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Abstract 

 

The doctoral thesis covers a part of the stochastic properties identification for linear dynamic 

systems. Knowledge of the noise sources and uncertainties is essential for the state estimation 

performance. The covariances of the process and measurement noise represent tuning parame-

ters for the Kalman filter and the state estimation quality depends directly on them. The thesis 

deals with estimation of the noise covariances from the measured data. A Bayesian approach 

together with Monte Carlo methods are employed for this task. The thesis describes optimali-

ty tests that can be used to evaluate the quality of the state estimates obtained by a Kalman 

filter. A new approach was introduced to detect the color property of the process noise. If the 

process noise is colored, the shaping filter can be found in the time or frequency domain. It 

can be added to the Kalman filter which can be then tuned optimally. The limitations of the 

noise covariance estimation are evaluated by the Cramér–Rao bounds. The convergence of the 

proposed algorithms and the previously published ones were compared. 
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1. Introduction 
 

 

 

 

In the second half of the 20th century, a new state–space theory about dynamic systems was 

developed. The pioneering papers of the new theory were written by Rudolf E. Kalman, 

(Kalman 1960, 1961).  The new theory considers not only input–output behavior as previous-

ly used transfer functions, but also the trajectories of the internal states. The state–space (SS) 

approach allows incorporating the first principles to the mathematical models. If not all of the 

states are measurable, they can be estimated by state observers. This allows using, for exam-

ple, a state feedback even if some of the states are hidden.  

  In the 60‘s and 70's, the new theory was being developed remarkably quickly and it 

brought a new potential for solving various problems, especially in the field of control and 

regulation, (Kailath, 1979; Anderson and Moore, 1979; Kailath, et al. 2000; Gibbs, 2011). 

High computational power offers employing sophisticated control algorithms that can signifi-

cantly improve the control performance. During past decades, the Model Predictive Control 

(MPC) algorithms has begun to be widely used for control of large processes such as petro 

chemical industry and power plants. If the model of a real system is known, it allows predict-

ing the state and output trajectories which can be further used for the control optimization. To 

obtain the state space models, many identification methods have been developed, e.g. Sub-

space identification methods, Grey Box Modeling and others, (Ljung 1987; Katayama 2005; 

Řehoř,  2010, 2011). However, only minor attention was paid to identification of the stochas-

tic part of the dynamic systems. Omitting uncertainties and noise properties can lead to signif-

icant limitation of the algorithms based purely on modeling of the deterministic part. As an 

example, consider a state estimator – Kalman filter. The quality of the state estimates depends 

on the knowledge of the deterministic part of the real system, but also on the knowledge of 

the stochastic properties and noise entering the process.  
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Throughout the thesis, linear dynamic systems affected by a Gaussian noise will be con-

sidered as the models of real processes. The corresponding state estimator for a linear system 

is given by the system matrices and the noise properties represented by covariance matrices.  

The problem of finding a model of the deterministic part is solved by various identifica-

tion methods. Examination and identification of the stochastic properties of real processes is 

studied in this thesis. If the real process is well identified, the deterministic as well as the sto-

chastic part, then the predictions of such a model are accurate even for longer horizons. This 

leads to better estimation and prediction of the hidden system states and outputs. Accurate 

estimates/predictions can be used by controllers leading to better performance of the real 

process, less energy consumption, less pollution and increased safety which are the main 

goals of present technology.     

 

 

1.1 State of the art 

 

Methods for identification of linear dynamic systems are being developed for over one cen-

tury. At the beginning, input–output relation represented by transfer functions was used. In 

the 60's, the state space methods became popular and quickly improved. However, only minor 

attention was paid to the identification of the stochastic part of a system and noise properties.  

In the 60's, the pioneering papers were written about the estimation of noise covariances, 

(Mehra 1970, 1972; Carew and Belanger 1973; Neethling and Young 1974; Belanger 1974). 

It was observed that the autocorrelation of the output prediction errors is linearly depended on 

the covariance matrices describing the entering Gaussian noise. Then, for several decades, this 

topic was quite overlooked by the control science. Some research was done within the fields 

of speech, acoustics, signal processing and statistics, but the knowledge was not sufficiently 

applied to solve the problems of the system and control theory.   

The latest methods concerning the estimation of noise covariances were published in 

years 2005–2009, (Odelson, et al. 2005; Akesson, et al. 2008; Rajamani and Rawlings, 2009; 

Duník, et al. 2009). The main contribution of the recent papers was algorithms that offer a 

solution for finding the noise covariance matrices in the explicit form. The original paper was 

written by Odelson et al. and the further publications offer several extensions and modifica-

tion of the original approach. The last mentioned reference, (Duník, et al. 2009), offers a 

comparison and discussion over the methods for the estimation of noise covariances.  
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Another approach is described in Pour et al. (2009) which describes a method for estima-

tion of the covariance matrix using the innovation form of a linear system. This paper also 

proves the consistency of the estimation process. However, the initial Kalman gain is assumed 

to be a priori known for the given system, which simplifies the problem. 

 

 

1.2 Goals of the thesis and main contributions 

 

The goal of the thesis is developing new approaches and algorithms for analysis and identifi-

cation of the stochastic part of dynamic systems. The main goal is to develop a Bayesian algo-

rithm for estimation of the noise covariance matrices. For the analysis purposes, the models 

will be considered as discrete, linear and affected by Gaussian noise.  

The main results of the thesis are separated into the individual chapters. The first main 

contribution of the thesis is covered in Chapter 3. It solves a question, whether the filter per-

formance is optimal or not, i.e. whether the quality of the state estimates can be improved.  

The question is answered by examining the sequence of output prediction errors, which is the 

only measurable value. If the output prediction errors form a white sequence, than it holds, 

that the filter performance is optimal. Chapter 3, therefore, solves a problem if the given se-

quence is white or colored. Several different methods are described and compared to the 

widely cited method published by Mehra in 1970. The optimality tests are then used together 

with the noise covariance estimating algorithms as a form of adaptive Kalman filter. 

The second part of the thesis contains a detailed description of the Bayesian approach 

used to estimate the covariance matrices of the entering noise from the given output data. 

Bayesian theory is used together with Monte Carlo numerical methods. Several modifications 

are discussed for this method, and an extensive comparison to the previously published algo-

rithms is given.  

The third part of the thesis provides an overview about the colored noise. In the typical 

application of the Kalman filter, it is assumed that the entering noise is white. However, this 

is not necessarily true, and neglecting the color property may lead to the poor state estimates. 

Chapter 5 discusses how to detect whether the entering noise is colored or white using the 

time and the frequency domain. It also discusses whether it is possible to distinguish between 

colored process noise and colored measurement noise. The chapter further offers an overview 
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of possible solutions. It also contains several numerical examples and highlights a significant 

potential of further research on this field. 

The last part derives the Cramér–Rao bound for the estimation of the noise covariances. 

This bound represent the limitation of the estimation algorithms and can provide overview 

about possible convergence rates for any new approaches solving the estimation of the noise 

covariances. A numerical example demonstrates the performance of the Bayesian algorithm 

and the recent methods and compares the results to the Cramér–Rao bound.  

 

Summary of the thesis goals 

1) Analyze stochastic properties of linear dynamic systems. 

2) Summarize, develop and compare algorithms for performance evaluation of a Kalman 

filter. 

3) Develop an approach for estimation of the noise covariance matrices. 

4) Analyze linear systems affected by colored noise. Develop a method for detection of a 

colored noise. Develop an approach that deals with the colored noise and demonstrate a 

potential of using a noise shaping filter. 

5) Analyze the limits for quality of the noise covariance estimation algorithms using Cra-

mér-Rao bounds. 

 

The results of the thesis were presented at most impact IFAC conferences: 16th IFAC 

System Identification Symposium 2012,  18th IFAC World Congress 2011 and IFAC Work-

shops on Adaptation and Learning in Control and Signal Processing 2010. The main results 

were published in International Journal of Adaptive Control and Signal Processing. Almost 

all parts of the following text were reviewed by international reviewers and were accepted for 

publishing in international proceedings and journals. The paper Matisko and Havlena (2012) 

has already one SCI citation.  
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2. State and its estimation 
 
 
 
 

 

This chapter provides a brief introduction to the linear system theory and filtering. The defini-

tions given further will be used throughout the thesis. Further information about the linear 

system theory can be found in Kailath (1979), Anderson and Moore (1979) or Antsaklis and 

Michel (1997).  

 

 

2.1 Linear stochastic systems 

 

A linear stochastic system of order n, with p– and r–dimensional stochastic inputs, m deter-

ministic inputs and r outputs (the dimension of y(t) is the same as the dimension of e(t)), can 

be defined as a state–space model of the form 

 
( 1) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

t t t t

t t t t

+ = + +

= + +

x Ax Gv Bu

y Cx e Du
 (2.1) 

where ( ) nt ∈x ℝ  is a state vector, ( ) rt ∈y ℝ  is an output vector and ( ) mt ∈u ℝ  is a determi-

nistic input. Further, n n×∈A ℝ  is a system matrix, r n×∈C ℝ  is an output matrix, n p×∈G ℝ  is 

the noise input matrix and ,n m r m× ×∈ ∈B Dℝ ℝ  are the deterministic input matrices. In all the 

examples, system (2.1) is considered to be stable with zero deterministic input u(t). For the 

ease of analysis of the stochastic properties, the deterministic input u(t) and matrix B will be 

omitted. The stochastic inputs are ( ) pt ∈v ℝ , ( ) rt ∈e ℝ  with properties 

 

( )
, ,

( ) T

t

t

                      

Q Sv
0

e S R
∼ N  (2.2) 
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where p p×∈Q ℝ  is the covariance matrix of the process noise, r r×∈R ℝ  is the covariance 

matrix of the measurement noise and p r×∈S ℝ  is the cross–covariance matrix. Symbol 
( ; )RµµµµN  denotes the normal distribution with the mean µµµµ  and the positive definite cova-

riance matrix R.  

The model of the deterministic part (matrices A, B, C, D) of a real process can be ob-

tained by state–space identification methods. A number of publications deals with this topic, 

(Ljung, 1987; Katayama, 2005). The model accuracy and knowledge of the noise properties 

influence the KF performance. The definition of the optimal Kalman filter is given by the 

lowest trace of the state prediction error. However, this criterion cannot be evaluated directly 

because the states are not measurable. For this reason, the filter performance is evaluated by 

analyzing the output prediction errors. The methods for analyzing an output sequence is de-

scribed in Chapter 3. This thesis concentrates on estimating the noise properties to assure the 

KF performance be close to the optimum. Therefore, we assume the model of the determinis-

tic part to be known. It is clear that every model is only an approximation of the real process. 

For this reason, it is not possible to find the "true" system parameters or the noise characteris-

tics. The goal is to find such mathematical description of the real process that can sufficiently 

model and predict the real values of states or outputs. The term optimal Kalman filter is thus 

understood as the filter with the best possible quality of the state estimation that can be veri-

fied by examining the output prediction error and its whiteness property. 

Matrix G is not obtained by the identification methods, but can be set according to the 

prior information about the noise structure. If there is no prior knowledge about the noise, G 

can be considered to be a unit matrix of order n. However, if the number of the noise sources 

is less than the system order, estimation of the process noise properties is less complicated 

and requires a smaller amount of data. 

A more general stochastic model considers the cross–correlation between the process and 

measurement noise.  

 It is known from the system theory that the stochastic system can be alternatively de-

fined in an innovation form, (Ljung, 1987; Kailath, et al. 2000) 

 
( 1) ( ) ( ),

( ) ( ) ( ),

t t t

t t t

+ = +

= +

x Ax K

y Cx

εεεε

εεεε
 (2.3) 
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where n r×∈K ℝ  is a Kalman gain and ( )( ) 0, , r rt
ε ε

×∈R Rεεεε ∼ ℝN  is a white innovation 

sequence. For the analysis purposes, the initial conditions might be neglected leading to ma-

trices ,
ε

K R  being time invariant. It holds that if K in (2.3) is the optimal Kalman gain ob-

tained by solving algebraic Riccati equation for system (2.1) and
ε

R  is the covariance matrix 

of innovations, than the output spectral density of system (2.1) and (2.3) is the same. It also 

means, that given system (2.1) with two noise source with covariances Q and R, it is possible 

to find a system in the form (2.3) with parameters K and 
ε

R  such that the output spectral 

density is the same, (Havlena, Štecha, 1999; Kailath, et al., 2000). 

Some comments can be added on both definitions. System (2.1) has two independent 

sources of uncertainty, the process noise and the measurement noise. In a non–scalar case, the 

variables Q, R are matrices and contain redundant information. Noise covariance matrices 

represent properties of the noise sources including their structure. Matrix Q have the same 

dimensions as the number of states (if G is unit) and matrix R has a dimension equal to the 

number of outputs. However, from the observed output data, only the number of noise sources 

equal to the number of outputs can be recognized. Therefore, the model (2.3) is minimal in the 

sense of the number of noise sources and it generates the same output spectral density as the 

model (2.1), provided that K is the optimal Kalman gain for the system (2.1).  A disadvantage 

of the innovation form comes from the fact that we lose the physical background of the noise 

sources and their structure. Another complication arises from the direct estimation of the 

Kalman gain K because it is required the matrix −A KC  be stable. A method that estimates 

the innovation covariance matrix is presented in Pour et al. (2009), where also the consistency 

of its estimation is proven. However, the gain K is considered to be a priori known. This as-

sumption simplifies the problem. Another possibility for finding the gain K is using the Sub-

space Identification methods that can identify the system model together with the Kalman 

filter, (Katayama, 2005). However, this approach can lead to problems with stability of 

.−A KC  For these reasons, this thesis concentrates on finding the noise covariance matrices 

that parameterize the stabilizing Kalman gain. 
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2.2 State estimation and the Kalman filter 

 

The Kalman filter (KF) is an optimal state estimator for a linear dynamic system, (Kalman, 

1960; Kalman and Bucy, 1961; Anderson and Moore, 1979). It is optimal in the sense of mi-

nimal state prediction error, mathematically defined as a minimal trace of the state prediction 

error covariance matrix. If the entering noise is normal, the filter is optimal in the mean 

square (MS) sense. Otherwise, the filter is optimal in the linear mean square (LMS) sense.  

The Kalman filter can be alternatively derived using Bayesian principles and probability 

distributions. The filter updates the conditional probability distribution function (cpdf) 

( ( ) | )p t τ
x Y  of the state of a linear dynamic system conditioned by the given data 

{ }(0), (0), (1) (1), , ( ), ( )τ τ τ= u y u y u y…D , or alternativelly { }(0), (1), , ( )τ τ= y y y…Y , up 

to the time τ . The cpdf of the state can be expressed recursively due to the Markov property 

of the dynamic system (2.1), (Peterka, 1981). The Markov property of the state can be ex-

pressed as 

 ( ) ( )1( 1), ( ) ( ), ( 1), ( ) ( ) ,tp t t t p t t t−+ = +x y x x y xD  (2.4) 

which means that the state x(t) contains all the information from the previous data 1t−D  up to 

the time 1t − . 

The estimates at time t obtained from the measurements up to time τ  use the index 

( )| .t τ  For a linear time invariant system and a normal prior, the cpdf  1( ( ) | )tp t −x Y  is the 

normal distribution ( )ˆ( | 1); ( | 1)t t t t− −x PN .  The parameters of this distribution can be 

recursively calculated by the Kalman filter defined as 

( )( ) 1

ˆ ˆ( 1 | ) ( | 1) ( | 1) ( | 1) ( | 1),T Tt t t t t t t t t t
−

+ = − + − + − + −x Ax AP C S CP C R εεεε  (2.5) 

( ) ( )
( )( ) ( )( ) ( )( )1

1 | | 1

| 1 | 1 | 1 ,

T

T T T T

t t t t

t t t t t t
−

+ = − +

− − + − + − +

P AP A Q

AP C S CP C R CP A S
 (2.6) 

where the following term is called the Kalman gain 
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( )( ) ( )( )
1

( | 1) | 1 | 1T Tt t t t t t
−

− = − + − +K P C S CP C R
 

and ( | ) n nt τ ×∈P ℝ  is a covariance matrix of the state prediction error, i.e.  

 ( )( ){ }ˆ ˆ( | ) ( | ) ( | ) ,
T

t t tτ τ τ−P x x≜ …E  

and 

 ( ) ˆ| 1 ( ) ( | 1)t t t t t− − −y Cxεεεε ≜  (2.7) 

is the output prediction error. In the optimal case, this is a white sequence called an innova-

tion sequence. 

 

If the cross–covariance matrix S is zero, the Kalman filter can be defined in two steps as 

follows, (Štecha and Havlena, 1999; Simon, 2006). 

In the data update step, the state estimate ˆ( | 1)t t −x  is updated using measured data at time t 

 ( ) ( )( ) ( )
1

ˆ ˆ( | ) ( | 1) | 1 | 1 | 1 ,T Tt t t t t t t t t t
−

= − + − − + −x x P C CP C R εεεε  

 ( ) ( ) ( ) ( )( ) ( )
1

| | 1 | 1 | 1 | 1 .T Tt t t t t t t t t t
−

= − − − − + −P P P C CP C R CP  (2.8) 

In the time update step, the state prediction ˆ( 1 | )t t+x  is calculated for the next time instant 

1t +   

 ( ) ( )
ˆ ˆ( 1 | ) ( | ),

1 | | .T T

t t t t

t t t t

+ =

+ = +

x Ax

P AP A GQG
 (2.9) 

 Taking this equality into account, the probability distribution function of the output y(t) con-

ditioned by data 1t−Y  and the covariance matrices Q, R is given by 

 
( ) ( ) ( )

( ) ( )( )
1 1( ) | ( ) | ( ) ( ) | ( )

ˆ | 1 ; | 1 ,

t t

yy

p t p t t p t d t

t t t t

− −= =

= − −
∫y y x x x

y P

Y Y

N
 (2.10) 

where the output prediction and its covariance matrix ( )1 | r r

yy
t t ×+ ∈P ℝ  are calculated by  
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( ) ( )
( ) ( )

ˆ ˆ| 1 | 1 ,

| 1 | 1 .T

yy

t t t t

t t t t

− = −

− = − +

y Cx

P CP C R
 (2.11) 

Further, consider a linear system in the innovation form (2.3), (Anderson and Moore, 1979; 

Kailath, at al. 2000), having as many noise sources as the number of outputs. Obviously, the 

process noise ( )tKεεεε  and the measurement noise ( )tεεεε  sources are correlated. The entering 

noise can be described by the covariance matrices (2.2) as 

 
( )

, .
( )

T

T

t

t
ε ε

ε ε

                      

v KR K KR
0

e R K R
∼ N  (2.12) 

The relationship between the forms (2.1) and (2.3) can be derived as follows. Consider the 

system (2.1) to be completely known. Then, the innovation sequence for ( )ty  can be recur-

sively calculated using a Kalman filter as follows 

 
ˆ ˆ( 1 | ) ( | 1) ( | 1),

ˆ( | 1) ( ) ( | 1),

t t t t t t

t t t t t

+ = − + −

− = − −

x Ax K

y Cx

εεεε

εεεε
 (2.13) 

where K is the optimal Kalman gain obtained by solving the algebraic Riccati equation. The 

first equation can be modified considering the definition of innovations 

ˆ( | 1) ( ) ( | 1)t t t t t− − −y Cxεεεε ≜  resulting in the form 

 ( )ˆ ˆ( 1 | ) ( ) ( ),

ˆ( ) ( | 1) ( ),

t t t t

t t t t

+ = − +
=− − +

x A KC x Ky

Cx yεεεε
 (2.14) 

which is the standard form of a state–space description for a linear system. The system (2.14) 

is entered by a colored signal y(t). The output of this system is an innovation sequence, which 

is white. Therefore, the system (2.14) is called a whitening filter. It holds that the system (2.3) 

is causally invertible for the process y(t), (proof in Kailath, et al. 2000, Chap 9.). For all trip-

lets of covariances Q, R, S in (2.2) for system (2.1), it is possible to find K, Rε such that the 

matrix −A KC  is stable, and the spectral density of the outputs of the systems (2.1) and (2.3) 

is equal. The gain K in the system (2.3) is then equal to the optimal Kalman gain obtained by 

solving the Riccati equation. For this reason, the variable K is used in both cases.  
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The Kalman filter is optimal only if the following conditions hold 

 

• the real system is linear, time invariant and its state space model is exactly known, 

• the process and the measurement noise are white processes, 

• the process and the measurement noise covariance matrices are known. 

 

In this thesis, the stochastic properties are of interest. Identification methods are a well studied 

field that are beyond the objective of this thesis. Therefore, throughout the thesis, the system 

matrices are assumed to be known after the identification of a real process. Several approach-

es for the noise covariance matrix estimation will be introduced and compared to the earlier 

published methods. In the following chapter, we will concentrate on the Kalman filter perfor-

mance and optimality.  
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3. Optimality tests for the Kalman filter1 
 

 

 

 

3.1 Introduction to the optimality analysis of the Kalman filter 

 

It was mentioned in the previous chapter that the Kalman filter is an optimal state estima-

tor under certain conditions. The Kalman filter is a state observer and intuitively, we expect to 

obtain "the best" state estimates. A criterion that is used to derive the Kalman filter considers 

the state prediction error (difference between the actual state value and the state estimate) 

which should be minimal. However, as the real process states are hidden, it is not possible to 

evaluate the state estimation quality directly. The only available data is the measured output 

and the output prediction error. It is known from the estimation theory that if the Kalman filter 

works optimally, the output prediction error sequence is white. Therefore, to evaluate the 

quality of state estimates, the whiteness property of the output prediction error sequence is 

used.  

Inspecting the whiteness property of a sequence has been well studied by mathematicians 

and the results have been applied in the field of acoustics and signal processing. However, 

these methods are not widely used in the system and control field, and inspection of the Kal-

man filter quality is often done ad hoc without any analytical tools. 

This chapter provides derivation of several whiteness tests and compares them by an ap-

plication in the state estimation problems. The properties of proposed methods are discussed, 

and their performance is extensively tested on simulations. 

 

 

 

                                                 
 
1 This chapter is a part of the paper originally published in IFAC–PapersOnLine, www.ifac–papersonline.net, 
and is reproduced here with permission from IFAC, (Matisko and Havlena 2012). 
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3.2 Autocorrelation function 

 

An autocorrelation function is the cross–correlation of the sequence with itself, (Åström, 

1970). For an infinite sequence of real numbers generated by a stationary ergodic process y(t) 

with zero mean, it is defined as 

 { }( ) ( ) ,
k

Y y t y t k= +E  (3.1) 

where { }E  is the expected value operator. From this point further, the main interest is paid 

to white noise. It is known, that the autocorrelation function of the white noise sequence is a 

multiple of Kronecker delta function, (Papoulis, 1991). That means 0,
k

Y = for 0k ≠ . 

The definition (3.1) requires an infinite set of data and knowledge of the probability dis-

tribution of y(t).  However, the given data represents only one realization. To use the single 

realization for the estimation of autocorrelation function, the ergodicity of the generating 

process must be assumed. The two formulas ((3.2) and (3.3)) are used to estimate the autocor-

relation function, (Mehra, 1970; Pukkila and Krishnaiah, 1988a; Fuller, 1996; Odelson, et al. 

2005).  However, none of these formulas returns samples that are independent and identically 

distributed (i.i.d.) for every k ≥ 1. This property is necessary for hypotheses testing, otherwise 

the tests loose reliability. In this chapter, the two models will be considered, and a new formu-

la will be derived, that generates i.i.d. samples for every k ≥ 1, (Matisko and Havlena, 2012a).  

Assume having a set of data with length N. The unbiased estimate of the autocorrelation func-

tion is given by 

 
1

1ˆ ( ) ( ).
N k

N k

k
i

Y y i y i k
N k

−
−

=

+
− ∑≜  (3.2) 

In Mehra (1970) and Fuller (1996), it is stated that the following definition gives less mean 

square error and should be preferred to (3.2) 

 
1

1ˆ ( ) ( ).
N k

N

k
i

Y y i y i k
N

−

=

+∑≜  (3.3) 

The normalized autocorrelation functions are defined as  
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0 0

ˆ ˆ
ˆ ˆ,

ˆ ˆ

N N k

N N kk k

k kN N k

Y Y

Y Y

−
−

−
Γ Γ≜ ≜ . (3.4)  

Suppose having a sequence of N numbers generated from the normal distribution (0, )RN , 

where R is an arbitrary covariance. Parameter M  is the maximum desired lag of the autocor-

relation function. The goal is to examine statistics of the function ˆ
k

Γ , for 1k M= … , that are 

asymptotically normal. Now, for each k, the statistics among all sequences are calculated. It is 

expected that for 1k ≥  it holds that { }ˆ 0
k

Γ =E  and { }ˆcov 1 / ,
k

NΓ =  (Odelson et al. 

2005). We will show, that the normalized estimated autocorrelation functions (3.3), (3.4) do 

not satisfy the condition { }ˆcov 1 / .
k

NΓ =  For the independent normal random sequences 

with ,x y  zero mean it holds2 

 
{ } { } { }
{ } { } { }

,

cov cov cov .

T

T

=

=

x y x y

x y x y

E E E
 

Further, if ( )0,y RN∼ , then 
1

cov .
N

i
i

y NR
=

    =    
∑  Therefore,  ˆN k

k
Y −  and ˆN

k
Y  can be ex-

pressed as random values generated approximately from the normal distribution 

 ( )2 21 1ˆ 0,( ) 0, ,N k

k
Y N k R R

N k N k

−
  − =   − − 

N N∼  (3.5) 

 ( )2 2

2

1 ( )ˆ 0,( ) 0, .N

k

N k
Y N k R R

N N

 −  − =    
N N∼  (3.6) 

It can be seen, that in both cases, the variance varies with k and therefore the values of the 

estimated autocorrelation functions (3.4) are not i.i.d. The goal is to find a constant multiply-

ing the sum in (3.2), that would assure the variance of *ˆ
k

Y  to be independent of k. It must hold 

                                                 
 
2  If the sequences x, y have a non-zero mean, than it holds 

 2 2cov{ } cov{ }cov{ } cov{ } { } cov{ } { } .T = + +x y x y x y x yE E  



Doctoral Thesis Peter Matisko, 2013  

- 15 - 
 

 ( )* 2 21 1ˆ 0,( ) 0, .
k

Y N k R R
D N

  − =    
N N∼  (3.7) 

It is obvious that ( ).D N N k= −  The desired formula for the autocorrelation estimation 

and its normalized form is given by 

 
*

* *

*
1 0

ˆ1ˆ ˆ( ) ( ), .
ˆ( )

N k
k

k k
i

Y
Y y i y i k

YN N k

−

=

+ Γ
−

∑≜ ≜  (3.8) 

If it holds that ,N M≫ then k samples may be omitted from the summation. The estimated 

autocorrelation function would be of the form 

 
,

1

1ˆ ( ) ( ),
( )

N M k
N M

k
i k

Y y i y i k
N M

− +

= +

+
− ∑≜  (3.9) 

where the summation sums N M−  numbers for each k. A disadvantage of this method is, 

that it does not use all of the available data. 

An extension of the autocorrelation function to the multivariate variables can be ex-

pressed using the following definitions 

 

{ }( ) ( ) ,T

k
t t k= +Y y yE

 (3.10) 

 

*

1

1ˆ ( ) ( )
( )

N k
T

k
i

i i k
N N k

−

=

+
−

∑Y y y≜  (3.11) 

that lead to the final normalized form, (Mehra, 1970; Lütkepohl, 2005)  

 Γ

*

,*

* *

0 0, ,

ˆ
ˆ ,

ˆ ˆ

k i j

k ij

i i j j

 
    =      

      

Y

Y Y

 (3.12) 

where 
,

[ ]
i j
⋅  represents the element of the matrix on the position i, j. 
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3.3 Optimality tests 

 

It is known from the control theory, that if all optimality conditions given in Chapter 1 

hold, the innovation sequence is white. Therefore, testing the optimal performance of the filter 

reduces to testing the whiteness property of the innovation sequence. The following tests are 

built on Wald (1945), Mehra (1970), Pukkila and Krishnaiah (1988a, 1988b), Rencher (2002), 

Seber (2008), Eshel (2012). The original text of this section can be found in paper Matisko 

and Havlena (2012a). The tests will be compared in Section 3.4.  

 

3.3.1 Optimality Test 1 

 

Test.1  It was shown in the previous section that the values of normalized autocorrelation 

function *ˆ
k

Γ  are asymptotically i.i.d from the normal distribution with zero mean and variance 

1/N. Hypotheses can be formulated as follows 
 

H0: the values *ˆ , 1
k

kΓ ≥  were generated from the normal distribution with zero mean and 

variance 1/N, 

H1: the values *ˆ , 1
k

kΓ ≥  were not generated from the normal distribution with zero mean 

and variance 1/N. 
 

Based on the desired confidence level I, a quantile qp of the normal distribution is taken. If the 

sequence was generated from a normal distribution with a variance 1/N, then I of the values 

must lie within the interval 
(1 )/2

/
I

q N
−

± . If, for example, the confidence level is I = 0.975, 

then 97.5% of the values *ˆ
k

Γ , 1 k M≤ ≤  have to lie within the interval 

(1 )/2
/ 2.24 /

I
q N N

−
± = ± . If the number of values *ˆ , 1

k
kΓ ≥  lying inside the confidence 

interval is higher than I M⋅ , than the null hypothesis is accepted and the sequence *ˆ
k

Γ  is con-

sidered to be generated from the normal distribution with variance 1/N. This leads to the con-

clusion, that the given sequence y(t) is uncorrelated white. 
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This optimality test was proposed by Mehra (1970) and is widely cited. However, ac-

cording to the simulations, this test has significantly lower performance than the following 

ones. Therefore, it will not be further considered for testing and comparisons. 

 

 

3.3.2 Optimality Test 2 

 
Test.2  Hypotheses can be formulated as follows 

H0: the values *ˆ , 1
k

k ≥Y  were generated from the normal distribution with zero mean and 

variance 1/N, 

H1: the values *ˆ , 1
k

k ≥Y  were not generated from the normal distribution with zero mean 

and variance 1/N. 

 

It is known, that a sum of squared independent values generated from the normal distribution 

( )0;1N  is distributed according to the 2χ , (Rencher, 2002; Seber, 2008). Consider M values 

of the function *ˆ
k

ΓΓΓΓ  and a sum of its squares for each diagonal member j 

 ( )Γ
2

*

1

ˆ( ) .
M

j i jj
i

M
=

 Ψ =   ∑  (3.13) 

If ˆ
k

Y  is an uncorrelated white sequence, values Γ*ˆ
k jj

 
    are normally distributed with zero 

mean and variance 1/N, (Mehra 1970, prove in reference [15] therein). Therefore, the function 

( )
j

N M⋅ Ψ  represents random values from the 2( )Mχ  distribution with M degrees of free-

dom. Hypothesis H0 is accepted, if for each j it holds 

    ( ) 2( ),M

j I
N M qχΨ <  (3.14) 

where 
2( )M

I
qχ  is the quantile of 2χ  distribution with M degrees of freedom and the confidence 

level I.  Furthermore, the values ( )j
N MΨ  can be used as a measure to characterize the dis-

tance between the actual setting and the optimum, which is zero. Alternatively, value 
2( )M

I
qχ  
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can be considered as a ‘reachable’ optimum for the given amount of data. Finally, if the hypo-

thesis H0 is accepted, it can be concluded that the given sequence ˆ
k

Y  is an uncorrelated white 

sequence. 

 

 

3.3.3 Optimality Test 3 

 
Test.3  This test examines whether the given sequence comes from a non–zero order l–

dimensional autoregressive (AR) process or not, (Lütkepohl, 2005). If the sequence is white, 

it can be stated that it was generated by AR model of order zero. The hypotheses are formu-

lated as follows 

 

H0: the data generator is an AR process of order zero, 

H1: the data generator is an AR process of order one or  higher with non-zero coefficients. 

 

The multivariate AR model of order m is generally defined as 

      
0

( ) ( ),
m

i
i

t i t
=

− =∑A x e  (3.15) 

where l l

i

×∈A ℝ  are such coefficients that the AR system is stable. In most practical cases the 

zero coefficient is unit, i.e. 
0

.=A I  System (3.15) with 
0
=A I  is stable and stationary iff all 

the roots of  

 1

1
det( ) 0m

m
z z− −− − =I A A…  (3.16) 

lie inside the the unit circle, i.e. 1z < , where ,z ∈ℂ  (Lütkepohl, 2005; Hendry and Juselius, 

2000). 

Several criteria can be defined for finding m in a general form as 

 2ˆ( ) log ( ) ( ),m N m m g Nψ = +S  (3.17) 
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where ( )g N  is a nonnegative penalty term and 
2ˆ ( )mS  is a determinant of the residual cova-

riance matrix dependent on the selected AR order m. The use of the penalization term has the 

following reason. Consider a discrete linear system of order one excited by white noise that 

has generated an output sequence with a length of 100 samples. Theoretically this sequence 

can be generated by a system of order 100. However, such model covers not only the real sys-

tem dynamics, but also the dynamic of the entering noise. Therefore, the mean–square error 

cannot be the only criterion, because it would be possible to find a system generating the giv-

en sequence with zero error. It is necessary to find a compromise between the modeling error 

and the system order. Criterion in the form (3.17) penalizes the system order. 

The residual covariance matrix can be  expressed in the form 

 

2 * * *

0 1 1
ˆ ˆˆ ˆ ˆ ˆ( ) ,

m m
m = − − −S Y A Y A Y…  (3.18) 

where 
1 2

ˆ ˆ ˆ ˆ( ) , , ,
T

m
m  =   A A A A…  are parameters obtained by solving the multivariate Yule–

Walker equations (Pukkila and Krishnaiah, 1988b)   

 

�

* * * *

0 1 1 11

* * * *

21 0 2 2

* * * *

1 2 0

ˆ( ) ( )

ˆˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ ˆ
.

ˆˆ ˆ ˆ ˆ

m

m

mm m m

m m

−

−

− −

    
    
    
     =    
    
    
        

A

Y Y Y YA

AY Y Y Y

AY Y Y Y

ΨΨΨΨ

⋯

⋮⋮ ⋱ ⋮ ⋮

⋯
�����������
�����������

 (3.19) 

Matrix 2ˆ ( )mS  can be shortly expressed as 

 2 *

0
ˆ ˆˆ ˆ( ) ( ) ( ) ( )Tm m m m= −S Y A AΨΨΨΨ  (3.20) 

The penalty term depends on the selected criterion, e.g. Akaike information criterion (AIC), 

Bayesian information criterion (BIC), Efficient determination criterion (EDC), Hannan–Quin 

criterion (HQ) (see Pukkila and Krishnaiah, 1988a, 1988b for more details). In the following 

text, the penalty function is BIC and is of the form 2( ) log ,g N l N=  where N is the length of 

the given data and l is its dimension.  

Determining the order of the AR process can be expressed by combining (3.17), (3.20)  

and the penalty term to the form 
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 ( )
max

* * 2

00

ˆ ˆˆarg min log ( ) ( ) ( ) log .T

m m
m N m m m ml N

≤ ≤
= − +Y A AΨΨΨΨ  (3.21) 

The hypothesis H0 is accepted if * 0m = , and that imply that the given sequence ˆ
k

Y  is un-

correlated white. Alternatively, a modified criterion can be defined as 

 ( )
max

* 1 2

01

ˆ ˆˆ( ) min 0, log ( ) ( ) ( ) log .T

m m
T m N m m m ml N−

≤ ≤
= − +I Y A AΨΨΨΨ  (3.22) 

The hypothesis H0 is accepted if *( ) 0T m > . This test is more strict than (3.21), i.e. for H0 to 

be accepted, the tested sequence have to be closer to white noise than in criterion (3.21). 

 

Performance of the Kalman filter 

 

If we have several Kalman filters at hand, and the best one is to be selected, the statistics 

of the optimality tests can be used. Usually, the system is not perfectly identified, therefore all 

the identified noise covariances can be non–optimal. In such case, the best settings should be 

chosen.  

Considering Test.2, a qualitative measure can be defined as  

 ( ).2
1

,
l

Test j
j

N
M M

l =

= Ψ∑  (3.23) 

or as 

 ( ).2
max ,

Test jj l
M N M

∀ ≤
= Ψ  (3.24) 

where ( )j
MΨ  is given by (3.13). The first measure calculates an average value of statistic 

( )j
N MΨ , while the second formula returns the worst case. There can be a difference when 

comparing these two results. If there is a strong correlation in one dimension of the tested 

signal, then the statistic (3.23) will be much lower than (3.24). 

 

For Test.3, the qualitative measure can be defined as  

 { }
max

1 2

.3 00

ˆ ˆˆmax abs log log .T

Test m m
M N ml N−

≤ ≤
= − +I Y A AΨΨΨΨ  (3.25) 
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For both measures it holds that a lower number means better performance. If the best Kalman 

filter is to be chosen, the qualitative statististics (3.23), (3.24) or (3.25) are calculated for the 

output prediction error of each individual Kalman filter. The best filter has the lowest value of 

the qualitative measure. 

 

 

3.3.4 Optimality test 4 (Sequential test) 

 

In this section, a sequential optimality test (Test.4) will be described, built on Wald (1945). It 

allows to control the errors of both kinds. The test works online in parallel with the system 

and as soon as there is enough data, it returns a decision about the filter optimality. The idea is 

analogous as in Test.3. The order of the data generating system is of interest. If it is of the 

order zero, the tested sequence can be concluded to be white.  

The measured samples are recursively used for the data generator identification which is 

assumed to be an AR model of order m. However, there is a difficulty with determining the 

zero order system. If the system is of the order zero, and the model to be identified is of the 

higher order, it leads to the situation, when all the identified parameters are close to zero. 

Therefore, it is difficult to distinguish the model of order zero and the model of higher order 

with all parameters close to zero. For this reason, alternatively, a penalty function can be add-

ed to the criterion to increase the reliability of detecting order zero. The same approach was 

applied for the Test.3.  

The sequential test compares the pdf 1( ( ) | )t

m
p t −y D  to the pdf 1

0
( ( ) | )tp t −y D . The first 

pdf represents a likelihood function that the sequence ( )ty was generated by an AR system of 

order m. The parameters of the unknown AR system are identified recursively within the algo-

rithm. The second pdf, 1

0
( ( ) | )tp t −y D , represents a likelihood function that the given se-

quence was generated by an AR model of order 0. A sequence generated by an AR system 

(with non-zero parameters) of order m is colored, while the sequence generated by an AR 

system of order 0 is white. 

 
The algorithm can be summarized as follows  
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Algorithm 

 

 
1)  Initialization 

Consider a model of order m. Calculate the probability density function of the current 

output 
1( ( ) | )t

m
p t −y D , conditioned by the data 1t−D  up to the time 1t − .  For a system 

with a single output, use the following approach 

 

Calculation of the probability distribution function θ
1 ˆ( ( ) | , )t

m
p y t −D  

 

a) Start with the initial estimate of the AR model parameters 
0

ˆ ˆ(0) m= ∈θ θθ θθ θθ θ ℝ  and its 

covariance matrix 
0

(0) ,m m×= ∈P P ℝ  e.g.  ˆ(0)= 0θθθθ  and (0) , 1γ γ=P I ≫ . 

b) Update the estimated parameter vector and its covariance matrix using the regressor 

( ) ( 1),..., ( )
T

t y t y t m = − −  z  and a new data sample ( )y t   

 
( )( 1) ( )ˆ ˆ ˆ( ) ( 1) ( ) ( ) ( 1) ,

1 ( )

( 1) ( ) ( ) ( 1)
( ) ( 1) ,

1 ( )

T

T

t t
t t y t t t

t

t t t t
t t

t

ζ

ζ

−
= − + − −

+
− −

= − −
+

P z
z

P z z P
P P

θ θ θθ θ θθ θ θθ θ θ

  

where ( ) ( ) ( 1) ( ).Tt t t tζ = −z P z  Further, the residual variance ( 2(0) 0s = ) is recur-

sively calculated by  

 
( )2

2 2

ˆ( ) ( ) ( 1)
( ) ( ) ( 1) ( 1) .

1 ( )

Ty t t t
t m s t t m s t

tζ

− −
− = − − − +

+

z θθθθ
 

c) Use ( )tz , θ̂( )t  and ( )tP  to calculate estimate ˆ(̂ ) ( ) ( 1)Ty t t t= −z θθθθ  and covariance 

matrix  ( )2( 1) ( ) ( 1) ( ) 1T

y
P s t t t t= − − +z P z . The probability density function of 

the output of the AR model is defined as ( )θ
1 ˆ ˆ( ( ) | , ) ( ),t

m y
p y t y t P− = ND .  

 

End of cpdf calculation 1( ( ) | )t

m
p y t −D  
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2)  Calculate cpdf for a model of order 0 

Consider a model of the order 0. The probability density function of the current output is 

defined as 

  ( )1 2 2

0 0 0
( ( ) | , ) 0, ( 1) ,tp t t− = −y S SD N  (3.26) 

where 2

0
0

1
( ) ( ) ( ).

t
T

i

t i i
t =

= ∑S y y  

3) Compare the models of order m and 0  

The criterion of the sequential test using a logarithm of the ratio of the joint probability 

densities 
0

,
m

p p  can be defined as  

  
θ

1 2

0 0

1

( ( ) | ,S )
T( ) T( 1) log .

ˆ( ( ) | , )

t

t

m

p t
t t

p t

−

−

  = − +    

y

y

D

D
 (3.27) 

This is a recursive modification of the original sequential test proposed by Wald (1945) 

that uses a ratio of the joint probability densities in the form 

 
( )
( )

0
(0), (1),..., ( )

T ( ) log
(0), (1),..., ( )

M

m

p t
t

p t
=

y y y

y y y
 (3.28) 

 which is a form of the General Likelihood Test. 
 
4)  Calculate the probability thresholds and compare the criterion value to them 

Further, constants a  and b  are to be chosen such that they represent the desired probabil-

ity of the first kind and second kind error. The decision about optimality is now as fol-

lows 

  
1

T( ) log
b

t
a

−
>  – the AR model is of the order 0, (3.29) 

  T( ) log
1

b
t

a
<

−
 – the AR model is of the order m  (3.30) 

  

1
log T( ) log

1

b b
t

a a

−
< <

−
 – not enough data for a decision  (3.31) 
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5) Decide the optimality  

If the criterion value T( )t  does not satisfy the inequality (3.29) or (3.30), that indicates 

that there is not enough data for a decision respecting the desired probabilities a  and b . 

The lower the probabilities are, the more data is necessary for the decision. If the order 

zero is confirmed, that indicates that the given sequence is white and the Kalman filter is 

set optimally. If the higher order is confirmed, the tested sequence is not white. The crite-

rion value T(t) can be set to zero and the algorithm is restarted for the new decision 

process. Alternativelly, the Kalman filter can be re–tuned, if non–optimality is detected. 

6)   Continue with step 2. 

 

 
End of algorithm 

 
 

   

3.4 Numerical simulations 

 

Example 1 

In this section, a linear system with a Kalman filter will be considered for numerical simula-

tions. The sequence of innovations will be used as input data for the optimality tests. Consider 

a stable linear stochastic system of order n, ( ) nt ∈x ℝ  with p stochastic inputs, ( ) pt ∈v ℝ  an r 

outputs, ( ) rt ∈y ℝ  given by (2.1). 

For the first simulation, consider a MISO system having slow, fast and negative poles 

given by 

 

0.5 1 0.2 1 0.2

0 0.5 0.2 , 0 1 , 1 0 0 .

0 0 0.97 1 0

T

   
   
     = − = =         
      

A G c  (3.32) 

The covariances used for the input data generator and the tuning matrices are 

 
1

10 0.5 6 0
, 1; .

0.5 1 0 4s s
R

   −   = = =   −      
Q Q  (3.33) 
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The simulation results are summarized in Tab. 1. The noise generator covariances ,
s s

RQ  re-

main the same and the actual KF setting ,RQ  is written in the first column of the table. The 

first block of Tab. 1 shows the simulation results with optimally set KF. Other blocks show 

results with two non–optimal settings. High reliability of both tests can be seen with relatively 

small sets of data. 

 

Tab. 1 – Simulation results for the optimality tests. The values in the table indicate % of correct deci-
sions within repeated simulations. The numbers in the Test.4 column are % of correct and wrong deci-
sions. The difference between them is % of undecided tests. At Test.4 simulation, N means maximal 
number of available data and parameter 0.05a = , 0.01b = . 

 
N 

Test.2 
% 

Test.3 
% 

Test.4 
% 

s

s
R R

=
=

Q Q
 

200 94 94 39  ;  1  

500 96 100 97 ; 0 

1000 96 99 100 ; 0 

4

s
R R

=
=

Q I
 

200 33 55 8 ; 27 

500 53 85 47 ; 33 

1000 86 98 51 ; 44 

1

2R

=

=

Q Q  

200 21 36 94  ; 5 

500 37 68 98 ; 2 

1000 64 94 95 ; 5 

 

It can be seen, that Test.4 returns many wrong decisions in the situation, when the output pre-

diction error sequence is only slightly colored. The performance of this test can be influenced 

by tuning the parameters a, b. If the parameter a is lowered, the number of wrong decisions 

will decrease, but the number of undecided tests increases, because more data is needed for a 

more precise test.  

The following histograms, Figure 1 and Figure 2, show what number of the samples the 

sequential algorithm needs to decide about the optimality. For both example, the system 

(3.32) was used. The first example, Figure 1, considered an optimally set KF. It can be seen, 

that most of the times the algorithm decided within 150 and 600 samples and the number of 

wrong decisions is very low. For the second example, Figure 2, the Kalman Filter was tuned 
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using the covariance matrices 
1
, 2R= =Q Q , which is not optimal. It can be seen, that the major-

ity of the tests required 110 – 150 samples to correctly decide about the optimality. The number of 

wrong decisions is 4.8% leaving 0% undecided. 

 
Figure 1 – The sequential test was repeated 2,000 times processing the output prediction error of the 
system (3.34) that was set optimally. The histogram (axis y) shows the number of the tests that decided 
the optimality after k samples (axis x). Blue – correct decisions, red – wrong decision. Undecided 8%. 

 

 
Figure 2 – The sequential test was repeated 2,000 times processing the output prediction error of the 
system (3.35) that was set non-optimally, the tuning matrices for the KF were 

1
, 2R= =Q Q , (3.33) 

The histogram (axis y) shows the number of the tests that decided the optimality after k samples (axis 
x). Blue – correct decisions, red – wrong decision. Undecided 0%. 
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Example 2 

Next, the sequential test will be used together with the algorithm for the noise covariance 

estimation described in Section 4.4, (Matisko and Havlena, 2013). They will work together as 

an adaptive filter. The process of adaptation of the Kalman gain will be shown in the figure. 

The example will use a system given by 

4

0.85 1 0 0

0 0.6 1 0
, , 1 0.8 1 0

0.2 0 0.8 1

0 0 0 0.9

T

 
 
 −   = = = −    − − 
 
  

A G I c

 

and the true covariances diag(10, 3, 4,2),
s
=Q 1R = . The parameters of the sequential tests 

are 0.01, 0.001a b= = , the forgetting factor 0.98ϕ =  and the order of AR model is 7n =

that is higher than the system order n. (Maximal order of the innovation sequence is 2 ,n  be-

cause the whole system consists of the process and the estimator that are both of order n. 

However, practically it is sufficient to estimate the AR model of order lower than 2 .n ) Alter-

natively, several AR models with different orders can be identified simultaneously and the 

most probable model is chosen for the sequential criterion. 

To evaluate the quality of the KF settings, the Frobenius norm 
opt F

−K K  will be consi-

dered, where K  is a Kalman gain calculated from the identified covariances Q, R and 
opt

K  is 

the optimal Kalman gain. Both gains are time varying. The optimal Kalman gain is actually 

not known; therefore the method of validation can only be used with simulation data. The 

quality of the current setting can be, alternatively, back–tested using historical data. If there is 

enough computational time, several parallel Q, R–estimating algorithms can be run. Then the 

optimality tests can validate the quality of the estimates. The process of adaptation in the ex-

ample can be seen in Figure 3. The prior setting was chosen to be far from the optimum 

0.01 , 100R= =Q I . 

It can be seen from the resulting tables that the chosen tests have a high level of reliabili-

ty, even for relatively small sets of data. Also, a very good consistency of Test.3 can be hig-

hlighted.   
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The sequential test, together with the covariance estimation algorithm was used as an 

adaptive filter with satisfactory results. This approach can be also used for time varying noise. 

The change of the noise covariance is indicated by the optimality test and further the adapta-

tion is done by using the estimated noise covariances. The estimated covariances can be back–

tested before they are used. The values of the criteria can be alternatively used as a perfor-

mance measure. 

 

 

Figure 3 – An example of the adaptation process. The difference between the optimal and the esti-
mated Kalman gain is decreasing. 

 

 

Example 2 

The following simulation considers a larger MIMO system of order six obtained by dis-

cretizing a continuous–time system. It has fast, slow and also complex modes to cover a large 

family of systems. It has three stochastic inputs and three outputs and is given by matrices 
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0.98 0 0.09 0 0.02 0.07 1 0 0

0 0.82 0 0 0 0 0 0 0

0.19 0 0.9 0.04 0.43 0.09 0 1 0
,

0 0 0 0.68 0.65 0.07 0 0 0

0 0 0 0.14 0.68 0.01 0 0 1

0.08 0 0 0 0 0.61 0 0 1

1.03 0 0.14 0.04 0.01 0.83

0

,

T 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

− −
= =

−

−

− −

=

 
 
 
 
 
 
 
 
 
 
 
 

A C

G .05 9.06 0.95 0.8 0.16 0 .

0.05 0.91 0.05 0.04 0 0.79

T

−

−

 
 
 
 
 
  

 (3.36) 

The true noise covariances and the matrices for the KF setting are  

5 0.2 0

0.2 10 0 ,

0 0 0.5
s

 
 
 =  
 
  

Q

1 0 0

0 6 0.1

0 0.1 0.1
s

 
 
 = − 
 −  

R  

The results of the simulations are listed in Tab. 2. We have not considered Test.4, because its 
implementation is significantly more difficult for a MIMO system than for a SISO system. 
The parameter identification of a MIMO AR system requires significantly more data than a 
SISO system. This examples demonstrates that the optimality tests can be used even for larger 
MIMO systems. 
 

Tab. 2 – Simulation results for the optimality tests. The values in the table indicate % of correct deci-
sions. First block represents optimal setting, the others non–optimal. 

 
N Test.2   % Test.3   % 

s

s
R R

=
=

Q Q
 

200 88 92 

500 87 96 

1000 86 97 

2

s

=
=

Q I

R R
 

200 25 94 

500 38 100 

1000 42 100 

s
=
=

Q Q

R I
 

200 12 99 

500 21 100 

1000 30 100 
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4. Estimation of the noise covariances 

 

 

 

4.1 Introduction to the noise covariance estimation 

 

In early 70’s, the pioneering papers of Mehra (1970, 1974) on estimation of covariance ma-

trices were published. Several principles were described, including the maximum likelihood 

approach, correlation methods and covariance matching techniques.  In the first half of the 

70’s methods of Carew and Belanger (1973) and Belanger (1974) were published. The former 

paper deals with a method for direct estimation of a Kalman gain. The Belanger’s paper de-

scribes a method for time varying systems. It uses the observation that the autocorrelation of 

innovations is linearly dependent on the noise covariances. For the following thirty years, this 

topic was quite overlooked.  

It was observed that the autocorrelation of innovation sequence is linearly dependent on 

the noise covariances, (Belanger, 1974). This property was used Odelson et al. (2005) who 

offered a new method for the covariances estimation called ALS (Autocorrelation least 

squares). Further modifications of this method can be found in Akesson et al. (2008) and Ra-

jamani and Rawlings (2009). The mentioned methods were tested on various systems in Ma-

tisko (2009). ALS is a point estimate method and it does not provide any additional informa-

tion about the solution accuracy. The objective is to find some estimation quality measure, 

such as the probability distribution function of the estimates.  

 

 

4.2 Noise covariance estimation using Autoregressive Least Squares method  

 

In this chapter, the overview of th ALS method will be given, because it will be used in the 

numerical examples and comparisons in the later sections. More extensive testing of the esti-
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mating algorithms was done in Matisko (2009). For other discussions and comparisons, see 

Duník et al. (2009). 

Consider a linear stochastic system  given by 

  
( 1) ( ) ( ),

( ) ( ) ( ).

+ = +

= +

t t t

t t t

x Ax Gv

y Cx e
 (4.1) 

A state prediction error is defined as ( ) ˆ| 1 ( ) ( | 1)t t t t t− − −x x xɶ ≜ . It is possible to write 

a trajectory of ( )| 1t t −xɶ  using a state space model. The output of the system is the L–

innovation sequence. ‘L’ emphasizes that the KF is not tuned optimally because the true noise 

covariances are unknown. The system is of the form 

 

( ) ( ) ( ) [ ]

( )

( )
1| | 1 ,

( )
k

t
t t t t

t

 
+ = − − + −  

 
A G

w

v
x A LC x G L

e
ɶ ɶ

����� �����
���

 (4.2) 

 
( 1) ( ) ( ),

( ) ( ) ( ),

t t k

t t t

+ = +

= +

x Ax Gw

y Cx e

ɶ ɶ

ɶ ɶ
 (4.3) 

where the covariance matrices of the stochastic inputs are  

 

{ }

{ }

0
( ) ( ) ,

0

0
( ) ( ) .

T

w

T

t t

t t

 
= =  

 

 
=  
 

Q
w w Q

R

w v
R

E

E

 (4.4) 

The steady–state Kalman gain n r×∈L ℝ  is calculated using 

 ( )
1

0 ,T T
−

= +L APC CPC R  (4.5) 

where P is the solution of the algebraic Riccati equation using the prior estimates of noise 

covariances 
0 0
,Q R . It is assumed that the pair ( ),A C  is detectable and matrix = −A A LC  

is stable, so the effect of the initial conditions can be neglected, i.e. { }(0) 0E →ε  and 

{ }cov (0) x→x Pɶ . The steady–state covariance of the state prediction error can be calculated 

using the Lyapunov equation of the form 
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 T T

x x w
= +P AP A GQ Gɶ ɶ  (4.6) 

which can be solved by using vectorization operator 

 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2

vec vec vec

1

vec vec

,

,

.

T T

x w

T

x w

wn

x

x

x

−

= +

= ⊗ +

= − ⊗ ⊗

P AP A GQ G

P A A P GQ G

P I A A G G Q

 (4.7) 

The autocorrelation function of the L–innovation sequence can be calculated by 

 
{ }

{ }

0

1

( ) ( ) ,

( ) ( ) , 1 .

�

�E

T T

x

T k T k

k x

t t

t k t k M
−

≡ = +

≡ + = − ≤ ≤

Y y y CP C R

Y y y CA P C CA LR

ɶ ɶ ɶ

ɶ ɶ ɶ
 (4.8) 

The user–defined parameter M  is the maximum number of used lags. The autocorrelation 

matrix is defined as 

 ( )
0 1

1 0

,
−

−

 
 
 
 
 

M

T

M

M

Y Y

Y Y

ɶ ɶ⋯

≜ ⋮ ⋱ ⋮
ɶ ɶ⋯

R  (4.9) 

If L in (4.8) is optimal, the off–diagonal members of the autocorrelation matrix are zero. 

However, the optimal gain is not known and is to be found, therefore all members of the auto-

correlation matrix have to be considered for its calculation. Further, we define several matric-

es to express the autocorrelation matrix (4.9) 

 ( )
1

1 2

0 0 0 0

0 0 0
, , ,

0

M

j

M M

=

− −

   
   

    = = ⊕ −      
   
   

C

CA C
Ξ Ψ Ξ L

CA CA C

≜
⋮ ⋮ ⋱ ⋮

⋯

O  (4.10) 

where O  is an observability matrix. Using matrices (4.10) and the definitions (4.4), the auto-

correlation matrix (4.9) can be expressed as 

 
( )

1 1 1 1
.

= = = =

     
+ ⊕ + ⊕ + ⊕ + ⊕     

     

M M M M
T T T T

x w
i i i i

M P Ξ GQ G Ξ Ψ R R Ψ R≜R O O  (4.11) 



Doctoral Thesis Peter Matisko, 2013  

- 33 - 
 

From the above definition it can be seen, that the autocorrelation matrix is linearly dependent 

on the noise covariance matrices Q, R. To find the unknown covariance matrices, the sample 

autocorrelation function of the innovation will be used as a data to be fitted by (4.11). The 

sample autocorrelation matrix is defined as 

 ( )
0 1

1 0

ˆ ˆ

ˆ ,

ˆ ˆ

N k N k

M

N k N k

M

M

− −

−

− −

−

 
 
 
 
 

Y Y

Y Y

⋯

≜ ⋮ ⋱ ⋮

⋯

R  (4.12) 

where the elements of matrix (4.12) are calculated using measured outputs by 

 
1

1ˆ ( ) ( ).
N k

N k T

k
i

i i k
N k

−
−

=

+
− ∑Y y yɶ ɶ≜  (4.13) 

The goal is to solve the minimization problem of the form 

 

( )

( )
( )

( )
( )( )

2

vec vec

, vec
vec 2

vec

ˆ
ˆarg min ,

ˆ
M

 
   = −  
   

Q R

Q Q

RR
A R  (4.14) 

where matrix A  can be expressed by the following formulas using the solution of the Lyapu-

nov equation (4.7)  

 
( )( ) ( )

( ) ( ) ( )

2

2 2

1

,

,

,

,

n Mn

r Mr M

−

= ⊗ − ⊗ + ⊗

 = ⊗ ⊗ + ⊕ +
 

I A A Ξ Ξ

G G L L Ψ Ψ I

B O O P

A B B P

 (4.15) 

The covariances obtained by solving (4.14) are symmetric due to the structure of the least–
squares problem, (Odelson et al., 2006). 

The permutation matrix3 ,n N
P  consists of zeros and ones and has the following properties 

 { } { },
1

a) vec vec
N

j N
i=
⊕ =X XP  

for matrix j j×∈X ℝ , or  

                                                 
 
3 The Matlab function for ,n N

P  calculation can be found in Appendix A. 
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 { } { }, ,
1

) vec vec
N

j l N
i

b
=
⊕ =X XP  (4.16) 

for matrix j l×∈X ℝ . The size of the permutation matrix is a) ( )
2 2

jN j× and  b) 2
ljN lj× . 

Further information about deriving the above formulas can be found in the original paper of 

Odelson et al. (2005). A newer paper, (Rajamani and Rawlings, 2009), offers a modification 

for this approach using operator vecMin instead of vec, (briefly described in subsection 4.3). 

That leads to less equations to be solved in criterion (4.14) and therefore significantly less 

memory consumption. Another modification is given by Akesson et al. (2008) that considers 

cross–correlation between the process and measurement noise. The mentioned papers also 

discuss the problem of positive definiteness of the obtained matrices and offer a method to 

recover the number of stochastic inputs.  

Some comments need to be added on this approach. It is obvious that the input data for 

the algorithm are of the form of the second statistical moment. The main problem of using the 

estimated autocorrelation function is its slow convergence that is of order 1/N, (Odelson et al. 

2005). That means that each member of matrix (4.12) is blurred by noise. This complicates 

the estimation of the noise covariances. Theoretically, it is true that the approach can use arbi-

trary many equations. However, the information of the autocorrelation function decreases 

with increasing lag. As the autocorrelation function is calculated for higher lag, the newly 

obtained information decreases. Therefore, adding new equations (using higher lags) without 

increasing the amount of data does not significantly improve the results. 

 Another problematic part of the approach is memory consumption. Matrices (4.10) and 

(4.15) are large even for small systems and the „out of memory“ exception can appear during 

computation. This problem is mostly solved by Rajamani and Rawlings (2009) that uses only 

one column of matrix (4.12). This is possible due to the fact, that the other columns of the 

matrix (4.12) contain the same information as the first column. 

 

 

4.3 A single column Autoregressive least squares method (scALS) 

 

A very brief summary of the single column ALS (scALS) method will be given in this sub–

section. For complete derivation, see the original paper by Rajamani and Rawlings (2009). 
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The full algorithm can be downloaded from the web site under GPL license. The scALS me-

thod uses the following matrices, analogously to the ALS method 

 

1 2

, ,

r

M M− −

   
   

−   =
   
   

−   

C I

CA CAL
Ξ

CA CA L

≜
⋮ ⋮

O  (4.17) 

where the matrix Ξ  is different from (4.10) in the previous section. The single column sample 

autocorrelation function is given by 

 ( )

(1) (2) ( 1) (1)

(2) (3) ( 2) (2)1ˆ ,
1

( ) ( 1) ( ) ( 1)

T

T

sc

T

N M

N M
M

N M

M M N N M

− +   
  

− +   
  − +
  

+ − +   

ε ε ε ε

ε ε ε ε

ε ε ε ε

⋯

≜
⋮ ⋮ ⋱ ⋮ ⋮

⋯

R  (4.18) 

where N is the data length and M is the maximum lag of the autocorrelation function. Further, 
the criterion is using the vecMin{} operator. Matrix A  is given by  

  ( )( )
( )( ) ( ) ( )

2

2

1 2

1

1

1

2

,

,

,

nn

r rn

−

−

 =   
= ⊗ − ⊗

 = ⊗ − ⊗ ⊗ + ⊗   

C I A A

C I A A L L I ΞΞΞΞ

O

O

A A A

A D

A D

 (4.19) 

where 
2 ( 1)/2n n n

n

× +∈ ℝD  is a duplication matrix4 (Magnus and Neudecker, 1999) containing 

ones and zeros such that for a symmetric matrix X, it holds 

 vec{ } vecMin{ }.
n

=X XD  (4.20) 

Now, matrices (4.18) and (4.19) are put into the criterion (4.14). The obtained matrices are in 
the minimal–vectorized form.  

The paper Rajamani and Rawlings (2009) offers an approach to enforce the positive defi-

niteness by inserting a barrier function to the criterion (4.14); ALS+SDP refers to the Semide-

finite Programming used with the ALS approach. This approach not only enforces the positive 

                                                 
 
4 The Matlab function for 

n
D  calculation can be found in Appendix A. 
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definiteness, but also significantly improves the quality of ALS estimates. ALS+SDP returns 

estimates having lower variance among repeated estimates than the original ALS. 

 

 

4.4 Bayesian method for the noise covariance estimation
5
 

 

In this section, the Bayesian principles are employed to gain insight into the estimation of the 

noise covariance matrices. The goal is to express the posterior probability distribution func-

tion of the covariance matrices conditioned by measured data using the Bayes formula. The 

posterior probability distribution accumulates information from data by recursive multiplying 

of the likelihood function with the prior pdf 

 

( ) ( ) ( )
( )

( )
( ) ( )

1

1

1

1

1

1

, , ( ) |
, | , | ( ),

( ) |

( ) | , ,
, | ,

( ) |

t

t t

t

t

t

t

p t
p p t

p t

p t
p

p t

−

−

−

−

−

−

= =

=

Q R y
Q R Q R y

y

y Q R
Q R

y

Y
Y Y

Y

Y
Y

Y

  (4.21) 

where  ( )1( ) | , , tp t −
y Q R Y  represents the likelihood function of Q, R for the given data cal-

culated by the Kalman filter described in Section 2.2. The prior probability distribution 

( )1, | tp −
Q R Y  for was calculated in the previous step using measurements up to the time 

1t − . There is no conjugate prior for Q, R, because the likelihood function has a nonlinear 

dependency on Q, R due to the Riccati equation. The posterior probability cannot be ex-

pressed in a closed form, therefore several numerical implementations will be introduced fur-

ther. The denumerator in (4.21) is a normalization factor. In the following, it will be shown 

that it is not necessary to calculate the cpdf ( )1( ) | tp t −
y Y . Instead of (4.21), the following 

formula will be used 

                                                 
 
5 The text of Sections 4.4 to 4.9 was originally published in the International Journal of Adaptive Control and 
Signal Processing, reference Matisko and Havlena (2013). The text of the paper is reproduced here with explicit 
permission from John Wiley & Sons. and any third parties are excluded from this permission. This text might be 
further use only with additional permission from  John Wiley & Sons. 
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 ( ) ( ) ( )1 1, | ( ) | , , , | ,t t tp p t p− −∝Q R y Q R Q RY Y Y  (4.22) 

where ∝  means equality up to a normalization constant. The normalization will be proceeded 

numerically. 

 

 

4.4.1 Estimation of the noise covariances on a grid of parameters 

 

Consider a stable SISO system (4.1) of order n with two uncorrelated stochastic inputs 

( ), ( )v t e t ∈ ℝ  and a single output, ( )y t ∈ ℝ . The cpdf ( ), | tp Q R Y  will be calculated on a 

grid of scalar parameters Q, R. The algorithm uses parallel Kalman filters, one for each pair of 

the noise covariances covered by the grid. For each data sample ( )y t , the conditional post-

erior probability distribution of the covariances is calculated using (4.22). The posterior cpdf 

calculated at time instant t becomes the prior probability at time 1t + . After the desired 

amount of data has been processed, the maximum (or mean) of the posterior cpdf 

( ), | tp Q R Y  is found. The algorithm is summarized as follows. 

 

Algorithm 

 

1) Initialization 

Create two sets of values Q > 0 and R > 0 with sizes nQ, nR 

 
{ }
{ }

1

1

, , ,

, , .

Q

R

n

n

Q Q

R R

=

=

…

…

Q

R
 

Create a set S  of pairs [ , ]
i j

Q R  as a Cartesian combination of the sets = ×R�S Q  having 

Q R
n n n= ⋅

S
 members. The pairs [ , ]

i j
Q R  represent the samples of process and measure-

ment noise covariances used by individual Kalman filters running in parallel. Next, the 

prior pdf ( )1, |
i j

p Q R −Y  is set to some starting distribution. The initial values of the state 

estimate are  
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( )
( )

,

,

ˆ 0 | 1 0,

0 | 1 , 1.
i j

i j n n
ρ ρ

×

− =

− =

x

P I ≫
 (4.23) 

The initial estimates and ( )1, |
i j

p Q R −Y , can be modified based on the available prior in-

formation. The measurement accuracy is usually known and it can be considered for form-

ing the set R . Underlying first principles usually provide information about the process 

noise structure and intervals for its values. Logarithmic scale is reasonable for the sets 

,Q R  to assure a higher grid density for smaller covariances leading to equal relative ap-

proximation errors. 

 

For each 
max

0t T= …  

 

2) Processing the output data ( )y t  

 

       For each i, j  such that ,
i j

Q R ∈ S  

 

3) Estimation of the state for each of the parallel Kalman filters 

Pick a pair [ , ]
i j

Q R  from the set S . Given ( ),
ˆ 1 | 1

i j
t t− −x  use (2.9) to calculate 

the state prediction ( ),
ˆ | 1

i j
t t −x

 
and its covariance matrix ( ),

| 1
i j

t t −P . Further, 

calculate the output prediction and its covariance using (2.11) for each individual 

KF. This step is skipped if 0.t =  

  

4) Calculation of the likelihood function of the Q, R for the current output y(t) 

Based on the values from step 2), the likelihood function ( )1( ) | , ,t

i j
p y t Q R−Y  is 

calculated using (2.10). 

5) Calculation of the posterior probability of the pair [ , ]
i j

Q R   

The prior probability of the pair [ , ]
i j

Q R  is updated by the likelihood function using 

(4.22) resulting to the non–normalized posterior cpdf ( )' , | t

i j
p Q R Y . 
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6) Calculation of the posterior state estimate for each Kalman filter 

Use (2.8) with the data ( )y t  to calculate ( ),
ˆ |

i j
t tx  and ( ),

|
i j

t tP . Continue to step 

3) until all the members of the set S  have been completed. 

       Next i, j   

 

7) Normalization  

Normalization of the posterior cpdf is done by  

 

( ) ( )
( )

,

' , |
, | .

' , |
i j

t

i jt

i j t

i j
R Q

p Q R
p Q R

p Q R
∈

=
∑

S

Y
Y

Y
 (4.24) 

8) Increasing of the time index 

Finish, if the desired amount of data Tmax has been processed. Otherwise, increase the time 

index : 1t t= +  and return to step 2) . 

 

Next t  

 

9) Estimation of the noise covariances 

The covariance estimates are obtained by 

 ( )( )MAP
,

ˆ ˆ[ , ] argmax , | ,
i j

t

i j
R Q

Q R p Q R
∈

=
S

Y  (4.25) 

or alternatively 

 ( )MS
,

ˆ ˆ[ , ] [ , ] , | .
i j

t

i j i j
R Q

Q R Q R p Q R
∈

= ⋅∑
S

Y  (4.26) 

End of algorithm 
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The maximum a posteriori probability (MAP) estimates and the mean square (MS) esti-

mates can differ, especially if the shape of the posterior cpdf is complicated or multimodal. 

Considering the mean value as the final result might make the algorithm more robust to inac-

curacy in cpdf approximation. Both estimates can be considered for the KF tuning. The state 

estimation quality of Kalman filters with different settings can be compared by optimality 

tests described in Chapter 3.  

Finding the covariance estimates on the grid can be inaccurate especially if the intervals 

of the sets ,Q R  are large. A possible solution is to update the grid around the cpdf maxi-

mum and repeat the algorithm with the new grid. Several methods for an adaptive grid are 

available, (Šimandl, et al. 2006). However, this solution might not be satisfactory due to a 

complicated shape of the posterior cpdf (4.21). Another approach uses importance sampling, 

which generates samples from a distribution given by a set of samples, (Candy, 2009). Impor-

tance sampling belongs to the Monte Carlo (MC) family. This approach also allows extension 

of the estimation to the multidimensional case. 

 

 

4.4.2 Posterior probability function, numerical examples 

 

In this section, we will shortly demonstrate basic properties of the posterior probability distri-

bution function of  Q, R conditioned by data tY . Consider a scalar system with 0.5,a =  

1c = , 1g =  and the noise characterized by covariances 2,
r

Q =  10
r

R = . In Figure 4, the 

likelihood function of the noise covariances is shown using a single data ( )y t . The shape of 

the likelihood function depends on the system matrices, (mainly A) and the noise covariances. 

Updating the likelihood function (4.22) leads to its sharpening around the maximum. After 

2,000 output data is used, the posterior pdf has a well detectable maximum, Figure 5. The 

following graphs demonstrate that the measured output data contains sufficient information 

about the unknown noise covariances. 
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4.5 Monte Carlo approach 

 

Monte Carlo is a group of numerical methods useable for solving various problems, which are 

hard–to–solve analytically. The previous section described calculation of the conditional post-

erior probability distribution function of the covariances Q, R on a fixed grid of parameters. 

For a better localization of the cpdf maximum, it is desirable to have more points in the place 

of high posterior probability (4.24) and omit those with a low probability. Therefore, after 

each run of the algorithm in Section 4.4.1 called an iteration (labeled k) the set S  is updated. 

The new points for the set S  are generated from the posterior cpdf (4.24) employing the im-

portance sampling method. Then, a prior pdf is assigned to the new points in S  and the post-

erior cpdf (4.24) is calculated again. 

The covariance matrices must be symmetric and positive definite, but they can be para-

meterized in several ways. The appropriate parameterization is selected according to the prior 

knowledge about the stochastic properties. For example, it can be a multiplier of a unit matrix 

{ }2

p
σ∈Q I , diagonal elements of the matrix { }2 2

1
diag( , , )

p
σ σ∈Q …  or elements of the Cho-

lesky factor. The parameters will be labeled as a vector θθθθ ; i.e. both noise covariance matrices 

Q(θθθθ) and R(θθθθ) are functions of the parameter vector which is to be found.  

The Monte Carlo algorithm can be summarized as follows. 

Figure 5 – Posterior pdf of the covariances 
Q, R using 2,000 output data. 

Figure 4 – Likelihood function of the cova-
riances Q, R  at a single time step.  
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Algorithm 

 

1) Initialization 

Create a set S  containing 
S

n  samples of parameter vectors (0)

i
θθθθ . Iteration k = 0. The ini-

tial setting of the parallel state estimators is set by (4.23). 

 

For each 0k K= …  

 

For each 
max

0t T= …  

 

2) Processing the output data ( )ty  

 

For each i  such that ( )k

i
∈ Sθθθθ  

 

3) Estimation of the state for each of the parallel Kalman filters 

Pick 
i

θθθθ  from the set ( )kS . Given ( )ˆ 1 | 1
i

t t− −x  use  

 ( ) ( )
ˆ ˆ( 1 | ) ( | ),

1 | | T T

t t t t

t t t t

+ =

+ = +

x Ax

P AP A GQG
 

to calculate the state prediction ( )ˆ | 1
i

t t −x
 

and its covariance matrix 

( )| 1
i

t t −P . Further, calculate the output prediction and its covariance using  

 
( ) ( )
( ) ( )

ˆ ˆ1 | 1 | ,

1 | 1 | T

yy

t t t t

t t t t

+ = +

+ = + +

y Cx

P CP C R
 

for each individual KF. This step is skipped if 0.t =  

  

4) Calculation of the likelihood function of 
i

θθθθ  for the current output ( )ty  
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Based on the values from step 3), the likelihood function ( )1( ) | ,t

i
p t −y θθθθY  is 

calculated using  

( ) ( ) ( )
( ) ( )( )

1 1( ) | , , ( ) | ( ), , ( ) | , , ( )

ˆ | 1 ; | 1 ,

t t

yy

p t p t t p t d t

t t t t

− −= =

= − −
∫y Q R y x Q R x Q R x

y PN

Y Y
 

 

5) Calculation of the posterior probability of  
i

θθθθ   

The prior probability of the pair 
i

θθθθ  is updated by the likelihood function using  

 ( ) ( ) ( )1 1, | ( ) | , , , | ,t t tp p t p− −∝Q R y Q R Q RY Y Y  

resulting to the non–normalized posterior cpdf ( )' | t

i
p θθθθ Y . 

 

6) Calculation of the posterior state estimate for each Kalman filter 

Use the Kalman filter equations 

 
( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

1

1

ˆ ˆ( | ) ( | 1) | 1 | 1 | 1 ,

| | 1 | 1 | 1 | 1 ,

T T

T T

t t t t t t t t t t

t t t t t t t t t t

−

−

= − + − − + −

= − − − − + −

x x P C CP C R

P P P C CP C R CP

εεεε
 

with the data ( )ty  to calculate ( )ˆ |
i

t tx  and ( )|
i

t tP . Continue to step 3) until 

all the members of the set ( )kS  have been completed. 

 

Next i   

 

7) Normalization  

Normalization of the posterior cpdf is done by  

 ( ) ( )
( )

' |
| .

' |
i

t

it

i t

i

p
p

p
∈

=
∑
θθθθ

θθθθ
θθθθ

θθθθ
S

Y
Y

Y
 (4.27) 
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8) Increasing of the time index 

Finish, if the desired amount of data Tmax has been processed. Otherwise, increase 

the time index : 1t t= +  and return to step 2) . 

 

Next t  

 

9) Estimation of the noise covariance matrices 

Find the parameter estimates using  

 ( )( )max( ) ( )ˆ argmax | ,
i

Tk k

MAP i
p

∈
=

θθθθ

θ θθ θθ θθ θ
S

Y  (4.28) 

or alternatively 

 ( )max( ) ( ) ( )ˆ | .
i

Tk k k

MS i i
p

∈

= ∑
θθθθ

θ θ θθ θ θθ θ θθ θ θ
S

Y  (4.29) 

Calculate the noise covariance matrices from the estimated parameters ( )( )ˆ k

MS
Q θθθθ , 

( )( )ˆ k

MAP
R θθθθ . 

 

10) Generating an initial set of the parameter vectors θθθθ for the next iteration  

Generate 
S

n  new parameter vectors ( 1)k

i

+θθθθ  from the distribution ( )max( ) |
Tkp Yθθθθ  using 

the importance sampling method forming a new set ( 1)k+S  for the next iteration 

 ( )max( 1) ( ) | .
Tk k

i
p+θ θθ θθ θθ θ∼ Y  (4.30) 

Perturb the new samples ( 1)k+θθθθ  with a noise ∆θθθθ  to prevent degenerating of the cpdf 

 ( 1) ( 1): .k k

i i i

+ += +∆θ θ θθ θ θθ θ θθ θ θ  (4.31) 

In a special case, when the system has two scalar stochastic inputs, 

( 1) ( 1) ( 1)[ , ]k k k

i i i
Q R+ + +θ =θ =θ =θ = , the log–normal distribution can be used for the perturbation.  It 

can be realized by 
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( )
( )

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

: exp( ), 0; ,

: exp( ), 0; ,

k k k

i i i i i

k k k

i i i i i

Q Q u u Q

R R w w R

α

α

+ + +

+ + +

=

=

∼

∼

N

N
 (4.32) 

where α is an empirically set constant.  

 

11) Checking the termination conditions 

Conditions for terminating the algorithm can be the following 

a) use the optimality tests and compare the qualitative characteristics of whiteness 

property of the innovation sequence. Finish, if the innovation sequence passes 

the whiteness test. 

b) difference between the last and the current estimate ( 1) ( )ˆ ˆk k− −θ θθ θθ θθ θ  is satisfactory 

small,  

c) the maximum number of iterations K has been reached, i.e. k = K,  

Otherwise, continue a new iteration : 1k k= +  with Step 2) using the set ( 1)k+S  con-

taining the new samples (4.31). 

 

Next k 

 

End of algorithm 

 

 

4.5.1 Numerical simulations 

 

In this section, several SISO systems (with two independent scalar noise sources and known 

matrices A, C, G) will be considered for simulations. Estimation process is repeated 50 times 

for several data generators. The Bayesian algorithm 4.4.1 uses a number of data given in the 

tables. The Monte Carlo resampling is repeated in 15 iterations, which is sufficiently large 

according to the selected systems. More iterations can improve the results and the localization 

of probability maximum, however the time consumption increases significantly. 

Resulting statistics (mean µ  and standard deviation σ  in % of the true Q, R values) of 

the obtained estimates are shown in the following tables. The following settings will be used 
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for simulations. Initial grids for Q and R are logarithmic within interval (0.01; 15), each con-

taining 20 points; set S  contains 400 pairs. The perturbation parameter is empirically set to 

0.012α = . For each tested system, several combinations of the noise generator covariances 

will be applied marked as ,
r r

Q R . Further, the two different data lengths will be used for a 

better demonstration of the algorithm consistency. For larger systems, more data are neces-

sary to obtain satisfactory results. Therefore, we increased the number of data for systems of 

order 3 and higher. The estimated pair ˆ ˆ[ , ]Q R  is found by (4.25). This method might be pre-

ferable especially if the cpdf has a complicated shape which is the case even for small sys-

tems. Alternatively, both settings obtained by (4.25) and (4.26) can be compared using the 

optimality tests.  

 
System 1: 0.5, 1, 1.= = =A C G  The resulting statistics are in Tab. 3.  

 

Tab. 3 – System 1. Statistics of the repeated estimates. 

[Qr; Rr] µQ σQ   [%] µR σR   [%] 
data length 500 1,000 500 1,000 500 1,000 500 1,000 

[10; 1] 10.14 10.50 11.2 7.7 0.91 0.77 84.2 59.7 
[1; 10] 1.13 1.14 76.2 51.3 9.80 9.73 12.9 7.5 

[0.1; 10] 0.30 0.19 383.0 272.0 9.70 10.02 7.4 5.7 
[10; 0.1] 9.82 9.90 7.8 5.9 0.25 0.19 588.0 288.0 

[1; 1] 0.99 1.00 19.2 15.5 1.00 1.01 19.2 13.0 

 

System 2:  
0.8 1 1

, , 1 1 .
0 0.9 1

   
    = = =       −      

A G C  The resulting statistics are in Tab. 4.  

 

Tab. 4 – System 2. Statistics of the repeated estimates. 

[Qr; Rr] µQ σQ   [%] µR σR   [%] 
data length 500 1,000 500 1,000 500 1,000 500 1,000 

[10; 1] 9.80 9.97 9.9 5.9 1.36 1.21 163.3 110.9 
[1; 10] 0.99 1.00 16.0 12.0 9.92 9.98 8.9 6.4 

[0.1; 10] 0.10 0.11 50.9 42.6 10.06 9.94 6.7 5.3 
[10; 0.1] 9.51 9.73 6.6 5.2 0.99 0.71 1214.8 1042.9 

[1; 1] 0.98 1.01 14.1 6.1 0.99 0.99 31.9 16.6 
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System 3:   

0.8 1 0 1

0 0.9 1 , 1 , 1 1 1 .

0 0 0.9 1

   
   
     = − = =         
      

A G C  The resulting statistics are in Tab. 5. 

 

Tab. 5 – System 3. Statistics of the repeated estimates. 

[Qr; Rr] µQ σQ   [%] µR σR   [%] 
data length 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 

[10; 1] 9.82 9.93 5.1 3.0 1.47 1.23 163.7 120.0 
[1; 10] 1.00 1.01 9.6 6.4 10.08 9.99 8.5 6.2 

[0.1; 10] 0.1 0.1 18.5 14.0 10.00 9.99 5.6 3.2 
[10; 0.1] 9.82 9.83 4.2 3.9 0.75 0.59 1295.9 777.1 

[1; 1] 1.00 0.99 6.9 5.1 0.96 1.01 28.1 21.6 

 

System 4:

0.9 0 1 1 1

0 0.8 0 1 1
, , 1 1 1 1 .

0 0.1 0.85 1 1

0.2 0 0 0.9 1

   
   
   − −     = = =      −   
   − −      

A G C

 

The resulting statistics are 

in Tab. 6. 
 

Tab. 6 – System 4. Statistics of the repeated estimates. 

[Qr; Rr] µQ σQ   [%] µR σR   [%] 
data length 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 

[10; 1] 9.95 9.93 4.6 3.5 0.91 1.08 70.8 55.5 
[1; 10] 1.00 1.00 5.6 3.8 9.80 9.97 6.9 4.4 

[0.1; 10] 0.10 0.10 7.9 6.2 9.98 9.97 5.5 2.8 
[10; 0.1] 9.87 10.01 4.6 3.9 0.31 0.33 471.8 399.0 

[1; 1] 1.01 1.01 6.0 4.2 0.97 0.97 13.3 9.3 

 

The above tables offer results summary of extensive algorithm testing using linear time 

invariant systems of orders 1 to 4. It can be seen, that the algorithm is consistent, i.e. the stan-

dard deviation decreases with more data.  

It has to be noted, that a higher standard deviation of the repeated estimates does not nec-

essarily mean high standard deviation of the Kalman gain, which is of main interest. The qual-

ity of estimation depends on the sensitivity of the Kalman filter to the noise covariances. If the 

sensitivity is low, the Kalman gain accuracy can be satisfactory even for less accurate cova-

riance estimates. For a brief demonstration of the varying sensitivity of the Kalman gain l on 
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the covariances, consider a simple scalar SISO system given by 0.95, 1, 1, , .a g c Q R= = =  

The sensitivity of l on the covariances is given by 

 

,

,

l l P l

Q P Q Q

l l P l

R P R R

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂

 (4.33)
 

where , , ,
P P l l

Q R Q R

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 are obtained by differentiation of the solution of the algebraic Ric-

cati equation and the formula for the Kalman gain   

 ( )2 2 21
( ) 4

2
P R a R Q R a R Q QR= − + + + − − +  , 

aP
l

P R
=

+
.  

 

Figure 6 – Sensitivity of the Kalman gain 
l

Q

∂

∂
 (left fig.) and  

l

R

∂

∂
 (right fig.). 

 
In Figure 6, it can be seen that the sensitivity decreases with increasing covariances. The 

sensitivity can be calculated for the parameters of the covariance matrices in advance, because 

it does not depend on the true noise covariance matrices. The sensitivity can be used to form 

the initial distribution of  
i
∈θθθθ S .   
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4.6 Recursive estimation algorithm 

 

The algorithms described previously use all the available data for the estimation of the para-

meters of noise covariance matrices. After all the data was used to update the posterior condi-

tional probability density of the parameters, a new set S of the parameters θθθθ were generated 

by the importance sampling method. Then, the Bayesian algorithm started again with the next 

iteration k calculating the posterior cpdf of the parameters on the newly generated set S.  

In this section, a recursive algorithm will be proposed using the incoming data for updat-

ing the parameter estimates at each time step. The set S  is also updated at each time step, 

therefore the time instants t merge with the iterations k.  

The recursive algorithm can alternatively run in parallel with the Kalman filter using the 

new data for estimating the parameters of the covariance matrices Q and R. Such configura-

tion can be a form of adaptive Kalman filter which can deal with disturbances with time–

varying covariance matrices. The recursive algorithm would be as follows. 

 

Algorithm 

 
1) Initialization 

Create a set S  containing 
S

n  samples of the parameter vectors (0)

i
θθθθ .  

 

2) Calculation of initial parameter estimates 

Run the algorithm described in Section 4.4.1 using the desired amount of data. Consider a 

set of parameter vectors instead of pairs Q, R.  No update of the set S  is done during this 

period. An initial shape of the cpdf ( )init(0) |
T

p Yθθθθ  is formed. The length of the start pe-

riod Tinit is empirical depending on the system order and the available data.  

 
 
Do while new data ( )ty  is available 

 
3) Performing the Bayesian approach 
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Perform the steps 2) to 7) of the algorithm in Section 4.4.1 using the current output value 

( )ty  and the set ( )tS  of the parameter vectors ( )k

i
θθθθ . 

 

4) Generating new parameter vectors 
( 1)k+θθθθ  

The likelihood function requires all the data 1t−Y  stored by the parallel Kalman filters, 

see (2.10). Although it is possible to calculate the whole trajectory of the state and output 

estimates for the Kalman filters set by ( 1) ( 1)[ ( ), ( )]k k

i i

+ +Q Rθ θθ θθ θθ θ , but it is not possible to calcu-

late the cumulative likelihood for these new Kalman filters. For this reason, only several 

samples from ( )tS  with the lowest probability are replaced by the newly generated sam-

ples to keep the maximum amount of information from the previously processed data. 

The number of replaced samples ( )k

i
θθθθ  from the set ( )tS  is an empirically set constant. The 

main idea of this approach is to keep the members of ( )tS  with a high posterior probabili-

ty and replace those with low probability by newly generated vectors ( 1)k

i

+θθθθ .  

Select the number ν of the parameter vectors to be replaced in the each iteration. Gener-

ate ν  new vectors ( 1)k

i

+θθθθ  from the distribution ( )( ) |k tp θθθθ Y  using the importance sampling 

method 

 ( )( 1) ( ) | .k k t

i
p+θ θθ θθ θθ θ∼ Y  (4.34) 

Perturb the new vectors ( 1)k

i

+θθθθ  (see the algorithm in Section 4.5, step 3). The number ν  

should not be higher than 2–4% of 
S

n  to prevent the posterior cpdf quickly converge to a 

local maximum. 

 

5) Selection of the parameter vectors with a low probability to be replaced 

Copy all samples from ( )tS to ( 1).t+S  The new vectors ( 1)t

i

+θθθθ  will replace the members 

of ( 1)t+S  with the lowest probability. Findν members from the set ( 1)t+S  with the low-

est posterior probability ( )( ) |t tp θθθθ Y  and assign indices 
1
...m m

ν
 to them. Insert the 

new samples ( 1)t

i

+θθθθ  into the set ( 1)t+S  replacing the members with indices 
1

m m
ν

… .  

Further, the members ( )

i

t

s
θθθθ  of the set ( )tS  closest to the newly generated vectors ( 1)t

i

+θθθθ  
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are found, indexed 
1
...s s
ν

. For each ( 1)t

i

+θθθθ , find index si of ( ) ( )

i

t t

s
∈θθθθ S  such, that the dis-

tance between ( 1)t

i

+θθθθ  and ( )

i

t

s
θθθθ  is minimal 

 ( )
( )

( ) ( 1)

;

s =argmin ,
k
j

k k

i j i

j

+

∈

−
θθθθ

θ θθ θθ θθ θ

S  (4.35)
 

where  can be 2–norm, ∞–norm or Frobenius f–norm.   

 

6) Assigning necessary information to the newly generated parameter vectors 

Now, the parallel Kalman filters with the new settings ( 1) ( 1)[ ( ), ( )]k k

i i

+ +Q Rθ θθ θθ θθ θ  need to be in-

itiated. The new Kalman filters will not run from the time zero, because it would be ex-

tremely time consuming. They will inherit the values from the filters with indices si cho-

sen according to their settings by the criterion (4.35).  

The information about the members with indexes 
1

s s
ν

…  from the set S  is copied to the 

newly generated Kalman filters. The newly generated members are inserted into the set S 

replacing the members with indices 
1

m m
ν

… ,  i.e. 

 

( ) ( )
( ) ( )

( ) ( )( 1) ( )

ˆ ˆ| 1 | 1 ,

| 1 | 1 ,

| | .

i i

i i

i i

m s

m s

k t k t

m s

t t t t

t t t t

p p+

− = −

− = −

=

x x

P P

Y Yθ θθ θθ θθ θ

 (4.36) 

7) Estimation of the noise covariance matrices 

Find the parameter estimates using (4.28) or (4.29) and calculate the covariance matrices 

as a function of the parameters, ( ) ( )ˆ ˆ( ), ( ).k k
Q Rθ θθ θθ θθ θ   

 

8) Increasing of the time index 

Increase the time index : 1t t= + , and process the new data ( )ty .  Return to step 3) .   

 

Next t 

   
End of algorithm 

 



Estimation of the stochastic properties of controlled systems 

- 52 - 
 

  The recursive algorithm does not update the set ( )tS  at each time step as the algorithm 

in Section 4.5 did, because it is significantly time consuming and the computational time in-

creases with the amount of data. The recursive algorithm omits samples from ( )tS  with the 

lowest probability and replaces them by newly generated samples. The advantage of the re-

cursive algorithm is a possibility to adapt the covariance matrix estimates, if the true noise 

covariance matrices are time–varying.  

 

 

4.7 Comparison of the methods for noise covariance estimation 

 

In Section 4.2, the most recent methods for noise covariance estimation were shortly intro-

duced. One of the key assumptions of ALS/scALS method is that the sample autocorrelation 

function given by (4.13) approaches its true value. This is theoretically true if the number of 

data approaches infinity. However, for finite data sets, the convergence of the sample autocor-

relation function to its true values is of the order 1/N  for N → ∞ , (Odelson et al., 2006), 

which is relatively slow. If the assumption of fast convergence is used, the developed methods 

will not give accurate results with small data sets. The problem is more significant in MIMO 

cases. This is shown in Matisko (2009), where tests with various systems were performed. 

Slow convergence can restrict the applicability of ALS method that works satisfactory only 

with small SISO systems.  

Further, we compare the scALS method, Section 4.3, with Monte Carlo method de-

scribed in this paper. System 1 used in the previous section and System 5 defined below will 

be employed. Estimation by both methods is repeated 50 times and then statistics of estimated 

covariances ˆ ˆ,Q R  are compared. The method scALS is tested with several settings that 

represent parameters for the initial Kalman gain calculation. 

scALS is simulated with two different parameters M. Even when larger M was used, no 

significantly better results have been obtained. The M  parameter sets how many lags of auto-

correlation function of innovations will be used for Q, R estimation. When increasing this 

parameter, the solver may come to memory limits because the ALS algorithm uses Kronecker 

products and direct summations of high dimensions. This is especially true for the original 

ALS method of Odelson et al. The newer approach, scALS, reduces this problem and the al-
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gorithm can handle larger systems. We also offer simulations results of the scALS+SDP ap-

proach, that is significantly better than the original ALS. This approach also enforces the posi-

tive definiteness of the resulting covariance matrices. 

The simulations will use System 1 from the previous section and Systems 5, 6, 7 defined 

below. Estimation by both methods is repeated 50 times and then the statistics of the esti-

mated covariances ˆ ˆ,Q R  are compared. The initial set (0)S  is obtained by a Cartesian combi-

nation of the sets Q  and R  each having 20 values with a logarithmic scale within interval 

(0.01; 15). 

 
Tab. 7 – Comparison of MC method and scALS method using System 1 and 1000 samples. 

 Qr=10 Rr=1    µQ σQ   [%] µR σR   [%] 

MC method, 
MAP

ˆ ˆ[ , ]Q R  10.25 7.7 0.77 59.7 

MC method, 
MS

ˆ ˆ[ , ]Q R  10.62 6.1 0.99 51.4 

Recursive MC, 
MAP

ˆ ˆ[ , ]Q R  9.84 10.0 1.10 70.3 

Recursive MC, 
MS

ˆ ˆ[ , ]Q R  10.05 7.6 0.98 51.5 

ALS, N = 10 
Q0=1, R0 =1 

9.88 11.6 0.96 84.0 

ALS, N = 20 
Q0=1, R0 =1 

10.05 12.2 1.00 81.9 

ALS, N = 20 
Q0=1,R0 =10 

10.15 13.9 0.84 117.4 

 
ALS method was simulated with several settings representing parameters for the calcula-

tion of an initial Kalman gain. Further, considering the results in Tab. 7 and Tab. 8, it can be 

seen that MC method has an acceptable accuracy in noise covariance estimation and the ob-

tained results have a smaller standard deviation than the values obtained by ALS. Tab. 7 and 

Tab. 8. contain also the simulation results of the recursive algorithm. It can be seen, that the 

accuracy of the recursive algorithm is comparable to the non–recursive one. 

ALS was tested with two different parameters N, that sets how many lags of the autocor-

relation function of innovations will be used for ˆ ˆ,Q R  calculation. Even when larger N was 

used, no significantly better results have been obtained. However, if N is increased, the solver 

may come to memory limits because the ALS algorithm uses Kronecker products and direct 

summations of high dimensions. This is especially true for the original ALS method of Odel-
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son et al. Comparing the results in Tab. 7 and Tab. 8, we can conclude that the Bayesian ap-

proach together with Monte Carlo is more accurate and returns less outliers than ALS. More-

over, it does not return negative definite estimates.  

Further, Bayesian Monte Carlo algorithm will be tested on several MIMO systems and 

compared to the results of the ALS method. 

 

System 5:

0.9 0 1 1 0.1

0 0.8 0 1 1
, , 1 0 0 1 .

0 0.1 0.85 1 10

0.2 0 0 0.9 0.1

   
   
   − −     = = =      −   
   − −      

A G C

 

The resulting statistics 

are in Tab. 8.  
 

Tab. 8 – Comparison of MC method, Recursive MC method and ALS method using System 5 and 
2000 samples. 

    Qr=10 Rr=1    µQ σQ   [%] µR σR   [%] 

MC method, 
MAP

ˆ ˆ[ , ]Q R  9.98 5.2 1.29 214.2 

MC method, 
MS

ˆ ˆ[ , ]Q R  9.93 3.3 2.06 330.5 

Recursive MC, 
MAP

ˆ ˆ[ , ]Q R  9.92 4.6 4.43 328.3 

Recursive MC, 
MS

ˆ ˆ[ , ]Q R  9.95 3.8 2.60 119.4 

ALS, N = 20 
Q0=1, R0 =1 

10.01 6.8 –0.50 781.3 

ALS, N = 20 
Q0=1, R0 =10 

9.59 5.6 1.93 956.1 

ALS, N = 30 
Q0=1, R0 =10 

9.56 4.7 1.98 731.6 

ALS+SDP, N = 20 
Q0=1, R0 =1 

9.97 3.7 4.15 547.6 

 

System 6: 
0.8 1 1 0 1 0

, , .
0 0.9 0 1 0 1

     
     = = =     −          

A G C  The resulting statistics are in Tab. 9. 

 
From Tab. 7 and Tab. 8 it can be seen that scALS method estimation quality depends on 

the prior setting. The dependency on the prior information limits the usage of scALS. Further, 

considering results in Tab. 7 and Tab. 8, it can be seen that MC method has an acceptable 

accuracy in noise covariance estimation and the obtained results have smaller standard devia-

tion than the values obtained by scALS. Tab. 7 and Tab. 8 contain simulation results of the 
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recursive algorithm. It can be seen, that the accuracy of the recursive algorithm is comparable 

to the non–recursive one. The improvement of the scALS+SDP estimation quality can be also 

highlighted. The variance among repeated estimates is lower than using the original ALS and 

there are no negative results. 

 

Tab. 9 – Comparison of Recursive MC method and scALS method using System 6 and 3000 samples. 
The mean and standard deviation is shown for each matrix member individually. 

10 0

0 5r

 
 =  
  

Q

1.5 0

0 3r

 
 =  
  

R   

11

22

q

q

µ

µ

 
 
 
  

 
11

22

q

q

σ

σ

 
 
 
  

[%]    11

22

r

r

µ

µ

 
 
 
  

 
11

22

r

r

σ

σ

 
 
 
  

 [%] 

Recursive MC, 
MAP

ˆ ˆ[ , ]Q R  
9.94

5.00

 
 
 
  

 
10.8

10.0

 
 
 
  

 
1.63

3.02

 
 
 
  

 
41.9

10.9

 
 
 
  

 

Recursive MC, 
MS

ˆ ˆ[ , ]Q R  
9.96

5.00

 
 
 
  

 
12.3

12.4

 
 
 
  

 
1.61

3.03

 
 
 
  

 
46.9

11.8

 
 
 
  

 

ALS, N = 30 
Q0=I2, R0 =I2 

15.69

11.63

 
 
 
  

 
8.8

6.6

 
 
 
  

 
3.55

3.14

 − 
 −  

 
44.6

16.2

 
 
 
  

 

ALS+SDP, N = 30 
Q0=I2, R0 =I2 

9.88

5.02

 
 
 
    

3.9

5.9

 
 
 
    

3.61

3.00

 
 
 
    

278.4

7.5

 
 
 
    

 

System 7: 

0.9 0 1 1 0 0 0.1

0 0.8 0 1 1 0 0 1 0 0 1
, , .

0 0.1 0.85 1 0 1 0 0 1 1 0

0.2 0 0 0.9 0 0 1

   
   
     − −     = = =     −         − −      

A G C  The resulting 

statistics are in Tab. 10. 
  

It can be seen in Tab. 9 and Tab. 10, that the Recursive MC method calculates the results 

with satisfactory accuracy, however they are slightly worse than the non–recursive ones. This 

is caused by slower updating of the posterior cpdf compared to the algorithm in Section 4.5, 

which resamples the whole set S  in each iteration.  

The original ALS method can return negative definite estimates as demonstrated by the 

simulation results. The ALS+SDP enforces the positive definiteness and also improves the 

quality of the estimates. By comparing the results, it can be seen that the Bayesian and Monte 

Carlo algorithm has comparable or better results than the ALS+SDP method. 
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Tab. 10 – Comparison of Recursive MC method and scALS method using System 7 and 3000 sam-
ples. The mean and standard deviation is shown for each matrix member individually. 

10 0 0

0 3 0

0 0 7
r

 
 
 =  
 
  

Q

  

1.5 0

0 3r

 
 =  
  

R   

11

22

33

q

q

q

µ

µ

µ

 
 
 
 
 
  

 

11

22

33

q

q

q

σ

σ

σ

 
 
 
 
 
  

[%]    11

22

r

r

µ

µ

 
 
 
  

 
11

22

r

r

σ

σ

 
 
 
  

 [%] 

Recursive MC, 
MAP

ˆ ˆ[ , ]Q R  
10.89

3.08

6.98

 
 
 
 
 
  

 

9.0

9.0

6.3

 
 
 
 
 
  

 
1.36

2.78

 
 
 
  

 
10.4

14.9

 
 
 
  

 

ALS, N = 30 
Q0=I2, R0 =10⋅I2 

85.14

31.40

1.23

 
 
 
 
 
  

 

56.8

66.0

4.8

 
 
 
 
 
  

 
13.50

23.19

 − 
 −  

 
70.0

77.8

 
 
 
  

 

ALS, N = 30 
Q0=I2, R0 =I2 

10.21

24.05

8.40

 
 
 
 
 
  

 

16.5

44.1

7.7

 
 
 
 
 
  

 
5.26

0.18

 − 
 −  

 
29.7

46.3

 
 
 
  

 

ALS+SDP, N = 30 
Q0 = I2, R0 = I2 

10.17

3.07

6.96

 
 
 
 
 
  

 

8.7

9.0

5.3

 
 
 
 
 
  

 
1.46

2.89

 
 
 
  

 
17.3

31.5

 
 
 
  

 

 
 
 

4.8 Computation complexity comparison 

 

In this subsection, a brief comparison of computation complexity and time consumption will 

be given for ALS and the Bayesian method. The ALS method uses a least–square minimiza-

tion of a linear function, which allows to formulate the solution in a closed form. If additional 

constraints are required (e.g. positive definiteness), the solution leads to a semi definite pro-

gramming problem. Solving SDP for linear problems is well known and the algorithms are 

fast. The speed of calculation is a significant advantage of the ALS method.  

The Bayesian and Monte Carlo approach is an iterative method. The probability distribu-

tion function is calculated for each sample of the set S. This calculation is repeated for each 

time instant. After the pdf is formed on the set S, the set is resampled using Monte Carlo 
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techniques and the computation is repeated with the new set S.  Comparing to the ALS me-

thod, this approach is significantly more time consuming. The computation time increases 

with a larger set S  and a larger amount of data. However, the computational process can be 

easily parallelized. The time demands can be reduced using the recursive approach. 

The ALS method uses Kronecker products and direct summations for the noise cova-

riance calculation. These matrices are of large dimensions even for small problems and they 

grow rapidly with higher complexity of the system. The calculation requires advanced ma-

thematical tools, which can handle large matrices, matrix inversions and can solve SDP prob-

lems. The Bayesian method has significantly less memory demands and the calculation does 

not require advanced mathematical tools. This can be an advantage especially for practical 

implementation at industry environment. 

 

 

4.9 Comments on convergence of the Bayesian algorithm 

 

The algorithm described in Section 4.4 is built on the Bayesian principles which guarantee 

effective usage of the information contained in data. It is known that if the efficient estimates 

exist, then one of them can be found by the maximum likelihood approach. Considering the 

Bayesian principles, the limitation of the estimation quality can be calculated using the 

Cramér–Rao bounds. The complete derivation of the Cramér–Rao bounds for the estimation 

of the noise covariances can be found in Chapter 6. The convergence of the Bayesian method 

is compared to the Cramér–Rao bounds, there.  
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5. Detection of colored noise 
 

 

 

5.1 Introduction to the detection of colored noise 

 

This chapter introduces detection of a colored noise. One of the key assumptions for the opti-

mality of the Kalman filter is white noise entering the system. If this condition is satisfied, the 

true covariances of the noise can be found leading to the optimal Kalman gain calculation. In 

this case, KF is working optimally and the innovation sequence is white. 

In many practical problems a colored noise has to be considered. For example, distur-

bances with particular frequencies, e.g. sea waves periodically affecting ship movement, wind 

affecting planes, etc. If the color property of the disturbances is neglected, it can significantly 

influence the quality of state estimation and further the control performance. The algorithms 

described in Chapter 4 will find some estimates of the noise covariances that minimizes the 

criteria or maximizes the probability, but the resulting quality of the state estimates is ques-

tionable.  

Linear systems disturbed by a colored noise has had only a minor attention during past 

decades. In most practical problems, it is assumed that the disturbances are white and normal. 

One of the first papers dealing with this topic was written by Bryson and Johansen (1965). 

This paper considers continues time and discrete time systems and describe the main points of 

implementing the coloring filter and highlights the singular cases. This paper, however, does 

not discuss detection of the colored noise. The paper of Salzman and Teunissen (1990) sum-

marizes principles of color noise detection using auto-regressive models in the time domain 

and the signal spectra in the frequency domain. 

The newer brief paper of Popescu and Zeljkovic (1998) uses the incorporation of the co-

loring filter into the Kalman filter to improve SNR of a speech signal. It is demonstrated that 

considering the color property of the background noise can improve speech detection.  

This chapter demonstrates an approach for the detection of colored noise. The time and 

frequency domain will be considered. Further, an appropriate shaping filter will be found. The 
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shaping filter can be incorporated into the KF and the whole system can be used as a state 

observer in the standard way. Application of the approach will be demonstrated on a numeri-

cal example. The state estimation quality will be commented.  

Throughout the chapter, we will concentrate on the process noise. Assuming the mea-

surement noise to be white is reasonable in many practical applications, because it is caused 

mainly by sensors inaccuracy. Moreover, we will discuss equivalency of the process and mea-

surement noise models.  

This chapter provides a basic overview of colored noise analysis and proposes approach-

es that can be used for solving this problem. The chapter does not contain rigorous solutions 

of the non–convex optimization problems, because it exceeds the topic of this thesis. Non–

convex optimization is a well studied field and its connection with identification and estima-

tion theory may bring new theoretical results. 

For the ease of demonstration, only a simple SISO systems will be used. The analysis of 

higher order MIMO systems requires a further research. 

 

 

5.2 Problem formulation 

 

Consider having a set of scalar output data (0),..., ( )y y T . The goal is to detect whether the 

data set was generated by a stable linear dynamic system of order n given by system matrices 

n n×∈A ℝ , n∈c ℝ  excited by white noise. For ease of analysis we employ a system in the 

innovation form  

 
( 1) ( ) ( ),

( ) ( ) ( ),T

t t t

y t t t

ε

ε

+ = +

= +

x Ax k

c x
 (5.1) 

where n∈k ℝ  and ( )tε  is the entering noise with covariance 
s

R . The transfer function of 

system (5.1) can be calculated using Z–transform6  

                                                 
 
6 This calculation method does not guarantee that the resulting transfer function has a minimal phase. However, 
due to the Spectral Factorization Theorem, it is always possible to find such k, that the resulting transfer function 
is stable with a minimal.   
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 ( ) ( ) ( )1 1
( ) 1 adj 1,

det

T TH z z z
z

−
 
 − + = − + 

−  
F

c I A k c I A k
I A

≜

�������������
�������������

 (5.2) 

where adj is the adjugate operator that forms a polynomial matrix with polynomials of max-

imal order 1n − . Multiplying 1( )z −−I A  and vector c forms a set of transfer functions that 

we will call the system dynamic modes or base functions, 
1
( ) ( )

n
F z F z =   F … . The trans-

fer function can be written as a linear combination of the known functions F and unknown 

input vector k 

 
1 2

( ) ( ) ( ) ( ) 1.
n

H z F z F z F z = +   k⋯  (5.3) 

The complex conjugate system is given by  

 ( )
*

* 1 1( ) 1.
T

TH z z
−

− − − +

F

k I A c≜
������
������

 (5.4) 

A spectral density (SD) of the output is defined as 

 * 1

,
( ) ( ) ( )

y y
S z H z R H z

ε

−⋅ ⋅≜  (5.5) 

where exp( ),
s

z j Tω ω= ∈ ℝ  and Ts is a sampling period. Spectral density 
,
( )

y y
S z  trans-

formed to the time domain is of the form 

 *

,
,

y y
R h h R

ε
= ∗ ⋅  (5.6) 

where ∗  is the convolution operator and *( ), ( )h t h t  are impulse responses of systems 

* 1( ), ( )H z H z−  and l is the lag of autocorrelation function. The SD is symmetric with respect 

to y–axis. The definition (5.5) can be written using the base functions as 

 * 1

,
( ) ( ) ( ) ,

y y
S z H z H z R

ε

−= ⋅  (5.7) 
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( ) ( )* 1 * 1 * 1

, 1 2 1 2
( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) 1

y y n n
S z F z F z F z F z F z F z R

ε

− − −   = + ⋅ + ⋅      k k⋯ ⋯ (5.8) 

leading to a formula 

 ( )* *

,
,

( ) 1 ,
y y i j i j i i i

i j n i n

S z R k k FF k F F
ε

∀ ≤ ∀ ≤

  = ⋅ + + +   
∑ ∑  (5.9) 

where 
1

.
T

n
k k =   k …  

Transforming the spectral density of the output to the time domain requires the multiplication 

between the functions in (5.9) to be replaced by a convolution. For this purpose, the following 

normalized autocorrelation functions can be defined which are analogous to the convolution 

 

1

1

1 2

1

, 1
0
1

, 1
0

1

, 1 2
0

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ),

N l

f
i

N l

f
i

N l

f f
i

R l f i i l

R l i f i l

R l f i f i l

δ

δ

δ

δ

− −

=
− −

=
− −

=

+

+

+

∑

∑

∑

≜

≜

≜

 (5.10) 

where ( )tδ  is the Kronecker delta function. Using the definitions (5.10) it holds 

 
{ }
{ }

1 2

1 1

1 * 1

1 2 ,

1 * 1

1 1 , ,

( ) ( ) ,

( ) ( ) .

f f

f f

F z F z R

F z F z R R
δ δ

− −

− −

=

+ = +

Z

Z
 (5.11) 

where 
1 2
( ), ( )f t f t  are the impulse responses of the systems given by 

1 2
( ), ( )F z F z . Functions 

, ,
,

i i
f f

R R
δ δ

 are not symmetric themselves with respect to y–axis, but their sum is symmetric. 

The described spectral density and autocorrelation function will be used in the following sec-

tions to detect the color property of the entering noise.  
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5.3 Detection in the time domain 

 

In the previous section, it was shown that the autocorrelation function of the output signal is 

formed by a set of base functions. The base functions are defined by the system modes and 

are combined by the output vector c. If there is only white noise entering the system, no other 

modes can appear on the output except the base ones. Now, the goal is to check if the output 

sample autocorrelation function can be formed by the base functions. If not, that means that 

the entering noise is not white and it adds some other dynamics to the output signal. The shap-

ing filter, which forms the colored noise from a white noise, is to be found. It can be further 

used as a part of the Kalman filter tunable by the standard way using the white noise assump-

tion. 

In this section, an autocorrelation functions will be used, that depend on unknown para-

meters and lag l. The unknown parameters will be marked in brackets and lag l in the upper 

index. The lower index states what signals have been used for the autocorrelation calculation. 

 

To start the analysis in the time domain, the formula (5.9) has to be transformed using  (5.10) 

to the time domain 

 ( ), , , , ,
,

( ) .
i j i i

l

y y i j f f i f f
i j n i n

R R k k R k R R R
ε δ δ δ δ

∀ ≤ ∀ ≤

  = ⋅ + + +   
∑ ∑k  (5.12) 

Now, the gain k is to be found. For this purpose the following quadratic criterion will be used 

 { }2, , 2,

ˆ ˆ ˆargmin ( ) ,l l

y y y y
R

R R R
ε

ε

  = −   k

k k  (5.13) 

where 
1

T

n
k k =   k … and the sample autocorrelation function of the output 

,
ˆ ( )l

y y
R k  is cal-

culated using the measured data ( )y t  for 1, ,l M= …  by  

 
,

0

1ˆ ( ) ( ),
N

l

y y
i

R y i y i l
N =

= +∑  (5.14) 

where a reasonable choice for M is 10 – 20% of N depending on the amount of data. 
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Solving of (5.13) is a non–convex problem due to multiplication between the unknown 

coefficients and the solution is not unique. Further, the sample autocorrelation function 
,

ˆl

y y
R  is 

compared to the true autocorrelation of the system output using the identified parameters 

ˆ ˆ,R
ε

k . If the sequence of residues of 
, ,

ˆ ˆ ˆ( , )l l

y y y y
R R R

ε
− k  is white, it can be concluded that  

a) there is no additional dynamics in the output signal except of the system modes and  

b) the process noise entering the system is white. 

 

If the residues do not form a white sequence, the dynamic modes of the noise shaping filter 

are to be found, which would improve the fitting of the autocorrelation function 
,
ˆ ˆ( , )l

y y
R R

ε
k . 

This will be demonstrated on a numerical example. 

 

 

5.3.1 Numerical example 

 

As a data generator, consider a stable linear system of order n with a single output and a noise 

shaping filter of order nF given by  

 
( 1) ( ) ( ),

( ) ( ) ( ),
F F

T

F

t t w t

v t t w t

+ = +

= +

f A f g

c f
 (5.15) 

 
( 1) ( ) ( ),

( ) ( ) ( ),T

t t v t

y t t e t

+ = +

= +

x Ax g

c x
 (5.16) 

where ( ) nt ∈x ℝ , ( ) F
n

t ∈f ℝ , ( )v t ∈ ℝ , n n×∈A ℝ , ,n∈g ℝ  F F
n n

F

×∈A ℝ , F
n

F
∈g ℝ , 

F
n

F
∈c ℝ . The noise sequences ( ),w t ( )e t  are white. The process is described by the model 

with states x(t) and the shaping filter is described by the states f(t). Alternatively, more sto-

chastic inputs can be used with appropriate matrices G and GF instead of  vectors g, gF. Matrix 

A and vector c are considered to be known. If it is detected that the entering noise is colored, 

the unknown shaping filter needs to be identified. 

For a numerical example, consider a discrete linear system (5.16) with the sampling pe-

riod 1s given by 
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 = = =A g c

 
The System has two base functions

 ( ) 1.H z
z z z z

 
 
 = + 
 
 
 
��������
�������� ��������
��������

The base functions can be transformed to the time domain using the impulse response of the 

base functions in the Z–transform. Assume having 8200 output data samples at hand. 

criterion (5.13) and autocorrelation 

autocorrelation function can be compared to the identified one with the parameters  

ˆ 0.84 0.50
T =   k  and R̂

ε
=

Figure 7 – Identified 
,
ˆ ˆ( , )l

y y
R R

ε
k

entering process noise is white. 

 

It can be seen that the identified 

the sample autocorrelation function

is entered by white process noise. The Kalman filter for this system can be formed by 
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0.9 0.8 0.1
, , 4 0.1 .

0.2 0.8 0.05
T

   −     = = =             
A g c  

two base functions and the transfer function is of the form

1 2

2 2

( ) ( )

4 3.22 0.1 3.29
( ) 1.

1.7 0.88 1.7 0.88
F z F z

z z

z z z z

 
 

− − = + 
 − + − +
 
 

k

��������
�������� ��������
��������
 

functions can be transformed to the time domain using the impulse response of the 

transform. Assume having 8200 output data samples at hand. 

and autocorrelation (5.14), the parameters ˆ ˆ,R
ε

k  are found.

autocorrelation function can be compared to the identified one with the parameters  

1.05.=  The resulting graphs are in Figure 7. 

ˆ ˆ( , )R R
ε

 and measured 
,

ˆl

y y
R  autocorrelation  function of the output data. The 

It can be seen that the identified pair ˆ ˆ,R
ε

k  together with the system matrices are able to 

function of the measured data. It can be concluded

white process noise. The Kalman filter for this system can be formed by 

(5.17) 

and the transfer function is of the form 

( ) 1.  (5.18) 

functions can be transformed to the time domain using the impulse response of the 

transform. Assume having 8200 output data samples at hand. Using 

are found. Now, the sample 

autocorrelation function can be compared to the identified one with the parameters  

 

autocorrelation  function of the output data. The 

together with the system matrices are able to form 

of the measured data. It can be concluded, that the system 

white process noise. The Kalman filter for this system can be formed by system 



Doctoral Thesis 

 

matrices A, c. The noise covariances for tuning the filter can be obtained by 

thod or ALS method, Chapter 

As a second example, consider

same calculation process as in the previous example results in the following graphs, 

 It is obvious that the sample autocorrelation function cannot be formed by the modes of 

tem (5.17). Alternatively, we can 

some modes in 
,

ˆl

y y
R   are missing in the system’s dynamics. It can be concluded, that the sy

tem is either badly identified or

about the system order, e.g. 

process noise is colored. The appropriate

The aim is to add new dynamic mode(s) such that 

ible approach will be shown in the following section.

 

Figure 8 – Identified 
,
ˆ ˆ( , )l

y y
R R

ε
k

entering process noise is colored.
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. The noise covariances for tuning the filter can be obtained by 

 4.  

consider colored noise entering the system (5

as in the previous example results in the following graphs, 

autocorrelation function cannot be formed by the modes of 

Alternatively, we can plot impulse responses of the base functions and see

are missing in the system’s dynamics. It can be concluded, that the sy

identified or the entering noise is colored. If we have 

about the system order, e.g. based on the physical background, we can conclude that the 

appropriate shaping filter can be found by optimization

The aim is to add new dynamic mode(s) such that 
,
ˆ ˆ( , )l

y y
R R

ε
k  will fit better to 

in the following section. 

ˆ ˆ( , )R R
ε

 and measured 
,

ˆl

y y
R  autocorrelation  function of the output data. The 

. 

Peter Matisko, 2013  

. The noise covariances for tuning the filter can be obtained by the Bayesian me-

5.17). Repeating the 

as in the previous example results in the following graphs, Figure 8.  

autocorrelation function cannot be formed by the modes of sys-

functions and see, that 

are missing in the system’s dynamics. It can be concluded, that the sys-

. If we have  prior knowledge 

on the physical background, we can conclude that the 

can be found by optimization methods. 

will fit better to 
,

ˆl

y y
R . One poss-

 

autocorrelation  function of the output data. The 
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5.4 Detection in the frequency domain 

 

In this section, a spectrum and a spectral density will be of interest for the color property de-

tection. The transfer function of a dynamic system (5.1) can be calculated using (5.2) and the 

corresponding output spectral density using (5.5). 

Consider again the system (5.17) excited by white noise. The estimated spectral density 

of the measured data, calculated by (5.14), is shown in Figure 9 together with the base func-

tions of the system. In Figure 9, there are analogous graphs of the spectral densities. It can be 

seen, that the spectral density of the measured output can be formed by combining the base 

functions using vector  k. It can be concluded that the entering noise is white and the system 

is well identified. Alternatively, vector k can be found by an analogous criterion as (5.13) 

with the cross–covariances replaced by spectral densities.  

 

 
Figure 9 – a) One-side spectral density of the measured output signal. b) spectral density of the base 
functions. White noise is entering the system. 

 

Now, consider the system (5.17) excited by colored noise. The measured spectrum can be 

seen in Figure 10. Compare the shape of the measured spectrum with the base functions. It is 

obvious that no combination of the base functions will lead to the measured spectrum. There 

is an additional dynamic mode with a frequency around 1.19 rads-1 that is entering the system 
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as colored noise. The shaping filter is to be found with such base functions that will be able to 

fit the peak around the 1.19 rads-1.  

 

 
Figure 10 – A spectral density of the measured output signal when the system is excited by colored 
noise. 

 
 

5.5 Shaping filer identification 

 

Detection of colored noise was explained in the previous sections. The next problem is the 

identification of the noise shaping filter and its incorporation into the system model. The goal 

is to find such shaping filter ˆ
F

n
F and parameters ˆ ˆ,

e
Rk  that difference between the estimated 

and the measured spectral density is minimal. 

 { }
2 1

2

2 1 , , 2, , , ,

ˆ ˆ ˆ, , argmin ( ) ( ) ,
e y y y y

R

R S S
ε
ω ω ξ

ω ω ξ ω ω  = −   k

k  (5.19) 

where 
2 1
, ,ω ω ξ  are the parameters of the transfer function 

F
n

F of the order 
F

n  is an order of 

the shaping filter. The shaping filter can be searched in a particular form, e.g. general 2nd or-

der system with one zero 

 
2

2

2 2

1 1

.
2F

n

z
F

z z

ω

ξω ω

+
=

+ +
 (5.20) 

The optimization problem (5.19) is non–convex and therefore difficult for solving. However, 

inspecting the measured spectral density, e.g. Figure 10, can provide sufficient prior values 
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for the unknown parameters of (5.20). The form of the shaping filter (5.20) also provides the 

boundaries of the parameters such that the filter is stable. 

The shaping filter can be, alternatively, found by hand using a spectral density (SD) of 

measured output. Compare the SD of the measured output signal and the base functions, Fig-

ure 10. We can model the part of the SD above frequency 0.15 Hz with a peak at 0.19 Hz. 

This part of the SD can be satisfactory fitted by the transfer function  

 
2

8
( ) .

0.6 0.84F
n

z
F z

z z

+
=

− +
 (5.21) 

The SD of the measured signal can be compared to the system base functions obtained by 

splitting (5.21) into two base functions of order 1, Figure 11. 

 
Figure 11 – a) spectral density of the measured output signal. b) spectral density of the base functions: 
the system – F1, F2; the shaping filter F3, F4.  Colored noise is entering the system. 

 
After identifying the shaping filter, it can be incorporated into the system model, see the 

following section eq. (5.23).  Now, the noise covariances can be found to tune the Kalman 
filter for this model. The filter and the model can be used for output predictions or a state 
feedback control. 

 
 

5.6 Process and measurement noise 

 
In this section, we will discuss whether it is possible to recognize colored process noise and 
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a noise shaping filter ( , , , )T

F F F F
dA g c  can be, without loss of generality, defined in the ob-

servable canonical form with a single stochastic input 

 
�

�

( 1) ( )
( ),

( 1) ( )

( )
( ) ( ).

( )

PP

P
T
P

F F

T

FF

T

P

d

t t
w t

t t d

t
y t d w t

t

      +       = +      +             

 
   = +       

gA

c

A 0f f g

x x ggc A

f
0 c

x

����
����

���
���

 (5.22) 

System (5.22) is in the process noise configuration. To model colored measurement noise, the 

system combined with a shaping filter is given by 

  
�

( 1) ( )
( ),

( 1) ( )

( )
( ) ( ) ( ).

( )

M M

T M
M

F m

T T

M F F

d

t t
w t

t t

t
y t d d w t

t
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 
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A g

c

f A 0 f g

x 0 A x g

f
c c

x

����
����

����
��������
����

 (5.23) 

The question is, whether and under what conditions it is possible to find , ,
M M M

dA g  such that 

the output spectral density of systems (5.22) and (5.23) is equal. 

 

Theorem: An observable dynamic system (5.22) is entered by colored process noise and sys-

tem (5.23) is entered by colored measurement noise. It is possible to find gM, dM such that the 

spectral density of both system is equal, iff the characteristic polynomials of the systems have 

no common factor, i.e. the greatest common divisor (gcd) of them equals 1. 

 

Proof: Let G(z) and H(z) be a transfer functions of the system and the shaping filter of (5.23). 

Further, let F(z) be a transfer function of (5.22) and let SF(z) be a spectral factor of F(z), i.e. 

SF(z) is a rational function having numerator and denumerator proper and stable and it holds 

* 1 * 1( ) ( ) ( ) ( ).
F F

S z S z F z F z− −=    For system (5.23) it holds that ( ) ( ) ( ).
M

Y z G z H z= +  Both 

models (5.22), (5.23) have the same dynamic modes and their characteristic polynomials are 

equal. The goal is to find such parameters that it holds 
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 num num num

den den den

( ) ( ) ( )
.

( ) ( ) ( )

g z h z f z

g z h z f z
+ =  (5.24) 

Due to the equality 
den den den
( ) ( ) ( )g z h z f z⋅ =  the problem reduces to solving of a Diophantine 

equation7 of the form 

 
num den num den num

( ) ( ) ( ) ( ) ( ),g z h z h z g z f z+ =  (5.25) 

with unknowns 
num num

( ), ( )g z h z . Equation (5.25) has a solution iff 
den den

gcd( ( ), ( ))h z f z  di-

vides 
num

( )f z , (Kučera, 1991). However, any common factor of 
den den
( ), ( )h z f z  would be can-

celed on the left side resulting to a violation of the denominators equality. Thus, the only ac-

ceptable common divisor is 1 and in such case, the equation (5.25) is always solvable. The 

theorem is proved.            ∆ 

 

The theorem was formulated only for a SISO system. A MIMO case would be signifi-

cantly more difficult leading to a matrix equation. It can be expected that, under some condi-

tions, this theorem holds also for MIMO system. However, the more complicated case were 

not analyzed for this thesis. 

A corollary of the theorem is that the colored process noise and the colored measurement 

noise cannot be distinguished from the output data. Transforming the model entered by a co-

lored process noise to the model entered by colored measurement noise can reduce the num-

ber of unknown parameters and simplify the identification.  

A question arises, how the quality of state estimates changes, if a colored process noise 

model is replaced by a colored measurement noise model. We can intuitively expect, that the 

trajectories of state estimates will differ from the optimal ones. This situation will be demon-

strated in the following section. 

 

 

 

                                                 
 
7
 Diophantine equations and spectral factorization can be solved by Polynomial Toolbox for Matlab 

[www.polyx.com]. 
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5.7 Numerical examples 

 

Consider a data generator (5.26) having two stochastic inputs (process and measurement 

noise). The noise shaping filter of the data generator generates a dumped sinus signal with a 

period 46 s that enters the system as process noise. Consider further, that only the determinis-

tic part of the system is known.  

 �

1.979 1 0.04

( 1) 0.998 0 ( ) 0.04
( ),

( 1) 0.008 0 1.94 1 ( ) 0

0.0724 0 0.94 0 0
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  

 (5.26) 

where ( ) (0,0.001)w t ∼ N  and ( ) (0, 0.05)e t ∼ N .  

As the next step, the entering colored noise is detected using the approach from the pre-

vious sections. However, as it is not known, if the system is in colored process noise or co-

lored measurement noise configuration, we choose the second alternative, which is simpler. 

We use the spectral density and the mean square method to find the noise shaping filter that 

best fits the spectral density of output data. Then, we compare the quality of output predic-

tions with and without using the identified noise shaping filter. 
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 (5.27) 

Optimal Kalman gains for systems (5.26) and (5.27) are obviously different. They can be cal-

culated using noise covariances estimated from the measured data, Chapter 4. A quality of the 
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output predictions can be compared in Tab. 11 using 3,000 samples of data. In the first exam-

ple (first row), the system (5.27) is used as a predictor. In the second example (second row), 

only the deterministic model is used and the color property of the entering noise is neglected. 

 

Tab. 11 – Comparison of the output prediction quality between the models with and without the noise 
shaping filter. Standard deviation of the output prediction error was calculated for several prediction 
horizons (in samples) using 30,000 output values. 

Horizon (samples) 1 2 4 8 16 

No shaping filter ˆ{ }y yσ −  1.45 1.22 2.96 5.32 9.16 

With shaping 

filter ˆ{ }y yσ −  
0.27 0.28 0.32 0.42 0.70 

Improvement  % 81.5 77.2 89.4 92.2 92.4 

 

It can be seen, that the improvement of the prediction quality is significant especially for 

higher prediction horizons; demonstrated in Figure 12. 

 

 
Figure 12 – Comparison of output predictions for predicting horizon 16 s. ytrue is the measured output, 
yest1 is an output prediction of the system with the shaping filter and yest2 is a prediction with no shap-
ing filter used. The data generating system and the shaping filter is in a colored process noise configu-
ration. 
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A significant improvement can be seen in Tab. 11 and Figure 12. This would be an ex-

pected result as the systems (5.26) and (5.27) have the same (or similar, depending on identi-

fication precision) spectral density. However, our main interest is in the state estimates and 

their quality. We will briefly numerically demonstrate, that the selection of noise shaping fil-

ter configuration affects the quality of state estimates. Consider a system in the innovation 

form given by the matrices 

 1 1

1

0.9 0.7 3
, ,

0.2 0.8 0.5

0.2 0.1 .T

   −   = =   
      
 =   

A g

c

 (5.28) 

This system is excited by colored process noise obtained by filtering a white noise using the 

noise shaping filter 

 

0.6 1 0
, ,

0.86 0 1.38

0.1 0.4 , 1.

F F

T

F F
d

   
   = =   −      
 = =  

A g

c

 (5.29) 

The overall system has the following form. Process (5.28) was transferred to the canonical 

form (assumed to be identified from the data). Vector g was find such that the modelled out-

put spectral density fits the spectral density of the measured output. 

 

0.6 1 0 0 0.552

0.86 0 0 0 0.138
, ,

0.65 0 1.7 1 0.650

0.53 0 0.86 0 0.535

0 0 1 0 , 1T

   
   
   −   = =   
   
   − − −      
 = =  

A g

c d

 (5.30) 

having a single stochastic input ( ) (0,0.05)e t ∼ N .  

The system (5.28) with the noise shaping filter (5.29) generates an output data. We as-

sume, that the system is known and the noise shaping filter has been identified by the ap-

proach described earlier in this chapter. Next, we analyze the quality of states estimates con-

sidering three different scenarios 
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1) the noise shaping filter is omitted, i.e. it is assumed that the system (5.28) is entered by a 

white noise, 

2) color measurement noise configuration is considered, 

3) color process noise configuration is considered. 

 

In Figure 12, we compared output predictions and how the prediction quality is influenced 

when the noise shaping filter is not omitted. In this simulation, directly the state predictions 

are compared to the actual trajectories using a Kalman filter. The Kalman filter is tuned by the 

Bayesian and Monte Carlo method described in Chapter 4. It is obvious the the Kalman filters 

will be different for each of the three cases and thus different noise covariances will be found 

by the Bayesian algorithm. 

The simulation results are as follows. The numbers show the trace of the covariance ma-

trix of state prediction error. Two cases are considered for the simulation. First, Tab. 12, the 

data generator was excited by colored process noise. Next, Tab. 13, shows the results of the 

other case, when the data generator was excited by colored measurement noise. 

 

Tab. 12 – A comparison of the state estimation quality for different Kalman filters. The data generat-
ing system is excited by colored process noise. 

Kalman filter trace of state prediction error covariance matrix 

Colored process noise configuration 0.044 

Colored measurement noise configuration 0.063 

White noise assumption 0.12 

 

Tab. 13 – A comparison of the state estimation quality for different Kalman filters. The data generat-
ing system is excited by colored measurement noise. 

Kalman filter trace of state prediction error covariance matrix 

Colored process noise configuration 0.046 

Colored measurement noise configuration 0.035 

White noise assumption 0.072 

 

It can be seen, that if the noise shaping filter is omitted (i.e. a white noise assumption, 3rd 

row), the quality of the state estimates decreases. This is caused by the fact, that the dynamic 
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modes presented in the noise shaping filter are missing in the Kalman filter. Further, it can be 

observed, that using the colored measurement noise configuration, the Kalman filter generates 

state estimates with a higher state prediction error than the optimal case. We have shown be-

fore, that it is not possible to recognize a process and a measurement noise configuration from 

the output data. However, the state estimation quality can differ in both cases. This might be 

intuitively expected as the Kalman filter is different from the actual process and thus the state 

trajectories differ either. 

Comparing the results in Tab. 12 and Tab. 13, it can be seen, that omitting a noise shap-

ing filter in case of colored process noise leads to less accurate predictions than when the col-

or property of the measurement noise is neglected. This can intuitively be expected, because 

process noise affects not only the current state, but also all the following, while the measure-

ment noise affects only the current output. We stated at the beginning of this chapter, that 

assuming white measurement noise is a reasonable assumption. 

Further, we will demonstrate effect of the colored process noise configuration and the co-

lored measurement noise configuration. Consider system (5.28) with the noise shaping filter 

(5.29) and calculate the transfer functions between measured output ( )y t  and state estimates 

1 2
ˆ ˆ,x x  calculated by a Kalman filter. The amplitude frequency characteristics in Figure 13 

show the influence of the configuration of a noise shaping filter.  

It can be observed that if colored process noise enters the system (blue), the frequency re-

sponse increases on the frequencies amplified by the noise shaping filter. There is an analogy 

with a higher covariance Q for particular frequencies. However, when the process is entered 

by colored measurement noise (green), the Kalman filter applies lower weight on the mea-

surements on the frequencies which are amplified by the shaping filter. The Kalman filter 

applies lower weight on the measurements. This is an analogy of a higher covariance R.  

 

 

5.8 Discussion and conclusions about the colored noise 

 

This chapter introduced approaches for detection of the colored noise entering a linear sto-

chastic system. The time and the frequency domain analysis were employed to decide whether 

the given system is able to generate the measured spectrum or not. If the output spectral densi-

ty contains modes other than those generated by the system, the entering noise is not white or  
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Figure 13 – Comparison of Bode responses for transfer functions 1 2
ˆ ˆ( ) ( )

,
( ) ( )

X z X z

Y z Y z
, i.e. between the meas-

ured output and the state estimates 
1 2
ˆ ˆ,x x  for three different configurations of  the noise shaping filter. 

 

there is a significant error in the system identification. The general optimization criterion was 

defined to find the best fitting shaping filter and the input gain. Solving of this problem leads 

to difficult non–convex optimization. We have shown how to find the appropriate noise shap-

ing filter by hand in the frequency domain. The system model together with the shaping filter 

can be further used as a state/output predictor. 

We have further shown, that if the spectral density of the output data is inspected, colored 

measurement noise and colored process noise cannot be distinguished. There can be even a 

combination of both cases. We have proved, that a model with colored process noise can be 

transformed to a model with colored measurement noise leading to the same output spectral 

density. It is possible to identify the noise shaping filter, however, it is not easy to decide if 

the colored noise is entering the system as process noise or as measurement noise. Bode cha-

racteristics in Figure 13 demonstrate the difference between the two configurations. It can be 

seen, that exchange of the colored process and measurement noise configuration leads to dif-

ferent trajectories of the filter's state estimates.  

Using a numerical example, we have demonstrated a significant improvement in the out-

put prediction quality if the noise shaping filter is incorporated into the predictor. The im-

provement of the prediction performance depends on the noise character and its intensity.  
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6. Cramér–Rao bounds for estimation of the noise cova-

riances 

 

 

6.1 Introduction to Cramér–Rao bounds 

 

The Cramér–Rao (CR) bounds represent a limitation of the estimation quality of unknown 

parameters from the given data. If the variance of the estimates reaches the CR bounds, it can 

be stated that the estimation algorithm works optimally. In this chapter8, we will derive the 

CR bounds for the estimation of noise covariances of a linear stochastic system. The noise 

covariances are tuning parameters of the Kalman filter, and the filter performance depends on 

them. We will compare the Bayesian method and the ALS method to the CR bounds and their 

performance will be discussed. Deriving of noise covariance the CR bounds is based on Ti-

chavský et al. (1998) and Šimandl et al. (2001). Additional information about CR bounds and 

Bayesian estimation can be found in Candy (2009).  

 

 

6.2 The Cramér–Rao bounds 

 

The task is to estimate a vector of parameters 
1 2
, ,...,

T

m
θ θ θ =   θθθθ from a set of measured data 

1 2
, ,...,

T
N T T T

N

 =   y y y y . The upper index N emphasizes that vector yN contains N data samples. 

The conditioned probability density function (pdf) ( )Np y θθθθ|  is assumed to be known. Further, 

the nabla operator is defined as 

 
1 2

, ,...,
m

θ θ θ

 ∂ ∂ ∂ ∇ =  ∂ ∂ ∂  
θθθθ

. (6.1) 

                                                 
 
8 This paper was originally published in IFAC–PapersOnLine, www.ifac–papersonline.net, and is reproduced 
here with permission from IFAC, Matisko and Havlena (2011). 
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The Fisher information matrix (FIM) ( )J θθθθ  for parameters θθθθ  is defined as 

 ( )( ) ln ,
T

Np
    = − ∇ ∇      

y
J y

θ θθ θθ θθ θ
θ θθ θθ θθ θ|E  (6.2) 

where operator { }|⋅ ⋅
y

E �  is the conditioned expected value defined as 

 { }( , ) | ( , ) ( | ) .f f p d
∞

−∞
= ∫y

y y y yθ θ θ θθ θ θ θθ θ θ θθ θ θ θE  (6.3) 

Alternatively, we can define a posterior FIM (and posterior CR bounds) using joint probabili-

ty ( )Np y , θ, θ, θ, θ  instead of the conditioned one, where ( )( ) ( )N Np p p=y y |, θ θ θ, θ θ θ, θ θ θ, θ θ θ . Probability 

function ( )p θθθθ  represents prior information about the parameter vector θθθθ .  

Assume having an unbiased estimate of the parameter vector θ̂θθθ  obtained by an arbitrary 

method. When the true value of the parameter vector is compared to the unbiased estimated 

set, the following inequality holds, Papoulis (1991). 

 ( )( ){ } ( )1ˆ ˆ ,
T −− − ≥ JE

θθθθ
θ θ θ θ θθ θ θ θ θθ θ θ θ θθ θ θ θ θ  (6.4) 

where ( )1−
J θθθθ  represents the Cramér–Rao bound. Reminding, inequality ≥A B  means that 

−A B  is a positive semi definite matrix. Based on (6.4), the following statement  can be con-

cluded. Assuming that the CR bound is reachable, any estimation algorithm working optimal-

ly (in the sense of the smallest covariance of obtained estimates), must give estimates whose 

variance is equal to the Cramér–Rao bound. If the CR bound is reachable, then the optimal 

result can be achieved by a maximum likelihood approach. 

 

Consider a scalar linear stochastic system 

 
( 1) ( ) ( ),

( ) ( ) ( ),

x t ax t v t

y t x t e t

+ = +

= +
 (6.5) 

where ( )x t  and ( )y t  represent the state and the measured output, respectively. Stochastic in-

puts ( )v t  and ( )e t  are described by normal distributions  

 ( ) ( )0, 0,( ) , ( ) .v t Q e t R∼ ∼N N  (6.6) 
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The sets ,t tYX  represent the data up to the time t, i.e. { }(0), (1), , ( )t t= y y y…Y  and 

{ }(0), (1), , ( )t t= x x x…X . The logarithm of the conditioned probability of the state, mea-

surements and unknown parameters ,
T

Q R   θ =  can be expressed as 

 
( ) ( ) ( )

( )

1

1
0 0

0

ln , | ln | , ln | ,

ln .

t t
t t

i i i i
i i

p p p

p

−

+
= =

= +

+

∑ ∑y x x x

x

θ θ θθ θ θθ θ θθ θ θYX
 (6.7) 

The following matrices are used for FIM calculation 

 ( )
1

1 1
ln | ,
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++ +
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x x

K x x xE  (6.8) 

 ( )
1 1

, 1

1 1
ln | ,

t t t

T
t t

t x t t t
p

+ +

+
+ +

    = −∇ ∇      
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t y t t t
p
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 ( ), ln | , ,
t t

T
t

t y t t t
pθ
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x

L y x x
θθθθ
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 ( )ln | , ,
t

T

t y t t t
pθ

    = −∇ ∇      
L y x x

θ θθ θθ θθ θ
θ θθ θθ θθ θE , (6.16) 

Further, recursive formulas for FIM of the state and unknown parameters are defined as 
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where  

 , , , ,

| 1 | 1
, ,x x t x x t

tt t t t tt t t t

θ θ θ

+ +∆ = + ∆ = +J K J K  (6.18) 

 , , 1, , 1

1 1
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T T
x x t t t t

tt tt t t

θ θ + +
+ +

   ∆ = ∆ =      K K  (6.19) 

and 

 , , , , ,

| | 1 | | 1
, .x x t x x x x t

t t t t t t t t t t

θ θ θ

− −= + = +J J L J J L  (6.20) 

Initial conditions of the recursive algorithm are set as  
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 (6.21) 

where 0

0
K  and 

0
A  represent prior information. If no prior probability function is known, then 

0

0 0
0, 0.= =A K  

The final form of FIM of state and parameters is 

 
, ,

| |

, ,|

| |

.
x x x

t t t t

xt t

t t t t

θ

θ θ θ

 
 =  
  

J J
J

J J
 (6.22) 

 

 

6.3 The Cramér–Rao bounds for noise covariance estimation 

 

Consider a stable scalar stochastic system given by (6.5). The noise sources are not correlated 

and are defined by (6.6). The probability distributions used in (6.7) can be defined as 
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( ) ( )
( ) ( )

1
| , , ,

| , , .

t t t

t t t

p x x Q ax Q

p y x R x R

+
=

=

N

N
 (6.23) 

Now, matrices (6.8)–(6.16) can be calculated using the following general integral formulas, 

assuming 0α>  

 

( ) ( )

2

2

2

2

( )

( )

2

3

,

,

( ) 0,

.
4

x

x

x

x

e dx

xe dx

x e dx

x e dx

α

α µ

α µ

α µ

π

α

π
µ
α

µ

π
µ

α

∞
−

−∞

∞
− −

−∞
∞

− −

−∞

∞ − −

−∞

=

=

− =

− =

∫

∫

∫

∫

 (6.24) 

Further,  logarithm of the Gaussian function is given by 

 ( )21 1 1
ln ( , ) ln 2 ln .

2 2 2
P P x

P
µ π µ= − − − −N  (6.25) 

The CR bounds of Q, R estimates are to be found, considering a scalar system with two 

unknown parameters. The ∇  (nabla) operator is in this case of the form 

 , ,
Q R

 ∂ ∂ ∇ =  ∂ ∂ 
θθθθ

 (6.26) 

where , .
T

Q R =   θθθθ  At the first step, the arguments of the expectation operators in (6.11)–

(6.16) are calculated as follows 

 ( ) ( )12
1

ln | ,

0
t

T
t t

t t

a
x ax

p Q
+

+

 
 − −   ∇ ∇ =    
 
 

x
x x

θθθθ
θθθθ , (6.27) 

 ( ) ( )
1

12
1

1

ln | ,

0
t

T
t t

t t

x ax
p Q

+

+
+

 
 −   ∇ ∇ =    
 
 

x
x x

θθθθ
θθθθ , (6.28) 

 ( ) ( )212 3
1

1 1
0

ln | , 2
0 0

T
t t

t t

x ax
p Q Q

+
+

 
 − −   ∇ ∇ =    
 
 

x x
θ θθ θθ θθ θ

θθθθ , (6.29) 
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 ( ) ( )22 3

0 0

ln | , 1 1
0

2

T

t

t t

p
y x

R R

 
    ∇ ∇ =    − −  

y x
θ θθ θθ θθ θ

θθθθ . (6.30) 

Next, matrices (6.11)–(6.16) are obtained using integral formulas (6.24) as 

 , , 1 2
1 1 1

1
0 0 0
, , 2

0 0
0 0

t t

t t t Q
θ θ θ+
+ + +

           = = =               

K K K , (6.31) 

 ,

2

0 00
, 10 0

2

t

t t

R

θ θ

       = =        

L L , (6.32) 

 ( ){ }0
ln

T

A p = −∇ ∇  θ θ θθ θ θθ θ θθ θ θ
θθθθE . (6.33) 

The term ,

1

t

t

θ

+K , which is further used to calculate ,x

tt

θ∆  in (6.18) is zero. This allows us to 

omit calculation of the terms (6.8)–(6.10) only used to calculate the term 
tt

∆ .  

It can be seen from (6.31)–(6.32), that several of the matrices are zero which significantly 

simplifies formula (6.17). In particular matrix ,

|

x

t t

θ
J  in (6.22) is zero and this fact allows us to 

calculate FIM for unknown covariances independently on the states. The resulting FIM can be 

written as 

 , ,

1| | 1 1
,

t t t t t t

θ θ θ θ θ θ

+ − += + +J J L K  (6.34) 

where ,

0| 1

θ θ

−J  represents the prior information about unknown parameters Q, R. If no prior in-

formation is available, it can be set to zero, ,

0| 1
0.θ θ

− =J  From the above equations and the form 

of matrices in (6.31)–(6.32), it can be seen that the FIM is calculated for each covariance in-

dependently. Formula for the FIM is of the form 

 , , 2
1| | 1

2

10 0
0
.21

0 0 02

t t t t Q

R

θ θ θ θ

+ −

  
  
  = + +   
     

J J  (6.35) 

A particular closed form solution to recursive formula (6.35) is given by 
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2

,

| 1

2

0
2 .

0
2

t t

t

Q

t

R

θ θ

−

 
 
 

=  
 
 
  

J  (6.36) 

 

 

6.4 The Cramér–Rao bounds for a system in an innovation form 

 

Consider a scalar dynamic system in an innovation form 

 1
,

,
t t t

t t t

x ax k

y x

ε

ε
+

= +
= +

 (6.37) 

where k is a scalar steady state Kalman gain and ( )tε  is the stationary innovation process. 

Then 

 ( )( ) 0, .t R
ε

ε ∼ N  (6.38) 

Cramér–Rao bounds for k, Rε estimation are derived using the same formulas as for system 

(6.5). Analogously to formulas (6.27)–(6.30) we define 

 ( )
( )

( )

13

1

12 2

ln | ,
t

t t
T

t t

t t

a
x ax

k R
p

a
x ax

k R

ε

ε

+

+

+

 
 − − 

   ∇ ∇ =    
 − −   

x
x x

θθθθ
θθθθ , (6.39) 

 ( )
( )

( )1

12

1

12 2

1

ln | ,
1t

t t
T

t t

t t

x ax
k R

p

x ax
k R

ε

ε

+

+

+

+

 
 − 

   ∇ ∇ =    
 −   

x
x x

θθθθ
θθθθ , (6.40) 
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( ) ( )

( ) ( )

2 2

1 12 4 2 3

1 2 2

1 12 3 2 3 2

1 1 1

2
ln | ,

1 1 1

2

t t t t
T

t t

t t t t

x ax x ax
k R k R k

p

x ax x ax
R k R R k

ε ε

ε ε ε

+ +

+

+ +

 
 − − − − 

   ∇ ∇ =    
 − − − −   

x x
θ θθ θθ θθ θ

θθθθ   

  (6.41) 
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 ( ) ( )22 3

0 0

ln | , 1 1
0

2

T

t

t t

p
y x

R R
ε ε

 
 

   ∇ ∇ =     − − 
  

y x
θ θθ θθ θθ θ

θθθθ . (6.42) 

The expected values are calculated using integral formulas (6.24). Matrices (6.11)–(6.16) are 

of the form 

 
2

, , 1

1 1 1

2

2 1

0 0
, ,

1 10 0

2

t t

t t t

kRk

kR R

θ θ θ ε

ε ε

+
+ + +

 
           = = =             
 
 

K K K  (6.43) 

 ,

2

0 0
0
, 1

00
2

t

t t

R

θ θ

ε

 
   
   = =   
       

L L , (6.44) 

The formula for FIM calculation is of the form (6.34). Substituting  (6.43) and (6.44) to (6.34) 

leads to the resulting formula  

 
2

,

2

2

.
t

t t

kRk

t t

kR R

θ θ ε

ε ε

 
 
 
 =  
 
 
 

J  (6.45) 

In the previous sections, we have considered only SISO systems. The MIMO case is signifi-

cantly more complicated, because derivatives with respect to matrices need to be used. This 

would lead to tensors of high dimensions. However, if any new algorithm for the estimation 

of noise covariances is proposed, it can be tested employing scalar examples and compare the 

results to the CR bounds. If the algorithm does not work well for a SISO system, it will most 

likely not work properly for MIMO systems. 

 

 

6.5 Comparison of the methods for noise covariance estimation 

 

In the previous sections, we derived the CR bounds for noise covariances estimation. In this 

chapter, a comparison of sALS method and Bayesian method will be presented according to 
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the CR bounds. The scALS algorithm prior setting contains the optimal Kalman filter gain 

and the maximum lag for autocorrelation calculation 15M = . The Bayesian method (without 

using the Monte Carlo grid updating) searches the maximum in the interval 0.1 to 10. The 

grid is logarithmic and contains 80 80×  points.   

Consider a system of the form (6.5) where 0.5a = − , 10Q =  and 2R = . The estima-

tion algorithm uses k time samples of data. Each estimating process is repeated 300 times and 

then the statistics of the repeated estimates are examined; concretely the variance of the Q, R 

–estimates. The dependence of the variance of the estimated Q–parameters on the number of 

used data samples is shown in Figure 14. 

 
Figure 14 – The Cramér–Rao bound for Q estimation and variance of estimated Q using scALS and 
the Bayesian method (Section 4.4).  
 

In Figure 15, an analogous result for R estimation is shown. We can state that Bayesian 

method converges faster to the CR bound than scALS. Bayesian algorithm gives better esti-

mates in case of covariance Q than ALS even with very small sets of data (around 50 sam-

ples).  
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Figure 15 – The Cramér–Rao bound for R estimation and variance of estimated R using scALS and 
the Bayesian method (Section 4.4). 
 

 

6.6 Discussion of Cramér–Rao bounds 

 

The Cramér–Rao bounds for the noise covariance estimation were calculated for two different 

stochastic models. From (6.31)–(6.32), it can be seen that matrices ,

1

t

t

θ

+K , , 1

1

t

t

θ +
+K  and ,t

t

θL  are 

zero, that means that the information between state and noise covariances is not correlated. It 

can be concluded that the covariances and the states can be estimated independently of each 

other. Another observation can be done on matrices (6.31) and (6.32). It can be seen that there 

is no correlation between information about the covariances. That means that CR bounds can 

be calculated for each covariance separately. Considering limit cases, Q converging to zero 

and R being arbitrary large, the CR bound for Q estimation will converge to zero either. It 

means that there exists a method that can estimate Q up to an arbitrary level of accuracy. The 

unsolved question about the CR bounds is, whether it is reachable or not. The simulation, 

Figure 15, and the fast convergence indicate that the CR bound might be reachable. The va-

riables Q and R can be estimated from the values ( )y t  and ( )txɶ , if the estimates was obtained 

by optimally set KF. However, the optimal setting is given by unknown covariances Q, R.  
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6.7 Relationship between Cramér–Rao bounds and Riccati equation 

 

In this section, we will shortly point out the relationship between the Riccati equation (RE) 

and the CR bounds. It is well known, that under some conditions, the Kalman filter is optimal. 

It was stated in the previous section, that the CR bounds represent a limit of estimation quali-

ty. Therefore, it can be expected that RE should converge to the CR bounds for state estima-

tion of a linear system. Using formulas (6.8)–(6.10) and (6.14), the CR bounds for state esti-

mation can be easily obtained, Tichavský et al. (1998). It holds, 

 
1 , 1 1

1 1

1 1 1

1

, ,

, .

t T t t T

t t

t t T

t t

− + −
+ +
+ − −
+

= =−

= =

K A Q A K A Q

K Q L C R C
 (6.46) 

Now, the recursive formula for FIM calculation, Šimandl et al. (2001), is of the form 

 ( )1 1, , 1

1 1 1 1 1
.t t t t t t t

t t t t t t t

+ + +
+ + + + += − + +J K K J K L K  (6.47) 

Using (6.46) we obtain resulting formula 

 
( ) 1

1 1 1 1 1

1
.T T T

t t

−
− − − − −

+
= − + +J Q Q A J A Q A C R C A Q

 (6.48)
 

The Riccati equation is of the form 

 ( ) 1

1
.T T T T

t t t t t

−

+
= − + +P APA APC CPC R CPA Q  (6.49) 

It can be stated, that 
t

P  and 1

t

−J  converge to the same matrix. Both equations are equivalent 

and 1

t t

−=P J  for sufficient large t, not necessarily t → ∞ . Moreover, if initial values 

1

0 0

−=P J , then trajectories of 
t

P  and 1

t

−J  are the same. This fact proves optimality of the 

Kalman filter.  

Consider two recursive equations (6.50) and (6.51) that are the Fisher information matrix 

recursive equation and the discrete Riccati equation.  
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 ( ) 1
1 1 1 1 1

1

T T T

t t

−
− − − − −

+
= − + +J Q Q A J A Q A C R C A Q  (6.50)

 ( ) 1

1
.T T T T

t t t t t

−

+
= − + +P APA APC CPC R CPA Q  (6.51) 

The right side of the equation (6.50) is modified using substitution 1

t t

− =J P  

( )
( )

( )( )( )
( )( )( )

1
1 1 1 1 1

1
1 1 1 1 1 1

1
1 1 1 1 1 1 1 1 1

1
1 1 1 1 1 1 1 1

1

T T T

t

T T T T

t

T T T T T T

t t

T T T T T

t t

−
− − − − −

−
− − − − − − −

−
− − − − − − − − − −

−
− − − − − − − − −

− + + =
 = − + + =  

= + + − + + =

= + + +

Q Q A J A Q A C R C A Q

Q A A QA P A Q A C R C A Q

Q A A QA P A Q A C R C P A Q A C R C A Q

Q A A QA P C R C P A Q A C R C A Q
 

Now, both sides of the equation are inverted, so the left side is 
1k+

P  and the right side is of the 

form 

 

( )( )( )
( ) ( )
( ) ( )

( )

1
1 1 1 1 1 1 1 1

1
1 1 1 1 1 1 1 1

1
1 1 1 1 1

1
1 1

T T T T T

t t

T T T T T

t t

T T T T T

t t

T T
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−
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−
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−
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−
− −

+ + + =
 = + + + =  
 = + + + =  

= + +

Q A A QA P C R C P A Q A C R C A Q

QA P A Q A C R C P C R C A Q A A Q

QA P A Q A C R C P C R C A

A P C R C A Q

 (6.52) 

Further, an inversion lemma  

 ( ) ( )1 1
1 1 1 1 1

− −
− − − − −− = + −A BD C A A B D CA B CA  (6.53) 

will be applied on the expression ( ) 1
1 1T

t

−
− −+P C R C . The final formula is of the form 

( ) 1

1
,T T T T

t t t t t

−

+
= − + +P APA APC CPC R CPA Q  

which is exactly the Riccati equation. 
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7. Conclusions 

 

 

 

 

The doctoral thesis covered a large part of the stochastic properties estimation for linear dy-

namic systems. First part discussed optimality tests, that can be used for evaluation of the 

state estimation quality using the innovation sequence. The whiteness tests are widely used by 

statisticians, however, they can be hardly found in the control field literature. Technologists 

and scientists who use the Kalman filter for state predictions usually do not use any quality 

measure. We have chosen the most significant whiteness property tests and demonstrate their 

performance with various systems. For this purpose we analyzed and compared several esti-

mators for the autocorrelation function. We have proposed an estimator that generates inde-

pendently identically distributed values. Further, a quality measure has been proposed togeth-

er with the decision about optimality. The quality measure can be used to compare the settings 

of a Kalman filter that are available. It can be also used to detect changes in the noise intensity 

or structure. 

The second part of the thesis described algorithms for the noise covariance estimation. It 

started with demonstration that the Bayesian principles can extract enough information from 

the output data for the estimation of noise covariances. Together with Monte Carlo methods, 

we have proposed an algorithm that is better than previously published methods and works 

also with MIMO systems. Combining the quality measures and the estimation algorithm we 

have proposed an adaptive Kalman filter, that can use a newly measured data to update the 

covariances and evaluate the filter performance. 

The third part of the thesis used the knowledge about the noise covariance estimation and 

the optimality tests. We have shown how to detect that the entering noise is colored.  The time 

and the frequency domain analyses were employed to decide whether the given system is able 

to generate the output spectral density the same as the measured signal has. We also intro-

duced a simple practical method for finding the shaping filter. It was demonstrated on a nu-

merical example, how the Kalman filter performance can be improved when the appropriate 
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shaping filter is used and the color property of the entering noise is not neglected. We pointed 

out the spectrum of the innovation sequence and also the state prediction error. 

The last part discussed the limits of the estimation quality for the noise covariances. We 

have employed the Cramér–Rao bounds and calculate the bounds for this particular problem 

using the approach proposed by Šimandl et al. (2006). We have shown some interesting prop-

erties of the Cramér–Rao bounds for this problem. The fact that we have calculated the 

Cramér–Rao bounds only for a scalar system does not mean any significant disadvantage. 

Any newly proposed algorithm can be compared to the Cramér–Rao bounds employing the 

scalar system. It can be expected that if the performance for small system is far from the op-

timum, the algorithm would not work well for larger systems. 

Several of the functions used for calculations throughout the thesis are attached in Ap-

pendix A in m–code for Matlab. Most of them are necessary for ALS/scALS method, howev-

er, they are ready for a general use.  

The doctoral thesis meets all its assignments and goals listed in Chapter 1. The original 

results have been presented at high impact conferences and journals. The results presented 

here can be used for practical applications and also as an inspiration for a further research in 

the field of stochastic system identification. 
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8. Notation and summary of mathematical operations 
 

Format of mathematical formulas is as follows. Vectors are represented as bold small letters, 

matrices are bold capital letters and scalars are in italics. Covariances and transfer functions 

are represented as capital letters. Time t is considered to be discrete. Vectors are columns. 

Brackets [ ] always represent matrices and are not used for other purposes. Braces { } define 

an argument of the operator; exceptionally can be used for separation of large formulas. The 

hat symbol ^ over the variable represents an estimate, e.g. the state estimate .̂x  

 

8.1 Symbols and abbreviations 

 

 , , , ,ABC D G  system matrices 

 n number of the states, system order 

 p number of stochastic inputs 

 r number of outputs 

 ( ), n

t
t ∈x x ℝ  state of the system 

 ( ) mt ∈u ℝ  deterministic input of the system 

 ( ) rt ∈y ℝ  measured output of the system 

 ˆ( ) nt ∈x ℝ  expected value of the state ( )tx  

 ( )ˆ |t τx  expected value of the state at time t, conditioned by the data up 

to the time τ  

 ( )| 1
ˆ

t t−x θθθθ  expected value of the state as a function of parameter vector θθθθ  

 ( )ˆ( ) | 1t t t= − −x x xɶ  state prediction error 

 ( )| 1 rt t − ∈ ℝε  innovation sequence 

 ( ) pt ∈v ℝ   process noise, stochastic input 

 ( ) rt ∈e ℝ  measurement noise, stochastic input 

 p p×∈Q ℝ  covariance matrix of the process noise 

 r r×∈R ℝ  covariance matrix of the measurement noise 

 p r×∈S ℝ  cross covariance between the process and measurement noise 
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0

n n×∈P ℝ  covariance matrix of the initial state estimate 

 , n n

x

×∈P P ℝ  covariance matrix of the state prediction error 

 r r

y

×∈P ℝ  covariance matrix of the output prediction error 

 a a

a

×∈I ℝ  identity matrix  

 TA  matrix transpose 

 { }E , µ  expected value operator, mean value 

 { }cov  covariance operator 

 
2σ  variance 

 σ  standard deviation 

 ∗  convolution 

 ( | )p x y  conditional probability distribution of x conditioned by y 

 ( , )p x y  joint probability distribution of values x, y 

 ( )tδ  Dirac impulse or a unit impulse in discrete time 

 ( )tr A  trace of matrix A  

 †A  pseudo inverse of the matrix 

 ( )diag d  matrix having vector d on the diagonal 

 
1

N

i
i=
⊕ A  direct sum 

 ⊗  Kronecker product 

 ⊕  Kronecker summation 

 { }vec A  vectorization of matrix A 

 ( )vec vec
,A A  vectorized matrix A, after operator { }vec  was applied 

 { }vecMin A  minimal vectorization of a symmetric matrix A 

 ( )mvec mvec
,A A  vectorized matrix A, after operator { }vecMin  was applied  

 
, ,p q N
P  permutation matrix 

 
n
D  duplication matrix 
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,n p

K  commutation matrix 

 
ij

a , 
ij

   A  member of matrix A with index i, j 

 
2

. , .  quadratic norm 

 .
∞

 infinite norm 

 
.

F
 Frobenius norm 

 ≜  definition of a new expression 

 := assignment of the right side value to the variable on the left 

 ≈  approximate equality 

 ∝  equal up to a multiplicative constant 

 ( ),RN∼ µ  generated from the normal distribution given by mean vector 

µµµµ  and covariance matrix R 

 

 pdf probability distribution function 

 cpdf conditional probability distribution function 

 MS mean square 

 LMS linear mean square, minimization of quadratic criterion 

 ML maximum likelihood 

 KF Kalman filter 

 SD Spectral density 

 LTI linear time invariant 

 SISO single input, single output system 

 MIMO multi input, multi output system 

 

 

 

8.2 Mathematical definitions 

 

Several necessary definitions are listed in this section. To shorten some formulas, the follow-

ing abbreviation will be used 
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 ( ) ( ){ } ( ) ( ){ }ˆ ˆ ˆ... .
T T

− = − −x x x x x xE E  (8.1) 

Further, some mathematical operations will be defined. A derivation of a multivariate 

function f is defined as  

 
( ) ( ) ( ) ( )1 2 1 2 1 2 1 2

1 2

, ,..., , ,..., , ,..., , ,...,
.

n n n n

n

f x x x f x x x f x x x f x x x

x x x

 ∂ ∂ ∂ ∂ 
=  

 ∂ ∂ ∂ ∂
  

x
⋯  (8.2) 

Differential formulas with respect to a vector are as follows 

( ),
T

T T∂
= +

∂
x Ax

x A A
x

          ,
T

T T∂
=

∂
x By

y B
x

          .
T

T∂
=

∂
y Cx

y C
x

 

A matrix pseudo inverse can be defined in two ways. The first formula is 

 † 1( ) ,T T−=A A A A  (8.3) 

where m n×∈A ℝ  and rank min( , )m n=A . If the rank condition is not satisfied, a Moore–

Penrose method can be used. The calculation uses SVD decomposition of matrix A, i.e. 

T=A USV . Further, each non–zero singular value is inverted and zero singular values are 

left zero 

 
1 1 1

1

1 1
diag , , , , , , 0, 0.

m n m m n

m

σ σ σ σ σ σ
σ σ

+
+ +

 
 = > =   

S ⋯ ⋯ … …  

 Then, the MP–pseudo inverse is calculated as 

 † T+=A US V  (8.4) 

and has the following properties 

 

( )

†

† † †

† †

,

,

.
T

=

=

=

A AA A

A A AA

A A A A

 (8.5) 
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The trace of a square matrix is defined as a sum of its diagonal members and is equal to 

the sum of all its eigenvalues 
i
λ  

 ( )tr .
ii i

i i

a λ= =∑ ∑A  (8.6) 

Following formulas hold for the trace operator 

( ) ( )

( ) ( )

( ) ( ) ( )

tr tr ,

tr tr ,

tr tr tr ,

T

α β α β

=

=

+ = +

AB BA

A A

A B A B

          

( )

( )

( )

where
tr

2 ,

tr
,

tr
.

T

T

T T

T

∂
= =

∂
∂

=
∂

∂
=

∂

ABA
AB B B

A
AXB

A B
X

AX B
AB

X

 (8.7) 

Matrix inequality ≥A B  means, that the difference between the matrices −A B  is a 

positive semi definite matrix having all eigen values nonnegative. 

 

The Kronecker product and Kronecker sum of matrices ,n n m m× ×∈ ∈A Bℝ ℝ  are defined 

as follows  

 

11 1

1

,
n

m mn

a a

a a

 
 
 ⊗  
 
  

B B

A B

B B

⋯

≜ ⋮ ⋱ ⋮

⋯

          ( ) ( ).m n
⊕ ⊗ + ⊗A B A I I B≜  (8.8) 

Direct sum of matrices Ai is defined as 

 
1

1

0 0

0 0 .

0 0

N

i
i

N

=

 
 
 ⊕  
 
  

A

A

A

≜ ⋱  (8.9) 

 

Vectorization and minimal vectorization9 operators of a matrix can be defined as follows 

                                                 
 
9  Matlab functions for vectorization and other operators can be found in Appendix A 
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{ }
{ }

11 12 13
vec 11 21 31 12 22 32 13 23 33

21 22 23

mvec 11 21 31 22 32 33
31 32 33

vec ,
,

vecMin .

T

T

a a a
a a a a a a a a a

a a a

a a a a a aa a a

 
   = =     =      = =      

A A
A

A A

 

Gaussian (normal) distribution is given by a probability density function of the form 

 ( ) ( )22

2

1 1
, : ( ) exp ,

22
f x xµ σ µ

σσ π

  = − −   
N  (8.10) 

where 2,µ σ  are a mean value and a variance. For the multivariate normal distribution the 

probability density is given by 

 ( )
( ) ( )

( ) ( )1

1 2 /2

1 1
, : ( , ,..., ) exp ,

22 det

T

n n
f x x x

π

−
  = − − −   

P x P x

P

N µ µ µµ µ µµ µ µµ µ µ  (8.11) 

where µµµµ  is a vector of the mean values and the covariance matrix n n×∈P ℝ  is symmetric and 

positive definite. 

 

The Frobenius norm .
F

  is defined for matrix n m×∈X ℝ  as  

 ( ),
1 1

tr .
m n

T

i jF
j i

x
= =

= =∑∑X XX  (8.12) 
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9. Appendix A – Functions for Matlab10 
 
 
function v = vec (A) 

%VEC  A columnwise stacking of a matrix into a vector 

%  

%v = vec (A) 

  

v = A(:); 

 
 

 

function V = vecMin (v) 

%VECMIN    A columnwise stacking of a matrix to vector with 

repetitions 

%removed 

% 

%v = vecMin (A) 

% 

%Parameters: 

%A – square symetric input matrix of size p x p 

% 

%Output 

%v – vector of lenght p(p–1)/2 

% 

%Example: 

%A = [1 2 3; 

%     2 5 6; 

%     3 6 7]; 

%v = [1 2 5 3 6 7]'; 

% 

%The repetitions are removed if i < j, where 'i' is a row num-

ber and 'j' is 

%a column number 

 

L = zeros(size(v)); 

j = 1; 

  

for i=1:size(v,2); 

    L(i, 1:j) = 1; 

    j = j + 1; 

end 

L = logical(L); 

V = v(L); 

                                                 
 
10 When copying the Matlab code from the appendix, beware of wordwrap and hyphenation. 
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function V = unvecMin (v, height) 

%UNVECMIN    A columnwise unstacking of vector back to matrix. 

Inverse 

%operation to vecMin function 

% 

%A = unvecMin (v, height) 

% 

%Parameters: 

%v      – vector returned by vecMin function of size p(p+1)/2 

%height – the number of rows of returned matrix 

% 

%Output 

%A – square symetric matrix of size height x height 

% 

%Example: 

%v = [1 2 5 3 6 7]'; h = 3; 

%A = unvecMin(v, h); 

% 

%A = [1 2 3; 

%     2 5 6; 

%     3 6 7]; 

% 

%The repetitions were removed in vecMin function if i < j, 

where 'i' is a %row number and 'j' is a column number. unvec-

Min is inverse operation. 

  

V = zeros(height, height); 

j = 0;  vi = 0; 

  

for i=1: height 

    V(i:end, i) = v(i+vi: height +vi); 

    j = height – i; 

    vi = vi + j; 

end 

V = V + V' – diag(V(logical(eye(height)))); 

 
 
 
 
function V = unvec (v, height) 

%UNVEC    Unstacking the vector back to matrix 

% 

% V = unvec(A, height) 

% 

% A      – input matrix 

% height – the number of rows of the final matrix  
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V = reshape(v, height, length(v)/height); 

function DS = direct_sum(A, N) 

%DIRECT_SUM   Creates a direct sum of input matrix 

% 

%D = direct_sum(A, N) 

% 

%Parameters: 

% 

%A – a square matrix of size p x p 

%N – a number of sumation 

% 

%Output: 

% 

%D – the matrix of size N*p x N*p 

%D is block diagonal matrix (A, A, ..., A), where the number 

of diagonal blocks is N 

   

n = size(A,1); 

m = size(A,2); 

DS = zeros(n, m); 

  

for i=0:N–1 

    DS(i*n+1:i*n+n, i*m+1:i*m+m) = A; 

end 

 

 

 

 

 

 

function R = kron_sum(A, B) 

%KRON_SUM   Kronecker sumation 

% 

%R = kron_sum(A, B) 

% 

%R = kron(A, Im) + kron(In, B) 

% 

%where A is of size n x n 

%      B is of size m x m 

% 

%      In = eye(n) 

%      Im = eye(m) 

  

Im = eye(size(B,1)); 

In = eye(size(A,1)); 

  

R = kron(A, Im) + kron(In, B); 
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function D = duplication_matrix(n) 

%DUPLICATION_MATRIX      The function creates a special dupli-

cation matrix 

% 

%D = duplication_matrix(n) 

% 

%Duplication matrix consist of zeros and ones so that next eq-

uation holds 

% 

% D*vecMin(A) =  vec(A) 

% 

%Parameters: 

% 

%n – the size of square matrix A 

% 

%Output: 

% 

%The matrix of size n^2 x n(n+1)/2 

  

D = zeros(n^2, n*(n+1)/2); 

i = 0; 

m = n; 

  

while i < n 

     

    o = i + 1; 

    k = n; 

    for j=1:i 

        D(i*n+j, o) = 1; 

        o = sum(n:–1:k) + i–j+1; 

        k = k – 1; 

    end 

         

    D(i*n+1+i:i*n+n,m–n+1:m–i) = eye(n–i); 

    m = m + n – i; 

    i = i + 1;     

end 
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function P = permuteMN (p, q, N) 

%PERMUTEM      The function creates a special permutation ma-

trix 

% 

%Permutation matrix consist of zeros and ones so that next eq-

uation holds 

% 

%vec( direct_sum(A, N) ) = P_pqN*vec(A) 

% 

%Parameters: 

% 

%p, q – the size of matrix A, [p, q] = size(A) 

%N – the number of direct sumations at direct_sum(A, N) 

% 

%Output: 

% 

%The matrix of size p*q*N^2 x p*q 

  

P = zeros(p*q*N^2, p*q); 

I = eye(p); 

  

i = 1; 

m = 1; 

  

while i*p <= p*q*N^2 

    

    P(i*p–p+1:i*p, m*p–p+1:m*p) = I; 

     

    i = i + N; 

    m = m + 1; 

    if m > q 

        m = 1; 

        i = i + 1; 

    end 

end 

  



Doctoral Thesis Peter Matisko, 2013  

- 105 - 
 

 
 

 

 

 

 

 

 

 

 

 

 

  



Estimation of the stochastic properties of controlled systems 

- 106 - 
 

 

10. References 
 

 

Akesson B. M., J. B. Jorgensen, N. K. Poulsen and S. B. Jorgensen (2008). A generalized 

autocovariance least–squares method for Kalman filter tuning. Journal of Process con-

trol, Vol. 18, pp. 769–779. 

Anderson B. D. O. and J. N. Moore (1979). Optimal filtering. Prentice Hall, USA, ISBN: 0–

486–43938–0. 

Antsaklis P. J. and Michel A. N. (1997). Linear Systems. McGraw Hill, New York, USA, 

ISBN: 978–0–81–764434–5.  

Åström K. J. (1970). Introduction to Stochastic Control Theory. Dover Publications, USA, 

ISBN: 0–486–445313–3. 

Belanger P. R. (1974). Estimation of noise covariance matrices for a linear time–varying sto-

chastic process. Automatica, Vol. 10, pp. 267–275. 

Bryson A. E and D. E. Johansen (1965). Linear filtering for time-varying systems using mea-

surements containing colored noise. IEEE Transactions on Automatic Control, Vol. 10, 

No. 1, pp. 4 - 10. 

Candy J. V. (2009). Bayesian Signal Processing, Classical, Modern, and Particle Filtering 

Methods. John Wiley & Sons, USA, ISBN: 978–0–470–18094–5. 

Carew B. and P. R. Belanger (1973). Identification of optimum filter steady–state gain for 

systems with unknown noise covariances. IEEE Trans. on Automat. Control, Vol. 18, pp. 

582–587. 

Duník J., M. Šimandl and O. Straka (2009). Methods for estimating state and measurement 

noise covariance matrices: Aspects and comparison. Proceedings of the 15th IFAC Sym-

posium on System Identification, Saint–Malo, France, pp. 372–377. 

Eshel G. The Yule Walker Equations for the AR Coefficients. [pdf] Available at  

 <www.stat.sc.edu/~vesselin/STAT520_YW.pdf> [Accessed 30th January 2012]. 

Fuller W. A (1996). Introduction to statistical time series. John Wiley & Sons, USA, ISBN: 

978–0–47–155239–0. 

Gibbs B. P. (2011). Advanced Kalman Filtering, Least–squares and Modeling. John Wiley & 

Sons, USA, ISBN: 978–0–470–89004–2. 



Doctoral Thesis Peter Matisko, 2013  

- 107 - 
 

Hendry D. F. and Juselius K. (2000). Explaining Cointegration Analysis: Part II, The Energy 

Journal, Vol. 22, No. 2, pp. 1–52.  

Kailath T. (1979). Linear Systems. Prentice Hall, USA, ISBN: 978–0–13–536961–6. 

Kailath T., Sayed A. H. and Hassibi B. (2000). Linear Estimation. Prentice Hall, USA. 

Kalman R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal 

of Basic Engineering. Vol. 82, No. 4, pp. 35 – 45. 

Kalman R. E., Bucy R. S. (1961).  New Results in Linear Filtering and Prediction Theory. 

Journal of Basic Engineering. Vol. 83, No. 1, pp. 95 – 109. 

Kalouptsidis N. (1997). Signal Processing Systems. Theory and Design. John Wiley & Sons, 

USA. 

Katayama T. (2005). Subspace Methods for System Identification. Springer, Germany, ISBN: 

978–1–85233–981–4. 

Kunt M. R. (2011). Vector autoregressions, Educational material, University of Vienna [pdf] 

Available at: http://homepage.univie.ac.at/robert.kunst/varpres.pdf [Accessed 2nd April 

2012]. 

Ljung L. (1987). System identification: Theory for the user. Prentice Hall, USA, ISBN: 0–13–

881640–9. 

Lütkepohl H. (2005). New Introduction to Multiple Time Series Analysis. Springer, Germany, 

ISBN 3–540–40172–5. 

Magnus J. R., Neudecker H. (1999). Matrix Differential Calculus with Applications in Statis-

tics and Econometrics. John Wiley & Sons. USA, ISBN: 0–471–98632–1. 

Mehra R.K. (1970). On the identification of variances and adaptive Kalman filtering. IEEE 

Trans. on Automat. Control, Vol. 15, No. 2, pp. 175–184 

Mehra R. K. (1972). Approaches to Adaptive Filtering. IEEE Trans. on Automat. Control, 

Vol. 17, No. 5, pp. 693–698. 

Neethling C. and P. Young (1974). Comments on „Identification of optimum filter steady–

state gain for systems with unknown noise covariances“. IEEE Trans. on Automat. Con-

trol, Vol. 19, No. 5, pp. 623–625.  

Odelson B. J., M. R. Rajamani and J. B.  Rawlings (2005). A new autocovariance least–

squares method for estimating noise covariances. Automatica,Vol. 42, No. 2, pp. 303–308 

Papoulis A. (1991). Probability, Random Variables, and Stochastic Processes. Third edition, 

Mc. Graw–Hill, Inc., USA, ISBN: 0–07–048477–5.  



Estimation of the stochastic properties of controlled systems 

- 108 - 
 

Popescu D. C and I. Zeljkovic (1998). Kalman filtering of colored noise for speech enhance-

ment. In Proceedings of the  IEEE International Conference on Acoustics, Speech and 

Signal Processing, Vol. 2, pp. 997–1000. 

Peterka V. (1981). Bayesian approach to system identification. In P. Eykhoff (Ed.), Trends 

and Progress in System Identification, Oxford, UK. 

Pour N.D., B. Huang and S.L. Shah (2009). Consistency of noise covariance estimation in 

joint input–output closed loop subspace identification with application in LQG bench-

mark. Journal of Process Control, Vol. 19, No. 10, pp. 1649–1657. 

Pukkila M. T. and P. R. Krishnaiah (1988). On the use of autoregressive order determination 

criteria in univariate white noise tests. IEEE Trans. on Acoustic, Speech and Signal 

Processing, Vol. 36, No. 5, pp. 764–774. 

Pukkila M. T. and P. R. Krishnaiah (1988). On the use of autoregressive order determination 

criteria in multivariate white noise tests. IEEE Trans. on Acoustic, Speech and Signal 

Processing, Vol. 36, No. 9, pp. 1396–1403. 

Rajamani M. R. and J. B. Rawlings (2009). Estimation of the disturbance structure from data 

using semidefinite programming and optimal weighting. Automatica, Vol. 45, pp.1–7. 

Rajamani M. R. and J. B. Rawlings. [online] Available at <http://jbrwww.che.wisc.edu/soft 

ware/als> [Accessed 1st March 2012].      

Rencher A. C. (2002). Methods of Multivariate Analysis, 2
nd

 Edition. John Wiley & Sons, 

USA, ISBN: 978–0–47–127135–2. 

Řehoř J. and V. Havlena (2011).  A Practical Approach to Grey–box Model Identication. 

Proceedings of 18
th

 IFAC World Congress, Milano, Italy. 

Řehoř J. and V. Havlena (2010). Grey–box model identication – control relevant approach. 

Proceedings of IFAC Workshop Adaptation and Learning in Control and Signal 

Processing, Antalya, Turkey. 

Salzmann M and P. Teunissen (1990). Detection and Modelling of Coloured Noise for Kal-

man Filter Applications. [pdf] Available at  <http://saegnss1.curtin.edu.au/ Publica-

tions/1990/Salzmann1990Detection.pdf> [Accessed 17th April 2012]. 

Seber G. A. F. (2008). Multivariate Observations. John Wiley & Sons, USA, oISBN: 978–0–

47–031664–1. 

Simon D. (2006). Optimal state estimation, Hinf, and Nonlinear Approaches. John Wiley & 

Sons, Inc., New Jersey. 



Doctoral Thesis Peter Matisko, 2013  

- 109 - 
 

Šimandl M., J. Královec and P. Tichavský (2001). Filtering, predictive, and smoothing 

Cramér–Rao bounds for discrete–time nonlinear dynamic systems. Automatica. Vol. 37, 

No. 11,  pp. 1703–1716. 

Šimandl M., J. Královec and T. Söderström (2006). Advanced point–mass method for nonli-

near state estimation. Automatica, Vol. 42, No. 7, pp. 1133–1145. 

Štecha J. and V. Havlena (1999). Moderní teorie řízení. Ediční středisko ČVUT, Prague. 

Tichavský P., Muravchik C. H. and Nehorai A. (1998). Posterior Cramér–Rao Bounds for 

Discrete–Time Nonlinear Filtering. IEEE Trans. on Signal Processing. Vol. 46, No. 5, 

pp. 1386–1396. 

Wald A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathematical Statis-

tics, Vol. 16, No. 2, pp. 117 – 186. 

 

 

Author's publications 

 

Matisko P. (2009). Estimation of covariance matrices of the noise of linear stochastic sys-

tems. Diploma Thesis, Czech Technical University in Prague. 

Matisko P. and V. Havlena (2010). Noise covariances estimation for Kalman filter tuning. 

Proceedings of IFAC Workshop Adaptation and Learning in Control and Signal 

Processing, Antalya, Turkey. 

Matisko P. and V. Havlena (2011). Cramer–Rao bounds for estimation of linear system noise 

covariances. Proceedings of 18
th

 IFAC World Congress, Milano, Italy. 

Matisko P. and V. Havlena (2012a). Optimality tests and adaptive Kalman filter. Proceedings 

of 16
th

 IFAC System Identification Symposium, Brussels, Belgium.  

Matisko P. and V. Havlena (2012b). Cramer–Rao bounds for estimation of linear system 

noise covariances. Journal of Mechanical Engineering and Automation. Vol. 2, No. 2, 

pp. 6–11, e–ISSN: 2163–2413, DOI: 10.5923/j.jmea.20120202.02. 

Matisko P. and V. Havlena (2013). Noise covariance estimation for Kalman filter tuning 

using Bayesian approach and Monte Carlo. Accepted in International Journal of 

Adaptive Control and Signal Processing, DOI: 10.1002/acs.2369. 

 



Estimation of the stochastic properties of controlled systems 

- 110 - 
 

 

 

 



Doctoral Thesis Peter Matisko, 2013  

- 111 - 
 

 

11. Index 
 

A 

ALS · - 56 - 

ALS+SDP · - 35 -, - 53 -, - 55 - 

Semidefinite Programming · - 35 - 

single column · - 34 - 

ALS method · - 65 - 

autocorrelation function · - 13 -, - 15 -, - 62 - 

normalized form · - 13 -, - 15 - 

autocorrelation matrix · - 32 -, - 33 - 

B 

Bayesian 

algorithm · - 45 -, - 49 - 

method · - 56 - 

Bayesian algorithm · - 74 - 

Bayesian principles · - 57 - 

C 

colored noise · - 58 - 

Cramér-Rao · - 57 -, - 77 -, - 78 - 

D 

Diophantine equation · - 70 - 

direct sum · - 96 - 

domain 

time · - 62 - 

duplication matrix · - 35 - 

F 

Fisher information matrix · - 78 - 

Frobenius norm · - 97 - 

G 

Gaussian distribution · See normal distribution 

I 

importance sampling · - 40 - 

innovation 

form · - 83 - 

sequence · - 16 -, - 30 -, - 32 - 

K 

Kalman filter · - 8 -, - 24 -, - 58 - 

optimal · - 11 - 

performance · - 16 - 

Kalman gain · - 47 - 

sensitivity · - 47 - 

steady state · - 31 - 

Kronecker 

delta function · - 13 - 

product · - 57 -, - 96 - 

summation · - 96 - 

L 

likelihood function · - 38 -, - 40 - 

linear stochastic system · - 5 -, - 24 -, - 31 - 

innovation form · - 59 - 

linear system 

complex conjugate · - 60 - 

innovation form · - 6 - 

stochastic system · - 5 - 

Lyapunov equation · - 31 - 

M 

maximum aposteriori probability · - 40 - 

mean square estimate · - 40 - 

Monte Carlo · - 41 -, - 45 -, - 54 - 

N 

noise shaping filter · - 63 - 

normal distribution 

multivariate · - 97 - 

univariate · - 97 - 



Estimation of the stochastic properties of controlled systems 

- 112 - 
 

normalization · - 39 - 

O 

optimal filter · See Kalman filter 

optimality test · - 16 - 

sequential test · - 21 - 

P 

permutation matrix · - 33 - 

polynomial matrix · - 60 - 

posterior probability · - 38 -, - 40 - 

pseudoinverse · - 95 - 

MP-pseudoinverse · - 95 - 

R 

Riccati equation · - 87 - 

algebraic · - 48 - 

algebraic equation · - 31 - 

S 

shaping filter · - 65 -, - 67 -, - 68 - 

spectral density · - 60 -, - 66 -, - 68 - 

state 

estimation · - 8 - 

prediction · - 9 - 

T 

trace · - 96 - 

V 

vectorization · - 96 - 

W 

white noise · - 16 -, - 66 - 

whiteness property · - 16 - 

Y 

Yule-Walker equations · - 19 - 

 

 

 

  



Doctoral Thesis Peter Matisko, 2013  

- 113 - 
 

 

12. Author index 
 

A 

Akesson, - 30 -, - 34 -, - 105 - 

Anderson, - 1 -, - 5 -, - 8 -, - 105 - 

Antsaklis, - 5 -, - 105 - 

Åström, - 13 -, - 105 - 

B 

Belanger, - 30 -, - 105 - 

Bryson, - 58 -, - 105 - 

Bucy, - 8 - 

C 

Candy, - 77 -, - 105 - 

Carew, - 30 -, - 105 - 

D 

Duník, - 31 -, - 105 - 

E 

Eshel, - 16 -, - 105 - 

F 

Fuller, - 13 -, - 105 - 

G 

Gibbs, - 1 -, - 105 - 

H 

Hassibi, - 106 - 

Havlena, III, - 9 -, - 13 -, - 16 -, - 27 -, - 108 - 

Hendry, - 18 -, - 106 - 

Huang, - 107 - 

J 

Johansen, - 58 -, - 105 - 

Jorgensen, - 105 - 

Juselius, - 18 -, - 106 - 

K 

Kailath, - 1 -, - 6 -, - 106 - 

Kalman, - 8 - 

Kalouptsidis, - 106 - 

Katayama, - 1 -, - 106 - 

Královec, - 108 - 

Krishnaiah, - 13 -, - 16 -, - 19 -, - 107 - 

Kučera, - 70 - 

Kunt, - 106 - 

L 

Ljung, - 1 -, - 6 -, - 106 - 

Lütkepohl, - 15 -, - 18 -, - 106 - 

M 

Magnus, - 35 -, - 106 - 

Matisko, - 13 -, - 16 -, - 27 -, - 30 -, - 31 -, - 52 -, - 108 - 

Mehra, - 13 -, - 15 -, - 16 -, - 17 -, - 30 -, - 106 - 

Michel, - 5 -, - 105 - 

Moore, - 1 -, - 5 -, - 8 -, - 105 - 

Muravchik, - 108 - 

N 

Neethling, - 106 - 

Nehorai, - 108 - 

Neudecker, - 35 -, - 106 - 

O 

Odelson, - 13 -, - 14 -, - 30 -, - 34 -, - 52 -, - 106 - 



Estimation of the stochastic properties of controlled systems 

- 114 - 
 

P 

Papoulis, - 13 -, - 106 - 

Peterka, - 107 - 

Popescu, - 58 -, - 107 - 

Poulsen, - 105 - 

Pour, - 107 - 

Pukkila, - 13 -, - 16 -, - 19 -, - 107 - 

R 

Rajamani, - 30 -, - 34 -, - 106 - 

Rawlings, - 30 -, - 106 - 

Řehoř, - 1 -, - 107 - 

Rencher, - 16 -, - 17 -, - 107 - 

S 

Salzman, - 58 - 

Salzmann, - 107 - 

Sayed, - 106 - 

Seber, - 16 -, - 17 -, - 107 - 

Shah, - 107 - 

Šimandl, - 77 -, - 87 -, - 91 -, - 105 -, - 108 - 

Simon, - 9 -, - 107 - 

Söderström, - 108 - 

Štecha, - 9 -, - 108 - 

Straka, - 105 - 

T 

Teunissen, - 58 -, - 107 - 

Tichavský, - 77 -, - 78 -, - 87 -, - 108 - 

W 

Wald, - 16 -, - 21 -, - 108 - 

Y 

Young, - 106 - 

Z 

Zeljkovic, - 58 -, - 107 - 

 

 

 

  



Doctoral Thesis Peter Matisko, 2013  

- 115 - 
 

 

13. Curriculum Vitae 
 

 

Peter Matisko was born in Zvolen, Slovakia in 1985. He received his bachelor’s and mas-

ter’s degree at the Czech Technical University in Prague, Faculty of Electrical Engineering. In 

2009, he started PhD studies at the Department of Control Engineering. His studies and re-

search work were concentrated on control, stochastic systems and estimation theory. In Feb-

ruary 2011, he took the Modern predictive control course at ETH in Zurich. 

During the doctoral studies he was participating on teaching at the Department of Control 

Engineering. The teaching activities covered Systems and Models, Automatic Control, Theory 

of Dynamic Systems, Estimation Filtration and Detection.  

His research results were presented at conferences IFAC ALCOSP&PSYCHO (Turkey), 

IFAC World Congress (Italy) and IFAC System Identification Symposium (Belgium). The 

main results were published in the Journal of Adaptive Control and Signal Processing. 

 

 

  



Estimation of the stochastic properties of controlled systems 

- 116 - 
 

 

 

 

 

  



Doctoral Thesis Peter Matisko, 2013  

- 117 - 
 

 


