
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

XML Transactions

by

Pavel Strnad

A thesis submitted to
the Faculty of Electrical Engineering, Czech Technical University in Prague,

in partial fulfilment of the requirements for the degree of Doctor.

PhD programme: Electrical Engineering and Information Technology
Specialization: Computer Science and Engineering

May 2013

Thesis Supervisor:
Karel Richta
Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo nám. 13
121 35 Praha 2
Czech Republic

Thesis Co-Supervisor:
Michal Valenta
Department of Software Engineering
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Copyright © 2013 by Pavel Strnad

ii

Abstract and contributions

The field of XML and other related technologies has emerged a lot of research in past
few years and the technologies based on XML has became industry standard nowadays.
Therefore one of the most important areas of the research interest is the field of native
XML databases. If we want to use a native XML database as a database with updates we
need an XML update language, but in the area of XML update languages the situation was
a long time unclear. Hopefully, despite of many existing proposals, the common update
language, XQuery Update Facility (XQUF), come from the World Wide Web Consortium
(W3C) and becomes a standard.

In this thesis, we focus primarily on the transaction processing in native XML databases.
First, we introduce formal specification of transactions in XML and consequently we pro-
vide a basic description of XQUF. We show that it is possible to express formally the
locking semantics of XQUF in terms of transactions. We propose an extension of XQUF
that provides transaction specific features. We give a benchmark specification to measure
performance of transaction processing in native XML databases (NXD).

The main contributions of the thesis are the following:

1. Formal specification of XML transactions is given.

2. XQUF semantics is described in terms of transactions.

3. XQUF is extended by transaction specific features.

4. Benchmark specification to measure performance in NXDs is described.

In conjunction with these theoretical outcomes we have also developed many working
prototypes that were used as proof-of-concept implementations for our benchmarking ex-
periments.

Keywords:

XML, transaction processing, transaction semantics, XQuery Update Facility semantics

iii

Acknowledgements

First of all, I would like to express my gratitude to my thesis supervisor, Karel Richta.
He has been a constant source of encouragement and insight during my research. He,
together with Michal Valenta, provided me with numerous opportunities for professional
advancements. His continued support is gratefully acknowledged. His efforts as thesis
supervisor contributed substantially to the quality and completeness of the thesis. I have
learned a great deal from them. Many other people influenced my work. I wish to thank
to Pavel Loupal, Jan Vraný and Ondřej Macek.

The staff of our department has provided me a pleasant and flexible environment for my
research. Especially, I would like to thank to doc. Šnorek – the head of the department –
for taking care of my financial support. My work has been partially supported by grants
from FRVS and GACR grant agencies.

Finally, my greatest thanks to my family and friends whose support was of great important
during finishing the thesis.

iv

Dedication

To my wife Petra

v

vi

Contents

List of Figures xi

1 Introduction 1

1.1 Contributions . 2

1.2 Organization of the thesis . 3

1.3 Conventions and notations . 4

2 Background 5

2.1 Transaction Processing and Isolation Concepts 5

2.1.1 Overview . 5

2.1.2 Transactions . 5

2.1.2.1 Definitions . 5

2.1.2.2 Flat Transactions . 6

2.1.3 Transaction Dependencies . 7

2.1.3.1 The Dependency Model of Isolation 7

2.1.3.2 Transaction Dependencies 7

2.1.3.3 The Bad Dependencies . 8

2.1.4 Isolation Theorems . 10

2.1.4.1 Well–Formed and Two–Phased Transactions 10

2.1.4.2 Histories . 11

2.1.4.3 Serializability and Two–Phase locking 11

2.1.4.4 Lock Compatibility . 12

2.1.4.5 Dependency and Wormholes 12

2.1.5 Degrees of Isolation . 15

2.1.5.1 Phantoms . 16

3 XML Transactions 17

3.1 Overview . 17

3.2 Relational Data Model vs. XML Data Model 17

3.3 Definitions . 18

vii

3.4 Locking Protocols . 19

3.4.1 DOM Locking Protocols . 20

3.4.1.1 taDOM Model Structure 22

3.4.1.2 Lock Modes . 23

3.4.1.3 Locking Protocol Algorithm 24

3.4.2 XDM Locking Protocols . 25

3.4.2.1 XDGL Protocol . 25

3.4.2.2 XLP Protocol . 30

3.5 Locking Protocol for a Functional XML Update Language 34

3.5.1 A Pinch of Translation Theory . 34

3.5.2 XML-λ to DOM Translation Grammar 35

3.5.3 XML-λ Query Evaluation Example 36

4 XQuery and XQuery Update Facility 39

4.1 Concrete Syntax and Semantics . 39

4.2 Semantics Definitions . 39

4.3 Light-Weight XDM . 47

4.4 XQuery and XPath Language Semantics 48

4.4.1 Expression Semantics . 48

4.4.1.1 Path Expressions . 49

4.4.1.2 Steps . 50

4.4.1.3 Axes . 52

4.4.1.4 Conclusions . 55

4.5 XQuery Update Facility Language Syntax 55

4.6 XQuery Update Facility Language’s Semantics 57

4.6.1 Expressions’ Semantics . 59

4.6.1.1 Insert Expression . 59

4.6.1.2 Delete Expression . 63

4.6.1.3 Replace Expression . 64

4.6.1.4 Rename Expression . 68

4.6.2 Update Operations’ Semantics . 69

4.6.3 Constraints Checker . 70

viii

4.6.3.1 Insert Expression Constraints Check 71

4.6.3.2 Delete Expression Constraints Check 73

4.6.3.3 Replace Expression Constraints Check 73

4.6.4 Update Primitives’ Semantics . 75

4.6.5 Update Routines Semantics . 90

4.7 XQuery Update Facility Transaction Extension 96

4.7.1 XQuery Transaction Control Language - Grammar 96

4.7.2 XQuery Transaction Control Language - Semantics 98

4.7.3 Lock Function Semantics . 100

4.7.4 Semantics Evaluation Example . 114

4.8 Semantics Verification . 117

4.8.1 XQUF-LP Framework . 119

5 Benchmarking 121

5.1 XML Application Benchmarks Overview 121

5.1.1 X007 Benchmark . 121

5.1.2 XMark Benchmark . 122

5.1.3 XMach-1 . 122

5.1.4 TPoX . 123

5.1.5 Framework TaMix for XML Benchmarks 123

5.1.6 XML Application Benchmarks – Summary 124

5.2 Performance Benchmarking . 124

5.3 Benchmark specification . 125

5.4 Benchmarking environment . 126

5.4.1 Results . 128

6 Prototypes 133

6.1 CellStore Native XML DBMS . 133

6.1.1 History . 133

6.1.2 CellStore’s State of The Art . 134

6.1.3 System Architecture . 134

6.1.4 Storage Subsystem . 135

ix

6.1.4.1 Cell File Structure . 136

6.1.4.2 Text File Structure . 138

6.1.4.3 The Transaction Manager Implementation 139

6.1.4.4 Storage Discussion . 140

7 Conclusions 141

7.1 Contributions . 141

7.2 Future Work . 142

8 Bibliography 145

9 Refereed publications of the author 151

A XQuery 1.0 Grammar with Updates and TCL 153

B Light-Weight XDM Specification 163

B.1 Model Elements . 163

B.1.1 Document Nodes . 163

B.1.2 Element Nodes . 165

B.1.3 Attribute Nodes . 168

B.1.4 Text Nodes . 170

C CellStore Performance Evaluation 173

D Abbreviations 175

x

List of Figures

2.1 The three cases of transaction dependencies. 8

2.2 The three bad transaction dependencies. 9

2.3 The example of three execution histories. 13

3.1 The taDOM structure . 20

3.2 taDOM Locking Algorithm . 23

3.3 Lock Protocol Application Example . 24

3.4 An example of XML tree and the corresponding DataGuide. 26

3.5 DataGuide of the document D . 27

4.1 Light-Weight XDM . 47

4.2 Update Operations Names . 58

4.3 XQuery Update Facility Execution Flow, → data path, − → uses or modi-
fies, 99K signal path . 70

4.4 XML document . 106

4.5 Granular Locking Protocol Algorithm . 113

4.6 Replace Expression Semantics . 118

4.7 Module dependency in XQUF-LP framework 119

4.8 XPath-Base Module . 120

5.1 Test 1 results . 126

5.2 Test 2 results . 129

5.3 Test 3 results - 20 transactions . 130

5.4 Test 3 results - 50 transactions . 130

6.1 CellStore architecture . 135

6.2 CellStore cell file structure . 137

6.3 CellStore text file structure . 138

6.4 The Transaction Manager Class Diagram 139

C.1 CellStore A2 Query Performance . 173

C.2 CellStore A3 Query Performance . 174

C.3 CellStore C3 Query Performance . 174

xi

List of Tables

2.1 A compatibility matrix . 12

3.1 The Compatibility Matrix of the Edge Locks 21

3.2 Lock Scenario for DOM Operation getNode(nodeID) 21

3.3 XDGL Compatibility Matrix . 28

3.4 Symbols . 31

3.5 XLP Compatibility Matrix. + compatible. - incompatible. x conditionally
compatible . 33

3.6 XML-λ Operations to DOM Mapping . 34

3.7 Syntax and Semantics Table . 36

3.8 Inherited and Synthesized Attributes of Symbols 37

4.1 XQUF-LP Compatibility Matrix . 102

4.2 XQUF-LP Conversion Matrix . 102

5.1 Database sizes depend on Generator’s Factor 125

5.2 Description of tests . 127

5.3 Semantics of transaction’s operations . 128

5.4 Test 1 results . 128

5.5 Test 2 results . 128

5.6 Test 3 results - 20 transactions . 128

5.7 Test 3 results - 50 transactions . 129

6.1 CellStore cell structure . 137

C.1 Selected queries from the XPathMark benchmark 173

xii

SECTION 1. INTRODUCTION 1

1 Introduction

XML language [7] designed by the consortium W3C [63] is currently the standard for ex-

changing and storing data. Its suitability for many applications lies in the fact that it is

easily readable by the user and the computer. Its advantages include the ability to specify

the domain and structure of stored data using the schema. XML is the world-wide language

suitable to use anywhere where we need to separate the data from their presentation. With

the growing number of XML documents the need for their efficient storage is increasing for

the needs of searching information stored in them. As a convenient way to save documents

is widely accepted using a database managemenent system (”database”). Bearing in mind

that for some applications is not sufficient to store only documents, but also allow their

effective update, ie. insert and delete stored information. It leads to build XML database

where documents will be stored and indexed as in relational databases and their changes

will be simple to realize. The difference between relational and XML data model is in

the structure of their storage. The relational data model [16] stores data into intercon-

nected ”tables”. In contrast, XML data model is organized in a tree structure. Relational

databases are currently the widely used and accepted platform for storing large amounts

of data. They are developed on the very strong theoretic background and are used since

the second half of the seventies of the twentieth century. Most of the techniques developed

and successfully used in relational databases can also be applied to XML databases. One

of the important feature is a transaction processing of the stored data. Informally, we can

say that we need to ensure that multiple users can simultaneously access the stored data.

These users can not only read the data, but they also may change them while maintaining

their consistency and availability.

This work deals with the transaction processing in the (native) XML databases from sev-

eral perspectives. First two chapters of the thesis define the formal background of trans-

action processing and XML transactions respectively. The formal semantics of transaction

processing in XML databases is given. This transaction semantics extends semantics of

XQuery and XQuery Update Facility languages, which were created by the W3C to query

and modify data stored in XML documents or databases. The original language specifi-

cation of XQuery Update Facility does not include transaction processing. To verify the

accuracy of the newly defined semantics we implemented its most important constructs in

the Maude system, which is a formal verification tool for formal semantics. We extended

the syntax and the semantics of XQuery Update Facility to cover the needs of transaction

2 SECTION 1. INTRODUCTION

processing. We have done it by adding syntax constructs for transaction control into the

language. The second part of the thesis deals with the question of benchmarking (native)

XML database systems and measurement of their performance with respect to transaction

processing. We designed a special benchmark for measuring the overhead of a transaction

processing module.

During writing this work several different prototypes were implemented. We used them to

verify results of our work. In particular, the prototype of the native XML database called

CellStore was implemented in the Smalltalk programming language and is available for a

free download [68]. The second prototype of a native XML database called RedXML [37]

is implemented in Ruby and presents a proof-of-concept of storing XML documents into

a key-value database Redis [51]. On this prototype were tested and evaluated various

techniques of mapping XML documents into a key-value database. A large part of those

prototypes was implemented by the bachelor and master students of the Department of

Computer Science and Engineering.

1.1 Contributions

This thesis provides the following contributions:

1. We introduce detailed formal semantics of the XQuery Update Facility languge, a

functional language standardized by W3C, extended by transaction processing. This

semantics can be used for verification of concurrent programs using this language,

moreover the semantics is suitable to be the part of the standard in the future.

2. We extend XQuery Update Facility syntax and semantics by expressions for trans-

action control. These expressions are needed to control program flow according to

transaction processing. This extension is suitable to be the part of the standard in

the future.

3. We provide a new simple benchmark for measuring overhead of a transaction manager

module. This benchmark can be used for component based systems in the future.

4. We specify a transaction processing for XML-λ Language by mapping its operations

into DOM operations and utilizing taDOM locking protocol.

SECTION 1. INTRODUCTION 3

5. We provide semantics verification by the prototype implementation in the Maude

system. This prototype implementation is very useful for formal proving of algebraic

features of the language such as confluence or coherence.

6. We provide a prototype implementation of the native XML database CellStore, which

is used as a testbed for experiments.

1.2 Organization of the thesis

The thesis is divided into seven chapters. There are five main parts. The first part contains

Chapter 1 which provides basic information about the thesis including the summary of con-

tributions, the motivation and the organization of the thesis. The second part is divided

into two chapters (Chapter 2, Chapter 3) and introduces theoretical background of trans-

action processing in relational and XML databases. The third part (Chapter 4) presents

the transaction processing extension of the XQuery Update Facility semantics. The fourth

part (Chapter 5) proposes a new type of benchmark which evaluates the performance of

a (native) XML database system. The fifth part (Chapter 6) describes prototypes im-

plemented during writing the thesis. Finally, in Appendices, we supply some additional

materials related to the thesis, particularly complete syntax of the XQuery Update Facility

extended by the transaction control language.

• Chapter 1 contains a basic introduction and problem specification.

• Chapter 2 introduces theoretical backgorund of transaction processing in databases.

• Chapter 3 describes specific differences of transaction processing in XML databases

and provides a related work in this area.

• Chapter 4 introduces syntax and semantics of XQuery Update Facility. The new

transaction semantics is presented in this chapter. The verification tool implemented

in Maude is presented in this chapter.

• Chapter 5 describes a new component benchmark specification targeted on transac-

tion manager module overhead.

• Chapter 6 contains description of implemented prototypes during writing this thesis.

4 SECTION 1. INTRODUCTION

• Chapter 7 summarizes the thesis contributions and provides suggestions for the future

research.

1.3 Conventions and notations

In the thesis we use the following notation:

var g : Gcont
var l : Lcont

CC(g[CCL/l[TRANS] ==< op : REST >], l) =

= CC(OP (op, g[CCL/l[TRANS] := REST], l))

This semantics equation defines function CC with two parameters g and l, where the type

of g is Gcont and the type of l is Lcont. We use pattern matching to match the left side of

the equation, so if the pattern of the left side is satisfied then the equation can be applied

to the expression. The pattern for variable g says:

g[CCL/l[TRANS] ==< op : REST >]

It means that g contains a CCL filtered by the transaction (the transaction is stored in local

context l in ”variable” TRANS). CCL has to have the structure of the list < op : REST >,

which has more than one item. The right side of the equation rewrites the left side of the

equation to:

CC(OP (op, g[CCL/l[TRANS] := REST], l))

The function CC is invoked with the OP function as the parameter. The OP function

has tree parameters op, g and l, where g ’s ”variable” CCL is modified, item op is reduced

and CCL is set to REST. Indeed, this notation can be mapped to Semantics Definition

in Section 4.2. The pattern g[CCL ==< op : REST >] is equivalent to expression

getCCL(g) ==< op : REST >, where the function getCCL extracts CCL from g and

g[CCL := REST] can be translated to setCCL(g,REST).

SECTION 2. BACKGROUND 5

2 Background

This chapter provides the basic survey of concurrency control mechanisms and concepts

used in (not only) relational databases. We put emphasis on basic principles of standard

transaction theory, which utilizes lock primitives to ensure correct transaction execution.

The major part of this chapter is based on definitions from well-known books [50, 23, 4].

2.1 Transaction Processing and Isolation Concepts

2.1.1 Overview

This section introduces the isolation definitions and theorems. The theorems state that

transactions can execute in parallel with complete isolation if the objects of each transaction

accesses and modifies are disjoint from those modified by others [23, 50]. We present the

theorems which indicate how locking can achieve it. Refinements of these results can

increase concurrency among transactions. The strategy presented in this section called

granular locks or predicate locks [23] allows transactions to lock subsets of an object.

2.1.2 Transactions

2.1.2.1 Definitions

The following definitions of terms are adopted from [23] and [50]. These definitions have

also general applicability for transactions in XML databases.

Definition 2.1.1. A transaction is a sequence of actions starting with a BEGIN action

followed by any combination of:

• READ(o)

• WRITE(o,value)

• XLOCK(o)

• SLOCK(o)

• UNLOCK(o)

6 SECTION 2. BACKGROUND

where o is an object stored in the system and value is a corresponding value. A transaction

ends with a COMMIT or ROLLBACK action. Transactions are represented by a sequence

in the form << ti, ai, oi > |i = 1, .., n >; this means that the ith step of transaction t

performed action ai on object oi.

A simple transaction is composed of READ, WRITE, XLOCK, SLOCK, and UNLOCK

actions [23]. Every transaction T can be translated into an equivalent simple transaction

as follows [23]:

1. Discard the BEGIN action.

2. If the transaction ends with a COMMIT action, replace the action with the following

sequence of UNLOCKs:

< UNLOCK A|if SLOCK A or XLOCK appears in T for any object A >

.

3. If the transaction ends with a ROLLBACK action, replace the action with the fol-

lowing sequence of WRITEs and UNLOCKs:

< WRITE A|if WRITE A appears in T for any object A >

< UNLOCK A|if SLOCK A or XLOCK appears in T for any object A >

.

2.1.2.2 Flat Transactions

There exists many types of transactions. The most strict transactions are called flat trans-

actions (ACID). These transactions have to fulfill ACID properties [23]:

• Atomicity – Transaction’s changes to the state are atomic: either all happen or

non happen. These changes include database changes, messages, and actions on

transducers.

• Consistency – Transaction is a correct transformation of the state. The actions

taken as a group do not violate any of the integrity constraints associated with the

state. This requires that the transaction be a correct program.

SECTION 2. BACKGROUND 7

• Isolation – Even though transactions execute concurrently, it appears to each trans-

action, T, that others executed either before T or after T, but not both.

• Durability – Once a transaction completes successfully (commits), its changes to

the state survive failures.

2.1.3 Transaction Dependencies

2.1.3.1 The Dependency Model of Isolation

Two READ actions by two different transactions to the same object cannot violate con-

sistency because reads do not change the object state. Hence, it is only UPDATE and

INSERT actions that may cause the problem. Two UPDATE actions to an object by the

same transaction do not violate consistency because the ACID property assumes that the

transaction knows what it is doing to its data. Consequently, only UPDATE or INSERT

related interactions between two concurrent transactions can create inconsistency or violate

isolation.

This fact can be expressed by letting Ii be the set of objects read by transaction Ti (its

inputs), and Oi be the set of objects written by Ti (its outputs). The set of transactions

Ti can run in parallel with no concurrency anomalies if their outputs are disjoint from one

another’s inputs and outputs [23]:

∀i 6= j Oi ∩ (Ii ∪Oj) = ∅

2.1.3.2 Transaction Dependencies

We assume the dynamic allocation model [23] that considers allocation of resources (ob-

jects) during the transaction. This means that the resource is allocated when it is needed.

The older static allocation model expected allocation of resources before the transaction.

This approach leads to execution of only one transaction at a time. The dynamic allocation

model postulates that transactions are sequences of actions operating on objects.

Objects go through a sequence of versions as they are written by these actions. Reads

do not change the object version, but each time the object is changed, it gets a new

version. If a transaction reads an object, the transaction depends on that object version.

If the transaction writes an object, the resulting object version depends on the writing

8 SECTION 2. BACKGROUND

transaction [23]. When a transaction aborts and goes through the undo logic, all its writes

are undone. These cause the objects to get new-new versions.

To depict the dependency among two or more transactions we can use the depen-

dency graph. The dependency graph depicts three basic dependencies (READ→WRITE,

WRITE→READ, WRITE→WRITE). For illustration of all three cases see Figure 2.1.

The most important result of isolation theorems (they can be found in Section 2.1.4) is

that any dependency graph without cycles implies an isolated execution of the transaction.

If the dependency graph has no cycles, then the transactions’ dependency graph can be

topologically sorted to make an equivalent execution history in which each transaction ran

serially. On the other hand, if there is a cycle then such a sort is impossible to do, because

there exists at least two transactions, such that T1 runs before T2, and that T2 runs before

T1 [23].

The transaction execution sequence

The dependency graph

T1 READ <o,1>

T2 WRITE <o,2>

T1 T2

<o,1> <o,1> <o,2>

(a) READ→WRITE dependency.

The transaction execution sequence

The dependency graph

T1 WRITE <o,2>

T2 READ <o,2>

T1 T2

<o,1> <o,2> <o,2>

(b) WRITE→READ dependency.

The transaction execution sequence

The dependency graph

T1 WRITE <o,2>

T2 READ <o,2>

T1 T2

<o,1> <o,2> <o,2>

(c) WRITE→WRITE dependency.

Figure 2.1: The three cases of transaction dependencies.

2.1.3.3 The Bad Dependencies

Isolation of concurrent running transactions can be violated in various ways. We distinguish

three kinds of isolation violation caused by ”bad dependencies” called by Gray [23]: lost

SECTION 2. BACKGROUND 9

update, dirty read and unrepeatable read. These ”bad dependencies” can be easily detected

in dependency graph, because each of them forms a cycle, see Figure 2.2.

Lost Update

T2 READ <o,1>

T1 WRITE <o,2>

T2 WRITE <o,3>

T1 T2

<o,1>

<o,2>

<o,3>

<o,1>

<o,1>

<o,2>

(a) WRITE→WRITE can cause
Lost Update.

Dirty Read

T2 WRITE <o,2>

T1 READ <o,2>

T2 WRITE <o,3>

T1 T2

<o,1>

<o,2>

<o,3>

<o,2>

<o,2>

(b) WRITE→READ can
cause Dirty Read.

Unrepeatable Read

T1 READ <o,1>

T2 WRITE <o,2>

T1 READ <o,2>

T1 T2

<o,2>

<o,2>

<o,1>

<o,1>

(c) READ→WRITE can cause
Unrepeatable Read.

Figure 2.2: The three bad transaction dependencies.

Lost Update. Transaction T1’s write is ignored by transaction T2, which writes object

o based on the original value < o, 1 >. A READ-WRITE-WRITE sequence is depicted in

the diagram, but a WRITE-WRITE-WRITE sequence forms the same graph.

Example 2.1.1. Lost Update. Two programmers are working on the same program.

Each of them made a copy of the program from the repository and worked on this copy

independently. After the work is done each of them will copy his version of the program

back to the repository. The result is unpredictable. The changes made by the first or by

the second programmer will be lost. The resulting version depends on the order of copying.

Dirty Read. T1 reads an object previously written by transaction T2, after that trans-

action T2 will make changes to the object o. The problem is that the version read by T1

may be inconsistent, because it is not the final (committed) version of o produced by T2.

Example 2.1.2. Dirty Read. With respect to the programming example this situation

can be described as follows. If the first programmer pushes the incomplete version of his

program into the repository and the second programmer uses this program version for

the work and finally the first programmer will push the final version. Hence, the second

programmer finished the work using the program version that is not the final.

10 SECTION 2. BACKGROUND

Unrepeatable Read. T1 reads an object twice, once before transaction T2 updates it

and once after committed transaction T2 has updated it. The two read operations return

different values for the same object during the same transaction.

Example 2.1.3. Unrepeatable Read. This can be illustrated on the situation when the

first programmer uses the version 1 from the repository and in meanwhile the second pro-

gram installs the version 2 of the program into the repository. When the first programmer

is reading the program from the repository then he gets the version 2. So, his first read

was unrepeatable.

2.1.4 Isolation Theorems

Isolation theorems are important findings of the transaction theory. In this section we

provide a mathematical definition of transaction isolation in terms of execution histories

and dependency graphs.

2.1.4.1 Well–Formed and Two–Phased Transactions

Definition 2.1.2. A transaction is well-formed [23] if each READ, WRITE, and UN-

LOCK action is covered by a corresponding lock, and all locks are released by the end of

the transaction.

Definition 2.1.3. A transaction is defined as two-phase [23] if all its LOCK actions

precede all its UNLOCK actions. A two-phase transaction T has a growing-phase, T[1],

..., T[j], during which it acquires locks, and a shrinking phase, T[j+1], ..., T[n], during

which it releases locks.

Definition 2.1.4. A transaction is defined as strict two-phase [23] if all its LOCK actions

precede all its UNLOCK actions. A two-phase transaction T has a growing-phase, T[1],

..., T[j], during which it acquires locks, and a shrinking phase, T[j+1], ..., T[n], during

which it releases locks. But shrinking phase is done at during COMMIT or ABORT.

Along the thesis we assume well-formed and two-phase transactions under the term trans-

action.

SECTION 2. BACKGROUND 11

2.1.4.2 Histories

Definition 2.1.5. Any sequence-preserving merge of the actions of a set of transactions

into a single sequence is called a history [23]1 for the set of transactions and is denoted

H =<< t, a, o >i | i = 1, ..., n >.

The simplest histories first run all the actions of one transaction, then run all the actions

of another transaction, and so on. Such a transaction at a time histories are called serial

histories.

We use serial histories to define serializability that is a important ”feature” of transaction

processing.

2.1.4.3 Serializability and Two–Phase locking

Definition 2.1.6. A serializable history over a set S of committed transactions is a history

whose effect on any consistent database instance is guaranteed to be equivalent to some

serial history over S. [50]

A serializable history can be achieved many ways. The simplest way is to run transactions

serially, but this way does not provide high transaction throughput because other trans-

actions has to wait on COMMIT of the currently running transaction. The much more

effective way is a controlled interleaving of transactions’ operations. This can be done if we

use LOCK operation before each READ and WRITE operation. We call this mechanism

a locking protocol [50, 23]2.

We also know that if a lock protocol is two–phase then the execution of transactions forms

a serial history. We can form this assertion into the following theorem:

Theorem 2.1.1. Two-phase locking theorem : If all transactions in an execution are two-

phase locked, then the execution is serializable. [4]

For the proof of this theorem, see [4].

1Ramakrishnan and Gehrke [50] use another terminology. They call this sequence a schedule.
2There are also other approaches, which belongs to the category of optimistic methods for concurrency

control [39].

12 SECTION 2. BACKGROUND

2.1.4.4 Lock Compatibility

A history should not complete a lock action on an object while that object is locked by

another transaction in an incompatible mode [23]. In other words, locking constrains

the set of all allowed histories. Histories that respect the locking constraints are called

legal [23]. Gray and Reuter are defining legal histories more formally [23]:

Definition 2.1.7. Transaction t has object o locked in SHARED mode at step k of history

H, if for some i < k, action H[i] =< t, SLOCK, o >, and if there is no < t, UNLOCK, o >

action in the subhistory H[i+ 1], ..., H[k − 1]. Locking in EXCLUSIVE mode at step K is

defined analogously.

Lock compatibility is usually defined by a compatibility matrix. The compatibility matrix

of simple locking protocol is shown in Table 2.1.

Compatibility
Mode of Lock

Share Exclusive

Mode of Request
Share + -

Exclusive - -

Table 2.1: A compatibility matrix

Figure 2.3 shows three examples of histories. The first history is legal and serial, firstly

transaction T1 is executed and then transaction T2, this history conforms locking protocol

constraints. The second history is legal but not serial, operations of transaction T1 and

transaction T2 are interleaved, this history also conforms locking protocol constraints. The

third history is not legal and not serial because operations of transaction T1 and transaction

T2 are interleaved (not serial) and the transaction T2 locks object B in incompatible mode

(bold operation in Figure 2.3(c)).

2.1.4.5 Dependency and Wormholes

Definition 2.1.8. Transaction T1 is said to depend on another transaction T2 in a history

H if T1 reads or writes data previously written by T2 in the history H, or if T1 writes an

object previously read by T2.

The previous definition defines dependency property between two transactions. Therefore

we can build a dependency graph. The dependency graph is a labeled, directed graph in

SECTION 2. BACKGROUND 13

T1 SLOCK A
T1 XLOCK B
T1 READ A
T1 WRITE B
T1 UNLOCK A
T1 UNLOCK B
T2 SLOCK A
T2 READ A
T2 XLOCK B
T2 WRITE B
T2 WRITE B
T2 UNLOCK A
T2 UNLOCK B

(a) Legal and serial history.

T2 SLOCK A
T1 SLOCK A
T2 READ A
T2 XLOCK B
T2 WRITE B
T2 WRITE B
T2 UNLOCK A
T2 UNLOCK B
T1 XLOCK B
T1 READ A
T1 WRITE B
T1 UNLOCK A
T1 UNLOCK B

(b) Legal and not serial his-
tory.

T1 SLOCK A
T1 XLOCK B
T2 SLOCK A
T2 READ A
T2 XLOCK B
T2 WRITE B
T2 WRITE B
T2 UNLOCK A
T2 UNLOCK B
T1 READ A
T1 WRITE B
T1 UNLOCK A
T1 UNLOCK B

(c) Not legal and not serial
history.

Figure 2.3: The example of three execution histories.

which the nodes are transactions and the edges are transaction dependencies labeled with

the object versions being read or written by the transactions [23].

Firstly, we define the object version:

Definition 2.1.9. The version of an object o at step k of a history H is an integer and is

denoted V(o,k). Initially, each object has version zero (V(o,0)=0). At step k of history H,

object o has a version equal to the number of writes of that object before this step:

V (o, k) = ||< tj, aj, oj >∈ H|j < k and aj = WRITE and oj = o||,

where || || is the set cardinality function.

Each history H for a set of transactions Ti defines a ternary dependency relation DEP (H),

defined as follows:

Definition 2.1.10. Let T1 and T2 be any two distinct transactions, let o be any object,

and let i,j be any two steps of H with i < j. Suppose step H[i] involves action a1 of T1 on

object o, step H[j] involves action a2 of T2 on object o, and suppose there is no WRITE

14 SECTION 2. BACKGROUND

action of o by any transaction between these steps. Then DEP(H) is defined as:

< T1, < o, V (o, j) >, T2 >∈ DEP (H)

if a1 is a WRITE and a2 is a WRITE

if a1 is a WRITE and a2 is a READ

if a1 is a READ and a2 is a WRITE

The dependency graph for each of READ → WRITE, WRITE → WRITE, and

WRITE → READ dependencies is shown in Figure 2.2.

We can say that two histories for the same set of transactions are equivalent if they have

the same dependency relation (DEP(H) = DEP(H’)). A history is isolated if it is equivalent

to a serial history [23]. The next important finding is that dependencies of a history define

a time order of transactions.

Definition 2.1.11. The time ordering <<<H of the transactions in a history H is the

smallest relation satisfying the equation:

T <<<H T ′if < T, o, T ′ >∈ DEP (H) for some object version o, or

(T <<<H T ′′and < T ′′, o, T ′ >∈ DEP (H) for some transaction T ′′, and object o).

In other words, T <<< T ′ if there exists a path in the dependency graph from trans-

action T to transaction T’. We can use this relation to define functions BEFORE(T)

and AFTER(T) that returns the set of all transactions that run before T, or after T

respectively. A formal definition is:

Definition 2.1.12.

BEFORE(T) = {T ′|T ′ <<< T}

AFTER(T) = {T ′|T <<< T ′}

When transaction T is running alone in the database then BEFORE(T) and AFTER(T)

sets are empty. In this case, this transaction can be scheduled any way. It does not depend

on any other transaction. Even more interesting is when the BEFORE and AFTER sets

of T are not empty. The next special case is when BEFORE and AFTER sets are both

nonempty. More formally:

Definition 2.1.13. Transaction T ′ ∈ BEFORE(T) ∩ AFTER(T) then T ′ is called a

SECTION 2. BACKGROUND 15

wormhole transaction.

Transaction T’ runs before T and after T simultaneously. Wormhole transactions (all

transactions that satisfy previous definition) are named after the points near black holes

that reputedly let one travel arbitrarily in time and space [23]. They get this name because

they perform actions before T completes and after T completes.

The great finding is that serial histories do not have wormholes. In a serial history, all

the actions of one transaction precede actions of another transaction; the first transaction

cannot depend on the outputs of the second.

2.1.5 Degrees of Isolation

In previous subsections we consider ”Fully isolated” transactions that conform to ACID

properties. But this kind of transactions is not needed for most applications. The main

motivation for relaxing of isolation property is in increasing transaction throughput. We

recognize following degrees of isolation that relax ACID isolation property [23]:

• Degree 0. Transaction is degree 0 isolated if it does not overwrite ”dirty data” of

another transaction T. T degree of isolation > 0.

• Degree 1. Transaction is degree 1 isolated if it does not contain lost updates.

• Degree 2. Transaction is degree 2 isolated if it does not contain lost updates and

dirty reads.

• Degree 3. Transaction is degree 3 isolated if it does not contain lost updates, dirty

reads, and repeatable reads are enabled. This degree conforms with ACID properties.

The lock protocols that can ensure degrees of isolation mentioned above are [23]:

• Degree 0. Lock protocol is well-formed with respect to writes.

• Degree 1. Lock protocol is two-phase with respect to exclusive locks and well-formed

with respect to writes.

• Degree 2. Lock protocol is two-phase with respect to exclusive locks and well-formed.

• Degree 3. Lock protocol is two-phase and well-formed.

16 SECTION 2. BACKGROUND

Theorem 2.1.2. Degrees of isolation theorem: If a transaction observes the degree 0, 1,

2, 3 lock protocol, then any legal history will give that transaction degree 1, 2, 3 isolation,

as long as other transactions are at least degree 1.

For the proof of the theorem see [22].

2.1.5.1 Phantoms

In previous sections we assumed READ and WRITE operations called for objects stored in

a database. There exists another problem when we define new operation INSERT, which

inserts new object into a database. According to previous sections it can be viewed as a

special case of unrepeatable read called phantom read. We present the following example

for better explanation (this example is written in the SQL language [35]):

Example 2.1.4. Phantom Read.

Transaction 1: SELECT * FROM USERS WHERE SALARY>2000;

Transaction 2: INSERT INTO USERS(NAME,SALARY) VALUES (’MARK’, 5000);

Transaction 1: SELECT * FROM USERS WHERE SALARY>2000;

Explanation: The result of the second read of users includes also a new user MARK because

standard lock protocol can lock only existing objects in the database. But when executing

the first query object MARK does not exist yet. The second read is Phantom Read. We

have to use some kind of range or predicate locks [20] to avoid it.

SECTION 3. XML TRANSACTIONS 17

3 XML Transactions

In this chapter we describe basic principles of transaction processing used in XML

databases. Section Overview introduces transaction processing of XML data. A differ-

ence between relational and XML data model is described in Section 3.2. Section Locking

Protocols 3.4 illustrates basic locking protocols used in a relational databases and XML

databases respectively.

3.1 Overview

A common requirement for database management systems is a concurrency control. There

are four well-known properties for a transactional system known as ACID [17]. Transaction

is generally a unit of work in a database. ACID properties are independent on a database

(logical) model (i.e. it must be kept in all transactional database systems, but under special

circumstances we can relax them).

Isolation of transactions in a database system is usually ensured by a locking protocol.

Direct application of a locking protocol used in relational databases does not provide high

concurrency [28, 60] (i.e. transactions are waiting longer than it is necessary).

We consider only well-formed transactions and serializable histories of update operations [4,

23]. All locking protocols quoted in this thesis satisfy these requirements if not stated

otherwise. We call locking protocols for (native) XML databases simply XML-locking

protocols. All those XML-locking protocols are based on a tree locking protocol presented

by Gray in [23]. Hence, XML-locking protocols inherit most of its features, e.g. granularity,

two-phase. Protocols described in this thesis consider isolation degree 3 (serializable) [23]

if not stated otherwise. It implies well–formed and two–phase transactions.

3.2 Relational Data Model vs. XML Data Model

The major differences between XML data and relational data are according to [33]. We

can informally say:

• XML data is hierarchical; relational data is represented in a model of logical rela-

tionships.

18 SECTION 3. XML TRANSACTIONS

An XML document contains information about the relationship of data items to

each other in the form of the hierarchy. With the relational model, the only types of

relationships that can be defined are parent table and dependent table relationships.

• XML data is self-describing; relational data is not.

An XML document contains not only the data, but also tagging for the data that

explains what it is. A single document can have different types of data. With the

relational model, the content of the data is defined by its column definition. All data

in a column must have the same type of data.

• XML data has inherent ordering; relational data does not.

For an XML document, the order in which data items are specified is assumed to be the

order of the data in the document. There is often no other way to specify order within the

document. For relational data, the order of the rows is not guaranteed unless you specify

an ORDER BY clause on one or more columns.

Sometimes the nature of the data dictates the way in which you store it. For example, if the

data is naturally hierarchical and self-describing, you might store it as XML data. Hence,

we also need effective methods for concurrent processing of XML data. This processing

has to be isolated according to running transactions to avoid unwanted results. The best

way to achieve this is to use some kind of locking protocol. The previous chapter gives

theoretical background which was built for transaction processing in relational databases.

Luckily, the findings of transaction theory can be easily used (or extended in some cases)

to form, build and apply it in native XML databases/data processing.

3.3 Definitions

These definitions mostly follow XML:DB API specification [34].1

Definition 3.3.1. Database is a set of collections.

Definition 3.3.2. Collection C is a pair < name, LDC >, where name is a name of

collection C and LDC is a list of collections and documents stored in collection C.

1The API specification is obsolete nowadays but the underlying model is still used by many XML
database vendors.

SECTION 3. XML TRANSACTIONS 19

Definition 3.3.3. Transaction T running in database D is a pair < D,LA >, where LA

is a sequence of actions.

Definition 3.3.4. Sequence of actions is a sequence starting with a BEGIN action followed

by the combination of:

• READ(node)

• UPDATE(node, new value)

• INSERT BEFORE(node, node’)

• INSERT AFTER(node, node’)

• DELETE(node)

• LOCK(node, lock mode)

ending with a COMMIT or a ROLLBACK action.

3.4 Locking Protocols

XML databases provide two basic approaches to access XML data stored in a database. The

first approach is a navigational approach based on DOM model [62] that provides operations

for accessing and modifying XML elements. The second approach utilizes XDM model [21]

and is based on XPath, XQuery and XQuery Update Facility languages. We can recognize

more detailed categories for concurrency control. Byun et al. [10] have analyzed semantics

of update operations and apply conflict-detection algorithm to recognize whether update

operations can be run concurrently or not. This approach requires DTD or other schema of

processed documents. On the other hand, other approaches, for example those presented

by Jea and Chen in [36], do not need DTD of stored documents and define semantics of

update operations extended by lock acquiring during an execution of an expression.

Actual research in the area of locking protocols is concentrated on both models (DOM and

XDM). The DOM model exposes methods for navigational approaching of individual parts

of an XML document. Probably the most advanced research in this topic is carried out at

the University of Kaiserslautern in Germany [31, 27, 28]. Haustein et al. are working on

XTC (XML Transaction Coordinator) Project [29] – a system which implements several

20 SECTION 3. XML TRANSACTIONS

different algorithms of transaction processing on XML data. There also exists other papers

covering DOM model approach [32].

The second approach that utilizes XDM model defines locking protocols for XPath and

XQuery Update Facility expressions [47, 46, 36, 10]. The next Section 3.4.1 is focused on

the family of DOM locking protocols. After this section we introduce basic techniques of

XDM locking in XDM Locking Protocols.

3.4.1 DOM Locking Protocols

In this section we describe basic principles of DOM Locking Protocols. All protocols

presented in this section are inspired by the granularity of locks and uses the tree locking

protocol presented by Gray in 1976 [22]. We chose the most advanced representative of

this family of protocols called taDOM, which was developed as part of XTC project. XTC

project uses extended DOM model taDOM for document representation. The structure of

taDOM model is shown in Figure 3.1.

Figure 3.1: The taDOM structure

The first version of the protocol was denominated as taDOM2. Its improved version is

then called taDOM2+. Both of these protocols work with DOM Level 2 operations (about

20 methods, see [63]). Next generation of taDOM locking protocols are taDOM3 and

SECTION 3. XML TRANSACTIONS 21

- ER EU EX
ER + + - -
EU + + - -
EX + - - -

Table 3.1: The Compatibility Matrix of the Edge Locks

getNode(nodeID) returns Node
Scenario 0-1 for taDOM3+ Lock Requests:
Node Lock PSE NSE FCE LCE
CN NR - - - -

Table 3.2: Lock Scenario for DOM Operation getNode(nodeID)

taDOM3+. As expected, these protocols correspond to DOM Level 3 model. The XTC

project also provides detailed use cases for these protocols (36 use cases [30]) which com-

pletely describe locking scenarios for each operation.

Each of taDOM locking protocols is specified by:

• Compatibility matrix

• Conversion matrix

• Use cases for DOM operations

The compatibility matrix is used when the transaction t1 is requesting a lock l1 on a node

n and there is a lock l2 of the transaction t2. The lock algorithm finds the row l1 and

column l2 in the compatibility matrix and makes a decision whether to lock (+) or not (-).

If the requested lock is incompatible then the transaction is suspended. Table 3.1 describes

Compatibility Matrix for edge locks (ER - edge read, EU - edge update and EX - edge

exclusive). The compatibility matrix and the conversion matrix can be found in [30].

The conversion matrix is used when the transaction t1 is requesting a lock l1 on a node n

and there exists a lock l2 of the same transaction t1. Lock algorithm finds the row l1 and

column l2 in the conversion matrix and converts the lock mode of the node. Hence, each

transaction has at the most one lock on each node at a time.

Use cases describe semantics of the locking protocol with regard to DOM operations. Ta-

ble 3.2 contains description of the DOM operation getNode(nodeID). When getNode(nodeID)

22 SECTION 3. XML TRANSACTIONS

operation is invoked then the locking mechanism has to put the lock of type NodeRead

(NR) on the context node(CN). PSE, NSE, FCE, LCE are abbreviations for previous sibling

edge, next sibling edge, first child edge, last child edge. The getNode(nodeID) operation

does not put locks on these virtual edges (-).

We consider only taDOM3+ for further research. This protocol is up-to-date nowadays, be-

cause it reflects today’s needs and was formally checked2. The taDOM3+ locking protocol

also has low overhead (minimizes access to the storage) [27].

taDOM3+ protocol provides degree 2.99 of isolation [1, 28]. It means that phantom reads3

are not covered. Therefore it is necessary to do a small extension to these protocols by

adding locking of navigation edges to avoid existence of phantom reads. We need to define

an additional mechanism – edge locks. To apply edge locks the authors had to extend

the XML document model and added new edges between nodes – virtual edges. The

compatibility matrix of these locks is more discussed in [28].

3.4.1.1 taDOM Model Structure

The tree-like structure in taDOM is enriched by two new node types: attributeRoot and

string [27]. This representational enhancement does not influence user operations and

their semantics on the XML document, but is solely exploited by the lock manager to

achieve certain kinds of optimization when the XML document is modified in a cooperative

fashion [28].

• attributeRoot separates various attribute nodes from their element node. Instead of

locking all attribute nodes separately they are locked all together by placing the lock

to attributeRoot – concurrency of attribute processing is not allowed.

• A string node is attached to the respective text node and only contains the value of

this node. It does not allow to block a transaction which only navigates across the

node, although a concurrent transaction may have modified the text (content) and

may still hold an exclusive lock on it.

2Valenta and Siirtola [55] made a formal proof of the protocol correctness. They verified the taDOM
locking protocol using model-checking.

3Phantom read happens when new data added by a transaction are visible from another transaction.

SECTION 3. XML TRANSACTIONS 23

3.4.1.2 Lock Modes

The taDOM3+ protocol provides a set of lock modes for the nodes as well as for the

edges. Edge locks are used to cover phantom reads in an XML document in order to allow

desired level of concurrency. The lock modes together with their mutual relationships

(expressed as compatibility matrices) provide concurrency and also preserve the expected

ACID properties (especially the level of isolation).

input: CN - context node

LM - lock mode

t - transaction

lockRequest(CN, LM, t) { // request a lock mode

if(isCompatible(LM, CN.getLock()) { // if LM is compatible

lock(CN, LM); // assign it

} else {

suspend(t); // suspend transaction

exit(); // do not continue

}

}

getParents(CN, LM) {

parents:=new Stack();

while(CN.getParent()!=null){ // while exists parent

parents.add(<CN.getParent(), LM.getParentLockType()>);

CN = CN.getParent();

LM = LM.getParentLockType();

}

return parents;

}

parents:=getParents(CN, LM);

while(!parents.empty()) {

parent_lock:=parents.pop()

lockRequest(parent_lock.first(),

parent_lock.second()); // request lock modes

}

Figure 3.2: taDOM Locking Algorithm

24 SECTION 3. XML TRANSACTIONS

3.4.1.3 Locking Protocol Algorithm

The Locking Protocol Algorithm is described in figure 3.2. This algorithm is based on two

basic operations:

• boolean isCompatible(LockType l1, LockType l2) - this function checks compatibility

of lock modes l1 and l2

• void lock(Node n, LockType l) - assigns a lock l for a node n, if there is already

assigned a lock mode, then conversion of lock modes is applied using the operation

combineWith, which implements conversion matrix.

The following example 3.4.1 shows how the locking in taDOM protocol works. taDOM

locking protocol is inspired by granular locks that are used for hierarchical locking [23],

hence it is important to start locking from the root node to the context node to minimize

deadlock probability [23].

<Book>

<Library>

<Document>

<Book>

<Title> <Title> <Author>

<Name><Name>

Queue

X2

LR3 Ix1

Ix1

Ix1

X1

Cx1

NR3

NR3

NR3 NR3

NR3

NR3

Java XML DB

Peter John

Figure 3.3: Lock Protocol Application Example

Example 3.4.1 (taDOM locking.). Let us there exists three transactions T1, T2, and T3.

Transaction T1 is updating a text value ”John”. This text node has to be locked by an

exclusive lock. The lock manager assigns a lock mode CX to the node <Name>, and to all

his predecessors is a lock mode IX assigned. Simultaneously, the transaction T2 is going to

SECTION 3. XML TRANSACTIONS 25

delete a node <Author>, a lock X has to be assigned to a node ”Peter”, but this operation

is not allowed because there exists a lock mode IX on a node <Author>.

The request for this lock mode is suspended and is added to a queue. Then this request is

waiting for a release of a lock mode on a node <Author>. Simultaneously, the transaction

T3 is processing a query which is generating a listing of all books and autors. T3 has

to request a lock mode LR on a node <Library> to access all direct children of a node

<Library>. T3 has to also acquire a lock mode NR on all children.

The previous example was published in [27, 56].

3.4.2 XDM Locking Protocols

This section describes basic approaches of XDM locking. On the one hand we will present

this family of protocols on a representative protocol called XDGL [46, 45], which was

developed by Peter Pleshachkov and Sergei Kuznetcov for native XML database Sedna.

XDGL protocol uses DataGuide structure. On the other hand we present another approach

based on locking of nodes during XPath execution in Subsection 3.4.2.2.

3.4.2.1 XDGL Protocol

In this section we descibe basic mechanism of XDGL protocol. The most of this section

is adopted from the paper by Pleshachkov [46]. If transactions need to lock the same

objects, they have to check whether the locks are compatible or not. XDGL protocol

requires transaction to follow strict two-phase locking protocol (S2PL). It means according

to S2PL a transaction, acquired a lock, keeps it until the end. This protocol is based on

the locking of DataGuide indexing structure.

DataGuide was one of the first NXDBMS-specific indexing structures. It allows for indexing

structure of XML documents. More specifically, a DataGuide of an XML document is a

tree. Its each node represents a single root-to-leaf path of XML node names in the XML

document. Its each edge represents that XML nodes on the path represented by the parent

are parents of the XML nodes on the path represented by the child. A DataGuide for the

sample XML tree is shown in Figure 3.4.

For each of its nodes a DataGuide indexes a sequence of XML nodes on the path represented

by the node. For each indexed XML node, the DataGuide indexes the identification number

26 SECTION 3. XML TRANSACTIONS

U

U V U

V V V

W

V V

(1,10)

(2,2)

(3,1)

(4,6)

(5,4) (7,5)

(6,3)

(8,9)

(9,7) (10,8)

U

U V U

V V V

W

V V

1

1.1

2

2.1 2.2

2.1.1

3

3.1 3.2

(a) (b)

(a) XML tree with numbering

U

U V

V V

W

(1,10)

(2,2), (8,9)

(3,1), (9,7),

(10,8)

(4,6)

(5,4), (7,5)

(6,3)

(b) DataGuide

Figure 3.4: An example of XML tree and the corresponding DataGuide.

assigned to the XML node by the chosen numbering schema. It then allows for providing

structural join algorithms with required input streams of XML nodes. In the basic version,

XML nodes with a given name are put into a common stream. However, a DataGuide

allows for more advanced streaming schemas. For example, it may provide a separate

stream for each of its nodes. In other words, XML nodes targeted by the same root-to-leaf

path of names are put into a common stream. As shown in [14], this improves the time

complexity of structural join algorithms when evaluating twig pattern parent–child edges.

It is also possible to reduce the space complexity by stream compression as shown in [3].

Pleshachkov et al. introduced granular locking protocol on DataGuide. The protocol

defines intentional locks in addition to shared and exclusive locks. To set a shared lock on

an object a transaction T must firstly set an intention locks on its ancestors. But there

are a number of use cases when the locking of the entire subtree, as the common granular

locking protocol does, is not necessary.

Pleshachkov et al. gave this Use Case to explain it.

Example 3.4.2 (Use Case 1). Let us suppose that transaction T1 has issued the XPath

query /doc/person/name. It should be possible for transaction T2 to insert empty element

<person/> as a child of doc element. According to the granular locking protocol T1 must

lock name subtree while T2 must lock the entire person subtree including name element.

Thus, T1 and T2 cannot be executed concurrently.

In fact the previous Use Case shows that transactions T1 and T2 do not conflict. They

would conflict if T2 inserted <person><name>Tanya</name></person> element inside doc

SECTION 3. XML TRANSACTIONS 27

n1
doc

n2
person

n3 n4 n5 n6 n7

n8

n9 n10 n11

@age name addr child hobby

name addr hobby

Figure 3.5: DataGuide of the document D

element. To avoid locking of the entire subtree, XDGL use locks on the DataGuide’s nodes.

This way XDGL can provide [46] high degree of concurrency and, in particular solve the

above problem. Besides, XDGL introduce some special shared locks on DataGuides nodes,

utilized by insert operations.

To remedy the phantom problem the XDGL protocol introduces special logical locks like the

taDOM protocol. They allow to lock name under the DataGuide’s node. These locks are

useful for such queries as //addr. According to the DTD of document D, person element is

defined recursively. Therefore, D’s DataGuide in Figure 3.5 could contain random number

of the addr nodes. A logical lock on the addr name on the D’s DataGuide denies other

transactions to insert any element with the name addr.

Logical locks add a great deal of complexity to the XDGL protocol. Hence, at first we will

describe a simplified variant of XDGL without logical locks. However, we will note that

this variant does not ensure serializability [46].

Simplified XDGL Method. Concurrent operations may result in inconsistent data unless

controlled properly. To avoid this kind of problems we must serialize concurrent operations.

We employ locks as a mean of synchronization. Let us define the kinds of locks we need.

• SI, SA and SB locks. These special shared locks are used by insert operations. They

provide high degree of concurrency that could be achieved because of the insert

operator semantics. As we have already mentioned, there are three types of insert

28 SECTION 3. XML TRANSACTIONS

operators: insert-into, insert-after and insert-before. Insert-into operator adds a child

or an attribute to a node. Insert-after operator creates a sibling for a node. Thus, we

add a node to the parent next to our node in the document order [46]. Insert-before

operator is defined in a similar way. SI (shared insert), SA (shared after) and SB

(shared before) locks block concurrent insert operations of the same type. These

locks also protect the parent node. For instance, a transaction cannot delete this

node while such a lock is held.

• X lock. The lock sets exclusive mode on a DataGuide node. For instance, this lock

is obtained for a newly created node.

• ST lock. The lock sets shared mode on a DataGuides subtree. XPath queries require

this kind of locks. Due to the semantics of XPath the results of the location path

are the subtrees selected by the last location step. It implies the request of the ST

(shared tree) lock for subtrees retrieved by location path.

• XT lock. The lock sets exclusive mode on a DataGuide’s subtree. We use it for

delete operations. The delete operator drops the subtrees defined by location path.

It implies the request of the XT (exclusive tree) locks for these subtrees.

• IS lock. According to the granular locking protocol we have to obtain these locks on

each ancestor of the node which is to be locked in a shared mode.

• IX lock. According to the granular locking protocol we have to obtain these locks on

each ancestor of the node which is to be locked in an exclusive mode.

granted
requested SI SA SB X ST XT IS IX

SI - + + - + - + +
SA + - + - + - + +
SB + + - - + - + +
X - - - - - - + +
ST + + + - + - + -
XT - - - - - - - -
IS + + + + + - + +
IX + + + + - - + +

Table 3.3: XDGL Compatibility Matrix

SECTION 3. XML TRANSACTIONS 29

Table 3.3 shows compatibility matrix for the lock modes defined above. A compatibility

matrix indicates whether a lock of mode M1 may be granted to a transaction, while a lock

of mode M2 is presently held by another transaction.

Note, that IX and X locks are compatible since IX lock on a node only implies the intention

to lock the descendants of the node. But it does not imply the lock on the node itself.

SI (SA, SB) lock is not compatible with SI (SA, SB) lock, which prevents concurrent

insert-into (insert-after, insert-before) operations upon the same node.

Pleshackov et al. shows that both transactions in the Use Case 1 can proceed with proposed

locking method. According to XDGL mechanisms, transaction T1 must obtain IS lock on

nodes n1, n2 and ST lock on node n4. At the same time T2 must obtain IX lock on n1

and X lock on n2. As all locks are compatible transactions T1 and T2 could be executed

concurrently.

Logical Locks and XDGL In XPath language we can get nodes at any level of the

document using descendant axis. Thus, we should prevent phantom appearance in such

queries.

Inserts performed by concurrent transactions are the only source of phantoms. One way

to prevent phantoms is to request locks of the coarser granules. It is obvious that this

would lead to significant decrease in concurrency [46]. For this reason, the XDGL protocol

introduces logical locks. Logical lock (L, node-name) is requested for the name of the

DataGuide’s node.

For instance, the query /doc/person//addr requires logical lock (L, addr) on node n2,

as well as delete statement DELETE //hobby requires logical lock (L, hobby) on the

DataGuides root. In turn, a transaction, which wants to insert new node in the document

should obtain (IN, node-name) lock on the all ancestors of the node to be inserted. IN

is short for Insert New Node. (IN, node-name1) lock is compatible with (L, node-name2)

lock if and only if node-name1 differs from node-name2. Note, that L and IN locks do not

conflict with locks introduced in the previous section.

Example 3.4.3 (phantom prevention). Let us suppose that transaction T1 retrieves all

age attributes found at any level inside person elements which can be found themselves

inside doc. In XPath such query looks like this: /doc/person//@age. At the same time

transaction T2 inserts new age attribute into the person element by the following statement:

INSERT attribute{age}{54} INTO /doc/person/child/person. It is easy to see that the

30 SECTION 3. XML TRANSACTIONS

second transaction might add a phantom node for the first one. However, our locking rules

prevent this situation. (L, @age) lock is not compatible with (IN, @age) lock. Thus, the

insertion of the age attribute is denied.

3.4.2.2 XLP Protocol

In this section we introduce XPath locking protocol based on locking of accessed nodes.

This protocol was presented by Jea and Chen in [36]. The difference between XLP and

XDGL is in the type of locked nodes. XLP protocol locks nodes of the accessed XML

document during the evalution of XPath query. On the other hand, XDGL locks nodes of

the DataGuide index structure and is not directly accessing nodes of the XML document.

In XLP [36] there exists five different types of operations when evaluating a location path.

The Pass-by operation is used for the Node-Test and Predicate in each location step, while

the Read, Write, Insert, and Delete operations are used for processing the destination

nodes. According to these operations XLP defines five lock modes, denoted by P-, R-,

W-, I- and D-locks, which has to be acquired before the Pass-by, Read, Write, Insert, and

Delete operations, respectively.

Definitions

First we have to introduce definitions which were originally given by Jea and Chen in [36]

for the purpose of XLP. We need them to make the following text clearer.

The symbols Si,j, Lj and lj are used to model an XPath expression. Si,j denotes the ith

location step in location path Lj with length lj (i.e. number of location steps in Lj).

Hence, location path Lj with m location steps can be denoted by /S1,j/S2,j/S3,j/./Sm,j,

where m = lj.

We define the three sets C(Si,j), M(Si,j) and R(Si,j) to model nodes explicitly indicated

in an XPath expression. C(Si,j) denotes the set of context nodes of Si,j. With respect to

C(Si,j), M(Si,j) denotes the set of (mid-result) nodes that satisfy the structural constraint

Axis::Node-Test of Si,j. On the other hand, R(Si,j), the set of result nodes of Si,j, is the

set of nodes in M(Si,j) satisfying the Predicate of Si,j. In fact, the result nodes of Si,j

become the context nodes of Si+1,j. That is, R(Si,j) = C(Si+1,j).

Further, we use the symbols MI(Si,j) and RI(Si,j) to denote the sets of nodes not explicitly

indicated in location step Si,j but implicitly visited by the query evaluator when navigating

M(Si,j) and R(Si,j), respectively. The nodes in these sets are called the implicit pass-by

SECTION 3. XML TRANSACTIONS 31

Symbol Description
Lj Location path Lj

Si,j The ith location step in the location path Lj

lj Length of the location path Lj

C(Si,j) Context nodes in Si,j

M(Si,j) Mid-result nodes in Si,j

MI(Si,j) Implicit pass-by nodes of M(Si,j)
R(Si,j) = C(Si+1,j), the set of result nodes in Si,j, R(Si,j) ⊆M(Si,j)
RI(Si,j) Implicit pass-by nodes of R(Si,j), RI(Si,j) ⊆MI(Si,j)
Nd(Lj) = R(Slj,j), the set of destination nodes in Lj

Table 3.4: Symbols

nodes. The nodes included in MI(Si,j) depend on C(Si,j), M(Si,j) and the axis in Si,j. For

the preceding, preceding-sibling, following and following-sibling axes of XPath expression,

MI(Si,j) includes the nodes in paths starting from the root (/) to the nodes in M(Si,j)

but excluding the root and the nodes in M(Si,j), since nodes in C(Si,j) and M(Si,j) are

in different paths for these axes. For the descendant and descendant-or-self axes, MI(Si,j)

includes the nodes in paths starting from the nodes in C(Si,j) to the nodes in M(Si,j), but

excluding the nodes in C(Si,j) and M(Si,j). Moreover, MI(Si,j) is an empty set for the

self, parent, ancestor, child and ancestor-or-self axes. Note that we treat the attribute axis

in the same way as the child axes for their similar access behavior in the XPath model.

The set MI(Si,j) ∪M(Si,j) of Si,j, i.e. all the nodes visited in Si,j, is called the M − set
of Si,j for simplicity. Finally we define the set of destination nodes of location path Lj,

denoted by Nd(Lj), as the set of result nodes after evaluating path Lj. In fact, Nd(Lj) is

equal to R(Slj,j), where lj is the length of Lj.

The previous definitions are summarized in Table 3.4.

Lock Modes

We give semantics of lock modes according to [36]:

• P-lock mode. The P-lock is a shared lock designed for the Pass-by operation. In other

words it is intended for mid-results of XPath location path. At the final location step

of the path, P-locks on the destination nodes are eventually upgraded to R-, W-, I-

or D-locks, depending on the type of operation on the destination nodes. P-locks

(for the Pass-by operations) are compatible with R-locks (for the Read operations).

They are conditionally compatible with W-, I- and D-locks.

32 SECTION 3. XML TRANSACTIONS

• R-lock mode. The operation (R(x), Lj) in a transaction must acquire R-locks on

the destination nodes in the location path Lj. R-locks are upgraded from P-locks.

An R-lock (for the Read operations) is compatible with a P-lock (for the Pass-by

operations) and an I-lock (for the Insert operations).

• W-lock. The operation (W (x), Lj) in a transaction must acquire W-locks on the

destination nodes in the location path Lj. W-locks are upgraded from P-locks. The

W-lock (for the Write operations) is compatible with the I-lock (for the Insert opera-

tions), but conditionally compatible with the P-lock (for the Pass-by operations), it

is incompatible with the R-lock (for the Read operations) and D-lock (for the Delete

operations).

• I-lock. The operation (I(x), Lj) must acquire I-locks on the destination nodes in the

location path Lj. I-locks are upgraded from P-locks. They are compatible with R-

and W-locks (for the Read and Write operations), but incompatible with I-locks and

D-locks (for the Insert and Delete operations).

• D-lock. The operation (D(x), Lj) must acquire D-locks on the destination nodes in

the location path Lj. D-locks are upgraded from P-locks. When deleting a node, all

of its child nodes are also deleted. As a result, D-locks (for the Delete operations)

are incompatible with other types of locks except the P-locks.

The compatibility matrix is summarized in Table 3.5. The compatibility of various lock

modes in XLP, where an + or - in an entry indicates that the lock modes for the two corre-

sponding operations are compatible or incompatible respectively, and an x indicates that

the lock modes for the two corresponding operations are either compatible or incompatible

depending on whether the condition x /∈ R(S) and x /∈ RI(S) (i.e. the nodes x are sieved

out by the Predicate of S) holds for some location step S in location path Lj.

According to [36] the following six rules define XLP.

• Two-phase Locking Rule. All lock modes, except P-locks, that are acquired or

released must observe the two-phase locking protocol (2PL).

• P-lock Rule. Nodes in the M-set of Si,j are all locked by P-locks before performing

the Node-Test and Predicate of location step Si,j.

• Granularity Rules.

SECTION 3. XML TRANSACTIONS 33

granted
requested P R W I D

P + + x x x
R + + - + -
W x - - + -
I x + + - -
D x - - - -

Table 3.5: XLP Compatibility Matrix. + compatible. - incompatible. x conditionally
compatible

1. Lock granularity of P-, R-, I-, or W-locks on a node is only the node itself.

2. Lock granularity of D-locks on a node includes the whole subtree rooted at the

node.

• Upgrade Rules.

1. The P-locks on Nd(Lj) are upgraded to I-locks before inserting nodes into

Nd(Lj).

2. The P-locks on Nd(Lj) are upgraded to R- or W-locks before reading or writing.

3. The P-lock on a node in Nd(Lj) is upgraded to D-lock before deleting the node

only if P-locks on all the nodes in its subtree are acquired; that is, the Granu-

larity Rule (2) is satisfied.

• Compatibility Rule. A particular type of lock on location step Si can be granted

as long as the compatibility matrix is respected.

• Release Rules

1. R-, W-, I- or D-locks on Nd(Lj) (i.e. R(Slj,j)) can only be released in the

shrinking phase of a transaction; that is, releasing them must observe the two-

phase locking rule.

2. P-locks on nodes in the set {x|x ∈ RI(Si,j) ∪ R(Si,j) ∨ R(Slj,j), i ∈ [1, lj] for

location path Lj} are released only in the shrinking phase; that is, releasing

P-locks on these nodes must observe the Two-phase Locking Rule.

3. P-locks on (MI(Si,j)−RI(Si,j))∪ (M(Si,j)−R(Si,j)) are released after location

step Si,j finishes.

34 SECTION 3. XML TRANSACTIONS

XML-λ Operation DOM Operation

0− ary function / getDocumentElement()
application / getChildNodes()
projection getTagName(projection)

Table 3.6: XML-λ Operations to DOM Mapping

3.5 Locking Protocol for a Functional XML Update Language

In this section, we provide the technique for transaction isolation of a functional update

language, XML-λ [40], by utilizing taDOM locking protocol described in Section 3.4.1. We

published results of this section in [58]. The provided technique is based on a translation of

XML-λ statements into DOM API calls using a top-down parser directed by an attributed

LL(1) translation grammar. For easier specification of transformation between XML-λ

primitives and DOM operations we define new operation �:

f+(v) = {f 1(v), f 2(v), f 3(v), . . . }

f+(v) � g() =
∞⋃
u=1

{g(fu(v))}

This operation is defined on sets. We can say that the g() function is applied on each

element of a set. The XML-λ language has three main operations for accessing and querying

nodes in a document.

Mapping these operations to the taDOM3+ protocol is shown in Table 3.6.

3.5.1 A Pinch of Translation Theory

We solved the problem of mapping by translation from one language to another. The

straightforward approach is based on construction of an attributed translation grammar [2].

Then all queries written in XML-λ can be translated into a sequence of DOM operations.

Here we refer shortly to definition related to translation grammars – note that we use an at-

tributed translation grammar, i.e. a context-free grammar augmented with attributes, out-

put symbols and semantic rules. The attributed translation grammar is 4-tuple APG =<

SECTION 3. XML TRANSACTIONS 35

PG,A, V, F >, where PG is a basic translation grammar PG =< N,Σ, D,R, S >. N is a

finite set of non-terminal symbols, Σ is a set of terminals, D is a set of output symbols, R

is a set of grammar rules A => α, where A ∈ N , α ∈ (N ∪ Σ ∪ D)∗ and S is the start

symbol, S ∈ N .

Remaining symbols are related to APG and have the following meaning:

A is a finite set of attributes. It is divided into two disjoint sets for

synthetized (denoted Synth) and inherited (denoted I) attributes.

V is a mapping that assigns a set of attributes to each non-terminal symbol X ∈ N .

F is a finite set of semantic rules.

The example stated in the following section is based on this formalism.

3.5.2 XML-λ to DOM Translation Grammar

We use the standard formal translation directed by an LL(1) parser where the formal

translation is described by translation grammar as follows:

N = {S,R0, R1, T}
Σ = {/, sL, var}
D = { s○, t○, c○ }
R = { S → / R0|varR1,

R0 → sL s○ T R1,

R1 → / c○ sL T R1|ε,
T → t○ }

Note that terminal symbols are output tokens from a lexical analyzer.

We proposed necessary attributes for translation A = {name, string}, where I(T) =

{name}, I(t○) = {name}, Synth(sL) = {string}. Attributes are used for storing tag

names in the process of translation.

Syntax and semantics of the translation grammar is described in Table 3.7.

36 SECTION 3. XML TRANSACTIONS

After translation the output symbols are rewritten in the following way:

s○ → doc � getDocumentElement() � getChildNodes()+

t○ → � getTagName(t○.name)

c○ → � getChildNodes()
Following example shows how we can transform XML-λ queries to DOM operations. These

operations implicitly use taDOM3+ locking protocol synchronization primitives.

3.5.3 XML-λ Query Evaluation Example

Let us have a look at an example of a delete operation in the XML-λ language. Following

statement deletes all books specified by given title:

xmldata("bib.xml")

delete(lambda b (/book(b) and

b/title = "TCP/IP Unleashed"))

We translate the inner expression of the statement

(/book(b) and b/title = "TCP/IP Unleashed")

The translation is based on a top-down method using expansion operation ⇒. Expansion

rule depends on the top terminal of the processed input string. Then we can use a standard

LL(1) parser. Translation then starts as follows:

S ⇒ / R0
R0⇒ / sL s○ T R1

T⇒ / sL s○ t○ R1
R1⇒ / sL s○ t○

By this derivation we have translated the first part of the expression – /book(b).

Then, we continue with the second part:

Syntax Semantics

S → / R0|varR1

R0 → sL s○ T R1 T.name := sL.string
R1 → / c○ sL T R1|ε T.name := sL.string
T → t○ t○.name := T.name

Table 3.7: Syntax and Semantics Table

SECTION 3. XML TRANSACTIONS 37

Symbol Inherited attributes Synthesized attributes

T name
sL string

Table 3.8: Inherited and Synthesized Attributes of Symbols

S ⇒ var R1
R1⇒ var/ c○ sLTR1

T⇒ var/ c○ sL t○ R1
R1⇒ var/ c○ sL t○

We get the translated string by omitting input symbols. We suppose that the semantic

rules were applied during translation. In the input symbol var we saved the first part of

the translation. The second part is concatenated with the first part through the variable

b. The output of the translation is the following sequence of output symbols: s○ t○ c○
t○.

We can rewrite these output symbols to taDOM operations and then we get:

doc � getDocumentElement() � getChildNodes()+ � getTagName(t○.name)

� getChildNodes() � getTagName(t○.name)

The main part of the update statement is the path expression. Now we have to select

nodes which satisfy condition – title = ”TCP/IP Unleashed”. The string comparison

operation is not a DOM operation, so for purpose of this paper is omitted here.

The translation grammar described above can be directly used to ensure isolation of trans-

actions in the XML-λ language.

38 SECTION 3. XML TRANSACTIONS

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 39

4 XQuery and XQuery Update Facility

In this chapter, we describe the XQuery Update Facility [12] (XQUF) language which ex-

tends the XQuery language by updating constructs. We provide the syntax of the language

in Extended Backus-Naur Form (EBNF). The meaning of update constructs is described

using denotational semantics. As a formal tool which proves the correctness of the given

semantics we used The Maude System [15].

4.1 Concrete Syntax and Semantics

We focus on the concrete syntax of the XQUF language. This language is an extension

of the XQuery language. XQUF 1.0 extends the syntax of XQuery by adding five new

kinds of expressions, named insert, delete, replace, rename, and transform expressions.

The formal semantics of XQuery 1.0 [5] is defined for a minimal subset of the language

called XQuery Core [19]. The other language constructs can be normalized into XQuery

Core. We assume using XQuery Core semantics for simple expressions mentioned in XQUF.

First we introduce XQuery 1.0 and XPath 2.0 transaction semantics based on extension

of formal semantics specification given in XQuery 1.0 and XPath 2.0 Formal Semantics

(Second Edition) [18]. Second we introduce XQUF syntax for new language constructs

and in Section 4.6 we provide formal semantics of them. The full syntax of XQUF and

XQuery language is listed in Appendix A.

The W3C XQUF specification describes the language semantics using Update operations

that modifies the XDM instance. This specification does not consider concurrency issues

that arise in transaction processing. We figured out this by extending update operations

semantics by the transaction semantics.

4.2 Semantics Definitions

In this section we introduce a notation, sorts and function definitions used in other sections

for semantics definitions. First we describe symbols used along the text to allow reader

clear understanding of the specification. We use sort keyword to denote sorts, co keyword

denotes constructors of sorts and op keyword denotes operations with sorts. The meaning

of sort is to differ between sort of data and data type. Sort of data denotes a set of ”values”

40 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

of the same kind (for example natural numbers, or days of the week). On the other hand

data type is more complex, it contains a set of ”values” together with operations. The

following specification uses standard mathematical symbols as × for cartesian product,

−→ for function operator, {x : S} to denote a set which contains elements of type S and

(x : S) to denote a list which contains elements of type S. We use two kinds of semantics

rules in the text. The first kind is a conditional rule of the form:

B1...Bn

E0 = E1

This rule can be interpreted as equation E0 = E1 iff all conditions B1...Bn holds. The

second kind is an equation of the form:

E0 = E1

This equation can be applied iff an expression contains the pattern specified in E0.

We use four unnamed semantics functions [[]] which differ in the Syntax domain:

[[]]xque : Syntxque × Gcont × Lcont −→ Gcont × Lcont

[[]]xquf : Syntxquf × Gcont × Lcont −→ Gcont × Lcont

[[]]axis : Syntaxis × Gcont × Lcont −→ Gcont × Lcont

[[]]pred : Syntpred × Gcont × Lcont −→ (Bool ×Node −→ Node)

Constraints Checker Function

CC : Gcont × Lcont −→ Gcont × Lcont

Syntxque is a set of syntax expressions of XQuery, Syntxquf is a set of syntax expressions of

XQuery Update Facility, Syntaxis is a set of syntax expressions of XQuery axes, Syntpred

is a set of syntax expressions of XQuery predicates, Gcont and Lcont represents global and

local context respectively. Gcont and Lcont are data types with the following signature and

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 41

operations:

Global Context

sort Gcont
co gcont :Database× (x : PULItem)× {x : Transaction}×

× (x : CCLItem)× {x : Lock} ×WFG −→ Gcont
op getPUL : Gcont −→ (x : PULItem)

op setPUL : Gcont × (x : PULItem) −→ Gcont
op getCCL : Gcont −→ (x : CCLITEM)

op setCCL : Gcont × (x : CCLItem) −→ Gcont
op getTRANS : Gcont −→ {x : Transaction}

op setTRANS : Gcont × {x : Transaction} −→ Gcont
op getLOCKS : Gcont −→ {x : Lock}

op setLOCKS : Gcont × {x : Lock} −→ Gcont
op getWFG : Gcont −→ WFG

op setWFG : Gcont ×WFG −→ Gcont

42 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

var d : Database

var p, p2 : (x : PULItem)

var t, t2 : {x : Transaction}

var ccl, ccl2 : (x : CCLItem)

var l, l2 : {x : Lock}

var wfg : WFG

getPUL(gcont(d, p, t, ccl, l, wfg)) = p

setPUL(gcont(d, p, t, ccl, l, wfg), p2) = gcont(d, p2, t, ccl, l, wfg)

getCCL(gcont(d, p, t, ccl, l, wfg)) = ccl

setCCL(gcont(d, p, t, ccl, l, wfg), ccl2) = gcont(d, p, t, ccl2, l, wfg)

getTRANS(gcont(d, p, t, ccl, l, wfg)) = ccl

setTRANS(gcont(d, p, t, ccl, l, wfg), t2) = gcont(d, p, t2, ccl, l, wfg)

getLOCKS(gcont(d, p, t, ccl, l, wfg)) = l

setLOCKS(gcont(d, p, t, ccl, l, wfg), l2) = gcont(d, p, t2, ccl, l2, wfg)

getWFG(gcont(d, p, t, ccl, l, wfg)) = wfg

setWFG(gcont(d, p, t, ccl, l, wfg), wfg2) = gcont(d, p, t2, ccl, l2, wfg2)

sort Lock

co lock :Node× LockMode× Transaction −→ Lock

op addToLocks : Gcont × Lock −→ Gcont
op addToWFG : Gcont × Transaction× Transaction −→ Gcont

Constraint Check List

sort CCLItem

co cclitem : Const× [[Syntxque]](Gcont,Lcont)×

× [[Syntxque]](Gcont,Lcont) −→ PULItem

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 43

Pending Update List

sort PULItem

co pulitem : (Gcont × Lcont −→ Gcont × Lcont) −→ PULItem

Wait-For Graph

sort WFG

co emptyWFG : −→ WFG

op addEdge :WFG× Transaction× Transaction −→ WFG

op removeTransaction :WFG× Transaction −→ WFG

op deadlock :WFG −→ Bool

sort Transaction

co createTrans : N −→ Transaction

44 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

Local Context

sort Lcont

co lcont : Transaction× (x : PULItem)×

× {x : Error} × (x : Node)× (x : Lock) −→ Lcont

op getRES : Lcont −→ (x : Node)

op setRES : Lcont × (x : Node) −→ Lcont

op getERR : Lcont −→ {x : Error}

op setERR : Lcont × {x : Error} −→ Lcont

op getNTL : Lcont −→ (x : Lock)

op setNTL : Lcont × (x : Lock) −→ Lcont

op getTRANS : Lcont −→ Transaction

op setTRANS : Lcont × Transaction −→ Lcont

op beginTransaction : Gcont × Lcont × Transaction −→ Gcont × Lcont

op commitTransaction : Gcont × Lcont −→ Gcont × Lcont

op abortTransaction : Gcont × Lcont −→ Gcont × Lcont

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 45

var t, t2 : Transaction

var p : (x : PULItem)

var err, err2 : {x : Error}

var res, res2 : (x : Node)

var ntl, ntl2 : (x : Lock)

getRES(lcont(t, p, err, res, ntl)) = res

setRES(lcont(t, p, err, res, ntl), res2) = lcont(t, p, err, res2, ntl)

getERR(lcont(t, p, err, res, ntl)) = err

setERR(lcont(t, p, err, res, ntl), err2) = lcont(t, p, err2, res, ntl)

getNTL(lcont(t, p, err, res, ntl)) = ntl

setNTL(lcont(t, p, err, res, ntl), ntl2) = lcont(t, p, err, res, ntl2)

getTRANS(lcont(t, p, err, res, ntl)) = t

setTRANS(lcont(t, p, err, res, ntl), t2) = lcont(t2, p, err, res, ntl)

sort Error

co error : String −→ Error

op getErrorString : Error −→ String

46 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

Database and XDM

sort Item

subsort Node C Item

subsort Document C Node

subsort Element C Node

subsort Text C Node

subsort Attribute C Node

sort Database

co database : {x : Collection} −→ Database

sort Collection

co collection : {x : Document} −→ Collection

co document : String × Element

sort Element

co element : String × {x : Attribute} × {y : Node}

op children : Element −→ {x : Node}

op parent : Element −→ Node

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 47

XQuery Functions

op fs:item-at : Gcont × Lcont × N −→ Gcont × Lcont

op fs:last-item : Gcont × Lcont −→ Gcont × Lcont

op fn:root : Gcont × Lcont −→ Gcont × Lcont

op fs:plus : N× N −→ N

op fs:minus : N× N −→ N

op fs:length : Gcont × Lcont −→ N

Auxiliary Functions

op filter : Gcont × Lcont × (Bool × Sequence −→ Sequence) −→ Gcont × Lcont

4.3 Light-Weight XDM

The specification of XQuery and XQuery Update Facility 1.0 uses the XQuery 1.0 and

XPath 2.0 Data Model (XDM) [21] for XML data representation. For our semantics

definition we assume Light-Weight XDM that is a subset of XDM. Light-Weight XDM is

depicted in Figure 4.1. We also consider subset of XDM operations defined for the model.

The semantics of those operations remained unchanged. The full model’s specification is

listed in Appendix B.

document xs:string

item

node xs:anyAtomicType

element text attribute

Figure 4.1: Light-Weight XDM

48 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

4.4 XQuery and XPath Language Semantics

In this section we provide transaction semantics for XQuery 1.0 and XPath 2.0. This step

is needed for correct and complete specification of the semantics of XQUF expressions. The

presented transaction semantics of XQUF conforms to isolation level 3 which also needs

to lock nodes for reading. Obviously we do not need to specify transaction semantics for

XQuery language because all expressions that access data stored in the database must be

specified using XPath 2.0 navigational expressions.

XPath 2.0 [11] is an expression language that allows the processing of values conforming to

XDM data model defined in [21] . The data model provides a tree representation of XML

documents as well as atomic values such as integers, strings, and booleans, and sequences

that may contain both references to nodes in an XML document and atomic values. The

result of an XPath expression [11] may be a selection of nodes from the input documents, or

an atomic value, or more generally, any sequence allowed by the data model. The name of

the language derives from its most distinctive feature, the path expression, which provides

a mean of hierarchic addressing of the nodes in an XML tree.

The XPath EBNF grammar consists of the highest-level symbol XPath:

[1] XPath ::= Expr

[2] Expr ::= ExprSingle ("," ExprSingle)*

[3] ExprSingle ::= ForExpr

| QuantifiedExpr

| IfExpr

| OrExpr

The straightforward solution for correct evaluation of XPath expressions according to trans-

action processing is based on locking of nodes depending on used axes. We introduce

transaction semantics only for Core Grammar expressions.

4.4.1 Expression Semantics

The grammar contains four basic types of expressions - ForExpr, QuantifiedExpr, IfExpr

and OrExpr. Generally speaking these expressions can access data stored in the database

using Path Expressions.

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 49

4.4.1.1 Path Expressions

A set representing a syntax domain Syntxque is generated by Path Expressions’ EBNF

grammar:

[68 (XQuery)] PathExprXQ ::= ("/" RelPathExpr?)

| ("//" RelPathExpr)

| RelPathExpr

[69 (XQuery)] RelPathExprXQ ::= StepExpr (("/" | "//") StepExpr)*

The following semantics equations (semantics function definitions) are inspired by nor-

malization rules from W3C specification [18]. We focused only on a few important kernel

functions in our specification. In the W3C specification is the processing described in more

detail. We introduce LockRead function, which locks the resulted nodes of the query stored

in the local contex variable RES. LockRead function wraps the semantics function [[]]xque

by default. In other words we will write [[]]xque instead of LockRead([[]]xque). We use [] to

access properties of objects, e.g. l[RES] means that we access property RES ”stored” in

object l. The following rules uses pattern matching. It means that if the left-hand side is

satisfied (the expression contains the pattern) then it is rewritten to the expression on the

right-hand side. For more details see Section 1.3.

var g : Gcont

var l : Lcont

op LockRead : Gcont × Lcont −→ Gcont × Lcont

LockRead(g, l[RES == ()]) = (g, l)

LockRead(g, l[RES == (V alue1)]) = Lock(V alue1, SR, g, l)

LockRead(g,l[RES == (V alue1 : V alue2)]) =

= LockRead(Lock(V alue1, SR, g, l[RES := RES \ (V alue1)]))

50 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

The XQuery (XPath) semantics is following 1:

op fn:root : Node× Gcont × Lcont −→ Gcont × Lcont

[[fn:root(self::node)]]xque(g, l) = fn:root(self::node(), g, l)

[[/]]xque(g, l) = fn:root(self::node(), g, l)

[[/RelPathExpr]]xque(g, l) = [[fn:root(self::node())/RelPathExpr]](g, l)

[[//RelPathExpr]]xque(g, l) =

= [[fn:root(self::node())/descendant-or-self::node()/RelPathExpr]]xque(g, l)

[[RelPathExpr//StepExpr]]xque(g, l) =

= [[RelPathExpr/descendant-or-self::node()/StepExpr]]xque(g, l)

[[RelPathExpr/StepExpr]]xque(g, l) = [[StepExpr]]xque([[RelPathExpr]]xque(g, l))

Actually the semantics of [[StepExpr]]xque(g, l) is (g′, l′) and the result is stored inside the

local context in the variable RES.

We do not define semantics of functions like fn:root or fs:apply-ordering-mode here, because

it is defined in XQuery specification [18] and we do not redefine its meaning. The only

change is that the functions does not operate on immediate parameters but on the result

stored in the local context in the variable RES.

4.4.1.2 Steps

A set Syntxque is generated by the Core grammar productions for XPath steps:

[46 (Core)] StepExpr ::= PrimaryExpr | AxisStep

1Function fn:root modifies local state by l[RES ← root], where root is a root element of the context
node.

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 51

[47 (Core)] AxisStep ::= ReverseStep | ForwardStep

[48 (Core)] ForwardStep ::= ForwardAxis NodeTest

[50 (Core)] ReverseStep ::= ReverseAxis NodeTest

If the predicate expression is a numeric literal or the fn:last function then the following

semantics rules apply:

var g : Gcont

var l : Lcont

[[ForwardStep PredicateList[NumericLiteral]]]xque(g, l) =

= fs:item-at([[ForwardStep PredicateList]]xque(g, l), NumericLiteral)

[[ForwardStep PredicateList[fn : last()]]]xque(g, l) =

= fs:last-item([[ForwardStep PredicateList]]xque(g, l))

And the similar rules apply for the reverse step:

[[ReverseStep PredicateList[NumericLiteral]]]xque(g, l) =

= fs:item-at([[ReverseStep PredicateList]]xque(g, l),

fs:plus(1, fs:minus(fs:length([[ReverseStep PredicateList]]xque(g, l)))))

[[ReverseStep PredicateList[fn : last()]]]xque(g, l) =

= fs:item-at([[ReverseStepPredicateList]]xque(g, l), 1)

When predicates are applied on a forward step, the input sequence is first sorted in doc-

ument order and duplicates are removed [18]. We do not mention a set of predicates’

52 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

syntax Syntpred here. The syntax and semantics of predicates can be found in the specifi-

cation [18].

[[ForwardStep PredicateList[Expr]]]xque(g, l) =

= filter([[ForwardStep PredicateList]]xque(g, l), [[Expr]]pred(g, l))

And the similar rule for the reverse step:

[[ReverseStep PredicateList[Expr]]]xque(g, l) =

= filter([[ReverseStep PredicateList]]xque(g, l), [[Expr]]pred(g, l))

Finally, the alone reverse or forward step is processed according to used axis when predicate

list is empty:

[[ForwardStep]]xque(g, l) = [[ForwardStep]]axis(g, l)

[[ReverseStep]]xque(g, l) = [[ReverseStep]]axis(g, l)

4.4.1.3 Axes

The Core grammar rules for XPath axes are:

[49 (Core)] ForwardAxis ::= ("child" "::")

| ("descendant" "::")

| ("attribute" "::")

| ("self" "::")

| ("descendant-or-self" "::")

| ("namespace" "::") //not allowed in XQuery

[51 (Core)] ReverseAxis ::= ("parent" "::")

| ("ancestor" "::")

| ("ancestor-or-self" "::")

The previous grammar represents a set of syntax consructs Syntaxis. First we define

semantics of ForwardStep, which is composed of semantics of ForwardAxis, ReverseAxis

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 53

and NodeTest.

op node-test: (Item −→ Bool)× Sequence× Gcont × Lcont −→ Gcont × Lcont

var g : Gcont

var l : Lcont

[[ForwardAxis NodeTest]]axis(g, l) = node-test([[NodeTest]]ntest(g, l),

[[ForwardAxis]]axis(g, l))

[[ReverseAxis NodeTest]]axis(g, l) = node-test([[NodeTest]]ntest(g, l),

[[ReverseAxis]]axis(g, l))

In the following rules we define a function axis(axis-name, node-sequence, g, l). This

function returns a pair (g, l), where l[RES] contains output sequence of nodes conforming

the selected axis on the node-sequence. The first set of rules processes the axis judgement

on each individual node in the input node-sequence.

Axis = {self::, child::, attribute::, parent::, descendant::, descendant-or-self::,

ancestor::, ancestor-or-self}

op axis: Axis× Sequence× Gcont × Lcont −→ Gcont × Lcont

First, we define a rule which initializes the axis function for current node-sequence. That

node-sequence is stored in l[RES] and is the result of the previous Forward or Reverse

Step.

axis(a ∈ Axis, ε, g, l) = axis(a, l[RES], g, l[RES := ()])

axis(a ∈ Axis, (), g, l) = (g, l)

axis(a ∈ Axis, (V alue1, V alue2), g, l) = axis(a, V alue2, axis(a, V alue1, g, l))

54 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

The self axis applied to a NodeValue returns a NodeValue, where a NodeValue represents

the context node.

axis(self::, NodeV alue, g, l) = Lock(NodeV alue, P, g, l[RES ← (NodeV alue)])

The child, parent and attribute axis are specified as follows. The element function repre-

sents element node structure with attributes and an element value. The element value is

an element structure that can contain a single value item or multiple values ordered in a

sequence. We did a slight modification of the specification according to semantics needs.

For more details about original semantics see XQuery Formal Semantics [18].

axis(child::, element(ElName, {AttrV alue, ElV alue}), g, l) =

= Lock(ElV alue, P, g, l[RES ← (ElV alue)])

axis(attribute::, element(ElName, {AttrV alue, ElV alue}), g, l) =

= Lock(AttrV alue, P, g, l[RES ← (AttrV alue)])

axis(parent::, NodeV alue, g, l) = Lock(dm:parent(NodeV alue), P, g,

l[RES ← (dm:parent(NodeV alue))])

The descendant, descendant-or-self, ancestor, and ancestor-or-self axis are implemented

using recursive application of the children and parent axes.

axis(child::, NodeV alue, g, l) = Lock(V alue1, SR, g, l[RES ← (V alue1)]
axis(descendant::, V alue1, g, l) = Lock(V alue2, SR, g, l[RES ← (V alue2)]

axis(descendant::, NodeV alue, g, l) =
= Lock((V alue1, V alue2), P, g, l[RES ← (V alue1, V alue2)])

axis(self::, NodeV alue, g, l) = Lock(V alue1, P, g, l[RES ← (V alue1)])
axis(descendant::, V alue1, g, l) = Lock(V alue2, P, g, l[RES ← (V alue2)])

axis(descendant-or-self::, NodeV alue, g, l) =
= Lock((V alue1, V alue2), P, g, l[RES ← (V alue1, V alue2)])

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 55

axis(parent::, NodeV alue, g, l) = Lock(V alue1, P, g, l[RES ← (V alue1)])
axis(ancestor::, V alue1, g, l) = Lock(V alue2, P, g, l[RES ← (V alue2)])

axis(ancestor::, NodeV alue, g, l) =
= Lock((V alue1, V alue2), P, g, l[RES ← (V alue1, V alue2)])

axis(self::, NodeV alue, g, l) = Lock(V alue1, P, g, l[RES ← (V alue1)])
axis(ancestor::, V alue1, g, l) = Lock(V alue2, P, g, l[RES ← (V alue2)])

axis(ancestor-or-self::, NodeV alue, g, l) =
= Lock((V alue1, V alue2), P, g, l[RES ← (V alue1, V alue2)])

In all other cases the following rule holds.

Otherwise

axis(Axis,NodeV alue, g, l) = (g, l)

4.4.1.4 Conclusions

We introduced transaction semantics of XPath expressions in this section. Despite the

(relative) complexity of XPath grammar the mechanism of locking of axes is good enough

to ensure safe transaction processing of all XQuery and XPath expressions, because all

expressions finally uses axes to access underlying data. There is no other mechanism to

access data stored in a database. Thus, the axis function is the key point where to acquire

locks on accessed nodes.

4.5 XQuery Update Facility Language Syntax

XQUF 1.0 extends the XQuery’s syntax by adding five new kinds of expressions - Insert-

Expr, DeleteExpr, RenameExpr, ReplaceExpr and TransformExpr. Numbers mentioned in

[] refer to the original numbering used in W3C XQuery Update Facility Specification [12].

ExprSingle expression:

[32] ExprSingle ::= FLWORExpr

| QuantifiedExpr

| TypeswitchExpr

| IfExpr

| InsertExpr

| DeleteExpr

56 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

| RenameExpr

| ReplaceExpr

| TransformExpr

| OrExpr

Insert expression:

[143] InsertExpr ::= "insert" ("node" | "nodes") SourceExpr

InsertExprTargetChoice TargetExpr

[142] InsertExprTargetChoice ::= (("as" ("first" | "last"))? "into")

| "after"

| "before"

[147] SourceExpr ::= ExprSingle

[148] TargetExpr ::= ExprSingle

An insert expression is an updating expression 2 that inserts copies of zero or more nodes

into a designated position with respect to a target node [12]. The keywords node and nodes

may be used interchangeably, regardless of how many nodes are actually inserted [12].

Delete expression:

[144] DeleteExpr ::= "delete" ("node" | "nodes") TargetExpr

[148] TargetExpr ::= ExprSingle

A delete expression deletes zero or more nodes from an XDM instance [12]. XDM is XQuery

Data Model described in [21]. The keywords node and nodes may be used interchangeably,

regardless of how many nodes are actually deleted. A delete expression is an updating

expression [12].

Replace expression:

[145] ReplaceExpr ::= "replace" ("value" "of")? "node" TargetExpr

"with" ExprSingle

[148] TargetExpr ::= ExprSingle

2The W3C XQUF recommendation defines the term updating expression as the expression that ma-
nipulates XDM.

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 57

A replace expression is an updating expression [12]. A replace expression has two forms,

depending on whether value of is specified [12].

Rename expression:

[146] RenameExpr ::= "rename" "node" TargetExpr "as" NewNameExpr

[148] TargetExpr ::= ExprSingle

[149] NewNameExpr ::= ExprSingle

A rename expression replaces the name property of a data model node with a new QName.

A rename expression is an updating expression.

Transform expression:

[150] TransformExpr ::= "copy" VarName ":=" ExprSingle

("," " VarName ":=" ExprSingle)*

"modify" ExprSingle "return" ExprSingle

A transform expression can be used to create modified copies of existing nodes in an XDM

instance. Each node created by a transform expression has a new node identity. The result

of a transform expression is an XDM instance that may include both nodes that were

created by the transform expression and other, previously existing nodes. A transform

expression is a simple expression because it does not modify the value of any existing

nodes [12].

4.6 XQuery Update Facility Language’s Semantics

In this section we introduce formal semantics of XQUF. We use the symbol [[.]]xquf for the

semantics function of XQUF. First we give a formal semantics of XQUF syntax constructs

described in Section 4.5 according to transaction processing. Second we provide formal

semantics of update operations. We use the following notation which can be easily mapped

to formal definitions given in Section 4.2. The motivation for changing the notation was to

provide a better readability of definitions and equations. PUL stays for a Pending Update

List of update operations. In fact it is an ordered collection. TRANS is a set of running

transactions and XDM is the database instance representing data and the structure of

the underlying database. The complete execution flow is described in Section 4.6.2. We

58 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

abbreviate names of update operations in semantics expressions according to Table 4.2.

In XQUF semantics each state g implicitly contains an instance of a Light-Weight XDM

Model stored in variable named XDM representing underlying database. This variable is

omitted in the following rules if it is not needed for better readability.

The semantics evaluation starts with the global state g :

g = gcont(XDM, (), ∅, (), ∅, emptyWFG)

and the empty local state l. The local state l is created by the BEGIN expression in the

beginning of each transaction. The global state is shared among all transactions running

inside the system. On the other hand the local state is owned by the only one transaction

(owner) and obviously only the owner can access and change its variables. This behavior

is defined in semantics of BEGIN expression. To access and modify variables contained in

a state we use this notation:

g[PUL← u:iAttrs([[TEN]](g, l))]

In the previous expression the symbol ← is used as an infix operator to add an operation

(in that case u:iAttrs) into the set identified by the variable PUL.

Abbreviated Name Operation Name

u:del upd:delete
u:iAttrs upd:insertAttributes
u:iIAL upd:insertIntoAsLast
u:iIAF upd:insertIntoAsFirst
u:iI upd:insertInto
u:iB upd:insertBefore
u:iA upd:insertAfter
u:rN upd:replaceNode
u:ren upd:rename
u:rEC upd:replaceElementContent
u:rV upd:replaceValue

Figure 4.2: Update Operations Names

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 59

4.6.1 Expressions’ Semantics

In this section we define semantics of each individiual statement. The semantics definition

is composed of our semantics and the original semantics considering [12].

4.6.1.1 Insert Expression

[[insert node SEN as first into TEN]]xquf (g, l) =

= CC(g[PUL← {u:iAttrs([[TEN]]xque(g, l), AL([[SEN]]xque(g, l))),

u:iIAF([[TEN]]xque(g, l), CL([[SEN]]xque(g, l)))},

CCL← { < insertFI, [[TEN]]xque(g, l), [[SEN]]xque(g, l) >}], l)

[[insert node SEN as last into TEN]]xquf (g, l) =

= CC(g[PUL← {u:iAttrs([[TEN]]xque(g, l), AL([[SEN]]xque(g, l))),

u:iIAL([[TEN]]xque(g, l), CL([[SEN]]xque(g, l)))},

CCL← { < insertLI, [[TEN]]xque(g, l), [[SEN]]xque(g, l) >}], l)

[[insert node SEN into TEN]]xquf (g, l) =

= CC(g[PUL← {u:iAttrs([[TEN]]xque(g, l), AL([[SEN]]xque(g, l))),

u:iI([[TEN]]xque(g, l), CL([[SEN]]xque(g, l)))},

CCL← { < insertI, [[TEN]]xque(g, l), [[SEN]]xque(g, l) >}], l)

[[insert node SEN before TEN]]xquf (g, l) =

= CC(g[PUL← {u:iAttrs([[TEN]]xque(g, l), AL([[SEN]]xque(g, l))),

u:iB([[TEN]]xque(g, l), CL([[SEN]]xque(g, l)))},

CCL← { < insertB, [[TEN]]xque(g, l), [[SEN]]xque(g, l) >}], l)

[[insert node SEN after TEN]]xquf (g, l) =

= CC(g[PUL← {u:iAttrs([[TEN]]xque(g, l), AL([[SEN]]xque(g, l))),

u:iA([[TEN]]xque(g, l), CL([[SEN]]xque(g, l)))},

CCL← { < insertA, [[TEN]]xque(g, l), [[SEN]]xque(g, l) >}], l)

In previous expressions AL (or CL) stands for the function which returns the sequence of

attribute nodes (or the remainder of the insertion sequence), in its original order. PUL

60 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

represents a Pending Update List and CCL is a Constraint Check List. CCL has to be

evaluated before evaluating PUL. CC is a function that is implemented by Constraints

Checker Module in Section 4.3. The definition of CC function is denoted in Section 4.6.3.

The semantics of Insert Expression as stated in [12] is described below. The position of

the inserted nodes is determined as follows [12]:

• If before (or after) is specified:

The inserted nodes become the preceding (or following) siblings of the target node.

– If multiple nodes are inserted by a single insert expression, the nodes remain

adjacent and their order preserves the node ordering of the source expression.

– If multiple groups of nodes are inserted by multiple insert expressions in the

same snapshot, adjacency and ordering of nodes within each group is preserved

but ordering among the groups is implementation-dependent.

• If as first into (or as last into) is specified:

The inserted nodes become the first (or last) children of the target node.

– If multiple nodes are inserted by a single insert expression, the nodes remain

adjacent and their order preserves the node ordering of the source expression.

– If multiple groups of nodes are inserted by multiple insert expressions in the

same snapshot, adjacency and ordering of nodes within each group is preserved

but ordering among the groups is implementation-dependent.

• If into is specified without as first or as last:

The inserted nodes become children of the target node.

– If multiple nodes are inserted by a single insert expression, their order preserves

the node ordering of the source expression.

The positions of the inserted nodes are chosen so as not to interfere with the intended

position of nodes that are inserted with the specification before, after, as first into, or as

last into. For example, If node B is inserted ”after node A”, no other node will be inserted

between nodes A and B unless it is also inserted ”after node A”.

Subject to the above constraints, the positions of the inserted nodes among the children

of the target node are implementation-dependent.

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 61

Example 4.6.1. Insert Expression

Insert a year element after the publisher of the first book.

insert node <year>2005</year>

after fn:doc("bib.xml")/books/book[1]/publisher

Navigating by means of several bound variables, insert a new police report into the list of

police reports for a particular accident.

insert node $new-police-report

as last into fn:doc("insurance.xml")/policies

/policy[id = $pid]

/driver[license = $license]

/accident[date = $accdate]

/police-reports

The semantics of an insert expression are as follows:

SourceExpr (SEN) must be a simple expression; otherwise a static error is raised [err:XUST0001]

(for details see [12]). SEN is evaluated as though it were an enclosed expression in an el-

ement constructor. The result of this step is either an error or a sequence of nodes to be

inserted, called the insertion sequence. If the insertion sequence contains a document node,

the document node is replaced in the insertion sequence by its children. If the insertion

sequence contains an attribute node following a node that is not an attribute node, a type

error is raised [err:XUTY0004](for details see [12]). Let $alist be the sequence of attribute

nodes in the insertion sequence. Let $clist be the remainder of the insertion sequence, in

its original order.

Note 4.6.1. Either $alist or $clist or both may be empty.

The Target Expression (TEN) must be a simple expression; otherwise a static error is

raised [err:XUST0001]. The target expression is evaluated and checked as follows:

• If the result is an empty sequence, [err:XUDY0027] is raised.

• If any form of into is specified, the result must be a single element or document node;

any other non-empty result raises a type error [err:XUTY0005].

62 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

• If before or after is specified, the result must be a single element, text, comment,

or processing instruction node; any other non-empty result raises a type error

[err:XUTY0006].

• If before or after is specified, the node returned by the target expression must have

a non-empty parent property [err:XUDY0029].

Let $target be the node returned by the TEN.

If $alist is not empty and any form of into is specified, the following checks are performed:

• $target must be an element node [err:XUTY0022].

• No attribute node in $alist may have a QName whose implied namespace bind-

ing conflicts with a namespace binding in the ”namespaces” property of $target

[err:XUDY0023], unless the namespace prefix for the attribute is absent.

• Multiple attribute nodes in $alist must not have QNames whose implied namespace

bindings conflict with each other [err:XUDY0024].

If $alist is not empty and before or after is specified, the following checks are performed:

• parent($target) must be an element node [err:XUDY0030].

• No attribute node in $alist may have a QName whose implied namespace binding

conflicts with a namespace binding in the ”namespaces” property of parent($target)

[err:XUDY0023] unless the namespace prefix for the attribute is absent.

• Multiple attribute nodes in $alist must not have QNames whose implied namespace

bindings conflict with each other [err:XUDY0024].

The result of the insert expression is an empty XDM instance and a pending update list

constructed as follows3:

• If as first into is specified, the pending update list consists of the following update

primitives:

– If $alist is not empty, upd:insertAttributes($target, $alist)

3The construction is described formally in the beginning of this section

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 63

– If $clist is not empty, upd:insertIntoAsFirst($target, $clist)

• If as last into is specified, the pending update list consists of the following update

primitives:

– If $alist is not empty, upd:insertAttributes($target, $alist)

– If $clist is not empty, upd:insertIntoAsLast($target, $clist)

• If into is specified with neither as first nor as last, the pending update list consists

of the following update primitives:

– If $alist is not empty, upd:insertAttributes($target, $alist)

– If $clist is not empty, upd:insertInto($target, $clist)

• If before is specified, let $parent be the parent node of $target. The pending update

list consists of the following update primitives:

– If $alist is not empty, upd:insertAttributes($parent, $alist)

– If $clist is not empty, upd:insertBefore($target, $clist)

• If after is specified, let $parent be the parent node of $target. The pending update

list consists of the following update primitives:

– If $alist is not empty, upd:insertAttributes($parent, $alist)

– If $clist is not empty, upd:insertAfter($target, $clist)

4.6.1.2 Delete Expression

[[delete node TE]]xquf (g, l) = CC(g[PUL←
⋃

u∈[[TE]](g,l) ∧ hasParent(u)

{u:del(u)},

CCL← {< delete, [[TE]]xque(g, l) >}], l)

Example 4.6.2. Delete Expression

Delete the last author of the first book in a given bibliography.

delete node fn:doc("bib.xml")/books/book[1]/author[last()]

64 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

Delete all email messages that are more than 365 days old.

delete nodes /email/message

[fn:currentDate() - date > xs:dayTimeDuration("P365D")]

The semantics of a delete expression are as follows:

• The Target Expression (TE) must be a simple expression; otherwise a static error is

raised [err:XUST0001]. The TE is evaluated. The result must be a sequence of zero

or more nodes; otherwise a type error is raised [err:XUTY0007]. Let $tlist be the list

of nodes returned by the TE.

• If any node in $tlist has no parent, it is removed from $tlist (and is thus ignored in

the following step).

• A new pending update list is created. For each node $tnode in $tlist, the following

update primitive is appended to the pending update list: upd:delete($tnode). The

resulting pending update list (together with an empty XDM instance) is the result

of the delete expression.

Note 4.6.2. Since node deletions do not become effective until the end of a snapshot,

they have no effect on variable bindings or on the set of available documents or collections

within the current query.

The semantics of a delete expression are defined in terms of their effect on an XDM instance:

the deleted nodes are detached from their parents after completion of the current query.

4.6.1.3 Replace Expression

[[replace node TE with ES]]xquf (g, l) =

= CC(g[PUL← {u:rN([[TE]]xque(g, l), [[ES]]xque(g, l))},

CCL← {< replace, [[TE]]xque(g, l), [[ES]]xque(g, l) >}], l)

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 65

[[replace value of node TE with ES]]xquf (g, l) =

=
TypeOf([[TE]]xque(g, l)) = ElNode

CC
(g[PUL← {u:rEC([[TE]]xque(g, l), [[ES]]xque(g, l))},

CCL← {< replaceV, [[TE]]xque(g, l), [[ES]]xque(g, l) >}], l
)

[[replace value of node TE with ES]]xquf (g, l) =

=
TypeOf([[TE]]xque(g, l)) 6= ElNode

CC
(g[PUL← {u:rV([[TE]]xque(g, l), [[ES]]xque(g, l))},

CCL← {< replaceV, [[TE]]xque(g, l), [[ES]]xque(g, l) >}], l
)

The semantics of Replace Expressions are as follows:

A replace expression is an updating expression. A replace expression has two forms, de-

pending on whether value of clause is specified.

Replacing a Node

If value of is not specified, a replace expression replaces one node with a new sequence of

zero or more nodes. The replacement nodes occupy the position in the node hierarchy that

was formerly occupied by the node that was replaced. For this reason, an attribute node

can be replaced only by zero or more attribute nodes, and an element, text, comment, or

processing instruction node can be replaced only by zero or more element, text, comment,

or processing instruction nodes.

Example 4.6.3. Replacing a Node

Replace the publisher of the first book with the publisher of the second book.

replace node fn:doc("bib.xml")/books/book[1]/publisher

with fn:doc("bib.xml")/books/book[2]/publisher

The semantics of this form of replace expression are as follows:

The expression following the keyword with must be a simple expression; otherwise a static

error is raised [err:XUST0001]. This expression is evaluated as though it were an enclosed

expression in an element constructor. Let $rlist be the node sequence that results from

this evaluation. If $rlist contains a document node, the document node is replaced in $rlist

by its children.

66 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

The target expression must be a simple expression; otherwise a static error is raised

[err:XUST0001]. The target expression is evaluated and checked as follows:

• If the result is an empty sequence, [err:XUDY0027] is raised.

• If the result is non-empty and does not consist of a single element, attribute, text,

comment, or processing instruction node, [err:XUTY0008] is raised.

• If the result consists of a node whose parent property is empty, [err:XUDY0009] is

raised.

Let $target be the node returned by the target expression, and let $parent be its parent

node.

• If $target is an element, text, comment, or processing instruction node, then $rlist

must consist exclusively of zero or more element, text, comment, or processing in-

struction nodes [err:XUTY0010].

• If $target is an attribute node, then:

– $rlist must consist exclusively of zero or more attribute nodes [err:XUTY0011].

– No attribute node in $rlist may have a QName whose implied namespace binding

conflicts with a namespace binding in the ”namespaces” property of $parent

[err:XUDY0023] unless the namespace prefix for the attribute is absent.

– Multiple attribute nodes in $rlist must not have QNames whose implied names-

pace bindings conflict with each other [err:XUDY0024].

The result of the replace expression is an empty XDM instance and a pending update list

consisting of the following update primitive: upd:replaceNode($target, $rlist).

Replacing the Value of a Node

If value of is specified, a replace expression is used to modify the value of a node while

preserving its node identity.

Example 4.6.4. Replacing the Value of a Node

Increase the price of the first book by ten percent.

replace value of node fn:doc("bib.xml")/books/book[1]/price

with fn:doc("bib.xml")/books/book[1]/price * 1.1

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 67

The semantics of this form of replace expression are as follows:

The expression following the keyword with must be a simple expression; otherwise a static

error is raised [err:XUST0001]. This expression is evaluated as though it were the content

expression of a text node constructor. The result of this step, in the absence of errors, is

either a single text node or an empty sequence. Let $text be the result of this step.

The target expression must be a simple expression; otherwise a static error is raised

[err:XUST0001]. The target expression is evaluated and checked as follows:

• If the result is an empty sequence, [err:XUDY0027] is raised.

• If the result is non-empty and does not consist of a single element, attribute, text,

comment, or processing instruction node, [err:XUTY0008] is raised.

Let $target be the node returned by the target expression.

• If $target is an element node, the result of the replace expression is an empty XDM

instance and a pending update list consisting of the following update primitive:

upd:replaceElementContent($target, $text).

• If $target is an attribute, text, comment, or processing instruction node, let $string

be the string value of the text node constructed in Step 1. If Step 1 did not construct

a text node, let $string be a zero-length string. Then:

– If $target is a comment node, and $string contains two adjacent hyphens or ends

with a hyphen, a dynamic error is raised [err:XQDY0072].

– If $target is a processing instruction node, and $string contains the substring

”? >”, a dynamic error is raised [err:XQDY0026].

– In the absence of errors, the result of a replace expression is an empty XDM

instance and a pending update list containing the following update primitive:

upd:replaceValue($target, $string).

68 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

4.6.1.4 Rename Expression

[[rename node TE as NNE]]xquf (g, l) =

= CC(g[PUL← {u : ren([[TE]]xque(g, l), [[NNE]]xque(g, l))},

CCL← {< rename, [[TE]]xque(g, l), [[NNE]]xque(g, l) >}], l)

A rename expression replaces the name property of a data model node with a new QName.

A rename expression is an updating expression.

Example 4.6.5. Rename the first author element of the first book to principal-author.

rename node fn:doc("bib.xml")/books/book[1]/author[1]

as "principal-author"

Example 4.6.6. Rename the first author element of the first book to the QName that is

the value of the variable $newname.

rename node fn:doc("bib.xml")/books/book[1]/author[1]

as $newname

The target expression must be a simple expression; otherwise a static error is raised

[err:XUST0001]. The target expression is evaluated and checked as follows:

• If the result is an empty sequence, [err:XUDY0027] is raised.

• If the result is non-empty and does not consist of a single element, attribute, or

processing instruction node, [err:XUTY0012] is raised.

The semantics of rename expression is as follows:

Let $target be the node returned by the Target Expression (TE).

New Name Expression (NNE) must be a simple expression; otherwise a static error is

raised [err:XUST0001]. NNE is processed as follows:

• If $target is an element node, let $QName be the result of evaluating NNE as though

it were the name expression of a computed element constructor. If the namespace

binding of $QName conflicts with any namespace binding in the namespaces property

of $target, a dynamic error is raised [err:XUDY0023].

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 69

• If $target is an attribute node, let $QName be the result of evaluating NNE as though

it were the name expression of a computed attribute constructor. If $QName has a

non-absent namespace URI, and if the namespace binding of $QName conflicts with

any namespace binding in the namespaces property of the parent (if any) of $target,

a dynamic error is raised [err:XUDY0023].

• If $target is a processing instruction node, let $NCName be the result of evaluating

NNE as though it were the name expression of a computed processing instruction

constructor, and let $QName be defined as fn:QName((), $NCName).

The result of the rename expression is an empty XDM instance and a pending update list

containing the following update primitive: upd:rename($target, $QName).

4.6.2 Update Operations’ Semantics

In previous section we introduced a formal semantics of XQUF expressions. These expres-

sions are executed in three steps. During the first step XQUF expressions are transformed

to the list of update operations called Pending Update List (PUL) and the list of pairs of

input expressions and operations called Constraints Check List(CCL). In the second step

CCL is processed by Constraints Checker described in Section 4.6.3. If CCL evaluates

without errors PUL executor is executed 4(third step) and the XDM instance is modified,

otherwise error is thrown (throw function) and the execution is stopped. The Execution

Flow of XQuery Update Facility is shown in Figure 4.3.

Update operations are elementary for the correct processing of updating expressions. They

are used in the semantics definitions of XQUF expressions, but they are not directly avail-

able to users. XQuery Update Facility 1.0 specification provides semantics of these ope-

rations from the single user/transaction point of view. We extend their semantics by

transaction processing. We assume Light-Weight XDM model described in Section 4.3,

but its semantics specification can be easily extended for all objects of XDM. We also

provide the semantics of operations in original meaning of W3C specification [12]. The

semantics of the update operations are introduced. Transaction processing extensions are

marked explicitly. During the second phase all operations in PUL are evaluated and the

XDM instance is modified.

4PUL executor implements function upd:applyUpdates

70 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

Update operations consist of update primitives, which are the components of pending

update lists, and update routines, which are used in defining XQuery semantics but do not

appear on pending update lists [12].

XQUF Expression

(insert into ...)
Expression Parser

XQuery Expression Evaluator

(simple expressions)
Static Type Checking

XQUF Expression Evaluator

(updating expressions)

Pending Update List Executor

(upd:applyUpdates)

text expressions with types

simple expressions node sequenceexpressions with types OK

pending update list(PUL)

XDM Instanceuses

modifies

Constraints Checker

constraints check list(CCL)

pending update list(PUL)

uses

Figure 4.3: XQuery Update Facility Execution Flow, → data path, − → uses or modifies,
99K signal path

4.6.3 Constraints Checker

Constraints Checker is a module that implements CC function. This function checks

constraints given for XQUF expressions 5 in the W3C specification [12]. The state s in

semantics of CC is used to store internal state of Constraints Checker (e.g. constraints

violation).

The semantics of CC function is following6:

CC(g[CCL/l[TRANS] ==< op : REST >], l) =

= CC(OP (op, g[CCL/l[TRANS] := REST], l))

CC(g[CCL/l[TRANS] == ∅], l[ERR == ∅]) =

= upd:applyUpdates(g[PUL/l[TRANS]], ”strict”, false, g, l)

CC(g[CCL/l[TRANS] == ∅], l[ERR 6= ∅]) = throw(g, l)

throw(g, l) = printErr(g, l)

5By expressions we mean source and target expressions.
6CCL/l[TRANS] means that the operations not belonging to l[TRANS] are sieved out.

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 71

op ∈
⋃

∀Const

< Const, [[E1]](g, l), [[E2]](g, l) >

Const ={insertFI, insertLI, insertI, insertB, insertA, delete, replace,

replaceV, rename}

The printErr function prints the contents of the l[ERR] variable and terminates the eval-

uation of the expression.

4.6.3.1 Insert Expression Constraints Check

We use simple regular expressions [38] to identify constants in this section. For example,

the expression insert* covers all constants begining insert. So, all constants, such as

insertA, insertB, insertI, insertLI and insertFI are matched by this expression. In some

of the following expressions the conditional notation is not used according to readability

and the paper width. We use a natural language instead of the notation. The Constraints

Checker’s semantics is adopted from [12].

SourceExpression (SEN) constraint check:

TypeOf(SE) 6= SimpleExpr

OP (< insert∗, [[TE]]xque(g, l), [[SE]]xque(g, l) >, g, l) = (g, l[ERR← {XUST0001}])

• If the result of [[SE]]xque(g, l) contains an attribute node following a node that is not

an attribute node, an error is raised [12]:

OP (< insert∗, [[TE]]xque(g, l),[[SE]]xque(g, l) >, g, l) =

= (g, l[ERR← {XUTY 0004}])

TargetExpression (TEN) constraint check:

TypeOf(TE) 6= SimpleExpr

OP (< insert∗, [[TE]]xque(g, l), [[SE]]xque(g, l) >, g, l) = (g, l[ERR← {XUST0001}])

72 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

[[TE]]xque(g, l) == ()

OP (< insert∗, [[TE]]xque(g, l), [[SE]]xque(g, l) >, g, l) = (g, l[ERR← {XUDY 0027}])

[[TE]]xque(g, l) == (g, l[RES 6= (x : (Element|Document))])
OP (< insert∗I, [[TE]]xque(g, l), [[SE]]xque(g, l) >, g, l) = (g, l[ERR← {XUTY 0005}])

[[TE]]xque(g, l) == (g, l[RES 6= (x : (Element|Text|Comment|PI))])

OP (< insert(B|A), [[TE]]xque(g, l), [[SE]]xque(g, l) >, g, l) = (g, l[ERR← {XUTY 0006}])

([[TE]]xque(g, l) == (g, l[RES == (node)])) ∧ parent(node) == ε

OP (< insert(B|A), [[TE]]xque(g, l), [[SE]]xque(g, l) >, g, l) = (g, l[ERR← {XUDY 0029}])

If AL([[SE]]xque(g, l))
7 is not empty, the folowing checks are performed:

[[TE]]xque(g, l) == (g, l[RES 6= (x : Element)])

OP (< insert∗I, [[TE]]xque(g, l), [[SE]]xque(g, l) >, g, l) = (g, l[ERR← {XUTY 0022}])

• No attribute node in AL([[SE]]xque(g, l)) may have a QName whose implied names-

pace binding conflicts with a namespace binding in the ”namespaces” property of

[[TE]]xque(g, l), otherwise an error is raised, unless the namespace prefix for the at-

tribute is absent [12]:

OP (< insert∗I, [[TE]]xque(g, l),[[SE]]xque(g, l) >, g, l) =

= (g, l[ERR← {XUDY 0023}])

• Multiple attribute nodes in AL([[SE]]xque(g, l) must not have QNames whose implied

namespace bindings conflict with each other, otherwise an error is raised [12]:

OP (< insert∗, [[TE]]xque(g, l),[[SE]]xque(g, l) >, g, l) =

= (g, l[ERR← {XUDY 0024}])
7Function AL returns sequence of attributes.

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 73

([[TE]]xque(g, l) == (g, l[RES == (node)])) ∧ TypeOf(parent(node)) 6= Element

OP (< insert∗I, [[TE]]xque(g, l), [[SE]]xque(g, l) >, g, l) = (g, l[ERR← {XUDY 0030}])

• No attribute node in AL([[SE]]xque(g, l)) may have a QName whose implied names-

pace binding conflicts with a namespace binding in the ”namespaces” property of

parent([[TE]]xque(g, l)), otherwise an error is raised, unless the namespace prefix for

the attribute is absent [12]:

OP (< insert∗I, [[TE]]xque(g, l),[[SE]]xque(g, l) >, g, l) =

= (g, l[ERR← {XUDY 0023}])

4.6.3.2 Delete Expression Constraints Check

TypeOf(TE) 6= SimpleExpr

OP (< delete, [[TE]]xque(g, l) >, g, l) = (g, l[ERR← {XUST0001}])

• The result must be a sequence of zero or more nodes, otherwise an error is raised [12]:

[[TE]]xque(g, l) == (g, l[RES 6= (x∗)])
OP (< delete, [[TE]]xque(g, l) >, g, l) = (g, l[ERR← {XUTY 0007}])

4.6.3.3 Replace Expression Constraints Check

TypeOf(SE) 6= SimpleExpr

OP (< replace∗, [[TE]]xque(g, l), [[SE]]xque(g, l) >, g, l) = (g, l[ERR← {XUST0001}])

TypeOf(TE) 6= SimpleExpr

OP (< replace∗, [[TE]]xque(g, l), [[SE]]xque(g, l) >, g, l) = (g, l[ERR← {XUST0001}])

[[TE]]xque(g, l) == (g, l[RES == ()])

OP (< replace∗, [[TE]]xque(g, l), [[SE]]xque(g, l) >, g, l) = (g, l[ERR← {XUDY 0027}])

74 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

[[TE]]xque(g, l) == (g, l[RES == (node : (Element|Text|Comment|PI))])

OP (< replace∗, [[TE]]xque(g, l), [[SE]]xque(g, l) >, g, l) = (g, l[ERR← {XUTY 0008}])

([[TE]]xque(g, l) == (g, l[RES == (node)])) ∧ parent(node) == ε

OP (< replace∗, [[TE]]xque(g, l), [[SE]]xque(g, l) >, g, l) = (g, l[ERR← {XUDY 0009}])

• If the result of [[TE]]xque(g, l) is an element, text, comment, or processing instruc-

tion node, then the result of the [[SE]]xque(g, l) must consist exclusively of zero or

more element, text, comment, or processing instruction nodes, otherwise an error is

raised [12]:

OP (< replace∗, [[TE]]xque(g, l),[[SE]]xque(g, l) >, g, l) =

= (g, l[ERR← {XUTY 0010}])

• If the result of [[TE]]xque(g, l) is an attribute node, then the result of the [[SE]]xque(g, l)

must consist exclusively of zero or more attribute nodes, otherwise an error is

raised [12]:

OP (< replace∗, [[TE]]xque(g, l),[[SE]]xque(g, l) >, g, l) =

= (g, l[ERR← {XUTY 0011}])

• If the result of [[TE]]xque(g, l) is an attribute node, then no attribute node in the result

of the [[SE]]xque(g, l) may have a QName whose implied namespace binding conflicts

with a namespace binding in the ”namespaces” property of parent([[TE]]xque(g, l)) un-

less the namespace prefix for the attribute is absent, otherwise an error is raised [12]:

OP (< replace∗, [[TE]]xque(g, l),[[SE]]xque(g, l) >, g, l) =

= (g, l[ERR← {XUDY 0023}])

• If the result of [[TE]]xque is an attribute node, then multiple attribute nodes in

[[SE]]xque must not have QNames whose implied namespace bindings conflict with

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 75

each other, otherwise an error is raised [12]:

OP (< replace∗, [[TE]]xque(g, l),[[SE]]xque(g, l) >, g, l) =

= (g, l[ERR← {XUDY 0024}])

4.6.4 Update Primitives’ Semantics

The update primitives described in this section are held on pending update lists. When an

update primitive is held on a pending update list, its node operands are represented by their

node identities [12]. The semantics of an update primitive do not become effective until

their pending update list is processed by the upd:applyUpdates routine. We define transac-

tion semantics for each update primitive. We introduce a function Lock(node, lock mode)

which implements XQUF-LP locking protocol as specified in Section 4.7.3.

76 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

upd:insertBefore

upd:insertBefore($target as node(), $content as node()+)

Summary

Inserts $content immediately before $target.

Constraints

$target must be an element, text, processing instruction, or comment node with a non-

empty parent property. $content must be a sequence containing only element, text, pro-

cessing instruction, and comment nodes.

Semantics

Effects on nodes in $content:

• For each node in $content, the parent property is set to parent($target).

• If the type-name property of parent($target) is xs:untyped, then upd:setToUntyped()

is invoked on each element or attribute node in $content.

Effects on parent($target):

• The children property of parent($target) is modified to add the nodes in $content

just before $target, preserving their order.

• If at least one of the nodes in $content is an element or text node,

upd:removeType(parent($target)) is invoked.

• All the namespace bindings of parent($target) are marked for namespace propagation.

Transaction Semantics

u:iB($target, $content, g, l) = Lock($content,X, Lock($target, SB, g, l))

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 77

upd:insertAfter

upd:insertAfter($target as node(), $content as node()+)

Summary

Inserts $content immediately after $target.

Constraints

$target must be an element, text, processing instruction, or comment node with a non-

empty parent property. $content must be a sequence containing only element, text, pro-

cessing instruction, and comment nodes.

Semantics

The semantics of upd:insertAfter are identical to the semantics of upd:insertBefore, except

that Rule 2a (Effects on parent) is changed as follows:

The children property of parent($target) is modified to add the nodes in $content just after

$target, preserving their order.

Transaction Semantics

u:iA($target, $content, g, l) = Lock($content,X, Lock($target, SA, g, l))

78 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

upd:insertInto

upd:insertInto(

$target as node(),

$content as node()+)

Summary

Inserts $content as the children of $target, in an implementation-dependent position.

Constraints

$target must be an element or document node. $content must be a sequence containing

only element, text, processing instruction, and comment nodes.

Semantics

The semantics of upd:insertInto are identical to the semantics of upd:insertBefore, except

that $target is substituted everywhere for parent($target), and Rule 2a (Effects on parent)

is changed as follows:

The children property of $target is changed to add the nodes in $content in implementation-

dependent positions, preserving their relative order.

Transaction Semantics

u:iI($target, $content, g, l) = Lock($content,X, Lock($target, SI, g, l))

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 79

upd:insertIntoAsFirst

upd:insertIntoAsFirst(

$target as node(),

$content as node()+)

Summary

Inserts $content as the first children of $target.

Constraints

$target must be an element or document node. $content must be a sequence containing

only element, text, processing instruction, and comment nodes.

Semantics

The semantics of upd:insertIntoAsFirst are identical to the semantics of upd:insertBefore,

except that $target is substituted everywhere for parent($target), and Rule 2a (Effects on

parent) is changed as follows:

The children property of $target is changed to add the nodes in $content as the first

children, preserving their order.

Transaction Semantics

u:iIAF($target, $content, g, l) = Lock($content,X, Lock($target, SIF, g, l))

80 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

upd:insertIntoAsLast

upd:insertIntoAsLast(

$target as node(),

$content as node()+)

Summary

Inserts $content as the last children of $target.

Constraints

$target must be an element or document node. $content must be a sequence containing

only element, text, processing instruction, and comment nodes.

Semantics

The semantics of upd:insertIntoAsLast are identical to the semantics of upd:insertBefore,

except that $target is substituted everywhere for parent($target), and Rule 2a (Effects on

parent) is changed as follows:

The children property of $target is changed to add the nodes in $content as the last

children, preserving their order.

Transaction Semantics

u:iIAL($target, $content, g, l) = Lock($content,X, Lock($target, SIL, g, l))

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 81

upd:insertAttributes

upd:insertAttributes(

$target as element(),

$content as attribute()+)

Summary

Inserts $content as attributes of $target.

Constraints

None

Semantics

• For each node $A in $content:

The parent property of $A is set to $target.

If the type-name property of $target is xs:untyped, then upd:setToUntyped($A)

is invoked.

• The following properties of $target are changed:

attributes: Modified to add the nodes in $content.

namespaces: Modified to add namespace bindings for any attribute namespace

prefixes in $content that did not already have bindings. These bindings are marked

for namespace propagation.

upd:removeType($target) is invoked.

Transaction Semantics

u:iAttrs($target, $content, g, l) = Lock($content,X, Lock($target, SIT, g, l))

82 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

upd:delete

upd:delete(

$target as node())

Constraints

None

Semantics

• If $target has a parent node $P, then:

The parent property of $target is set to empty.

If $target is an attribute node, the attributes property of $P is modified to remove

$target.

If $target is a non-attribute node, the children property of $P is modified to

remove $target.

If $target is an element, attribute, or text node, and $P is an element node, then

upd:removeType($P) is invoked.

• If $target has no parent, the XDM instance is unchanged.

Note 4.6.3. Deleted nodes are detached from their parent nodes; however, a node deletion

has no effect on variable bindings or on the set of available documents or collections during

processing of the current query.

Note 4.6.4. Multiple upd:delete operations may be applied to the same node during

execution of a query; this is not an error.

Transaction Semantics

u:del($target, g, l) = Lock($target,XT, g, l)

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 83

upd:replaceNode

upd:replaceNode(

$target as node(),

$replacement as node()*)

Summary

Replaces $target with $replacement.

Constraints

$target must be a node that has a parent. If $target is an attribute node, $replacement

must consist of zero or more attribute nodes. If $target is an element, text, comment,

or processing instruction node, $replacement must consist of zero or more element, text,

comment, or processing instruction nodes.

Semantics

• Effects on nodes in $replacement:

For each node in $replacement, the parent property is set to parent($target).

If the type-name property of parent($target) is xs:untyped, then upd:setToUntyped()

is invoked on each node in $replacement.

• Effect on $target:

The parent property of $target is set to empty.

• Effects on parent($target):

If $target is an attribute node, the attributes property of parent($target) is mod-

ified by removing $target and adding the nodes in $replacement (if any).

If $target is an attribute node, the namespaces property of parent($target) is

modified to add namespace bindings for any attribute namespace prefixes in $replace-

ment that did not already have bindings. These bindings are marked for namespace

propagation.

If $target is an element, text, comment, or processing instruction node, the chil-

dren property of parent($target) is modified by removing $target and adding the

nodes in $replacement (if any) in the former position of $target, preserving their

order.

84 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

If $target or any node in $replacement is an element, attribute, or text node,

upd:removeType(parent($target)) is invoked.

Transaction Semantics

u:rN($target, $content, g, l) = Lock($target,XT, g, l)

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 85

upd:replaceValue

upd:replaceValue(

$target as node(),

$string-value as xs:string)

Summary

Replaces the string value of $target with $string-value.

Constraints

$target must be an attribute, text, comment, or processing instruction node.

Semantics

• If $target is an attribute node:

string-value of $target is set to $string-value.

upd:removeType($target) is invoked.

• If $target is a text, comment, or processing instruction node: content of $target is

set to $string-value.

• If $target is a text node that has a parent, upd:removeType(parent($target)) is in-

voked.

Transaction Semantics

u:rV($target, $content, g, l) = Lock($target,X, g, l)

86 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

upd:replaceElementContent

upd:replaceElementContent(

$target as element(),

$text as text()?)

Summary

Replaces the existing children of the element node $target by the optional text node $text.

The attributes of $target are not affected.

Constraints

None.

Semantics

• For each node $C that is a child of $target, the parent property of $C is set to empty.

• The parent property of $text is set to $target.

• Effects on $target:

children is set to consist exclusively of $text. If $text is an empty sequence, then

$target has no children.

typed-value and string-value are set to the content property of $text. If $text

is an empty sequence, then typed-value is an empty sequence and string-value is an

empty string.

upd:removeType($target) is invoked.

Transaction Semantics

u:rEC($target, $content, g, l) = Lock($target,X, g, l)

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 87

upd:rename

upd:rename(

$target as node(),

$newName as xs:QName)

Summary

Changes the node-name of $target to $newName.

Constraints

$target must be an element, attribute, or processing instruction node.

Semantics

• If $target is an element node:

node-name of $target is set to $newName.

upd:removeType($target) is invoked.

If $newname has no prefix and no namespace URI, the namespaces property of

$target is modified by removing the binding (if any) for the empty prefix.

The namespaces property of $target is modified to add a namespace binding

derived from $newName, if this binding did not already exist. This binding is marked

for namespace propagation.

• If $target is an attribute node:

node-name of $target is set to $newName.

upd:removeType($target) is invoked.

If $newName is xml:id, the is-id property of $target is set to true.

If $target has a parent, the namespaces property of parent($target) is modified

to add a namespace binding derived from $newName, if this binding did not already

exist. This binding is marked for namespace propagation.

• If $target is a processing instruction node, its target property is set to the local part

of $newName.

Note 4.6.5. At the end of a snapshot, if multiple attribute nodes with the same parent

have the same qualified name, an error will be raised by upd:applyUpdates.

88 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

Transaction Semantics

u:ren($target, $content, g, l) = Lock($target,X, g, l)

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 89

upd:put

upd:put(

$node as node(),

$uri as xs:string)

Summary

The XDM node tree rooted at $node is stored to the location specified by $uri.

Constraints

$uri must be a valid absolute URI.

Semantics

The external effects of upd:put are implementation-defined, since they occur outside the

domain of XQuery. The intent is that, if upd:put is invoked on a document node and no

error is raised, a subsequent query can access the stored document by invoking fn:doc with

the same URI.

Transaction Semantics

Transaction semantics is not defined for this operation, because the effects occur outside

the domain of the database and XQuery. The correct transaction processing has to be

provided by the server where $uri targets.

90 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

4.6.5 Update Routines Semantics

The update routines are helper functions used for processing of pending update list(s).

They cannot appear in pending update list. Their importance lies in processing XDM

manipulation operations described by update primitives in previous section.

upd:mergeUpdates

upd:mergeUpdates(

$pul1 as pending-update-list,

$pul2 as pending-update-list)

Summary

Merges two pending update lists. The routine is invocated to merge all pending update

lists generated by successive calls of a return expression in a FLWOR expression.

Constraints

None.

Semantics

• The two pending update lists are merged and a single pending update list containing

all the update primitives from both lists is returned.

• Optionally, upd:mergeUpdates may raise a dynamic error if any of the following con-

ditions are detected:

Two or more upd:rename primitives on the merged list have the same target node

[err:XUDY0015].

Two or more upd:replaceNode primitives on the merged list have the same target

node [err:XUDY0016].

Two or more upd:replaceValue primitives on the merged list have the same target

node [err:XUDY0017].

Two or more upd:replaceElementContent primitives on the merged list have the

same target node [err:XUDY0017].

Two or more upd:put primitives on the merged list have the same $uri operand

[err:XUDY0031].

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 91

Two or more primitives on the merged list create conflicting namespace bindings

for the same element node [err:XUDY0024]. The following kinds of primitives create

namespace bindings:

upd:insertAttributes creates one namespace binding on the $target element cor-

responding to the implied namespace binding of the name of each attribute node in

$content if the name has a non-empty prefix.

upd:replaceNode creates one namespace binding on the parent($target) element

corresponding to the implied namespace binding of the name of each attribute node

in $replacement if the name has a non-empty prefix.

upd:rename creates a namespace binding on $target, or on the parent (if any)

of $target if $target is an attribute node, corresponding to the implied namespace

binding of $newName. However, if $target is an attribute and its name has an empty

prefix, the namespace binding is not created.

Transaction Semantics

This update routine does not have a transaction semantics because it does not cause any

update effects to the XDM instance. It only merges unprocessed pending update lists

following the rules specified above.

92 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

upd:applyUpdates

upd:applyUpdates(

$pul as pending-update-list,

$revalidation-mode as xs:string,

$inherit-namespaces as xs:boolean)

Summary

This routine ends a snapshot by making effective the semantics of all the update primitives

on a pending update list and by revalidating the resulting XDM instance.

Constraints

$revalidation-mode must be ”strict”, ”lax”, or ”skip”

Semantics

• Checks the update primitives on $pul for compatibility. Raises a dynamic error if

any of the following conditions are detected:

Two or more upd:rename primitives on $pul have the same

target node [err:XUDY0015].

Two or more upd:replaceNode primitives on $pul have the same target node

[err:XUDY0016].

Two or more upd:replaceValue primitives on $pul have the same target node

[err:XUDY0017].

Two or more upd:replaceElementContent primitives on $pul have the same target

node [err:XUDY0017].

Two or more upd:put primitives on the merged list have the same $uri operand

[err:XUDY0031].

Two or more primitives on $pul create conflicting namespace bindings for the

same element node [err:XUDY0024]. The following kinds of primitives create names-

pace bindings:

upd:insertAttributes creates one namespace binding on the parent($target) ele-

ment corresponding to the implied namespace binding of the name of each attribute

node in $content if the name has a non-empty prefix.

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 93

upd:replaceNode creates one namespace binding on the $target element corre-

sponding to the implied namespace binding of the name of each attribute node in

$replacement if the name has a non-empty prefix.

upd:rename creates a namespace binding on $target, or on the parent (if any)

of $target if $target is an attribute node, corresponding to the implied namespace

binding of $newName. However, if $target is an attribute and its name has an empty

prefix, the namespace binding is not created.

• The semantics of all update primitives on $pul, other than upd:put primitives, are

made effective in the following order:

First, all upd:insertInto, upd:insertAttributes, upd:replaceValue, and upd:rename

primitives are applied.

Next, all upd:insertBefore, upd:insertAfter, upd:insertIntoAsFirst,

and upd:insertIntoAsLast primitives are applied.

Next, all upd:replaceNode primitives are applied.

Next, all upd:replaceElementContent primitives are applied.

Next, all upd:delete primitives are applied.

• If, as a net result of the above steps, the children property of some node contains

adjacent text nodes, these adjacent text nodes are merged into a single text node.

The string-value of the resulting text node is the concatenated string-values of the

adjacent text nodes, with no intervening space added. The node identity of the

resulting text node is implementation-dependent.

• If, as a net result of the above steps, the children property of some node contains an

empty text node, that empty text node is deleted from the children property.

• If, after applying the updates, any XDM instance (including a node that has been

deleted or detached from its parent, or that is a descendant of such a node) violates

any constraint specified in [21] , a dynamic error is raised [err:XUDY0021].

Note 4.6.6. For example, a data model constraint violation might occur if multiple

attributes with the same parent have the same qualified name.

Note 4.6.7. During processing of a pending update list, an XDM instance may

temporarily violate a data model constraint. An error is raised only if a constraint

remains unsatisfied after all update primitives other than upd:put have been applied.

94 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

• If $inherit-namespaces is true, then upd:propagateNamespace($element, $prefix, $uri)

is invoked for each namespace binding that was marked for namespace propagation,

except for namespace bindings associated with the empty prefix, where $element is

the element node on which the namespace binding appears, $prefix is the namespace

prefix, and $uri is the namespace URI. Each of these nodes is then unmarked.

• For each document or element node $top that was marked for revalidation by one of

the earlier steps, upd:revalidate($top, $revalidation-mode) is invoked. Each of these

nodes is then unmarked.

• As the final step, all upd:put primitives on $pul are applied.

• The upd:applyUpdates operation is atomic with respect to the data model. In other

words, if upd:applyUpdates terminates normally, the resulting XDM instance reflects

the result of all update primitives; but if upd:applyUpdates raises an error, the re-

sulting XDM instance reflects no changes. Atomicity is guaranteed only with respect

to operations on XDM instances, and only with respect to error conditions specified

in this document.

Note 4.6.8. The results of implementation-dependent error conditions such as ex-

ceeding resource limits are beyond the scope of this specification.

• Propagation of XDM changes to an underlying persistent store is beyond the scope

of this specification. For example, the effect on persistent storage of deleting a node

that has no parent is beyond the scope of this specification.

Transaction semantics

Transaction semantics for upd:applyUpdates routine is divided into two parts. First,

CheckPUL function is evaluated. This function implements standard upd:applyUpdates

semantics as described in the previous paragraph. If CheckPUL function detects errors in

Pending Update List, then they are propagated in context variable ERR and processing is

interrupted. If no errors are detected then modified Pending Update List is returned and

upd:appUpT function simply iterates through modified Pending Update List and evaluates

atomic update operations.

OP : Gcont × Lcont −→ Gcont × Lcont

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 95

upd:applyUpdates(PUL,RM, IN, g, l) =

= upd:appUpT(CheckPUL(PUL,RM, IN, g, l))

upd:appUpT(g[PUL ==< OP : REST >], l) =

= upd:appUpT(OP (g[PUL := REST], l))

upd:appUpT(g[PUL == ∅], l) = (g, l)

96 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

4.7 XQuery Update Facility Transaction Extension

In this section we provide a draft of XQuery Transaction Control Language (XTCL) which

could be a part of XQUF in the future.

Motivation XQuery Update Facility (XQUF) is defined as a language extension of

XQuery for updates. In XQUF is a lack of language constructions for the transaction

processing. We think that for better usability and implementability of XQUF across plat-

forms these transaction statements have to be defined in the language specification. In

current XQUF 1.0 [12] is said that the transaction processing is out of scope the language

specification and is up to the implementor. We assume that the basic transaction lan-

guage specification should be provided by the language itself or as an optional extension.

Our assumption is based on a good practice from relational databases where SQL-TCL

(Transaction Control Language) is a part of SQL language specification [52].

Implementation To implement XTCL, EBNF grammar of XQUF has to be extended

by appropriate grammar rules. XTCL supports basic transaction commands BEGIN,

COMMIT and ROLLBACK and prologue command SET TRANSACTION ISOLATION

LEVEL. In the next step we define appropriate semantics for these commands in the con-

text of XQUF semantics as introduced in the previous section.

4.7.1 XQuery Transaction Control Language - Grammar

BEGIN Starts a new transaction. Transactions cannot be nested. If omitted a new

transaction is started.

COMMIT Commit ends a current transaction and makes all changes visible to other

users. It can be omitted.

ROLLBACK Rollback ends a current transaction and undoes all changes made by this

transaction.

XQUF grammar is modified the following way:

[31] Expr ::= ExprSingle ("," ExprSingle)*

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 97

[32] ExprSingle ::= FLWORExpr

| QuantifiedExpr

| TypeswitchExpr

| IfExpr

| InsertExpr

| DeleteExpr

| RenameExpr

| ReplaceExpr

| TransformExpr

| OrExpr

| BeginExpr

| CommitExpr

| RollbackExpr

[200] BeginExpr ::= "BEGIN"

[201] CommitExpr ::= "COMMIT"

[202] RollbackExpr ::= "ROLLBACK"

Three new expressions were added to the grammar: BeginExpr, CommitExpr and Roll-

backExpr. Its grammar is simple, they contain only a terminal keyword.

Expression SET TRANSACTION ISOLATION LEVEL is a prolog-related ex-

pression which can be evaluated only once in the beginning of a transaction.

Corresponding XQUF grammar is modified as:

[6] Prolog ::= ((DefaultNamespaceDecl

| Setter

| NamespaceDecl

| Import) Separator)*

((VarDecl | FunctionDecl | OptionDecl) Separator)*

[7] Setter ::= BoundarySpaceDecl

| DefaultCollationDecl

| BaseURIDecl

| ConstructionDecl

| OrderingModeDecl

| EmptyOrderDecl

98 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

| RevalidationDecl

| CopyNamespacesDecl

| TransactionDecl

[203] TransactionDecl ::= "declare" "transaction" "isolation" "level"

(("read" ("uncommitted" | "committed"))

|("repeatable" "read")

|("serializable")

A new setter expression was added into the grammar called TransactionDecl. It is part of

Prolog rule. We define four standard isolation levels - read committed, read uncommitted,

repeatable read and serializable.

4.7.2 XQuery Transaction Control Language - Semantics

Semantics of transaction control language expressions can be defined as follows:

beginTransaction : Gcont × Lcont × Transaction −→ Gcont × Lcont

beginTransaction(g, l, t) = (g[TRANS ← t], l[TRANS := t])

commitTransaction : Gcont × Lcont × Transaction −→ Gcont × Lcont

commitTransaction(g, l[TRANS == t]) =

(g[WFG := removeTransaction(WFG, t),

TRANS := TRANS \ {t},

LOCKS := LOCKS \ {< el, lock, t >}], l[TRANS := ε, ERR := ∅])

abortTransaction : Gcont × Lcont × Transaction −→ Gcont × Lcont

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 99

abortTransaction(g, l[TRANS == t]) =

(g[WFG := removeTransaction(WFG, t),

TRANS := TRANS \ {t},

LOCKS := LOCKS \ {< el, lock, t >},

PUL := PUL \ view(PUL, t)], l[TRANS := ε, ERR := ∅])

[[BEGIN]](g, l == ε) = beginTransaction(g, l, createTrans(beginTrans()))

[[COMMIT]](g, l) = commitTransaction(upd:applyUpdates(g, l))

[[ROLLBACK]](g, l) = abortTransaction(g, l)

The helper function beginTrans() generates a new transaction id. This unique transaction

identifier is stored in the state variable TRANS. The symbole ε is used as undefined value

for a variable. The function view(PUL, TRANS) returns an ordered set of operations from

PUL which were created by a transaction TRANS. ROLLBACK expression removes the

transaction’s operations from Pending Update List.

Example 4.7.1. Query with XTCL expression.

We suppose the following query:

let $q := /inventory/item[serialno = "123456"]/quantity

return

(replace value of node $q with (),

insert node attribute xsi:nil {"true"} into $q)

by the semantics it is equivalent to:

BEGIN, let $q := /inventory/item[serialno = "123456"]/quantity

return

(replace value of node $q with (),

insert node attribute xsi:nil {"true"} into $q),

COMMIT

100 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

ROLLBACK expression can be used to prevent update if something goes wrong:

let $e:=/inventory/item[serialno = "123456"]

return(

if ($e/@last-updated < ’2012-03-03’)

then replace value of node

\$e/last-updated with fn:currentDate()

else ROLLBACK)

4.7.3 Lock Function Semantics

Previous sections introduced usage of the Lock function. This function is the key to

transaction processing in our specification. In real-world transactional system it should

be implemented by the Lock Manager module. Its specification is given by three basic

elements - Compatibility Matrix, Conversion Matrix and Locking Semantics. We adopted

a granular lock protocol presented by Gray and Reuter in [23], taDOM Lock Protocol

Protocol published by Haustein and Härder in [26], XLP protocol from Jea and Chen

published in [36] and Sedna Lock Protocol introduced by Pleshachkov and Novak in [48].

The compatibility matrix of this new lock protocol is shown in Figure 4.1. The symbols +

and - in the matrix cells means that granted and requested lock modes are compatible or

incompatible respectively. The symbol x mean the conditional compatibility specified in

Section 3.4.2.2 as: An x indicates that the lock modes for the two corresponding operations

are either compatible or incompatible depending on whether the condition x /∈ R(S) and

x /∈ RI(S) (i.e. the nodes x are sieved out by the Predicate of S) holds for the location

step.

The presented protocol XQUF-LP is a granular lock protocol. This protocol intoduces new

lock modes SIL, SIF, SIT, SI, SA and SB. These modes are used to lock parent nodes of

nodes inserted into the database. The inserted nodes themselves are locked in exclusive (X)

lock mode. The X-lock mode is intended to distinguish between insert and delete operation.

To prevent phantom problem the logical locks have to be introduced. XQUF-LP uses the

same logical locks mechanism as Sedna Lock Protocol [48].

We employ the following lock modes in XQUF-LP:

• P lock mode (Pass-by mode). The P-lock is a shared lock designed for the Pass-by

operation. In other words it is intended for mid-results of XPath location path. At

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 101

the final location step of the path, P-locks on the destination nodes are eventually

upgraded to S*, X or SR lock mode. P-locks are conditionally compatible with S*,

X and XT lock modes.

• SI, SIL, SIF, SIT, SA and SB lock modes (Shared modes). These special shared locks

are used by insert operations. These locks cover five insert functions: udp:insertInto

(SI), upd:insertIntoAsLast (SIL), upd:insertIntoAsFirst (SIF), upd:insertAfter (SA),

upd:insertAttributes (SIT) and upd:insertBefore (SB). For formal semantics of the

functions see Subsection 4.6.4.

• X lock mode (Exclusive mode). The lock sets exclusive mode on a modified node.

For instance, this lock is obtained for a newly created node.

• SR lock mode (Shared mode). The lock sets shared mode on a node’s subtree. XPath

queries require this kind of locks. Due to the semantics of XPath the results of the

location path are the subtrees selected by the last location step. It implies the request

of the SR (subtree read) lock for subtrees retrieved by location path.

• XT lock mode (Exclusive mode). The lock sets exclusive mode on a subtree. We use

it for delete operations. The delete operation drops the subtree defined by location

path.

• IS lock mode (Intention Shared mode). According to the granular locking protocol

we have to obtain these locks on each ancestor of the node which is to be locked in

a shared mode.

• IX lock mode (Intention Exclusive mode). According to the granular locking protocol

we have to obtain these locks on each ancestor of the node which is to be locked in

an exclusive mode.

Compatibility Matrix

The compatibility matrix is shown in Table 4.1. It contains twelve lock modes. The symbol

+ or - means that corresponding lock modes are compatible or incompatible. The symbol

x means conditional compatibility of lock modes as described in previous paragraph.

Conversion Matrix

The conversion matrix of XQUF-LP is shown in Table 4.2. The rules contained in the

matrix are applied if the same transactions holds a lock mode (granted) on the context

102 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

granted
requested P SI SIL SIF SIT SA SB X SR XT IS IX

P + + + + + + + x + x + +
SI + - - - + + + - + - + +

SIL + - - + + + + - + - + +
SIF + - + - + + + - + - + +
SIT + + + - - + + - + - + +
SA + + + + + - + - + - + +
SB + + + + + + - - + - + +
X x - - - - - - - - - + +
SR + + + + + + + - + - + -
XT x - - - - - - - - - - -
IS + + + + + + + + + - + +
IX + + + + + + + + - - + +

Table 4.1: XQUF-LP Compatibility Matrix

node and requests to lock this node by a new lock mode (requested). The resulting lock

mode is the value of the corresponding cell. The special case are cells with a value
⋃

,

which means that the both lock modes are acquired on the node.

granted
requested P SI SIL SIF SIT SA SB X SR XT IS IX

P P SI SIL SIF SIT SA SB X SR XT IS IX
SI SI SI

⋃ ⋃ ⋃ ⋃ ⋃
X SI XT SI IX

SIL SIL
⋃

SIL
⋃ ⋃ ⋃ ⋃

X SIL XT SIL IX
SIF SIF

⋃ ⋃
SIF

⋃ ⋃ ⋃
X SIF XT SIF IX

SIT SIT
⋃ ⋃ ⋃

SIT
⋃ ⋃

X SIT XT SIT IX
SA SA

⋃ ⋃ ⋃ ⋃
SA

⋃
X SA XT SA IX

SB SB
⋃ ⋃ ⋃ ⋃ ⋃

SB X SB XT SB IX
X X X X X X X X X X X X X
SR SR SI SIL SIF SIT SA SB X SR XT SR IX
XT XT XT XT XT XT XT XT XT XT XT XT XT
IS IS SI SIL SIF SIT SA SB X SR XT IS IX
IX IX IX IX IX IX IX IX X IX XT IX IX

Table 4.2: XQUF-LP Conversion Matrix

Granular Locking Protocol

The granular locking protocol defined in [23] has to generally fulfill these requirements:

1. Acquire locks from root to leaf.

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 103

2. Release locks from leaf to root.

3. To acquire an S mode or IS mode lock on a non-root node, one parent must be held

in IS mode or higher.

4. To acquire an X, U, SIX, or IX mode lock on a non-root node, all parents must be

held in IX mode or higher.

To achieve the highest throughput of running transactions we choose the lower bound [22]

of accepted lock modes according the granular lock protocol requirements. To complete

the formal semantics of XQuery Update Facility desribed in previous section we give the

formal semantics of Lock function.

XQUF-LP protocol specific rules

• Two-phase Locking Rule. All lock modes, except P-locks [36], that are acquired

or released must observe the two-phase locking protocol (2PL).

• P-lock Rule. Nodes in the location step are all locked by P-locks before performing

the Node-Test and Predicate selection [36].

• Upgrade Rules.

1. The P-locks on the nodes in the result set are upgraded to S*-locks before

inserting nodes. The P-locks acquired on ancestors of nodes in the result set

are converted to IS-locks. The X-lock is acquired on the insert node(s).

2. The P-locks on the nodes in the result set are upgraded to SR- or X-locks before

reading or writing. The P-locks acquired on ancestors of nodes in the result set

are converted to IS-locks or IX-locks respectively.

3. The P-locks on the nodes in the result set are upgraded to XT-locks before

deleting them. The P-locks acquired on ancestors of nodes in the result set are

converted to IX-locks.

• Compatibility Rule. A particular type of lock on a location step can be granted

as long as the compatibility matrix is respected.

• Release Rules

104 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

1. S*-, X-, SR-, XT-, IS- or IX-locks can only be released in the shrinking phase of

a transaction. That is, releasing them must observe the two-phase locking rule.

2. P-locks on the nodes which are sieved out by the predicate or node-test operation

are released after location step finishes.

Lock Function Semantics

NTL (Nodes to Lock) is a stack.

The Semantics of A ←↩ B is push B on top of stack A.

el == ε

Lock(el, lock, g, l) = LockReq(g, l)

el 6= ε

Lock(el, lock, g, l) = Lock(el.par(), lock.par(), g, l[NTL←↩< el, lock >])

isComp(< el, lock >, g, l[NTL ==<< el, lock >: rest >)) == (true, ε)

LockReq(g, l[NTL ==<< el, lock >: rest >]) =
= LockReq(addToLocks(g,< el, lock, l[TRANS] >), l[NTL :=< rest >])

addToWFG : Gcont × Transaction× Transaction −→ Gcont

addToWFG(g, t1, t2) = g[WFG := addEdge(g[WFG], t1, t2)]

isComp(< el, lock >, g, l[NTL ==<< el, lock >: rest >)) == (false, wtrans)

LockReq(g, l[NTL ==<< el, lock >: rest >) =
= Wait(addToWFG(g[WAIT ←< el, lock, l[TRANS] >], l[TRANS], wtrans),

l[NTL ==< rest >])

isWaiting : WFG× Transaction −→ Bool

isWaiting(w, t) =

true, if ∃tx : Transaction|(t, tx) ∈ w

false, otherwise

CheckDeadlock : Gcont × Lcont −→ Gcont × Lcont

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 105

CheckDeadlock(g, l) =

Wait(g, l), if deadlock(g[WFG]) == false

abortTransaction(g, l), otherwise

isWaiting(g[WFG], l[TRANS]) == true

Wait(g, l) = CheckDeadlock(g, l)

isWaiting(g[WFG], l[TRANS]) == false

Wait(g[WAIT ←< el, lock, l[TRANS] >], l[NTL ==< rest >]) =
= LockReq(g, l[NTL :=<< el, lock >: rest >])

LockReq(g, l[NTL ==< ε >]) = (g, l)

106 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

Theorem 4.7.1. Transaction histories generated by the XQUF-LP protocol are serializ-

able.

Proof. To prove this theorem we assume READ and UPDATE operations defined in defini-

tion 3.3.4. By definition 2.1.6 a serializable history over a set S of committed transactions

is a history whose effect on any consistent database instance is guaranteed to be equivalent

to some serial history over S.

catalog

book

ISBN = "978-0345391803"

COUNT = "10"

name author

"Douglas Adams"The Hitchhiker’s Guide

to the Galaxy

book

ISBN = "0-453-00269-2"

COUNT = "15"

name author

"A.C. Clarke"
2001: A Space Odyssey

books.xml

Figure 4.4: XML document

1. One transaction. If we have only one transaction T running in the system then it

forms a serializable history. It is equivalent to a serial history containing only T.

2. Two transactions. In case there are two transactions we have to distinguish among

six cases (type of conflicts):

• R-W conflict on the same node. << T1, R, (o, 1) >,< T2, U, (o, 2) >,<

T1, R, (o, 2) >>. Transaction T1 reads object o, then transaction T2 writes

into object o value 2, followed by the read of object o by transaction T1. For

example the object o is a node ”author” with value ”Douglas Adams” in Fig-

ure 4.4. Then the history generated by the XQUF-LP is:

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 107

<< T1, BEGIN >,

< T2, BEGIN >,

< T1, LOCK(ancestors(o), IS) >,

< T1, LOCK(o, SR) >,

< T1, READ(o) >,

< T2, LOCK(ancestors(o), IX) >,

< T2, LOCK(o,X) >, at this point a transaction T2 is postponed, because

X-lock is not compatible with SR-lock, until the transaction T1 ABORTs or

COMMITs. Thus, the R-W conflict is solved by the protocol. The generated

history by the protocol is:

<< T1, BEGIN >,

< T2, BEGIN >,

< T1, LOCK(ancestors(o), IS) >,

< T1, LOCK(o, SR) >,

< T1, READ(o) >,

< T2, LOCK(ancestors(o), IX) >,

< T1, LOCK(ancestors(o), IS) >,

< T1, LOCK(o, SR) >,

< T1, COMMIT >,

< T2, LOCK(o,X) >,

< T2, UPDATE(o, 2) >,

< T2, COMMIT >>.

This history is in accordance with a serial history < T1, T2 >.

• W-R conflict on the same node. << T2, U, (o, 2) >,< T1, R, (o, 2) >,<

T2, U, (o, 3) >>. Transaction T2 writes object o, then transaction T1 reads

object o, followed by the write of a new value to the object o by transaction

T2. For example the object o is a node ”author” with value ”Douglas Adams”

in Figure 4.4. Then the history generated by the XQUF-LP is:

<< T1, BEGIN >,

< T2, BEGIN >,

< T2, LOCK(ancestors(o), IX) >,

108 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

< T2, LOCK(o,X) >,

< T2, UPDATE(o, 2) >,

< T1, LOCK(ancestors(o), IS) >,

< T1, LOCK(o, SR) >, at this point a transaction T1 is post-poned, because

X-lock is not compatible with SR-lock, until the transaction T2 ABORTs or

COMMITs. Thus, the W-R conflict is solved by the protocol. The generated

history by the protocol is:

<< T1, BEGIN >,

< T2, BEGIN >,

< T2, LOCK(ancestors(o), IX) >,

< T2, LOCK(o,X) >,

< T2, UPDATE(o, 2) >,

< T1, LOCK(ancestors(o), IS) >,

< T2, LOCK(o, SR) >,

< T2, LOCK(ancestors(o), IX) >,

< T2, LOCK(o,X) >,

< T2, UPDATE(o, 3) >,

< T2, COMMIT >,

< T1, LOCK(o, SR) >,

< T1, COMMIT >>.

This history is in accordance with a serial history < T2, T1 >.

• W-W conflict on the same node. << T2, R, (o, 1) >,< T1, U, (o, 2) >,<

T2, U, (o, 3) >>. Transaction T2 reads object o, then transaction T1 writes

object o, followed by the write of a new value to the object o by transaction

T2. For example the object o is a node ”author” with value ”Douglas Adams”

in Figure 4.4. Then the history generated by the XQUF-LP is:

<< T1, BEGIN >,

< T2, BEGIN >,

< T2, LOCK(ancestors(o), IS) >,

< T2, LOCK(o, SR) >,

< T2, READ(o) >,

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 109

< T1, LOCK(ancestors(o), IX),

< T1, LOCK(o,X) >, at this point a transaction T1 is post-poned, because

X-lock is not compatible with SR-lock, until the transaction T2 ABORTs or

COMMITs. Thus, the W-R conflict is solved by the protocol. The generated

history by the protocol is:

<< T1, BEGIN >,

< T2, BEGIN >,

< T2, LOCK(ancestors(o), IS) >,

< T2, LOCK(o, SR) >,

< T2, READ(o) >,

< T1, LOCK(ancestors(o), IX) >,

< T2, LOCK(ancestors(o), IX) >,

< T2, LOCK(o,X) >,

< T2, UPDATE(o, 3) >,

< T2, COMMIT >,

< T1, LOCK(o,X) >

< T1, UPDATE(o, 2) >

< T1, COMMIT >>.

This history is in accordance with a serial history < T2, T1 >.

• R-W conflict in the subtree. o1 ∈ ancestors(o2)<< T2, R, (o1) >,< T1, U, (o2, 1) >

,< T2, R, (o1) >>. Transaction T2 reads object o1, then transaction T1 writes

value 1 into object o2, followed by the read of object o1 by transaction T2. For

example the object o1 is node ”book” with attribute ”count=10” and the ob-

ject o2 is node ”author” with value ”Douglas Adams” in Figure 4.4. Then the

history generated by the XQUF-LP is:

<< T1, BEGIN >,

< T2, BEGIN >,

< T2, LOCK(ancestors(o1), IS) >,

< T2, LOCK(o1, SR) >,

< T2, READ(o1) >,

< T1, LOCK(ancestors(o2), IX) >,, at this point transaction T1 is post-

poned, because IX-lock is not compatible with SR-lock, until the transaction

110 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

T2 ABORTs or COMMITs. Thus, the R-W conflict is solved by the protocol.

The generated history by the protocol is:

<< T1, BEGIN >,

< T2, BEGIN >,

< T2, LOCK(ancestors(o1), IS) >,

< T2, LOCK(o1, SR) >,

< T2, READ(o1) >,

< T2, LOCK(ancestors(o1), IS) >,

< T2, LOCK(o1, SR) >,

< T2, READ(o1) >,

< T2, COMMIT >,

< T1, LOCK(ancestors(o2), IX) >,

< T1, LOCK(o2, X) >

< T1, UPDATE(o2, 1) >

< T1, COMMIT >>

This history is in accordance with a serial history < T2, T1 >.

• W-R conflict in the subtree. o1 ∈ ancestors(o2) << T2, U, (o2, 2) >,<

T1, R, (o1) >,< T2, U, (o2, 1) >>. Transaction T2 reads object o2, then trans-

action T1 deletes object o2, followed by the read of object o2 by transaction T2.

For example the object o1 is node ”book” with attribute ”count=10” and the

object o2 is node ”author” with value ”Douglas Adams” in Figure 4.4. Then

the history generated by the XQUF-LP is:

<< T1, BEGIN >,

< T2, BEGIN >,

< T2, LOCK(ancestors(o2), IX) >,

< T2, LOCK(o2, X) >,

< T2, UPDATE(o2, 2) >,

< T1, LOCK(ancestors(o1), IS) >,

< T1, LOCK(o1, SR) >,

< T1, READ(o1) >,

< T2, LOCK(ancestors(o2), IX) >, at this point transaction T2 is post-

poned, because IX-lock is not compatible with SR-lock, until the transaction

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 111

T1 ABORTs or COMMITs. Thus, the W-R in the subtree conflict is solved by

the protocol. The generated history by the protocol is:

<< T1, BEGIN >,

< T2, BEGIN >,

< T2, LOCK(ancestors(o2), IX) >,

< T2, LOCK(o2, X) >,

< T2, UPDATE(o2, 2) >,

< T1, LOCK(ancestors(o1), IS) >,

< T1, LOCK(o1, SR) >,

< T1, READ(o1) >,

< T1, COMMIT >,

< T2, LOCK(ancestors(o2), IX) >,

< T2, LOCK(o2, X) >,

< T2, UPDATE(o2, 1) >,

< T2, COMMIT >>.

This history is in accordance with a serial history < T1, T2 >.

• W-W conflict in the subtree. o1 ∈ ancestors(o2) << T2, R, (o2) >,<

T1, U, (o1, 1) >,< T2, U, (o2, 2) >>. Transaction T2 reads object o2, then

transaction T1 writes object o1, followed by the write of object o2 by transac-

tion T2. For example the object o1 is node ”book” with attribute ”count=10”

and the object o2 is node ”author” with value ”Douglas Adams” in Figure 4.4.

Then the history generated by the XQUF-LP is:

<< T1, BEGIN >,

< T2, BEGIN >,

< T2, LOCK(ancestors(o2), IS) >,

< T2, LOCK(o2, SR) >,

< T2, READ(o2) >,

< T1, LOCK(ancestors(o1), IX) >, at this point transaction T2 is post-

poned, because IX-lock is not compatible with SR-lock, until the transaction

T1 ABORTs or COMMITs. Thus, the D-W in the subtree conflict is solved by

the protocol. The generated history by the protocol is:

<< T1, BEGIN >,

112 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

< T2, BEGIN >,

< T2, LOCK(ancestors(o2), IS) >,

< T2, LOCK(o2, SR) >,

< T2, READ(o2) >,

< T2, LOCK(ancestors(o2), IX) >

< T2, LOCK(o2, X) >,

< T2, UPDATE(o2, 2) >,

< T2, COMMIT >,

< T1, LOCK(ancestors(o1), IX) >,

< T1, LOCK(o1, X) >,

< T1, UPDATE(o1, 1) >,

< T1, COMMIT >.

This history is in accordance with a serial history < T2, T1 >.

3. More than two transactions. Every dependency in the history of more than two

transactions can be reduced on R-W, W-W or W-R conflict between two transactions

according to proof by Gray [23].

The algorithm describing this protocol is shown in Figure 4.5.

Phantom Prevention

In Section 2.1.5.1 we introduced phantom read in databases. As we mentioned in paragraph

about XDGL and logical locks 3.4.2.1 to achieve high concurrency we also have to introduce

some kind of predicate or logical locks into our locking protocol. Our protocol uses predicate

locks to prevent phantom reads. For example when the node is inserted then the predicate

lock of the form lock(IN, node-name, transaction) is acquired on the parent node of the

inserted node. When reading nodes then the predicate lock of the form lock(L, node-name,

transaction) is acquired on the parent node of the node which is being read. These locks

are compatible if and only if node-names differs.

XQUF-LP and Degrees of Isolation

In Section 2.1.5 we defined isolation levels according to lock protocol features. In previous

sections we assumed that the protocols conforms to ACID properties (Degree 3 without

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 113

input: CN - context node

LM - lock mode instance of LockMode class

t - transaction

lockRequest(CN, LM, t) { // request a lock mode

if(isCompatible(LM, CN.getLock()) { // if LM is compatible

lock(CN, LM); // assign it

} else {

suspend(t); // suspend transaction

exit(); // do not continue

}

}

getParents(CN, LM) {

parents:=new Stack();

while(CN.getParent()!=null){ // while exists parent

parents.add(<CN.getParent(), LM.getParentLockType()>);

CN = CN.getParent();

LM = LM.getParentLockType();

}

return parents;

}

parents:=getParents(CN, LM);

while(!parents.empty()) {

parent_lock:=parents.pop()

lockRequest(parent_lock.first(),

parent_lock.second()); // request lock modes

}

Figure 4.5: Granular Locking Protocol Algorithm

phantoms). However in many applications this strict degree of isolation is not needed for

their correct functioning. We also considered these needs the XQUF-LP protocol design.

As the result the protocol XQUF-LP can be very easily tailored to conform each of the

mentioned isolation levels. The XQUF-LP can work in certain degree of isolation if fulfills

the requirements given in Section 2.1.5.

114 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

4.7.4 Semantics Evaluation Example

In this section we show the semantics execution on the following XQUF query:

BEGIN, replace node fn:doc("bib.xml")/books/book[1]/publisher

with fn:doc("bib.xml")/books/book[2]/publisher,

COMMIT

First, we rewrite the previous query into this semantics expression:

[[COMMIT]]([[XQUFquery]]([[BEGIN]](g, l := ε)))

We assume that this is the first transaction in the system with the beginning state:

g = gcont(document(”bib.xml”, element(”books”, ...)), (), ∅, (), ∅, emptyWFG)

We rewrite the [[BEGIN]] expression on:

[[COMMIT]]([[XQUFquery]]([[BEGIN]](g, l == ε))) =

= [[COMMIT]]([[XQUFquery]](beginTransaction(g, l, createTrans(beginTrans())))) =

= [[COMMIT]]([[XQUFquery]](g[TRANS ← trans(1)], l[TRANS := trans(1)]))

The transaction trans(1) is ready and stored in the global state g and the local state l. The

next step is the evaluation of the replace expression [[XQUFquery]]. In next equations we

omit [[COMMIT]] expression and internal variables of g and l states for better readability.

TE = fn:doc(”bib.xml”)/books/book[1]/publisher

ES = fn:doc(”bib.xml”)/books/book[2]/publisher

[[replace node TE with ES]]xquf (g, l) =

= CC(g[PUL← {u : rN([[TE]]xque(g, l), [[ES]]xque(g, l))},

CCL← {< replace, [[TE]]xque(g, l), [[ES]]xque(g, l) >}], l)

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 115

First we show the evaluation of the first expression [[TE]].

[[TE]]xque(g, l) = [[fn:doc(”bib.xml”)/books/book[1]/publisher]]xque(g, l)

[[fn:doc(”bib.xml”)/books/book[1]/publisher]]xque(g, l) =

= [[child::publisher]]([[RelPath]](g, l)) =

= [[child::publisher]](([[child::book[1]]])[[RelPath]](g, l)) =

= [[child::publisher]](([[child::book[1]]])[[child :: books]][[fn : doc(”bib.xml”)]](g, l)) =

= [[child::publisher]](([[child::book[1]]])[[child :: books]](g, l[RES := doc(”bib.xml”)]) =

= ...(([[child::book[1]]])(node-test(λ”books”, axis(”child”, doc(”bib.xml”), g, l) =

= ...(node-test(λ”books”, Lock(el(”books”, ...), P, g, l[RES ← el(”books”, ...)]) =

= ...(node-test(λ”books”, el(”books”, ...), g[LOCKS ←< el(”books”), P, trans(1) >], l) =

= ...(([[child::book[1]]])(g, l[RES := (el(”books”))]) =

= ...(fs:item-at([[child::book]](g, l[RES := (el(”books”))], 1)) =

= ...(fs:item-at(g[LOCKS ← (< el(”book”1), P, trans(1) >,

< el(”book”2), P, trans(1) >)],

l[RES := (el(”book”1), el(”book”2))], 1)) =

= [[child::publisher]](g, l[RES := (el(”book”1)]) =

...

= (g[LOCKS := {< el(”book”1), P, trans(1) >,< el(”book”2), P, trans(1) >,

< el(”books”), P, trans(1) >,< el(”publisher”1), P, trans(1) >,

< doc(”bib.xml”), P, trans(1) >}],

l[RES := (el(”publisher”1))])

116 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

Finally the LockRead function is applied as XQuery Semantics specification states. It

implies that the final state is:

(g[LOCKS == {< el(”book”1), IS, trans(1) >,< el(”book”2), P, trans(1) >,

< el(”books”), IS, trans(1) >,< el(”publisher”1), SR, trans(1) >,

< doc(”bib.xml”), IS, trans(1) >}],

l[RES == (el(”publisher”1))])

The evaluation of [[ES]] is obviously similar. We show only the result here.

[[ES]]xque(g, l) = [[fn:doc(”bib.xml”)/books/book[2]/publisher]]xque(g, l)

[[ES]]xque(g, l) =

= (g[LOCKS := {< el(”book”1), IS, trans(1) >,< el(”book”2), IS, trans(1) >,

< el(”books”), IS, trans(1) >,< el(”publisher”1), SR, trans(1) >,

< doc(”bib.xml”), IS, trans(1) >,< el(”publisher”2), SR, trans(1) >}],

l[RES := (el(”publisher”2))])

So, the evaluation of the original expression after the evaluations shown above is:

[[replace node TE with ES]]xquf (g, l) =

= CC(g[PUL← {u:rN([[TE]]xque(g, l), [[ES]]xque(g, l))},

CCL← {< replace, [[TE]]xque(g, l), [[ES]]xque(g, l) >}], l) =

= CC(g[PUL← {u:rN(el(”publisher”1), el(”publisher”2))},

CCL← {< replace, el(”publisher”1), el(”publisher”2))}}], l)

In the next step the Constraints Checker checks the results of expressions for errors ac-

cording to semantics described in Section 4.6.3. In this case no error is found, hence the

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 117

evaluation can continue:

CC(g[PUL← {u:rN(el(”publisher”1), el(”publisher”2))},

CCL← {< replace, el(”publisher”1), el(”publisher”2))}}], l) =

= upd:applyUpdates(g[PUL], ”strict”, false, g, l) =

= u:rN(el(”publisher”1), el(”publisher”2), g, l) =

= Lock(el(”publisher”1), XT, g, l)

The Lock function with XT lock mode is applied to the element publisher which is being

replaced. Because the element publisher is already locked, its lock must be upgraded

according to conversion matrix rules. After that step the final state is:

(g[LOCKS == {< el(”book”1), IX, trans(1) >,< el(”book”2), IS, trans(1) >,

< el(”books”), IX, trans(1) >,< el(”publisher”1), XT, trans(1) >,

< doc(”bib.xml”), IX, trans(1) >,< el(”publisher”2), SR, trans(1) >},

TRANS = {trans(1)}],

l[TRANS == trans(1)])

The last evaluation step is COMMIT of the transaction. In this step all locks held by the

transaction are released:

[[COMMIT]](g, l[TRANS == t]) = commitTransaction(g, l) =

= (g[TRANS := TRANS \ {t}, LOCKS := LOCKS \ {< node, lock, t >}],

l[TRANS := ε])

4.8 Semantics Verification

In the previous section we introduced the formal specification of the XQuery Update Fa-

cility language semantics. In this section we verify this specification by its implementation

in Maude language [15].

Maude is a language supporting executable specification and declarative programming in

118 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

rewriting logic. Rewriting logic is very well suited for our purposes. It is a logical frame-

work that allows concurrency [42] and can be used to implement executable specification

(semantics). Verdejo and Marti-Oliet in [65] successfuly implemented CCS8 operational

semantics in Maude. Maude’s rewriting logic is expressive enough9 to allow implementing

XQUF semantics.

As a result of our experiments in semantics verification we developed two different imple-

mentations. The first implementation uses functional modules and equational modules.

This implementation has the important disadvantage. It does not allow to pass global

state to more than one subexpression. For better explanation consider Figure 4.6. In this

Figure we are passing the same global state to [[TE]]xque(g, l), [[ES]]xque(g, l) and CC. All

of these functions modifies the global state g. If we evaluate them concurrently we get a

new global state g′ from each evaluation. That is wrong. We need to refer to the same

global state g. To solve this problem we used Full Maude library and its object modules to

implement the semantics. Full Maude is built on Maude’s powerful reflection and metapro-

gramming capabilities. We model the semantics as a concurrent object system. We had

to solve many difficulties during the implementation of the semantics into Maude. The

first obvious thing is that the concurrent object system can be viewed as a configuration

which consists of objects and messages at the beginning. These message are applied to

corresponding objects ”concurrently”. But we need to preserve the order of operations

inside the transaction. We had to develop a technique to preserve it. This technique is

based on the stack structure which is unique for each transaction. Using it we are able to

preserve the order of operations inside the transaction.

[[replace node TE with ES]]xquf (g, l) =

= CC(g[PUL← {u:rN([[TE]]xque(g, l), [[ES]]xque(g, l))},
CCL← {< replace, [[TE]]xque(g, l), [[ES]]xque(g, l) >}], l)

Figure 4.6: Replace Expression Semantics

8CCS is Milner’s Calculus of Communicating Systems, which models asynchronous communication of
processes.

9It allows concurrency.

SECTION 4. XQUERY AND XQUERY UPDATE FACILITY 119

4.8.1 XQUF-LP Framework

As a result of our experiments the XQUF-LP framework was built as a tool for proving

the correctness of locking protocols. XQUF-LP framework can be easily tailored for needs

of the verificated locking protocol. The framework has a modular architecture shown in

Figure 4.8.110. It consists of five modules: database, xpath, xdm, transactions and xquf.

Each modules is seated in its own diretory.

database

transactions
xdm

xpath

xquf

Figure 4.7: Module dependency in XQUF-LP framework

The XDM module implements the lite version of XPath and XQuery data model as pre-

sented in Appendix B. The module functionality is wrapped in XDM-ALL functional mod-

ule. A small example of the specification written in Maude is shown in Figure 4.8.1. The

figure lists the code of the XPath-Base Module. The framework is not fully implemented

but we experimentally verified that the idea is correct. The future research will be focused

on the completion of the framework to fully support proposed semantics. It will be the

subject of the bachelor’s and master’s thesis at our department. The source code of the

framework can be found in [57].

10The arrow from module A to module B means that A depends on B.

120 SECTION 4. XQUERY AND XQUERY UPDATE FACILITY

(fmod XPATH -AXES -CONST is

sort AxisType .

op self : -> AxisType [ctor] .

op child : -> AxisType [ctor] .

op attribute : -> AxisType [ctor] .

op parent : -> AxisType [ctor] .

endfm)

(omod XPATH -BASE is

pr XDM -ALL .

pr DATABASE .

pr XPATH -AXES -CONST .

pr LOCK -TABLE -XQUF .

pr CONVERSION .

sorts Expr XPathExpr StepExpr ForwardStep ReverseStep .

subsort XPathExpr < Expr .

subsort Node < XPathExpr .

subsort StepExpr < XPathExpr .

subsort ForwardStep ReverseStep < XPathExpr .

sort Axis .

op doc : Uri -> StepExpr [ctor] .

op axis : AxisType Qid -> StepExpr [ctor] .

op _/_ : XPathExpr StepExpr -> XPathExpr [ctor] .

op _/_ : StepExpr StepExpr -> XPathExpr [ctor ditto] .

msg beginTrans : Oid Expr -> Msg .

msg ‘(_‘,_‘) ‘[‘[_‘]‘] : Oid Nat Expr -> Msg .

msg mnode : Oid Node Nat -> Msg .

msg maxis : Oid AxisType Node Qid Nat -> Msg .

msg mnodetest : Oid Qid Node Nat -> Msg .

msg mdoc : Oid Uri Nat -> Msg .

msg lock : Oid LockMode Node Nat -> Msg .

endom)

Figure 4.8: XPath-Base Module

SECTION 5. BENCHMARKING 121

5 Benchmarking

In this chapter we first give a brief introduction to the benchmarking of XML databases.

In section 5.2 we present our benchmark proposal to measure transaction manager’s per-

formance. The results of this chapter were published in [61].

Many of native XML database engines do not either support transactional processing on

the user level (eXist, Xindice) or they support it only partially (Berkeley DB, Sedna).

So, there are only a few native XML engines that have ambitions to fully implement a

node-level locking mechanism.

On the other hand, there are complex, application-based benchmarks that care about

transactions (see mainly TPoX bellow). But the main aim of this chapter is to present the

transaction manager benchmark which is simple enough to implement and use.

5.1 XML Application Benchmarks Overview

In the following paragraphs, we provide a very brief description of several XML bench-

marks. More details about their data models, queries, etc. can be found in [13].

5.1.1 X007 Benchmark

This benchmark was developed upon the 007 benchmark – it is an XML version of 007,

only enriched by new elements and queries for specific XML related testing.

Similarly to the 007 benchmark, it provides 3 different data sets: small, intermediate and

large. The majority of 007 queries is focused on document oriented processing in object

oriented DBs. The X007 testing set [8] is divided into three groups:

• traditional database queries,

• data navigation queries, and

• document oriented queries.

Data manipulation and transactional processing are not considered in X007. A good ex-

ample of the application of this benchmark can be found in [9].

122 SECTION 5. BENCHMARKING

5.1.2 XMark Benchmark

XMark benchmark [53] simulates an internet auction and consists of 20 queries. The main

entities are an item, a person, an opened and finished auction, and a category. Items

represent either an object that has already been sold or an offered object. Persons have

subelements such as a name, e-mail, telephone number, etc. Category, finally, includes

a name and a description. The data included in the benchmark is a collection of 17,000

most frequently used words in Shakespeare’s plays. The standard size of the document is

100MB. This size, then, is taken as 1.0 on a scale. A user can change the size of the data

up to ten times from the default.

5.1.3 XMach-1

XMach-1 benchmark [6] is based on a web application and considers a different sets of XML

data with a simple structure and a relatively small size. XMach-1 supports data with or

without defined structure. A basic measure unit is XQps – a number of XML queries per

second.

The benchmark architecture consists of four parts: the XML database, an application

server, clients for data loading and clients for querying. The database has a folder based

structure and XML documents are designed to be loaded (by a load client) from various

data sources located in the internet. Each document has a unique URL maintained (to-

gether with metadata) in a folder based structure. Furthermore, an application server

keeps a web server and other middleware components for XML documents processing and

for an interaction with a backend database.

Each XML file represents an article with elements such as a name, a chapter, a paragraph,

etc. Text data are taken from a natural language. A user can change the XML file size

by changing the quantity of the article elements. By changing the quantity of XML files

the size of the data file is controlled. XMach-1 assumes that the size of data files is small

(1-14kB).

XMach-1 evaluates both standard and non-standard language features, such as insert,

delete, URL query and aggregation functions. The benchmark consists of 8 queries and

2 update operations. The queries are divided into 4 groups according the the common

characteristics they portray:

SECTION 5. BENCHMARKING 123

• group 1: simple selection and projection with a comparison of elements or attributes

• group 2: it requires the use of element order

• group 3: tests aggregation capabilities and it uses metadata information

• group 4: tests operation updates

5.1.4 TPoX

Transaction Processing over XML [44] is an application benchmark that simulates financial

applications. It is used to evaluate the efficiency of XML database systems with a special

attention paid to XQuery, SQL/XML, XML storage, XML indexing, XML scheme support,

XML update, logging and other database aspects. It appears to be the most complex one

and it also is the best contemporary benchmark.

The benchmark simulates on-line trading and uses FIXML to model a certain part of the

data. FIXML is an XML version of FIX (Financial Information eXchange): a protocol used

by the majority of leading financial companies in the world. FIXML consists of 41 schemes

which, in turn, contain more than 1300 type definitions and more than 3600 elements and

attributes.

TPoX has 3 different types of XML documents: Order, Security, and CustAcc which

includes a customer with all her accounts. The information about holdings is included in

the account data. Order documents follow the standard FIXML schema. Typical document

sizes are following: 3 - 10 KB for Security, 1 - 2 KB for Order, and 4 - 20 KB for combined

Customer/Account documents.

To capture the diversity/irregularity often seen in real-world XML data, there are hundreds

of optional attributes and elements with typically only a small subset present in any given

document instance (such as in FIXML) [43].

5.1.5 Framework TaMix for XML Benchmarks

TaMix [25] is a framework that provides an automated runtime environment for bench-

marks on XML documents. It is mainly developed at the University of Kaiserslautern.

Those benchmarks consist of a specified amount of update operations per transaction. It

is a simulation of a bank application tailored to update operations. Unfortunately, the

124 SECTION 5. BENCHMARKING

framework’s more detailed specification is not publicly available. Therefore we were not

able to implement it in our environment. Instead we used the idea of this framework for

our benchmark’s implementation.

5.1.6 XML Application Benchmarks – Summary

The benchmarks XMark and X007 can be viewed as combined or composite: their data

and queries are in fact fictious application scenarios, but, at the same time, they try to

test essential components of the languages – XQuery and XPath. On the other hand they

ignore update operations.

XMach-1 and TPoX benchmarks consider both queries as well as updates. Hence, these

benchmarks seems much more relevant to our needs. Unfortunately, both benchmarks use

very complicated data models and their implementation takes a lot of time. TaMix frame-

work seems suitable for our implementation but there is no detailed description available.

5.2 Performance Benchmarking

In the beginning of our research we asked the question ”How to measure a transaction

manager’s performance?”. The main motivation was to measure the performance of the

Transaction Manager module implemented in the CellStore.

We found that there are two possibilities for measuring Transaction Manager’s perfor-

mance. The first possibility is to measure the performance of the whole database system

twice. A first measurement is performed with a transaction manager involved and a second

measurement without a transaction manager. The advantage of this possibility is an easier

realisation of measurement but it does not provide optimal results because it is influenced

by the rest of the database system.

The second possibility is based on separating the transaction manager from the database

system. The important advantage of this possibility lies in providing more relevant results.

Disadvantage of this approach is that the designer of the database system has to think

about the modularity at a design time.

Our approach for measuring the performance can be applied in both cases. Finally, we de-

cided to design a simple benchmark to get a general overview of the Transaction Manager’s

performance.

SECTION 5. BENCHMARKING 125

File Name G’s Factor Size
db001.xml 0.01 1 154 kB
db005.xml 0.05 5 735 kB
db01.xml 0.1 11 596 kB
db02.xml 0.2 23 364 kB

Table 5.1: Database sizes depend on Generator’s Factor

5.3 Benchmark specification

Our benchmark specification generally consists of

• the XML Schema of a test database

• sizes of database instances

• benchmarked operations (queries and updates)

• output consists of a duration of benchmarked operations in milliseconds.

We chose XMark’s database model schema [54] as the schema for our test database. This

schema covers our requirement of a real world application schema for online transaction

processing. It is based on the model of internet auctions. XMark also includes a generator

for database instances. Then it can be easily adjusted to another testing environment. Our

benchmark uses 4 different sizes of a test database. In Table 5.1 are described database

instances that the benchmark uses. The generator’s factor is a scaling factor f for the

XMark generator.

The benchmark’s tests are described in Table 5.2. Tests 1 and 2 measure the transaction

manager’s initialization time while Test 3 is intended to measure the transaction execution

time in a real world OLTP scenario. It can be executed in a single or a multiple transaction

mode. In the single transaction mode we measure time per transaction without conflicts.

On the other hand in the multiple transaction mode we measure transaction throughput.

Finally, we can measure the transaction’s execution time regarding to transaction manager.

This mode has the following execution plan:

• 40 parallel transactions at a time

• each transaction is executing Test 3

126 SECTION 5. BENCHMARKING

• 5 execution repetitions.

The result is the amount of time spent on that execution.

5.4 Benchmarking environment

The environment used for executing the benchmark conforms to the Transaction Manager’s

implementation. The Transaction manager is implemented in Java and compiled into the

byte-code and executed in the Java Virtual Machine (JVM). The JVM implementation has

a significant influence on the Transaction Manager’s performance, because the byte-code

can be preprocessed and optimized during the test run. Hence, we can observe that the

tested methods are executing faster during the test repetitions thanks to inline caches and

JVM optimizations. The computer used for performing the tests was Intel Core 2 Duo,

2.0 GHz, HDD SATA 5400 r.p.m. with operating system Windows Vista 32-bit with Java

Rutime Environment version 1.6.0 07.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

db001.xml db005.xml db01.xml db02.xml

T
im

e
 [
m

s
]

Filename

Test 1 Results

t1
t2

∆ t

Figure 5.1: Test 1 results

SECTION 5. BENCHMARKING 127

Test 1 t1 = document initialization with DeweyID
ordering
t2 = document initialization without
DeweyID ordering
Result: ∆t = t1 − t2

Test 2 t1 = DOM operation getNode() with Trans-
action Manager
t2 = DOM operation getNode() without
Transaction Manager
Result: ∆t = t1 − t2

Test 3 This test is intended to measure the trans-
action performance of the Transaction Man-
ager’s implementation. The schema S of
the transaction consists of following opera-
tions. The semantics of these operations is
described in Table 5.3.

BEGIN_TRANSACTION

WAIT

BID

WAIT

CLOSE_AUCTION

WAIT

INSERT_AUCTION

WAIT

GET_CATEGORIES

WAIT

REMOVE_ITEM

COMMIT_TRANSACTION

t1 = preceding schema S with Transaction
Manager
t2 = preceding schema S without Transac-
tion Manager
Result: ∆t = t1 − t2

Table 5.2: Description of tests

128 SECTION 5. BENCHMARKING

Operation Semantics
WAIT transaction waits a random time (0-?5000ms)
BID bids on a random item in a random auction
CLOSE AUCTION moves random auction to closed auctions
INSERT AUCTION inserts new auction on a random item
REMOVE ITEM removes random item including all referenced

auctions

Table 5.3: Semantics of transaction’s operations

File
Name

t1 [ms] t2 [ms] ∆t [ms]

db001.xml 883 592 291
db005.xml 2510 239 2271
db01.xml 6042 577 5465
db02.xml 12794 2131 10663

Table 5.4: Test 1 results

File
Name

t1 [ms] t2 [ms] ∆t [ms]

db001.xml 182 131 51
db005.xml 217 84 133
db01.xml 325 121 204
db02.xml 380 154 226

Table 5.5: Test 2 results

File
Name

t1 [ms] t2 [ms] ∆t [ms]

db001.xml 3762 3928 -166
db005.xml 3784 3644 140
db01.xml 4444 4726 -282
db02.xml 10293 10402 -109

Table 5.6: Test 3 results - 20 transactions

5.4.1 Results

This section sums up our results, where each test was executed five times. At the beginning

of each test there was an initialisation. This is important because JVM is loading classes

when they are invoked for the first time.

The results of Test 1 are exposed in Table 5.4. In Graph 5.1 a linear dependency of ∆t to

SECTION 5. BENCHMARKING 129

File
Name

t1 [ms] t2 [ms] ∆t [ms]

db001.xml 3739 4047 -308
db005.xml 5291 4626 665
db01.xml 9550 9483 67
db02.xml 29153 36494 -7341

Table 5.7: Test 3 results - 50 transactions

 0

 50

 100

 150

 200

 250

 300

 350

 400

db001.xml db005.xml db01.xml db02.xml

T
im

e
 [
m

s
]

Filename

Test 2 Results

t1
t2

∆ t

Figure 5.2: Test 2 results

the database instance is shown. The cost of the DeweyID ordering algorithm is approxi-

mately 90% of the time needed to build and initialize a database instance.

The results of Test 2 are displayed in Table 5.5. Relation of ∆t to the database instance

is depicted in Graph 5.2. This relation seems to be a sublinear function. This behavior is

caused by the implementation of a DeweyID accessor that is implemented by a hash table.

The time complexity of a search operation in a hash table is O(1), a constant. But there

is a small overhead of the Transaction Manager that has time complexity O(n), hence the

relation is not a constant.

We executed Test 3 in multiple transaction mode. It means that the benchmark executes

transactions in a concurrent mode. The waiting time between nearby operations was 1000

ms. We did two measurements with different settings. The first setting included 20 con-

current transactions. The second one had 50 concurrent transactions. The measurement

130 SECTION 5. BENCHMARKING

 0

 2000

 4000

 6000

 8000

 10000

db001.xml db005.xml db01.xml db02.xml

T
im

e
 [
m

s
]

Filename

Test 3 Results - 20 transactions

t1
t2

∆ t

Figure 5.3: Test 3 results - 20 transactions

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

db001.xml db005.xml db01.xml db02.xml

T
im

e
 [
m

s
]

Filename

Test 3 Results - 50 transactions

t1
t2

∆ t

Figure 5.4: Test 3 results - 50 transactions

results of these settings are displayed in Tables 5.6 and 5.7. The corresponding graphs

are in Figures 5.3 and 5.4. There is a significant result in Figure 5.4. The execution

for 50 transactions is faster with Transaction Manager surprisingly. This effect is proba-

SECTION 5. BENCHMARKING 131

bly caused by inline caches of the Java Virtual Machine. The exception handling has an

important impact on the performance. Many exceptions do not arise in the Transaction

Manager environment because conflicting operations are suspended.

132 SECTION 5. BENCHMARKING

SECTION 6. PROTOTYPES 133

6 Prototypes

As a part of a work on this dissertation thesis we have implemented two prototypes of XML

databases. The first prototype was written in Smalltalk and is called CellStore. Project

CellStore represents native XML database and it was started in 2006 by Jan Vraný et

al. We have used CellStore as a test-bed for testing and benchmarking implementation

of transaction protocols mentioned earlier. The performance comparison of CellStore’s

XQuery Processor with other well-known processors is in Appendix C. The prototype is

desribed in detail in [41]. In this chapter we give its brief description.

The second prototype is called RedXML and is implemented in Ruby. Its development

and testing is a subject of our future work. The basic idea of the prototype is described

in [59].

6.1 CellStore Native XML DBMS

The main goal of project CellStore [67] is to develop a NXDBMS for both educational

and research purposes. It is meant rather as an experimental platform than an in-box

and ready-to-use database engine. We planed such an engine because the students can

easily look inside it, understand and create new components for this engine such as, e.g., a

built-in XSLT engine, a query optimizer, an index engine, an event-condition-action (ECA)

processing, etc.

According to this goal the development platform had been chosen. Especially:

• it should be easy to change of functionality of subsystems,

• it should be purely object-oriented for development and design,

• it must enable component reusing, test-driven development and trace & log facilities

for both debugging and educational purposes.

In the end we selected Smalltalk/X as the development platform.

6.1.1 History

The project was started in 2004 with the first implementation of storage subsystem. Imple-

mentation of part of XQuery functionality (2007) was the next step. Then implementation

134 SECTION 6. PROTOTYPES

of modules for simple-indexing, DML, transactional processing, cache management, web-

based approach, remote client, and test setting and evaluation environment followed from

2007 to 2009.

In 2008 a significant change in the system architecture had been done. Jan Vraný included

Perseus framework into CellStore’s architecture. It brought really illustrative code debug-

ger based on event mechanism. But, on the other hand, it also requires partial redesign of

several already done subsystems and slightly slows down CellStore efficiency.

6.1.2 CellStore’s State of The Art

There are two stages in CellStore history – before and after Perseus incorporation. The

first – pre-Perseus stage – provided several relatively well integrated modules. CellStore

worked as an embedded DBMS with partial implementation of XQuery 1.0. It had a

database console, a transaction management and a monitoring tool. A comprehensive

description of CellStore at this stage was published in [49].

In 2008 several new modules and subsystems were under development (e.g. web and line

clients, DML module, testing tool etc.). At the same time, Jan Vraný started with Perseus

implementation [66]. His work implied the necessity of partial redesign of several already

developed modules as well as modules just under development. The redesign process

was successfully done on new XQuery interpreter, partially on transaction manager, and

continues (within master theses) on modules for DML and indexing. Some modules (web

and line clients and testing tools) were not affected, others (namely cache management

module) were not redesigned yet.

6.1.3 System Architecture

CellStore’s architecture is depicted in Figure 6.1. It can be approached through several

interfaces at different levels of services. The lowest layer – low level storage – consists of

several cooperating modules. Modules depicted in solid boxes are already implemented,

whereas modules in dotted boxes are not ready yet.

SECTION 6. PROTOTYPES 135

Figure 6.1: CellStore architecture

6.1.4 Storage Subsystem

We developed a new method for storing XML data. The method is based on work of [64]

and partially inspired by solutions used in DBMSs Oracle1 and Gemstone2. Structural and

data parts of an XML document are stored separately. Of course, it increases necessary

1http://www.oracle.com/us/products/database/index.html
2http://www.gemstone.com/products/gemstone

136 SECTION 6. PROTOTYPES

time to store and reconstruct documents. But, on the other hand, it provides a great

benefit in disk space management especially in case of document update, query processing

and indexing of the stored XML data.

Let us describe the storage model in more detail. Note that the description is based on the

first implementation version, because it is more illustrative. There exist improvements in

the newer versions of CellStore, but they are not so important for a quick view. XML data

documents are parsed and placed in two different files during the storing process – cell file

and data file. We illustrate the structure of both the files using the following sample XML

document:

<?xml version="1.0"?>

<!DOCTYPE simple PUBLIC

"-//CVUT//Simple Example DTD 1.0//EN" SYSTEM simple.dtd">

<simple>

<!-- First comment -->

<?forsomeone process me?>

<element xmlns="namespace1">

First text

<ns2:element xmlns:ns2="namespace2"

attribute1="value1" ns2:attribute2="value2">

</ns2:element>

<empty/>

</element>

</simple>

6.1.4.1 Cell File Structure

A cell file consists of fixed-length cells. Each cell represents a single DOM object (doc-

ument, element, attribute, character data, etc.) or XML:DB API object (collection or

resource). Note that this API is developed by XML:DB Initiative for XML Databases [69].

Cells are organized into fixed-length block.

A database block is the smallest I/O unit of transfer between disk and low-level storage

cache. Only cells from one document can be stored in one block. The set of blocks

describing the structure of the whole document is called a segment. Each block starts with

header with a bitmap describing the density of the block.

Inside the cell structure internal pointers are used to represent parent-child and sibling

SECTION 6. PROTOTYPES 137

Name Content Meaning

Head 1 byte The type of cell.
Parent cell pointer Pointer to parent cell.
Child cell pointer Pointer to the first child.
Sibling cell pointer Pointer to the next cell brother (NIL if there is no one).
D1, D2, depends on type Contain either data or pointers (to a text file or
D3, D4 a tag file) depending on the type of cell.

Table 6.1: CellStore cell structure

relationships of nodes. Each cell consists of eight fields, whereas their meaning can differ

with different types of cells. The following cell types are supported in the system: char-

acter data, attribute, document, document type, processing instruction, comment, XML

Resource, and collection. The general structure of cell is described in Table 6.1.

See Figure 6.2 to grasp the idea how the cell storage looks for the sample XML document

mentioned above.

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x00

0x09

0x0A

0x0B

0x0C

0x0D

0x0E

0x0F

0x08

7F:F0:00:00 00:00:00:0000:00:00:0000:00:00:0000:00:00:0000:00:00:0000:00:00:0000:00:00:00

09:00:00:00010101:44 112233:03 112233:02

0A:00:00:00 112233:01 00000001 001122:01

Head Parent Child Sibling D1 D2 D3 D4

01:00:00:00 112233:01 112233:04 00000002

08:00:00:00 112233:03 112233:05 112233:02

07:00:00:00 112233:03 112233:06 00000003 001122:03

01:00:00:00 112233:03 112233:07 00000004 00000005

03:00:00:00 112233:06 112233:08 001122:04

01:00:00:00

02:00:00:00

02:00:00:00

01:00:00:00

112233:06

112233:08

112233:08

112233:06

112233:0B

112233:0A

00000004

00000008

00000009

0000000A

00000007

00000007 00000006

00000005

00000005

00000006

112233:09

001122:05

001122:06

Cell Block #112233

Free Cell Bitmap

Document Cell

<! DOCTYPE...

<simple>

<!-- First comm

<?forsomeone ...

<element ...

First text

<ns2:element ...

attribute1="val...

ns2:attribute2...

<empty/>

Figure 6.2: CellStore cell file structure

138 SECTION 6. PROTOTYPES

6.1.4.2 Text File Structure

A text file contains all text data (i.e. contents of DOM text elements and attributes). The

data is organized into blocks too, whereas one block belongs just to one document. The

set of data blocks belonging to one document is called again a segment. A text pointer is

a pointer to a text file. It consists of a text block and a record. Each text block contains a

translation table which accepts a record number and returns the offset and the length of

the data block. This strategy ensures efficiency in case of data changes. The translation

table grows from the end of block, while data grow from the beginning. For these purposes

the translation table contains the number of actual records. The header of a text block

contains also a pointer to the root of its cell node necessary for full-text searching. A

sample content of text file structure is shown on Figure 6.3.

0x0020

0x0000

0x0040

0x...

0x0F80

0x0FA0

0x0FC0

0x0FE0

0x1000

Text Block #001122

Document

112233:01
Table size

6

Prev Block

nil

Next Block

nil

Segment #

0x001122
Padding

1

F
F
6

0
0
A

F
E
7

0
0
F

2 3 4 5 6

F
D

D

0
0
A

F
C

D

0
0
F

F
C

7

0
0
6

F
C

1

0
0
6

Free Space

v a l u e 1 v a l u e 2 F i r s t t e x t p r o

c e s s m e F i r s t c o m m e n t s i m p l e . d t d

Figure 6.3: CellStore text file structure

The low-level subsystem was fully implemented and its stability was tested on INEX data

set. INEX [24] is the set of articles from IEEE which contains approximately 12,000

individual XML documents (without figures) with total size of about 500MB.

The newer version of low-level subsystem implementation allows for individual setting

of cell, cell-pointer, and block sizes. All these parameters can be used to optimize low-

level storage according to specific data needs3. Unfortunately, we did not provide enough

3Similarly, in Oracle DBMS a BLOCK SIZE, PCT FREE, and extent-allocation parameters can be used to
optimize storage.

SECTION 6. PROTOTYPES 139

experiments yet to be able to approve efficiency of such low-level customization.

6.1.4.3 The Transaction Manager Implementation

The CellStore’s Transaction Manager consists of three independent modules - Transaction

Manager, Lock Manager, and Log Manager. The most important one among them is the

Lock Manager, which ensures the locking mechanism. The Transaction Manager is the

encapsulation of the Lock Manager and Log Manager. The Log Manager is the helper

class that encapsulates logging inside the Transaction Manager.

The UML class diagram of the Transaction Manager is shown in Figure 6.4.

Figure 6.4: The Transaction Manager Class Diagram

The Transaction Manager provides methods for transaction processing as a begin transac-

tion, commit transaction and abort transaction. In the CellStore project, the transaction

manager is the transaction layer, which implements the DataAccessor protocol, because

it have to be compatible with the other layers, especially with a cache layer, e.g. Cache

Manager.

140 SECTION 6. PROTOTYPES

The Lock Manager is the necessary class for the Transaction Manager, because it imple-

ments the locking mechanism. As you can see in Figure 6.4 the locking mechanism is

implemented by two methods:

LockManager>>isLocked:aCellP transaction:aTransaction

byLock:aLockMode

LockTableRow>>isTransaction:aTransaction lockCompatible:aLockMode

The relationship between the LockManager and the LockTableRow is called the lockTable.

The lockTable is implemented by a dictionary that is associated with the LockTableRow

by aCellPointer.

6.1.4.4 Storage Discussion

Our storage strategy has an obvious drawback – necessity to divide XML data into text

and structure parts during the storing process and their joining during the document re-

construction. On the other hand, it was experimentally shown, that the space requirement

of our storage method is acceptable even in case of frequent changes of parts of stored

data. Moreover, selected obvious improvements like using convenient compress algorithms

for text space are evident, although they are not approved by experiments yet.

We believe that our storage method can also provide significant benefits in XQuery pro-

cessing. Of course, it requires well designed and complex (XQuery) optimizer, which is

able to guess and decide when to prefer text and when structure selection criteria. And,

separation of structural and text information may also allow us to apply special indexing

algorithms. However, all these notions are still at the level of hypothesis and future work.

SECTION 7. CONCLUSIONS 141

7 Conclusions

In the first part of this thesis we have presented a formal XQuery Update Facility (XQUF)

semantics extended by transaction processing features. To achieve this goal we had to

extend XQUF syntax by new transaction specific syntax constructs covering needs of the

transaction control. This was the main motivation for our work; to provide a complex

framework to cope with transaction processing in (native) XML databases. The motivation

for this work is our opinion that the XQUF semantics should provide built-in features for

transaction processing. Hence, we decide to propose the alternative XQUF semantics

implementing features supporting transaction processing.

To prove the correctness of the semantics’ specification we implemented a prototype in

Maude system [15] called XQUF-LP framework. In this framework we have covered basic

constructs of the semantics, we claim that the finalization of the entire semantics’ specifi-

cation is only a technical issue which can be solved by master’s students in further work.

XQUF-LP framework can be used for proving algebraic features of the semantics.

Along with the theoretical part of the research we have designed and developed XPath,

XQuery and XQuery Update Facility (including transaction processing) processors as mod-

ules in native XML database CellStore. We also designed a component benchmark to

measure its performance. The results of the benchmark are promising (in the environment

of the CellStore) but cannot compete with the state-of-the-art competitors 1.

7.1 Contributions

This thesis summarizes our research work in the past few years and provides the ac-

complished achievements during this period. We would like to emphasize the following

contributions:

• We introduced detailed formal semantics of the XQuery Update Facility languge,

a functional XML update language standardized by W3C, extended by transaction

processing. This semantics can be used for verification of concurrent programs using

this language, moreover the semantics is suitable to be the part of the standard in

the future.

1The comparison can be found in [41].

142 SECTION 7. CONCLUSIONS

• We extended XQuery Update Facility syntax and semantics by expressions for trans-

action control. These expressions are needed to control program flow according to

transaction processing. This extension is suitable to be the part of the standard in the

future. The main advantage of this approach lies in unified approach to transaction

processing for future implementations.

• We provided a new simple benchmark for measuring overhead of a transaction man-

ager module. This benchmark can be used for component based systems in the

future.

• We specified a transaction processing for XML-λ Language by mapping its operations

into DOM operations and utilizing taDOM locking protocol.

• We provided semantics verification by the prototype implementation in Maude sys-

tem. This prototype implementation is very useful for formal proving of algebraic

features of the language such as confluence or coherence. It can be used to verify

new features added to the language in the future.

• We provided a prototype implementation of the native XML database CellStore,

which is used as a testbed for experiments. This prototype is highly utilized by

students for their seminar and (under-)graduate projects.

Last but not least, the contribution that should be certainly mentioned is the influence

of the CellStore and transaction processing research on undergraduate and graduate stu-

dents of our department. There were open many interesting topics for the semester and

bachelor/masters projects aiming at improving the excellence both of the students and the

research project. We believe that our efforts yielded benefits for all the participants.

7.2 Future Work

During writing the thesis we identified many open issues in our research. (1) The proposed

semantics of the XQuery Update Facility language is not fully implemented in Maude sys-

tem. We plan to do it in the near future. This implementation will be used to prove

algebraic features of the locking protocol XQUF-LP. It can also be used to verify XQUF-

LP’s performance (number of operations) according to other proposed protocols mentioned

SECTION 7. CONCLUSIONS 143

in Chapter 3. (2) We investigate new possibilities for storing XML documents. We imple-

mented a prototype called RedXML which is written in Ruby and utilizes Redis key-value

database as a storage for XML documents. On the top of it we built an XQuery (Up-

date Facility) processor with built-in transactional processing. The basic concept of the

RedXML was presented in [59]. We plan to enhance and measure our new algorithms for

mapping XML documents into a key-value store.

144 SECTION 7. CONCLUSIONS

SECTION 8. BIBLIOGRAPHY 145

8 Bibliography

[1] A. Adya, B. Liskov, and P. O’Neil. Generalized isolation level definitions. In ICDE,

pages 67–78. IEEE Computer Society, 2000.

[2] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation, and Compiling.,

volume II. Prentice-Hall, Upper Saddle River, NJ 07458, USA, 1973.

[3] R. Bača, J. Walder, M. Pawlas, and M. Krátký. Benchmarking the compression of

XML node streams. In Proceedings of the 15th international conference on Database

systems for advanced applications, DASFAA’10, pages 179–190, Berlin, Heidelberg,

2010. Springer-Verlag.

[4] P. Bernstein and E. Newcomer. Principles of Transaction Processing. Morgan Kauf-

mann Publishers, 1st edition, 1997.

[5] S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, and J. Siméon. XQuery

1.0: An XML Query Language. W3C Recommendation, 2010. http://www.w3.org/

TR/xquery/.

[6] T. Böhme and E. Rahm. XMach-1: A benchmark for XML data management. In

Proceedings of BTW2001, pages 264–273, 2001.

[7] T. Bray, F. Yergeau, J. Cowan, J. Paoli, C. M. Sperberg-McQueen,

and E. Maler. Extensible markup language (XML) 1.1, February 2004.

http://www.w3.org/TR/2004/REC-xml11-20040204/.

[8] S. Bressan, M.-L. Lee, Y. G. Li, Z. Lacroix, and U. Nambiar. The XOO7 Benchmark.

In EEXTT, pages 146–147, 2002.

[9] S. Bressan, Y. G. Li, G. Dobbie, Z. Lacroix, M. L. Lee, U. Nambiar, and B. Wadhwa.

XOO7: applying OO7 benchmark to XML query processing tool. In Proceedings of

the tenth international conference on Information and knowledge management, pages

167–174. ACM, 2001.

[10] C. Byun, I. Yun, and S. Park. A New Optimistic Concurrency Control in Valid XML.

J. Inf. Sci. Eng., 25(1):11–31, 2009.

[11] D. Chamberlin, A. Berglund, and S. Boag. XML Path Language (XPath) 2.0, De-

cember 2010. http://www.w3.org/TR/xpath20/.

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/

146 SECTION 8. BIBLIOGRAPHY

[12] D. Chamberlin, D. Florescu, J. Robie, J. Melton, and J. Simon. XQuery Update

Facility 1.0. http://www.w3.org/TR/xquery-update-10/.

[13] A. B. Chaudhri, A. Rashid, and R. Zicari. XML Data Management - Native XML

and XML-Enabled Database Systems. Addison Wesley Professional, 2003. ISBN: 0-

201-84452-4.

[14] T. Chen, J. Lu, and T. W. Ling. On boosting holism in XML twig pattern match-

ing using structural indexing techniques. In Proceedings of the 2005 ACM SIGMOD

international conference on Management of data, SIGMOD ’05, pages 455–466, New

York, NY, USA, 2005. ACM.

[15] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı-Oliet, J. Meseguer, and J. F.

Quesada. Maude: Specification and programming in rewriting logic. Theoretical

Computer Science, 285(2):187–243, 2002.

[16] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,

13(6):377–387, 1970.

[17] C. J. Date. An Introduction to Database Systems, 6th Edition. Addison-Wesley, 1995.

[18] D. Draper, P. Fankhauser, M. Fernández, A. Malhotra, K. Rose, M. Rys, J. Siméon,

and P. Wadler. XQuery 1.0 and XPath 2.0 formal semantics, September 2005.

http://www.w3.org/TR/xquery-semantics/.

[19] D. Draper, P. Fankhauser, M. Fernández, A. Malhotra, K. Rose, M. Rys, J. Siméon,

and P. Wadler. XQuery 1.0 and XPath 2.0 formal semantics. W3C Recommendation,

2010.

[20] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency

and predicate locks in a database system. Commun. ACM, 19(11):624–633, Nov. 1976.

[21] M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery 1.0 and

XPath 2.0 Data Model (XDM), December 2010. http://www.w3.org/TR/xpath-

datamodel/.

[22] J. Gray and kolektiv. Granularity of Locks and Degrees of Consistency in a Shared

Database. Modeling in Data Base Management Systems, pages 365–394, 1976.

SECTION 8. BIBLIOGRAPHY 147

[23] J. Gray and A. Reuter. Transaction Processing : Concepts and Techniques. Morgan

Kaufmann Publishers, 1st edition, 1993.

[24] N. Gvert and G. Kazai. Overview of the INitiative for the Evaluation of XML retrieval

(INEX) 2002. In In Fuhr et al, pages 1–17. ERCIM, 2003.

[25] M. Haustein and T. Härder. Optimizing lock protocols for native XML processing.

Data Knowl. Eng., 65(1):147–173, 2008.

[26] M. Haustein and T. Harder. taDOM: A Tailored Synchronization Concept with Tun-

able Lock Granularity for the DOM API. In: Proc. ADBIS 2003, Dresden, 1:88–102,

Sept. 2003.

[27] M. P. Haustein and T. Härder. A synchronization concept for the DOM API. In

H. Höpfner, G. Saake, and E. Schallehn, editors, Grundlagen von Datenbanken, pages

80–84. Fakultät für Informatik, Universität Magdeburg, 2003.

[28] M. P. Haustein and T. Härder. An efficient infrastructure for native transactional

XML processing. Data Knowl. Eng., 61(3):500–523, 2007.

[29] M. P. Haustein and T. Härder. XTC Project. http://wwwlgis.informatik.uni-kl.

de/cms/?id=36, 2007.

[30] M. P. Haustein and T. Härder. taDOM scenarios. http://wwwlgis.informatik.

uni-kl.de/archiv/wwwdvs.informatik.uni-kl.de/agdbis/projects/xtc/

report/taDOM.html, 2012.

[31] M. P. Haustein, T. Härder, C. Mathis, and M. W. 0002. DeweyIDs - The Key to Fine-

Grained Management of XML Documents. In C. A. Heuser, editor, SBBD, pages

85–99. UFU, 2005.

[32] S. Helmer, C.-C. Kanne, and G. Moerkotte. Evaluating Lock-based Protocols for

Cooperation on XML Documents. SIGMOD RECORD, 33:58–63, 2004.

[33] IBM. Comparison of the XML model and the relational model. http:

//publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.

apdv.embed.doc/doc/c0023811.htm, May 2008.

[34] T. X. Initiative. XML:DB API Draft. http://xmldb-org.sourceforge.net/xapi/

xapi-draft.html, 2001.

http://wwwlgis.informatik.uni-kl.de/cms/?id=36
http://wwwlgis.informatik.uni-kl.de/cms/?id=36
http://wwwlgis.informatik.uni-kl.de/archiv/wwwdvs.informatik.uni-kl.de/agdbis/projects/xtc/report/taDOM.html
http://wwwlgis.informatik.uni-kl.de/archiv/wwwdvs.informatik.uni-kl.de/agdbis/projects/xtc/report/taDOM.html
http://wwwlgis.informatik.uni-kl.de/archiv/wwwdvs.informatik.uni-kl.de/agdbis/projects/xtc/report/taDOM.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.embed.doc/doc/c0023811.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.embed.doc/doc/c0023811.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.embed.doc/doc/c0023811.htm
http://xmldb-org.sourceforge.net/xapi/xapi-draft.html
http://xmldb-org.sourceforge.net/xapi/xapi-draft.html

148 SECTION 8. BIBLIOGRAPHY

[35] ISO. ISO/IEC 9075-1:2011 Information technology — Database languages — SQL —

Part 1: Framework (SQL/Framework). Dec. 2011.

[36] K.-F. Jea and S.-Y. Chen. A high concurrency XPath-based locking protocol for XML

databases. Information and Software Technology, 48(8):708 – 716, 2006.

[37] P. J́ıra, M. Kostolný, and P. Strnad. RedXML Project. https://github.com/

jirapave/RedisXmlConcept, 2013.

[38] S. C. Kleene. Representation of events in nerve nets and finite automata. 1951.

[39] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM

Trans. Database Syst., 6(2):213–226, June 1981.

[40] P. Loupal. XML-λ : A functional framework for XML. PhD thesis, Department of

Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical

University in Prague, February 2010.

[41] P. Loupal, I. Mlykova, M. Necasky, K. Richta, and P. Strnad. Storing XML Data - The

ExDB and CellStore Way in the Context of Current Approaches. INFORMATICA,

23(2):247–282, 2012.

[42] N. Marti-Oliet and J. Meseguer. Rewriting logic as a logical and semantic framework.

In Handbook of Philosophical Logic, pages 1–87. Springer, 2002.

[43] M. Nicola, I. Kogan, R. Raghu, A. Gonzalez, B. Schiefer, and K. Xie. Trans-

action Processing over XML (TPoX). http://tpox.sourceforge.net/TPoX_

BenchmarkProposal_v1.2.pdf, 2008.

[44] M. Nicola, I. Kogan, and B. Schiefer. An XML transaction processing benchmark.

In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international conference on

Management of data, pages 937–948, New York, NY, USA, 2007. ACM Press.

[45] P. Pleshachkov, P. Chardin, and S. Kuznetsov. A DataGuide-Based Concurrency

Control Protocol for Cooperation on XML Data. In J. Eder, H.-M. Haav, A. Kalja,

and J. Penjam, editors, Advances in Databases and Information Systems, volume 3631

of Lecture Notes in Computer Science, pages 268–282. Springer Berlin Heidelberg,

2005.

https://github.com/jirapave/RedisXmlConcept
https://github.com/jirapave/RedisXmlConcept
http://tpox.sourceforge.net/TPoX_BenchmarkProposal_v1.2.pdf
http://tpox.sourceforge.net/TPoX_BenchmarkProposal_v1.2.pdf

SECTION 8. BIBLIOGRAPHY 149

[46] P. Pleshachkov, P. Chardin, and S. Kuznetsov. XDGL: XPath-Based Concurrency

Control Protocol for XML Data. In M. Jackson, D. Nelson, and S. Stirk, editors,

Database: Enterprise, Skills and Innovation, volume 3567 of Lecture Notes in Com-

puter Science, pages 73–73. Springer Berlin / Heidelberg, 2005.

[47] P. Pleshachkov and S. Kuznetsov. SXDGL: Snapshot Based Concurrency Control

Protocol for XML Data. In XSym’07, pages 122–136, 2007.

[48] P. Pleshachkov and L. Novak. Transaction Isolation in the Sedna Native XML DBMS.

SYRCoDIS 2004, 2004.

[49] J. Pokorny, K. Richta, and M. Valenta. CellStore: Educational and Experimental

XML-Native DBMS. Information Systems Development: Challenges in Practice, The-

ory, and Education, page 989, 2008.

[50] R. Ramakrishnan and J. Gehrke. Database management systems (3. ed.). McGraw-

Hill, 2003.

[51] S. Sanfilippo. Redis Project. http://redis.io, 2013.

[52] R. Savage and J. Leffler. BNF Grammar for ISO/IEC 9075:1999 - Database Language

SQL (SQL-99). http://savage.net.au/SQL/sql-99.bnf.html2008-05-20, 2004.

[53] A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, and R. Busse. XMark:

A benchmark for XML data management. In Proceedings of the 28th international

conference on Very Large Data Bases, pages 974–985. VLDB Endowment, 2002.

[54] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M. J. Carey,

and R. Busse. The XML Benchmark Project. Technical Report INS-R0103, CWI,

Amsterdam, The Netherlands, April 2001.

[55] A. Siirtola and M. Valenta. Verifying parameterized taDOM+ lock managers. SOF-

SEM 2008, pages 460–472, 2008.

[56] P. Strnad. Rozvrhovač transakćı v projektu Cellstore (In Czech), 2007.

[57] P. Strnad. XQUF-LP Prototype Implementation. https://github.com/strny/

xquf-lp, 2013.

http://redis.io
http://savage.net.au/SQL/sql-99.bnf.html
https://github.com/strny/xquf-lp
https://github.com/strny/xquf-lp

150 SECTION 8. BIBLIOGRAPHY

[58] P. Strnad and P. Loupal. Using taDOM Locking Protocol in a Functional XML Update

Language. In Proc. DATESO 2008 Workshop, 1:25–37, 2008.

[59] P. Strnad, O. Macek, and P. Jira. Mapping XML to Key-Value Database. In DBKDA

2013, The Fifth International Conference on Advances in Databases, Knowledge, and

Data Applications, pages 121–127, 2013.

[60] P. Strnad and M. Valenta. Object-oriented Implementation of Transaction Manager

in CellStore Project. Objekty 2006, Praha, pages 273–283, 2006.

[61] P. Strnad and M. Valenta. On Benchmarking of Transaction Managers. In Database

Systems for Advanced Applications, DASFAA 2009 International Workshops: Bench-

marX, MBC, MCIS, PPDA, WDPP, PhD., 1, 2009.

[62] The W3C Consortium. Document Object Model (DOM), 2005. http://www.w3.org/

DOM/.

[63] The W3C Consortium. W3C Homepage. http://www.w3.org, 2013.

[64] K. Toman. Storing XML Data In a Native Repository. In V. Snášel, J. Pokorný, and

K. Richta, editors, Proceedings of the Dateso 2004 Annual International Workshop

on DAtabases, TExts, Specifications and Objects, Desna, Czech Republic, April 14-16,

2004, volume 98 of CEUR Workshop Proceedings, pages 51–62. CEUR-WS.org, 2004.

[65] A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude 2. Electronic Notes in

Theoretical Computer Science, 71:282–300, 2004.

[66] J. Vraný and A. Bergel. Perseus Framework. http://swing.fit.cvut.cz/projects/

perseus, 2008.

[67] J. Vraný, P. Strnad, and M. Valenta. XML:DB API Draft CellStore Implementation.

https://swing.fit.cvut.cz/projects/cellstore, 2010.

[68] J. Vraný, M. Valenta, and P. Strnad. CellStore Project. https://swing.fit.cvut.

cz/projects/cellstore/, 2007.

[69] XMLDB. XML:DB API. http://www.xmldb.org, 2001.

http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org
http://swing.fit.cvut.cz/projects/perseus
http://swing.fit.cvut.cz/projects/perseus
https://swing.fit.cvut.cz/projects/cellstore
https://swing.fit.cvut.cz/projects/cellstore/
https://swing.fit.cvut.cz/projects/cellstore/
http://www.xmldb.org

SECTION 9. REFEREED PUBLICATIONS OF THE AUTHOR 151

9 Refereed publications of the author

[A.1] Strnad P., Macek O., Jira P. Mapping XML to Key-Value Database. In DBKDA

2013, The Fifth International Conference on Advances in Databases, Knowledge, and

Data Applications, Red Hook: Curran Associates, Inc., 2013, vol. 1, pages 121–127,

2013.

[A.2] Loupal P., Mlynkova I., Necasky M., Richta K., Strnad P. Storing XML Data - The

ExDB and CellStore Way in the Context of Current Approaches. Informatica, vol.

23, no. 2, 247–282, 2012.

[A.3] Loupal P., Kantor A., Macek O., Strnad P. On Indexing in Native XML Database

Systems. In DATESO 2012, Prague: MATFYSPRESS, 2012, pages 127–134, 2012.

[A.4] Strnad P., Valenta M. On Benchmarking Transaction Managers. In Database Systems

for Advanced Applications DASFAA 2009 International Workshops: BenchmarX,

MCIS, WDPP, PPDA, MBC, PhD, Brisbane, Australia, April 20. - 23., Berlin:

Springer, 2009, pages 79–92, 2009.

[A.5] Strnad P. Measurement of Transaction Throughput in Native XML Database. In

CTU Workshop 2009, Prague: CTU, 2009, pages 108–109, 2009.

[A.6] Strnad P., Loupal P. Using taDOM Locking Protocol in a Functional XML Up-

date Language. In Proceedings of the Dateso 2008 Workshop, Ostrava: Technical

University of Ostrava, 2008, pages 25–37, 2008.

[A.7] Strnad P., Valenta M. Object-oriented Implementation of Transaction Manager in

CellStore. In Objekty 2006, Ostrava: Technical University of Ostrava, 2006, pages

273–282, 2006.

152 SECTION 9. REFEREED PUBLICATIONS OF THE AUTHOR

APPENDIX A. XQUERY 1.0 GRAMMAR WITH UPDATES AND TCL 153

A XQuery 1.0 Grammar with Updates and TCL

This Appendix contains XQuery Update Facility 1.0 EBNF grammar extended by trans-

action control expressions.

[1] Module ::= VersionDecl? (LibraryModule | MainModule)

[2] VersionDecl ::= "xquery" "version" StringLiteral

("encoding" StringLiteral)? Separator

[3] MainModule ::= Prolog QueryBody

[4] LibraryModule ::= ModuleDecl Prolog

[5] ModuleDecl ::= "module" "namespace" NCName "=" URILiteral

Separator

[6] Prolog ::= ((DefaultNamespaceDecl

| Setter

| NamespaceDecl

| Import) Separator)*

((VarDecl | FunctionDecl | OptionDecl) Separator)*

[7] Setter ::= BoundarySpaceDecl

| DefaultCollationDecl

| BaseURIDecl

| ConstructionDecl

| OrderingModeDecl

| EmptyOrderDecl

| RevalidationDecl

| CopyNamespacesDecl

| TransactionDecl

[8] Import ::= SchemaImport | ModuleImport

[9] Separator ::= ";"

[10] NamespaceDecl ::= "declare" "namespace" NCName "=" URILiteral

[11] BoundarySpaceDecl ::= "declare" "boundary-space"

("preserve" | "strip")

[12] DefaultNamespaceDecl ::= "declare" "default"

("element" | "function")

"namespace" URILiteral

[13] OptionDecl ::= "declare" "option" QName StringLiteral

154 APPENDIX A. XQUERY 1.0 GRAMMAR WITH UPDATES AND TCL

[14] OrderingModeDecl ::= "declare" "ordering"

("ordered" | "unordered")

[15] EmptyOrderDecl ::= "declare" "default" "order"

"empty" ("greatest" | "least")

[16] CopyNamespacesDecl ::= "declare" "copy-namespaces"

PreserveMode "," InheritMode

[17] PreserveMode ::= "preserve" | "no-preserve"

[18] InheritMode ::= "inherit" | "no-inherit"

[19] DefaultCollationDecl ::= "declare" "default" "collation"

URILiteral

[20] BaseURIDecl ::= "declare" "base-uri" URILiteral

[21] SchemaImport ::= "import" "schema" SchemaPrefix? URILiteral

("at" URILiteral ("," URILiteral)*)?

[22] SchemaPrefix ::= ("namespace" NCName "=")

| ("default" "element" "namespace")

[23] ModuleImport ::= "import" "module" ("namespace" NCName "=")?

URILiteral ("at" URILiteral ("," URILiteral)*)?

[24] VarDecl ::= "declare" "variable" "$" QName TypeDeclaration?

((":=" ExprSingle) | "external")

[25] ConstructionDecl ::= "declare" "construction"

("strip" | "preserve")

[26] FunctionDecl ::= "declare" "updating"? "function" QName

"(" ParamList? ")"

("as" SequenceType)? (EnclosedExpr | "external")

[27] ParamList ::= Param ("," Param)*

[28] Param ::= "$" QName TypeDeclaration?

[29] EnclosedExpr ::= "{" Expr "}"

[30] QueryBody ::= Expr

[31] Expr ::= ExprSingle ("," ExprSingle)*

[32] ExprSingle ::= FLWORExpr

| QuantifiedExpr

| TypeswitchExpr

| IfExpr

| InsertExpr

APPENDIX A. XQUERY 1.0 GRAMMAR WITH UPDATES AND TCL 155

| DeleteExpr

| RenameExpr

| ReplaceExpr

| TransformExpr

| OrExpr

| BeginExpr

| CommitExpr

| RollbackExpr

[33] FLWORExpr ::= (ForClause | LetClause)+ WhereClause?

OrderByClause? "return" ExprSingle

[34] ForClause ::= "for" "$" VarName TypeDeclaration?

PositionalVar? "in"

ExprSingle ("," "$" VarName TypeDeclaration?

PositionalVar? "in" ExprSingle)*

[35] PositionalVar ::= "at" "$" VarName

[36] LetClause ::= "let" "$" VarName TypeDeclaration? ":=" ExprSingle

("," "$" VarName TypeDeclaration? ":=" ExprSingle)*

[37] WhereClause ::= "where" ExprSingle

[38] OrderByClause ::= (("order" "by") | ("stable" "order" "by"))

OrderSpecList

[39] OrderSpecList ::= OrderSpec ("," OrderSpec)*

[40] OrderSpec ::= ExprSingle OrderModifier

[41] OrderModifier ::= ("ascending" | "descending")?

("empty" ("greatest" | "least"))?

("collation" URILiteral)?

[42] QuantifiedExpr ::= ("some" | "every") "$" VarName

TypeDeclaration? "in" ExprSingle

("," "$" VarName TypeDeclaration?

"in" ExprSingle)* "satisfies" ExprSingle

[43] TypeswitchExpr ::= "typeswitch" "(" Expr ")"

CaseClause+ "default" ("$" VarName)?

"return" ExprSingle

[44] CaseClause ::= "case" ("$" VarName "as")? SequenceType

"return" ExprSingle

156 APPENDIX A. XQUERY 1.0 GRAMMAR WITH UPDATES AND TCL

[45] IfExpr ::= "if" "(" Expr ")" "then"

ExprSingle "else" ExprSingle

[46] OrExpr ::= AndExpr ("or" AndExpr)*

[47] AndExpr ::= ComparisonExpr ("and" ComparisonExpr)*

[48] ComparisonExpr ::= RangeExpr ((ValueComp

| GeneralComp

| NodeComp) RangeExpr)?

[49] RangeExpr ::= AdditiveExpr ("to" AdditiveExpr)?

[50] AdditiveExpr ::= MultiplicativeExpr

(("+" | "-") MultiplicativeExpr)*

[51] MultiplicativeExpr ::= UnionExpr (("*"

| "div"

| "idiv"

| "mod") UnionExpr)*

[52] UnionExpr ::= IntersectExceptExpr

(("union" | "|") IntersectExceptExpr)*

[53] IntersectExceptExpr ::= InstanceofExpr (("intersect"

| "except")

InstanceofExpr)*

[54] InstanceofExpr ::= TreatExpr ("instance" "of" SequenceType)?

[55] TreatExpr ::= CastableExpr ("treat" "as" SequenceType)?

[56] CastableExpr ::= CastExpr ("castable" "as" SingleType)?

[57] CastExpr ::= UnaryExpr ("cast" "as" SingleType)?

[58] UnaryExpr ::= ("-" | "+")* ValueExpr

[59] ValueExpr ::= ValidateExpr | PathExpr | ExtensionExpr

[60] GeneralComp ::= "=" | "!=" | "<" | "<=" | ">" | ">="

[61] ValueComp ::= "eq" | "ne" | "lt" | "le" | "gt" | "ge"

[62] NodeComp ::= "is" | "<<" | ">>"

[63] ValidateExpr ::= "validate" ValidationMode? "{" Expr "}"

[64] ValidationMode ::= "lax" | "strict"

[65] ExtensionExpr ::= Pragma+ "{" Expr? "}"

[66] Pragma ::= "(#" S? QName (S PragmaContents)? "#)"

[67] PragmaContents ::= (Char* - (Char* ’#)’ Char*))

[68] PathExpr ::= ("/" RelativePathExpr?)

APPENDIX A. XQUERY 1.0 GRAMMAR WITH UPDATES AND TCL 157

| ("//" RelativePathExpr)

| RelativePathExpr

[69] RelativePathExpr ::= StepExpr (("/" | "//") StepExpr)*

[70] StepExpr ::= FilterExpr | AxisStep

[71] AxisStep ::= (ReverseStep | ForwardStep) PredicateList

[72] ForwardStep ::= (ForwardAxis NodeTest) | AbbrevForwardStep

[73] ForwardAxis ::= ("child" "::")

| ("descendant" "::")

| ("attribute" "::")

| ("self" "::")

| ("descendant-or-self" "::")

| ("following-sibling" "::")

| ("following" "::")

[74] AbbrevForwardStep ::= "@"? NodeTest

[75] ReverseStep ::= (ReverseAxis NodeTest) | AbbrevReverseStep

[76] ReverseAxis ::= ("parent" "::")

| ("ancestor" "::")

| ("preceding-sibling" "::")

| ("preceding" "::")

| ("ancestor-or-self" "::")

[77] AbbrevReverseStep ::= ".."

[78] NodeTest ::= KindTest | NameTest

[79] NameTest ::= QName | Wildcard

[80] Wildcard ::= "*"

| (NCName ":" "*")

| ("*" ":" NCName)

[81] FilterExpr ::= PrimaryExpr PredicateList

[82] PredicateList ::= Predicate*

[83] Predicate ::= "[" Expr "]"

[84] PrimaryExpr ::= Literal

| VarRef

| ParenthesizedExpr

| ContextItemExpr

| FunctionCall

158 APPENDIX A. XQUERY 1.0 GRAMMAR WITH UPDATES AND TCL

| OrderedExpr

| UnorderedExpr

| Constructor

[85] Literal ::= NumericLiteral | StringLiteral

[86] NumericLiteral ::= IntegerLiteral | DecimalLiteral

| DoubleLiteral

[87] VarRef ::= "$" VarName

[88] VarName ::= QName

[89] ParenthesizedExpr ::= "(" Expr? ")"

[90] ContextItemExpr ::= "."

[91] OrderedExpr ::= "ordered" "{" Expr "}"

[92] UnorderedExpr ::= "unordered" "{" Expr "}"

[93] FunctionCall ::= QName "(" (ExprSingle ("," ExprSingle)*)? ")"

[94] Constructor ::= DirectConstructor

| ComputedConstructor

[95] DirectConstructor ::= DirElemConstructor

| DirCommentConstructor

| DirPIConstructor

[96] DirElemConstructor ::= "<" QName DirAttributeList

("/>" | (">" DirElemContent*

"</" QName S? ">"))

[97] DirAttributeList ::= (S (QName S? "=" S? DirAttributeValue)?)*

[98] DirAttributeValue ::= (’"’ (EscapeQuot

| QuotAttrValueContent)* ’"’)

| ("’" (EscapeApos

| AposAttrValueContent)* "’")

[99] QuotAttrValueContent ::= QuotAttrContentChar

| CommonContent

[100] AposAttrValueContent ::= AposAttrContentChar

| CommonContent

[101] DirElemContent ::= DirectConstructor

| CDataSection

| CommonContent

| ElementContentChar

APPENDIX A. XQUERY 1.0 GRAMMAR WITH UPDATES AND TCL 159

[102] CommonContent ::= PredefinedEntityRef

| CharRef | "{{" | "}}" | EnclosedExpr

[103] DirCommentConstructor ::= "<!--" DirCommentContents "-->"

[104] DirCommentContents ::= ((Char - ’-’) | (’-’ (Char - ’-’)))*

[105] DirPIConstructor ::= "<?" PITarget (S DirPIContents)? "?>"

[106] DirPIContents ::= (Char* - (Char* ’?>’ Char*))

[107] CDataSection ::= "<![CDATA[" CDataSectionContents "]]>"

[108] CDataSectionContents ::= (Char* - (Char* ’]]>’ Char*))

[109] ComputedConstructor ::= CompDocConstructor

| CompElemConstructor

| CompAttrConstructor

| CompTextConstructor

| CompCommentConstructor

| CompPIConstructor

[110] CompDocConstructor ::= "document" "{" Expr "}"

[111] CompElemConstructor ::= "element" (QName | ("{" Expr "}"))

"{" ContentExpr? "}"

[112] ContentExpr ::= Expr

[113] CompAttrConstructor ::= "attribute" (QName | ("{" Expr "}"))

"{" Expr? "}"

[114] CompTextConstructor ::= "text" "{" Expr "}"

[115] CompCommentConstructor ::= "comment" "{" Expr "}"

[116] CompPIConstructor ::= "processing-instruction"

(NCName | ("{" Expr "}")) "{" Expr? "}"

[117] SingleType ::= AtomicType "?"?

[118] TypeDeclaration ::= "as" SequenceType

[119] SequenceType ::= ("empty-sequence" "(" ")")

| (ItemType OccurrenceIndicator?)

[120] OccurrenceIndicator ::= "?" | "*" | "+"

[121] ItemType ::= KindTest | ("item" "(" ")") | AtomicType

[122] AtomicType ::= QName

[123] KindTest ::= DocumentTest

| ElementTest

| AttributeTest

160 APPENDIX A. XQUERY 1.0 GRAMMAR WITH UPDATES AND TCL

| SchemaElementTest

| SchemaAttributeTest

| PITest

| CommentTest

| TextTest

| AnyKindTest

[124] AnyKindTest ::= "node" "(" ")"

[125] DocumentTest ::= "document-node" "("

(ElementTest | SchemaElementTest)? ")"

[126] TextTest ::= "text" "(" ")"

[127] CommentTest ::= "comment" "(" ")"

[128] PITest ::= "processing-instruction"

"(" (NCName | StringLiteral)? ")"

[129] AttributeTest ::= "attribute" "("

(AttribNameOrWildcard ("," TypeName)?)? ")"

[130] AttribNameOrWildcard ::= AttributeName | "*"

[131] SchemaAttributeTest ::= "schema-attribute"

"(" AttributeDeclaration ")"

[132] AttributeDeclaration ::= AttributeName

[133] ElementTest ::= "element" "(" (ElementNameOrWildcard

("," TypeName "?"?)?)? ")"

[134] ElementNameOrWildcard ::= ElementName | "*"

[135] SchemaElementTest ::= "schema-element" "(" ElementDeclaration ")"

[136] ElementDeclaration ::= ElementName

[137] AttributeName ::= QName

[138] ElementName ::= QName

[139] TypeName ::= QName

[140] URILiteral ::= StringLiteral

[141] RevalidationDecl ::= "declare" "revalidation"

("strict" | "lax" | "skip")

[142] InsertExprTargetChoice ::= (("as" ("first" | "last"))? "into")

| "after"

| "before"

[143] InsertExpr ::= "insert" ("node" | "nodes") SourceExpr

APPENDIX A. XQUERY 1.0 GRAMMAR WITH UPDATES AND TCL 161

InsertExprTargetChoice TargetExpr

[144] DeleteExpr ::= "delete" ("node" | "nodes") TargetExpr

[145] ReplaceExpr ::= "replace" ("value" "of")? "node"

TargetExpr "with" ExprSingle

[146] RenameExpr ::= "rename" "node" TargetExpr "as" NewNameExpr

[147] SourceExpr ::= ExprSingle

[148] TargetExpr ::= ExprSingle

[149] NewNameExpr ::= ExprSingle

[150] TransformExpr ::= "copy" "$" VarName ":=" ExprSingle

("," "$" VarName ":=" ExprSingle)*

"modify" ExprSingle "return" ExprSingle

[200] BeginExpr ::= "BEGIN"

[201] CommitExpr ::= "COMMIT"

[202] RollbackExpr ::= "ROLLBACK"

[203] TransactionDecl ::= "declare" "transaction" "isolation" "level"

(("read" ("uncommitted" | "committed"))

|("repeatable" "read")

|("serializable")

162 APPENDIX A. XQUERY 1.0 GRAMMAR WITH UPDATES AND TCL

APPENDIX B. LIGHT-WEIGHT XDM SPECIFICATION 163

B Light-Weight XDM Specification

B.1 Model Elements

B.1.1 Document Nodes

Document Nodes encapsulate XML documents. Documents have the following properties:

• base-uri, possibly empty.

• children, possibly empty.

• unparsed-entities, possibly empty.

• document-uri, possibly empty.

• string-value

• typed-value

Document Nodes must satisfy the following constraints.

• The children must consist exclusively of Element and Text Nodes if it is not empty.

Document Nodes can never appear as children.

• If a node N is among the children of a Document Node D, then the parent of N must

be D.

• If a node N has a parent Document Node D, then N must be among the children of

D.

• The string-value property of a Document Node must be the concatenation of the

string-values of all its Text Node descendants in document order or, if the document

has no such descendants, the zero-length string.

Accessors

dm:attributes

Returns the empty sequence

164 APPENDIX B. LIGHT-WEIGHT XDM SPECIFICATION

dm:base-uri

Returns the value of the base-uri property.

dm:children

Returns the value of the children property.

dm:document-uri

Returns the absolute URI of the resource from which the Document Node was constructed,

or the empty sequence if no such absolute URI is available.

dm:is-id

Returns the empty sequence.

dm:is-idrefs

Returns the empty sequence.

dm:nilled

Returns the empty sequence.

dm:node-kind

Returns document.

dm:node-name

Returns the empty sequence.

dm:parent

Returns the empty sequence.

dm:string-value

Returns the value of the string-value property.

dm:type-name

Returns the empty sequence.

dm:typed-value

Returns the value of the typed-value property.

dm:unparsed-entity-public-id

APPENDIX B. LIGHT-WEIGHT XDM SPECIFICATION 165

Returns the public identifier of the specified unparsed entity or the empty sequence if no

such entity exists.

dm:unparsed-entity-system-id

Returns the system identifier of the specified unparsed entity or the empty sequence if no

such entity exists.

B.1.2 Element Nodes

Element Nodes encapsulate XML elements. Elements have the following properties:

• base-uri, possibly empty.

• node-name

• parent, possibly empty

• type-name

• children, possibly empty

• attributes, possibly empty

• nilled

• string-value

• typed-value

• is-id

• is-idrefs

Element Nodes must satisfy the following constraints.

• The children must consist exclusively of Element and Text Nodes if it is not empty.

• The Attribute Nodes of an element must have distinct xs:QNames.

• If a node N is among the children of an element E, then the parent of N must be E.

166 APPENDIX B. LIGHT-WEIGHT XDM SPECIFICATION

• Exclusive of Attribute Nodes, if a node N has a parent element E, then N must be

among the children of E. (Attribute Nodes have a parent, but they do not appear

among the children of their parent.)

• The data model permits Element Nodes without parents (to represent partial results

during expression processing, for example). Such Element Nodes must not appear

among the children of any other node.

• If an Attribute Node A is among the attributes of an element E, then the parent of

A must be E.

• If an Attribute Node A has a parent element E, then A must be among the attributes

of E.

• The data model permits Attribute Nodes without parents. Such Attribute Nodes

must not appear among the attributes of any Element Node.

• If the dm:type-name of an Element Node is xs:untyped, then the dm:type-name of

all its descendant elements must also be xs:untyped and the dm:type-name of all its

Attribute Nodes must be xs:untypedAtomic.

• If the dm:type-name of an Element Node is xs:untyped, then the nilled property must

be false.

• If the nilled property is true, then the children property must not contain Element

Nodes or Text Nodes.

• For every expanded QName that appears in the dm:node-name of the element, the

dm:node-name of any Attribute Node among the attributes of the element, or in any

value of type xs:QName or xs:NOTATION (or any type derived from those types) that

appears in the typed-value of the element or the typed-value of any of its attributes,

if the expanded QName has a non-empty URI, then there must be a prefix binding

for this URI among the namespaces of this Element Node.

• If any of the expanded QNames has an empty URI, then there must not be any

binding among the namespaces of this Element Node which binds the empty prefix

to a URI.

APPENDIX B. LIGHT-WEIGHT XDM SPECIFICATION 167

• The string-value property of an Element Node must be the concatenation of the

string-values of all its Text Node descendants in document order or, if the element

has no such descendants, the zero-length string.

Accessors

dm:attributes

Returns the value of the attributes property. The order of Attribute Nodes is stable but

implementation dependent.

dm:base-uri

Returns the value of the base-uri property.

dm:children

Returns the value of the children property.

dm:document-uri

Returns the empty sequence.

dm:is-id

Returns the value of the is-id property.

dm:is-idrefs

Returns the value of the is-idrefs property.

dm:nilled

Returns the value of the nilled property.

dm:node-kind

Returns element.

dm:node-name

Returns the value of the node-name property.

dm:parent

Returns the value of the parent property.

dm:string-value

Returns the value of the string-value property.

168 APPENDIX B. LIGHT-WEIGHT XDM SPECIFICATION

dm:type-name

Returns the value of the type-name property.

dm:typed-value

Returns the value of the typed-value property.

dm:unparsed-entity-public-id

Returns the empty sequence.

dm:unparsed-entity-system-id

Returns the empty sequence.

B.1.3 Attribute Nodes

Attribute Nodes represent XML attributes. Attributes have the following properties:

• node-name

• parent, possibly empty

• type-name

• string-value

• typed-value

• is-id

• is-idrefs

Attribute Nodes must satisfy the following constraints.

• If an Attribute Node A is among the attributes of an element E, then the parent of

A must be E.

• If a Attribute Node A has a parent element E, then A must be among the attributes

of E.

• The data model permits Attribute Nodes without parents (to represent partial results

during expression processing, for example). Such attributes must not appear among

the attributes of any Element Node.

APPENDIX B. LIGHT-WEIGHT XDM SPECIFICATION 169

• In the node-name of an attribute node, if a namespace URI is present then a prefix

must also be present.

• For convenience, the Element Node that owns this attribute is called its ”parent”

even though an Attribute Node is not a ”child” of its parent element.

Accessors

dm:attributes

Returns the empty sequence.

dm:base-uri

If the attribute has a parent, returns the value of the dm:base-uri of its parent; otherwise

it returns the empty sequence.

dm:children

Returns the empty sequence.

dm:document-uri

Returns the empty sequence.

dm:is-id

Returns the value of the is-id property.

dm:is-idrefs

Returns the value of the is-idrefs property.

dm:nilled

Returns the empty sequence.

dm:node-kind

Returns attribute.

dm:node-name

Returns the value of the node-name property.

dm:parent

Returns the value of the parent property.

dm:string-value

170 APPENDIX B. LIGHT-WEIGHT XDM SPECIFICATION

Returns the value of the string-value property.

dm:type-name

Returns the value of the type-name property.

dm:typed-value

Returns the value of the typed-value property.

dm:unparsed-entity-public-id

Returns the empty sequence.

dm:unparsed-entity-system-id

Returns the empty sequence.

B.1.4 Text Nodes

Text Nodes encapsulate XML character content. Text has the following properties:

• content

• parent, possibly empty.

Text Nodes must satisfy the following constraint:

• If the parent of a text node is not empty, the Text Node must not contain the zero-

length string as its content.

• In addition, Document and Element Nodes impose the constraint that two consecu-

tive Text Nodes can never occur as adjacent siblings. When a Document or Element

Node is constructed, Text Nodes that would be adjacent must be combined into a

single Text Node. If the resulting Text Node is empty, it must never be placed among

the children of its parent, it is simply discarded.

Accessors

dm:attributes

Returns the empty sequence.

dm:base-uri

APPENDIX B. LIGHT-WEIGHT XDM SPECIFICATION 171

If the Text Node has a parent, returns the value of the dm:base-uri of its parent; otherwise,

returns the empty sequence.

dm:children

Returns the empty sequence.

dm:document-uri

Returns the empty sequence.

dm:is-id

Returns the empty sequence.

dm:is-idrefs

Returns the empty sequence.

dm:nilled

Returns the empty sequence.

dm:node-kind

Returns text.

dm:node-name

Returns the empty sequence.

dm:parent

Returns the value of the parent property.

dm:string-value

Returns the value of the content property.

dm:type-name

Returns xs:untypedAtomic.

dm:typed-value

Returns the value of the content property as an xs:untypedAtomic.

dm:unparsed-entity-public-id

Returns the empty sequence.

dm:unparsed-entity-system-id

172 APPENDIX B. LIGHT-WEIGHT XDM SPECIFICATION

Returns the empty sequence.

APPENDIX C. CELLSTORE PERFORMANCE EVALUATION 173

C CellStore Performance Evaluation

A1 /site/closed_auctions/closed_auction/annotation/description/text/keyword

A2 //closed_auction//keyword

A3 /site/closed_auctions/closed_auction//keyword

C3
/site/people/person[profile/@income = /site/open_auctions/

open_auction/current]/name

Table C.1: Selected queries from the XPathMark benchmark

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1 2 5 10 20 25

T
im

e
 [

m
s
]

Document Size [MB]

A2 - Query Evaluation Time

JAXP
Saxon
Xalan

XML-Lambda
CellStore

Figure C.1: CellStore A2 Query Performance

174 APPENDIX C. CELLSTORE PERFORMANCE EVALUATION

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 2 5 10 20 25

T
im

e
 [
m

s
]

Document Size [MB]

A3 - Query Evaluation Time

JAXP
Saxon
Xalan

XML-Lambda
CellStore

Figure C.2: CellStore A3 Query Performance

 0

 10000

 20000

 30000

 40000

 50000

 60000

 1 2 5 10 20 25

T
im

e
 [
m

s
]

Document Size [MB]

C3 - Query Evaluation Time

JAXP
Saxon
Xalan

XML-Lambda
CellStore

Figure C.3: CellStore C3 Query Performance

APPENDIX D. ABBREVIATIONS 175

D Abbreviations

2PL Two-Phase Locking

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

CC Constraints Checker

CCL Constraints Check List

DOM Document Object Model

DTD Document Type Definition

EBNF Extended Backus-Naur Form

NXD Native XML Database

PUL Pending Update List

S2PL Strict Two-Phase Locking

W3C World Wide Web Consortium

XDGL XPath-based DataGuide Locking protocol

XDM XQuery 1.0 and XPath 2.0 Data Model

XLP XPath Locking Protocol

XML eXtensible Markup Languge

XPath XML Path Language

XQuery XML Query Language

XQUF XQuery Update Facility

XQUF-LP XQUF Locking Protocol

XSLT eXtensible Stylesheet Language Transformations

Index

benchmarking, 110

performance benchmarking, 113

CellStore, 121

Constraints Checker, 66

delete, 69

insert, 67

replace, 69

DataGuide, 25

DOM locking protocols, 20

taDOM, 20

DOM transformation, 33

granular locking protocol, 92

lock compatibility, 12

RedXML, 129

transaction, 5

ACID, 6

degrees of isolation, 15

dependency, 12

dirty read, 9

history, 11

lost update, 9

phantom, 16

serializability, 11

two phase, 10

unrepeatable read, 10

wormhole, 14

translation example, 36

translation grammar, 34

update primitives, 70

delete, 75

insert after, 71

insert attributes, 74

insert before, 71

insert into, 72

insert into as first, 73

insert into as last, 73

put, 80

rename, 79

replace element content, 78

replace node, 76

replace value, 77

update routines, 80

apply updates, 82

merge updates, 80

XDM lock protocols

XDGL, 25

XLP, 29

XDM locking protocols, 25

XQuery

axes, 49

semantics, 45

steps, 47

syntax, 44

XQuery Update Facility

delete, 59

execution, 65

expression semantics, 55

insert, 55

lock function, 89

compatibility matrix, 91

conversion matrix, 91

176

INDEX 177

example, 103

phantom, 101

semantics, 93

serializable, 95

model, 43

rename, 64

replace, 60

semantics, 38

syntax, 51

transaction extension, 85

example, 89

grammar, 86

semantics, 88

XQUF-LP, 89

compatibility matrix, 91

conversion matrix, 91

example, 103

phantom, 101

rules, 93

semantics, 93

serializable, 95

XTCL, 85

example, 89

grammar, 86

semantics, 88

	List of Figures
	Introduction
	Contributions
	Organization of the thesis
	Conventions and notations

	Background
	Transaction Processing and Isolation Concepts
	Overview
	Transactions
	Definitions
	Flat Transactions

	Transaction Dependencies
	The Dependency Model of Isolation
	Transaction Dependencies
	The Bad Dependencies

	Isolation Theorems
	Well–Formed and Two–Phased Transactions
	Histories
	Serializability and Two–Phase locking
	Lock Compatibility
	Dependency and Wormholes

	Degrees of Isolation
	Phantoms

	XML Transactions
	Overview
	Relational Data Model vs. XML Data Model
	Definitions
	Locking Protocols
	DOM Locking Protocols
	taDOM Model Structure
	Lock Modes
	Locking Protocol Algorithm

	XDM Locking Protocols
	XDGL Protocol
	XLP Protocol

	Locking Protocol for a Functional XML Update Language
	A Pinch of Translation Theory
	XML- to DOM Translation Grammar
	XML- Query Evaluation Example

	XQuery and XQuery Update Facility
	Concrete Syntax and Semantics
	Semantics Definitions
	Light-Weight XDM
	XQuery and XPath Language Semantics
	Expression Semantics
	Path Expressions
	Steps
	Axes
	Conclusions

	XQuery Update Facility Language Syntax
	XQuery Update Facility Language's Semantics
	Expressions' Semantics
	Insert Expression
	Delete Expression
	Replace Expression
	Rename Expression

	Update Operations' Semantics
	Constraints Checker
	Insert Expression Constraints Check
	Delete Expression Constraints Check
	Replace Expression Constraints Check

	Update Primitives' Semantics
	Update Routines Semantics

	XQuery Update Facility Transaction Extension
	XQuery Transaction Control Language - Grammar
	XQuery Transaction Control Language - Semantics
	Lock Function Semantics
	Semantics Evaluation Example

	Semantics Verification
	XQUF-LP Framework

	Benchmarking
	XML Application Benchmarks Overview
	X007 Benchmark
	XMark Benchmark
	XMach-1
	TPoX
	Framework TaMix for XML Benchmarks
	XML Application Benchmarks – Summary

	Performance Benchmarking
	Benchmark specification
	Benchmarking environment
	Results

	Prototypes
	CellStore Native XML DBMS
	History
	CellStore's State of The Art
	System Architecture
	Storage Subsystem
	Cell File Structure
	Text File Structure
	The Transaction Manager Implementation
	Storage Discussion

	Conclusions
	Contributions
	Future Work

	Bibliography
	Refereed publications of the author
	XQuery 1.0 Grammar with Updates and TCL
	Light-Weight XDM Specification
	Model Elements
	Document Nodes
	Element Nodes
	Attribute Nodes
	Text Nodes

	CellStore Performance Evaluation
	Abbreviations

