact substantiates us to employ the iterative filtering for
large data vectors. Luckily, we see that the convergence is relatively fast and can be
reached within few iterations.
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In the experiment in Figure 8.2(c), we increase the user velocity and produce the
user acceleration of 1 m/s. The driving noise is left unchanged so that the velocity
changes approximately ten times faster than the state-space model assumes. We
observe that the FG-based filter and the EKF can still withstand such unmodeled
dynamics and converge similarly as in the previous case. However, this is not the case
in Figure 8.2(d) where the driving noise variance is increased to 0.1 m/s to account
for the change in velocity. The lack of averaging of the iterative algorithm causes
divergence even for a large number of SVs of the FG filter, the EKF remains stable.
We deduce that if the dynamics increase significantly, we had better not model it.
If the modeled dynamics is acceptably low at high dynamics, iterations generally
improve convergence probability.

8.1.3 Accuracy

In Figure 8.4, we illustrate the accuracy of the algorithms. The TPEs are in the
left column, whereas the TVEs are in the right column. Each row corresponds to
the same scenario. In Figure 8.4(a-b), the same low dynamics matched model is
considered. In this case, the FG-based filter outperforms the EKF if the number
of SVs is larger than 16 and even for a single iteration. The explanation for this
surprising fact is that the EKF is a suboptimal approximation of the KF based on
first order Taylor linearization. The FG-based filter linearizes the variables in a
scalar, but different, manner and the performance of both filters may generally differ
depending on different factors.

If we increase the acceleration as in Figure 8.4(c-d), the FG-based filter outper-
forms the EKF in accuracy for larger number of SVs or for more than one iteration.
In this case, the performance is improved over iterations due to the fact that a
linearizing point is calculated for each iteration. The linearization fails for a large
position difference between the predicted (also linearizing) value and the true value.
Here, we iteratively shift towards the true value with iterations, whereas the EKF
does this only once at an epoch.

If we model the higher dynamics and remain stable as in Figure 8.4(e-f), the EKF
performs better and the iteration do not improve the accuracy, but the difference in
accuracy between the two filters decays with larger number of the SVs.

8.1.4 Summary

To summarize the simulation results, we recall that one should use the FG-based
filter for PV'T estimation to lower the complexity of the algorithm only if the number
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of visible SVs is larger than 16 to ensure the convergence. If the user is expected
to move from time to time with higher dynamics, we had better not model it and
rather increase the number of iterations. The accuracy can be improved in this case
compared to the EKF.

8.2 Simulation - Vector Tracking Architecture

In this section, we demonstrate the functionality of the proposed algorithm in the
vector tracking architecture. We present a case study where we compare the scalar
tracking architecture using the EKF with the vector tracking architecture with the
EKF or the FG-based scalar iterative EKF. This time correlation among the pseudo-
ranges will be introduced and the biases in the measurement caused by atmospheric
effects will be added. We demonstrate that the FG-based filter can withstand these
anomalies even in the vector tracking architecture. The first subsection shortly ex-
plains the employed simulation methodology. In the second subsection, the simula-
tion results are discussed and the last subsection highlights the key implementation
aspects.

8.2.1 Simulation Methodology

The simulation setup is documented in Table 8.2. Two user scenarios were inves-
tigated: low dynamics (LD) scenario, and moderate dynamics (MD) scenario. In
either scenario, the user moves in a circle with constant circular orbit speed. The
TPE and TVE were calculated over time. For the first part of the simulation, we
assume that the user is in an open-sky scenario, whereas in the second part C'/Ny of
all visible SVs is swept from 50 dB-Hz down to 10 dB-Hz. Random atmospheric delay
errors were artificially added to the propagation times with distribution depending
on the elevation angle of the SV. Example values of these errors for the simulation in
Figure 8.4(a,b) are in Table 8.1. Oscillator phase noise was added to the code delay
and the carrier phase. Finite bandwidth of 10 MHz was introduced. The phase noise
values L(fo), L(f1) at frequencies fy, f1, respectively, for the carrier phase are in
Table 8.2. No multipath, interference, jamming and fading effects were examined.
The simulation complexity has been reduced by avoiding the bit-true multipli-
cation and accumulation (MAC) between the received IF signal samples and the
generated replicas. The signals at the output branches of the correlators were gener-
ated based on the approximate expressions representing such signals [37,45,63,106].
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Figure 8.2: Simulation results - convergence. (a) a = 0.1m/s?, o, = 0.01m/s detail
on low number of visible SVs, (b) @ = 0.1m/s?, o, = 0.0lm/s, (c) a = 1m/s?
0, =0.01m/s, (d) a=1m/s* o, =0.1m/s.

Table 8.1: Examples of atmospheric errors (AE) with elevations of the SVs (El.), for
simulation in Figures 8.4 (a, b)

EL[] 3242 9 [10[ 2] 6 [33] 40 | 6
AE [m[ [ 1.1[-03[-37[09]-01|23|13]-20]-25
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Table 8.2: Simulation Setup

Testing Signal GPS L1 C/A
Predetection Integration Time Ny N/, = 20 ms
Navigation Update Time Ty =0.1s

IF Filter Bandwidth BW = 10 MHz
Code Delay Detector Normalized Power
Carrier Phase Detector Atan2

C'/Ny Estimator

Squaring [81]

Prefilter

Sequential WLS

User Velocity, Radius, Accel. (LD)

2 m/s, 100 m, 0.04 G

Velocity Driv. Noise Std. (LD)

oy =0;=0;=1m/s

Clk. Drift Driv. Noise Std. (LD)

o, =10"* m/s

User Velocity, Radius, Accel. (MD)

30 m/s, 100 m, 1 G

Velocity Driv. Noise Std. (MD)

oy =0;=0;=20m/s

Clk. Drift Driv. Noise Std. (MD)

oy =10"% m/s

Number of Visible SVs

I=9

Init. Lattitude, Longitude, Altitude

0°, 0°, 0 m

Phase Noise

L(1Hz) = —30 dBc/Hz

L(10Hz) = —50 dBc/Hz

DLL (Order, Bandwidth)

1. order, B,, = 0.1 Hz

FLL (Order, Bandwidth)

2. order, B, = 10 Hz

120
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8.2.2 Results

The simulation results documenting the open-sky scenario are in Figures 8.4, 8.5.
Figures 8.4(a-d) depict the situation for LD, whereas Figures 8.5(a-d) depict MD.
TPE and TVE are plotted for a single iteration (Nye. = 1) and for three iterations
(Niter. = 3). The proposed FG-based algorithm incorporated to the vector tracking
architecture (FG-VDLL/FG-VFLL) is compared with the EKF of the scalar track-
ing architecture (DLL/FLL) and with the EKF of the vector tracking architecture
(VDLL/VFLL). All algorithms adopt identical motion model. Second order FLL
aids first order DLL in the scalar tracking loops.

It is clear from Figures 8.4(a,b), 8.5(a,b) that a single iteration on the FG results
in comparable position and velocity filtering errors as for the EKF vector tracking
loop in an open-sky scenario at low dynamics. An increased number of iterations
slightly improves the performance at low dynamics, compare Figures 8.4(a,c) and
Figures 8.4 (b,d). At moderate dynamics, both VDLL/VFLL and FG-VDLL/FG-
VFLL perform similarly for Ny, = 3, see Figure 8.5(c,d). For Ny, = 1 conclusions
about precision are difficult to make, see Figures 8.5(a,b). The reason is that our
motion model does not regard user acceleration. However, the figures document that
the proposed method might be able to withstand such unmodeled anomalies, likewise
the EKF method. The improper choice of the motion model here causes that the
scalar architecture outperforms the vector one for velocity estimation at moderate
dynamics, see Figures 8.5(b,d). This could be claimed as a disadvantage of the vector
tracking architecture.

In Figures 8.6(a,b), we sweep C/N, for all the tracked SVs, see Figure 8.6(c),
and observe the stability of the proposed FG-based algorithm in comparison with
the EKF-based one. Moderate dynamics and a single iteration are considered. It is
apparent from the figures that the FG-VDLL /FG-VFLL loop looses lock at approx-
imately 2 dB lower C'/N, than the VDLL/VFLL loop. Fig. 8.6(d) depicts the C'/Ny
estimate errors of the FG-VDLL/FG-VFLL channels.

8.2.3 Implementation Aspects

Likewise for the EKF architecture, it is clear that precision and stability of the loop
is highly dependent on the choice of the motion model, predetection integration
time and the navigation update time. When a proper motion model is selected, the
performance can be improved with increased number of iterations on the FG. But
with low number of iterations, the navigation processor might be able to operate at
higher update rate which would foster the overall performance.

In our simulation, we did not model any delay between the SV channels and the
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navigation processor. It represents the situation of a SDR receiver (ipexSR [15], WNav
- only PC processing [16]). On the other, the performance might be worse for tradi-
tional receiver architectures (WNav - local tracking channels in FPGA, the navigation
processor in PC [16]) where such a delay occurs.

8.3 Experiment - Scalar Tracking Architecture

In this section, we demonstrate the functionality of the proposed FG-based scalar
iterative EKF' algorithm in a scalar tracking architecture using a GNSS receiver de-
veloped at CTU in Prague [16] and high-fidelity GPS L1 Spirent simulator GSS6560.
The first subsection shortly explains the employed methodology. In the second sub-
section, results are discussed.

8.3.1 Methodology

We assume that the user moves in a circle with constant circular orbit speed in an
open-sky scenario. Firstly, we place the user to 14 static points on the Earth, see
Figure 8.7, at a given time and investigate the filtering performance. Secondly, two
dynamic scenarios (¢ = 1m/s* a = 10m/s?) with radius 10 km, 1 km and velocity
100 m/s are supposed. The number of visible SVs has always been 11.

The measurements were taken for 1 hour. The navigation update time was Ty =
0.1 s. Second order DLL, PLL were used with equivalent loop noise bandwidth
0.5 Hz, 30.0 Hz, respectively. The driving noise std. was always 0.01 m/s which
mismatches the motion model, but still filters out. The FG-based filter ran with
three iterations.

8.3.2 Results

In Figure 8.8, we plot the results obtained by the WNav receiver. The left columns
depict TPEs and the right column depict TVEs. Figures 8.8(a-b) are averaged
versions of the TPEs and TVEs for the FG-based and the EKF filters applied to the
static user. The accuracy of both filters is comparable. However, convergence was
observed only in 10/14 cases. The reason is as discussed in Section 8.1 - low number
of the SVs causes divergence.

In Figures 8.8(c-d), the user moves with acceleration a = 1 m/s?, in Figures 8.8(e-
f) with acceleration @ = 10 m/s* which is not far from the model of the filter.
The important fact is that the FG-based filter remains stable and its accuracy is
comparable to the EKF’s.
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Figure 8.4: Vector tracking - simulation results - LD. (a) TPE, Ny,
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Figure 8.6: Vector tracking - simulation results - C/Ny sweep. (a) TPE at C'/Ny
sweep, (b) TVE at C'/N, sweep, (c) swept C/N; of all visible SVs, (d) C'/N, estimate
error for all visible SVs. Figures (j-1) refer to MD, Nyyer, = 1.
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N

Figure 8.7: User positions on the Earth - static experiment (14 positions)
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Conclusion

In the thesis, we summarized basic aspects of the signal processing algorithms in
GNSS. We formed measurement models of the PVT estimation for three receiver
architectures - scalar tracking architecture, vector tracking architecture, and direct
positioning architecture. The Witch Navigator was introduced as a testing platform
for the study. The student is an active member of the team developing this receiver,
and is responsible for the PVT estimation and its integration with the signal tracking
algorithms.

In order to make this document comprehensive, we included the overview of
classical and Bayesian estimation theory. Then, the topic of Bayesian filters was
extended for “advanced” nonlinear filters such as UKF, GF, PF. The principles of
system modeling with factor graphs and the generic sum-product algorithm were
presented with a simple illustrative example. A factor graph model for a general
Bayesian filter was then presented and the Kalman filter was derived for Gaussian
PDF representation, the corresponding update rules and message passing algorithm.

Our novelty was introduced by first a simple linearization of the update rules
and converting the algorithm to the EKF. Then, we split the vector nodes into
scalar ones and derived a general scalar iterative (extended) Kalman filter. The
algorithm involves only scalar operations, is fully distributed, hence suitable for par-
allel implementation. However, the convergence must be verified for each particular
implementation of this filter using Monte Carlo simulations.

The measurement models for the scalar and vector tracking architectures were
substituted into general expressions of LS, WLS, EKF, UKF, PF methods. Both
CRLB and posterior CRLB were derived, as well. Next, we derived the scalar itera-
tive EKF for the PVT problem and a similiar method for approximation of the WLS
method based on the FG framework.

By extensive simulations, we proved that the FG-based scalar iterative EKF' can
be used for the PV'T estimation provided the number of visible SVs reaches at least
sizteen. The accuracy is comparable to that of the EKF at three iterations or more
and depends on the dynamics of the user, the number of iterations and filter’s driving
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noise vartance. It was observed that the filter performs better if the higher dynamics
are not modeled with high driving noise variance, but the number of iterations is
increased instead. The filter thus offers compromises in complexity and accuracy.
If the number of SVs is high or the number of iterations is increased in dynamic
scenarios, the scalar EKF can even outperform the standard vector EKF. In dynamic
scenarios, the iterations help in the way that a new linearizing point is established
for each new iteration.

The numbers of flops of both scalar EKF and the standard EKF were comparable
if an efficient form of the EKF was implemented. For a single iteration, which
is sufficient for low dynamics, the scalar EKF has lower number of flops, for two
iterations it is comparable and for three iterations, the EKF has lower number of
flops. We should not deduce that the EKF is less complex even if its number of
flops is lower, since the vector and matrix manipulations involve memory reordering,
unlike the distributed scalar EKF operating on scalars.

To account for the correlation of the pseudorange and pseudorange rate measure-
ments between the satellite channels and other atmospheric biases, another case-
study-based simulations were conducted. At the same time, we showed that the
FG-based filter can be adopted to the vector tracking architecture with comparable
performance to the EKF. The 7 dB tracking sensitivity benefit of the vector tracking
architecture is lowered to 5dB.

By experiment with WNav receiver, we demonstrated that a comparable precision
to the EKF can be achieved.

To sum up the study, we recall that the algorithm enables engineers to ofHoad
the CPU into the hardware logic (HW) and hence:

e employ a low-end CPU and tradeoff the HW logic with the CPU
e track a higher number of SVs in the HW logic

e by faster updates of the PVT estimates and predictions, improve the stability
of the vector tracking architecture and in some applications eliminate the need
of inertial sensors.

If the algorithm is implemented in the CPU, the following advantages have been
identified:

e inclusion of the matrix library can be avoided resulting in lower code size

e by storing only the actual mean and variance, the requirements on the data
memory reduce.
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Appendix A

Complexity of Matrix and Vector
Operations

The complexity in terms of flops for basic matrix and vector operations is summarized
in Table A.1. The matrix inversion lemma supposed in the table is as follows.

Assume A as an n X n matrix, B is n x m, C is m x m, D is m x n, and that
the indicated inverses exist. The following identity then holds

(A+BCD) '=A"'—A'B(DA'B+C") 'DA". (A.1)
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Table A.1: Number of flops for various matrix and vector operations, taken from [105]

| Operation(s) |  Flops | Notes |
xly 2n —1 X,y aren X1
X+Yy, ax 2n aceR
Ax m(2n — 1) Aismxn
AB mp(2n — 1) Bisnxp
D 'x n D is n x n and diagonal
T 'x n? T is n X n and triangular
G 2n? G is n x n and orthogonal
A =PLU §n3 A is nonsingular
P is a permutation matrix
L(U) is a lower (upper) triangular matrix
A=LL" s’ A is positive definite
%n3 + 2n? when solving linear equations with LU
or Choleski decomposition
(A+BD)! §n3+2pn2 Aisnxn,Bisnxp, Dispxn

(A+BD)™' | 2p°n + 2p° using matrix inversion lemma (A.1) for C =1
(A+BD) '=A1-A'B(DA'B+I) DA
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