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A B S T R A C T

The process of protein-DNA interaction has been an important subject of re-
cent bioinformatics research. The goal of this thesis is to find an accurate
model for the prediction of DNA-binding propensity. A characterisation of
proteins which are able to bind to DNA, can help biologists to better un-
derstand various processes that occur in living cells. In this thesis, we con-
tribute novel methods based on relational machine learning and novel meth-
ods based on distribution-based approaches.

The thesis has two main parts. The first part presents our relational learn-
ing approaches for the problem of DNA-binding propensity prediction. We
introduce three novel relational learning methods for prediction. These meth-
ods are based on automatic construction of patterns capturing local config-
urations of amino acids in DNA-binding proteins. The automatically con-
structed patterns are used as attributes for predictive classification using es-
tablished machine learning algorithms. This is in contrast to most existing
works, where attributes are constructed manually by domain experts. In prin-
ciple, our novel methods can find patterns which may be new for domain
experts. In addition, in this part, we describe a method for preprocessing of
relational learning examples.

The second part of the thesis presents our novel distribution-based ap-
proaches. The distribution-based approaches aim at modelling the probability
that if we randomly pick a region of a learning example, it will match a given
pattern. This enables us to capture distribution of certain substructures de-
fined by a given pattern. We introduce distribution-based methods able to
learn only from primary structures or from spatial structures of proteins.

The methods described in this thesis perform better than state-of-the-art
methods based on physicochemical features of protein structures. Moreover,
they provide us with interpretable structural patterns characterising local con-
figurations of amino acids in protein structures.

Another field of application of our novel methods is the prediction of an-
timicrobial activity of peptides. Antimicrobial peptides are molecules respon-
sible for defence against microbial infections in the first stages of the im-
munological response. Recently antimicrobial peptides have been recognized
as a potential replacement of conventional antibiotics. An accurate model for
antimicrobial activity prediction could help in the process of design of new
peptides for medical application. We show that our novel methods originally
designed for DNA-binding propensity prediction are able to obtain compa-
rable or even better results than state-of-the-art methods for the antimicro-
bial activity prediction. In addition, since antimicrobial peptides are typically
much smaller than DNA-binding proteins, they are excellent for validation
of the predictive ability of our novel methods in the domain of smaller struc-
tures.
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A B S T R A K T

Proces interakcie proteínov a DNA je dôležitým predmetom súčasného výsku-
mu v bioinformatike. Ciel’om tejto práce je nájst’ presný model pre predikciu
schopnosti proteínov viazat’ sa na DNA. Charakterizácia proteínov, ktoré sú
schopné viazat’ sa na DNA, môže pomôct’ biológom lepšie pochopit’ rôzne
procesy, ktoré sa odohrávajú v živých bunkách. V tejto práci uvádzame naše
nové metódy založené na relačnom strojovom učení a metódy založené na
distribučnom prístupe na riešenie tejto problematiky.

Práca má dve hlavné časti. Prvá čast’ predstavuje naše metódy založené
na relačnom strojovom učení k riešeniu problému predikcie schopnosti pro-
teínu viazat’ sa na DNA. Predstavíme tri nové metódy relačného strojového
učenia pre predikciu. Tieto metódy sú založené na automatickom konštruo-
vaní vzorov zachytávajúcich miestnu konfiguráciu aminokyselín v proteínoch
schopných viazat’ sa na DNA. Automaticky konštruované vzory sú použí-
vané ako atribúty pre prediktívnu klasifikáciu s využitím existujúcich algo-
ritmov strojového učenia. Väčšina existujúcich prác využíva atribúty ručne
konštruované doménovými expertmi. V zásade, naše nové metódy môžu
nájst’ také vzory, ktoré budú nové pre doménových odborníkov. Naviac, v
tejto časti popíšeme našu metódu na predspracovanie relačných trénovacích
príkladov.

Druhá čast’ práce predstavuje naše nové metódy založené na distribučnom
prístupe. Tieto metódy sú zamerané na modelovanie pravdepodobnosti, s
ktorou náhodne vybraná oblast’ v proteíne bude odpovedat’ zadanému vzoru.
Toto nám umožňuje zachytit’ distribúciu niektorých podštruktúr definova-
ných daným vzorom. Predstavíme metódy, ktoré sú schopné sa učit’ len z
primárnych štruktúr alebo z priestorových štruktúr bielkovín.

Metódy popísané v tejto práci fungujú lepšie ako najlepšie známe metódy
založené na fyzikálno-chemických vlastnostiach proteínových štruktúr. Navy-
še, poskytnú nám interpretovatel’né štrukturálne vzory charakterizujúce mi-
estne konfigurácie aminokyselín v proteínových štruktúrach.

Ďalšou oblast’ou možného použitia našich nových metód je problém predik-
cie antimikrobiálnej aktivity peptidov. Antimikrobiálne peptidy sú molekuly
zodpovedné za obranu proti mikrobiálnej infekcii v prvých fázach imunit-
nej reakcie. Antimikrobiálne peptidy sú považované za potenciálnu náhradu
konvenčných antibiotík. Presný model pre predikciu antimikrobiálnej aktivity
by mohol pomôct’ v procese navrhovania nových peptidov pre medicínske
použitie. Ukázali sme, že naše nové metódy pôvodne určené pre predikciu
schopnosti proteínov viazat’ sa na DNA sú schopné získat’ porovnatel’né,
alebo dokonca lepšie výsledky ako najlepšie známe metódy pre predikciu an-
timikrobiálnej aktivity. Naviac, pretože antimikrobiálne peptidy sú zvyčajne
ovel’a menšie ako DNA-viažúce proteíny, sú vynikajúce pre validáciu predik-
tívnej schopnosti našich nových metód v oblasti menších štruktúr.
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1
I N T R O D U C T I O N

The process of protein-DNA interaction has been an important subject of re-
cent bioinformatics research, however, it has not been completely understood
yet. DNA-binding proteins have a vital role in the biological processing of ge-
netic information like DNA transcription, replication, maintenance and the
regulation of gene expression. The goal of this thesis is to find an accurate
model for the prediction of DNA-binding propensity. This is an important
task for the following reasons. A characterisation of proteins which are able
to bind to DNA, can help biologists to better understand various processes
that occur in living cells at the microscopic level. This can be also useful
for designing new proteins for emerging gene therapies. To design proteins
of sufficient binding specificity, it is important to understand the patterns
underlying DNA binding. It is unlikely that a prediction model of DNA-
binding propensity will be deductively inferred from biochemical laws. The
approaches presented in this thesis thus take the opposite way, where binding
rules are learned by generalization from sets of known DNA-binding proteins.
Here, we contribute novel methods based on relational machine learning and
novel methods based on what we call distribution-based approaches. These meth-
ods perform better than state-of-the-art methods based on physicochemical
features of protein structures. Moreover, they provide us with interpretable
structural patterns characterising local configurations of amino acids in pro-
tein structures.

Figure 1: DNA-binding protein in complex with DNA. Adapted from en.wikipedia.

Another field of application of our novel methods is the prediction of an-
timicrobial activity of peptides. Antimicrobial peptides are molecules respon-

1



2 introduction

sible for defence against microbial infections in the first stages of the immuno-
logical response. While in the case of DNA-binding process we are interested
in the characterisation of proteins which are able to bind to the DNA, in the
case of antimicrobial peptides (which are also sequences of amino acids) we
try to characterise peptides involved in bacteria-killing processes. Since an-
timicrobial peptides are typically much smaller than DNA-binding proteins,
they are excellent for validation of predictive ability of our novel methods
in the domain of smaller structures. Furthermore, recently antimicrobial pep-
tides have been recognized as a potential replacement of conventional antibi-
otics for which some microorganisms had already acquired resistance. An
accurate model for antimicrobial activity prediction could help in the process
of design of new peptides for medical application. We show that our novel
methods are able to obtain comparable or even better results than state-of-
the-art methods.

1.1 problem statement

This thesis aims to solve the problem of the prediction of DNA-binding
propensity of proteins using relational machine learning from protein data de-
scribing their spatial structure. Our goal is to learn predictive models which
would accurately predict proteins’ DNA-binding function, while providing
insights into the underlying DNA-binding process. Naturally, the more in-
formation is incorporated into the models, the more accurate results can be
obtained. On the other hand, in most cases a limited amount of information
is available about the protein structures. A typical example is evolutionary
conservation, which is a very informative attribute, but may be missing for
some groups of proteins. Therefore, we are trying to find models which use
a minimal necessary amount of information – primary structure information,
primary and secondary structure information, primary structure information
and information about the spatial structure of the protein, additional informa-
tion about physicochemical properties of protein regions. Moreover, datasets
of protein structures are large, thus it is important to develop scalable meth-
ods for the prediction problem.

1.2 overview of the thesis

In Part i we start by describing the theoretical background needed in the sub-
sequent parts of the thesis. This part is divided into two chapters. A brief
description of the biological background is presented in Chapter 2. The nec-
essary background from relational learning and constraint satisfaction is pre-
sented in Chapter 3. This chapter also includes a review of state-of-the-art
approaches to the prediction of DNA-binding propensity in Section 3.2 and
to antimicrobial activity prediction of peptides in Section 3.3. The datasets
used in this thesis are described in Part ii.

Part iii is the first main part of the thesis. It presents our relational learning
approaches for the problem of DNA-binding propensity and antimicrobial ac-
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tivity prediction. In this part we introduce three relational learning methods
for prediction. These methods are based on automatic construction of novel
patterns of DNA-binding proteins or antimicrobial peptides. The patterns
are utilized for predictive classification using established machine learning
algorithms. This is in contrast to most existing works, where features are
constructed manually by domain experts. Our methods can find not only
patterns which may be new for domain experts, but they can also improve
prediction accuracy, as indicated by our experimental results. In addition, in
this part, we describe a method for preprocessing of learning examples.

The first method presented in Chapter 5 uses relational learning based on
structural patterns for the prediction of DNA-binding propensity and the an-
timicrobial activity of peptides. The second method described in Chapter 6

is based on multivariate relational aggregation of numeric properties of pro-
teins’ regions. The last method presented in Chapter 7 is based on construc-
tion of large, complex structural patterns. Chapter 8 describes our advanced
preprocessing techniques. Finally, we discuss the advantages and disadvan-
tages of relational learning approaches in Chapter 9.

Part iv is the second main part of the thesis. It presents our distribution-
based approaches, which use restricted form of patterns. The distribution-
based approaches aim at modelling the probability that if we randomly pick
a region of a learning example, it will match the given pattern. This enables
us to capture distribution of certain substructures defined by a given pattern.

First, we present our motivation for developing the distribution-based ap-
proaches in Chapter 10. We start with a short study of statistical distributions
of gaps between charged amino acids in proteins in Chapter 11. Then we
describe four novel distribution-based methods, namely the tube-histogram
method in Chapter 12, the ball-histogram method in Chapter 13, the ball-
histogram method for regression in Chapter 14 and the ball-histogram method
with polynomial features in Chapter 15. Finally, we discuss the presented
distribution-based approaches in Chapter 16.

Part v concludes the dissertation thesis. Additionally, an open-source soft-
ware package containing implementations of some of our novel methods is
described in Appendix A.

1.3 key thesis contributions

This thesis brings the following contributions. The work in Part iii focuses on
our novel relational learning approaches. The main contributions presented
in this part are the following. We introduce a novel relational representa-
tion of protein data suitable for learning. We show that in order to achieve
high predictive accuracy it is useful to count occurrences of small structural
patterns, rather than just detecting their presence. We upgrade an existing
state-of-the-art pattern construction system to be able to support occurrence
counting and we enrich it with sampling strategies, which turn out to be
necessary for data of proteomics scale. From the biologists’ point of view, the
main contributions of this part are that our new methods outperform existing
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state-of-the-art methods based on physicochemical features for the prediction
of DNA-binding propensity of proteins and antimicrobial activity of peptides.
This work was already published in [86, 89, 91].

Next, we contribute a framework able to work efficiently in multi-relational
domains with numerical data. The new framework exploits multi-variate
polynomial aggregation functions. We show that we are able to obtain favour-
able results even when using just information about primary and secondary
structures of proteins. This work was published in [43, 46, 44].

We also introduce a new relational learning approach which is able to
search for large, complex relational patterns. This method redefines the no-
tion of equivalence of patterns (first-order logic clauses) and parametrizes it.
Based on this, we present a new operator for pattern search called bounded
least general generalization. We show that the method is able to construct
accurate classifiers using only a small number of patterns. Another advan-
tage is that these small sets of patterns are potentially easier to interpret by
biologists. A part of this work was already published in [47, 48].

The work in Part iv investigates approaches based on modelling distribu-
tions of certain substructures in proteins. We contribute three novel distribu-
tion-based methods for predictive classification and one distribution-based
method for regression. An important advantage of these methods is their
scalability, which is much better compared to the general relational learning
methods presented in Part iii. The main idea of the distribution-based ap-
proaches is to capture distributions of certain properties in learning examples
and to construct features based on these distributions.

When using only primary structure information, we already obtain predic-
tive accuracies comparable with state-of-the-art methods based on physico-
chemical features derived from spatial structure information. This work re-
lying on primary structure information – the tube-histogram method – was
published in [88].

Adding information about spatial structure and numeric properties of pro-
tein regions further improves the predictive accuracy. The novel ball-histogram
method, which we present in this part, is able to capture distributions of cer-
tain properties in protein structures. Importantly, this method not only does
scale better than relational learning approaches, but also has higher predic-
tive accuracy. In fact, this method has already come close to methods exploit-
ing evolutionary information in terms of predictive accuracy, despite the fact
that it does not use evolutionary information at all. This work was already
published in [90, 87, 45].
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2
B I O L O G I C A L B A C K G R O U N D

2.1 proteins

Proteins are large biological molecules consisting of one or more chains of
amino acids which are bonded together by peptide bonds between the car-
boxyl and amino groups of adjacent amino acid residues. The sequence of
amino acids in a protein is defined by the sequence of a gene, which is en-
coded in the genetic code. In general, the genetic code specifies 20 standard
amino acids.

Figure 2: DNA-binding protein in complex with DNA. Adapted from en.wikipedia.

When studying a protein, one is usually interested in its function. One
thing all biologists know is that there is a tight relationship between the struc-
ture and the function of a protein. Proteins may have four levels of structure.
The levels are simply labelled primary, secondary, tertiary and quaternary. The
primary structure of a protein is simply the sequence of amino acids com-
prising the molecule. The primary structure of a protein is the amino acid
sequence within the molecule. Proteins fold locally into secondary structures
such as α-helices, β-strands, and turns. Two or three adjacent secondary struc-
tures might combine into common local folds called motifs or superssecondary
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structures such as β-sheets. These building blocks then fold into the 3D or
tertiary structure of a protein. Finally, one or more tertiary structures may
be combined as subunits into a quaternary structure such as an enzyme or a
virus.

2.2 dna-binding proteins

DNA-binding proteins (illustration in Figure 2) are proteins that contain
DNA-binding domains and thus have a specific or general affinity for either
single or double stranded DNA. A DNA-binding domain is an independently
folded protein domain that contains at least one motif that recognizes double-
or single-stranded DNA. A DNA-binding domain can recognize a specific
DNA sequence (a recognition sequence) or have a general affinity to DNA.

Figure 3: DNA repair. Adapted from en.wikipedia.

The function of DNA binding is either structural or involving transcription
regulation, with the two roles sometimes overlapping. DNA-binding domains
with functions involving DNA structure have biological roles in the replica-
tion, repair (illustration in Figure 3), storage, and modification of DNA. Many
proteins involved in the regulation of gene expression contain DNA-binding
domains. For example, proteins that regulate transcription by binding DNA
are called transcription factors.

The DNA-binding domain interacts with the nucleotides of DNA in a DNA
sequence-specific or non-sequence-specific manner, but even non-sequence-
specific recognition involves some sort of molecular complementarity be-
tween protein and DNA. DNA recognition by the DNA-binding domain can
occur at the major or minor groove of DNA (i.e. the spatial gaps between the
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two DNA strands), or at the sugar-phosphate DNA backbone. Each specific
type of DNA recognition is tailored to the protein’s function. Many DNA-
binding domains must recognize specific DNA sequences, such as DNA-
binding domains of transcription factors that activate specific genes, or those
of enzymes that modify DNA at specific sites, like restriction enzymes and
telomerase.

The specificity of the transcription and replication requires recognition on
the molecular level between protein structures and nucleic acid structures.
The genetic code has to be readable. The reading of the code is a conforma-
tionally specific interaction between amino acids and nucleic acids. Surface
properties of the macromolecules involved are the essential key in the recog-
nition process. Electrostatic interaction, hydrogen bonding capability and hy-
drophobic effects are of importance.

2.2.1 Zinc Finger Proteins

Zinc fingers (illustration in Figure 4) are small protein structural motifs that
can coordinate one or more zinc ions to help stabilize their folds. They can be
classified into several different structural families (zinc finger proteins) and
typically function as interaction modules that bind DNA, RNA, proteins, or
small molecules. The name "zinc finger" was originally coined to describe the
finger-like appearance of a diagram showing the hypothesized structure of
the repeated unit in Xenopus laevis transcription factor IIIA.

Figure 4: Cys2His2 zinc finger motif, consisting of an α helix and an antiparallel β
sheet. The zinc ion (green) is coordinated by two histidine residues and two
cysteine residues. Adapted from en.wikipedia.
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Generating arrays of engineered Cys2His2 zinc fingers is one of the most
developed methods for creating proteins capable of targeting desired ge-
nomic DNA sequences.

2.3 antimicrobial peptides

Antimicrobial peptides are molecules responsible for defence against micro-
bial infections in the first stages of the immunological response. Recently an-
timicrobial peptides have been recognized as a potential replacement of con-
ventional antibiotics for which some microorganisms had already acquired
resistance. Although, there are theories about the mechanisms by which an-
timicrobial peptides kill pathogenic microorganisms, the process has not been
fully uncovered yet.

Figure 5: The figure depicts the main steps in the interaction and permeabilization
of the bacterial membrane by AMPs. An arrow indicates each step. The
peptide associated physicochemical parameters and the related prediction
system used is also detailed. Adapted from [96].

Antimicrobial peptides (AMPs) have been actively researched for their po-
tential therapeutic application against infectious diseases. AMPs are amino
acid sequences of length typically from 6 to 100. They are produced by liv-
ing organisms of various types as part of their innate immune system [73].
They express potent antimicrobial activity and are able to kill a wide range of
microbes. In contrast to conventional antibiotics, AMPs are bacteriocidal (i.e.
bacteria killer) instead of bacteriostatic (i.e. bacteria growth inhibitor). Most
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AMPs work directly against microbes through a mechanism which starts with
membrane disruption and subsequent pore formation, allowing efflux of es-
sential ions and nutrients (illustration in Figure 5). According to current view
this mechanism works as follows: AMPs bind to the cytoplasmic membrane
and create micelle-like aggregates, which leads to disruption of the mem-
brane. In addition, there may be complementary mechanisms such as intra-
cellular targeting of cytoplasmic components crucial to proper cellular physi-
ology. Thus, the initial interaction between the peptides and the microbial cell
membrane allows the peptides to penetrate into the cell to disrupt vital pro-
cesses, such as cell wall biosynthesis and DNA, RNA, and protein synthesis.
A convenient property of AMPs is their selective toxicity to microbial targets,
which makes them non-toxic to mammalian cells. This specificity is based on
the significant distinctions between mammalian and microbial cells, such as
composition, transmembrane potential, polarization and structural features.

Antimicrobial peptides are small, positively charged, amphipathic molecu-
les. They include two or more positively charged residues and a large pro-
portion of hydrophobic residues. Many AMPs exist in relatively unstruc-
tured conformations prior to interaction with target cells. Upon binding to
pathogen membranes, peptides may undergo significant conformational chan-
ges to helical or other structures. These conformations of antimicrobial pep-
tides may impact their selective toxicity [107]. The three-dimensional folding
of the peptides results in the hydrophilic or charged amino acids segregating
in space from the hydrophobic residues, leading to either an amphipathic
structure, or a structure with two charged regions spatially separated by a
hydrophobic segment. Such a structure can interact with the membrane [27].
The amphipathicity of the AMPs enables insertion into the membrane lipid
bilayer.



3
M A C H I N E L E A R N I N G B A C K G R O U N D

Machine learning [28] is a branch of artificial intelligence, which deals with
the construction and study of systems that can learn from data. The most im-
portant questions addressed in machine learning are how to represent data
and how to guarantee generalization of learnt systems. Generalization corre-
sponds to the ability of learnt systems to perform well on unseen data in-
stances. Typically, there are two modes in which machine learning systems
operate: learning and prediction. In the former mode, parameters of the sys-
tem are tuned on learning examples. In the latter mode, the learnt system is
used for predicting given target variables. A system that implements classifi-
cation is known as a classifier and a system that implements prediction of a
continuous variable is known as a regression model.

There are many types of machine learning algorithms:

• Decision tree learning algorithms,

• Artificial neural networks,

• Support vector machines,

• Ensemble methods (e.g. Ada-boost or Random forest),

• etc.

These types of algorithms have been already used for prediction of DNA-
binding propensity (see Section 3.2), which is the problem we are interested
in.

3.1 relational machine learning

Relational machine learning is a subfield of artificial intelligence, machine
learning and data mining that is concerned with models of domains that
exhibit complex, relational structure. Typically, the knowledge representation
formalisms developed in relational learning use first-order logic to describe
relational properties of a domain in a general manner.

3.1.1 Logic-based Relational Learning

In this thesis, we focus on relational learning algorithms based on first-order-
logic - on so-called inductive logic programming [76]. The basic inductive
logic programming problem is given as follows. We are given background
knowledge B in the form of a clausal theory and a set of examples, which
are first-order-logic clauses. The task is to find a hypothesis H in the form
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of a clausal theory such that H covers all positive and no negative examples.
More formally, the task is to find a theory H such that B ∧ H |= e for all
positive e and B∧H 6|= e for all negative examples e. This setting is known
as intensional inductive logic programming [13] and is used in classical ILP
systems (Aleph or Progol [63]).

Example 1 (Intensional Inductive Logic Programming). Let us have background
knowledge

B = {hasBenzeneRing(phenylalanine)}

and a set of positive examples (containing just one example in this case)

E+ = {isAromatic(phenylalanine)}

and a set of negative examples (containing also only one example)

E− = {isAromatic(glycine)}.

Then a solution to the learning task under intensional inductive logic programming
setting with the given sets of positive and negative examples is for example

H = ∀X : hasBenzeneRing(X)→ isAromatic(X).

We can easily verify that it holds

H∧B |= isAromatic(phenylalanine)

and
H∧B 6|= isAromatic(glycine).

The crisp ILP approach for learning from structured data, as described
above, is not very useful from the practical point of view. It does not deal well
with uncertainty arising either from noise which is often present in real-life
problems or from an inherent probabilistic nature of some learning problems.
It also does not provide many ways to control the generalization performance
of the learned theories. Both learning in the presence of uncertainty as well
as controlling of the generalization performance are topics that have been
thoroughly studied in the field of attribute-value learning. Propositionalization
[55] is a general strategy developed in the field of relational learning in order
to exploit multitude of methods from attribute-value learning. Proposition-
alization systems can, in principle, exploit any method from attribute-value
machine learning. These systems get a relational learning problem on their
input and produce an attribute-value representation of these examples - they
create an attribute-value table in which rows correspond to examples and
columns correspond to first-order-logic formulas. These formulas typically
acquire a form such as the one below

F1(Mol)← hasBenzeneRing(Mol,C)∧ connected(C,A)∧ isBromine(A)

whereMol is used as an identifier (key) of the learning examples. The feature
F1 acquires the value true for the examples (molecules) which contain a ben-
zene ring connected to a bromine atom. A set of generated features then plays



3.1 relational machine learning 13

the role of the attribute set for the attribute-value representation. The range
of all possible features is, for a given learning problem, usually constrained
by declaring a language of admissible features. Furthermore, propositiona-
lization systems usually provide means to further restrict the set of features.
For example, it is possible to set a minimum frequency of features [15], maxi-
mum length of features etc. Once a sufficiently rich set of features is found,
the attribute-value table is constructed and it is fed into an attribute-value
learning system such as decision trees or support vector machines [8].

In this thesis, we assume learning examples to be ground Horn clauses
all sharing the same predicate p with arity 0 in the head. Hypotheses are
composed of function-free Horn clauses with predicate p in the head. We
also assume that the clauses in hypotheses are non-recursive and that there
is no background knowledge (i.e. B = ∅). A hypothesis H is said to cover an
example e if H |= e. We demonstrate how the learning problem from Example
1 would be represented in this simplified setting.

Example 2. Let us have a set of positive examples E+ containing the example

isAromatic← is(phenylalanine)∧ hasBenzeneRing(phenylalanine)

and a set of negative examples E− containing the example

isAromatic← is(glycine)∧ hasBenzeneRing(phenylalanine).

Then a solution to the learning task in this simplified setting with the given sets of
positive and negative examples is for example

H = ∀X : isAromatic← is(X)∧ hasBenzeneRing(X).

We can easily verify that it holds

H |= isAromatic← is(phenylalanine)∧hasBenzeneRing(phenylalanine)

and

H 6|= isAromatic← is(glycine)∧ hasBenzeneRing(phenylalanine).

In the case of this simplified setting, we will abstract from clause heads.
For brevity of formulas, we will display clauses as sets of literals separated
by commas. The hypothesis H and the positive example from Example 2 will
be written as

H = is(X),hasBenzeneRing(X)

and

e1 = is(phenylalanine),hasBenzeneRing(phenylalanine).

Another advantage of this simplified setting is that entailment can be check-
ed for non-recursive function-free clauses using decidable θ-subsumption de-
scribed in Section 3.1.2.
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3.1.2 θ-subsumption as Approximation of Implication

A problem of using the covering relation |= is that it is undecidable. There-
fore, Plotkin [75] introduced the concept of θ-subsumption as an incomplete
approximation of implication.

Definition 1 (θ-subsumption). Let A and B be clauses. The clause A θ-subsumes
B, if and only if there is a substitution θ such that Aθ ⊆ B. If A �θ B and B �θ A,
we call A and B θ-equivalent (written A ≈θ B).

It can happen that two clauses are logically equivalent, but one of them is
much larger than the other. Therefore, it is useful to have tools for finding
an equivalent, reduced clause for a given large clause. Next, we define θ-
reduction of a clause, which can be used for this purpose.

Definition 2 (θ-Reduction). Let A be a clause. If there is another clause R such
that A ≈θ R and |R| < |A| then A is said to be θ-reducible. A minimal such R is
called θ-reduction of A.

Both θ-subsumption and θ-reduction are NP-hard problems and both of
them need to be evaluated many times during a single run of a relational
learning system. Constraint satisfaction [14] with finite domains represents
a class of problems closely related to the θ-subsumption problems. Con-
straint satisfaction algorithms can be used to compute θ-subsumption and
θ-reduction relatively efficiently (though, still with exponential runtime in the
worst case).

A constraint satisfaction problem is a triple (V,D,C), where V is a set of
variables, D = {D1, . . . ,D|V|} is a set of domains of values (for each variable
v ∈ V), and C = {C1, . . . ,C|C|} is a set of constraints. Every constraint is a pair
(s,R), where s (scope) is an n-tuple of variables and R is an n-ary relation.
An evaluation of variables θ satisfies a constraint Ci = (si,Ri) if siθ ∈ Ri. A
solution is an evaluation that maps all variables to elements in their domains
and satisfies all constraints.

CSP can be used for relatively efficient solving of θ-subsumption problems
thanks to many heuristics and filtering algorithms existing in the field of
CSP. The CSP representation of the problem of deciding A �θ B has the
following form. There is one CSP variable Xv for every variable v ∈ vars(A).
The domain of each of these CSP variables contains all terms from terms(B).
The set of constraints contains one k-ary constraint Cl = (sl,Rl) for each
literal l = predl(t1, . . . , tk) ∈ A. We denote by Ivar = (i1, . . . , im) ⊆ (1, . . . ,k)
the indexes of variables in arguments of l (the other arguments might contain
constants). The scope sl of the constraint Cl is (Xti1 , . . . ,Xtim ) (i.e. the scope
contains all CSP variables corresponding to variables in the arguments of
literal l). The relation Rl of the constraint Cl is then constructed in three
steps.

1. A set Ll is created which contains all literals l ′ ∈ B such that l �θ l ′
(note that checking θ-subsumption of two literals is a trivial linear-time
operation).
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2. Then a relation R∗l is constructed for every literal l ∈ A from the argu-
ments of literals in the respective set Ll. The relation R∗l contains a tuple
of terms (t ′1, . . . , t

′
k) if and only if there is a literal l ′ ∈ Ll with arguments

(t ′1, . . . , t
′
k).

3. Finally, the relation Rl of the constraint Cl is the projection of R∗l on
indexes Ivar (only the elements of tuples of terms which correspond to
variables in l are retained).

Example 3 (Converting θ-subsumption to CSP). Let us have clauses A and B as
follows

A = hasAminoAcid(C),bond(C,L), charge(L,positive)

B = hasAminoAcid(c),bond(c, l1),bond(c, l2), charge(l2,positive).

We now show how we can convert the problem of deciding A �θ B to a CSP problem.
Let V = {C,L} be a set of CSP-variables and let D = {DC,DL} be a set of domains of
variables from V such that DC = DL = {c, l1, l2}. Further, let

C = {ChasAminoAcid(C),Cbond(C,L),Ccharge(L,positive)}

be a set of constraints with scopes (C), (C,L) and (L) and with relations {(c)},
{(c, l1), (c, l2)} and {(l2)}, respectively. Then the constraint satisfaction problem given
by V, D and C represents the problem of deciding A �θ B as it admits a solution if
and only if A �θ B holds.

There is a theory categorizing tractable subclasses (i.e. solvable in poly-
nomial time) of constraint satisfaction problems. For example, CSPs with
bounded treewidth represent such a tractable class. Tractability of CSPs can
be naturally translated into tractability of θ-subsumption. Therefore, a possi-
ble strategy for fast relational learning is to limit admissible hypotheses to be
from a given tractable subclass.

The treewidth of CSPs, which is a measure of their tractability, can be de-
fined using the notion of Gaifman graphs. The Gaifman (or primal) graph of
a clause A is the graph with one vertex for each variable v ∈ vars(A) and
an edge for every pair of variables u, v ∈ vars(A), u 6= v such that u and v
appear in a literal l ∈ A. Similarly, we define Gaifman graphs for CSPs. The
Gaifman graph of a CSP problem P = (V,D,C) is the graph with one vertex
for each variable v ∈ V and an edge for every pair of variables which appear
in a scope of some constraint c ∈ C. Gaifman graphs can be used to define
treewidth of clauses or CSPs.

Tree decomposition, Treewidth
A tree decomposition of a graph G = (V ,E) is a labelled tree T such that

• Every node of a tree T is labeled by a non-empty subset of vertices V .

• For every edge (v,w) ∈ E, there is a node of the tree T with label con-
taining v,w.
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Clause Gaifman graph Tree decomposition

atm(A, h),
bond(A,B, 1), atm(B, c),
bond(B,C, 2), atm(C, o)

A B C

A, B

B, C

bond(A,B, 1),
bond(B,C, 1), bond(C,D, 1),
bond(D,E, 1), bond(E,A, 1)

A

B C

E D

A, C, E

A, B, CC, D, E

Table 1: An illustration of Gaifman graphs and tree decompositions of clauses.

• For every vertex v ∈ V , the set of nodes of tree T with labels containing
vertex v is a connected subgraph of T .

The width of a tree decomposition T is the maximum cardinality of a label in
T minus 1. The treewidth of a graph G is the smallest number k such that G
has a tree decomposition of width k. The treewidth of a clause is equal to the
treewidth of its Gaifman graph. Analogically, the treewidth of a CSP is equal
to the treewidth of its Gaifman graph.

An illustration of Gaifman graphs of two exemplar clauses and their tree
decompositions is shown in Table 1. Note that tree decompositions are not
unique. That is why treewidth is defined as the maximum cardinality of a
label minus 1.

For instance, all trees have treewidth 1, cycles have treewidth 2, rectangu-
lar n× n grid-graphs have treewidth n. Treewidth is usually used to isolate
tractable sub-classes of NP-hard problems.

Constraint satisfaction problems with treewidth bounded by k can be solved
in polynomial time by the k-consistency algorithm. We now briefly describe
the k-consistency algorithm [2]. Let us have a CSP P = (V,D,C) where V is
the set of variables, D is the set of domains of the variables and C is the set
of constraints. A partial solution ϑ is an evaluation of variables from V ′ ⊆ V

which is a solution of the sub-problem P ′ = (V ′,D,C). If ϑ and ϕ are partial
solutions, we say that ϕ extends ϑ (denoted by ϑ ⊆ ϕ) if Supp(ϑ) ⊆ Supp(ϕ)
and Vϑ = Vϕ for all V ∈ Supp(ϑ), where Supp(ϑ) and Supp(ϕ) denote the sets
of variables which are affected by the respective evaluations ϑ and ϕ. The
k-consistency algorithm then works as follows:

k-consistency algorithm
Input: a constraint satisfaction problem P = (V,D,C) and a positive integer k
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1. Let H be the collection of all partial solutions ϑ with |Supp(ϑ)| < k+ 1.

2. For every ϑ ∈ H with |Supp(ϑ)| 6 k and every V ∈ V, if there is no ϕ ∈ H
such that ϑ ⊆ ϕ and V ∈ Supp(ϕ), remove ϑ and all its extensions from
H.

3. Repeat step 3 until H is unchanged.

4. If H is empty return false, else return true.

If the k-consistency algorithm returns true and P has treewidth bounded
by k then P is guaranteed to have a solution [23]. For constraint satisfaction
problems with generally unbounded treewidth, k-consistency is only a nec-
essary but not a sufficient condition to have a solution. If the k-consistency
algorithm returns false for a CSP problem P then P is guaranteed to have no
solutions. If it returns true then the problem may or may not have some so-
lutions. So, equivalently, if the problem is soluble then k-consistency always
returns true. Another basic property of k-consistency that we will also need is
the following. If the k-consistency algorithm returns true for a CSP problem
then it will also return true for any problem created from the original problem
by removing some variables and some constraints, i.e. with a subproblem.

It is easy to check that if a clause A has treewidth bounded by k then also
the CSP representation of the problem of deciding A �θ B has treewidth
bounded by k for any clause B. It is known that due to this and due to the
equivalence of CSPs and θ-subsumption, the problem of deciding θ-subsump-
tion A �θ B can be solved in polynomial time when clause A has bounded
treewidth (which has been known for long time by the above mentioned
widely known correspondence between θ-subsumption and CSP problems).

3.2 machine learning for dna-binding prediction

In the early 80’s, when the first three-dimensional structures of protein-DNA
complexes were studied, Ohlendorf and Matthew [69] noticed that the for-
mation of protein-DNA complexes energetically driven by the electrostatic
interaction of asymmetrically distributed charges on the surface of the pro-
teins complement the charges on DNA. Large regions of positive electrostatic
potentials on protein surfaces has been suggested to be a good indication of
DNA-binding sites.

Stawiski et al. [85] proposed a methodology for predicting Nucleic Acid-
binding function based on the quantitative analysis of structural, sequence
and evolutionary properties of positively charged electrostatic surfaces. After
defining the electrostatic patches they found the following features for dis-
criminating the DNA-binding proteins from other proteins: secondary struc-
ture content, surface area, hydrogen-bonding potential, surface concavity, ami-
no acid frequency and composition and sequence conservation. They used 12

parameters to train a neural network to predict the DNA-binding propensity
of proteins.
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Jones et al. [37] analysed residue patches on the surface of DNA-binding
proteins and developed a method for predicting DNA-binding sites using a
single feature of these surface patches. Surface patches and the DNA-binding
sites were analysed for accessibility, electrostatic potential, residue propen-
sity, hydrophobicity and residue conservation. They observed that the DNA-
binding sites were amongst the top 10% of patches with the largest positive
electrostatic scores.

Tsuchiya et al. [98] analysed protein-DNA complexes by focusing on the
shape of the molecular surface of the protein and DNA, along with the elec-
trostatic potential on the surface, and constructed a statistical evaluation func-
tion to make predictions of DNA interaction sites on protein molecular sur-
faces.

Ahmad and Sarai [1] trained a neural network based on the net charge
and the electric dipole and quadrupole moments of the protein. It was found
that the magnitudes of the moments of electric charge distribution in DNA-
binding protein chains differ significantly from those of a non-binding control
dataset. It became apparent that the positively charged residues are often
clustered near the DNA and that the negatively charged residues either form
negatively charged clusters away from the DNA or get scattered throughout
the rest of the protein. The entire protein has a net dipole moment, because
of the topological distribution of charges. The resulting electrostatic force
may steer proteins into an orientation favorable for binding by ensuring that
correct side of the protein is facing DNA.

Bhardwaj et al. [3] examined the sizes of positively charged patches on
the surface of DNA-binding proteins. They trained a support vector machine
classifier using positive potential surface patches, the protein’s overall charge
and its overall and surface amino acid composition. In case of overall com-
position, noticeable differences were observed between the binding and the
non-binding case with respect to the frequency of Lys and Arg. These are
positively charged amino acids, so their over-representation in DNA-binding
proteins is evident.

A further advancement in DNA binding propensity prediction was pre-
sented by Szilágyi and Skolnick [92]. Their method was based on a logistic
regression classifier with ten variables (physicochemical properties) to pre-
dict from sequence and low-resolution structure of a protein whether it is
DNA-binding. To find features that discriminate between DNA-binding and
non-DNA-binding proteins, they tested a number of properties. The best com-
bination of parameters resulted in the amino acid composition, the asymme-
try of the spatial distribution of specific residues and the dipole moment of
the protein.

The above approaches rely exclusively on protein structure data (whether
sequential or spatial). To our knowledge, the predictive accuracy achieved by
the lastly mentioned strategy [92] was only improved by incorporating an ad-
ditional source of background knowledge, in particular, information on evo-
lutionarily conserved domains. Nimrod et al. [68] presented a random forest
classifier for identifying DNA-binding proteins among proteins with known



3.3 machine learning for antimicrobial activity prediction 19

3D structures. First, their method detects clusters of evolutionarily conserved
regions on the surface of proteins using the PatchFinder algorithm. Next,
a classifier is trained using features like the electrostatic potential, cluster-
based amino acid conservation patterns, the secondary structure content of
the patches and features of the whole protein, including all the features used
by Szilágyi and Skolnick [92].

It is nevertheless important to continue improving methods that do not
exploit evolutionary information. Such methods are valuable mainly due
to their ability to predict DNA-binding propensity for engineered proteins
for which evolutionary information is not available. Engineered proteins are
highly significant for example in emerging gene-therapy technologies [10].

3.3 machine learning for antimicrobial activity prediction

Several methods have been developed to predict antimicrobial activity of
AMPs with potential therapeutic application. Some algorithms take advan-
tage of data mining and high-throughput screening techniques and apply
attribute-value approach to scan protein and peptide sequences [53, 96]. Sim-
ilar strategies were proposed based on supervised learning techniques, such
as artificial neural networks or support vector machines, in order to evalu-
ate amounts of complex data [34]. Most attempts have been focused to the
prediction of peptide’s activity using quantitative structure-activity relation-
ships (QSAR) descriptors together with artificial neural networks [35, 21, 11],
linear discriminant [94] or principal component analysis [93]. A QSAR-based
artificial neural network system was experimentally validated using SPOT
high-throughput peptide synthesis, demonstrating that this methodology can
accomplish a reliable prediction [20]. Recently, an artificial neural network
approach based on the peptide’s physicochemical properties has been intro-
duced [97]. These properties were derived from the peptide sequence and
were suggested to comprise a complete set of parameters accurately describ-
ing antimicrobial peptides.
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D E S C R I P T I O N O F T H E U S E D D ATA S E T S

4.1 dna-binding proteins

We worked with the following datasets of DNA-binding proteins in our ex-
periments:

• PD138 - dataset of 138 DNA-binding protein structures in complex with
DNA,

• UD54 - dataset of 54 DNA-binding protein structures in unbound con-
formation,

• BD54 - dataset of 54 DNA-binding protein structures in DNA-bound
conformation corresponding to the set UD54

• APO104 - dataset of 104 DNA-binding protein structures in unbound
conformation,

• ZF - dataset of 33 Zinc Finger protein structures in complex with DNA,

Dataset PD138 was created using the Nucleic Acid Database (NDB) by
Szilágyi and Skolnick [92] - it contains a set of DNA-binding proteins in
complex with DNA strands with a maximum pairwise sequence identity of
35% between any two sequences.

Both the protein and the DNA can alter their conformation during the
process of binding. This conformational change can involve small changes
in side-chain location, and also local refolding, in case of the proteins. Pre-
dicting DNA-binding propensity from a structural model of a protein makes
sense if the available structure is not a protein-DNA complex, i.e. it does not
contain a bound nucleic acid molecule. In order to find out how the results
would change according to the conformation before and after binding, we
used two other datasets (UD54, BD54). BD54 contains bound conformations
of DNA-binding proteins, i.e. DNA-protein complexes. UD54 contains the
same sequences in their unbound, free conformation. These datasets were
also obtained from Szilágyi and Skolnick [92].

Another set of DNA-binding protein structures (APO104) determined in
the absence of DNA was obtained from Gao et al. [25].

Thirty-three examples of Cys2His2 ZF-DNA complexes were sourced from
Siggers et al. [82]. Their structural description was obtained from the Protein
Data Bank.

From the structural description of each protein we extracted the list of all
contained residues with information on their type and the list of pairwise
spatial distances among all residues. As for the physicochemical features, we
followed Szilágyi and Skolnick’s work [92] and extracted features indicating
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the respective proportions of the Arg, Lys, Asp, Ala and Gly residues, the
spatial asymmetry of Arg, Gly, Asn and Ser, and the dipole moment of the
protein.

Figure 6: Crystal structures of protein PUT3 in its unbound versus bound conforma-
tion (in the Protein Database these conformations are listed as 1AJY and
1ZME).

4.2 non-dna-binding proteins

We used the following datasets of non-DNA-binding proteins in our experi-
ments:

• NB110 - dataset of 110 non-DNA-binding protein structures,

• NB843 - dataset of 843 non-DNA-binding protein structures.

Rost and Sander constructed a dataset (RS126) for secondary structure pre-
diction. Ahmad & Sarai [1] removed the proteins related to DNA binding
from it, thus getting a final dataset of non-DNA-binding proteins. As our
negative dataset (NB110) we used this set of non-DNA-binding proteins.

We also used an extended dataset (NB843) by Nimrod et al. [68]. This
dataset contains additional 733 structures of non-DNA-binding proteins. The
additional structures were gathered using the PISCES server. Entries in this
list include crystal structures with a resolution better than 3.0Å. The sequence
identity between each pair of sequences is smaller than 25%.

4.3 antimicrobial peptides

We used three datasets of antimicrobial peptides in our experiments:

• CAMEL,

• RANDOM,
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• BEE.

The first dataset named CAMEL was described by Cherkasov et al. [11]. It is
composed of 101 antimicrobial peptides with experimentally tested antimicro-
bial potency. These peptides are rich in leucine and it has been demonstrated
that they exhibit high activity against various strains of bacteria. The minimal
inhibitory concentrations for these peptides have been averaged over 13 mi-
croorganisms (Bacteroides, Bordetella, Campylobacter, Corynebacterium, Klebsiella,
Listeria, Moraxella, Pastuerella, Taylorella, Yersinia, Rhodococcus, Staphylococcus
and Streptococcus). The average minimal inhibitory concentrations (MIC) were
used to calculate average potencies (which is our target variable) according
to formula from [60]

Potency = log2
1066

MIC
.

The second dataset named RANDOM was presented by Fjell et al. [20]. It
contains 200 peptides with fixed length which are composed of a few amino
acids (TRP, ARG and LYS and, more limitedly, LEU, VAL and ILE). Although
antimicrobial peptides are actually enriched in these residues, a wide diver-
sity in the amino acid content can be found in natural antimicrobial peptides
[7]. The peptides were assayed for antimicrobial activity using a strain of Pseu-
domonas aeruginosa. Fjell et al. did not report absolute MIC values, but only
MIC values divided by MIC of Bac2A peptide (to simplify the measurements).
Using relative MIC values poses no problem, because it manifests itself only
through addition of a constant to the potency values (due to the logarithm).

We named the last dataset BEE. We compiled it from three different sources:
peptides from the venom of the eusocial bee Halictus sexcinctus and their
analogs [61], peptides from the venom of the eusocial bee Lasioglossum lat-
iceps [100] and peptides from the venom of the cleptoparasitic bee Melecta
albifrons [99]. They contain peptides of length ca. 5 - 15 amino acids. The min-
imal inhibitory concentrations for these peptides were obtained for Bacillus
subtilis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa. We used
the average of these values following the methodology of previous works
[11, 20]. In some cases, when only lower bounds on MIC were available, we
used these values.
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R E L AT I O N A L L E A R N I N G B A S E D O N S T R U C T U R A L
PAT T E R N S

Relational machine learning is concerned with models of domains that ex-
hibit complex, relational structure. Typically, the knowledge representation
formalisms developed in relational learning use first-order logic to describe
relational properties of a domain in a general manner. An advantage of gen-
eral relational learning systems based on logic is the relative ease of setting
up experiments. A disadvantage is that general systems usually scale poorly.
In this chapter, we describe a relational learning method for prediction based
on structural patterns, which builds upon the pattern construction algorithm
RelF [42]. The presented relational learning method is based on our novel
relational encoding of molecular structures. Although RelF had been shown
to scale better than other relational learning systems, our preliminary exper-
iments presented in Section 5.3.1 showed that it was still necessary to up-
grade it for the domains of interest in this thesis. The necessary upgrades
were twofold. First, we needed to introduce so-called counting patterns as
opposed to existential patterns originally available in RelF. Second, we had
to extend RelF with sampling strategies because RelF was unable to process
datasets containing more than a few hundred proteins. With these upgrades
we were able to achieve state-of-the-art accuracies.

This chapter is organized as follows. The novel relational representation of
proteomics data is presented in Section 5.1. We describe our propositionaliza-
tion-based learning method in Section 5.2. We present our experimental re-
sults in the domain of DNA-binding proteins in Section 5.3. In subsection
5.3.1 we describe the difference between existential and counting patterns
and subject them to comparative experiments. These experiments show that
counting patterns are superior to existential patterns (at least when patterns
are small, which is the case for patterns constructed by RelF). Therefore, in
the next subsection 5.3.2 only counting patterns are used and subjected to
more in-depth experimental evaluation. We explore the obtained structural
patterns and interpret them w.r.t. current biological knowledge. In Section
5.4 we describe our relational learning method modified for regression prob-
lems and show experimental results in the domain of antimicrobial peptides.
In Section 5.5 we conclude this chapter. In the last section – Section 5.6 we
present the algorithmic details of this chapter.

5.1 relational representation of data

The novel representation of examples that we use is rooted in the field of
inductive logic programming [76] as introduced in Chapter 3. In the present
experimental context, patterns which correspond to single-clause hypotheses
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(see Section 3.1.1), are used to capture spatial or other configurations of amino
acids or individual atoms in protein structures. A pattern is a set of literals
which, unlike examples, may contain variables. An example of a pattern is

p1 = residue(A,X),distance(A,B, 10.0), residue(B,glu).

A pattern p is said to cover an example e when we are able to find a substi-
tution θ to variables of p such that pθ ⊆ e (this is known as θ-subsumption
in relational learning). For example the pattern p1 covers the example e1 be-
cause p1θ ⊆ e1 for substitution θ = {A/b,B/a}. We may be interested not only
whether a pattern p covers a given example e but also how many covering sub-
stitutions there are, i.e. how many substitutions θ such that pθ ⊆ e there are.
We call the number of covering substitutions of a pattern p its value and the
patterns that count substitutions counting patterns.

What can be captured by patterns depends on the relational representation
of the protein structures. In a pioneering work of Nassif et al. [67] a rela-
tional learning representation of hexose-binding proteins based on detailed
atomic description was used. This representation did not involve description
of amino acid types. The sole information available in their representation
consists of the atom types and pairwise distances between these atoms. In
principle, one would not need more information, but due to the large size of
protein structures Nassif et al. had to subsample the relational descriptions
using so-called recall mechanism in Aleph (in order to be able to process these
structures). This is problematic, because a lot of information can be lost in this
subsampling.

Our representation does not work on the atomic level. Instead it relies on
the assumption that positions of individual amino acids in proteins can be
more or less captured by positions of their α-carbons and directional vec-
tors pointing from the α-carbons to the geometrical centroids of side-chains.
Naturally, the very detailed atomic configurations can be lost in this repre-
sentation, but first, this seems to hardly matter for DNA-binding propensity
prediction (which we verify in our experiments in Section 5.3) and second,
the detailed atomic configurations can be often captured implicitly in this
representation anyway. Our representation is based on listing the amino acids
and their types, pairwise spatial distances between these amino acids up to
a maximum distance limit and, in some experiments, also angles between
directional vectors of pairs of amino acids.

An illustration of a pattern in our relational learning representation is
shown in Figure 7. Here, the pattern assumes the presence of two cysteines
(Cys - A, B), two histidines (His - C, D) and one arginine (Arg - E), where the
cysteine A is in distance 6Å from the cysteine B, 8Å from the histidine C, 10Å
from the histidine D and 10Å from the arginine E. The listed distances do
not refer to exact distances between the amino acids, but to their discretized
values. Unless stated otherwise we use simple discretization with resolution
2Å in the experiments described in this thesis (recall that the datasets mostly
include protein crystal structures with a resolution only better than 3Å).
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Figure 7: A match of a relational pattern shown in the left within a zinc finger protein
(1A1F) shown in the right (using the protein viewer software [62]). Amino
acids assumed by the pattern are indicated in the following way: CYS -
pink, HIS - violet, ARG - yellow.

5.2 propositionalization-based learning method

Our method exploits techniques of relational machine learning [76] in con-
junction with state-of-the-art attribute-value learning algorithms [28]. Our
method can be viewed as proceeding in three steps. It starts with PDB files,
which is a widely used format for proteins. Then it creates a relational repre-
sentation of the proteins described in Section 5.1 (step 1). After that it tries to
extract meaningful relational patterns from the relational structures describ-
ing proteins and uses them to create an approximate attribute-value represen-
tation of the proteins (step 2) which is then used for learning attribute-value
classifiers (step 3).

Although the field of attribute-value machine learning is more mature than
the field of relational machine learning, attribute-value learning algorithms,
such as decision trees or support vector machines, suffer from the limitation
that they can deal only with data which is in the form of data tuples (such
as real-valued or boolean vectors) of fixed length. Attribute-value learning
algorithms face problems when dealing with data in a more structured form,
for example spatial structures of proteins. On the other hand, relational learn-
ing algorithms can directly learn from data expressed as relational structures
such as graphs or the logic-based form which we adopt. Spatial structures of
proteins, which is what we are interested in, can be represented very natu-
rally within the relational-learning framework.

Propositionalization [55] (described in Chapter 3) is a general strategy which
combines advantages of attribute-value learning algorithms (usually higher
accuracy) and relational learning algorithms (ability to handle structured ex-
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amples). In propositionalization, one tries to convert a relational learning
problem to an attribute-value learning problem by transforming the original
relational representation to an (approximate) attribute-value representation,
i.e. to representation where learning examples are represented as vectors of
fixed size, and then to train an attribute-value classifier for such data. Thus,
roughly speaking, propositionalization corresponds to steps 2 and 3 of our
method.

We use the relational representation of proteins described in Section 5.1
that consists of literals representing types of the amino acids and literals rep-
resenting pair-wise distances between the amino acids. These distances are
computed from α-carbon coordinates obtained from PDB. We also restrict
the shapes of possible patterns by insisting that the patterns have to be tree-
like. Despite these simplifications, some of the examples may contain, in the
end, tens of thousands literals which would be very challenging for common
relational learning systems such as Aleph, not to mention that these systems
do not allow computing numbers of covering substitutions. Therefore we
customized the pattern search algorithm RelF which is more appropriate for
problems of this size due to its pruning mechanisms and strong structural
language bias (it constructs only tree-like patterns). This pattern search al-
gorithm prunes pattern space using two measures: redundancy (described by
Kuželka et al. [42]) and minimum frequency which is a minimum number of
examples that must be covered by a pattern. An example of a tree-like pattern
is res(A,arg), res(B,arg), res(C,lys), dist(A,B,10.0), dist(A,C,10.0). This particular
pattern assumes the presence of two arginines – A and B – and one lysine – C.
The distance between the arginines is 10Å, the distance between the arginine
A and the lysine C is also 10Å. A pattern like this can be used as an attribute,
counting the number of occurrences of this particular spatial configuration
of amino acids in proteins. Although counting the number of covering sub-
stitutions is not very common in ordinary propositionalization approaches,
it makes perfect sense for the problem of predicting DNA-binding propen-
sity of proteins, since ability to bind DNA is often connected with count
or proportion of atom-groups with certain properties (e.g. charged residues
[37]). We verify the contribution brought by using counting patterns instead
of existential patterns experimentally in Section 5.3.1. The algorithmic details
describing the necessary upgrade of RelF towards counting patterns are de-
scribed in Section 5.6.

The generated patterns can be used for classification using state-of-the-art
attribute-value learning algorithms. They can be also combined with other
types of attributes, for example physicochemical attributes such as those de-
vised by Szilágyi and Skolnick [92].

In some cases, not even RelF can construct patterns because of the enor-
mous size of some proteomics datasets. Therefore, we designed a sampling
strategy that allows RelF to quickly construct meaningful sets of structural
patterns. Unlike the subsampling of Nassif et al., our sampling method does
not subsample literals of individual protein structures, but it samples on the
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level of learning examples. This sampling strategy is described in more detail
in Section 5.6.

5.3 experiments with dna-binding proteins

In this section we describe experimental results of our relational learning
method based on the relational representation of protein structures described
in Section 5.1. The purpose of the presented experiments is to answer the fol-
lowing questions: (i) are existential patterns sufficient for accurate predictions
or do we need the counting patterns? (ii) can our relational learning method
outperform methods based on features selected by human experts? (iii) can
our relational learning method bring interpretable insights?

In order to answer these questions we performed experiments with sev-
eral datasets of protein structures including DNA-binding (in their bound
and unbound conformations) and non-DNA-binding proteins. We compared
classifiers based on structural patterns discovered by our method (SP) with
classifiers based on 10 physicochemical features (PF) identified as most pre-
dictive from a set of manually constructed features by Szilágyi and Skolnick
[92] and with classifiers based on both structural patterns and the physico-
chemical features (PSP). In all the experiments, the three types of patterns (SP,
PF, PSP) were used for classification using six state-of-the-art attribute-value
learning algorithms detailed in Section 5.3.3. We performed experiments with
more than one attribute-value learning algorithm in order to get objective as-
sessment of the different types of patterns.

In Section 5.3.1 we start by comparing existential patterns with counting
patterns on a dataset of DNA-binding protein structures in their unbound
conformations. Since the results clearly show that counting patterns signifi-
cantly outperform the using of existential patterns, we decided to further in-
vestigate only relational learning using counting patterns. In Section 5.3.2 we
present a broader experimental evaluation of our relational learning method
based on counting patterns.

5.3.1 Relational Learning using Existential Patterns vs. Counting Patterns

Here, we compare counting patterns with existential patterns while using
them in our relational learning method based on structural patterns. We per-
formed experiments on a positive dataset of DNA-binding proteins in their
unbound conformation (UD54) and a negative dataset of non-DNA-binding
proteins (NB110). As a result of structural pattern searching we obtained
about 1500 patterns present in the unbound DNA-binding proteins. We made
two sets of trainings (accuracies are shown in Tab. 2): i) considering just the
occurrence of the structural patterns - columns marked with (E), i.e. Existen-
tial Patterns, ii) considering also the number of occurrences of each pattern
- columns marked with (C), i.e. Counting Patterns. We compared classifiers
based on our structural patterns (SP) with classifiers based on 10 physico-
chemical features (PF) obtained from Szilágyi et al. [92]. We also trained clas-
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sifiers based on both our structural patterns and physicochemical features of
Szilágyi et al. (PSP). As we can see, we got better results for classifiers consid-
ering the number of occurrences of each pattern, i.e. using counting patterns.
For the most classifiers the accuracy was higher when they were based on our
counting structural patterns than on physicochemical features of Szilágyi et
al. However, we got the best results with combination of the two feature-sets.

Classifier PF SP(E) PSP(E) SP(C) PSP(C)

Linear SVM 84.0 (2) 77.5 (5) 78.1 (4) 83.0 (3) 84.2 (1)
SVM with RBK 81.6 (3) 67.1 (4-5) 67.1 (4-5) 83.0 (2) 85.4 (1)
Simple log. regr. 81.6 (3) 73.9 (5) 78.8 (4) 87.6 (1) 82.3 (2)
L2-regularized log. regr. 84.0 (2) 78.7 (5) 80.5 (4) 82.4 (3) 84.2 (1)
Ada-boost 77.4 (4) 73.2 (5) 83.0 (2) 79.3 (3) 84.7 (1)
Random forest 78.6 (4) 76.8 (5) 83.6 (1) 80.5 (2) 79.9 (3)

Average ranking: 3 4.92 3.25 2.33 1.5

Table 2: Accuracies obtained by stratified 10-fold crossvalidation using physicochem-
ical features of Szilágyi et al. (PF), our structural patterns (SP) and combi-
nation of both of them (PSP). The numbers in parentheses correspond to
ranking w.r.t. the obtained accuracies. The results shown in this table differ
slightly from the result shown in Table 4. The reason is that the results in
this table were obtained using an older version of the algorithm RelF which
selected a different but equivalent set of non-redundant features on training
data.

It is evident that the existential patterns are not able to capture the proper-
ties which determine whether a protein can bind to DNA or not. The most
plausible explanation seems to be that unlike binding of small ligands where
local geometry plays major role, binding to DNA can be better predicted
using global properties of proteins such as their electric charge or dipole
moment. These global properties cannot be captured by small existential pat-
terns, but they can be to a large extent captured by small counting patterns.
For this reason, we further investigated only our relational learning method
using counting patterns. This is described in the next section.

These results answer the first question asked at the beginning of Section 5.3,
whether existential patterns are sufficient for accurate predictions or whether
we need the counting patterns, in favour of the latter type of patterns.

5.3.2 Relational Learning using Counting Patterns

In this section we present results achieved by our relational learning method
using counting patterns for prediction of DNA-binding propensity of pro-
teins. We performed five sets of experiments with datasets of DNA-binding
proteins - PD138, UD54, BD54, APO104 and ZF - each one as a set of posi-
tive examples and dataset of non-DNA-binding proteins NB110 - as a set of
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negative examples. We used the RelF algorithm to construct patterns with
minimum frequency 0.7 and obtained about 1400 frequent structural pat-
terns for datasets PD138/NB110, approximately 1500 frequent structural pat-
terns for datasets UD54/NB110, about 2400 frequent structural patterns for
datasets BD54/NB110, about 2800 frequent structural patterns for datasets
APO104/NB110 and approximately 6000 frequent structural patterns for data-
sets ZF/NB110. Accuracies and areas under the ROC curve (AUC) obtained
on the respective datasets by stratified 10-fold cross validation using physic-
ochemical features (PF), structural patterns (SP) and combination of both of
them (PSP) are shown in Tables 3, 4, 5 and 6. The results for the method based
on physicochemical features (PF) differ slightly from the results reported by
Szilágyi and Skolnick [92], because we used 10-fold cross-validation whereas
Szilágyi and Skolnick used leave-one-out cross-validation.

We computed average rankings (over several machine learning algorithms)
for accuracies and AUCs. The average ranking (over several machine learn-
ing algorithms) of classifiers based on structural patterns (SP) was best on
datasets UD54/NB110, APO104/NB110 (tie with PSF) and ZF/NB110 for ac-
curacies and on datasets UD54/NB110 and ZF/NB110 in terms of AUC. The
average ranking of classifiers based on combination of structural patterns
and physicochemical features (PSP) was highest on datasets PD138/NB110,
APO104/NB110 (tie with SP) and BD54/NB110 for accuracies and on datasets
PD138/NB110, APO104/NB110 and ZF/NB110 (tie with SP) in terms of AUC.
Classifiers based on physicochemical features (PF) obtained highest ranking
only for AUCs on dataset BD54/NB110.

Accuracy AUC

PD138 vs. NB110 PF SP PSP PF SP PSP
Simple log. regr. 83.4 (1) 82.2 (2) 80.7 (3) 0.91 (2) 0.90 (3) 0.94 (1)
L2-reg. log. regr. 81.4 (3) 83.5 (2) 85.5 (1) 0.92 (1) 0.91 (2) 0.91 (2)
SVM with RBF 81.8 (2) 79.9 (3) 85.1 (1) 0.92 (2) 0.90 (3) 0.93 (1)
Linear SVM 81.4 (3) 83.6 (2) 83.9 (1) 0.92 (2) 0.89 (3) 0.93 (1)
Ada-boost 80.6 (2) 78.6 (3) 81.4 (1) 0.90 (1) 0.90 (1) 0.90 (1)
Random forest 81.8 (3) 83.5 (1) 82.3 (2) 0.90 (3) 0.91 (2) 0.93 (1)

Average ranking 2.33 2.17 1.5 1.83 2.33 1.17

Table 3: Predictive accuracies and areas under the ROC curve (AUC) on datasets
PD138 vs. NB110 achieved by 6 machine learning algorithms using physico-
chemical features (PF) as proposed by Szilágyi and Skolnick [92], structural
patterns (SP) automatically constructed by our algorithm, and the combina-
tion of both feature sets (PSP).

The method based on purely structural patterns (SP) and the method based
on the combination of structural patterns and physicochemical features (PSP)
achieved higher predictive accuracies than the method based purely on physic-
ochemical features (PF) - features introduced by Szilágyi and Skolnick [92].
The only exception was in case of the dataset BD54/NB110, where the method
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Accuracy AUC

UD54 vs. NB110 PF SP PSP PF SP PSP
Simple log. regr. 81.0 (3) 86.0 (1) 82.8 (2) 0.91 (1) 0.89 (2) 0.89 (2)
L2-reg. log. regr. 82.2 (3) 82.4 (2) 84.1 (1) 0.89 (3) 0.91 (1) 0.90 (2)
SVM with RBF 81.0 (2) 84.0 (1) 80.4 (3) 0.92 (1) 0.88 (3) 0.91 (2)
Linear SVM 81.7 (2) 82.4 (1) 82.4 (1) 0.90 (2) 0.91 (1) 0.87 (3)
Ada-boost 76.2 (3) 78.0 (2) 79.3 (1) 0.88 (3) 0.89 (2) 0.90 (1)
Random forest 78.6 (3) 79.3 (1) 79.2 (2) 0.88 (3) 0.89 (2) 0.90 (1)

Average ranking 2.67 1.34 1.67 2.17 1.67 2

BD54 vs. NB110 PF SP PSP PF SP PSP
Simple log. regr. 80 (3) 80.5 (2) 81.8 (1) 0.91 (1) 0.85 (2) 0.91 (1)
L2-reg. log. regr. 83.1 (1) 81.9 (2) 81.7 (3) 0.92 (1) 0.88 (3) 0.91 (2)
SVM with RBF 82.5 (2) 82.5 (2) 83.6 (1) 0.91 (1) 0.90 (2) 0.90 (2)
Linear SVM 81.4 (3) 82.3 (2) 82.9 (1) 0.93 (2) 0.90 (3) 0.94 (1)
Ada-boost 84.2 (1) 73.8 (3) 79.8 (2) 0.91 (1) 0.88 (2) 0.88 (2)
Random forest 82.4 (1) 75.0 (3) 79.4 (2) 0.89 (2) 0.89 (2) 0.91 (1)

Average ranking 1.83 2.33 1.67 1.33 2.33 1.5

Table 4: Predictive accuracies and areas under the ROC curve (AUC) on datasets
UD54 vs. NB110 and BD54 vs. NB110 achieved by 6 machine learning al-
gorithms using physicochemical features (PF) as proposed by Szilágyi and
Skolnick [92], structural patterns (SP) automatically constructed by our algo-
rithm, and the combination of both feature sets (PSP).

based on purely physicochemical features performed better than the method
based on purely structural patterns. The results were not as definite in the
case of AUC as in the case of predictive accuracy. The method based on
structural patterns turned out to be better than the method based on physic-
ochemical features on three datasets. Interestingly, these two datasets contain
DNA-binding proteins in their unbound conformations. The method based
on the combination of structural patterns and physicochemical features was
better than the method based on purely physicochemical features on four
datasets.

It may seem counter-intuitive that in some of the experiments, physico-
chemical features (PF) or structural patterns (SP) outperformed the combined
feature set (PSP). However, this is a rather natural manifestation of the overfit-
ting effect; expansion of the feature set may indeed be detrimental especially
with small datasets [28].

It is interesting to compare the results for the datasets UD54 and BD54.
Dataset UD54 contains DNA-binding proteins in unbound conformation, data-
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Accuracy AUC

APO104 vs. NB110 PF SP PSP PF SP PSP
Simple log. regr. 80.7 (3) 85.0 (1) 80.8 (2) 0.89 (3) 0.92 (1) 0.91 (2)
L2-reg. log. regr. 82.6 (3) 84.5 (1) 83.1 (2) 0.90 (2) 0.91 (1) 0.91 (1)
SVM with RBF 79.4 (3) 83.2 (2) 84.1 (1) 0.88 (3) 0.90 (2) 0.91 (1)
Linear SVM 79.4 (3) 84.5 (1) 84.1 (2) 0.89 (2) 0.89 (2) 0.92 (1)
Ada-boost 77.6 (3) 78.1 (2) 79.1 (1) 0.87 (2) 0.87 (2) 0.89 (1)
Random forest 81.7 (1) 78.5 (3) 79.4 (2) 0.88 (2) 0.87 (3) 0.89 (1)

Average ranking 2.67 1.67 1.67 2.33 1.83 1.17

Table 5: Predictive accuracies and areas under the ROC curve (AUC) on datasets
APO104 vs. NB110 achieved by 6 machine learning algorithms using physic-
ochemical features (PF) as proposed by Szilágyi and Skolnick [92], structural
patterns (SP) automatically constructed by our algorithm, and the combina-
tion of both feature sets (PSP).

set BD54 contains the same DNA-binding proteins, but in bound conforma-
tion with DNA. Whereas the highest predictive accuracies and best AUCs
were obtained by the method based on structural patterns on dataset UD54,
this method performed worst on dataset BD54. Interestingly, the number of
frequent structural patterns was significantly higher for dataset BD54 (ap-
proximately 2400 structural patterns) than for the dataset UD54 (approxi-
mately 1500 structural patterns). This suggests that conformational changes
after DNA-binding give rise to greater variability of spatial arrangements of
some amino acid groups. Moreover, conformational changes may be responsi-
ble for increase of spatial asymmetry of some amino acids or protein’s dipole
moment. This can explain the better performance of the method based on
physicochemical features on the dataset BD54 (recall that these features were
selected by experimenting on DNA-binding proteins in bound conformation
with DNA by Szilágyi and Skolnick [92]). Also note that prediction of DNA-
binding propensity from unbound conformations, for which our method per-
formed best, is more important for practical applications.

We examined the best discovered patterns in detail. For each split of the
dataset PD138 induced by 10-fold cross-validation we selected the ten most
informative structural patterns according to the χ2 criterion. Table 7 shows
the number of occurrences of the ten best structural patterns. There are
four structural patterns which are present in all ten folds. The first is res(A),
residue(A,arg). This pattern counts the number of arginines in the protein. It is
known that the arginine plays an important role in the DNA binding process.
For now, we are interested in structural patterns. Since this pattern included
no spatial information relating to other amino acids, we decided to analyse
just the remaining three patterns.

We inspected how structural patterns are reflected in protein’s primary
structure. First, we examined whether amino acids matched by a pattern oc-
cur in a preferred order in the proteins’ sequences. We calculated the dis-
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Accuracy AUC

ZF vs. NB110 PF SP PSP PF SP PSP
Simple log. regr. 95.1 (3) 98.7 (1) 97.2 (2) 0.99 (2) 1.0 (1) 1.0 (1)
L2-reg. log. regr. 95.9 (3) 99.3 (2) 100 (1) 0.99 (2) 1.0 (1) 1.0 (1)
SVM with RBF 95.8 (3) 99.3 (1) 98.6 (2) 0.99 (2) 1.0 (1) 1.0 (1)
Linear SVM 81.4 (3) 99.3 (1) 97.8 (2) 1.0 (1) 1.0 (1) 1.0 (1)
Ada-boost 95.9 (3) 99.3 (2) 100 (1) 0.98 (2) 1.0 (1) 1.0 (1)
Random forest 96.5 (3) 97.9 (1) 97.2 (2) 0.99 (2) 1.0 (1) 1.0 (1)

Average ranking 3 1.33 1.67 1.83 1 1

Table 6: Predictive accuracies and areas under the ROC curve (AUC) on datasets ZF
vs. NB110 achieved by 6 machine learning algorithms using physicochemical
features (PF) as proposed by Szilágyi and Skolnick [92], structural patterns
(SP) automatically constructed by our algorithm, and the combination of
both feature sets (PSP).

tribution of permutations of the amino acids matched by the first analysed
structural pattern res(A,arg), res(B,lys), dist(A,B,4.0). The distribution of per-
mutations on positive dataset was almost identical. Next, we were looking
for relative positions of these amino acids in the sequences of DNA-binding
proteins. Mostly the amino acids were situated next to each other in the pro-
teins’ sequences for both permutations of amino acids: [arg,lys] and [lys,arg], i.e.
on positions n and n+1. We also obtained occurrences of this pattern, where
the amino acids were on positions n and n+3 for permutation [arg, lys].

The next analysed structural pattern was res(A,arg), res(B,arg), res(C,lys),
dist(A,B,10.0), dist(A,C,10.0). There were no prevailing permutations for this
structural pattern and also no prevailing local arrangements of amino acids
in sequence. It would be hard to express this pattern using only primary
structure information, unlike in the case of the previous pattern.

The last analysed structural pattern was res(A,arg), res(B,arg), dist(A,B,6.0).
The most frequent relative positions of the amino acids were [n, n+2], [n, n+3],
[n, n+4], where the first relative positions were approximately two times more
frequent than the other two.

It is interesting that, with the exception of the first pattern, each structural
pattern corresponds to multiple sequential patterns in the proteins’ primary
structure. For instance, the second pattern corresponded to more than 20

different sequential patterns that appeared at least twice in the dataset. Natu-
rally, it would be hard to identify these sequential patterns in isolation using
only the information about the proteins’ primary structure. This could be re-
lated to the fact that spatial configurations of amino acids tend to be more
evolutionary conserved than configurations in primary structure.

Finally, we performed an additional experiment involving the method of
Nimrod et al. [68] on the dataset PD138/NB843. The method of Nimrod et
al. exploits also evolutionary information therefore it is interesting to see
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structural pattern n

1 res(A,arg) 10

2 res(A,arg), res(B,lys), dist(A,B,4.0) 10

3 res(A,arg), res(B,arg), res(C,lys), dist(A,B,10.0), dist(A,C,10.0) 10

4 res(A,arg), res(B,arg), dist(A,B,6.0) 10

5 res(A,arg), res(B,lys), dist(A,B,6.0) 9

6 res(A,ile), res(B,arg), res(C,arg), dist(A,B,6.0), dist(A,C,10.0) 7

7 res(A,leu), res(B,glu), res(C,arg), dist(A,B,10.0), dist(A,C,6.0) 7

8 res(A,lys), res(B,arg), dist(A,B,10.0) 7

9 res(A,arg), res(B,arg), res(C,leu), dist(A,B,10.0), dist(A,C,6.0) 7

10 res(A,arg), res(B,arg), dist(A,B,10.0) 6

Table 7: The ten most informative structural patterns according to the χ2 criterion
for the dataset PD138. N is the number of folds, for which the actual pattern
was one of the ten best patterns.

whether methods relying only on physicochemical features and/or structural
patterns could come close to its predictive accuracy.

In this additional experiment, we used only random forest classifier be-
cause this classifier was also used by Nimrod et al. The AUC values of the ap-
proaches based on the physicochemical features (PF), structural patterns (SP),
and their combination (PSP) were (respectively) 0.84, 0.82, and 0.82, whereas
the method of Nimrod et al. achieved AUC of 0.9. This indicates that there
is still a large gap between the structural pattern and physicochemical fea-
ture based approaches on one hand, and methods relying on evolutionary
conservation information.

The performed experiments allow us to evaluate usability of the relational
learning approach for prediction of DNA-binding propensity as well as its us-
ability for discovery of interesting spatial patterns in proteins. Results of our
experiments suggest that the method is suitable for both of the tasks (thus,
answering questions (ii) and (iii) asked at the beginning of Section 5.3). In
Section 5.3.2.1 we also discuss the factors influencing predictive performance
and biological relevancy of discovered structural patterns in case of Zinc fin-
ger proteins.

5.3.2.1 Discussion of the Results for Zinc finger proteins

Zinc finger proteins are one of the most common DNA-binding proteins in
eukaryotic transcription factors. Several studies [16, 17, 18, 66, 95, 72, 19, 104]
have tried to determine the DNA recognition by these proteins. The sequence
of three fingers of the protein Zif268, which served as the prototype for un-
derstanding DNA recognition by this family of proteins, is shown with the
cysteines and histidines involved in zinc coordination indicated in bold font
in Table 8 (reproduced from Wolfe et al. [104]). Filled squares below the se-



5.3 experiments with dna-binding proteins 37

quences indicate the position of the conserved hydrophobic residues. Filled
circles and stars indicate residue positions that are involved in phosphate and
base contacts (respectively) in most of the fingers. We evaluated relevance
of the discovered structural patterns matching them to observations in the
paper of Wolfe et al. [104].

We made predictive classification experiments on dataset of zinc finger pro-
teins (ZF). The best results, in terms of accuracy and AUC, were obtained by
the method based on structural patterns. However, here the results were in-
fluenced by the fact that the zinc finger proteins were highly homologous.
Therefore, we were more interested in the question whether the structural
patterns were able to discover some basic characteristic of DNA-binding pro-
cess shared by zinc finger proteins.

We inspected the best discovered patterns. We selected the ten most infor-
mative structural patterns according to the χ2 criterion, following the same
procedure as for the DNA-binding proteins in general. Table 9 shows the
number of occurrences of the ten best patterns. There were three structural
patterns present in all of the dataset splits. We show them in Figures 8 and 9.

Figure 8: Most informative structural patterns according to the χ2 criterion for the
dataset of Zinc Fingers (edges not to scale).
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Figure 9: Example proteins (1A1F and 1AAY) containing one discovered pattern
shown for the Zinc-finger proteins’ dataset using the protein viewer soft-
ware [62]. Residues assumed by the pattern are indicated in the following
way: CYS - pink, HIS - violet, ARG - yellow.

We calculated the distribution of permutations of the amino acids matched
by the first analysed structural pattern res(A,cys), res(B,cys), res(C,his), res(D,his),
res(E,arg), dist(A,B,6.0), dist(A,C,8.0), dist(A,D,10.0), dist(A,E,10.0). The most
frequent permutation was [cys, cys, arg, his, his]. We looked for the relative
positions of these amino acids in zinc finger proteins’ sequences. The most
frequently occurring relative positions were: [n, n+5, n+17, n+18, n+22]. We
compared this result with the observation described in the paper of Wolfe
et al. [104] (reproduced in Table 8). This discovered structural pattern ex-
actly matched the positions of some of the amino acids which are supposed
to be directly involved in DNA-binding. In case of the second structural
pattern res(A,cys), res(B,his), res(C,his), res(D,arg), dist(A,B,8.0), dist(A,C,10.0),
dist(A,D,10.0) and the third structural pattern res(A,his), res(B,his), res(C,cys),
res(D,arg), dist(A,B,8.0), dist(A,C,8.0), dist(A,D,4.0) the most frequent permuta-
tion was [cys, arg, his, his] and the resulting relative positions were [n, n+17,
n+18, n+22]. Table 8 indicates that these two patterns (P2 and P3) cover the
first pattern (P1).

While, as already commented, the discovered patterns matched the posi-
tions of some of the amino acids supposed to be directly involved in DNA-
binding, they in fact do not capture specific properties of DNA-binding pro-
cess but rather a consensus amino acid pattern known to be present in Cys2His2
zinc fingers [104]. One could be concerned whether the patterns discovered
for DNA-binding proteins in general (datasets PD138, UD54, BD54, APO104)
just captured conserved consensus patterns of different folds as well. How-
ever, this was not the case, because every discovered pattern was contained
in at least 70% of DNA-binding proteins (note that minimum frequency 0.7
was used for feature construction). In order to assure validity of this claim we
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performed an additional experiment in which the relational learning model
was always constructed for proteins from all but one protein group and then
tested on this excluded group (see Section 5.3.2.2). Nevertheless, these ob-
servations indicate that caution should be exercised when applying our re-
lational learning method on datasets with highly homologous proteins, be-
cause conserved consensus patterns not necessarily related to the function of
the proteins could be discovered instead of the sought patterns responsible
for the function.

5.3.2.2 Evaluation of binding motif independence

In order to further support our claim that the patterns discovered for DNA-
binding proteins in general (datasets PD138, UD54, BD54, APO104) did not
just capture the consensus patterns of particular folds, we performed an ex-
periment in which the relational learning model was always constructed for
proteins from all but one protein group and then tested on this excluded
group. Proteins of the dataset PD138 were divided into seven groups follow-
ing the work of Szilágyi and Skolnick [92]. They were the following: helix-
turn-helix, zinc-coordinating, zipper-type, other α-helix, β-sheet, other and
enzyme. We used linear SVM based on our structural patterns (SP), because
SVM turned out to perform best in the experiments described in Section 5.3.2.
We show both the predictive accuracies obtained by testing the learnt clas-
sifiers on the excluded groups and the cross-validated accuracies obtained
by the classifiers on the remaining parts of the dataset in Table 10. The re-
sulting accuracies on the excluded groups, which should correlate with the
ability of our method to discover patterns characteristic for DNA-binding pro-
teins in general, are reasonably high with the exception of the enzyme group.
This agrees with the results of Szilágyi and Skolnick [92] and Stawiski et al.
[85], who also noticed a drop in the ability of their method to detect DNA-
binding proteins in the enzyme group. We can conclude that our method is
indeed able to construct classifiers which can work accurately over various
(non-enzyme) groups of proteins and that its ability to detect DNA-binding
proteins is not due to discovery of conserved consensus patterns of different
protein folds.

5.3.3 Detailed Experimental Settings

In all the experiments, the three types of patterns (PF, SP, PSP) were used
for classification using six state-of-the-art attribute-value learning algorithms
listed in Table 11. We used implementation of these learning algorithms
present in the WEKA [103] open-source machine learning software. We per-
formed experiments with more than one attribute-value learning algorithm
in order to get objective assessment of the different types of patterns.

Parameters of the classifiers were tuned using internal cross-validation.
When performing cross-validation, the set of patterns was created separately
for each train-test split corresponding to iterations of cross-validation proce-
dure. The number of trees for random forest and the number of iterations for
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protein group acc . on excl . group cv acc . on training data

Helix-turn-helix 83.3 80.3
Zinc-coordinating 100 82.9
Zipper-type 88.9 83.1
Other α-helix 100 85.0
β-sheet 77.8 86.0
Other 100 82.5
Enzyme 58.1 90.4

Table 10: Predictive accuracies obtained by linear SVM classifiers trained on the
datasets PD138/NB110 with protein groups excluded from PD138. The ac-
curacy on excluded group is the percentage of correctly classified proteins
from the protein group excluded from the training data. The cross-validated
accuracy on training data is the accuracy of the learnt model estimated by
10-fold cross-validation on the training data.

classifier category references

Linear support vector machine kernel [8]
SVM with RBF kernel kernel [8]
Simple logistic regression regression/ensemble [50]
L2-regularized logistic regression regression [30]
Ada-boost (with decision stamps) ensemble [24]
Random forest ensemble [6]

Table 11: State-of-the-art attribute-value learning algorithms used for classification.

Ada-boost was selected from the set {10, 20, 50, 100, 200, 500, 1000}. The com-
plexity parameter c for linear support vector machine and for support vector
machine with RBF kernel was selected from the set {1, 10, 102, 103, 104, 105, 106}.
The regularization parameter of L2-regularized logistic regression was se-
lected from the set {10−3, 10−2, 10−1, 1, 10, 102, 103}. The minimum frequency
of features on one of the classes was 0.7.

5.4 experiments with antimicrobial peptides

In this section we present our relational machine learning techniques to pre-
dict antimicrobial activity of antimicrobial peptides (AMPs). To our best knowl-
edge this is the first attempt to automatically discover common structural pat-
terns present in antimicrobial peptides and to use them for prediction of an-
timicrobial activity. We utilized our relational learning method [42] which has
already been used for DNA-binding propensity prediction of proteins [86]
described in Section 5.3. There are two main differences between the work
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presented for the prediction of DNA-binding propensity of proteins and the
prediction of antimicrobial acitivity of antimicrobial peptides. First, the prob-
lem that we tackled in Section 5.3 [86] dealt with classification, whereas here
we built a regression model. Second, here only primary structures of peptides
are available (therefore we have to rely on structure prediction), whereas we
could use spatial structures obtained by X-ray crystallography in the case of
the study with DNA-binding proteins.

We modified the propositionalization-based method described in Section
5.2 for prediction of antimicrobial activity of AMPs. The modified method
proceeds in four steps. It starts with AMP sequences, for which we obtain
spatial models using LOMETS structure prediction software [105] (step 1).
This gives us 3D information in PDB files. Then we create a relational rep-
resentation of the peptides (step 2). After that we use our relational learning
algorithm RelF to extract meaningful relational patterns from the relational
structures describing peptides and convert them to an approximate attribute-
value representation of the peptides (step 3). Step 2 corresponds to step 1 and
step 3 corresponds to step 2 in Section 5.2. Finally, the output of RelF - .arff file
readable by WEKA [103] is used for learning regression models (step 4) - in
this case of antimicrobial activity prediction.

In the first step, 3D structures of peptides are computed using LOMETS
software. LOMETS combines results of several threading-based structure pre-
diction algorithms and returns several models with predicted coordinates of
α-carbon atoms. We use only the best full-length model according to ordering
given by LOMETS for each sequence.

In the second step, we create a representation of peptides’ spatial structures
suitable for relational learning as described in Section 5.1.

In the third step, we use RelF to construct a set of meaningful structural
patterns. Since RelF had been designed for classification problems, we had to
find a way to use it for regression problems. We decided to follow a straight-
forward approach. We enriched RelF with preprocessing in which the train-
ing data are split into two sets1 according to antimicrobial activity - the first
set containing peptides with lower-than-median activities, the second set con-
taining peptides with higher-than-median activities. As soon as we have a
dataset with at least two classes, RelF can be used for construction of dis-
criminative patterns. The output of RelF is an attribute-value representation
in WEKA format. We also added to these files additional information about
dipole moment, proportions of amino acid types and their spatial asymme-
tries [92] which proved to be useful when added to relational patterns in
Section 5.3 [86]. In the last step, we used implementation of SVM with RBF
kernel present in the WEKA open-source machine learning software to train
a regression model using the files generated in step 3. Parameters of the re-
gression model are tuned using internal cross-validation. When performing
cross-validation, the set of patterns is created separately for each train-test

1 When performing cross-validation, we always split the data taking into account only the
training set to avoid information leakage into the independent test set.
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2. Spatial Information:

                            x                  y                  z

A                   11.487        -9.219         -6.757

K                     9.714      -10.340         -3.583

K                     9.713        -6.829         -2.113

V                     6.256        -5.867         -3.279

F                     5.887        -5.314           0.455

K                    6.392        -1.654          -0.350

R                    3.218        -1.602          -2.424

L                     1.454        -2.809           0.717

E                     2.348         0.429           2.489

3. Relational representation 

     input for RelF:

e1 = res(a, ala), res(b, lys), dist(a, b, 4.0), 

         res(c, lys), dist(a, c, 6.0), 

         res(d, val), dist(a, d, 8.0), ...

1. Sequence Information: 

A K K V F K R L E

LOMETS

Perl script

RelF

.arff 

 file

WEKA
Regression model

Figure 10: The main steps of the method for prediction of antimicrobial activity of
antimicrobial peptides.

split corresponding to iterations of the cross-validation procedure. The data
transformation process is shown in Figure 10.

5.4.1 Discussion of the Results for Antimicrobial Peptides

In this section we present experiments performed on real-life data. We used
the relational representation of peptides described in Section 5.1. The rep-
resentation consisted of literals representing types of the amino acids and
literals representing pair-wise distances between the amino acids up to 10 Å.
These distances were computed from α-carbon coordinates obtained from
PDB files computed by LOMETS. We used discretisation of distances with dis-
cretisation step 2 Å. We trained support vector machine [8] regression models
with RBF kernel selecting optimal C (complexity constant) and gamma (de-
termines the kernel width parameter) for each fold by internal cross-validation.
The estimated results are shown in Table 12.

We performed experiments on three datasets (CAMEL, RANDOM and
BEE) which are described in Section 4.3. We compared the results of our rela-
tional learning method for regression with the results reported by Torrent et
al. which is a state-of-the-art method. In the study by Torrent et al. [97], only
cross-validated coefficients of determination were given. Coefficient of deter-
mination can be regarded as the proportion of variability in a dataset that is
accounted for by the statistical model. In addition, we also report correlation
coefficient (q) and root-mean-square error (RMSE) for our regression method.
On dataset CAMEL we achieved the same results as Torrent et al. On dataset
RANDOM we improved upon the results of Torrent et al. in terms of coeffi-
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Torrent et al. [97] Our Regression Model

q2 q2 q RMSE

CAMEL 0.65 0.65 0.81 1.23

RANDOM 0.72 0.74 0.87 1.23

BEE - 0.3 0.61 1.04

Table 12: Experimental results obtained by cross-validation, where q2 is coefficient of
determination, q is correlation coefficient and RMSE is root-mean-square
error.

cients of determination. Since dataset BEE is a newly compiled dataset, there
are no results to compare our approach with. It is also a harder dataset, than
the other two, because it is composed of three different sources. Each of these
sources is homogeneous on their own, but heterogeneous when joined into
one big dataset. Also the variance of antimicrobial activity is lower in this
dataset than in the other two. This explains why the coefficient of determina-
tion is so small as compared to the coefficients of determination obtained for
the other datasets.

A problem of antimicrobial peptides as antibiotics is that they often have
the ability to lyse eukaryotic cells, which is commonly expressed as hemolytic
activity or toxicity to red blood cells. Unlike the other methods which use a
pre-fixed set of physicochemical features, our method is not limited to one
particular task. Since the sources from which we compiled the dataset BEE
contained also information about the hemolytic activity, we decided to as-
sess the potential of our method also for prediction of hemolytic activity. Be-
cause more than half of the reported hemolytic activities were given only by
a lower-bound (200 µM) (i.e. it was not possible to measure the exact value),
we decided to transform the problem to a two-class classification problem
- the first class corresponding to peptides with activities below the lower-
bound, the second class corresponding to peptides with activities higher than
the lower-bound. We performed experiments following the same steps as in
the prediction of antimicrobial activity, but with a random forest classifier
instead of support vector machine classifier for regression. We obtained accu-
racy 60.83% and AUC (area under ROC curve) 0.725.

In addition, we can analyse the structural patterns used in the regression
model which can give us insights about the process by which the antimi-
crobial peptides kill bacteria. We used the following methodology. First, we
discretized the antimicrobial activity attribute, so that we could apply χ2 cri-
terion for ranking of patterns. Then, for each split of the datasets (CAMEL,
RANDOM and BEE) induced by 10-fold cross-validation we selected the three
most informative structural patterns according to the χ2 criterion. We chose
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A B C

Figure 11: Most informative structural patterns according to the χ2 criterion for the
dataset of CAMEL (A), RANDOM (B) and BEE (C)(edges not to scale).

one pattern which was selected most often among the folds for each dataset
for further discussion. These patterns are shown in Figure 11.

The selected pattern for the dataset CAMEL assumes presence of five amino
acids: ILE, LEU, 2×LYS, VAL with distances between them as depicted in
Figure 11. The positively charged lysines are known to correlate with antimi-
crobial activity and the presence of leucine can be explained by the fact that
the dataset CAMEL contains mostly leucine-rich peptides. Interestingly, the
remaining two amino acids - isoleucine and valine - and leucine are the only
proteinogenic branched-chain amino acids - they each have a carbon chain
that branches off from the amino acid’s main chain, or backbone.

The selected pattern for the dataset RANDOM is very simple. It assumes
presence of tryptophan. Since the patterns count the number of occurrences,
it corresponds to proportion of TRP in peptides. This is not surprising, given
that the peptides of the dataset RANDOM are composed mostly of TRP and
some other amino acids.

Finally, the selected pattern for the dataset BEE assumes presence of two
amino acids: LEU and LYS in the distance 4Å from each other. Again, the
positively charged amino acid - lysine is known to correlate well with antimi-
crobial activity. Both leucine and lysine appeared also in the selected pattern
for the dataset CAMEL.

In summary, we have shown that our relational learning approach for re-
gression improves on a state-of-the-art approach to antimicrobial activity pre-
diction in terms of predictive accuracy. Moreover, we have illustrated that
our method is capable to also provide interpretable patterns describing spa-
tial configurations of amino acids in peptide structures.

5.5 conclusions

In this chapter, we designed a suitable relational representation of structural
protein data. Then we used relational machine learning for construction of
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classifiers able to predict DNA-binding propensity of proteins. We found out
that it is beneficial for accurate prediction to count occurrences of structural
relational patterns in protein structures instead of relying just on the pat-
tern’s presence or absence. In the experiments we demonstrated that our
relational learning approach is able to achieve higher predictive accuracies
than methods based on features hand-crafted by experts. We also ensured
that our approach is able to construct classifiers which can work accurately
over various groups of proteins. We further utilized our relational learning
approach for antimicrobial activity prediction of peptides. Unlike the DNA-
binding propensity prediction, this is a regression problem. We showed that
a modification of our relational learning approach tailored for regression im-
proves on a state-of-the-art approach to antimicrobial activity prediction in
terms of predictive accuracy. Furthermore, the patterns discovered by our re-
lational learning methods can potentially uncover the underlying mechanism
of the DNA-binding or the bacteria killing process.

5.6 algorithmic details

The original algorithm RelF was designed to construct existential patterns,
but as we saw in this chapter, counting patterns are more appropriate for
proteomics problems. Therefore, we extended RelF with support for count-
ing patterns. The first problem that we had to solve was to implement an
algorithm for computing the number of occurrences for a given pattern and
a relational structure. Our implementation2 essentially corresponds to the
algorithm described by Pichler et al. [74]. A more difficult problem turned
out to be the construction of counting patterns. The main difficulty was how
to define redundancy of patterns and how to exploit it during the pattern
construction process.

We extended the definition of redundancy used by RelF for counting pat-
terns as follows: we defined two patterns to be mutually redundant if the
number of occurrences of one pattern was a fixed multiple of the number of
occurrences of the other pattern for all relational structures (examples) in the
given dataset. With this definition of redundancy, we were able to prune re-
dundant building blocks during the pattern construction process as follows.
We extended the definition of domain used by RelF for pruning redundant
building blocks by assigning a number to each element of the domain. This
number corresponds to the number of occurrences of the building block in the
given relational structure with the input variable of its root-literal substituted
by the respective value from the domain. It can be shown that when extended
domains of two building blocks are equal or fixed multiples of each other, then
one of the blocks can be safely discarded while guaranteeing that a complete
set of non-redundant patterns will be generated. While theoretically appeal-
ing, this approach unfortunately leads to construction of many patterns that
are hard to interpret. Therefore, we used a more straightforward approach in

2 We devised this algorithm independently, but it is just a small refinement of the well-known
algorithm of Yannakakis [106].
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the experiments3. This more straightforward version of RelF first constructs a
set of patterns which is non-redundant w.r.t. the existential patterns and then
computes the number of occurrences of these patterns.

It remains to explain the sampling strategy that we had to use on our
large datasets. The strategy works as follows: it samples a subset of learning
examples containing a pre-specified number of examples and then uses RelF
to construct a non-redundant set of patterns. This process is repeated several
times and then all the constructed patterns are evaluated on the complete
dataset and filtered.

3 The version of RelF which guarantees that all non-redundant counting patterns are always
found is part of our suite of relational learning algorithms called TreeLiker (described in
Appendix A).
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R E L AT I O N A L L E A R N I N G W I T H P O LY N O M I A L S

Modelling of relational domains which contain substantial part of informa-
tion in the form of real-valued variables is an important problem with appli-
cations in bioinformatics. For proteins, knowing physicochemical properties
of regions on their surfaces may be useful for prediction of their function.

So far there have not been many relational learning systems introduced
in the literature that would be able to model multi-relational domains with
numerical data efficiently. For example RelF used in Chapter 5 is unable to
work efficiently in such domains. A framework able to work efficiently in
multi-relational domains with numerical data is hybrid Markov logic [102].
However, there is currently no known approach for learning structure of hy-
brid Markov logic which is mainly due to their excessive complexity. An-
other type of systems that do not directly model the probabilities but are able
to learn in domains rich in numerical data are systems based on relational
aggregation [38, 101]. In this chapter we describe a relatively simple novel
transformation-based framework for learning in rich relational domains con-
taining numerical data.

The new framework exploits multi-variate polynomial aggregation func-
tions, which is something that, surprisingly, has not been studied in the
relational-learning literature yet. This chapter is organized as follows. We first
define so-called polynomial features, then we study their properties in Section
6.1. A novel relational representation of proteomics data is presented in Sec-
tion 6.2. Then, we show how to apply the developed approach in proteomics
domain. We present our experimental results in the domain of DNA-binding
proteins and other related domains in Section 6.3. In Section 6.4 we conclude
this chapter. Finally, in Section 6.5 we present the algorithmic details of this
chapter. There, we derive efficient algorithms for tree-like polynomial features
and polynomial features with bounded tree-width in general. Unlike methods
based on straightforward application of existing algorithms for conjunctive-
query answering, our new algorithms run in time which depends only lin-
early on the maximum number of variables in monomials.

6.1 polynomial relational features

In this section we describe a simple framework for working with hybrid
relational learning problems. We start by defining notation. Let n ∈ N. If
~v ∈ Rn then vi (1 6 i 6 n) denotes the i-th component of ~v. If I ⊆ [1;n] then
~vI = (vi1 , vi2 , . . . vi|I|) where ij ∈ I (1 6 j 6 |I|). To describe training examples
as well as learned models, we use a conventional first-order logic language
L whose alphabet contains a distinguished set of constants {r1, r2, . . . rn} and
variables {R1,R2, . . . Rm} (n,m ∈ N). An r-substitution ϑ is any substitution
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as long as it maps variables Ri only to terms rj. For the largest k such that
{R1/ri1 ,R2/ri2 , . . . , Rk/rik} ⊆ ϑ we denote I(ϑ) = (i1, i2, . . . ik). A (Herbrand)
interpretation is a set of ground atoms of L. I(H) (I(ϕ)) denotes the natu-
rally ordered set of indexes of all constants ri found in an interpretation H
(L-formula ϕ).

Our training examples have both structure and real parameters. An example
may e.g. describe a protein structure; here the structure (part of the example)
could describe the spatial structure of the protein (similarly as in Chapter 5)
and the parameters would describe the numerical physicochemical properties
of amino acids or groups of amino acids in the protein. The structure will be
described by an interpretation, in which the constants ri represent uninstan-
tiated real parameters. The parameter values will be determined by a real
vector. Formally, an example is a pair

(
H,~θ

)
where H is an interpretation,

~θ ∈ ΩH, and ΩH ⊆ R|I(H)| (here, R denotes the set of real numbers).
A feature is simply a L-formula. For each example

(
H,~θ

)
, it extracts some

components of ~θ into a set of vectors. Given an example e = (H,~θ) and a
feature ϕ, the sample set of ϕ and e is the multi-set S(ϕ, e) = {~θI(ϑ)|H |= ϕϑ}

where ϑ are r-substitutions grounding all free variables1 in ϕ, and H |= ϕϑ

denotes that ϕϑ is true under H.

Example 4. Let ϕ = a(X,R1), e(X, Y), a(Y,R2) be a feature and e = a(a, 1),
e(a,b), a(b, 2), e(b, c), a(c, 3), e(a, c) be an example (formally: e = (a(a, r1),
e(a,b), a(b, r2), e(b, c), a(c, r3), e(a, c), (1, 2, 3)T )). Then the sample-set of feature
ϕ w.r.t. example e is S(ϕ, e) = {(1, 2)T , (2, 3)T , (1, 3)T }.

Now, we can introduce polynomial relational features and discuss some of
their properties. We start with monomial relational features. A monomial rela-
tional feature M is a pair (ϕ, (d1, . . . ,dk)) where ϕ is a feature with k dis-
tinguished variables and d1, . . . ,dk ∈ N. Degree of M is deg(M) =

∑k
i=1 di.

Given a non-empty sample set S(ϕ, e), we define the value of a monomial
feature M = (ϕ, (d1, . . . ,dk)) w.r.t. example e as

M(e) =
1

|S(ϕ, e)|

∑
~θ∈S(ϕ,e)

~θd11 · ~θ
d2
2 · · · · · ~θ

dk
k

where ~θi is the i-th component of vector ~θ.
Sometimes, we will use a more convenient notation for monomial features

motivated by this definition of value:

(ϕ, (d1, . . . ,dk)) ≡def Rd11 · R
d2
2 · · · · · R

dk
k .

A polynomial relational feature is an expression of the form P = α1M1+α2M2

+ · · ·+ αkMk where M1, . . . ,Mk are monomial features and α1, . . . ,αk ∈ R

1 Note that an interpretation H does not assign domain elements to variables in L. The truth
value of a closed formula (i.e., one where all variables are quantified) under H does not
depend on variable assignment. For a general formula though, it does depend on the assign-
ment to its free (unquantified) variables.
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(formally expressed as a pair of two ordered sets - one of monomials and one
of the respective coefficients). Value of a polynomial feature P = α1M1+ · · ·+
αkMk w.r.t to an example e is defined as P(e) = α1M1(e)+ α2M2(e) + · · ·+
αkMk(e). Degree of a polynomial relational feature P is maximum among the
degrees of its monomials.

Polynomial relational features can be used for learning as follows. First,
a set F of monomial relational features is constructed. Then, all monomial
features are evaluated w.r.t. all examples in the dataset and the values are
stored in a table. This gives us an attribute-value table which can be processed
by any attribute-value learning algorithm such as SVM or random forest. This
is an instance of propositionalization [55]. This approach is a generalization of
existing aggregation-based systems that have been introduced in relational
learning [38, 101] which surprisingly did not incorporate any multi-variate
aggregate functions.

Polynomial relational features are closely related to hybrid Markov logic
[102]. Hybrid Markov logic (HML) is an extension of Markov logic [77] to
hybrid domains, i.e. to domains which contain both discrete relational data
and numerical data. A hybrid Markov logic network is a set of pairs (Fi,wi)
where Fi is a first-order formula or a numeric term and wi ∈ R is a weight of
the formula Fi. When one fixes a set of constants C then hybrid Markov logic
defines probability distribution over possible worlds as follows:

p(X = x) =
1

Z
exp

(∑
i

wisi(x)

)
where si(x) is either number of true groundings of feature Fi w.r.t x if Fi
is not a numeric-feature, or the sum of values w.r.t. x when Fi is a numeric
feature. If one has conditional distributions represented as HMLs for two
classes and the task is to learn a classifier distinguishing examples from the
two classes then the resulting decision boundary has equation (where + and
− superscripts distinguish the weights and features of the models for the two
classes) ∑

i

w+
i s

+
i (x) −

∑
i

w−
i s

−
i (x) = t

which defines a linear hyperplane. If one used polynomial numeric features
in the HML, the resulting classifier would become very similar to what we
obtain with polynomial relational features and a linear classifier, e.g. support
vector machine, the main difference being that si(x) would be an average of
values of polynomials applied on the ground instances of feature Fi whereas
it is a sum in the case of HML. A convenient property of averages used in the
polynomial-feature framework is that they are not so sensitive to the size of
the examples (possible worlds).

6.2 representation of data for learning with polynomials

There are several representations of proteins which can harness the advan-
tages of the framework of polynomial relational features. One of the simplest
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representations which is already powerful enough to achieve high predic-
tive accuracies is based just on the combination of primary and secondary
structure of proteins. In this representation, proteins are represented as se-
quences of consecutive segments. These segments are labelled by their sec-
ondary structure and by their numerical physicochemical properties. This is
exemplified in Example 5.

Specifically, the sequence of segments is represented by literals of the type
n(x,y) which denote two segments x and y to be neighbours. Then, there
are literals of the type prop(x,name, value) which denote a numeric prop-
erty name to be equal to value in segment x. The secondary structure is
described by literals of the type sec_structure(x, type) which denote the sec-
ondary structure type for the segment x. It can happen that there are multiple
literals of the type sec_structure(x, type) for a single segment – if a segment
contains amino acids corresponding to different secondary structures.

Physicochemical properties used in this representation can be for example:
average charge of amino acids in the segment, average hydropathy index,
dipole moment, polarity and so on.

Example 5. Let

e = n(s1, s2),n(s2, s3),n(s3, s4),prop(s1, charge, 0.5),prop(s2, charge, 0.1),
prop(s3, charge, 0.4),prop(s4, charge, 0.5), sec_structure(s1,helix),
sec_structure(s2,helix), sec_structure(s3, sheet),
prop(s1,hydropathy, 0.2),prop(s2,hydropathy,−3.5),
prop(s3,hydropathy, 2.8),prop(s4,hydropathy,−0.4)

be an example of a protein – it is divided into four segments s1, s2, s3 and s4.
Next, let ϕ1 = prop(X, charge,R1), sec_structure(X, sheet) be a feature and

let Mϕ1
1 = R1 and Mϕ1

2 = R21 be monomial features based on the feature ϕ1. Intu-
itively, the monomial feature Mϕ1

1 = R1 corresponds to the average charge in sheets
of the protein. The monomial feature Mϕ1

2 = R21 captures the dispersion of charge
over the sheets of the protein. Indeed, let us have two proteins A and B and a mono-
mial feature M = (R1)

2 based on the relational feature ϕ = prop(X, charge,R1)
and let us assume that A and B are composed of the same number of amino acids and
that they contain the same number of positively charged amino acids and no nega-
tively charged amino acids in the sheets. Finally, let us also assume that the positively
charged amino acids are distributed more or less uniformly over the protein structure
A but are mostly concentrated in one of the sheets of the protein structure B. Then it
is not hard to see that for the values M(A) and M(B) it should hold M(A) 6M(B).
However, variance as usually defined, is better captured by the following expression
composed of monomial features Mϕ1

1 and Mϕ1
2 : Mϕ1

2 (e) − (Mϕ1
1 (e))2.

Likewise, let us have a feature

ϕ2 = prop(X, charge,R1),n(X, Y),prop(Y, charge,R2)

and monomial features M1 = R1 · R2, M2 = R1, M3 = R2 based on it. Then the
monomial featureM1 corresponds to agreement of charges of neighbouring segments
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over a given protein structure, their covariance is better captured by the following
expression involving all three monomial features:

M1(e) −M2(e) ·M3(e).

Note that this expression is not a polynomial feature but only an expression composed
of values of polynomial (monomial) features.

6.3 experiments

We evaluated performance of the polynomial-feature-based method in three
relational learning domains. We compared it with Tilde [5] and with the
method of Szilágyi et al. [92]. We performed experiments with tree-like poly-
nomial relational features with degree one, two and three in order to evaluate
impact of degree of monomials on predictive accuracy. For each dataset, we
used two types of relational descriptions with different complexity. We used
random forest classifiers with 100, 500 and 1000 trees (see Table 13).

6.3.1 DNA-binding proteins

Our first set of experiments dealt with prediction of DNA-binding propen-
sity of proteins using the representation of proteins described in Section 6.2.
Recall, that it had already been shown – for example in the work of Szilá-
gyi and Skolnick – that electrostatic properties of proteins are good features
for predictive classification. Therefore, our first model for predicting whether
a protein binds to DNA used only distributions of charged amino acids in
fixed-size segments and the secondary structure of the proteins. Surprisingly,
for the experiments using only electric charge, the highest accuracies were
obtained by monomials of degree 1. Nevertheless, results obtained for all de-
grees of monomials were higher than 75.8% accuracy obtained by Tilde. The
results for degree 1 were better than the results obtained by Szilágyi et al.

In our second model, we added also information about average propensity
of amino acids in the fixed-size segments to bind to DNA which had been
measured by Sathyapriya et al. [81]. The accuracies obtained by our method
on the second model were consistently higher than 81.4% accuracy obtained
by Szilágyi and Skolnick with logistic regression or 82.2% that we obtained us-
ing random forest on Szilágyi’s and Skolnick’s features. The best results were
obtained for monomials of degree 3. It seems to be the case that the ability to
capture the statistical dependence of values of these numerical properties is
important for prediction of DNA-binding propensity of proteins.

The obtained results are encouraging given that we used only a limited
amount of information about the proteins. We further study the possibility
to use models capturing distribution of continuous numerical properties of
protein regions in Chapter 15, where the most accurate method of this thesis
is presented – which also utilises a type of polynomial features.
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Degree 1 Degree 2 Degree 3

100/500/1000 100/500/1000 100/500/1000

PD138 - Ch 84.7/82.3/82.3 81.0/79.5/81.0 81.0/79.8/79.8

PD138 - Ch + P 82.7/84.7/84.3 83.9/84.7/84.3 85.1/85.5/85.5

Muta - Ch 88.8/88.3/88.3 88.8/88.8/88.3 89.9/89.9/89.4

Muta - A + Ch 87.8/88.3/88.3 88.3/88.8/88.8 89.9/89.9/89.9

NCI 786 - Ch 61.0/61.0/61.0 66.5/66.5/66.8 67.2/68.0/68.0

NCI 786 - A + Ch 70.3/70.1/69.9 70.5 /70.8/70.8 70.6/70.2/70.4

Table 13: Accuracies estimated by 10-fold cross-validation for learning using mono-
mial features and random forests for degrees of monomial features: 1, 2

and 3.

6.3.2 Other Related Problems

Since the method based on polynomial relational features is not bound just
to applications involving DNA-binding propensity prediction of proteins, we
evaluated it also on two other datasets.

Our second set of experiments was done on the well-known Mutagenesis
dataset [84], which consists of 188 organic molecules marked according to
their mutagenicity. The problem of predicting mutagenicity relates closely
to prediction of DNA-binding propensity of proteins, because mutagenicity
regards the ability of molecules to damage DNA (this damage can be caused
indirectly, for example through free radicals). We performed two experiments
in this domain. In the first experiment, we used only information about bonds
and their types (single, double, triple, resonant) and information about charge
of atoms, but not about their types. In the second experiment, we also added
information about atom types. The accuracies obtained by our method (Table
13) are consistently higher than the best accuracy 86% achieved by Tilde in
[5]. The best results are obtained for monomial features of degree 3.

Our third set of experiments was performed on the NCI 786 dataset which
contains 3506 molecules labelled according to their ability to inhibit growth
of renal tumors. Again we performed two experiments in this domain. In the
first experiment, we used only information about bonds and their types and
information about charge of atoms and in the second experiment we also
added information about atom types. Monomials of degree 3 turned out to
be best for the first representation whereas monomials of degree 2 performed
best for the second representation. Tilde did not perform well on this dataset,
so at least, we compared our results with results reported in [42] for kFOIL
(63.1), nFOIL (63.7) and RelF (69.6). The accuracies obtained with monomial



6.4 conclusions 55

features for the atoms + charge representation were consistently higher than
these results.

6.4 conclusions

In this chapter, we presented a conceptually simple framework for relational
learning with multivariate polynomial functions suitable for complex do-
mains (such as protein function prediction) involving real-valued parameters.
We showed how polynomial relational features can be used for estimation
of higher-order moments of distributions in the relational context. We also
demonstrated how they can be used for DNA-binding propensity prediction
where we were able to obtain state-of-the-art accuracies using only limited
amounts of numerical information.

6.5 algorithmic details

In this section we describe an efficient algorithm (see Algorithm 1) for com-
puting values of monomial tree-like features. The algorithm runs in time
polynomial in the combined size of a feature and an example. Importantly,
it scales polynomially also in the number of the distinguished numeric vari-
ables.

While we used the adjective tree-like informally so far, now we need to de-
fine it precisely. A first-order conjunction without quantifications C is tree-like
if the iteration of the following rules on C produces the empty conjunction: (i)
Remove an atom which contains fewer than 2 variables. (ii) Remove a variable which
is contained in at most one atom. Intuitively, a tree-like conjunction can be imag-
ined as a tree with the exception that whereas trees are graphs, conjunctions
correspond in general to hypergraphs. Features based on tree-like formulas
are called tree-like.

We will need some auxiliary definitions. Let ϕ be a tree-like feature. Let us
suppose that s1, s2, . . . , sk is a sequence of steps of the reduction procedure
which produces an empty feature fromϕ. LetC be an order on the atoms ofϕ
such that if an atom a1 disappeared before an atom a2 during the reduction
process then a1 C a2. Then we say that C is a topological ordering of ϕ’s
atoms. Let A ⊆ ϕ be a maximal set of atoms having a variable v in common.
We say that a ∈ A is a parent of atoms from A \ {a} if a has disappeared after
all the other atoms from A \ {a}. An atom a is called root if it has no parents
w.r.t. C.

We use (C, v) ∈ Children(ϕ,C) for the set of all features ϕC with roots
equal to children of ϕ (w.r.t. C) together with the respective shared variables
v. Similarly, we use C ∈ Children(ϕ, v,C) for the set of all features ϕC with
roots equal to children of ϕ (w.r.t. C). We define the input variable of a feature
ϕ contained in some bigger feature ψ (denoted by inp(ϕ,ψ,C)) as the vari-
able which is shared by root(ϕ,C) with its parent in ψ. When a is a ground
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atom such that root(ϕ,C)θ = a then we define input operator inp(a,ϕ,ψ,C)
which will give us inp(ϕ,ψ,C)θ. If ϕ = ψ then

inp(a,ϕ,ψ,C) = inp(ϕ,ψ,C) = ∅.

Here, the empty set is used as a dummy input. It does not mean that the
returned value of the input functions would be a set in general.

The evaluation algorithm (Algorithm 1) uses two auxiliary algorithms for
computing so-called domains and term-domains of features. Let ϕ be a tree-like
feature, C be a topological ordering of ϕ’s atoms. Then we say that a set of
atoms A ⊆ e is domain of ϕ w.r.t. an example e (denoted by A = D(ϕ, e,C))
if A contains all ground atoms a = root(ϕ,C)θ such that e |= ϕθ.

Let e = a(a,b),a(a, c),b(b) be an example and let ϕ = a(X, Y),b(Y) and
ψ = a(X, Y),a(X,Z),b(Y) be features. Let b(Y)C a(X, Y). Then D(ϕ, e,C) =

{a(a,b)}.
The algorithm for computing domains is derived from the well-known al-

gorithm for answering acyclic conjunctive queries [106]. It runs in time poly-
nomial in |ϕ| and |e|. It computes not only domains corresponding to the roots
of the given features but also domains corresponding to all the sub-features
during one pass over a given feature. In the pseudocode of the parameter-
estimation algorithms we will call the procedure for computing domains as
D(ϕ, e,C, T) where ϕ is the feature and e is the example for which we want
to compute the domain, C is a topological ordering of ϕ’s atoms and T is a
table in which domains of all ϕ’s sub-features should be stored.

By sample parameters we mean a 3-tuple (x, v,n). Here x can be either an
empty set, an atom or a term, v is a real number and n is a natural number.
Next, we define a concatenation operation for combining sample parameters.
Let A = (x, v,nA) and B = (y,w,nB) be sample parameters. Then we define
A⊗B as

A⊗B = (x, v ·w, nA ·nB) .

Let ϕ ⊆ ψ be features and C a topological ordering of ψ’s atoms. Let A =

(x, v,nA) and B = (y,w,nB) be sample parameters where x and y are logic
atoms such that inp(x,ϕ,ψ,C) = inp(y,ϕ,ψ,C). Then we define A⊕ϕ,ψ

C B

as
A⊕ϕ,ψ

C B = (inp(x,ϕ,ψ,C),
1

nA +nB
(nA · v+nB ·w),nA +nB).

Let ϕ ⊆ ψ be features and C a topological ordering of ϕ’s atoms. Let
X = {(x1, v1,n1), . . . , (xk, vk,nk)}. Next, let X [t] denote the set of all sample
parameters (x, . . . ) ∈ X for which inp(x,ϕ,ψ,C) = t. Then

⊕ϕ,ψ
C X is defined

as follows:
ϕ,ψ⊕
C

X = {(y1,w1,nw1), . . . , (ym,wm,nym)}

where (yi,wi,nyi) = x1⊕
ϕ,ψ
C x2⊕ϕ,ψ

C · · · ⊕ϕ,ψ
C xp⊕ϕ,ψ

C (∅, 0, 0) for {x1, . . . , xp} =
X [yi].

The correctness of the algorithm follows from the next reasoning. Let us
have a tree-like feature ϕ with k distinguished variables, a monomial feature
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Algorithm 1 An algorithm for computing value M(e) of a monomial feature
M = (ϕ, (d1, . . . ,dk)) for connected tree-like ϕ

Procedure: Eval(M = (ϕ, (d1, . . . ,dk)), e = (H,~θ),C)
1: T ← []

2: D(ϕ, e,C, T) /* This fills values into the table T */
3: return

⊕ϕ,ϕ
C Eval2(ϕ,ϕ, e,C, T)

Procedure: Eval2(M = (ϕ, (d1, . . . ,dk)),ψ, e = (H,~θ),C, T)
1: SP ← [] /* An associative array of sample parameters */
2: Dϕ ← T [ϕ] /* Dϕ is domain of ϕ */
3: for ∀a ∈ Dϕ do
4: ri1 , ri2 , . . . , ril ← distinguished constants contained in root(ϕ) (indexed

by indexes of the corresponding distinguished variables from root(ϕ))

5: SP[a]← {a, r
di1
i1
· r
di2
i2
. . . r

dil
i1

, 1}
6: end for
7: for (ϕC, v) ∈ Children(ϕ,C) do
8: SPϕC ←

⊕ϕC,ϕ
C Eval2(ϕC,ϕ, e,C)

9: for ∀a ∈ Dϕ do
10: SP[a]← SP[a]

⊗
SPϕC [vϑ] where root(ϕ,C)ϑ = a

11: end for
12: end for
13: return SP

M = (ϕ, (d1, . . . ,dk)) and an example e. For simplicity, we assume that any
literal l ∈ ϕ can contain at most one distinguished variable2. Our task is
to compute the value M(e). We start by picking a literal l ∈ ϕ containing
distinguished variable R1 and ground all its variables using a substitution
ϑ : vars(l) → constants(c) so that e |= ϕϑ. We then create a new auxiliary
monomial Mϑ = (ϕϑ, (d1, . . . ,dk)). The problem of computing Mϑ(e) can be
decomposed as:

Mϑ(e) = (R1ϑ)
d1 ·

∏
i

Mi(e) (1)

where M1, . . . ,Mm are connected sub-features of ϕϑ which arise when we
remove literal lϑ from ϕϑ. This follows from the next proposition.

Proposition 1. Let ϕ = (ψ)∧ (γ) be a disconnected feature such that ψ and γ do
not share any variable. Let M = (ϕ, (d1, . . . ,dk)) be a monomial. Then it is possible
to find monomial features Mψ and Mγ such that M(e) = Mψ(e) ·Mγ(e) for all
examples e.

Proof. It holds S(ϕ, e) = S(ψ, e)× S(γ, e) where × denotes Cartesian product.
We can therefore construct the monomial features as follows. First, we split

2 This is without loss of generality because any representation with demanding more than one
distinguished variable per literal can be rewritten into a representation where there is always
only one distinguished variable per literal.
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the set of distinguished variable of F to two (necessarily disjoint) sets Rψ, Rγ
according to the formula in which they appear. We split also the respective
exponents to ordered sets (v1, . . . , vkψ) and (w1, . . . ,wkγ).

Mψ = (ψ, (dψ1 , . . . ,dψkψ))

Mγ = (γ, (dγ1 , . . . ,dγkγ)).

The product of these monomial features gives rise to the original feature
because

Mψ(e) ·Mγ(e) =
(

1
|S(ψ,e)|

∑
~θ∈S(ψ,e)

~θv11 . . .
~θ
vkψ
k

)
·

·
(

1
|S(γ,e)|

∑
~θ∈S(γ,e)

~θw11 . . .~θ
wkγ
kγ

)
= 1

|S(ψ,e)|·|S(γ,e)| ·

·
(∑

~θ∈S(ψ,e)
~θv11 . . .

~θ
vkψ
kψ

)
·
(∑

~θ∈S(γ,e)
~θw11 . . .~θ

wkγ
kγ

)
= 1

|S(ψ,e)×S(γ,e)|
∑

~θ∈S(γ,e)×S(γ,e)
~θd11 . . .

~θdkk =M(e)

The value M(e) can be then computed as

M(e) =
1∑

ϑ∈Θ αϑ

∑
ϑ∈Θ

αϑMϑ(e)

where Θ = {ϑ : vars(l) → constants(c)|e |= ϕϑ} is the set of all true ground-
ings of literal l and αϑ are the numbers of true groundings of ϕϑ.

The time-complexity of the algorithm is O(|ϕ| · (|e| · k + log |ϕ|)) where k
is the number of distinguished variables. First, the complexity of computing
domains of all literals on line 2 of procedure Eval is O(|ϕ| · |e|) [78]. Second,
the procedure Eval2 can be imagined as proceeding from leaves to root of
the feature. At each step, at most |e| literals must be processed in the loop
on line 3 and the complexity of each iteration is O(k) where k is the num-
ber of distinguished variables. Third, the

⊕ϕC,ϕ
C can be performed in time

O(|ϕ| log |ϕ|). Fourth, although the for-loop on line 7 has a nested loop, the
nested loop is executed at most once for each literal l ∈ ϕ and the inner loop
is executed O(|e|)-times. So the overall complexity of the algorithm is indeed
O(|ϕ| · (|e| · k+ log |ϕ|)).



7
R E L AT I O N A L L E A R N I N G W I T H B O U N D E D L G G

The relational learning approaches described in previous chapters of this part
of the thesis focused on searching for relatively small structural patterns. The
numbers of occurrences of these patterns were used as attributes for predic-
tive classification. The advantage of small patterns is that when found as
discriminative, it is probably not due to overfitting. If a small pattern is fre-
quently found in a sufficiently large dataset, then it will likely be present
also in unseen structures. On the other hand, overfitting may still be an issue
when a big number of small patterns is combined in a single classifier. Clas-
sifiers based on a smaller number of more complex patterns may be equally
good or even better. What the relational learning methods presented in pre-
vious chapters are not able to achieve is to capture more complex common
substructures in proteins or peptides. In this chapter, we introduce a rela-
tional learning approach which is able to search for large, complex relational
patterns.

A natural way to search for complex relational patterns could be based
on Plotkin’s least general generalization (LGG) [75]. A least general gener-
alization of a set of clauses is a maximally specific clause which covers all
the examples from this given set. Unfortunately, if we do not attempt to re-
duce the clauses that we obtain as LGGs, their size may grow very quickly,
which makes the use of this method impractical. Even if we try to replace
LGGs by smaller equivalent clauses, it may still be the case that their size
will be too big. Moreover, finding the smaller equivalent clauses is an NP-
hard problem. The novel method presented in this chapter redefines the no-
tion of equivalence and parametrizes it by sets of clauses. Two clauses are
considered to be equivalent if they are indistinguishable by the clauses from
the given parametrization set. Finding a smaller equivalent clause w.r.t. this
new notion of equivalence may be done in polynomial time for many practi-
cally relevant parametrization sets of clauses. In addition, the smallest clause
equivalent to a given clause w.r.t. the new notion of equivalence may be actu-
ally smaller than the smallest clause equivalent to this clause in the classical
sense. The presented new LGG operator based on the new parametrized no-
tion of equivalence is named bounded LGG. Our relational learning approach
with bounded LGG always guarantees to find a clause which is at least as
good as the best clause from the parametrization set.

This chapter is organized as follows. In Section 7.1 we introduce a gener-
alization of θ-subsumption, a generalization of θ-reduction and using these
generalized notions, we introduce so-called bounded least general general-
ization, which is a generalized version of conventional least general gen-
eralization. Then, we present a generic bottom-up learning algorithm. We
subject the novel method to experimental evaluation in Section 7.2. We con-
clude this chapter in Section 7.3. We review necessary material regarding

59



60 relational learning with bounded lgg

θ-subsumption, θ-reduction, least general generalization, constraint satisfac-
tion, tree-decompositions and treewidth in Section 7.4. Also all proofs are
located in this section.

7.1 bounded least general generalization

In this section, we present a novel bottom-up learning algorithm based on
a generalized notion of conventional LGG. We start by introducing bounded
versions of θ-subsumption. If A and B are clauses, then we say that the clause
A θ-subsumes the clause B (denoted by A �θ B), if and only if there is a
substitution θ such that Aθ ⊆ B. If A �θ B and B �θ A, we call A and B
θ-equivalent (written A ≈θ B). We define x-subsumption and x-equivalence
which are weaker versions of θ-subsumption and θ-equivalence.

Definition 3 (x-subsumption, x-equivalence). Let X be a possibly infinite set of
clauses. Let A, B be clauses not necessarily from X. We say that A x-subsumes B
w.r.t. X (denoted by A �X B) if and only if (C �θ A) ⇒ (C �θ B) for every clause
C ∈ X. IfA �X B and B �X A thenA and B are called x-equivalent w.r.t. X (denoted
by A ≈X B). For a given set X, the relation �X is called x-subsumption w.r.t. X and
the relation ≈X is called x-equivalence w.r.t. X.

Definition 3 provides no efficient way to decide x-subsumption between two
clauses as it demands θ-subsumption of an infinite number of clauses to be
tested in some cases. However, for many practically relevant sets of clauses
X, there is a relation called x-presubsumption which implies x-subsumption.

Definition 4 (x-presubsumption). Let X be a set of clauses. If�X is the x-subsump-
tion w.r.t. X and CX is a relation such that for any clauses A and B:

1. (A �θ B)⇒ (ACX B)

2. (ACX B)⇒ (A �X B)

then we say that CX is an x-presubsumption w.r.t. the set X.

The relation x-presubsumption can be used to check whether two clauses
are x-equivalent w.r.t. a given set of clauses X. It can be therefore used to
search for clauses which are smaller than the original clause but are still x-
equivalent to it.

Definition 5 (x-reduction). Let X be a set of clauses. We say that a clause Â is an
x-reduction of clause A if and only if Â �θ A and A �X Â and if this does not hold
for any B ( Â (i.e. if there is no B ( Â such that B �θ A and A �X B).

For a given clause, there may be even smaller x-equivalent clauses than its x-
reductions. There may also be multiple x-reductions differing by their lengths
for a single clause.

In order to be able to compute x-reductions, we would need to be able
to decide x-subsumption. However, we very often have only an efficient x-
presubsumption. Importantly, if there is an x-presubsumption CX w.r.t. a set
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X decidable in polynomial time then there is a polynomial-time algorithm for
computing possibly larger clauses with the same properties as x-reductions.
We call this algorithm literal-elimination algorithm. It works as shown in the
pseudo-code below.

Literal-elimination algorithm:

1. Given a clause A which should be reduced.

2. Set A ′ := A.

3. Select a literal L from A ′ such that A ′ CX A ′ \ {L}. If there is no such
literal, return A ′ and finish.

4. Set A ′ := A ′ \ {L}

5. Go to step 3.

The next proposition states formally the properties of the literal-elimination
algorithm. It also gives a bound on the size of the reduced clause which is
output of the literal-elimination algorithm. This bound is given in terms of
lengths of conventional θ-reductions.

Proposition 2. Let us have a set X and a polynomial-time decision procedure for
checking CX which is an x-presubsumption w.r.t. the set X. Then, given a clause A
on input, the literal-elimination algorithm finishes in polynomial time and outputs a
clause Â satisfying the following conditions:

1. Â �θ A and A �X Â where �X is an x-subsumption w.r.t. the set X.

2. |Â| 6 |Âθ| where Âθ is θ-reduction of a subset of A’s literals with maximum
length.

So, the output Â of the literal-elimination algorithm has the same properties
as x-reduction (Â �θ A and A �X Â) with one difference and that is that it
may not be minimal in some cases.

Next, we show how x-reductions in general, and the literal-elimination
algorithm in particular, can be used in bottom-up approaches to relational
learning. We introduce a novel concept which we term bounded least general
generalization. This concept generalizes Plotkin’s least general generalization of
clauses [75], which we formally define in Section 7.4.

Definition 6 (Bounded Least General Generalization). Let X be a set of clauses.
A clause B is said to be a bounded least general generalization w.r.t. the set X of
clauses A1, A2, . . . , An (denoted by B = LGGX(A1,A2, . . . ,An)) if and only if
B �θ Ai for all i ∈ {1, 2, . . . ,n} and if for every other clause C ∈ X such that
C �θ Ai for all i ∈ {1, 2, . . . ,n}, it holds C �θ B.

Note that neither the clauses A1, A2, . . . An nor the resulting bounded least
general generalization have to be from the set X. The set X serves only to
specify the clauses which, if they θ-subsume the clauses A1, A2, . . . An, must
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Figure 12: The relationship between the conventional least general generalization
and the bounded least general generalization w.r.t. a set X.

be more general than the resulting bounded least general generalization. The
set of all bounded least general generalizations of clauses A1, A2, . . . An w.r.t.
a set X is a superset of the set of conventional least general generalizations of
these clauses. This set of all bounded least general generalizations of clauses
A1, A2, . . . An is also a subset of the set of all clauses which θ-subsume all A1,
A2, . . . An. The relationship between bounded and conventional least general
generalization is depicted in Fig. 12.

We have already mentioned that reduced forms of bounded least general
generalizations can often be computed in polynomial time using the literal-
elimination algorithm. The method to accomplish this is based on application
of x-reductions. This is formalized in the next proposition.

Proposition 3. Let X be a set of clauses and let CX be an x-presubsumption w.r.t.
the set X then the clause

Bn = litelimX(LGG(An, litelimX(LGG(An−1, litelimX(LGG(An−2, . . . )))))

is a bounded least general generalization of clauses A1, A2, . . . , An w.r.t. the set X
(here, litelimX(. . . ) denotes calls of the literal-elimination algorithm using CX and
LGG denotes Plotkin’s least general generalization operator).

Conventional least general generalization can be used as an operator in
searching for hypotheses [64, 32]. Basically, the search can be performed by
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iteratively applying LGG operation on examples or on already generated re-
duced LGGs. Application of reduction procedures, which compute smaller
but equivalent least general generalizations, is usually necessary for keeping
sizes of clauses constructed by LGG operator reasonably small. θ-reduction
cannot guarantee that the sizes of least general generalizations would not
grow exponentially in the worst case, but it is able to reduce the sizes of
the clauses (and therefore also runtime and memory consumption) signifi-
cantly in non-pathological cases. A problem of approaches based on conven-
tional least general generalization is that computing θ-reduction is an NP-
hard problem, which is especially problematic when the size of least general
generalizations is large. In general, bounded reduction also cannot guarantee
that the size of the constructed clauses will not be too large (in the end, θ-
reduction is a special type of bounded reduction). Nevertheless, if we have a
set of clauses X w.r.t. which there exists a polynomial-time literal-elimination
algorithm then, at least time complexity of the reduction algorithms is not an
issue. For these reasons, bounded least general generalization seems to be a
suitable method for bottom-up learning.

There are only a few problems which can be solved by finding a single
clause cleanly splitting positive and negative examples. More often, it is the
case that we need to find a set of clauses which together cover as many pos-
itive examples and as few negative examples as possible (which is typically
expressed through maximization of a scoring function). The existing systems
such as Aleph [83] or ProGolem [65] usually tackle this task by an iterative
covering approach in which a single clause obtaining good score is found in
each iteration and the positive examples covered by it are removed from the
dataset so that the clauses found in the subsequent iterations would cover
the other, not yet covered, positive examples. Next, we describe an iterative
covering approach using bounded least general generalization called BULL.

The single-clause learning component of the main algorithm called S-BULL1

(Algorithm 2) is based on best-first search [79] in which each new candidate
clause is constructed by computing bounded least general generalization of
an already constructed clause and an example not yet x-subsumed by it. This
way, the algorithm would be exactly the best-first search algorithm where the
used scoring function is the difference of the number of covered positive and
negative examples. However, unlike straightforward implementation of the
best-first-search algorithm, S-BULL contains also a step in which bounded
least general generalization of the newly constructed clause and the positive
examples covered by it w.r.t. the x-presubsumptionCX is computed (the inner-
most repeat-until loop starting on line 15). This step ensures that the positive
examples covered by a constructed hypothesis w.r.t. the x-presubsumption
CX will be covered by it also w.r.t. the ordinary θ-subsumption.

The S-BULL procedure is used as a part of the iterative covering algorithm
BULL which works similarly as Golem [64] or the iterative variant of Pro-
Golem [65]. The covering algorithm starts with the full set of positive exam-
ples. It randomly picks a positive example and uses the S-BULL procedure

1 Single-Clause Bottom-Up Learner (L)
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Algorithm 2 S-BULL: the clause-learning component of the main algorithm

1: Input: Set of positive examples E+, set of negative examples E−, seed
example S.

2: Open := () /* Open is a list with elements sorted by score. */
3: Closed := {} /* Closed is a set. */
4: PosExCovBySeed := {E ∈ E+|SCX E}
5: NegExCovBySeed := {E ∈ E−|SCX E}
6: BestScore := |PosExCovBySeed|− |NegExCovBySeed|

7: BestClause := Seed
8: Store the triple (S,PosExCovBySeed,NegExCovBySeed) in the list Open.

9: Store the pair (PosExCovBySeed,NegExCovBySeed) in the set Closed.
10: while Open 6= ∅ do
11: (H, {E+i1 ,E+i2 , . . . ,E+in}, {E

−
j1

,E−j2 , . . . ,E−jm}) := get the item with the highest
score from Open and remove it from Open.

12: for all E∗ ∈ CandidateExamples(H,E+) do
13: H∗ := LGGX(H,E∗)
14: PosCovered := {E+i1 ,E+i2 , . . . ,E+in}∪ {E

+}

15: repeat
16: NewPosCovered := {E ∈ (E+ \ PosCovered)|H∗ CX E}
17: PosCovered := PosCovered∪NewPosCovered
18: H∗ := LGGX(H∗,A1, . . . ,Ak) where Ai ∈ NewPosCovered
19: until NewPosCovered = ∅
20: NewNegCovered := {E ∈ (E− \ {E−j1 , . . . ,E−jm})|H

∗ CX E}

21: NegCovered := NewNegCovered∪ {E−j1 , . . . ,E−jm}
22: if (PosCovered,NegCovered∪NewNegCovered) 6∈ Closed then
23: Store the triple (S,PosCovered,NegCovered) in the list Open.
24: Store the pair (PosCovered,NegCovered) in the set Closed.
25: Score := |PosCovered|− |NegCovered|

26: if Score > BestScore then
27: BestClause := H∗

28: BestScore := Score

29: end if
30: end if
31: end for
32: end while
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with the randomly picked example as a seed example to find a hypothesis (a
clause) maximizing the difference of covered positive and negative examples.
Then it stores the found clause in a list of already found clauses and removes
the set of examples covered by the found clause from the set of examples.
Then it repeats this process using the remaining set of positive examples un-
til all positive examples are removed. The result is a set of clauses.

7.2 experiments

We performed experiments with three datasets of antimicrobial peptides (CA-
MEL, RANDOM and BEE – which are class-labelled according to their an-
timicrobial activity: higher-than-median or lower-than-median) in order to
evaluate the practical potential of the novel concept of bounded least gen-
eral generalization. We implemented a basic version of the BULL algorithm
as described in Section 7.1, using x-presubsumption w.r.t. the intersection of
the set of all clauses with treewidth 1 and the set of clauses restricted by the
user-definable language bias (described in Section 7.4). We used the AC-3 arc-
consistency algorithm [58] for checking x-presubsumption. We implemented
the version of the literal-elimination algorithm presented in Section 7.1 with
the following improvement. If a clause consists of several independent com-
ponents2 then the algorithm first compares the components in a pairwise
manner using the x-presubsumption and if some component x-subsumes an-
other component then the algorithm removes it. Before reducing the com-
ponents, the algorithm sorts them by their lengths. If the number of literals
of a component encountered during the reduction is greater than a given
limit (set to infinity for the experiments reported in Section 7.2.1 and to 1000

literals in the experiments reported in Section 7.2.3) then the component is
replaced by a clause composed of a randomly selected subset of its literals.
The implemented algorithm also allows the user to set the maximum number
of hypotheses expanded in a single run of the S-BULL procedure and the
number of examples that should be sampled as candidates for being used
for generalizing the current hypothesis in the S-BULL component of the al-
gorithm. In addition, it is possible to set the maximum number of negative
examples covered by a learned clause. Since we are mainly interested in the
practical potential of the bounded least general generalization operation and
not in the performance of heuristic strategies how to select the best theory
from a set of clauses, the implemented version of BULL uses only the basic
iterative covering strategy described in Section 7.1 which is repeated for the
given number of times (set to 3 in all the experiments).

7.2.1 Bounded Reductions

The first question that we addressed was how much x-reductions of clauses
(w.r.t. the set of all treelike clauses) differ from the respective θ-reductions

2 We say that a clause C consists of more than one connected component if it can be rewritten
as C = C1 ∪C2 where C1 6= ∅, C2 6= ∅ and vars(C1)∩ vars(C2) = ∅.
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and how much faster they can be computed as compared to θ-reductions.
We implemented a θ-reduction algorithm using the CSP representation of θ-
subsumption problems. The underlying CSP solver was based on backtrack-
ing search using maintaining-arc-consistency algorithm and the min-domain
heuristic [78]. The θ-reduction algorithm was implemented with the same
level of sophistication as the literal-elimination algorithm. Similarly as the
literal-elimination algorithm, first, it performed elimination of connected com-
ponents and only after that it performed elimination of individual literals. We
compared this θ-reduction algorithm with the literal-elimination algorithm
w.r.t. the set of all treelike clauses. We performed experiments with clauses
from the datasets of antimicrobial peptides CAMEL, RANDOM and BEE. We
did not perform experiments on any dataset of DNA-binding proteins, be-
cause they are still beyond the reach of any bottom-up learning algorithm –
including BULL, because of the large size of these datasets. The clauses for
reduction were created by sampling 1000 pairs of clauses from each dataset
and then computing LGGs of these pairs of clauses w.r.t. the same language
bias as used in Section 7.2.3. We measured the runtime for reduction, sizes
of reduced clauses and also for each clause whether its θ-reduction and the
output of the literal-elimination algorithm were isomorphic. The results are
shown in Table 14.

Literal elimination θ-reduction
Runtime

[ms]
Average

size
Runtime

[ms]
Average

size
Isomorphic

CAMEL 11.9 162.7 406.0 162.7 100 %
RANDOM 4.0 52.17 27.6 52.18 99.7 %

BEE 5.2 80.5 48.7 80.5 100 %

Table 14: Runtime in milliseconds and average sizes, measured as number of literals,
of reduced clauses for the literal-elimination and the θ-reduction algorithm.

As can be seen from the results, the literal-elimination algorithm is not
only substantially faster in most cases than the θ-reduction algorithm, but
it also outputs clauses which are isomorphic (i.e. identical up to renaming
of variables) to θ-reductions in majority of cases. Naturally, there are exam-
ples where the literal elimination must return a clause non-isomorphic to
the respective θ-reduction but it is still interesting that isomorphic clauses
were returned in most cases by the literal-elimination algorithm and the θ-
reduction algorithm for the three real-life datasets used in this experiment.
Interestingly, when we disabled the initial stage in which components are re-
duced in pairwise manner, the literal-elimination algorithm started to return
clauses smaller than θ-reductions (and thus non-isomorphic to it) more of-
ten which might be attributed partly to sorting of components by their sizes
before their pairwise reduction.
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7.2.2 Comparison to a Baseline Bottom-up Learning Algorithm

The results presented in the previous section indicate that the literal-elimina-
tion algorithm w.r.t. the set of treelike clauses can compute reductions of
clauses significantly faster than the ordinary θ-reduction algorithm and that
the sizes of the reduced clauses are usually equal or even smaller than those
of the respective θ-reductions. These results do not answer another ques-
tion and that is how much faster bottom-up relational learning can be and
how much of its accuracy is lost when bounded least general generaliza-
tion is used instead of the ordinary least general generalization. In order
to answer this question, we compared BULL using the x-presubsumption
w.r.t. the set of treelike clauses (T-BULL) and BULL using θ-subsumption
as the x-presubsumption w.r.t. the set of all clauses (θ-BULL). In θ-BULL,
we disabled the loop which ensures that all clauses covered w.r.t. a chosen
x-presubsumption will be covered also w.r.t. θ-subsumption (because it is un-
necessary when the x-presubsumption is θ-subsumption). We used T-BULL
and θ-BULL with the following settings for all datasets. We set the maximum
number of expanded hypotheses to 30 and the maximum number of covered
negative examples to 0. The results of 10-fold cross-validation are shown in
Table 15. It can be seen from the results that the accuracies are almost identi-
cal but that T-BULL is substantially faster than θ-BULL – for instance, twenty-
times faster for the dataset CAMEL which contains the longest peptides from
the three datasets.

T-BULL θ-BULL
Runtime [s] Accuracy Runtime [s] Accuracy

CAMEL 462 86.2± 8.3 9078 86.2± 8.3
RANDOM 179 88.0± 10.1 335 88.0± 10.1

BEE 47 57.0± 17.5 101 57.0± 17.5

Table 15: Runtime in seconds and accuracy estimated by 10-fold cross-validation for
BULL using x-presubsumption w.r.t. the set of treelike clauses (T-BULL)
and for BULL using θ-subsumption (θ-BULL).

7.2.3 Comparison with Existing Relational Learning Algorithms

What is very important for judging the practical utility of bounded least gen-
eral generalization is whether algorithms based on it can be competitive with
existing relational learners in terms of predictive accuracy. For this reason, we
performed predictive-classification experiments with the datasets CAMEL,
RANDOM and BEE, in which we measured predictive accuracy (estimated
by 10-fold cross-validation) of BULL and relational learning systems Aleph,
nFOIL and ProGolem. The reason why we did not use these algorithms for
comparison in Chapter 5 is that we showed that counting patterns are nec-
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essary for accurate DNA-binding propensity prediction and the algorithms
considered in this chapter work only with existential patterns.

We set parameters of all four systems so that their runtime would be in
the same orders of magnitude (tens of minutes per fold at most). We used
BULL with the following settings for all the datasets. We set the maximum
number of expanded hypotheses to 30 and the maximum number of covered
negative examples to 0. For Aleph, we set the number of searched nodes to
50000, the noise parameter to 5 % and the maximum clause length to 100.
nFOIL was used with maximum clause length set to 20 and beam size set to
100 for all datasets. For ProGolem, we used most of the parameters with their
default values, except the clause-evaluation function, which we set to use the
Subsumer algorithm [80], and the maximum number of covered negative ex-
amples. We used two different settings of the lastly mentioned parameter, giv-
ing rise to two columns in Table 16: ProGolem1 and ProGolem2. ProGolem1

refers to ProGolem with the default setting for the maximum number of cov-
ered negative examples, whereas ProGolem2 refers to ProGolem with the
maximum number of covered negative examples set to 0.

T-BULL Aleph ProGolem1 ProGolem2 nFOIL

CAMEL 86.2± 8.3 72.4± 14.5 80.5± 13.1 78.3± 10.1 83.3± 11.3
RANDOM 88.0± 10.1 86.0± 6.1 88.0± 6.3 81.0± 9.4 83.0± 5.9

BEE 57.0± 17.5 53.8± 16.5 56.8± 16.3 57.5± 20.8 47.7± 18.7

Table 16: Accuracy estimated by 10-fold cross-validation for the following systems:
T-BULL, Aleph, ProGolem with default maximum number of covered neg-
ative examples (ProGolem1), ProGolem with zero maximum number of
covered negative examples and nFOIL.

Results estimated by 10-fold cross-validation are shown in Table 16. The
results indicate that BULL outperforms existing relational learning systems,
including two recent ones: nFOIL and ProGolem.

7.2.4 A discovered set of relational patterns

The output of the algorithm BULL is a set of relational patterns which cover
as many positive examples as possible and each of them covers at most a
given number of negative examples. Typically, the output set of patterns tends
to be small and therefore potentially more interpretable. Here, we show a set
of relational patterns obtained for the dataset CAMEL in detail. It contains
three relatively complex patterns shown in Figures 13, 14 and 15.

The first relational pattern P1 (Figure 13) assumes the presence of the fol-
lowing amino acids: lysine (LYS), leucine (LEU), phenylalanine (PHE) and
valine (VAL) in certain distances from each other. A match of the relational
pattern P1 is shown in the right of the figure schematically, and in the left
of the figure within an antimicrobial peptide. The pattern covers 10 of 50

positive examples, and none of 51 negative examples.
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P1 = residue(A,val), residue(B,leu), residue(C,lys), residue(D,phe), residue(E,val), 
residue(F,leu), residue(G,leu), residue(H,lys), residue(I,lys), residue(J,lys), 
residue(K,leu), residue(L,lys), dist(A,val,B,leu,4.0), dist(A,val,C,lys,6.0),
dist(C,lys,D,phe,6.0), dist(D,phe,E,val,10.0), dist(E,val,F,leu,4.0), dist(D,phe,G,leu,4.0), 
dist(G,leu,H,lys,4.0), dist(D,phe,H,lys,6.0), dist(G,leu,I,lys,6.0), dist(J,lys,K,leu,6.0), 
dist(K,leu,L,lys,10.0)

Figure 13: A match of a relational pattern P1 shown in the right schematically, and in
the left within an antimicrobial peptide (using the protein viewer software
[62]). Amino acids assumed by the pattern are indicated in red.

The second relational pattern P2 (Figure 14) assumes the presence of tryp-
tophan (TRP), lysine, leucine, isoleucine (ILE) and valine in certain distances
from each other. Similarly as for pattern P1, a match of this pattern is shown
in the right of the figure schematically, and in the left of the figure within
an antimicrobial peptide. The pattern covers 34 of 50 positive examples, and
none of 51 negative examples.

The third relational pattern P3 (Figure 15) assumes the presence of trypto-
phan, lysine, leucine, glycine (GLY) and valine in distances from each other as
shown in the right of the figure. The pattern covers 21 of 50 positive examples,
and none of 51 negative examples.

The patterns in total cover 49 of 50 positive examples and none of the
negative examples. This type of patterns seems to be suitable for synthetic
development of antimicrobial peptides, in which a chemist could use a dis-
covered set of patterns for designing new peptides as follows. He would
synthesize antimicrobial peptides following the obtained patterns, measure
their antimicrobial activity and could get a result confirming or disproving
the hypothesis implied by the patterns. He could pick a peptide with high
antimicrobial activity and match the discovered patterns against this peptide.
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TRP

LEU

LYS

LEU

LEU

LYS

VAL

VAL

ILE

P2p=ppresidue1A,val8,presidue1B,leu8,presidue1C,lys8,presidue1D,ile8,presidue1E,trp8,p
residue1F,leu8,presidue1G,lys8,presidue1H,leu8,presidue1I,val8,presidue1J,ile8,
dist1A,val,B,leu,6.08,pdist1B,leu,C,lys,6.08,pdist1D,ile,E,trp,10.08,pdist1E,trp,G,lys,8.08,p
dist1D,ile,F,leu,6.08,pdist1H,leu,I,val,6.08,pdist1H,leu,J,ile,6.08,pdist1I,val,J,ile,10.08

Figure 14: A match of a relational pattern P2 shown in the right within an antimi-
crobial peptide shown in the left (using the protein viewer software [62]).
Amino acids assumed by the pattern are indicated in red.

Then he would have two possible options: if he was satisfied with the pat-
terns, he could try to replace any of the amino acids not involved in the
match and measure the antimicrobial activity of the new peptide. If he was
not satisfied, he could try to replace any of the matched amino acids and
measure the antimicrobial activity of the new peptide. According to the mea-
sured activity he could add the new peptide to the set of positive or negative
learning examples. A new positive learning example could be used for gener-
alization of the original set of patterns, a new negative example could prune
the original set of patterns. Sometimes, when a sufficient number of new pep-
tides is synthesized, it may be the case that the whole set of patterns needs
to be recomputed from scratch.

7.3 conclusions

In this chapter, we introduced the first bottom-up relational learning algo-
rithm based on least general generalization which can exploit structural tracta-
bility bias while not restricting the form of learning examples. The algorithm
is generic and can be used w.r.t. various sets X, representing the language
bias. The returned clause itself does not have to be from the set X. If the set X
contains only clauses for which θ-subsumption can be decided in polynomial
time and if there is a suitable polynomial-time decidable x-presubsumption
then the algorithm can use polynomial-time procedures for computing re-
duced forms of least general generalizations of clauses and for computing
their coverage. Prior to this work, the only way structural tractability bias
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Figure 15: A match of a relational pattern P3 shown in the right within an antimi-
crobial peptide shown in the left (using the protein viewer software [62]).
Amino acids assumed by the pattern are indicated in red.

could be exploited in bottom-up learning systems was to restrict the learn-
ing examples to be from a set for which θ-subsumption could be decided
efficiently and which would be closed under formation of least general gen-
eralizations. Such an approach was pursued e.g. by Horváth et al. [32] for
treelike clauses. Importantly, when subjected to comparative experimental
evaluation on datasets of antimicrobial peptides, the new algorithm turned
out to be very competitive to state-of-the-art relational learning systems.

7.4 algorithmic details

In this section, we describe algorithmic details of this chapter. In Section 7.4.1
we present necessary background concerning least general generalization. In
Section 7.4.2 we describe practically relevant instantiations of the framework
of the generic algorithm BULL. We show that bounded least general gener-
alizations can be computed efficiently w.r.t. classes of clauses with bounded
treewidth in Section 7.4.2.1 and w.r.t. to clauses complying with a simple lan-
guage bias in Section 7.4.2.2. Finally, we provide proofs of propositions stated
in this chapter in Section 7.4.3.

7.4.1 Least General Generalization

An important tool exploited in this chapter, which can be used for learning
clausal theories, is Plotkin’s least general generalization (LGG) of clauses.
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Definition 7. A clause C is said to be a least general generalization of clauses A and
B (denoted by C = LGG(A,B)) if and only if C �θ A, C �θ B and for every clause
D such that D �θ A and D �θ B it holds D �θ C.

A least general generalization of two clauses C, D can be computed in time
O(|C| · |D|).

7.4.2 Instantiations of the Framework

Here, we describe practically relevant instantiations of the framework of the
generic algorithm BULL. We show that bounded least general generalizations
can be computed efficiently w.r.t. classes of clauses with bounded treewidth
and w.r.t. to clauses complying with a simple language bias.

7.4.2.1 Clauses of Bounded Treewidth

One of the classes of clauses w.r.t. which the reduced forms of bounded LGGs
can be computed efficiently is the class of clauses with bounded treewidth.
The notion of treewidth of clauses is explained in Section 3.1. What we need
to show in order to demonstrate that the framework can be efficiently applied
in the case of bounded-treewidth clauses is that there is a polynomial-time
decidable x-presubsumption relation. In the next proposition, we show that
k-consistency algorithm [2] can be used to obtain such an x-presubsumption.

Proposition 4. Let k ∈ N and let Ck be a relation on clauses defined as follows:
ACkB if and only if the k-consistency algorithm run on the CSP-encoding (described
in Section 3.1) of the θ-subsumption problem A �θ B returns true. The relation Ck
is an x-presubsumption w.r.t. the set Xk of all clauses with treewidth at most k.

Example 6. Let us have the following four clauses which are all mutually x-equivalent.

A = e(A,B), e(B,C), e(C,E), e(D,B), e(D,E), e(E, F), e(F,D)

B = e(B,C), e(C,E), e(D,B), e(D,E), e(E, F), e(F,D)

C = e(B,C), e(C,E), e(D,B), e(D,E)
D = e(D,E), e(E, F), e(F,D)

These clauses are depicted graphically as graphs in Figure 16 together with the θ-
subsumption relations among them. The clause B is a θ-reduction of the clause A.
The clauses C and D are x-reductions of A (and consequently also of B).

Low-treewidth clauses can lead to highly accurate classifiers. In previous
studies [49, 42], it was observed that all clauses learned by the ILP systems
Progol, nFOIL [52] and kFOIL [51] in all the conducted experiments had
treewidth 1 (after the removal of the variable formally identifying the learn-
ing example) although this had not been stipulated by the language bias. In
a similar spirit, Horváth and Ramon [31] note that more than 99.9 percent of
molecules in the NCI repository have treewidth lower than four. The classical
ILP systems produce low-treewidth clauses mostly because their top-down
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Figure 16: Illustration of θ-reduction, reduction by literal-elimination algorithm and
reduction by literal-substitution algorithm.

search strategy does not allow them to reach long clauses of higher treewidth.
Learning that produces clauses as good as those with treewidth bounded by
some number is therefore of considerable practical importance.

7.4.2.2 Clauses Constrained by a User-definable Language Bias

In machine learning, we often need to introduce a bias corresponding to
apriori knowledge which we have about a problem domain at hand. In this
section, we introduce a simple language bias that can be combined with the
framework of bounded least general generalization.

Definition 8 (Constant Language Bias). Constant language bias is a set LB =

{(pi/arityi, {ai1 , . . . , aik})} where pi are predicate symbols, ai ∈ N and

{ai1 , . . . ,aik} ⊆ {1, . . . ,arityi}.

A literal l = pi(t1, . . . , tk) is said to comply with language bias LB if it contains
constants in all arguments ai1 , . . . ,aik . A clause C is said to comply with language
bias LB if all its literals comply with it.

Informally, the constant language bias requires certain arguments of some lit-
erals to contain constants and not variables. We will use a simpler notation
for constant language bias inspired by mode declarations known from Progol
[63]. So, for example, we will write atom(x, #), bond(x, x, #) for a constant lan-
guage bias {(atom/2, {2}), (bond/3), {3}} which specifies clauses describing
molecules where we require that if there is an atom in a learned hypothesis
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we want to know its type and, similarly, if there is a bond we also want to
know whether it is a single bond, a double bond etc. For instance, the clause

atom(X, c),bond(X, Y,double),atom(Y,h)

complies with this language bias whereas the clause

atom(X, c),bond(X, Y,Z),atom(Y,h)

does not comply with it because of the variable Z in the argument where a
constant should appear.

Proposition 5. Let LB be a language bias and let XLB be the set of all clauses
complying with LB. Let A be a clause. If ALB ⊆ A is a clause composed of exactly
the literals from A complying with LB then ALB �θ A and A �X ALB w.r.t. the
set XLB.

The language bias can be used to define a set of clauses w.r.t. which bounded
least general generalizations can be computed. This is a simple corollary of
Proposition 5 because any clause CLB obtained by dropping literals which
do not comply with the given language bias has the same properties as an
x-reduction except that it might be non-minimal.

Example 7. Let us have a language bias LB ≈ e(x, x, #) and two clauses

A = e(a,b, 1), e(b,a, 2)
B = e(c,d, 1), e(d, e, 1), e(e, c, 1)

The ordinary LGG of these clauses is

LGG(A,B) = e(A,B, 1), e(B,C,X), e(C,D, 1),
e(D,E,X), e(E, F, 1), e(F,A,X)

The bounded LGG w.r.t. the set XLB is much smaller

LGGXLB
(A,B) = e(A,B, 1)

7.4.3 Theoretical Details

This section provides proofs of propositions stated in this chapter.
Here, we prove formally the properties of the literal-elimination algorithm

described in Section 7.1.

Proposition 6. Let us have a set X and a polynomial-time decision procedure for
checking CX which is an x-presubsumption w.r.t. the set X. Then, given a clause A
on input, the literal-elimination algorithm finishes in polynomial time and outputs a
clause Â satisfying the following conditions:

1. Â �θ A and A �X Â where �X is an x-subsumption w.r.t. the set X.
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2. |Â| 6 |Âθ| where Âθ is θ-reduction of a subset of A’s literals with maximum
length.

Proof. We start by proving Â �θ A and A �X Â. This can be shown as fol-
lows. First, A �X A ′ holds in any step of the algorithm which follows from
(A ′ CX A ′ \ {L}) ⇒ (A ′ �X A ′ \ {L}) and from transitivity of x-subsumption.
Consequently we also have A �X Â because Â = A ′ in the last step of the
algorithm. Second, Â �θ A because Â ⊆ A. Now, we prove the second part
of the proposition. What remains to be shown is that the resulting clause Â
will not be bigger than Âθ. Since Â ⊆ A, it suffices to show that Â cannot be
θ-reducible. Let us assume, for contradiction, that it is θ-reducible. If Â was
θ-reducible, there would have to be a literal L ∈ Â such that Â �θ Â \ {L}.
The relation CX satisfies (A �θ B)⇒ (ACX B) therefore it would also have to
hold A ′CXA ′ \ {L}. However, then L should have been removed by the literal-
elimination algorithm which is a contradiction with Â being output of it. The
fact that the literal-elimination algorithm finishes in polynomial time follows
from the fact that, for a given clause A, it calls the polynomial-time proce-
dure for checking the relation CX at most |A|2 times (the other operations
of the literal-elimination algorithm can be performed in polynomial time as
well).

Proposition 3. Let X be a set of clauses and let CX be an x-presubsumption
w.r.t. the set X then the clause

Bn = litelimX(LGG(An, litelimX(LGG(An−1, litelimX(LGG(An−2, . . . )))))

is a bounded least general generalization of clauses A1, A2, . . . , An w.r.t.
the set X (here, litelimX(. . . ) denotes calls of the literal-elimination algorithm
using CX).

Proof. First, we show that B �θ Ai for all i ∈ {1, 2, . . . ,n} using induction on
n. The base case n = 1 is obvious since then B1 = A1 and therefore B1 �θ A1.
Now, we assume that the claim holds for n− 1 and we will show that then
it must also hold for n. First, Bn = LGG(An,Bn−1) θ-subsumes the clauses
A1, . . . ,An which can be checked by recalling the induction hypothesis and
definition of LGG. Second, litelimk(LGG(An,Bn−1)) must also θ-subsume the
clauses A1, . . . ,An because litelimk(LGG(An,Bn−1)) ⊆ LGG(An,Bn−1).

Again using induction, we now show that C �θ Bn for any C ∈ X which θ-
subsumes allAi where i ∈ {1, . . . ,n}. The base case n = 1 is obvious since then
B1 = A1 and therefore every C which θ-subsumes A1 must also θ-subsume
B1. Now, we assume that the claim holds for n− 1 and we prove that it must
also hold for n. That is we assume that

C ′ �θ Bn−1 = litelimX(LGG(An−1, litelimX(LGG(An−2, litelimX(LGG(An−3, . . . )))))

for any C ′ ∈ X which θ-subsumes the clauses A1, A2, . . . , An−1. We show
that then it must also hold C �E Bn = litelimX(LGG(An,Bn−1)) for any C ∈ X
which θ-subsumes the clauses A1, A2, . . . , An. We have C �θ LGG(An,Bn−1)
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because C �θ Bn−1 which follows from the induction hypothesis and be-
cause any clause which θ-subsumes both An and Bn−1 must also θ-subsume
LGG(An,Bn−1) (from the definition of LGG). It remains to show that C also
θ-subsumes litelimX(LGG(An,Bn−1)). This follows from

LGG(An,Bn−1) �X litelimX(LGG(An,Bn−1))

(which is a consequence of Proposition 6) because if

LGG(An,Bn−1) �X litelimX(LGG(An,Bn−1))

then
(C �θ LGG(An,Bn−1))⇒ (C �θ litelimX(LGG(An,Bn−1)))

for any clause C ∈ X (this is essentially the definition of x-subsumption).

The next lemma giving a sufficient condition for a relation to be an x-
presubsumption will be useful for proving that certain procedures are x-
presubsumptions.

Lemma 1. Let X be a set of clauses and CX be a relation satisfying the following
conditions:

1. If ACX B and C ⊆ A then CCX B.

2. If A ∈ X, ϑ is a substitution and AϑCx B then A �θ B.

3. If A �θ B then ACX B.

Then CX is an x-presubsumption w.r.t. the set X.

Proof. The implication (A �θ B) ⇒ (A CX B) is already contained in the
conditions in the statement of the lemma. We need to show that (ACX B) ⇒
(A �X B), i.e. that if A Cx B then (C �θ A) ⇒ (C �θ B) for all clauses
C ∈ X. First, if ACx B and C 6�θ A then the implication holds trivially. Second,
C �θ A means that there is a substitution ϑ such that Cϑ ⊆ A. This implies
CϑCX B using the condition 1. Now, we can use the second condition which
gives us C �θ B (note that C ∈ X and CϑCX B).

Proposition 4. Let k ∈ N and let Ck be a relation on clauses defined as
follows: ACk B if and only if the k-consistency algorithm run on the CSP-
encoding (described in Section 3.1) of the θ-subsumption problem A �θ B
returns true. The relation Ck is an x-presubsumption w.r.t. the set Xk of all
clauses with treewidth at most k.

Proof. We need to verify that Ck satisfies the conditions stated in Lemma 1

1. If ACk B and C ⊆ A then CCk B. This holds because if the k-consistency
algorithm returns true for a problem then it must also return true for
any of its subproblems. It is easy to check that if C ⊆ A are clauses
then the CSP problem encoding the θ-subsumption problem C �θ B
is a subproblem of the CSP encoding of the θ-subsumption problem
A �θ B. Therefore this condition holds.
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2. IfA ∈ X, ϑ is a substitution andAϑCkB thenA �θ B. The CSP encoding of
the problem A �θ B is a subproblem of the problem encoding Aϑ �θ B,
in which there are additional constraints enforcing consistency with the
substitution ϑ (because the set of constraints of the former is a subset of
the constraints of the latter). Therefore if AϑCk B then also ACk B and,
since A ∈ X, it also holds A �θ B.

3. If A �θ B then ACk B. This is a property of k-consistency.

Proposition 5. Let LB be a language bias and let XLB be the set of all clauses
complying with LB. Let A be a clause. If ALB ⊆ A is a clause composed of
exactly the literals from A complying with LB then ALB �θ A and A �X ALB

w.r.t. the set XLB.

Proof. The first part of the proposition is obvious. If ALB ⊆ A then ALB �θ A.
We show the validity of the second part by contradiction. We assume that
A 6�X ALB. This means that there is a clause C ∈ XLB such that C �θ A
and C 6�θ ALB. Let ϑ be a substitution such that Cϑ ⊆ A. The substitution ϑ
can map only literals complying with LB to literals also complying with LB

(because constants cannot be mapped to variables) so Cϑ ⊆ ALB which also
means C �θ ALB. This is a contradiction with C 6�θ ALB.
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A D VA N C E D P R E P R O C E S S I N G T E C H N I Q U E S

Relational representation of protein data are mostly huge. Reducing the com-
plexity of such input data should be beneficial for learning. In attribute-value
learning, a wide range of feature selection methods is available [56]. These
methods try to select a strict subset of the original example attributes while
maintaining or even improving the performance of the model learned from
it with respect to that learned from the original attribute set. For binary clas-
sification tasks with Boolean attributes, the REDUCE [54] algorithm has been
proposed that removes so called irrelevant attributes. For any model learned
with the original attribute set, a model with same or better fit on the learning
examples may be expressed without the irrelevant attributes.

As we have seen in previous chapters, examples are not expressed as tu-
ples of attribute values in relational learning but rather take the form of re-
lational constructs such as first-order clauses. Feature selection methods are
thus not applicable to simplify such learning examples. Here we are inter-
ested to see whether also relational examples can somehow be reduced while
guaranteeing that the set of relational patterns which can be learned from
such reductions would not be affected.

An obvious approach would be to look for θ-reductions [75] of the input
clauses. A θ-reduction of a clause is a smaller, but subsumption-equivalent
(and thus also logically equivalent) clause. An approach based on θ-subsump-
tion was explored before in [41], achieving learning speed-up factors up to
2.63. However, the main problem of θ-reduction is that finding it is an NP-
hard problem, rendering the approach practically infeasible in domains with
large examples such as those describing protein structures.

Here, we follow the key idea that the complexity curse can be avoided by
sacrificing part of the generality of θ-reduction. In particular, we will look for
reductions which may not be equivalent to the original example in the logical
sense, but which are equivalent given the language bias of the learning algo-
rithm. In other words, if the learning algorithm is not able to produce a hy-
pothesis covering the original example but not covering its reduction (or vice
versa), the latter two may be deemed equivalent. For instance, consider the
clausal example ← atom(a1), carbon(a1), bond(a1, a2), . . ., whose entire struc-
ture is shown in the left of Figure 17. Assume that all terms in hypotheses are
variables and hypotheses must have treewidth at most 1. Then the learning
example is equivalent to the simpler one shown in the right of Figure 17.

Our first main contribution is a formal framework for example reduction
based on the given language bias for hypotheses. In this framework, we prove
two propositions which can be used for showing that certain procedures
which transform learning examples always produce reductions equivalent
to the original examples under the given bias.

78



advanced preprocessing techniques 79

C

HH

Cl

C

HH

Cl

C
H

Cl

Figure 17: A learning example and its reduction.

Our second main contribution is the application of the above framework to
the specific bias of bounded treewidth clauses. We show that in this case, inter-
estingly, learning examples can be reduced in polynomial time, and moreover,
that, in some cases, they can be reduced even more than they would be using
the NP-hard θ-reduction.

As the previous paragraph indicates, the benefits gained from the bounded
treewidth assumption are significant. Notably though, the price we pay for
them is not too high in that the bias would be over-restrictive. First remind
that, as a hypothesis bias, it only constrains the learned clauses, and not the
learning examples. Second, low treewidth is in fact characteristic of clauses
induced in typical ILP experiments. In [49] it was observed that all clauses
learned by the ILP system Progol in all the conducted experiments had tree-
width 1 although this had not been stipulated by the language bias. Similarly,
in experiments in another study [42], all clauses learned by the systems nFOIL
and kFOIL were of treewidth 1 after the removal of the variable formally
identifying the learning example.

A salient feature of our approach is its general application scope. Indeed,
example reduction can take place independently of the type of ILP learner
employed subsequently. While we evaluate the approach in the standard ILP
setting of learning from entailment, it is also relevant to propositionalization
[39], which aims at the construction of attribute-based descriptions of rela-
tional examples. Interestingly, propositionalization can simultaneously ben-
efit from both the relational example reduction step employed before the
construction of patterns, and any feature selection algorithm applied subse-
quently on the constructed attribute set. In this sense, our approach is com-
plementary to standard feature selection methods.

This chapter is structured as follows. In Section 8.1 we refer to the prelim-
inaries for the study, namely θ-subsumption and reduction, their correspon-
dence to the constraint satisfaction problem, and the concepts of tree decom-
position and treewidth. Section 8.2 presents the framework for safe reduction
of relational examples under a given hypothesis language bias. Section 8.3 in-
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stantiates the framework to the langauge bias of bounded-treewidth clauses
and shows that reduction under this bias can be conducted effectively. Finally,
we experimentally evaluate our method in Section 8.4.

8.1 preliminaries

Most of the concepts used in this chapter are defined in Chapter 7. This
includes θ-subsumption, θ-reduction, CSP representation of θ-subsumption,
k-consistency algorithm, tree decomposition and treewidth.

8.2 safe reduction of learning examples

The learning task that we consider in this chapter is fairly standard. We are
given labelled learning examples encoded as first-order-logic clauses and we
would like to find a classifier predicting the class labels of examples as pre-
cisely as possible. This task could be solved by numerous relational-learning
systems. We aim at finding a reduction procedure that would allow us to
reduce the number of literals in the examples while guaranteeing that the
coverage of any hypothesis from a pre-fixed hypothesis language L would
not be changed.

There are several settings for logic-based relational learning. In this chapter
we will focus on the learning from entailment setting [13].

Definition 9 (Covering under Learning from Entailment). Let H be a clausal
theory and e be a clause. Then we say that H covers e under entailment if and only
if H |= e.

The basic learning task is to find a clausal theory H that covers all positive
examples and no negative examples and contains as few clauses as possible.

Definition 10 (Safe Equivalence and Safe Reduction under Entailment). Let e
and ê be two clauses and let L be a language specifying all possible hypotheses. Then
ê is said to be safely equivalent to e if and only if ∀H ∈ L : (H |= e)⇔ (H |= ê). If
e and ê are safely equivalent and |ê| < |e| then ê is called safe reduction of e.

Clearly, if we have a hypothesis H ∈ L which splits the examples to two
sets X and Y then this hypothesis H will also split the respective set of safely
reduced examples to the sets X̂, Ŷ containing the safely reduced examples
from the sets X and Y, respectively. Also, when predicting classes of test-set
examples, any deterministic classifier that bases its decisions on the queries
using the covering relation |= will return the same classification even if we re-
place some of the examples by their safe reductions. The same is also true for
propositionalization approaches that use the |= relation to construct boolean
vectors which are then processed by attribute-value-learners.

In this chapter, we focus on hypothesis languages in the form of non-
resolving clausal theories. Recall that we do not put any restrictions on the
learning examples. The only restrictions are those put on hypotheses. A non-
resolving clausal theory is a set of clauses such that no predicate symbol which
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appears in the head of a clause appears also in the body of any clause. The
main reason why we start with non-resolving clausal theories is that logical
entailment H |= A, for a non-resolving clausal theory H and a clause A, can
be checked using θ-subsumption. If there is a clause H ∈ H such that H �θ A
then H |= A, otherwise H 6|= A.

We will use the notions of x-subsumption and x-equivalence introduced in
Chapter 7 which are weaker versions of θ-subsumption and θ-equivalence.
We may notice that x-presubsumption introduced in Chapter 7 can be used
to check if two learning examples e and ê are equivalent w.r.t. hypotheses
from a fixed hypothesis language. It can be therefore used to search for safe
reductions of learning examples. This is formalized in the next proposition.
Note that this proposition does not say that e and ê are equivalent. It merely
says that they are equivalent when being used as learning examples in the
learning from entailment setting with hypotheses drawn from a fixed set.

Proposition 7. Let L be a hypothesis language containing only non-resolving clausal
theories composed of clauses from a set X and let CX be an x-presubsumption w.r.t.
X. If e and ê are learning examples (not necessarily from X), eCX ê and êCX e then
for any H ∈ L it holds (H |= e) ⇔ (H |= ê). Moreover, if |ê| < |e| then ê is a safe
reduction of e under entailment.

Proof. First, eCX ê and êCX e imply e ≈X ê (where ≈X denotes x-equivalence
w.r.t. the set X). Then for any non-resolving clausal theory H ∈ L we have
(H |= e)⇔ (H |= ê) because for any clause A ∈ X we have (A �θ e)⇔ (A �θ
ê) (from e ≈X ê). This together with |ê| < |e| means that ê is a safe reduction
of e under entailment w.r.t. hypothesis language L.

We will use Proposition 7 for showing that certain procedures which trans-
form learning examples always produce safe reductions of these examples.
Specifically, we will use them to show that bounded reduction for bounded-
treewidth clauses introduced in Chapter 7 based on k-consistency algorithm
can be used for computing safe reductions of learning examples w.r.t. hypoth-
esis sets composed of clauses with bounded treewidth.

We start with two simpler transformation methods. For the first transforma-
tion method, we assume to have a fixed hypothesis language LU consisting
of non-resolving clausal theories which contain only constants from a given
set U. The transformation then gets a clause A on its input and produces a
new clause Ã by variabilizing constants in A which are not contained in U. It
is easy to check that for any such A and Ã it must hold A ≈X Ã w.r.t. the
set of clauses containing only constants from U. Therefore A and Ã are safely
equivalent w.r.t. L. We can think of the constants not used in a hypothesis
language L as identifiers of objects whose exact identity is not interesting for
us. Such constants can appear e.g. when we describe molecules and we want
to give names to atoms in the molecules with no actual meaning.

Another simple transformation which produces safely equivalent clauses
is based on θ-reduction. In this case the set of clauses X can be arbitrary. The
transformation gets a clause A on its input and returns its θ-reduction. The
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x-equivalence of the clause A and its θ-reduction follows from the fact that
θ-subsumption is an x-subsumption w.r.t. the set of all clauses.

Importantly, transformations which produce x-equivalent clauses w.r.t. a
set X can be chained due to transitivity of x-subsumption. So, for example,
if we have a hypothesis language LU consisting of non-resolving clausal the-
ories which contain only constants from a pre-fixed set U and we want to
safely reduce a clause A then we can first variabilize it and then reduce it
using θ-reduction.

Example 8. Let us have an example

e = edge(a,b, 1), edge(b,a, 2), edge(b, c, 2), edge(c,d, 1), edge(d,a, 2)

and a hypothesis language L containing arbitrary non-resolving clausal theories with
the set of allowed constants U = {1, 2}. We variabilize e and obtain clause

ẽ = edge(A,B, 1), edge(B,A, 2), edge(B,C, 2), edge(C,D, 1), edge(D,A, 2).

Now, e and ẽ are safely equivalent w.r.t. hypotheses from L. Next, we obtain a safe re-
duction of e by computing θ-reduction of ẽ which is ê = edge(A,B, 1), edge(B,A, 2).

8.3 reduction under the bounded treewidth assumption

Here, we describe a transformation method which assumes the hypothesis
languages to consist only of clauses with bounded treewidth. Unlike the
exponential-time method based on θ-reduction, this method runs in time
polynomial in the size of the reduced clause (though, with a multiplicative
factor exponential in the fixed maximum treewidth of allowed hypotheses).
Interestingly, it does not need any restrictions (e.g. bounded treewidth) on
the learning examples which are reduced.

The reduction method is based on x-subsumption w.r.t. the set Xk of clauses
with treewidth at most k. The safe reduction method based on x-subsumption
w.r.t. the set Xk works as follows. We suppose that there is a set U of constants
which are allowed in the hypothesis language Lk and that the hypotheses
in Lk consist only of clauses with treewidth at most k. The method gets a
clause A and variabilizes all constants not contained in U. The result is a
clause Ã which is also safely equivalent to A w.r.t. the hypothesis language
Lk. This clause is then reduced by the literal-elimination algorithm which was
described in Chapter 7. This algorithm runs in time polynomial in the size
of the reduced clause (though, with a multiplicative factor exponential in
the fixed maximum treewidth of allowed hypotheses) and always produces a
clause Â which is safely equivalent to A w.r.t. Lk as Proposition 8 shows.

Proposition 8. Let Lk be a set of non-resolving hypotheses containing only clauses
with treewidth at most k. Let C be a clause and Ĉθ be the maximal θ-reduction of a
subset of the literals in C. We can find a clause Ĉk such that C ≈X Ĉk w.r.t. to Lk
and |Ĉk| 6 |Ĉθ| in time O

(
|C|2k+3

)
by the "literal-elimination algorithm".
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Proof. First, it follows from transitivity of k-equivalence that Ĉk ≈k C. There-
fore, Ĉk and C are safely equivalent w.r.t. Lk which follows from Proposition
7. The bound on the size of the resulting clause follows from Proposition 6

stated in Chapter 7.

We can find even smaller safely equivalent clauses w.r.t. Lk for a clause C
by a literal-substitution algorithm with just a slightly higher runtime O(|C|2k+4).
This algorithm first runs the literal-elimination algorithm and then tries to fur-
ther reduce its output C ′ as follows: For each pair of literals l, l ′ ∈ C ′ it
constructs a substitution θ : vars(l)→ vars(l ′) and checks if C ′θCk C ′ and if
so, it sets C ′ ← C ′θ. It is easy to check that it always holds C ≈X C ′ w.r.t. the
set of clauses with treewidth at most k. The algorithm runs in time O(|C|2k+4)

as it performs O(|C|2) k-consistency checks.
The clauses with bounded treewidth are not the only ones for which effi-

cient safe reduction can be derived. For example, it is possible to derive a com-
pletely analogical safe reduction w.r.t. acyclic clauses, which can have arbi-
trary high treewidth but despite that admit a polynomial-time θ-subsumption
checking algorithm. The only difference would be the use of generalized arc-
consistency algorithm [78] instead of the k-consistency test.

8.4 experimental evaluation of safe reduction

In this section we evaluate usefulness of safe reduction on real-life datasets.
We implemented literal-elimination and literal-sbstitution algorithms for tree-
width 1, i.e. for tree-like clausal theories. We used the efficient algorithm AC-
3 [58] for checking 1-consistency1. We forced nFOIL and Aleph to construct
only clauses with treewidth 1 using their mode declaration mechanisms.

8.4.1 DNA-binding Proteins and Antimicrobial Peptides

One of the main motivations for studying example preprocessing techniques
for relational data was the huge size of most protein datasets. Therefore,
we started with experiments in which we tested how much relational de-
scriptions of protein data can be reduced. We experimented on two datasets:
APO104/NB110 and CAMEL described in Section 4. We used the represen-
tation described in Section 5.1 which represents proteins or peptides on the
amino acid level. The reduction of the complete dataset CAMEL took about
11 seconds, whereas the reduction of the dataset APO104/NB110 took hours.
However, there was no compression for either of the datasets. This is not so
surprising given the structure of the relational representation. Moreover, it is
good news for the relational representation that we devised, because if it was
reducible then some substructures could not be distinguished by the type of
patterns that we used, even in theory. Naturally, we expect that some sub-
structures cannot be captured anyway. As we show in the next section, many

1 Note again the terminology used in this paper following [2]. In CSP-literature, it is often
common to call 2-consistency what we call 1-consistency.
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similar problems – including problems involving proteins using different rep-
resentation – can be reduced substantially.

8.4.2 Other Related Problems

We further experimentally evaluated usefulness of the safe reduction of learn-
ing examples with other real-life datasets and two relational learning systems
– the popular system Aleph and the state-of-the-art system nFOIL [52]. One
of these datasets is a dataset of proteins labelled according to whether they
bind hexose. Unlike the datasets tested in Section 8.4.1 this dataset can be
reduced substantially. The reason is that this particular dataset contains pro-
teins described on the atomic level, whereas the datasets tested in Section
8.4.1 contain proteins and peptides described on the amino acid level using
our relational learning representation described in Chapter 5.

We used three datasets in these experiments: hexose-binding proteins [67],
predictive toxicology challenge (PTC) [29] and CAD [108]. The hexose-binding
dataset contains 80 hexose-binding and 80 non-hexose-binding protein do-
mains. Following [67] we represent the protein domains by atom-types and
atom-names (each atom in an amino acid has a unique name) and pair-wise
distances between the atoms which are closer to each other than some thresh-
old value. We performed two experiments with the last mentioned dataset
for cut-off set to 1 Angstrom (Hexose ver. 1) and 2 Angstroms (Hexose ver. 2).
The PTC dataset contains descriptions of 344 molecules classified according
to their toxicity for male rats. The molecules are described using only atom
and bond information. Finally, the CAD dataset contains descriptions of 96

class-labelled product-structure designs.
We applied the literal-elimination algorithm followed by literal-substitution

algorithm on these three datasets. The compression rates (i.e. ratios of number
of literals in the reduced learning examples divided by the number of literals
in the original non-reduced examples) are shown in the left panel of Figure 18.
The right panel of Figure 18 then shows the time needed to run the reduction
algorithms on the respective datasets. We note that these times are generally
negligible compared to runtimes of nFOIL and with the exception of Hexose
ver. 2 also to runtimes of Aleph.

8.4.2.1 Experiments with nFOIL

We used nFOIL to learn predictive models and evaluated them using 10-fold
cross-validation. For all experiments with the exception of the hexose-binding
dataset with cut-off value 2 Angstroms, where we used beam-size 50, we used
beam-size 100. From one point of view, this is much higher than the beam-
sizes used by [52], but on the other hand, we have the experience that this
allows nFOIL to find theories which involve longer clauses and at the same
time have higher predictive accuracies. The runtimes of nFOIL operating on
reduced and non-reduced data are shown in the left panel of Figure 19. It
can be seen that the reduction was beneficial in all cases but that the most
significant speed-up of more than an order of magnitude was achieved on
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Figure 18: Left: Compression rates achieved by literal-substitution algorithm on four
datasets (for treewidth 1). Right: Time for computing reductions of learn-
ing examples on four datasets (for treewidth 1).
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Figure 19: Left: Runtime of nFOIL on reduced (blue) and non-reduced (red) datasets.
Right: Predictive accuracies of nFOIL on four datasets estimated by 10-
fold cross-validation.

Hexose data. This could be attributed to the fact that nFOIL constructed long
clauses on this dataset and the covering test used by it had not probably
been optimized. So, in principle, nFOIL could be made faster by optimizing
the efficiency of its covering test. The main point, however, is that we can
speed-up the learning process for almost any relational learning algorithm
merely by preprocessing its input. The right panel of Figure 19 shows nFOIL’s
predictive accuracies (estimated by 10-fold cross-validation). The accuracies
were not affected by the reductions. The reason is that (unlike Aleph) nFOIL
exploits learning examples only through the entailment queries.

8.4.2.2 Experiments with Aleph

We performed another set of experiments using the relational learning system
Aleph. Aleph restricts its search space by bottom-clauses. After constructing
a bottom-clause it searches for hypotheses by enumerating subsets of literals
of the bottom-clause. When we reduce learning examples, which also means
reduction of bottom-clauses, we are effectively reducing the size of Aleph’s
search space. This means that Aleph can construct longer clauses earlier than



86 advanced preprocessing techniques

if it used non-reduced examples. On the other hand, this also implies that,
with the same settings, Aleph may run longer on reduced data than on non-
reduced data. That is because computing coverage of longer hypotheses is
more time-consuming. Theories involving longer clauses may often lead to
more accurate predictions. For these reasons, we measured not only runtime
and accuracy, but also the average number of learnt rules and the average
number of literals in these rules on reduced and non-reduced data.
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Figure 20: Left: Runtime of Aleph on reduced (blue) and non-reduced (red) datasets.
Right: Predictive accuracies of Aleph on reduced (blue) and non-reduced
(red) datasets estimated by 10-fold cross-validation.
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Figure 21: Left: Average number of rules generated by Aleph on reduced (blue) and
non-reduced (red) datasets. Right: Average number of literals in rules gen-
erated by Aleph on reduced (blue) and non-reduced (red) datasets.

We ran Aleph on reduced and non-reduced versions of the datasets and
evaluated it using 10-fold cross-validation. We used the literal-elimination
algorithm for reducing examples. We set the maximum number of explored
nodes to 50000, the noise parameter to 1% of the number of examples in the
respective datasets. The runtime in the performed experiments was higher
for reduced versions of datasets PTC and CAD, the same for Hexose ver. 2

and lower for Hexose ver. 1 than for their non-reduced counterparts (see left
panel of Figure 20). The accuracies were higher for reduced versions of all
four datasets (see right panel of Figure 20). Similarly, the average number of
rules, as well as the average number of literals in the rules, was higher for the
reduced versions of all four datasets (see Figure 21). These results confirm
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the expectation that Aleph should be able to construct longer hypotheses on
reduced datasets which, in turn, should result in higher predictive accuracies.

8.5 conclusions

Reducing the complexity of huge relational data (such as descriptions of pro-
tein structures) can be beneficial for learning. We introduced a novel concept
called safe reduction. We showed how it can be used to safely reduce learning
examples (without affecting learnability) which makes it possible to speed-
up many relational learning systems by merely preprocessing their input.
The methods that we introduced run in polynomial time for hypothesis lan-
guages composed of clauses with treewidth bounded by a fixed constant. Our
experiments confirm that these techniques can bring significant speed-up in
some domains.
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D I S C U S S I O N O F R E L AT I O N A L L E A R N I N G A P P R O A C H E S

In this part, we presented several relational learning approaches for machine
learning in molecular biology. These approaches are based on the relational
representation of protein structures that we introduced in Section 5.1. Unlike
other, previously introduced relational representations, e.g. the representa-
tion of Nassif et al. [67], our representation describes proteins on the amino
acid level. The first two approaches presented in this part (relational learning
based on structural patterns constructed by RelF and relational learning with
polynomials) are based on combining a large number of relatively small struc-
tural patterns for building a prediction model. The third approach (relational
learning with bounded LGG) is based on constructing a relatively small set
of complex structural patterns which are used for predictive classification.

The advantage of the approaches based on a large number of small struc-
tural patterns is that small patterns can be mined efficiently even from large
protein structures. Relational learning based on structural patterns described
in Chapter 5 can be used for predictive classification and also for regression.
As we have shown in experiments reported in Section 5.3.1, counting the oc-
currences of characteristic relational patterns in protein or peptide structures
is crucial for accurate prediction. In the case of prediction of DNA-binding
propensity of proteins, we achieved higher predictive accuracies than a state-
of-the-art method of Szilágyi et al. [92]. In the case of prediction of antimi-
crobial activity of peptides, we were also able to outperform a state-of-the-
art method of Torrent et al. [97]. A disadvantage of this approach is that it
cannot handle real-valued variables efficiently. The second approach – rela-
tional learning with polynomials – described in Chapter 6 is designed to ef-
ficiently model multi-relational domains with numerical data. Unfortunately,
this method does not scale as good as the former method. The reason is that
the number of polynomial relational features is higher than the number of
non-aggregation patterns. On the other hand, this method (using only infor-
mation about primary and secondary structures) is able to obtain similar pre-
dictive accuracies as the method based on structural patterns. What is impor-
tant, the idea of multivariate polynomial aggregation underlying this method
serves as a motivation for the most accurate method of this thesis – presented
in Chapter 15. The last approach – relational learning with bounded LGG –
presented in Chapter 7, is able to construct large, complex relational pat-
terns. Due to the nature of these complex patterns it is not necessary to count
their occurrences in order to obtain high predictive accuracies. This was con-
firmed by the experimental results on datasets of antimicrobial peptides in
Section 7.2. The disadvantage of this method is that it cannot handle protein
structures with hundreds of amino acids.

Relational representation of protein data consists of thousands of literals.
In order to reduce the complexity of such input data, relational counterparts

88



discussion of relational learning approaches 89

of feature selection methods would be required. In Chapter 8 we presented
advanced preprocessing techniques for reduction of relational learning exam-
ples. Interestingly, when applied on protein datasets in our representation
described in Section 5.1, the reduction in size was small, which suggests that
our representation is not redundant. It is good news for our relational rep-
resentation, because if it was reducible then some substructures could not
be distinguished by the type of patterns that we used, even in theory. When
we applied the reduction method on protein structures represented on the
atomic level, we obtained substantial reduction rates.
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M O T I VAT I O N F O R D I S T R I B U T I O N - B A S E D A P P R O A C H E S

We have shown that general relational learning methods can be used for learn-
ing from spatial structures of proteins (see Part iii). Nevertheless, they cannot
exploit specific properties of these domains. This exhibits itself in decreased
ability to scale. Therefore, it is useful to develop methods for relational data
embedded in Euclidean space. In general, the problem would be computa-
tionally very hard, but if we restrict the possible pattern form, it can become
tractable. The methods that we present in this part (Part iv) use restricted
form of patterns and differ from conventional relational learning approaches
also in their semantics. Here, we are not interested in whether a given pat-
tern is present in an example or how many times it occurs in it, but we are
interested in the probability that if we randomly pick a region of the learning
example, it will match the given pattern. This enables us to capture distribu-
tion of certain substructures defined by a given pattern. This is why we call
these methods distribution-based approaches.

Unlike, in the case of relational learning approaches with counting patterns,
we cannot simply count the number of regions in which a given pattern is
matched, because there are usually infinitely many of them. In the case of
distribution-based approaches the value of a pattern is rather computed by
a multidimensional integral over a given learning example. In practise, we
approximate these integrals using Monte-Carlo integration.

From the biological point of view, very simple global properties of proteins
(or peptides) can work well as predictors of their function, for example the
physicochemical properties described by Szilágyi and Skolnick [92] turned
out to be good predictors of DNA-binding function of proteins. Even the sim-
plest of their features, i.e. proportion of some amino acids, could predict the
DNA-binding function with surprisingly good accuracy1. The distribution-
based approaches enable us to generalize the methods based on global prop-
erties of proteins (or peptides) by aggregating them over the regions of these
proteins (or peptides).

We start this part by studying distributions of gaps between charged amino
acids in DNA-binding proteins in Chapter 11. Here, the main question is
whether the presence of charged amino acid patches in proteins’ spatial struc-
tures reflects itself in differences of distributions of charged amino acids in
proteins’ sequences. Then, we introduce the tube-histogram method in Chap-
ter 12. This method constructs classifiers based on a systematic exploration
of the distribution of certain amino acids in the proteins’ sequences. Next,
we present the ball-histogram method in Chapter 13, which generalizes the
tube-histogram method by lifting it to 3D space. The ball-histogram method
is further extended for regression problems in Chapter 14. Finally, we intro-

1 Though, with lower accuracy than accuracies reached by our methods

91



92 motivation for distribution-based approaches

duce ball-histogram method with polynomial features in Chapter 15, which
is able to work with continuous properties of protein regions, unlike the plain
ball-histogram method.
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D I S T R I B U T I O N S O F G A P S B E T W E E N C H A R G E D A M I N O
A C I D S

Charged amino acids are known to be critical for the DNA-binding func-
tion of proteins. What is crucial is the spatial configuration of these amino
acids, which is usually conserved by evolution. The question is: How does
this reflect in the primary structure of proteins (i.e. in their sequence)? To an-
swer it, we study distributions of charged amino acids in primary structure
of DNA-binding proteins. In this chapter we give an evidence that the sta-
tistical laws governing the scaled distributions of positively charged amino
acids1 in proteins’ primary structures differ between DNA-binding proteins
on one hand, and non-DNA-binding proteins on the other hand. Clearly,
since DNA-binding proteins typically contain larger fractions of positively
charged amino acids, the respective unscaled distributions of gaps between
them are very different from those of non-DNA-binding proteins. However,
this tells us nothing more than what is already known, i.e. that the average
proportion of positive and negative amino acids is different in DNA-binding
proteins and non-DNA-binding proteins. In order to learn more about the dis-
tributions we need to cancel out the dependence on the proportion of charged
amino acids. To this end we adopt methods used for analysis of intervals be-
tween consecutive events pursued by Goh et al. [26]. With these methods
we show that there is a noticeable difference between distributions of posi-
tively charged amino acids in DNA-binding and non-DNA-binding proteins
whereas there is only a small difference between the respective distributions
of negatively charged amino acids. The results presented here serve as moti-
vation for developing a predictive classification method described in the next
chapter.

This chapter is organized as follows. We describe the method for studying
distributions of gaps in amino acid sequences between charged amino acids
in Section 11.1 and discuss the results in Section 11.2. In Section 11.3 we
conclude this chapter.

11.1 method

For each protein from given DNA-binding and non-DNA-binding datasets,
we computed the set of lengths of all positive gaps, and an analogical set
for all negative gaps. A positive gap in a protein with amino acid sequence2

a1,a2, . . . ,aL is a substring ai,ai+1, . . . ,aj, such that i = 1 or another positive
gap ends in ai−1, and j (i < j 6 l) is the smallest index such that aj is

1 Under normal circumstances, arginine and lysine are positively charged, whereas Glu and
Asp are charged negatively.

2 In the entire chapter, smaller indices are closer to the N-terminus of the protein.
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positively charged or j = L if no such index exists. Negative gaps are defined
analogically. Both concepts are illustrated in Figure 22.

Figure 22: Positive (GAP+) and negative (GAP-) gaps in a protein primary sequence.

From the union of lists of gap lengths for all proteins in a single dataset
we could get an estimate of the unscaled distribution of gap lengths. As we
have noted above we are not interested in the unscaled distributions. There-
fore we follow a trick from [26] which lies in computing the mean length lP
of gaps for every protein P in the dataset and then dividing each gap length
associated with P by lP. We compare variances of distributions which, as we
will see, turn out to be reliable indicators of the differences between distri-
butions of gap lengths of positively charged amino acids in DNA-binding
and non-DNA-binding proteins. Finally, we also use plots of complementary
distribution functions in logarithmic coordinates to allow visual inspection of
the distributions.

11.2 experiments

Here, we present results concerning the differences between distributions of
charged amino acids in DNA-binding proteins from the dataset PD138, and
the non-DNA-binding proteins from the dataset NB110.

First, we computed cumulative distributions of gap lengths of positive
amino acids and gap lengths of negative amino acids on the whole datasets
which are shown in Figure 23. From these figures it is apparent that there is
a much bigger difference between the gap-length distributions of positively
charged amino acids in DNA-binding and non-DNA-binding proteins than
the difference between the respective distributions for negatively charged
amino acids. Next, we computed also variances of the distributions. Intu-
itively, the more slowly decaying is the tail of a distribution the bigger vari-
ance the distribution has, therefore variance is a good measure for the types
of differences similar to those observed in Figure 23. For positively charged
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Figure 23: Complementary distributions of gap-lengths of positively charged amino
acids (top panel) and negatively charged amino acids (bottom panel).

amino acids we obtained variance 0.67 in DNA-binding proteins and 0.82

in non-DNA-binding proteins. For negatively charged amino acids we ob-
tained variance 0.71 in DNA-binding proteins and 0.75 in non-DNA-binding
proteins. This is another piece of evidence supporting the claim that distri-
butions of positively charged amino acids differ more significantly between
DNA-binding and non-DNA-binding proteins than the negatively charged
amino acids.

The differences observed in Figure 23 could be just due to the fact that pro-
teins with low fraction of positively charged amino acids are more frequent



96 distributions of gaps between charged amino acids

A B C D E
0

0.2

0.4

0.6

0.8

1

 

 

Binding
Non−binding

Figure 24: Variances of gap-length distributions for sets of proteins from PD138 and
NB110 grouped according to proportion of positively charged amino acids
(see main text).
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Figure 25: Variances of gap-length distributions for sets of proteins from PD138 and
NB110 grouped according to their binding motifs: helix-turn-helix (HTH),
zinc coordinating (ZF), zipper-type (ZIP), other alpha helix (HEL), beta sheet
(SH), enzyme (ENZ) and non-binding proteins (NON).

in the dataset NB110 than in the dataset PD138. Thus, the positively charged
amino acids in the non-DNA-binding proteins could have higher variance
simply because the physical constraints on the distances of amino acids far
away from each other in a sequence could allow for more variance in their dis-
tribution. In order to rule out this possibility we have split the datasets into
several smaller sub-datasets according to the fraction of positively charged
amino acids in the proteins. We have removed proteins from both sides of the
spectra which corresponded to fractions too low for DNA-binding proteins
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and too high for non-DNA-binding proteins. Then we divided the datasets in
such a way that each class (DNA-binding or non-DNA-binding) in a sub-dataset
would contain at least ten proteins. This produced a breakdown into the fol-
lowing intervals: A = (0.0675, 0.1055), B = (0.1055, 0.118), C = (0.118, 0.1289),
D = (0.1289, 0.134), E = (0.134, 0.183). The variances of the gap-length distri-
butions for the respective sub-datasets are shown in Figure 24. We can see
that the variances corresponding to DNA-binding proteins are consistently
smaller than the respective variances for non-DNA-binding proteins.
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Figure 26: Average lengths of proteins from PD138 and NB110 grouped according to
their binding motifs: helix-turn-helix (HTH), zinc coordinating (ZF), zipper-
type (ZIP), other alpha helix (HEL), beta sheet (SH), enzyme (ENZ) and non-
binding proteins (NON).

Another question is whether the variance of gap-lengths depends on bind-
ing motifs of DNA-binding proteins; for example, whether there is a differ-
ence in distributions of positively charged amino acids in zinc finger pro-
teins on one hand, and proteins having a helix-turn-helix motif on the other
hand. Therefore we used a categorization of the proteins in dataset PD138

established by Szilagyi et al. [92], following the methodology of [57], into
the following protein groups: helix-turn-helix (HTH), zinc coordinating (ZF),
zipper-type (ZIP), other alpha helix (HEL), beta sheet (SH), enzyme (ENZ). For
these groups we again computed variances of their gap-length distributions
(shown in Figure 25). The displayed variances clearly differ among the pro-
tein groups.

Yet another potential confounding factor is that the observed differences
may be largely due to the variable lengths of the respective proteins’ chains.
Indeed, the average lengths of proteins’ chains in the groups vary substan-
tially. However, as can be seen from Figure 26, the average lengths of chains
do not correlate with the variances substantially. For example, the average
length of chains in the group enzyme is by far the biggest, however, the vari-
ance is only medium in comparison with the other groups.
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11.3 conclusions

To summarize our findings in this chapter, we have given an evidence that
the laws governing distributions of positively charged amino acids in DNA-
binding proteins are different from those governing distributions of posi-
tively charged amino acids in non-DNA-binding proteins. We have shown
that these differences probably cannot be attributed to different proportions
of positively charged amino acids or to different average lengths of proteins
present in the studied datasets PD138 and NB110.

Although, the results are interesting and suggest that distributions of pos-
itively and negatively charged amino acids are governed by different laws,
they need further validation. An objective measure that lends itself read-
ily is predictive accuracy. Therefore, we developed a predictive classification
method which is able to capture these distributions. We present this method
in the next chapter, where we also show that it can achieve high predictive
accuracies using only limited information.
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T H E T U B E - H I S T O G R A M M E T H O D

The results of experiments described in the previous chapter show that dis-
tributions of positively and negatively charged amino acids can be used
to distinguish DNA-binding proteins from non-DNA-binding proteins. This
was the motivation for the development of a novel predictive classification
method entitled the tube-histogram method. This method is based on a sys-
tematic exploration of the distribution of certain amino acids in primary struc-
tures – for example the distribution of charged amino acids. For this purpose
we employ so-called tube histograms, which are capable of capturing joint
probabilities of specified amino acids occurring in certain distances in amino
acid sequences from each other. The method consists of four main steps. First,
so-called templates are found, which determine amino acids whose distribu-
tions should be captured by tube histograms. In the second step tube his-
tograms are constructed for all proteins in a training set. Third, a transforma-
tion method is used to convert these histograms to a form usable by standard
machine learning algorithms. Finally, a random forest classifier [6] is learned
on this transformed dataset and then it is used for classification. We validate
this method in prediction experiments, achieving favourable accuracies.

This chapter is organized as follows. First, we explain the basic principles
of the tube-histogram method in Section 12.1. In Section 12.2 we describe a
method for construction of templates capable to identify amino acids which
are critical for DNA-binding propensity prediction. In Section 12.3 we de-
scribe the results obtained by application of the novel tube-histogram method.
In Section 12.4 we conclude this chapter.

12.1 method

Here, we explain the basic principles of the tube-histogram method. To de-
scribe tube histograms, we first define a few auxiliary terms. A template is a
list of names of some Boolean amino acid properties. Given a template and a
location in the primary structure of a protein, we infer a list of binary values
indicating the truth values of the respective properties in the template for the
amino acid at the position. For example, the template (Arg, Lys, Positive,
Negative, Neutral) acquires the value (1, 0, 1, 0, 0) if the amino acid at the
inquired position is an arginine. A sampling-tube of size s represents a part of
an amino acid sequence containing s consecutive amino acids (Figure 27).

Given a protein, a template τ = (f1, . . . , fk) and a sampling-tube size s, a
tube histogram is a k-dimensional histogram constructed as follows. Starting
by placing the sampling tube on the first s amino acids we get the first sample
for the histogram. When a sample is collected the numbers of amino acids
complying with the particular properties listed in the given template are ex-

99



100 the tube-histogram method

Figure 27: Illustration of the tube-histogram method - Amino acids are shown as
small balls in sequence forming an amino acid chain. A tube is shown
in pink. Some of the amino acids which comply with properties of an
example template are highlighted inside the tube area. They have different
colors according to their type.

tracted from it and stored. In further steps the tube is moved by one amino
acid at time along the protein sequence and the samples are continuously
stored for subsequent histogram construction. This process ends when the
last amino acid is reached. Finally, the histogram constructed from the col-
lected samples is normalized. Intuitively, tube histograms capture the joint
probability that a randomly picked sampling tube (Figure 27) will contain ex-
actly t1 amino acids complying with f1, t2 amino acids complying with f2
etc.

Figure 28: An example sequence with two sampling tubes placed on it (pink cylin-
ders). Amino acid types are indicated by colors of the balls as follows: Arg
- red, Cys - violet, His - green, Leu - blue, Lys - yellow, Glu - orange, Ile -
brown.

Example 9. Let us illustrate the process of histogram construction for a small exam-
ple amino acid sequence shown in Figure 28. Let us have a template (Arg,Lys) and
the tube size set to 5. The algorithm starts by placing the sampling tube at the be-
ginning of the given protein sequence. The first sampling tube contains the following
amino acids: 2 arginines, 1 cysteine, 1 histidine and 1 leucine therefore we in-
crement a counter in the histogram associated with vector (2, 0). Then in the second
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sampling tube, we get 1 cysteine, 1 histidine, 1 leucine, 1 arginine and 1 lysine
so we increment a counter associated with vector (1, 1). We continue in this process
until reaching the end of the protein sequence. In the end we normalize the histogram.
An example histogram for a real protein 1AIS (chain B) is shown in Figure 29.
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Figure 29: Example tube histogram with template (Arg,Lys) and tube size 10 con-
structed for protein 1AIS (chain B) from PD138.

We now explain how to use the constructed tube histograms for predic-
tive classification. One possible approach would be to define a metric on the
space of normalized histograms and then use either a nearest neighbour clas-
sifier or a nearest-centroid classifier. Since our preliminary experiments with
these classifiers did not give us satisfying predictive accuracies, we decided
to follow a different approach inspired by propositionalization – see Chapter 3.

The transformation method is quite straightforward. It looks at all his-
tograms generated from the proteins in a training set and creates a numerical
attribute for each vector of property occurrences which is non-zero at least
in one of the histograms. After that an attribute vector is created for each
training example using the collected attributes. The values of the entries of
the attribute-vectors then correspond to heights of the bins in the respective
histograms. After this transformation a random forest classifier is learned on
the attribute-value representation. This random forest learning algorithm is
then used for predictive classification. In practice, there is a need to select
an optimal tube size. This can be done by creating several sets of histograms
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and their respective attribute-value representations corresponding to differ-
ent sizes and then selecting the optimal parameters using an internal cross-
validation procedure1.

Note that tube histograms are able to represent patterns which would be
hard to capture by conventional subsequence patterns. For example, the bin at
coordinates (2,1) of a tube histogram with template (Arg, Lys) and tube size 5

represents the proportion of the following subsequence patterns in a protein’s
sequence: (Arg, Arg, Lys, ?, ?), (Arg, Arg, ?, Lys, ?), (Arg, Arg, ?, ?, Lys), . . . , (Lys,
Arg, ?, ?, Arg), . . . , etc. In certain sense, the tube-histogram method can also be
viewed as a generalization of protein-classification methods based on amino
acid composition, because it concisely represents amino acid compositions in
small windows (tubes).

12.2 construction of templates

A question that we left unanswered so far in the description of our method is
how to construct appropriate templates, which would allow us to accurately
predict DNA-binding propensity. It is obvious that an all-inclusive strategy
where the template would simply list all possible properties is infeasible. A
template with n properties will generate training samples with a number of
attributes d that is exponential in n. Furthermore, machine learning theory
[28] indicates that the number of training samples needed to preserve accu-
rate classification grows exponentially in d. In effect, the requested number
of training samples grows doubly-exponentially with the size of the template.
It is thus crucial that the template consists of only a small number of relevant
properties. On the other hand, omitting some amino acids completely might
be a problem as well. A possible solution is to use more templates of bounded
size instead of one big template, because the number of attributes d grows
only linearly with the number of templates.

But how to select the templates? One possibility could be to use templates
with sets of amino acids believed to play an important role in the DNA-
binding process according to literature. This could mean, for example, using
the four charged amino acids - Arg, Lys, Asp, Glu, which are known to often
interact with the negatively charged backbone as well as with the bases of the
DNA [70, 59, 36] or other amino acids identified as important, e.g. the eight
amino acids used in [92]. In this section we follow a different strategy. We
develop an automated method for construction of templates. The basic idea
of the method is to find templates which maximize distance between average
histograms from the two classes (DNA-binding and non-DNA-binding pro-
teins). Intuitively, such templates should allow us to construct classifiers with
good discriminative ability. We construct the templates in a heuristic way
using best-first search algorithm (Algorithm 3) to maximize the distance be-

1 When evaluating the classifiers’ performance using 10-fold cross-validation, we optimize the
tube size parameter always on the nine training folds and then use it for the remaining testing
fold, which is a standard way to obtain an unbiased estimate of the predictive performance
of a classifier with tunable parameters.
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tween the average histograms from the two classes. We use the Bhattacharyya
distance [4] which is defined as

DB(ha,hb) = − ln

(∑
x∈X

√
ha(x) · hb(x)

)
,

where ha and hb are histograms and X is their support-set. Other types of
distances could be used as well.

The following example shows that the templates cannot be constructed
greedily. Although we do not directly prove hardness of the template-search
problem here, the next example gives an intuition why the problem is proba-
bly hard.

Example 10. We assume that we have histograms for DNA-binding proteins and
non-DNA-binding proteins as shown in Table 17 and we want to find an optimal
template with length 2. It can be easily verified that greedy search starting with an
empty template would construct either the template (Arg, Gly) or (Lys, Gly), but
not the optimal template (Arg, Lys).

Lys

Arg
0.5 0 0.5
0 0.5 0.5
0.5 0.5

Gly

Arg
0.4 0.1 0.5
0.2 0.3 0.5
0.6 0.4

Gly

Lys
0.4 0.1 0.5
0.2 0.3 0.5
0.6 0.4

Lys

Arg
0 0.5 0.5

0.5 0 0.5
0.5 0.5

Gly

Arg
0.1 0.4 0.5
0.3 0.2 0.5
0.4 0.6

Gly

Lys
0.1 0.4 0.5
0.3 0.2 0.5
0.4 0.6

Table 17: Histograms used as counter-examples for greedy search. The first row con-
tains histograms for DNA-binding proteins, the second row contains his-
tograms for non-DNA-binding proteins.

Let us elaborate on this in more detail. We start with the case of the search starting
from the empty template. In the first step, the template (Gly) is constructed because it
maximizes distance between the histograms for the two classes. Both (Arg) and (Lys)
would give rise to identical histograms for the two classes. In the next step, Arg or
Lys is added to this template. However, the resulting template is clearly not optimal
as can be checked by routine calculation of the Bhattacharyya distance which is finite
for the discovered sub-optimal template but which would be infinite for the template
(Arg, Lys).
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Similarly, if we wanted to construct an optimal template of length 1 and if we
started with the maximal template (Arg, Lys, Gly) and then tried to iteratively
remove its elements while greedily maximizing the distance between the histograms
of the two classes then we would end up with a sub-optimal template as before. In
the first step, Gly would be removed and we would get the optimal template of size
2 (Arg, Lys). However, in this case we want to construct a template of length 1.
Therefore, in the next step we would create either the template (Arg) or (Lys) but not
the optimal one (Gly) (note that the distances for templates (Arg) or (Lys) are 0).

In order to avoid repeated construction of histograms from the whole
datasets, we construct a histogram corresponding to the biggest possible tem-
plate (containing all amino acid properties), then, during the best-first search,
we construct histograms for the other templates by marginalising this maxi-
mal histogram.

While searching for a single template using best-first search is quite straight-
forward, searching for several templates is more complicated, because we
need to find not only a set of templates making the distances between the
average histograms as big as possible, but also these templates should be
sufficiently diverse. Although, there are multiple ways to introduce diversity
to the set of templates, we decided to use a heuristic approach. During the
template search we penalise all candidate templates which are subsets of
some templates already discovered in previous runs of the procedure Best-
FirstSearch(Templates). In order to direct the search early to the most promis-
ing regions of the search-space, we first initialize the set Open with all pair-
wise intersections of the already discovered templates. The intuition is that
sub-templates which appear in more templates constitute some kind of core,
which is shared by the most informative templates.

12.3 experiments

In this section we present experiments performed on real-life datasets of
DNA-binding proteins – PD138 and non-DNA-binding proteins – NB110 de-
scribed in Chapter 4. We compare the accuracy of our method with the accu-
racy of two other methods. Then we evaluate meaningfulness of the discov-
ered templates from biological perspective. We also show here some proteins
with the occurrence of the most informative template patterns.

We constructed histograms with automatically discovered templates (with
maximum length 5) and three different sampling-tube sizes: 5, 10 and 15. We
trained random forest classifiers selecting optimal sampling-tube size and
an optimal number of trees for each fold by internal cross-validation. The
estimated accuracy and area under ROC is shown in Table 18. As we can see,
the accuracy of our method exceeds the accuracy obtained by the method
used in [92].

We can see that the method which had higher accuracy than our tube-
histogram method, is the method of Nimrod et al. [68]. This method de-
tects clusters of evolutionarily conserved regions on the surface of proteins
and trains a classifier using features like the electrostatic potential, cluster-



12.3 experiments 105

Algorithm 3 Template Search

function TemplateSearch()

Templates← {}

for i = 1 to NumberOfTemplates do
i← i+ 1

Templates← Templates∪BestFirstSearch(Templates)
end for

function BestFirstSearch(Templates, λ)

E+ - set of positive examples (DNA-binding Proteins)
E− - set of negative examples (non-DNA-binding Proteins)
Open← {()}

Open← Open∪ {ti ∩ tj|ti, tj ∈ Templates}
Closed← ∅
BestTemplate← ()

Scores← HeuristicScore(Open)

while Open 6= ∅ do
Template← Remove best template from Open according to Scores
if (Dx(Template,E+,E−) > Dx(BestTemplate,E+,E−))∧ (Template 6∈
Templates) then
BestTemplate← Template

end if
for T ∈ Expand(Template) do

if T 6∈ Closed then
Closed← Closed∪ {T }
Open← Open∪ {T }
if ∃T ′ ∈ Templates : T ⊆ T ′ then
Score← λ ·HeuristicScore(T)

else
Score← HeuristicScore(T)

end if
Scores← Scores∪ Score

end if
end for

end while

based amino acid conservation patterns, the secondary structure content of
the patches and features of the whole protein, including all the features
used by Szilágyi and Skolnick [92]. This is much more information than our
tube-histogram method used. Clearly, their classifier is more accurate. How-
ever, when removing evolutionary information (or information about the sec-
ondary structure), their classifier’s misclassification error increased by 3.5.
Even without this information their classifier still used significantly more in-
formation than our method. Speaking about limited amount of information,
we performed an additional experiment with our tube-histogram method, in
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Method Accuracy AUC

Szilágyi et al. [92] 81.4 0.92

Nimrod et al. [68] 90.0 0.96

Tube histogram 86.3 0.94

Table 18: Accuracies and AUCs estimated by 10-fold cross-validation on
PD138/NB110.

which we used a fixed template (Arg, Lys, Glu, Asp) in order to support the
results about distributions of charged amino acids presented in Chapter 11.
The predictive accuracy obtained in this experiment was 85.5%, which is close
to the result obtained using automatic template search.

Figure 30: Protein 1DH3 containing the discovered pattern
(Arg,Cys,Lys,Gly,Ala) = (1, 0, 1, 0, 0) shown using the protein
viewer software [62]. Amino acids assumed by the pattern are indicated.

We already made experiments based only on primary structure of proteins
in Chapter 6. The method based on polynomial relational features achieved as
high accuracies as the tube-histogram method. The specialized tube-histogram
method is more scalable than the method based on polynomial relational fea-
tures.

The four most informative (according to χ2 criterion) automatically selected
templates are: (Arg, Cys, Lys, Gly, Ala), (Arg, Cys, Lys, Gly, Asp), (Arg, Cys, Lys,
Gly, Glu), (Arg, Cys, Lys, Gly, Leu). It is noteworthy that each charged amino
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acid is contained in at least one of these templates. This confirms results of
previous studies ([70, 59, 36]), where charged amino acids were identified as
critical for DNA-binding. Furthermore, it is interesting that unlike the nega-
tively charged amino acids the positively charged amino acids are present in
all discovered templates.

Figure 31: Protein 1R8E containing the discovered pattern
(Arg,Cys,Lys,Gly,Asp) = (1, 0, 1, 0, 0) shown using the protein
viewer software [62]. Amino acids assumed by the pattern are indicated.

In addition to improved accuracy, our method provides us with interpre-
table patterns involving distributions of selected amino acids in primary
structures. The most informative patterns according to the χ2 criterion as-
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sumed presence of one arginine and one lysine in a tube of size 5. Given
a protein, each pattern captures the fraction of sampling tubes, which con-
tain the specified numbers of amino acids of given types. Arginine and lysine
are known to often interact with the negatively charged backbone as well as
with the bases [70, 59, 36]. We show two example occurrences of this pattern
in DNA-binding proteins with the highlighted amino acids in Figure 30 and
Figure 31.

12.4 conclusions

We presented a novel tube-histogram method for the task of prediction of
DNA-binding propensity of proteins. We have shown that this method is ca-
pable to identify important amino acids for predicting DNA-binding propen-
sity. The tube-histogram method is able to capture joint probabilities of spec-
ified amino acids occurring within certain distances in amino acid sequences
from each other. We validated this method in prediction experiments using
only proteins’ primary structure, achieving favourable accuracies. We com-
pared the method with two other state-of-the-art methods, from which one
was less accurate than our method. The second method by Nimrod et al. [68]
outperformed our method, but it required much more information to classify
DNA-binding proteins accurately.
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T H E B A L L - H I S T O G R A M M E T H O D

The tube-histogram method described in the previous chapter is both fast
and accurate despite the fact that it uses only information about the primary
structure of proteins. Primary structure refers to the sequence of amino acids
in the protein chains. We cannot overlook the fact that a protein is not only a
linear sequence of amino acids, but it is a complex molecule with intricate 3D
shape. Proteins fold into spatial structures that reflect their biological roles.
We can expect that we could obtain better accuracies for predicting DNA-
binding function, when taking proteins’ spatial structure into account. There-
fore, we decided to generalize the tube-histogram method to 3D space. The
tube-histogram method uses a sampling tube to gather information about the
amino acid distribution in a protein sequence. What would be a generaliza-
tion of the sampling tube (which is essentially 1D) in 3D space? Naturally, we
thought about a sampling ball which as it turned out has many convenient
properties, for instance it is possible to use it for sampling without having to
consider its rotation. If we chose a different shape, we would have to consider
its rotation in order to ensure invariance of the result to the orientation of the
protein. This would make the sampling more difficult.

In this section we describe our novel method for predictive classification of
DNA-binding propensity of proteins using so-called ball histograms. We pro-
pose the following approach based on the tube-histogram method. Similarly
as the tube-histogram method, this method also consists of four main steps.
First, templates are found, which determine amino acids whose distributions
should be captured by ball histograms. In the second step ball histograms are
constructed for all proteins in a training set. Third, a transformation method
is used to convert these histograms to a form usable by standard machine
learning algorithms. Finally, a random forest classifier [6] is learned on this
transformed dataset and then it is used for classification. The reason why we
chose the random forest learning algorithm is that it is known to be able to
cope with large numbers of attributes such as in our case of ball histograms
[9].

This chapter is organized as follows. We describe the ball-histogram method
in Section 13.1. We subject the method to experimental evaluation in the do-
main of DNA-binding proteins in Section 13.2. In Section 13.3 we conclude
this chapter.

13.1 method

Here, we describe the ball-histogram method. We first define a few auxil-
iary terms. Similarly as in the case of the tube-histogram method, a template
is a list of some Boolean amino acid properties. A property may, for exam-
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ple, refer to the charge of the amino acid (e.g. Positive), but it may also di-
rectly stipulate the amino acid type (e.g. arginine). An example of a template
is (Arg,Lys,Polar) or (Positive,Negative,Neutral). A bounding sphere of a
protein structure is a sphere with center located in the geometric center of the
protein structure and with radius equal to the distance from the center to the
farthest amino acid of the protein plus the radius of the sampling ball which is
a parameter of the method. We say that an amino acid falls within a sampling
ball if the alpha-carbon of that amino acid is contained in the sampling ball
in the geometric sense.

Given a protein structure, a template τ = (f1, . . . , fk), a sampling-ball radius
R and a bounding sphere S, a ball histogram is defined as:

Hτ(t1, . . . , tk) =

∫ ∫ ∫
(x,y,z)∈S IT ,R(x,y, z, t1, . . . , tk)dxdydz∑

(t ′1,...,t ′k)
∫ ∫ ∫

(x,y,z)∈S IT ,R(x,y, z, t ′1, . . . , t
′
k)dxdydz

, (2)

where IT ,R(x,y, z, t1, . . . , tk) is an indicator function which we will define
in turn. The expression

∑
(t ′1,...,t ′k)

∫ ∫ ∫
(x,y,z)∈S IT ,R(x,y, z, t ′1, . . . , t

′
k)dxdydz is

meant as a normalization factor - it ensures that
∑

(t1,...,tk)HT (t1, . . . , tk) = 1.
In order to define the indicator function IT ,R we first need to define an auxil-
iary indicator function I ′T ,R(x,y, z, t1, . . . , tk):

I ′T ,R(x,y, z, t1, . . . , tk) =


1

if there are exactly ti amino acids complying
with property fi (1 6 i 6 k) in the sampling
ball with center x,y, z and radius R,

0 otherwise.

Notice that I ′T ,R(x,y, z, 0, . . . , 0) does not make any distinction between a sam-
pling ball that contains no amino acid at all and a sampling ball that contains
some amino acids of which none complies with the parameters in the tem-
plate T . Therefore if we used I ′T ,R in place of IT ,R the histograms would be
affected by the amount of empty space in the bounding spheres. Thus, for
example, there might be a big difference between histograms of otherwise
similar proteins where one would be oblong and the other one would be
more curved. In order to get rid of this unwanted dependence of the indica-
tor function IT ,R on proportion of empty space in sampling spheres we define
IT ,R in such a way that it ignores the empty space. For (t1, . . . , tk) 6= 0 we set:

IT ,R(x,y, z, t1, . . . , tk) = I ′T ,R(x,y, z, t1, . . . , tk).

In the cases when (t1, . . . , tk) = 0 we set IT ,R(x,y, z, t1, . . . , tk) = 1 if and
only if I ′T ,R(x,y, z, t1, . . . , tk) = 1 and if the sampling ball with radius R at
(x,y, z) contains at least one amino acid.

Ball histograms capture the joint probability that a randomly picked sam-
pling ball (See Figure 32) containing at least one amino acid will contain ex-
actly t1 amino acids complying with property f1, t2 amino acids complying
with property f2 etc. They are invariant to rotation and translation of protein
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structures which is an important property for classification. Also note that
the histograms would not change if we increased the size of the bounding
sphere.

Figure 32: Amino acids are shown as small balls in sequence forming an amino acid
chain. A sampling ball is shown in violet. Some of the amino acids which
comply with properties of an example template are highlighted inside the
sampling ball area. They have different colors according to their type.

The indicator function IT ,R makes crisp distinction between the case where
an amino acid falls within a sampling ball on one hand, and the case where it
falls out of it, on the other hand. This could be changed towards capturing a
more complex case by replacing the value 1 by the fraction of the amino acid
that falls within the sampling ball.

Computing the integral in (2) precisely is infeasible therefore we decided
to use a Monte-Carlo method. The method starts by finding the bounding
sphere. First, the geometric center C of all amino acids of a given protein
P is computed (each amino acid is represented by coordinates of its alpha-
carbon). The radius RS of the sampling sphere for the protein structure P is
then computed as:

RS = max
Res∈P

(distance(Res,C)) + R,

where R is a given sampling-ball radius. After that the method collects a pre-
defined number of samples from the bounding sphere. For each sampling
ball the algorithm counts the number of amino acids in it, which comply
with the particular properties contained in a given template and increments a
corresponding bin in the histogram. In the end, the histogram is normalized.

Example 11. Let us illustrate the process of histogram construction. Consider the
template (Arg,Lys) and assume we already have a bounding sphere. The algorithm
starts by placing a sampling ball randomly inside the bounding sphere. Assume the
first such sampling ball contained the following amino acids: 2 arginines and 1
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leucine therefore we increment (by 1) the histogram’s bin associated with vector
(2, 0). Then, in the second sampling ball, we get 1 histidine and 1 aspartic acid,
so we increment the bin associated with vector (0, 0). We continue in this process
until we have gathered a sufficient number of samples. In the end we normalize the
histogram. Examples of such histograms are shown in Figure 33 and 34.

Figure 33: Example ball histogram with template (Arg,Lys) and sampling-ball ra-
dius R = 12 Åconstructed for proteins 1A31 from PD138.

Templates can be constructed automatically using the same template con-
struction method as in the case of tube-histogram method in Section 12.2.

Then, the ball-histogram method can be used for predictive classification
similarly as the tube-histogram method. First, the method creates a numeri-
cal attribute for each bin which is non-zero at least in one of the histograms.
The values of the attribute-vectors correspond to heights of the bins in the
respective histograms. After this transformation a classifier is learned on the
attribute-value representation. This classifier is used for the predictive classi-
fication. It is necessary to estimate the optimal sampling-ball radius. This
can be done by selecting the optimal parameters using an internal cross-
validation procedure.

13.2 experiments

In this section we present experiments performed on DNA-binding and non-
DNA-binding proteins described in Chapter 4. We constructed histograms
with automatically discovered templates and three different sampling-ball
radii: 4, 8 and 12 Å. We trained random forest classifiers selecting optimal
sampling-ball radii and optimal numbers of templates (1, 3, 5 or 7 templates)
for each fold by internal cross-validation. The estimated AUCs (area under



13.2 experiments 113

Figure 34: Example ball histogram with template (Arg,Lys) and sampling-ball ra-
dius R = 12 Åconstructed for proteins 1A3Q from PD138.

curve) are shown in Table 19 and the estimated accuracies are shown in Table
20. We performed two sets of experiments. In the first experiment we tested
the ball-histogram method (see Ball histograms in Table 19 and Table 20). In
the second experiment we used only the coarse-grained features of Szilágyi
and Skolnick [92]. For both of these experiments we trained two types of clas-
sifiers: random forests [6] and linear support vector machines [8] in order to
determine the extent to which the choice of classifiers matters. In addition, we
learnt a logistic regression classifier [33] for the experiment with the coarse-
grained features from Szilágyi and Skolnick [92] since it was the classifier
used originally by the authors. (We also tried to learn logistic regression clas-
sifiers for the ball-histogram method but logistic regression turned out to be
too slow with the high number of attributes generated by the ball-histogram
method.) We can see from the experimental results that the choice of the clas-
sifier has low influence on the performance of the Szilágyi’s and Skolnick’s
method whereas it has slightly bigger impact on the ball-histogram method.
A possible explanation is that random forest classifier is able to cope with
large numbers of attributes [9] such as in our ball-histogram method.

We report both AUC and accuracy for the two combinations of datasets
(PD138/NB110 and PD138/NB843). In case of datasets PD138 and NB110,
the ball-histogram method achieved the best results in terms of accuracy and
AUC. The best results for ball-histogram methods were obtained by random
forest learning algorithm. In case of datasets PD138 and NB843 accuracy is
not very meaningful measure of classification quality because the dataset is
highly class-skewed. However, if we have a look at the AUC value, we can
see that again the ball-histogram method performs best.
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Classifier PD138/NB110 PD138/NB843

Ball histograms
Random forest 0.94± 0.05 0.87± 0.04
SVM 0.92± 0.04 0.83± 0.03

Szilágyi et al.
Log. regression 0.92± 0.04 0.84± 0.04
Random forest 0.90± 0.05 0.82± 0.04
SVM 0.92± 0.05 0.83± 0.05

Table 19: AUCs estimated by 10-fold cross-validation.

Classifier PD138/NB110 PD138/NB843

Ball histograms
Random forest 0.87± 0.08 0.88± 0.01
SVM 0.84± 0.07 0.87± 0.01

Szilágyi et al.
Log. regression 0.81± 0.05 0.87± 0.01
Random forest 0.82± 0.07 0.87± 0.02
SVM 0.81± 0.05 0.87± 0.01

Table 20: Accuracies estimated by 10-fold cross-validation.

In order to see whether the ball-histogram method, which uses only struc-
tural information, could come close to the results of methods which exploit
also information about the evolutionary conservation of regions on protein
surfaces, we compared our results with the results of Nimrod et al. [68]. The
AUC 0.96 and accuracy 0.90 reported by Nimrod et al. for the datasets PD138

and NB110 differs only slightly (0.02, 0.03 respectively) from our best results.
The AUC 0.90 obtained for the datasets PD138 and NB843 differs by 0.03 from
our best results. These results are encouraging given how important evolu-
tionary information turned out to be according to experiments of Nimrod et
al. When removing evolutionary information, their classifier’s misclassifica-
tion error increased by 0.035. Even without this information their classifier
used significantly more information than our method (e.g. secondary struc-
ture information). It is important to continue improving methods that do
not exploit evolutionary information. Such methods are valuable mainly due
to their ability to predict DNA-binding propensity for engineered proteins
for which evolutionary information is not available. Engineered proteins are
highly significant for example in emerging gene-therapy technologies [10].

In addition to improved accuracy, we try to interpret discovered features in
protein structures. The three most frequent automatically selected templates
are: (Arg, Cys, Gly), (Cys, Gly, Positive), (Cys, Polar, Positive). Recall that posi-
tively charged amino acids are critical for DNA-binding function ([70, 59, 36]).
This is probably the reason why the property Positive is contained in two out
of three most informative templates. In the third one we have the explicitly
listed positively charged amino acid - arginine. The remaining amino acid
properties listed in the three most informative templates also fit well with
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the results of Sathyapriya et al. [81], who studied protein-DNA interactions
through structure network analysis. According to their results the polar, non-
negative amino acids have high DNA-binding propensity which supports
meaningfulness of the template (Cys, Polar, Positive). Furthermore, they also
show that cysteine is one of the amino acids with the lowest DNA-binding
propensity. This again fits well with the discovered templates, since cysteine
appears in all of them.

Figure 35: Protein 1R8E containing the discovered pattern (Arg,Cys,Gly) = (1, 0, 0)
shown using the protein viewer software [62]. Amino acid assumed by the
pattern is indicated.

Each template gives rise to a set of features which correspond to individual
bins in the respective multi-dimensional histogram. It is therefore interesting
to evaluate also the particular features from the point of view of predictive
information which they carry. We evaluated the features corresponding to
the automatically selected templates using χ2-criterion. The most informative
feature according to the χ2-criterion assumed presence of one arginine, no cys-
teine and no glycine in a ball with radius 8 Å. Given a protein structure, each
feature captures the fraction of sampling balls, which contain the specified
numbers of amino acids complying with given properties. The next two most
informative features assumed presence of two, respectively three positively
charged amino acids, no cysteine and no glycine. All the three most informa-
tive features correspond to the above-mentioned observations of Sathyapriya
et al. We show an example occurrence of the first feature in a DNA-binding
protein with the highlighted amino acid in Figure 35. This figure may look
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familiar. It depicts the same protein as Figure 31 from Section 12.3, where we
discuss the results of the tube-histogram method. The same protein region
was detected by the two different patterns – one assuming the presence of
1 arginine and 1 lysine and no cysteine, no glycine and no aspartic acid in
sequence, and the other one assuming the presence of 1 arginine, no cysteine
and no glycine in a ball with radius 8 Å. We can see that these two patterns
overlap.

13.3 conclusions

In this chapter, we extended the tube-histogram method from 1D to 3D. We
improved on state-of-the-art accuracies in the prediction of DNA-binding
propensity of proteins from structure data through an innovative ball-histogram
method. The method is based on systematic exploration of the distribution of
automatically-selected amino acid properties in protein structures, yielding a
predictive model based on features amenable to direct interpretation.
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The ball-histogram method as presented in the previous chapter is suitable
only for predictive classification tasks. This is because the automatic template
search assumes the learning examples (proteins) to be class-labelled. The rest
of the ball-histogram method does not depend on availability of class-labels.
However, many problems require prediction of continuous variables, i.e. re-
gression problems. That is why we upgraded the ball-histogram method for
predictive classification to a method for regression. The main contribution of
this chapter is the introduction of a method for automatic template search for
regression problems.

This chapter is organized as follows. In Section 14.1 we describe how to
upgrade the ball-histogram method for classification to regression problems.
Next, we present an application of this method for antimicrobial activity pre-
diction in Section 14.2. We compare the results of the ball-histogram method
for regression to a state-of-the-art method for prediction of antimicrobial ac-
tivity [97]. In Section 13.3 we conclude this chapter.

14.1 automatic template search for regression

Here, we present a ball-histogram method adapted for regression. The main
problem that we have to solve is to develop a method for construction of
high-quality templates. As we have already indicated in Section 12.2, it is cru-
cial that the template consists of only a small number of relevant properties.
Omitting some amino acids or properties completely might be a problem as
well. The solution is to use more templates of bounded size instead of one
big template.

Here, we advance the strategy by developing an automated method for tem-
plate construction for regression. The basic idea of the method is to construct
templates which give rise to histograms with bins highly correlated with a
target variable. Intuitively, such templates should allow us to construct re-
gression models with good predictive accuracies. We construct the templates
in a heuristic way using a variant of best-first search algorithm (Algorithm 4

- Template search).
First, we explain how to construct a single template and after that we ex-

plain how to construct a set of templates. When searching for a single best
template we proceed as follows. We create an empty template and we search
the space of all possible templates using a variant of best-first search algo-
rithm. The heuristic, guiding the search, is the maximum correlation between
the target variable and the histogram bins (best-bin correlation) measured us-
ing Pearson’s correlation coefficient [22]. Specifically, given a template and a
set of examples, we create histograms for all the examples using the template
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and compute correlations between the values of each bin (e.g. [arg, lys] = [1,
0]) and the target variable and select the maximal value. This is a heuristic
measure of the template’s quality. We construct a histogram corresponding
to the largest possible template – in order to avoid repeated construction of
histograms from the whole datasets, then we construct histograms for the
other templates by marginalising this largest histogram.

Algorithm 4 Template search

// E - set of examples (peptides), A - activities
function TemplateSearch(E,A)

// T - templates
T ← {}

for i = 1 to NumberOfTemplates do
i← i+ 1

t← BFS(T ,E,A)
T ← T ∪ {t}
/* Performs regression using most correlated bin and subtracts the estimates
from the original values */
A← BestBinResiduals(A, t,E)

end for

// Best First Search
function BFS(Templates,Examples,Activities)

Open← {()}

/* Initialization with all pairwise intersections of already discovered templates */
Open← Open∪ {ti ∩ tj|ti, tj ∈ Templates}
Closed← ∅
BestTemplate← ()

BestScore← −∞
Scores← HeuristicScore(Open)

while Open 6= ∅ do
(Template,Score) ← Remove best template from Open according to
Scores

if (Score > BestScore) then
BestTemplate← Template

end if
for T ∈ Expand(Template) do

if T 6∈ Closed then
Closed← Closed∪ {T }
Open← Open∪ {T }
NewScore← HeuristicScore(T ,E,Activities)
Scores← Scores∪NewScore

end if
end for

end while
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While searching for a single template using best-first search is quite straight-
forward, searching for several templates is more complicated. Once we have a
method for constructing one template, we can use it as a basis of a method for
constructing a set of templates. The biggest problem when searching for a set
of templates is avoiding construction of redundant templates - i.e. templates
very similar to templates already discovered. This is because we need to find
not only a set of templates giving rise to histograms with bins highly corre-
lated with the target variable, but also these templates should be sufficiently
diverse. We decided to follow a fast heuristic approach. After a template
is constructed, we perform univariate regression using the most correlated
bin and subtract the estimates from the original values of the target vari-
able. Then we search for the next template maximizing best-bin correlation
using the modified values of the target variable. Intuitively, the new template
should not be too similar to the previous one. In order to direct the search
early to the most promising regions of the search-space, we first initialize the
set Open with all pairwise intersections of the already discovered templates.
Sub-templates which appear in more templates constitute a kind of a core
shared by the most informative templates. This helps the algorithm visit the
most promising parts of the search space.

14.2 experiments

Prediction of antimicrobial activity of peptides is a problem that involves
prediction of continuous variables, i.e. regression. Here, we apply the ball-
histogram method with automatic template search for regression to this prob-
lem. Our approach for prediction of antimicrobial activity of peptides exploits
structure prediction methods and ball-histogram method in conjunction with
state-of-the-art attribute-value learning algorithms. Our method can be imag-
ined as proceeding in the following way. It starts with AMP sequences, for
which we obtain spatial models using LOMETS structure prediction software
[105]. Then we construct a set of templates using the method described in
Section 14.1, which we use to create ball histograms for all peptides. We
find a pre-specified number of templates using a given sampling ball radius
and then we construct the corresponding ball histograms for all peptides
from the dataset. This gives us number_of_templates × number_of_peptides his-
tograms. When performing cross-validation, the set of histograms is created
separately for each train-test split corresponding to iterations of the cross-
validation procedure. Then, we save these histograms into a WEKA file [103],
in which every bin occurring in a histogram gives rise to an attribute and
each peptide corresponds to a learning example. We also add additional in-
formation about dipole moment, proportions of amino acid types and their
spatial asymmetries [92]. In the last step, we use implementation of SVM with
RBF kernel present in the WEKA open-source machine learning software to
train a regression model using the generated WEKA files. Parameters of the
regression model are tuned using internal cross-validation.
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We describe experiments performed on two datasets of antimicrobial pep-
tides described in Chapter 4: CAMEL and RANDOM. In the experiments we
constructed histograms with automatically discovered templates and samp-
ling-ball radius 10Å separately for each train-test split (selecting the templates
always only on training data). We trained support vector machine [8] regres-
sion models with RBF kernel selecting optimal C (complexity constant) and
gamma (kernel width parameter) for each fold by internal cross-validation.
The estimated results are shown in Table 21. We compared the results of our
ball-histogram method for regression with the results reported by Torrent et
al. which is a state-of-the-art method. Only cross-validated coefficients of de-
termination (q2) were given by Torrent et al. [97]. In addition, we also report
correlation coefficient (q) and root-mean-square error (RMSE) for our regres-
sion method. On both datasets we improved upon the results of Torrent et al.
in terms of coefficients of determination. Coefficient of determination can be
regarded as the proportion of variability in a dataset that is accounted for by
the statistical model.

Torrent et al. [97] Ball Histogram for Regression

q2 q2 q RMSE

CAMEL 0.65 0.69 0.85 1.14

RANDOM 0.72 0.73 0.87 1.28

Table 21: Experimental results obtained by cross-validation, where q2 is coefficient of
determination, q is correlation coefficient and RMSE is root-mean-square
error.

In addition to improved prediction quality, our method provides us with in-
terpretable features involving distributions of selected amino acids in peptide
structures. We used the following methodology. For each split of the datasets
(CAMEL and RANDOM) induced by 10-fold cross-validation we recorded
the automatically selected templates. Then we chose templates which ap-
peared most often among the folds for each dataset. There were two tem-
plates which appeared in all of the ten folds in case of the dataset CAMEL:
[ASN, ILE] and [LEU, positively_charged_aa]. In case of the dataset RAN-
DOM the best template [GLY, TRP] appeared in 8 from 10 folds. In order to
get a global view on the differences between distributions of selected amino
acids in templates in peptides with high antimicrobial activity and peptides
with low antimicrobial activity (we discretized the antimicrobial activity at-
tribute, so that we could split the datasets into two classes according to their
activity (low/high)), we computed the average ball histograms for these two
classes of peptides. The histogram obtained by subtracting the average ball
histogram for low-activity peptides from the average ball histogram for high-
activity peptides is shown in Figures 36 and 37. We can notice a remark-
able difference of distributions of the selected amino acid pairs between low-
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Figure 36: The histogram obtained by subtracting the average ball histogram for low-
activity peptides from the average ball histogram for high-activity pep-
tides for the dataset CAMEL (A - template [LEU, positively_charged_aa],
B - template [ASN, ILE]).
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Figure 37: The histogram obtained by subtracting the average ball histogram for low-
activity peptides from the average ball histogram for high-activity pep-
tides for the dataset RANDOM (template [GLY, TRP]).

and high-activity peptides. As for the template [LEU, positively_charged_aa]
found for the dataset CAMEL, the positively charged amino acids are known
to correlate with antimicrobial activity and the presence of leucine can be
explained by the fact that the dataset contains mostly leucine-rich peptides.
In case of the dataset RANDOM the template [GLY, TRP] was automatically
selected most probably, because the peptides of this dataset are composed
mostly of TRP and some other amino acids. Moreover, glycine is known to
have one of the lowest helix propensities [71] which together with the fact
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that helix is a frequent formation of amino acids of high-activity peptides,
could explain negative bins for non-zero counts of glycine in Figure 37.

14.3 conclusions

We upgraded the ball-histogram method presented in Chapter 13 to a method
for regression and applied it to antimicrobial activity prediction of peptides.
There are two main differences between the work presented in Chapter 13

and the work presented here. First, the problem that we tackled in Chapter
13 dealt with classification, whereas here we built a regression model. Sec-
ond, here only primary structures of peptides are available (therefore we had
to rely on structure prediction), whereas we could use spatial structures ob-
tained by X-ray crystallography in our previous study with DNA-binding
proteins. We have shown that our ball-histogram method for regression im-
proves on a state-of-the-art approach to antimicrobial activity prediction in
terms of coefficient of determination.
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T H E B A L L - H I S T O G R A M M E T H O D W I T H P O LY N O M I A L
F E AT U R E S

As we have already seen in the experiments using relational learning with
polynomials in Chapter 6, physicochemical properties of proteins’ regions
can be important for prediction of proteins’ function. These properties are of-
ten represented as continuous quantities, for instance Van der Waals volume,
hydropathy index or isoelectric point. In this chapter, we are interested in how
continuous variables could be used in the ball-histogram framework. The dis-
crete ball-histogram method presented in Chapter 13 is not suitable for work
with continuous attributes. Therefore, we adapt the idea of multivariate poly-
nomial aggregation features described in Chapter 6 for the ball-histogram
method. We show that with the approach based on multivariate polynomial
aggregation we are able to capture characteristics (e.g. variance, covariance,
mean, etc.) of distributions of continuous physicochemical properties of pro-
teins’ regions. This enables the ball-histogram method to achieve even higher
predictive accuracies than those reported in the previous chapters.

This chapter is organized as follows. We introduce so-called polynomial ag-
gregation features in Section 15.1 and show how they can be used in a ball
histogram-based approach to predictive classification in Section 15.2. We eval-
uate the ball-histogram method with polynomial features for prediction of
DNA-binding propensity and also discuss the results in Section 15.3. In Sec-
tion 13.3 we conclude this chapter.

15.1 multivariate polynomial aggregation features

A drawback of the original ball-histogram method described in Chapter 13

is that it is ill-suited for work with continuous variables. It can model the
distributions of certain amino acids. For example, it is able to construct an
empirical estimate of the probability P(Arg = i,Lys = j) that there are exactly
i arginines and j lysines in a ball randomly sampled from a given protein structure
(which can be regarded as the desired model of the distributions of amino acids
for our predictive purposes). However, if we tried to model distributions of
e.g. hydropathy and volume of amino acids in a given protein structure in the
very same way, we would face serious difficulties stemming from combina-
torial explosion of the number of histograms’ bins - attributes as the next
example indicates.

Example 12. Let us have a protein structure P and a sampling-ball radius R such
that any ball can contain at most 6 amino acids. Let us have a template τ = [Arg,Lys].
Then there is less than 72 = 49 non-zero bins in the respective histogram for values
[Arg,Lys] = [0, 0], [Arg,Lys] = [1, 0], . . . , [Arg,Lys] = [6, 0], . . . , [Arg,Lys] =
[0, 6]. Let us now have a template τ2 = [Hydropathy,Volume] and note that both
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hydropathy and volume are properties of amino acids which acquire real values. In
theory, we can construct a protein structure such that the number of bins will be at

least

(
20

6

)
= 38760 bins. This is certainly an impractically high number. More-

over, if we followed the transformation-based approach of the basic ball-histogram
method which represents each bin as a real-valued attribute, we would be effectively
discarding much of the information about which bins are close to each other.

The above example illustrates the problems that would arise if we tried to
use the original ball-histogram method for continuous properties. A possible
approach to cope with these problems would be to use discretization of the
values. However, discretization is known to perform poorly when the num-
ber of dimensions of the problem increases [12] which may very often be the
case with ball histograms. Instead of relying on discretization, we use multi-
variate polynomial aggregation - a similar strategy to what we have introduced
in Chapter 6.

Here, we introduce multivariate polynomial aggregation features. We start by
defining monomial and polynomial features for sampling balls and then use
them to define values of monomial and polynomial features on protein struc-
tures.

A monomial feature M is a pair (τ, (d1, . . . ,dk)) where τ is a template with
k properties and d1, . . . ,dk ∈ N. Degree of M is deg(M) =

∑k
i=1 di. Given

a sampling ball B placed on a protein structure P, we define the value of a
monomial feature M = (τ, (d1, . . . ,dk)) as M(B) = τ

d1
1 · τ

d2
2 · · · · · τ

dk
k where

τi is the average value of the i-th property of template τ averaged over the
amino acids contained in the sampling ball B. We use the convention that
00 = 1. We use a more convenient notation for monomial features motivated
by this definition of value:

(τ = (τ1, . . . , τk), (d1, . . . ,dk)) ≡def τd11 · τ
d2
2 · · · · · τ

dk
k

Example 13. Let us have a template

τ = [hydropathy, volume],

a monomial feature
M = hydropathy · volume2

and a sampling ball containing two leucines (hydropathy = 3.8, volume = 124)
and one arginine (hydropathy = −4.5, volume = 148). Then

M(B) =
2 · 3.8− 4.5

3
·
(
2 · 124+ 148

3

)2
≈ 1.8 · 104

A multivariate polynomial feature is an expression of the form

N = α1M1 +α2M2 + · · ·+αkMk

where M1, . . . ,Mk are monomial features and α1, . . . ,αk ∈ R. Value of a poly-
nomial feature N = α1M1 + · · ·+ αkMk w.r.t a sampling ball B placed on a
protein structure P is defined as
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N(B) = α1M1(B) +α2M2(B) + · · ·+αkMk(B).

Degree of a polynomial aggregation feature P is maximum among the degrees
of its monomials.

Now, we extend the definitions of values of monomial and polynomial
features for protein structures. Given a polynomial aggregation featureN and
a sampling-ball radius R, we define the value N(P) w.r.t. a protein structure P
as:

N(P) =

∫
P̂
N(B)dB∫
P̂
dB

where P̂ is the set of all sampling balls with radius R which contain at least
one amino acid of the protein structure P. The integral

∫
P̂
dB in the denom-

inator is used as a normalization constant. Intuitively, the integral computes
the average value of a polynomial feature N over balls located on a given
protein structure.

It can be seen quite easily that polynomial aggregation features on protein
structures share convenient properties with the discrete ball histograms. They
are invariant to rotation and translation of protein structures which is impor-
tant for predictive classification tasks. Intuitively, a monomial feature M = τi
corresponds to the average value of property τi (in sampling balls of a given
radius) over a given protein structure. A monomial feature M = τ2i captures
the dispersion of the values of property τi over a given protein structure. In-
deed, let us have two proteins A and B and a monomial feature M = charge2

and let us assume that A and B are composed of the same number of amino
acids and that they contain the same number of positively charged amino
acids and no negatively charged amino acids. Finally, let us also assume that
the positively charged amino acids are distributed more or less uniformly
over the protein structure A but are concentrated in a small region of the pro-
tein structure B. Then it is not hard to see that for the values M(A) and M(B)

it should hold M(A) 6 M(B). Analogically, a monomial feature M = τi · τj
corresponds to agreement of values of properties τi and τj over a given protein
structure but the covariance of these values is better captured by the following
expression involving monomial features:

M1(P) −M2(P) ·M3(P)

where M1 = τi · τj, M2 = τi and M3 = τj. Note that this expression is not
a polynomial aggregation feature but only an expression composed of poly-
nomial (monomial) aggregation features. This can be seen when we expand
M1(P), M2(P) and M3(P) and obtain

M1(P) −M2(P)M3(P) =
∫
P̂
τi·τjdB∫
P̂
dB

−
∫
P̂
τidB∫
P̂
dB
·
∫
P̂
τjdB∫
P̂
dB

which is not a value of a polynomial aggregation feature. However, it can be
easily constructed from some polynomial aggregation features.
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Values of polynomial aggregation features can be further decomposed into
so called k-values computed only from balls containing exactly k amino acids.
Given a polynomial feature N and a positive integer k, the k-value of N w.r.t.
a protein P is given as

N(P|k) =

∫
P̂k
N(B)dB∫
P̂k
dB

where P̂k is the set of all sampling balls which contain exactly k amino acids.
The value of a polynomial feature can then be expressed using k-values as

N(P) =
∑
i

βi ·N(P|i)

where βi =
∫
P̂i
dB/

∫
P̂
dB.

In summary, polynomial aggregation features can be expressed using com-
binations of monomial aggregation features and values of monomial aggre-
gation features can, in turn, be computed using simple expressions involving
k-values of monomial aggregation features and proportions of balls contain-
ing exactly a given number of amino acids. This implies that when using
polynomial features for construction of attributes for machine learning, we
can rely solely on the k-values and the few proportions and let the machine
learning algorithms compute the values of monomial or polynomial aggrega-
tion features from these values if needed.

15.2 method

Polynomial aggregation features can be used for predictive classification in
a way completely analogical to discrete ball histograms. Given a template
τ, sampling-ball radius R, a maximum degree dmax and a protein structure
P, we construct all monomials containing the continuous variables from τ

and having degree at most dmax. After that we construct the attribute-table.
The rows of this table correspond to examples and the columns (attributes)
correspond to k-values of the constructed monomial features. There is an
attribute for every k-value such that there is at least one protein structure in
the dataset which contains a set of k amino acids fitting into a ball of radius
R.

The integrals used in definitions of values (or k-values) of monomial aggre-
gation features are difficult to evaluate precisely therefore we use a Monte-
Carlo-based approach similar to the case of discrete ball histograms. The set
of k-values of monomial aggregation features for a protein P is computed as
follows. First, a bounding sphere is found for the protein structure (with geo-
metric center located in the geometric center of the protein structure and with
radius RS = maxRes∈P(distance(Res,C))+R, where R is a specified sampling-
ball radius). After that the method collects a pre-defined number of samples
containing at least one amino acid from the bounding sphere. For each sam-
pling ball B the algorithm computes kB-values (where kB is the number of
amino acids contained in B) of all monomial features complying with a given
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template and with a given maximum degree and stores them. In the end,
the collected k-values of sampling balls are averaged to produce approximate
k-values for the protein structure P.

After the attribute-table is constructed, it can be used to train an attribute-
value classifier such as random forest or support vector machine which can
be used for prediction on unseen proteins.

15.3 experiments

In this section, we describe results obtained in experiments with two datasets
of DNA-binding proteins: PD138 and UD54, and two datasets of non-DNA-
binding proteins: NB110 and NB843. We used monomial aggregation features
with maximum degree 3, the following basic chemical properties of amino
acids:

• Amino acid charge (under normal conditions),

• Amino acid Van der Waals volume,

• Amino acid hydropathy index,

• Amino acid isoelectric point (pI),

• Amino acid dissociation constants pK1 and pK2

and the following three properties related to DNA-binding derived by Sathya-
priya et al. [81]

• Amino acid base-contact propensity,

• Amino acid sugar-contact propensity,

• Amino acid phosphate-contact propensity.

We trained random forest classifiers using only the attributes having non-zero
information gain-ratio on training set. When performing cross-validation, this
attribute selection was performed separately on the respective training sets
induced by cross-validation so that no information could leak from a training
set to a testing set. We compared the ball-histogram method with polyno-
mial features with the original discrete ball-histogram method and with the
method of Szilágyi and Skolnick [92]. The estimated accuracies and AUCs
are shown in Table 22. The ball-histogram method with polynomial features
performed best in terms of accuracy in all cases and in terms of AUC in all
but one case where the discrete ball-histogram method performed best. We
also tested the original ball-histogram method with random forest classifiers
enriched with attribute-selection but it did not improve the performance.

In addition, we performed experiments with the method of Szilágyi and
Skolnick where we replaced logistic regression by random forests (the clas-
sifier originally used in their paper was logistic regression for which the ob-
tained accuracy is shown in Table 22). We also compared the obtained results
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C. ball histograms D. ball histograms Szilágyi et al.

Acc AUC Acc AUC Acc AUC

PD138/NB110 0.89 0.95 0.87 0.94 0.81 0.92

PD138/NB843 0.89 0.86 0.88 0.87 0.87 0.84

UD54/NB110 0.87 0.90 0.81 0.89 0.82 0.89

UD54/NB843 0.95 0.83 0.94 0.81 0.94 0.78

Table 22: Experimental results obtained by cross-validation for the continuous ball-
histogram method (C. ball histograms), the original discrete ball-histogram
method (D. ball histograms) and the method of Szilágyi and Skolnick (Szilá-
gyi et al.).

with results reported by Szilágyi and Skolnick in [92]. When using random
forest classifier with features of Szilágyi and Skolnick, accuracy increased to
0.82 for the dataset PD138/NB110, which is still lower than 0.89 obtained
by the ball-histogram method with polynomial features, and remained un-
changed for dataset PD138/NB843 and AUC actually decreased for both of
the datasets by 0.02. Szilágyi and Skolnick [92] reported AUC 0.93 for the
dataset PD138/NB110 which is still lower than 0.95 obtained by the ball-
histogram method with polynomial features. They also reported AUC 0.91

for the dataset UD54/NB110 which is higher by 0.01 than the result obtained
by the ball-histogram method with polynomial features. However, this value
of AUC was obtained on the dataset UD54/NB110 by a logistic regression
classifier trained on the dataset PD138/NB110. The reported value is prob-
ably overoptimistic because the proteins from the dataset NB110 were used
both in the training set and in the test set.

It can be interesting to compare the results of this method using only struc-
tural information, with the results of methods which exploit also information
about evolutionary conservation of regions on protein surfaces. Therefore, we
decided to confront our results with the results of Nimrod et al. [68] (already
mentioned in previous chapters). The AUC 0.96 and accuracy 0.90 reported
by Nimrod et al. [68] for the datasets PD138 and NB110 differs only slightly
(by 0.01) from our best results. The AUC 0.90 obtained for the datasets PD138

and NB843 differs by 0.04 from our best results. As already noted in Chapter
13, evolutionary information is very important for the prediction of protein’s
function. When removing evolutionary information, Nimrod et al.’s misclas-
sification error on the dataset PD138/NB110 increased by 0.035 which cor-
responds to lower predictive accuracy than obtained by our method. Even
without the evolutionary information the classifier of Nimrod et al. used sig-
nificantly more information than our method.

In addition to improved accuracy, our method provides us with to-some-
extent interpretable features involving distributions of regions with certain
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Figure 38: Values of feature volume · pI2 (k = 3) for combinations of amino acids in
the form {AA1,AA1,AA2}. The x-axis corresponds to AA1 and the y-axis
corresponds to AA2.

chemical properties. We used information-gain attribute selection method to
select three most informative attributes on the dataset PD138/NB843 for fur-
ther inspection. The selected attributes (i.e. k-values of monomial features)
were: volume ·pI2 (k = 3), P_p · volume · charge (k = 2) and P_p · volume ·pI
(k = 2). It is interesting to note that the first (best) monomial did not involve
any of the propensities P_p, P_B or P_S and that only the propensity P_p
appeared in the remaining two of the three best monomials. The best feature
volume · pI2 (k = 3) defines one value for every combination of three amino
acids, which can appear in a sampling ball, and these values are then used
to compute aggregated values over protein structures. In Figure 38 we show
these values for combinations of amino acids in the form {AA1,AA1,AA2}. It
is interesting to note that the balls corresponding to the highest values of this
feature are those containing positively-charged amino acids - arginine and
lysine and that, analogically, the balls corresponding to the lowest values are
those containing the negatively-charged amino acids - aspartic acid and glu-
tamic acid. This is of course mainly caused by the pI2 term because pI is the
pH at which an amino acid carries no electrical charge. However, it is inter-
esting that the monomial volume · pI2 is a better predictor of DNA-binding
propensity than monomials pI, pI2 or pI3.
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15.4 conclusions

We extended the ball-histogram method presented in Chapter 13 by incorpo-
ration of polynomial aggregation features which are able to capture distri-
butions of continuous properties of proteins’ regions. The method achieved
higher predictive accuracies than the original ball-histogram method as well
as an existing state-of-the-art method.
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We introduced a novel type of approaches – so-called distribution-based ap-
proaches – for machine learning. The main idea is to capture distributions
of certain properties in learning examples and to construct features based
on these distributions. We developed methods which are able to use distri-
butions of certain properties for construction of predictive classifiers – in pri-
mary structures using tube histograms and in 3D space using ball histograms.
We used the ball-histogram method both for predictive classification and for
regression. The ball-histogram method was also extended to be able to work
with continuous properties of proteins’ regions.

The advantage of the tube-histogram method presented in Chapter 12 is
that it does not need structural information and despite relying only on the
primary structure information it can achieve predictive accuracies higher than
a method of Szilágyi et al. [92] which utilizes structural information. A natu-
ral generalization of this approach to 3D space is the ball-histogram method
introduced in Chapter 13. This method incorporating structural information
further improves predictive accuracy. This is not surprising given how im-
portant structural information is. In fact, what is more surprising is the rela-
tively small difference between the accuracies achieved by the tube-histogram
method and the ball-histogram method. However, the highest predictive accu-
racies were achieved by the ball-histogram method with polynomial features
presented in Chapter 15. This method is able to work with continuous prop-
erties of proteins’ regions, such as isoelectric point, Van der Waals volume or
hydropathy index. It is able to capture higher order moments of distributions
of these properties over protein structures. There are several possible explana-
tions why this method performed best. First of all, the advantage of represent-
ing amino acids by their physicochemical properties and not by their types is
that similar amino acids contribute similarly to the aggregate feature values,
whereas relying only on the types of amino acids does not take into account
the structural similarities of certain amino acids. Second, bins close to each
other in ball histograms without polynomial features are treated in the same
way as bins which are not close to each other. This problem is reduced in case
of the ball-histogram method with polynomial features, because polynomial
features can implicitly capture higher order moments. Finally, the simplest ex-
planation is that polynomial features represent a more appropriate learning
bias for predicting DNA-binding function.

In addition to predictive classification problems, the ball-histogram method
can be used also for regression problems. The ball-histogram method for
regression is described in Chapter 14. We had to adjust the template search
algorithm, which required the learning examples to be class-labelled. The
performed experiments indicate that the ball-histogram method obtains state-
of-the-art results even for regression problems.
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The objective of this thesis was to develop predictive models which would
accurately predict proteins’ DNA-binding function, while providing insights
into the underlying DNA-binding process. We presented several novel meth-
ods which can be divided into two categories: relational learning approaches
and distribution-based approaches.

In the first part, we presented the relational learning approaches for DNA-
binding (and also antimicrobial activity) prediction. These approaches are
based on our novel relational representation of protein structures. The first
two approaches – relational learning based on structural patterns constructed
by RelF and relational learning with polynomials – are based on combining a
large number of relatively small structural patterns for building a prediction
model. The third approach – relational learning with bounded LGG – is based
on constructing a relatively small set of complex structural patterns which are
used for predictive classification. The advantage of the approaches based on a
large number of small structural patterns is that small patterns can be mined
efficiently even from large protein structures. As we have shown experimen-
tally, counting the occurrences of characteristic relational patterns in protein
or peptide structures is crucial for accurate prediction. In the case of predic-
tion of DNA-binding propensity of proteins, we achieved higher predictive
accuracies than a state-of-the-art method of Szilágyi et al. [92]. In the case
of prediction of antimicrobial activity of peptides, we were also able to out-
perform a state-of-the-art method of Torrent et al. [97]. The second approach
– relational learning with polynomials – was designed to efficiently model
multi-relational domains with numerical data. Unfortunately, this method
does not scale as good as the former method. The reason is that the number
of polynomial relational features is higher than the number of non-aggregation
patterns. On the other hand, this method (using only information about pri-
mary and secondary structures) is able to obtain similar predictive accuracies
as the method based on structural patterns. The last approach – relational
learning with bounded LGG – is able to construct large, complex relational
patterns. Due to the nature of these complex patterns it is not necessary to
count their occurrences in order to obtain high predictive accuracies. This was
confirmed by the experimental results on datasets of antimicrobial peptides.
Relational representation of protein data consists of thousands of literals. In
order to reduce the complexity of such input data, relational counterparts
of feature selection methods would be required. Here, we also presented ad-
vanced preprocessing techniques for reduction of relational learning exam-
ples. Interestingly, when applied on protein datasets in our representation,
the reduction in size was small, which suggests that our representation is not
redundant.
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In the second part, we presented the distribution-based approaches for
DNA-binding (and also antimicrobial activity) prediction. The main idea of
these approaches is to capture distributions of certain properties in learning
examples and to construct features based on these distributions. We devel-
oped methods which are able to use distributions of certain properties for
construction of predictive classifiers – in primary structures using the tube-
histogram method and in 3D space using the ball-histogram method. The
advantage of the tube-histogram method is that it does not need structural
information and despite that it can achieve predictive accuracies higher than
state-of-the-art methods which utilize structural information. A natural gen-
eralization of this approach to 3D space is the ball-histogram method. We
used the ball-histogram method both for predictive classification and for re-
gression. The ball-histogram method was also extended to be able to work
with continuous properties of proteins’ regions. The highest predictive accu-
racies were achieved by the ball-histogram method with polynomial features.
This method is able to capture higher order moments of distributions of these
properties over protein structures.





Part VI

A P P E N D I X



A
T R E E L I K E R

TreeLiker is a suite of algorithms enabling to analyze complex-structure data
with standard machine-learning algorithms. It automatically identifies struc-
tural features of given data instances to produce an attribute-value data rep-
resentation processible by common machine-learning systems. TreeLiker con-
tains the implementations of relational learning algorithms used in this thesis,
suitable for different kinds of data analysis problems. TreeLiker integrates
these algorithms into a unified environment with joint data structures and
user control. The open-source JAVA implementation licensed under GNU
GPL is based on a common set of classes and is optimized for scalability as
required for real-life bioinformatics problems. It includes both a graphical
and a scripting interface and its output is readable by the popular machine-
learning suite WEKA. TreeLiker is a software tool enabling to apply stan-
dard attribute-value machine learning algorithms on structured data such as
molecular structures or biochemical networks.

The software package TreeLiker contains implementations of three feature-
construction and propositionalization algorithms: HiFi [40], RelF [49, 42], and
Poly [43, 46]. All three produce tree-like features, use the same mechanism
(so-called templates) for specifying a particular language bias, and exploit
a special, block-wise strategy to construct features. HiFi and RelF generate
Boolean-valued or numerical (integer-valued) features. In the latter case, the
value is the number of different matching substitutions for the example. Un-
like HiFi, RelF assumes that examples are class-labeled and thus is especially
suitable for supervised-learning analysis. Using class labels, RelF can filter
out redundant and irrelevant features. Poly generates numerical (real-valued)
features and does not require class labels. Its main distinguishing feature is
its focus on domains which contain large amounts of information in the form
of numerical data. Poly is based on a technique of multivariate polynomial
aggregation, generalizing the concepts of Gaussian Logic [43].

a.1 implementation

The algorithms are implemented in Java and all three are based on the same
core set of underlying classes. These classes provide support for the syn-
tactical generation of features, for their filtering based on syntactical and
redundancy constraints, and for multivariate aggregation. The core classes
are compact, comprising of approximately 15 thousand lines of code. The
implementation is intended to be easily extendible. For example, it is easy
to add new types of multivariate aggregation features. The core code of the
algorithms is documented using JAVADOC.
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Efficiency of the implemented algorithms was an important objective dur-
ing the development of TreeLiker. The implementation contains substantial
parts which are parallelized in order to harness the power of multi-core pro-
cessors. Furthermore, many sub-results are cached using intelligent mecha-
nism of so-called soft-references provided by the Java virtual machine. Soft
references allow us to let the virtual machine decide when the cached results
should be discarded in order to free the memory.

a.1.1 Representation of Input Data

Learning examples are composed of ground facts which are expressions not
involving variables, for example: hasCharge(arginine). Two instances of learn-
ing examples are shown below:

DNA-binding aminoacid(a), is(a, histidine), aminoacid(b), is(b, cysteine), distance(a,
b, 6.0), distance(b, a, 6.0)

non-DNA-binding aminoacid(a), is(a, tryptophan), aminoacid(b), is(b, tyrosine),
distance(a, b, 4.0), distance(b, a, 4.0)

Here, the first word on each line denotes class of the example. The rest of
the line is then the set of true facts - the description of the example. In this
simple case, the first learning example is labelled as a DNA-binding protein
(that is the class of this example) and the protein has an amino acid Histidine
and an amino acid Cysteine which are in distance 6.0 Å from each other. The
second learning example is labelled as a non-DNA-binding protein and has an
amino acid Tryptophan and an amino acid Tyrosine which are in distance 4.0
Å from each other. In a realistic setting, the description of a protein would
consist of thousands of facts.

a.1.2 Types of Relational Features

The algorithms contained in TreeLiker (RelF, HiFi and Poly) are intended
for construction of relational features. Relational features are conjunctions of
literals. For example,

F = aminoacid(A), distance(A,B, 6.0), is(B, cysteine)

is a feature stipulating the presence of an untyped amino acid and a cysteine
in the mutual distance of 6Å. A feature F matches example e if and only if
there is a substitution θ to the variables of F such that Fθ ⊆ e. So for example,
our feature F matches the first learning example in the previous section. This
can be also seen as checking whether a conjunctive database query (feature)
succeeds for a given relational database (learning example).

There are three settings in which the three feature construction algorithms
can work. The first is the existential setting in which we are only interested
in whether a given feature matches an example. As a result of matching, the
feature thus receives a Boolean value. The second setting is the counting set-
ting. Here, we count how many substitutions θ there are such that Fθ ⊆ e
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for feature F and example e. The feature then receives an integer value. The
counting interpretation showed some significant advantages over the existen-
tial interpretation in analysis of DNA-binding proteins (see Section 5.3.1).

Finally, there is also a third setting based on multivariate relational aggre-
gation, designed especially for representing structures annotated with nu-
merical data. The method is described in detail in Chapter 6. Briefly, in this
setting, a feature may contain several distinguished variables which are used
as extractors of numerical information. Every substitution θ such that Fθ ⊆ e
gives us one sample of the numerical variables which is a vector of real num-
bers. This vector can be used as input to a multivariate function (which may
compute e.g. correlations of the variables). The result is then computed by
averaging outputs of the multivariate function over all samples for the given
example e.

a.1.3 Language Bias - Templates

Through templates, the user constrains the syntax of generated features.1 For-
mally, templates are sets of literals. For example, the following expression is
a template:

τ1 = aminoacid(−a), is(+a, #str), distance(+a,−b, #num),
aminoacid(+b), is(+b, #str).

Literals in templates have typed arguments. In template τ1 above, the types
are: a and b. Only same-typed arguments may contain the same variable in
a correct feature. For example, the next feature complies with the typing from
template τ1:

F1 = aminoacid(X), distance(X, Y, 4), is(Y, histidine)

which can be checked easily: variable X appears only in arguments which can
be marked by type a and variable Y appears only in arguments which can
be marked by type b. On the other hand, the next expression is not a valid
feature according to the typing in template τ1:

F2 = aminoacid(X), is(Y,X)

because X appears in arguments marked by two different types: a and str.
Arguments of literals in templates also have modes. The most important

types of modes are the following (signs, shown in parentheses, are used in
templates to denote the particular modes): input (+), output (-), constant (#)
and aggregation (*).

We start by explaining the two most important types of modes: input and
output modes. Any variable in a valid feature must appear exactly once as an
output (i.e. in an argument marked by mode -) and at least once as an input (i.e.
in an argument marked by mode +). For example, F1 (shown above) complies

1 Templates are similar in spirit to mode-declarations used in inductive logic programming sys-
tems Aleph or Progol [63].
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with this condition w.r.t. the respective templates. On the other hand, for
example, F2 and F3 and F4 shown below do not comply with modes specified
in template τ1:

F3 = aminoacid(A), distance(A,B, 6)

F4 = distance(A,B, 6), is(B, histidine).

The feature F3 is not valid because variable B appears as an output but not as
an input. The feature F4 is not valid because variable A appears as an input
but not as an output.

A simple way to understand how templates specify features is to imagine
them procedurally as defining a process for constructing valid features. The
process can be visualized as follows. We find a literal in the given template
which does not contain any input-argument (i.e. none of its arguments is
marked by +) and create the first literal of the feature to be constructed from
it, e.g.

aminoacid(A) (3)

from the template-literal aminoacid(−a). Then we search for literals in the
template which have an input-argument with such type that can be connected
to aminoacid(A). Such a literal is distance(+a,−b, #num) or is(+a, #str). So, for
example, we can create a literal distance(A,B, 8) according to distance(+a,−b,
#num) and connect it to aminoacid(A) which gives us

aminoacid(A), distance(A,B, 8). (4)

Now, we have several options to extend the partially constructed feature (4).
One possibility is to connect another literal to the variable A. We can add
another literal based on is(+a, #str) or distance(+a,−b), because there may
be multiple input-occurrences of one variable, or we can add a literal based
on is(+b, #str) or aminoacid(+b) and connect it to variable B. Let us assume
that we decided to follow the last option. Then we can get e.g. the following
expression:

aminoacid(A), distance(B,C, 6), is(B, histidine) (5)

We could continue in this process indefinitely and create larger and larger
expressions. However, as was shown in [42], there is only a finite number of
non-reducible tree-like features. Moreover, there are usually even fewer non-
reducible and non-redundant features. RelF, HiFi and Poly are able to search
through all these possible features exhaustively and efficiently.

Any template-literal can contain at most one input-argument. For example,
the next template is not valid

τ2 = atom(−a, #atomType), bond(+a,+a)

because the literal bond(+a,+a) has two input arguments.
Mode and type declarations must not contain cycles. There is an additional

technical requirement on valid templates. Let us define an auxiliary graph. In
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this graph, we have one vertex for each type (of arguments) contained in the
template. There is an edge from a vertex V to a vertex W if and only if there
is a literal which contains the type associated to the vertex V in an input
argument and the type associated to the vertex W in an output argument.
This graph must not contain oriented cycles.

This means that the next template

τ3 = atom(+a), bond(+a,−a)

is not valid because there is a cycle (loop in this case) from a to a. Similarly,
the template

τ4 = atom(−a), bond(+a,−b), bond(+b,−a)

is also not valid because there is a cycle a− b− a.
Very often, we need not only variables but also constants. Templates can

be used to denote which arguments may contain only constants. For example
for the next template

τ5 = aminoacid(−a), is(+a, #const)

one of the possible valid features could be

F5 = aminoacid(A), is(A, histidine).

where his is a constant. Another example of a template using constants is
shown next:

τ6 = atom(−a, #atomType), bond(+a,−b), atom(+b, #atomType)

which specifies features such as:

F6 = atom(X, carbon), bond(X, Y), atom(Y, carbon), bond(X,Z), atom(Z, hydrogen).

The feature-construction algorithm Poly is able to construct multi-variate
polynomial relational features. These are polynomial aggregation features
which generalize µ-vectors and σ-matrices from Gaussian logic (see [43]). We
need to be able to select which arguments can contain variables that should
be used to extract the numerical values from the learning examples. We use
so-called aggregation modes (denoted by *) for this. For example the next tem-
plate:

τ7 = charge(−a, ∗chrg), bond(+a,−b), charge(+b, ∗chrg)

defines features which are able to construct multivariate polynomial features
involving charges of atoms in molecules such as:

F7 = charge(X,CH1), bond(X, Y), charge(Y,CH2), bond(X,Z), charge(Z,CH3)

which can in turn be used to construct the polynomial aggregation features
such as AVG(CH1 ·CH2 ·CH3) or AVG(CH12).



A.1 implementation 143

a.1.4 TreeLiker GUI

The user interacts with TreeLiker either through a graphical interface or
through a scripting interface. The former provides only a rather limited ac-
cess to WEKA’s learning algorithms and is meant mainly to assist the user
in rapid assessment of the usefulness of the propositionalized representation
in the iterations of template tuning. As soon as reasonable settings have been
established, the user may employ TreeLiker through the scripting interface
within more intricate experimental workflows.

Figure 39: A screenshot of the graphical user interface of TreeLiker.

The application consists of six main modules: Input Module, Template
Module, Pattern Search Module, Found Patterns Module and Training Mod-
ule. The Input Module allows the user to select the dataset directories or the
specific files that should be used as input data. The user can add as many
datasets as desired. The Template Module permits the user to introduce the
template specifying the language bias that should be used in the execution of
the algorithms. The Pattern Search Module enables the user to construct re-
lational patterns for the datasets selected in the Input Module. The language
bias is taken from the Template Module. The Found Patterns Module uses
the results provided by the Pattern Search Module. It shows the structural
patterns that were found. The Training Module allows the user to train a
classifier based on the patterns generated in the Pattern Search Module. The
available classifiers are Zero Rule, SVM with Radial Basis Kernel, J48 Deci-
sion Tree, One Rule, Ada-boost, Simple Logistic Regression, Random Forest,
L2-Regularized Logistic Regression and Linear SVM.
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A screenshot of the graphical user interface is shown in Figure 39.

a.1.5 TreeLiker from Command Line

The command line interface of TreeLiker provides full access to all features
of TreeLiker (it provides access to some advanced functionalities which are
not accessible from TreeLiker GUI). It allows to set-up more complicated ex-
periments through TreeLiker-batch files.

TreeLiker can be run from command line once we have a TreeLiker-batch
file with settings of the experiment. Here, we assume that we already have
a TreeLiker-batch file called experiment.treeliker. Then, TreeLiker can be run
using the following command:
java -Xmx1G -jar TreeLiker.jar -batch experiment.treeliker

a.1.5.1 TreeLiker-Batch Files

TreeLiker-batch files specify the data to be processed, algorithms with which
they should be processed and the detailed settings of the algorithms. The
content of a sample TreeLiker-batch file is shown below:

set(algorithm, relf) % the algorithm
set(output_type, single) % type of output (single = one file)
set(output, ’proteins.arff’) % where to save the results
set(examples, ’proteins.txt’) % the learning examples
% the template
set(template, [aminoacid(-a), is(+a, #aa_type), aminoacid(+b), is(+b, #aa_type),
distance(+a, -b, #num)])
work(yes) % tells TreeLiker to run the selected algorithm

% with the selected parameters

The first line set(algorithm, relf) sets the algorithm to be used by TreeLiker.
In this case, it is RelF which works in existential mode.

The second line set(output_type, single) sets the type of output. There are
three types: 1. single which constructs one file using all the examples given
in the training data, 2. cv which creates the given number (10 by default) of
pairs of training and testing .arff (WEKA) files which can be used to perform
cross-validation, 3. train_test which creates two files from the given training
and testing data.

The third line set(output, ’proteins.arff’) sets the output file in which the con-
structed relational features and the propositionalized table should be stored.
TreeLiker uses .arff file format which is used in WEKA.

The fourth line set(examples, ’proteins.txt’) sets path to the training examples
which should be used.

The fifth line set(template, [aminoacid(-a), is(+a, #aa_type), aminoacid(+b),
is(+b, #aa_type), distance(+a, -b, #num)]) specifies the template which should
be used to constrain the space of possible features.
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Finally, the sixth line work(yes) tells TreeLiker to run the selected feature
construction algorithm.

If the above TreeLiker-batch file is run on the following file of training
examples (proteins.txt):
DNA-binding aminoacid(a), is(a, his), aminoacid(b), is(b, cys), aminoacid(c), is(c,
arg), distance(a, b, 6.0), distance(b, a, 6.0), distance(a, c, 4.0), distance(c, a, 4.0)

non-DNA-binding aminoacid(a), is(a, his), aminoacid(b), is(b, cys), aminoacid(c),
is(c, arg), distance(a, b, 4.0), distance(b, a, 4.0), distance(a, c, 4.0), distance(c, a,
4.0)

non-DNA-binding aminoacid(a), is(a, trp), aminoacid(b), is(b, tyr), distance(a, b,
4.0), distance(b, a, 4.0)

then it outputs the following .arff file:

@relation propositionalization
@attribute ’aminoacid(A), distance(A, B, 4.0), aminoacid(B)’ {’+’}
@attribute ’aminoacid(A), distance(A, B, 4.0), is(B, cys)’ {’+’,’-’}
@attribute ’aminoacid(A), distance(A, B, 6.0), aminoacid(B)’ {’+’,’-’}
@attribute ’aminoacid(A), is(A, arg)’ {’+’,’-’}
@attribute ’aminoacid(A), is(A, trp)’ {’+’,’-’}
@attribute ’classification’ {’DNA-binding’,’non-DNA-binding’}

@data
’+’, ’+’, ’-’, ’+’, ’-’, ’non-DNA-binding’
’+’, ’-’, ’+’, ’+’, ’-’, ’DNA-binding’
’+’, ’-’, ’-’, ’-’, ’+’, ’non-DNA-binding’

In the more realistic settings of our previous experimental evaluations, Tree-
Liker would construct tens of thousands features for thousands of learning
examples. More involved ways of using TreeLiker are described in the user
manual.

a.1.6 Output

All the three algorithms store their output as .arff files which can be read by
WEKA [103]. As exemplified in the previous section, the output file contains
both the definitions of the produced features and the attribute-value table
consisting of evaluations of each feature on each example.

a.2 availability and requirements

Project name: TreeLiker
Project home page: http://sourceforge.net/projects/treeliker
Operating system: Platform independent
Programming language: Java
Other requirements: Java 1.6 or higher
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License: GNU GPL
Any restrictions to use by non-academics: none
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