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Abstract

This thesis presents a novel approach to automate a part of the data preprocessing for the knowl-
edge discovery. The approach is called Inductive Preprocessing Technique. The aim of the
Inductive Preprocessing Technique is automatic selection of preprocessing methods (like non lin-
ear transformations, normalisations, etc.) and their ordering to maximise the accuracy of a data
mining model. The thesis presents its application to classification models but it is possible to
extend the Inductive Preprocessing Technique to regression problems in the future as well.

The data preprocessing is equally as important as a selection of the correct classifier, but in many
cases the preprocessing part of the knowledge discovery process is neglected. There were some
efforts to assist the data mining experts with this task. They are mostly based on ontologies,
similarity to other datasets and hard-coded rules. In contrast to these approaches the Inductive
Preprocessing Technique is data-driven and it is based on idea of the inductive modelling
and the optimisation approach. No prior knowledge about the data is needed. This approach
was not tested yet in this field before.

The thesis presents the cornerstones of the Inductive Preprocessing Technology – the search
method, the parameter value optimisation and the classifier. The search methods automatically
select data transformations, the parameter value optimisation adjusts parameters of preprocessing
methods and the classifier provides the model.

In this work I have tested several methods for the search for sequences of preprocessing methods
and for parameter value optimisation and in the end I have decided to use the genetic algorithm
based search for sequences and the random mutation for the parameter values optimisation. The
testing on real world datasets shows that the Inductive Preprocessing Method typically improves
the accuracy of the classifier by about 5% to 10% by the transforming the data. The thesis
also present a way how to speed up the Inductive Preprocessing Algorithm using meta data and
information about the past datasets.

The Inductive Preprocessing Method is a great help to the data mining experts who can concen-
trate on other parts of the knowledge discovery process.

Keywords:

Inductive Modelling, Data Preprocessing for Knowledge Discovery, Genetic Algorithms, Meta-
Learning, Machine Learning, Optimisation.
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SECTION 1. INTRODUCTION AND PROBLEM STATEMENT 1

1 Introduction and Problem Statement

There is a constant desire in data mining and machine learning community to improve accuracy

of classifiers, like Decision Trees or Support Vector Machines. For many years new classifiers

were developed and old ones improved. But to create and train a classifier one needs not only

the training method but also a training dataset. These two cornerstones are both essential and

it is not possible to create good model with inappropriate classification method or bad training

dataset. There is a well known principle called Garbage in, garbage out. It means that if the

training dataset carry little or confused information, even the best classification method fails to

create any meaningful model. Even if the information is present in the data it may be presented

in such way which the classifier is not able to take advantage of. To transform the data into a

form suitable for classification model and its training method is a task of data preparation or data

preprocessing. The data preprocessing is the most time-consuming and for above reasons probably

the most important step in the data mining process. The data preprocessing mainly consists of

data acquisition, feature construction and data transformation. At present the data mining expert

has to preprocess data manually and based on his or hers experience and experiments.

During the past years data mining experts have created recommendations for different typical

data mining tasks in different environments. For example, if one is going to predict churn in

telco1, the data miner should include in his/hers training set information like customer’s spending

over the past six months, type of contract, phone usage, special offers and so on [1, 2]. Similar

recommendations were established also in other araes [3]. The data required to generate the

recommended attributes are typically distributed all over a data warehouse in different tables and

databases. So the data miner has to load and merge information from different places in the

warehouse, extract the attributes and form the data matrix for the model training. This is a

time-consuming work. The Jermyn, et al. in [4] estimate that the data preparation phase of the

data mining process consumes about 80% of the time needed to finish the data mining project.

Other authors do not estimate the same value, but it is still the longest part of the data mining

process [5].

The data preparation can be basically divided into three main stages – the data acquisition, feature

construction and data transformation. In the data acquisition phase the data are extracted from

a warehouse. In the feature construction phase the data miner extracts information from acquired

data. After this the data miner ends up with a set of input attributes and output variables. This

matrix (or dataset) is generally ready to be used for training and validation of the data mining

model. Usually this matrix has many problems – in the source systems there can be missing

values, different ranges or strange distribution of values in attributes, data could be discretised,

non-linearly transformed and so on. It is not always clear which transformations would help the

model and which will not. The data miner then have to rely on his/hers experience and has to

experiment. In a case when the classifier does not have satisfactory accuracy the data miner has

to go back and select another transformations and/or set different parameters and create model

again. The data miner has to repeat this process until he/she is satisfied with the result. But it

is not certain that is it the best result the data miner can get from the data. I see a big room for

1If customer is going to leave his mobile phone provider.
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automation and aid the data miner in this step.

There are several papers showing that the correct data preprocessing is important for the accuracy

of the classifier and that it is difficult to find the correct preprocessing methods and their order.

The first example presented in [6] tests different types of data normalisation for the Support Vector

Machines classifier. Using the correct normalisation technique they can improve accuracy of the

classifier by about 2%. The other very recent example in [7] aims to find the best practise sequence

(or pipeline in their terminology) of preprocessing methods in the field of Brain Computer Interface.

The authors have manually tested different signal preprocessing methods and their ordering. The

problem is suitable for IPT and their approach is very similar to IPT, only done manually. Their

problem could be automatically solved by IPT.

1.1 Inductive Approach

In contrast to other approaches the proposed Inductive Preprocessing Technology is data-driven

and it is based on the idea of inductive modelling and the optimisation approach. It uses

them in the field of the Data preprocessing where these approaches were not used before. In

the inductive modelling the structure of the model is not predefined. The model starts from a

minimal form without any knowledge of the data2. During the training the algorithm examines

the data and improves the model’s structure until it is complex enough to fit the data. Similarly

to inductive modelling, the IPT approach is data-driven and the sequence of the preprocessing

methods has no predefined structure. The sequnce starts from a random form without any

knowledge about the data. As IPT progresses, it gets more information about the data and

by adding, removing and modifying the preprocessing methods. It is searching for the simplest

sequence of the preprocessing methods that achieves the highest accuracy of the classifier. IPT

tries to find sequences only as complex (and contains only the preprocessing methods) as it is

needed to preprocess the dataset correctly and to maximise the accuracy (fitness) of the classifier.

The optimisation approach is used to find the correct modification of the sequences of preprocessing

methods to increase the accuracy of the classifier. The modifications are to add, remove or modify

the preprocessing method.

1.2 Approaches to Support Data Preprocessing

As I stated above, my approach is based on optimisation and inductive approaches. But it is not

the only way to aid data miners. In the past there were also other approaches to facilitate data

preprocessing.

One possible approach is the Intelligent Discovery Assistant (IDA)[11, 12]. Their approach is

based on the ontology. The IDA is a framework for ontology-driven process-oriented assistants

for the Knowledge Discovery in Databases (KDD) [13]. The assistant concerns about the whole

KDD process not just the preprocessing. The IDA helps a user to create a valid KDD process

composes of several blocks. Each block contains pre-conditions, post-conditions and heuristic

2The examples of this approach are GMHD[8] modelling method or Decision Tree Induction[9, 10]
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indicators [14]. The pre-conditions indicate meta-features or conditions, data must fulfill before

a block is applicable. For example input data may contain missing values or must be nominal

values, etc. The post-conditions describes which meta-features data posses after this block. For

example data are normalised or in One-of-N code. With pre-conditions and post-conditions the

IDA indicates to user which block he/she may use and what operations are applicable to the

given data. Heuristic indicators indicates influence of block on the KDD process. How the block

affects speed, accuracy, comprehensibility of model, etc... Data reduction increases speed, pruning

decreases speed but increases comprehensibility of model (examples are taken from [14]). Definition

of heuristic indicators allows the IDA to search for the KDD sequence which fits the best to the

user defined conditions.

Another possible approach represents the MiningMart project [15, 16, 17, 18]. It design a sequence

of data transformation and other blocks from the database of existing sequences. The MiningMart

tries to reuse successful preprocessing sequences from the past. It collects information about

both data and preprocessing sequences, in the MiningMart terminology a case. After successful

preprocessing user can add a case to the database. When user faces a new problem he/she may

search through the database of cases and seeks for the most similar to the current problem [19].

The MiningMart leaves the building of a preprocessing sequence on a user and. But successful

case is stored in database with meta-data of original dataset. When a new dataset is presented to

the MiningMart, it calculates metadata of the dataset and compares them to metadata of cases

stored in database and matching cases are offered to user [14].

The extension or continuation of the MiningMart Project is the myExperiment.org Project. This

project allows researches to share workflows for some task or even data. The main focus is on the

processing and transforming bioinformatics data but the approach in general is applicable also to

the data preprocessing for data mining. The myExperiment.org does not automate the workflow

creation, but researcher can search for workflow for similar or even the same data, use it and can

share it with others [20, 21].

The most recent project in this field is the E-LICO project[22, 23]. This project incorporates and

develops many past projects like myExperiment.org and Intelligent Discovery Assistant.

The CITRUS project uses object oriented schema to model relations between a database and

models. But its main aim is to guide and support to the data miner, not the full automation. [24].

The completely different approach to automated data preprocessing is implemented in the IBM

SPSS Modeller ’s Automatic Data Preparation Node. The node is only one of the nodes in a work-

flow and it does not help data miner with construction of the workflow. It contains a predefined

set of if-then rules and transforms data according to them. The rules were found by data mining

experts. The example of a rule is ”For each continuous variable, if the number of distinct values

is less than a threshold (default is 5), then it is recast as an ordinal variable.” The node handles

ouliers, missing data or normalisations. For more details see [25].

The approach similar to the Modeler’s is implemented in the Oracle Data Mining Option. It has

also predefined set of rules telling when to apply data transformation [26].
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1.3 Goals of the Thesis

The main goal of the thesis is to design the algorithm, called the Inductive Preprocessing Tech-

nology (IPT), that is able to improve accuracy of a classifier by transforming the data. In the

past several other approaches were developed. These approaches are based on ontology, similarity

to other datasets and workflows and the hard-coded rules. In contrast to these approaches IPT is

based on idea of inductive modelling and on data-driven and optimisation approaches. My goal is

to provide automatic way to transform the data into form suitable for given classifier.

The particular tasks:

• investigate if the data transformations have really an influence on the accuracy of the model

trained using preprocessed data,

• design search methods for the best preprocessing methods and their order and to test them

on artificial datasets,

• investigate if the parameters of the preprocessing methods have influence on the accuracy of

the model.

• design and test the parameter optimisation algorithms,

• test the Inductive Preprocessing Technology with a selected search method and parameter

optimisation method on publicly available real world datasets,

• test if it is possible to improve speed of the Inductive Preprocessing Technology by providing

the search method with better starting points.

1.4 Organization of the thesis

The thesis consists of two parts – the theoretical and the experimental. The theoretical part

briefly introduces machine learning and data mining concepts, including identification of data

preparation methods belonging to the data transformation part of the data preprocessing, short

description of used data transformation methods and used classifiers (Chapter 2). The Chapter 3

describes high level overview of the Inductive Preprocessing Technology. The Chapter 4 describes

fundamental terms of the fitness and the subsequence. The Chapter 5 continues with a brief

introduction to optimisation. The same chapter also describes of the search methods for the

sequences of preprocessing methods and the parameter values optimisations. In the last chapter

of the theoretical part (Chapter 6) I describe the use of the meta-data to build a database of data

preprocessing cases and successful preprocessing methods.

The Experimental part starts with the Chapter 7 introducing artificial datasets and shows the

best preprocessing methods for them. Later it demonstrates that IPT can find the sequences of

the preprocessing methods for the artificial datasets. It also shows and discusses the sequences

IPT has found. The Chapter 8 shows that the parameters of the preprocessing methods have an

influence on the accuracy of the classification model and presents results of the parameter value

optimisation methods. The Chapter 9 shows the performance of the whole the IPT process of
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the sequence searches and the parameter optimisations. The best combination is identified and

presented. The Chapter 10 shows selected results of IPT on the real datasets and discusses the

results. The last Chapter 11 shows and discusses the use of the meta data to speed up IPT for

new datasets based on historical knowledge (the results for the previously processed datasets).
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2 Data Mining Background

In this chapter I will briefly describe background of data mining (DM) and the knowledge discovery

in databases (KDD). In fact the data mining is usually seen as a part of the knowledge discovery

process. There is no single definition of the KDD. In contrast there are many different definitions

saying more or less the same. I will use the one given be Fayyad in [27]:

KDD is the nontrivial process of identifying valid, novel, potentially useful, and ultimately under-

standable patterns in data.

Figure 2.1: Stages of the Knowledge Discovery Process. Credit [27].

The knowledge discovery process is usually divided into several stages, see the Figure 2.1. The

Selection, the Preprocessing and the Transformation are similar to data acquisition, feature con-

struction and the data transformation phases as I have talked about them in the introduction.

The result of these three phases is the dataset or the data matrix. These two terms are used as

synonyms in the data mining and knowledge discovery community. Since data miners comes from

different fields and have different backgrounds these are not the only terms to be freely mixed and

used as synonyms. The other synonyms used are input or independent variables, input attributes

or features meaning the inputs of the model. The same is for the outputs of a model. It is referred

to as output, dependent or predicted variable. The other mixed terms are row, instance and

pattern meaning information in different input attributes concerning one object. For example to

describe an instance ”flower” I can use input attributes like blossom colour, leaf shape, height or

trunk size.

There is also controversy about the correct usage of terms – training, testing, validation sets.

Some authors use training set to train a model, testing set to stop the training process and to

prevent overfitting and after the training is finished, they use the validation set to validate the

model. Some authors replaces the term testing set with the validation set and vice versa. In this

thesis I will keep the first way.

There were several attempts to standardise the KDD process. According to [28], in academia

the first attempt was in mid-1990s. The [29] introduced the model which consists of nine steps:

the Developing and understanding the application domain, the Creating a target dataset, the Data

cleansing and preprocessing, Data reduction and projection, Choosing the data mining task, Choos-

ing the data mining algorithm, the Data mining, the Interpreting patterns and the last step, the
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Consolidating discovered knowledge. As the thesis concentrates on the data preprocessing I will

comment only on the appropriate part of the process. In the Creating a target dataset step data

miner retrieves and merges data from primary sources and explores the data. The Data cleansing

and preprocessing step consists of identifying and removing outliers, removing a noise and/or deal-

ing with missing data. The last step Data reduction and projection consists of selecting important

attributes, data reduction and projections. This methodology does not deal with the business

point of view and sees the data mining as an linear process, which is usually not true. The knowl-

edge discovery is usually an iterative process where data miner has to repeat earlier steps and

examine theirs influence on the later steps.

On the basis of the previous model, the industrial standards have emerged. One of the is the

CRISP DM1 methodology [30]. The CRISP DM consists of 6 steps. Each of the steps have a

number of substeps. The high level view of the CRISP DM is shown on the Figure 2.2.

Figure 2.2: Overview of CRISP DM metodology. Credit [30].

The Data Preproaration step consists mainly of the data selection, the data cleaning, the data

construction, the data integration and the data formatting. The data selection step identifies

which of the data in the primary data sources are needed. The data construction step includes

constructive data preparation operations such as the production of derived attributes or entire

new records, or transformed values for existing attributes. The data integration combines multiple

tables or instances to create new records and/or instances. And the data formatting refer to

modifications made to the data that do not change its meaning, but are required by the modelling

tools [30].

1Cross Industry Standard Process for Data Mining
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2.1 Data Preprocessing and Preprocessing Methods

The previous sections presented the data preprocessing (or data preparation) as it is seen by the

standard methodologies. For this thesis I have created a bit different subdivision for the data

preprocessing task. The Data acquisition, the Feature construction and the Data transformation.

These three subtasks overlaps and reorders the tasks from the CRISP DM methodology.

The data manipulation in the first two steps, the Data acquisition and the Feature construction

need huge human interaction and business insight. For this reason they can be hardly fully

automated. In these steps the ontology based support is the best way.

The Data acquisition step involves: selecting the data (attributes and instances) from the primary

source (the database, data warehouse), merging the primary data sources together. To give an

example I will continue to use the churn example from the telco industry from the introduction.

This part also involve searching the company warehouse and selecting tables with customer demog-

raphy information, money spend, service usage, promotions special offers and so on. In addition

the dataset should contain the reasonable number of customers that have left to the another mo-

bile services provider. The preprocessing in this phase can be imagined as the working with the

warehouse and shaping the ”SQL SELECT” to get the right data.

The Feature construction phase removes obvious outliers, eg. stolen mobile phones, and replaces

non-random missing data, like amount of transferred data for users without mobile internet. The

other task in this phase is to construct new attributes, like the region where customer lives from

the call logs, and to transform the existing ones, eg. determine age in years from the date of birth.

These data preparation methods are offline – they do not need any classifier and the workflow

and used methods are more or less the same no matter which classification method I will use.

The Data transformation mainly changes the dataset to be more suitable for the classifier. This

phase primarily does not change the meaning of the data, but it mainly changes the representation.

This statement is not completely the true. This part also can identify and remove not-obvious

outliers, impute randomly missing data, normalisations, discretisation (or binning) an so on. The

transformations does not add any new information to the dataset, but it can be essential for

the classifier. The obvious example is to ”straighten” the non-linear decision boundary for linear

classifier. The transformations I have to do here do depend on the classifier I use, hence I call them

online. The transformations for the Support Vector Machine are different from transformation

for the Decision Trees or Back Propagation Neural Networks.

2.1.1 Online Data Preprocessing Methods in the Thesis

In this section I want to present online data preprocessing methods I use in the thesis. For purpose

of my thesis, I have further divided online preprocessing methods on local and global. The local

preprocessing methods are transforming only values in single attribute and works independently

from other attributes. Examples of such methods normalisation, non-linear transformation or

some missing values imputation methods. The global methods are, on the other hand, methods

that transforms the dataset as whole and needs all attributes to work properly. The examples

are outlier detection methods or data enrichment methods. In the thesis I have implemented
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preprocessing methods from several different fields:

• Data Enrichment methods – generate new instances for smaller class in imballanced

datasets.

• Data Reduction methods – reduce number of instances in datasets.

• Discretisation methods – discretise the continuous attributes.

• Non Linear Transformation methods – transform the data

• Missing Data Imputation methods – replace missing values

• Normalisation methods – transform the range of values in an attribute

• Outlier Detection methods– detect and remove outliers

Data Enrichment is represented by a single method – SMOTE. The goal of this method is to

generate artificial data points of a class that has low number of instances. The method takes two

instances of from the class with less instances and generates a new instance on a line connecting

the two original instances [31]. The SMOTE is a global method applied only on training data.

Data Reduction is a set of intelligent sampling methods who in more or less intelligent way

reduces the dataset. The simplest way is the random sampling, when one removes the random

portion of instances from the dataset. A bit more complicated method is stratified sampling [32],

which reduces instances of different classes differently. In its way it complementary to the SMOTE

method above as it allows one to balance number of instances for different classes by removing

instances. There are also more sophisticated methods, trying to remove instances far from decision

boundary, or instances in dense regions [A.2]. There is a great survey in the PhD thesis [33].

Discretisation also known as binning. According to [34] the binning is a technique of lumping

small ranges of values together into categories, or bins, for the purpose of reducing the variability

(removing some of the fine structure) in a data set. My implementation uses two ways to transform

continuous values to discrete. One divides a value range into equal bins without regard how many

instances are in them. The other divides the value range into bins with the same number of

instances in each bin, but bins have different width [34]. Both of them are global methods.

Non Linear Transformation contains several transformation methods. Most of them are

trivial local non-linear transformation like exponential , power and power root methods. But this

group also contains the Principal Component Analysis global preprocessing method [35].

Missing Data Imputation contains several local and global preprocessing methods for imput-

ing missing values. Their list and influence on a dataset can be found in [A.1].

Normalisation contains several standard – z-score, softmax or linear – normalisation methods.
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Outlier Detection contains distance and density based algorithms for detecting and removing

outliers [36, 37].

The list of implemented preprocessing methods with names and references is in the Appendix A.

2.2 Introduction to Used Modelling Methods

In my work I have concentrated on the classification task as described above. The selection of

classification algorithms are quite wide and I have tested some of them in [A.6] but I will I my

work use only two classification methods: the J48 Decision Tree and the Simple Logistic Regression

Classifier. In this section I will describe them shortly.

2.2.1 J48 Decision Tree

A decision tree is a quite natural way to classify instances by series of questions. In inner nodes of

a tree are questions concerning values of attributes and leaf nodes contains output classes. When a

new instance arrives, the classifier starts in the root node and follows the correct answers through

inner nodes to a leaf node. [38].

There is of course question how to construct such tree. In general the tree is constructed in a

recursive manner, starting from the root. The attribute to put into a node is determined by its

prediction power. The prediction power is determined using the information entropy, mutual in-

formation or correlation between given attribute and the output variable. The division terminates

when a node contains instance from only one class or the set of instances is too small.

The unlike the typical tree training algorithm, the J48 Decision Tree can process continuous input

attributes. It is an implementation of the well known C4.5 tree. More information can be found

in [39, 40, 38].

2.2.2 Simple Logistic Regression Classifier

According to [41] the Linear logistic regression models the posterior class probabilities Pr(G =

j|X = x). The j is predicted class in condition of observed values x. The probability function for

the J classes, using functions linear in x. The probability function must hold that they sum to

one and remain in [0. . .1]. The probability is calculated:

Pr(G = j|X = x) =
eFj(x)∑J
k=1 e

Fk(x)

where Fj(x) = βTj x. The βj are estimates found by iterative numeric optimisation algorithms that

finds the maximum likelihood.

One such iterative method is the LogitBoost algorithm (see [42]). In each iteration, it fits a least-

squares regressor to a weighted version of the input data with a transformed target variable. Here,

y∗ij are the binary variables which indicate if the instance xi belongs to observed class yi.
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y∗ij =

{
1 ⇐⇒ yi = j

0 ⇐⇒ yi 6= j

The [41] achieves the linear logistic regression behaviour by adding a constrain to use only linear

functions in Fk(x). In addition the [41] uses the LogitBoots to improve performance of the clas-

sifier. To get more details about Linear Logistic Regression Classifier (or SimpleLogistic), please

refer to [41, 42, 43].
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3 Inductive Preprocessing Technique

The Inductive Preprocessing Technology (IPT) is central piece and a contribution of my

thesis. It is a name for my approach to the selection of the preprocessing methods. In contrast

to other approaches to aid data miners in data preprocessing task IPT is based on idea similar to

inductive modelling and optimisation approach.

In the inductive modelling the structure of the model is not predefined. The model starts from a

minimal form without any knowledge of the data1. During the training the algorithm examines

the data and improves the model’s structure until it is complex enough to fit the data. Similarly

to inductive modelling, the IPT approach is data-driven and the sequence of the preprocessing

methods has no predefined structure. The sequnce starts from a random form without any

knowledge about the data. As IPT progresses, it gets more information about the data and

by adding, removing and modifying the preprocessing methods. It is searching for the simplest

sequence of the preprocessing methods that achieves the highest accuracy of the classifier. IPT

tries to find sequences only as complex (and contains only the preprocessing methods) as it is

needed to preprocess the dataset correctly and to maximise the accuracy (fitness) of the classifier.

The optimisation approach is used to find the correct modification of the sequences of preprocessing

methods to increase the accuracy of the classifier. The modifications are to add, remove or modify

the preprocessing method.

IPT has three cornerstones. The basic structure and the cornerstones of IPT is shown on the Figure

3. The cornerstones are the Search for sequences of preprocessing methods, the Parameter values

optimisation and the Classifier. The cornerstones are discussed and described in separate chapters.

The Search for sequences of preprocessing methods and the Parameter values optimisation are

described in the Chapter 5. The Classifer is described in the Chapter 2. There are two other

important terms – the Sequence of the Preprocessing Methods and the Fitness value. These terms

are explained in the Chapter 4.

All the cornerstones are not limited to one specific method but I can easily use and test other

methods. This is the most important for the classifier. This means that I can use any classification

method with IPT. In my thesis I use only the Simple Logistic Regression Classifier and the J48

Decision Tree, but one can use any classification method. The only limitation is that the classifier

has to process numerical data.

From the practical point of view the less important but with more scientific challenges are the

Search for sequences of the preprocessing methods and the Parameter value optimisation. The

Search for the sequences of the preprocessing methods finds the preprocessing methods to trans-

form the dataset. The Parameter value optimisation optimises the values of the preprocessing

method parameters. The tested search methods for the sequences and the Parameter values opti-

misations are presented in the Chapter 5. The output of IPT is a sequence of the preprocessing

method to apply on a dataset.

1The examples of this approach are GMHD[8] modelling method or Decision Tree Induction[9, 10]
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Figure 3.1: Illustration of IPT’s building blocks and theirs interaction.

4 Sequences of Preprocessing Methods and Fitness

In this chapter I will introduce and describe terms of Sequences of Preprocessing Methods and the

Fitness. The first section of the chapter will introduce sequences of preprocessing methods. The

second section will explain how the fitness is calculated.

4.1 Sequences of Preprocessing Methods

The sequence of preprocessing methods in short means a set of preprocessing methods applied to

the dataset in given order. The ordering is quite essential and final result depends on it. To give

an example, if you calculate second power and then linear normalise the dataset, you will get

distinctly different result from the reverse order (linear normalisation first and then the second

power).

What is equally important, are the preprocessing methods which should be applied are different for

different input variables. Therefore the sequence of preprocessing methods must contain several

subsequences – one for each input variable, see the Figure 4.1. Each subsequence is tied with

one input variable. The subsequence contains preprocessing methods which are applied on given

input variable. There are two types of subsequences – local, containing preprocessing methods

which transform values in given input variable and should ignore all other variables. I will from

time to time refer to such preprocessing methods as local preprocessing methods. Examples of

such preprocessing methods are – linear normalisation, N-th power calculator or discretisation.

The other type is a global subsequence. There is only one global subsequence and it contains

preprocessing methods which transform whole dataset. The examples are PCA transformation or

different types of sampling. It will refer to these preprocessing methods as global.

During search for optimal preprocessing methods there will be several sets of subsequences, each
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Figure 4.1: Illustration of dataset with three attributes and corresponding local and global subse-
quences.

set presents one possible way to preprocess the dataset. In future I will refer to such set as

sequences of preprocessing methods.

Disabled Preprocessing Methods I have used this inspiration from [44] and I have added

possibility to disable some preprocessing methods in the subsequences. Disabled preprocessing

methods remain in the subsequences, they can take part in genetic search for the sequence of

preprocessing methods (like in mutation or cross over) and a mutation can reenable them again.

But they are not applied to the training nor testing datasets.

Application of Preprocessing Methods on Training and Testing Datasets A sequence

of preprocessing methods is applied on the data in very simple way. First are applied all the local

subsequences and then the global subsequence is applied. The local subsequences are applied in

the same order as the attributes are stored in the dataset. In case of example dataset shown on

the Figure 4.1 the subsequence for the Attribute 1 will be applied first, then the subsequence for

the Attribute 2 and so on.

The sequence is applied on a training set and the testing set in a slightly different way. It makes no

sense to apply some preprocessing methods when the testing set is preprocessed. For example it

makes sense to reduce size of (sample) training dataset, as it results in faster training process and

possibly in model that is easier to understand. However it makes no sense to reduce the testing

set – I want to classify all the instances in the testing dataset, not only a few of them. There is

additional possible problem, that the data reduction method could reduce the testing set to one

instance and thus achieve very good accuracy.
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4.2 Fitness Value and Its Calculation

This section introduces a fitness and explains how it is calculated for given sequence of prepro-

cessing methods. As I have explained earlier I want to find the best sequence of preprocessing

methods using the optimisation approach. The best sequence of preprocessing methods is the one

which gives the most accurate classifier. In other words I am maximising the accuracy of the

model by selecting and reordering data preprocessing methods in a sequence. The accuracy of a

model trained with the preprocessed training set is an objective function for my optimisation or

it is also in field of genetic algorithms it is also referred to as a fitness [45].

In simple terms the fitness value for given sequence of preprocessing method is an accuracy of

a model trained with the preprocessed training set and tested with the preprocessed testing set.

The exact fitness calculation is described in Algorithm 1.

Algorithm 1 Accuracy calculation for a sequence.

1. Divide a dataset into training and testing sets.

2. Shuffle both sets randomly.

3. Preprocess the training dataset with all the enabled the preprocessing methods recorded in
the sequence. Start with the methods in the subsequence for the first attribute, continue
with the subsequence for the second attribute, and so on. The last subsequence to be applied
is the global subsequence.

4. The model is trained using the preprocessed training set.

5. The testing part is preprocessed in the same way as the training set. But some preprocessing
methods (like sampling, see the chapter 2.1) are not applied.

6. Accuracy of the model is calculated using the testing set and becomes fitness.

Figure 4.2: Application of sequence of preprocessing method and fitness calculation.

Although the above algorithm is quite straightforward, there are some open questions left. The

first such question is the noisy fitness value [46]. The problem is that if I calculate the fitness

several times, the exact value will be different. There are several reasons for this – random division

of the dataset into training and testing sets, usage of random numbers in preprocessing methods
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and random initiation of modelling method. Now I will explain these reasons in slightly higher

details.

The division into training and testing sets is done at random every time the fitness is evaluated.

Therefore there is a risk, that the division will be a favourable one which adds some extra accuracy

to the model. The extreme but illustrative example of this could be following: imagine that I want

to classify blue and red dots. The classifier marks all dots as blue. But by chance all dots selected

into the testing set are blue, therefore it has 100% on testing data. The training set has also

influence on structure and parameters of the model and thus indirectly also on its accuracy. The

repetitive divisions are necessary. The preliminary experiments has shown that if I provide one

training and one testing datasets for whole Inductive Preprocessing Technology, the sequences

tends to ”overfit” on the testing set. Then if one presents the same dataset but divided into

training and testing sets the accuracy of the trained model decreases dramatically.

The preprocessing methods uses random numbers to calculate the results. Therefore the prepro-

cessed training set is and a model are slightly different in different repetitions. The examples

should be, random sampling method, which randomly removes instances from training set or

SMOTE data enrichment which randomly generates new instances (see sections 2.1 for details). If

I preprocess the same dataset with the same preprocessing methods and use such dataset to train

a model I will obtain slightly different results.

The third problem is that even a construction of a model sometimes involves some random process

– like random initial values of parameters (like weights in back-propagation neural networks).

To address all these problems I have decided that the correct approach to the noisy fitness is to

assume that the accuracy of the model is a random variable with normal distribution [38, 47]. The

one training of a model and its testing according to Algorithm 1 means getting one sample from

the random variable. To be able to sort sequences by performance I have decided to calculate

a mean value of repeated accuracies as suggested in [47]. The correct way to compare if two

sequences has the same mean is to use independent two-sample t-test with unequal and unknown

variance, also known as Welsch’s t-test [48]. But the t-test is hard to visualise and present and

I need a technique that is easier to visualise. The technique is the boxplots [49]. It is harder to

explain it in precisely statistical terms, but it can be easily visualised and in very natural terms

indicates mean, both quartiles and outliers.

I am mailny interested in finding the best estimation of mean (µ) of the calculated accuracies.

According to [48] the correct estimate of the normal distribution’s mean value is a sample average.

The sample consists of several fitness values calculated according to the Algorithm 1. In this way

I will get several values from random distribution and I can use them to estimate the mean value

– the correct mean fitness.

Figure 4.3: Illustration how to calculate final fitness from accuracies of several models.
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I use the mean accuracy as the fitness value for given sequence. To evaluate one fitness value

therefore means to train and test several models using the Algorithm 1. Apart from indicating

performance of a sequence I can use the fitness also to shape the sequences as shown in the next

subsection.

4.2.1 Fitness Modification

I want to keep the sequence of preprocessing methods as simple as possible. By simple I mean that

the sequence and it’s subsequences contains as little preprocessing methods as possible. For this

reason I will employ the regularisation[50]. This means that I will penalise fitness of sequences of

preprocessing methods containing too many preprocessing methods.

The regularisation works in following way: First I will calculate the mean fitness by repetitive data

preprocessing, training a model and its testing as described above. After that I calculate the mean

fitness. Then I apply the regularisation step. The regularisation is described by Equations 4.1 and

4.2. The first formula describes how the fitness penalty is calculated. If a subsequence contains

more preprocessing methods than a certain threshold, I penalise each exceeding preprocessing

method with a constant penalty. The penalties from subsequences are added together and the

final penalty is calculated (as shown in the Equation 4.1).

fitness penalty =
∑

S∈subsequences

max((# methods in S− threshold) ∗ penalty, 0) (4.1)

After that I will subtract the penalty from the mean fitness calculated above. And correct the

fitness value to 0 if the penalty is bigger that the mean fitness as shown in the Equation 4.2.

modified fitness =

mean fitness− fitness penalty ⇔ mean fitness > fitness penalty

0 ⇔ otherwise
(4.2)

4.3 Conclusion

In this chapter I have introduced the sequence of preprocessing methods and the fitness value. In

the next chapter I will explain how I will use them to find the best preprocessing methods for

given dataset.
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5 Search for Best Sequences and Optimal Parameter Values

In the previous chapter I have described the sequences of preprocessing methods and how to

compute its fitness. These terms I will need in this chapter. Here I will describe algorithms I

will use to reach my goal – to find the appropriate preprocessing methods for given dataset and

given modelling method. Technically speaking this is an optimisation problem, in which I want

to maximise the fitness value (accuracy of the model) by altering (sequences of) preprocessing

methods.

In fact there are two optimisation problems – one is the search for the preprocessing methods

and the other is parameter values optimisation. The search is basically the combinatorial

optimisation problem [51]. The search decides which preprocessing methods – if I should use linear

normalisation, discretisation, square root transformation or some other preprocessing method. The

parameter values optimisation is on the edge of continuous and integer optimisation, because the

parameters of the preprocessing methods are continuous, discrete and even nominal values. And

is also has influence on the fitness value, as shown in the Chapter 8 and the Appendix B.

To make things more complicated these two steps can not be entirely separated. The change in

sequence of preprocessing methods change parameters and the optimal values in parameters. On

the other hand the change in parameter values can change the fitness of the subsequence and in

this way its prospects in the next iteration of the search. The high level optimisation algorithm is

shown in the Algorithm 2.

Algorithm 2 Fitness calculation algorithm.

while stopping criteria not met do
do one step sequence of preprocessing methods optimisation;
optimise parameters of preprocessing methods;
calculate sequence fitness;

end

5.1 Introduction into Search and Optimisation

But before I will describe optimisation methods I have to at least briefly introduce problem of

search and optimisation. Mathematically the definition is:

Find a vector θ ∈ Θ that minimises (or maximises) objective function L(θ) [52].

The Θ represents the space of all possible solutions and θ is one of possible solutions, in my case

all possible sequences of the preprocessing methods or all possible values in their parameters. The

objective function L is fitness of a model as described in the Chapter 4. The optimisation can

be constrained or unconstrained. In case of constrained optimisation, there is a set of conditions

limiting values of the θ.

In my case the evaluation of the objective function with the same parameters will not yield the

same value of the objective function. In this case the optimisation is called stochastic[52]. Formally

the objective value is described as L(θ) = Lactual(θ) + noise.

There are several properties of the search spaces which selects optimisation methods. The search
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for the preprocessing methods is basically a discrete optimisation problem while the parameter

value optimisation is mixed (real and integer) optimisation. The search for the preprocessing meth-

ods is unconstrained problem. The parameter values optimisation is constrained by a minimum

and maximum values that can be assigned into the parameter.

For the parameter optimisation it is important to emphasise that the search space is not contin-

uous and therefore the fitness (objective function) is also not continuous and thus does not have

derivations.

5.2 Search for the Best Sequence of Preprocessing Methods

In this section I will describe algorithms I will use in search for sequence of preprocessing methods.

The my previous work [A.3, A.4] suggests that the genetic search for the sequences of preprocessing

methods is the best option. But to I want to test other approaches as well.

5.2.1 Exhaustive Search

Exhaustive or Brute Force search method examines all possible combinations and chooses the best

one. This method is usable only for limited number of problems – ones with small number of

inputs, limited number of preprocessing methods and limited size of sequences1. In all other cases

the number of possible combinations is so big, that the algorithm will not finish in reasonable

time. I will use this method as a benchmark in the Section 7.3 to verify that other searches are

able to find correct preprocessing methods.

The Algorithm 3 summarises the Exhaustive Search. The algorithm is quite plain, it generates all

possible solutions and then goes through them one by one and tests them. In the end it returns

the one with the highest fitness.

5.2.2 Random Search

The Random Search is mainly yet another benchmark method. It is useful to know if other

search methods are better or worse than generating solutions at random. As its name suggests it

randomly generates sequences of preprocessing methods, tests its fitness and keeps the best so far

found sequence [53]. In the end the best so far sequence is an output of this algorithm.

In this optimisation method there are two sequences (individuals) present at a time. One contains

just produced sequence to be tested. The other contains the best sequence found so far. First the

new individual is created.Then the parameter optimisation process takes place. When parameter

optimisation is finished, the final fitness is calculated and compared to the fitness of the best so far

sequence. If new sequences’s fitness is better that the best so far sequence’s, then replace the best

so far sequence is replaced by the new sequence. And the algorithm continues with another loop,

until predefined number of loops is finished. The Algorithm 4 summarises the Random Search.

One of advantages of the Random Search above other search methods is its simplicity and fact

that I can easily control number of fitness evaluations by setting the #maxSearches parameter.

1Limited number of preprocessing methods in each subsequence
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Algorithm 3 Exhaustive Search for optimal sequence of preprocessing methods.

/* Generate all possible combinations of preprocessing methods with no more than

MAX methods in one subsequence. */

allPossible ← generateAllPossibleCombinations(MAX);
bestSoFarSequence ← null;
forall the seq ∈ allPossible do

/* Optimise parameters using methods described in the next chapter. */

optimiseParameters(seq);
/* Calculate fitness for given sequence. */

calculateFitness(seq);
if bestSoFarSequence==null then

bestSoFarSequnce ← seq;
else

if bestSoFarSequnces.fitness < seq.fitness then
bestSoFarSequnce ← seq;

end

end

end
return bestSoFarSequnce

5.2.3 Steepest Descent Search

This algorithm is inspired by the Steepest Descend method from the continuous and discrete

optimisation field [51]. In the continuous optimisation the Steepest Descend uses the gradient

to calculate the direction of the greatest increase/decrease of the fitness value and then makes a

”step” in direction of the gradient or in direction opposite to gradient, depending if one is looking

for maximum or minimum of the fitness (see for example [51, 52] for details).

In my case the fitness value has no gradient to compute hence I have to select slightly different

approach, but it follows the same idea. I will start with the empty sequence, not containing any

preprocessing method. Then I will try to add one preprocessing method, the one which increases

the most the fitness of the sequence. Then I will find the second method causing the highest

increase of fitness. And I will continue to add more and more preprocessing methods, until the

fitness stop increasing or until the sequence is not too large2.

There remains a question how to find the preprocessing method to add to the sequence and into

which of its subsequences. The most straightforward way is to test all possibilities. This means

that I will try to add each preprocessing method to the first subsequence3, then I will add each

preprocessing method to the second subsequence, and so on... I will calculate the fitness value for

each added preprocessing method and I will keep the best one.

As you can see in the Algorithm 5, the matters are a little bit more complicated. I have found

that sometimes the search get stuck in local optima and for the reasons explained in the Section

4.2 and in spite measures taken to prevent this it may happen that some preprocessing method

is added although that there is some other method which performs better. For this reason I will

continue the algorithm although the current step was unable to improve the fitness. But I do not

2Meaning contains lower number of methods than some threshold.
3A subsequence of preprocessing methods contains a list of methods to apply on give attribute/input variable

in the dataset (see Section 4.1)
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Algorithm 4 Random Search for optimal sequence of preprocessing methods.

/* Generates random sequence. */

bestSoFarSequence ← generateRandomSequence();
optimiseParameters(bestSoFarSequence);
calculateFitness(bestSoFarSequence);
i ← 0;
while i < #maxSearches do

newSequence ← generateRandomSequence();
/* Optimise parameters using methods described in the next chapter. */

optimiseParameters(seq);
/* Calculate fitness for given sequence. */

calculateFitness(newSequence);
if newSequence.fitness < bestSoFarSequence.fitness then

bestSoFarSequence ← newSequence;
end
i ← i + 1;

end
return bestSoFarSequnce

want to continue with the process too long as it is waste of time, so I will perform at most two

steps without fitness improvement.

There is a big disadvantages of this algorithm – the search is slow when there is a lot of prepro-

cessing methods to test and a large number of attributes to preprocess. Also the algorithm is

easily stuck in the local optima and in my case the exact found sequence is influenced by the fact

that the fitness is a random variable.

5.2.4 Simulated Annealing Search

The Simulated Annealing Search is the standard simulated annealing optimisation method [54, 52].

In general it resembles the steepest descent method, but the simulated annealing tries to avoid

the local optima by a possibility to accept solution with lower fitness.

In the beginning my implementation starts with a randomly generated sequence, which is also a

best-so-far sequence. The best-so-far sequence is copied into a new sequence and a random change

is done in the new sequence. The change is: to add a randomly selected preprocessing method,

to remove from sequence a preprocessing method or to replace a preprocessing method is the

sequence by another. Then the new sequence’s fitness is evaluated and if its fitness is higher then

the fitness of the best-so-far sequence, the best-so-far sequence is replaced by the new sequence.

When the new sequence’s fitness is lower than the best-so-far sequence’s fitness the new sequence

can still replace the best-so-far sequence with some probability Π. The probability Π decreases in

each iteration of the search. The detailed version is shown in the Algorithm 6.

The simulated annealing is restarted from the beginning several times to achieve the best results.

5.2.5 Genetic Search

The last of the search methods is the genetic search. It is a standard genetic algorithm [45, 55].
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Algorithm 5 Steepest Descent Search for optimal sequence of preprocessing methods.

bestSoFarSequence ← generateEmptySequence();
optimiseParameters(bestSoFarSequence);
calculateFitness(bestSoFarSequence);
workingBestSequence ← bestSoFar;
stepsWithoutFitnessImprovement ← 0;
while workingBestSequence.length < #maxLengthOfSequence AND
stepsWithoutFitnessImprovement < 3 do

workingSequence ← workingBestSequence; forall the subsequence ∈ sequence do
forall the p ∈ preprocessing methods do

add p into subsequence;
optimiseParameters(workingSequence);
calculateFitness(workingSequence);
if workingSequence.fitness > workingBestSequence.fitness then

workingBestSequence ← workingSequence;
end
remove p from subsequence;

end

end
if bestSoFarSequence.fitness < workingBestSequence.fitness then

bestSoFarSequence ← workingBestSequence;
stepsWithoutFitnessImprovement ← 0;

else
stepsWithoutFitnessImprovement ← stepsWithoutFitnessImprovement + 1;

end

end
return bestSoFarSequence

The main loop of the genetic optimisation is shown in the Algorithm 7. It follows the loop of

the standard genetic algorithm [55]. The only change is a new step optimiseParametersIn()

which optimise parameters in the sequence. The population contains a set of sequences. Each

individual is a sequence of preprocessing methods. In general the algorithm work as follows:

at first, the initial population is filled with random sequences and their fitness is calculated,

functions generateRandomSequences and calculateFitnessInPopulation. Then the main loop

begins. It selects pairs of sequences for cross over operation. The crossOverSequences() function

crosses over individuals in pairs. In this way the algorithm creates a new set of sequences. The

new generation consists of elite sequences, sequences with the highest fitness from the current

population, the crossed over sequences and several randomly generated sequences. The sequences

in the new population are mutated. The only sequences excluded from mutation are elite sequences.

The fitness is calculated in the new population and the last step is to replace the current population

with the new one.

The selection, cross over and mutation have to be described in a greater details. In general they

work as expected. The selection is a standard roulette wheel selection [56]. The cross over is a bit

more interesting – the genome (sequence of preprocessing methods) is not a linear structure and

different sequences has different length. For this reason the standard cross over is not usable. In

the end I have decided to use a cross over operation where a subsequence for randomly selected

attribute is exchanged between tow individuals.
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Algorithm 6 Simulated Annealing Search for sequence of preprocessing methods. The
function random() generates uniformly distributed random value between 0 and 1. The
initialTemperature is set to a value between 0 and 1 and the κ is a value less then 1 but typically
close to it. The number of iterations is determined by the stoppingTemperature.

bestSoFarSequence ← generateEmptySequence();
optimiseParameters(bestSoFarSequence);
calculateFitness(bestSoFarSequence);
temperature ← initialTemperature;

while temperature > stoppingTemperature do
newSequence ← bestSoFar;
randomChangeIn(newSequence);
optimiseParameters(newSequence);
calculateFitness(newSequence);
if newSequence.fitness > bestSoFarSequence.fitness then

bestSoFarSequence ← newSequence;

else
if random() < temperature then

bestSoFarSequence ← newSequence;

end

end
temperature ← temperature × κ;

end
return bestSoFarSequence

The mutation operation consists of two parts – the first is to mutate the structure of the sequence

and the second is to change values of parameters in the sequence. To change the structure of a

sequence I add a preprocessing method to a random subsequence, remove a random preprocessing

method from a random subsequence or replace one preprocessing method with another. The

mutation of the parameter values may be random change in a value as the standard genetic

algorithm suggest (in the later text I will call this One Random Change) or it can be more

sophisticated. In my case it is parameter optimisation as described below.

5.3 Parameter Values Optimisation

In this section I will describe algorithms used to optimise parameter values in a sequence. This

step is used as a local search to improve accuracy of the fitness by tuning parameters values in

preprocessing methods in the sequences. In context of the genetic algorithms it may be seen as

an intelligent mutation. In contrast to the search for sequences of preprocessing methods, the

parameter value optimisation is closer to the continuous optimisation. Or better mixed optimi-

sation since some parameters contains integer values. The vector θ contains parameter values

in preprocessing methods stored in the sequence. The search space (Θ) contains all the possible

combinations of parameter values. The fitness value is the same as in the previous case, with the

same drawbacks.

In contrast to the search for sequences of preprocessing methods one of the inputs of the optimi-
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Algorithm 7 Genetic Search for sequence of preprocessing methods.

currentPop ← generateRandomSequences(POP SIZE);
calculateFitnessInPopulation(currentPop);

while generation < maxGeneration do
selectedSequences ← selectForCrossOver(currentPop);

crossedOverSequences ← crossOverSequences(selectedSequences);
/* Create empty population and fills it with sequences (individuals). */

newPop ← emptyPopulation;
/* N sequences from the old population with the highest fitness. */

eliteSequences = getIndividualsWithHighestFitness(currentPop, Nelite);
newPop ← addToPopulation(newPop, eliteSequences);
/* Add crossed over individuals */

newPop ← addToPopulation(newPop, crossedOverSequences);
/* Add few randomly generated sequences */

newPop ← addToPopulation(newPop, generateRandomSequences(5));
mutateSequencesIn(newPop);
optimiseParametersIn(newPop);
calculateFitnessInPopulation(newPop);
currentPop ← newPop;
generation ← generation + 1;

end
return Sequence with the highest fitness in the currentPop

sation methods must be a sequence of preprocessing methods to optimise.

5.3.1 Random Optimization

The Random Optimisation is again more the benchmark method to test if other optimisation

methods are at least as good as the random testing of the search space. The algorithm in this

case is quite straight forward. It generates random values of parameters, evaluates fitness and

remembers the best found solution. The Algorithm 8 describes the optimisation.

Algorithm 8 Random parameter values optimisation.

Input: Sequence of preprocessing methods
bestSoFarValues ← generateRandomValuesForParameresIn(Sequence);
calculateFitness(Sequence, bestSoFarValues);
i ← 0;
while i < #maxSearches do

newValues ← generateRandomValuesForParameresIn(Sequence);
calculateFitness(Sequence, newValues);
if bestSoFarFitness.fitness < newValues.fitness then

bestSoFarValues ← newValues;

end
i ← i + 1;

end
return bestSoFarValues
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5.3.2 Steepest Descent Optimization

Algorithm 9 Steepest Descent Search for optimal sequence of preprocessing methods.

Input: Sequence of preprocessing methods
bestSoFarValues ← generateRandomValuesForParameresIn(Sequence);
calculateFitness(Sequence, bestSoFarValues);
while Number of steps < Max number of steps do

workingBestValues ← bestSoFarValues;

forall the parameter ∈ workingValues do
workingValues ← bestSoFarValues;
change parameter value in workingValues by + paramter.step;
calculateFitness(Sequence, workingValues);
if workingBestValues.fitness < workingValues.fitness then

workingBestValues ← workingValues;

end
change parameter value in workingValues by - paramter.step;
calculateFitness(Sequence, workingValues);
if workingBestValues.fitness < workingValues.fitness then

workingBestValues ← workingValues;

end

end
bestSoFarValues ← workingBestValues;

end
return bestSoFarSequence

The steepest descend algorithm seeks a change in parameter values in which improves the fitness

value the most. Since I have no gradient to guide the optimisation I have to test all the possible

changes and select the best one. The change in my case is to change value in each parameter by

a step in both directions. The step and value range is defined by a type of the parameter. The

algorithm starts in a random point and tests all the possible steps in all the parameters and for

each step evaluates the fitness and remembers the values for the best step. In the details it is

described in the Algorithm 9.

5.3.3 Simulated Annealing Optimisation

The Simulated Annealing optimisation is essentially the same as in the case of the search for the

best sequences. It is enhancement of the steepest descend approach which accepts with certain

probability state with lower fitness value.

The simulated annealing optimisation is shown in the Algorithm 10. The simulated annealing

randomly change values in parameters by a step. A size of the step is defined by the parameter. If

the change can improve the fitness the change is accepted and the newValues are accepted. But if

the fitness is not improved there is still a chance to accept the solution. The chance is expressed

by a temperature variable in the algorithm. And it declines as the simulated annealing progresses.
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Algorithm 10 Simulated Annealing for parameter value optimisation. The function random()
generates uniformly distributed random value between 0 and 1. The initialTemperature is set to
a value between 0 and 1 and the κ is a value less then 1 but typically close to it. The number of
iterations is determined by the stoppingTemperature.

Input: Sequence of preprocessing methods
bestSoFarValues ← generateRandomValuesForParameresIn(Sequence);
calculateFitness(Sequence, bestSoFarValues);
temperature ← initialTemperature;

while temperature > stoppingTemperature do
newValues ← bestSoFarValues;

/* Change value in a random parameter by one step. */

randomChangeIn(newValues);
calculateFitness(Sequence, newValues);
if newValues.fitness > bestSoFarValues.fitness then

bestSoFarValues ← newValues;

else
if random() < temperature then

bestSoFarValues ← newValues;

end

end
temperature ← temperature × κ;

end
return bestSoFarValues

5.3.4 Differential Evolution Optimisation

The Differential Evolution (DE) [57] is the last approach to the parameter optimisation, I have

tested. The DE resembles the standard genetic algorithm but uses different recombination or cross

over and selection operations. The DE algorithm was developed for the real value problems, but

can be extended to integer values as well [58]. I have decided to use the DE because it works well

with the complicated search spaces [59].

In the DE the new generation is generated in following way. Each individual in the population

is compared with a new, candidate, individual and if the candidate individual is better than the

old individual, the old individual is replaced. Otherwise the old individual is retained in the

population.

To generate a new candidate NC individual one needs an old individual I which may be replaced

with the candidate and three other individuals P1, P2 and P3 which are distinct from each other

and from the I as well. The candidate NC is generated using the Algorithm 11.

Otherwise the DE optimisation works very similarly to the other optimisation methods and the

DE optimisation is shown in the Algorithm 12.
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Algorithm 11 Determine individual for the a generation in the Differential Evolution. The NC[i]
denotes ith value in the genome.

Input: NC, P1, P2, P3, I
NC ← I;
R ← random index between 0. . . dimension of I;
forall the i ∈ 0. . . dimension of I do

if random() ¡ CR OR i == R then
NC[i] = P1[i] + random()(P2[i] - P3[i]);

end

end
if NC.fitness > I.fitness then

return NC;

else
return I;

end

Algorithm 12 Differential Evolution optmisation.

Input: Sequence of preprocessing methods

currentPop ← generateRandomIndividuals(POP SIZE);
calculateFitnessInPopulation(currentPop);

while generation < maxGeneration do
/* Using the Algorithm 11 generate new population. */

newPopulation ← generateNewPopulation(currentPop);
mutateSequencesIn(newPop);
calculateFitnessInPopulation(newPop);
currentPop ← newPop;
generation ← generation + 1;

end
return Individual with the highest fitness in the currentPop
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6 Meta Data in Inductive Preprocessing Technique

The IPT Technique uses optimisation to find the best sequences of preprocessing methods. The

search starts from the random points (with randomly generated sequences). This approach work

but has a big drawback – it is time-consuming. I have searched the ways to improve speed of IPT

and one promising way is to provide better good starting points to the search for sequences. In

this case the staring points are sequences improving the dataset or at least sequences containing

useful preprocessing methods.

I have started with the supposition that the similar dataset needs similar preprocessing methods.

But IPT does not treat a dataset as a whole but rather treats individual attributes, so I will treat

similar attributes with similar subsequences. To be able to measure similarity describe properties

of attributes and then I can compare attributes. The properties are usually called meta-data.

In the past there were different projects in the field of data mining using meta-data. One of the

oldest was StatLog [60]. According to [61] the aim of this project was to provide an objective as-

sessment of the strengths and weaknesses of the various approaches to classification. The analysis

of these experimental results aimed ”to relate performance of algorithms to characteristics or

measures of classification datasets.”[60]. They used a number of dataset properties used until

today.

The Statlog continued with the project called METAL. The goal of this project was to provide

data mining method selection and combination algorithms to support data miner and to help

him/her with the selecting appropriate classification and regression methods. There were also

effort to use meta data to help the model training algorithm to select appropriate building blocks

for a model [A.5] and many more. There is a great survey on the field [61]. There are even some

projects in field of data preprocessing. Please see the introduction for details.

6.1 Meta Data Approach in the Inductive Preprocessing Technology

As written above I have decided to use the meta data in IPT to speed up the search for the

sequences. The idea for speed up is following – if I am able to find a good starting point, it would

take less steps of the search for the sequences of preprocessing methods to find the best sequence

and thus the search would be faster.

To provide a good starting point means to find a good sequence of preprocessing methods or at least

one that contains useful preprocessing methods. This idea is based on the supposition that similar

input attributes would be preprocessed by the similar preprocessing methods [62]. To measure

similarity of attributes I have measure their properties. The properties are called meta data. The

similarity is then measured using the Euclidian distance. To store attribute metadata and the

subsequences applied on the attributes I have created a meta database. The meta database is

filled with the datasets and sequences and when a new dataset arrives, metadata for its attributes

are extracted and for each attribute I find three most similar attributes in the meta database.

And all the subsequences recorded for these attributes become candidate subsequences. And I will

choose among them randomly when I am creating the start point sequences. The procedure is
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shown on the Algorithm 13. For simplicity sake I have omitted the global subsequences from the

algorithm, but the steps are exactly the same as for the local subsequences shown in the Algorithm

13.

The sequences generated in the Algorithm 13 are then passed as starting points to the search for

sequences.

Algorithm 13 Generating starting point sequences.

Input: Dataset

attributeToSequenceMap = Ø;

forall the Attribute ∈ Attributes in Dataset do
metaData ← calculateMetaDataFor(Attribute);

nearest ← findNearestAttributesInMetaDatabase(metaData);
nearestSubsequences ← getSubsequencesInMetadatabaseFor(nearest);
/* Record useful subsequences for given attribute */

attributeToSequenceMap.add(metaData → nearestSubsequences);

end
for number of sequences to generate do

generatedSequence ← createEmptySequence();
forall the Attribute ∈ all attributes stored in attributeToSequenceMap do

Subsequences ← attributeToSequenceMap.get(Attribute);
subsequence ← get random subsequence from Subsequences;
generatedSequence.set(Attribute, subsequence);

end

end
return All the generatedSequences

6.1.1 Meta data

The meta data I have decided to extract are partially inspired by [60] and [14].

The metadata I can be separated into several groups and are following:

• Landmarking metadata:

– Accuracy of J48 Decision Tree – is an accuracy of J48 Decision Tree with only given

attribute and shows prediction power of the attribute.

– Accuracy of Simple Logistic Regression Classifier – is an accuracy of Simple Logis-

tic Regression Classifier with only given attribute and shows prediction power of the

attribute.

– Average absolute correlation – is an average correlation between the attribute and all

the output variables. Since I am interested only in measure of dependence I use absolute

value of correlation.

• Global dataset properties:
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– Ratio between biggest and smallest class – is a proportion between number of instances

for the biggest and smallest class.

– Number of Classes – tells how many classes are in the output variable of the dataset.

• Statistical properties in attribute: (All the statistical properties are greatly influenced by

outliers in the attribute I have decided to remove values below 5-th percentile and above

95-th percentile. The exception to this rule is Portion of Missing Values meta datum.)

– Mean Value in Attribute – tells the average value in the attribute.

– Value Range in Attribute – tells the value range in the attribute.

– Variance in Attribute – tells the sample variance in the attribute.

– Skewness in Attribute – tells the skewness in the attribute.

– Portion of Missing Values – tells portion of missing values in the attribute.

• Information Entropy – this is the only information theory meta datum. It indicates the

information entropy in the attribute[63, 64].
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7 Results of Search for Preprocessing Methods on

Artificial Datasets

I will begin the experimental part of my thesis with demonstrating that the Inductive Preprocessing

Technology (IPT) works with artificial datasets. The datasets are relatively simple, with only two

attributes. I have decided to use these artificial dataset for two main reasons: the first is I that the

dataset can be easily visualised, so I can easily demonstrate how the datasets are transformed. The

second is that I know how IPT should transform the dataset in order to achieve the best accuracy

of the model. This chapter will use these datasets to demonstrate that the data preprocessing

can really improve the accuracy of the classification model and that IPT is able to find such

preprocessing methods.

The first part of this chapter will introduce the datasets. Later I will use the brute force search to

identify the preprocessing methods which transforms the datasets to the form suitable for models.

In this part I will also demonstrate that the transformation of a training dataset have influence on

the accuracy of a model trained with this dataset. Although the brute force search guarantees to

find the best possible sequence of the preprocessing methods, it is not practically usable. In the

Chapter 5 I have described several other search methods for the best sequence of the preprocessing

methods. In the later part of this chapter I will test how effective they are and if they can find the

same preprocessing methods as the brute force search. The latest part is dedicated to comparison

of IPT and the one of the commercially available automatic dataset transformation method – the

Automatic Preprocessing node from the IBM SPSS Modeler.

7.1 Artificial Datasets

First I want to introduce the artificial datasets I will use in this and later chapters. All four

datasets are two dimensional problem. This is mainly for easier visualisation. The attributes are

denoted as A1 and A2. I will name the datasets according to problem they represent:

• Missing data – two U shapes and 50% of values are missing (Figure 7.1a). IPT should select

a preprocessing method dealing with missing values.

• Imbalanced data – dataset where one class is has much more instances than the other (Figure

7.1b). This dataset can be repaired using the SMOTE enrichment algorithm.

• Non Linear – this dataset contains non-linear shape and I want to classify it using the Linear

Logistic Function (Figure 7.1c). IPT should select the Square Root Calculator preprocessing

algorithm.

• Outliers – this dataset contains some outlier which confuses the linear logistic function and

it is unable to learn anything (Figure 7.1d). I expect that IPT will use the LOF outlier

detection algorithm.
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Figure 7.1: Artificial datasets used to demonstrate abilities of the Inductive Preprocessing Tech-
nology. The part a shows the Missing data datasets, the part b shows Imbalanced dataset, the
part c shows the Non Linear dataset and the part d shows the Outliers dataset.

7.2 Fitness Calculation Setup

The core parameter in my work is the fitness values of selected preprocessing methods and their

setup. The fitness is an accuracy of the model trained on the preprocessed dataset. To make sure,

the dataset is several times divided into the training and the testing part and the accuracy of the

model is calculated. The final fitness is the average accuracy of the 20 models. To make sure that

the fitness does not depend on the ordering of the dataset, I will always shuffle the dataset before

the part are created. For more details see the Chapter 4.

7.3 Exhaustive Search for the Best Preprocessing Method

In this section I will show the size of the search space of the preprocessing methods and their

parameters and I want also to demonstrate that the there are preprocessing methods which are

able to preprocess the artificial data to be suitable for the given model. And also to illustrate

the influence of the preprocessing methods and their parameters on the dataset and accuracy of a

model trained using such dataset.

To show that there are preprocessing method and their parameters which are able to preprocess

the data, I will use the brute force search or exhaustive search, as I will continue to call it, for

both – preprocessing methods and their parameters. When using the exhaustive search (testing

all possible combinations of preprocessing methods and their parameters, see the Section 5.2.1)

the computational complexity grows exponentially with the number of preprocessing methods

and parameters. Eg. if I have 15 local preprocessing methods1 and 18 global preprocessing

methods2 and each of them have 1 parameter with 20 different values and I will apply at most one

preprocessing method on each input attribute – the number of possible combinations is (15 × 20)2×
(18× 20) = 32400000. If one fitness evaluation for one combination lasts 1 second, it would take

1Preprocessing methods acting only on one attribute (see the Appendix A)
2Preprocessing methods acting with the whole dataset (see the Appendix A)
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375 days to finish the calculations. This is unacceptable and for this reason I will select only a

small subset of preprocessing methods, which will also contain the preprocessing methods I believe

to be the best for given dataset.

For the Missing Data and the Imbalanced datasets I have selected following local methods: Con-

stant Missing Value Imputer, Another Instance Value Data Imputer, Missing Instances Remover

and global methods: LOF, SMOTE, DROP3.

For the Non Linear and Outlier datasets I have selected following local methods: Adaptive Bin-

ning, N-th Power Calculator, Mean Value Normalizer and LOF, SMOTE, DROP3. The N-th

Power Calculator method should be used for the Non Linear dataset and the SMOTE for the

Outlier dataset.

In this and all the later sections I will measure the results by achieved fitness3 and also by

accuracy of the independent model with the validation part of the dataset. The reason to use the

independent model on the validation part of the dataset is to independently confirm the achieved

accuracy.

7.3.1 Missing Data Dataset

The search has found following sequence of the preprocessing methods:

• for the A1 attribute – Missing Data Remover.

• for the A2 attribute – No preprocessing.

• for the Global attribute – Missing Data Remover.

The achieved fitness was 0.989 and the model trained on the preprocessed validation part has

achieved 0.98 accuracy.

This dataset is quite simple for the search method – it has no parameters to set. To find the

best sequence for the Missing data dataset the search method has just to select the Missing Data

Remover method.

7.3.2 Imbalanced dataset

The search has found following sequence of the preprocessing methods:

• for the A1 attribute – No preprocessing.

• for the A2 attribute – the Constant Missing Value Imputer method and it imputer values

-9.5. (Note that there are no missing values in the dataset, so this method does nothing.)

• for the Global attribute – the SMOTE method with – minor class enriched 3-times and

uses 11 nearest neighbors.

3Accuracy of a model trained with the preprocessed validation part of the dataset, see the Chapter 4.
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Table 7.1: Influence of the parameters (minor class enriched X times, # of nearest neighbors to
use) of the SMOTE method on the preprocessed dataset and accuracy of the J48 Decision Tree
Classifier.

Minor class enriched = 3-times, use 11 nearest
neighbors, model accuracy = 95.98%

Minor class enriched = once, use 11 nearest
neighbors, model accuracy = 91.92%

Minor class enriched = 3-times, use 3 nearest
neighbors, model accuracy = 95.48%

Minor class enriched = once, use 3 nearest
neighbors, model accuracy = 92.58%

The achieved fitness was 0.959 and the model trained with the preprocessed validation part has

achieved accuracy (fitness) 0.95.

To illustrate the influence of the parameters of the SMOTE method, I have preprocessed the

Imbalanced dataset with the SMOTE method with several different values of parameters and

figures in the Table 7.1 show the results. The top left figure represents dataset preprocessed with

the parameters selected by the search.

7.3.3 Non Linear Dataset

The search has found following seqence of the preprocessing methods:

• for the A1 attribute – No preprocessing.

• for the A2 attribute – the N-th Power Calculator method is used and it calculates 7th power

root ( 7
√
x).

• for the Global attribute – the LOF method with 2 nearest neighbors and σ = 2.
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The achieved fitness was 0.997 and the model with the preprocessed validation part has achieved

fitness equal to 1.

To illustrate the influence of the parameters of N-th Power Calculator on the preprocessed dataset,

I have created a table 7.2. The table shows the Non Linear dataset preprocessed using the N-th

Power Calculator method with the different parameters.

7.3.4 Outlier Dataset

The exhaustive search has selected following preprocessing methods for the Outlier dataset with

following parameters:

• for the A1 attribute – No preprocessing.

• for the A2 attribute – the Adaptive Binning method with 2 bins and bins are coded as bin

ID.

• for the Global attribute – the LOF method with 10 nearest neighbors and σ = 0.

The achieved fitness was 0.958 and the model on the validation part of the dataset achieved 0.96

accuracy.

The table illustrates influence of the parameters of the LOF method on the final dataset and

accuracy of the Simple Logistic function. Precisely it shows selected values of σ and the # nearest

neighbors. The dataset preprocessed by the exhaustive search is very similar to the figure in the

second line, on the right in the Table 7.3.

The conclusion of this section is, that the transformation of the dataset using different preprocess-

ing methods and different parameter values plays significant role in the accuracy of models trained

with such datasets. So the selection of the proper preprocessing method and its parameters is quite

an important for the accuracy of the model. Another important conclusion for the paragraphs

below is that the presented datasets can be preprocessed with implemented preprocessing methods

and gives estimate on accuracy of the models trained from given dataset.

7.4 IPT with Genetic Algorithm on Artificial data

The previous section illustrated the influence of the preprocessing methods on datasets and also

on accuracy of models trained with the preprocessed datasets. Although the exhaustive search,

as presented in the previous section, is able to find appropriate preprocessing methods and their

parameters, is not usable for more complex datasets or more numerous sets of preprocessing

methods. The time needed to finish the exhaustive search grows exponentially with number of

input attributes, number of preprocessing methods and number of methods applied on one input

attribute. It is obvious that for real-world problems the exhaustive search is not usable and I have

to look for another search method. In my work I have focused on four sequence search algorithms

– the genetic search, the simulated annealing, the steepest descent and the random search. The

results of the later parts of this chapter shows that the genetic search is the best sequence search
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Table 7.2: Influence of the N parameter of the N-th Power Calculator on the preprocessed dataset
and accuracy of the Simple Logistic Classifier. Fraction values of N means power roots, integer
values means powers.

N = 1
8 , model accuracy = 99.83%

N = 1
6 , model accuracy = 99.83%

N = 1
4 , model accuracy = 93.33% N = 1

2 , model accuracy = 65.17%

N = 2, model accuracy = 48.67%

N = 4, model accuracy = 48%

N = 6, model accuracy = 47.67%
N = 8, model accuracy = 48.5%
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Table 7.3: Influence of the σ and #nearestneighbors parameters of the LOF method on the
preprocessed dataset and accuracy of the Simple Logistic Classifier.

σ = 2.0, # nearest neighbors = 2 , model ac-
curacy = 37.62%

σ = 0.0, # nearest neighbors = 2 , model ac-
curacy = 45.71%

σ = 2.0, # nearest neighbors = 10 , model
accuracy = 50.95%

σ = 0.0, # nearest neighbors = 10 , model
accuracy = 98.0%
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Table 7.4: Accuracy of the J48 model with the dataset preprocessed using different imputation
methods.
Preprocessing
method applied
on A1 attribute

Missing
data
remover

No pre-
process-
ing

Another
In-
stance’s
value

Constant
Value

Median
Value

Nearest
Neighbor

Accuracy of the
J48 Decision
Tree [%]

0.98 0.88 0.838 0.877 0.877 0.825

method and for this reason I have decided to show its results separately from the other search

methods whose results are presented and compared to the genetic search in the next section of

this chapter. The search for the proper values of parameters will be discussed in the next chapter.

7.4.1 Missing Data dataset

The first dataset I will discuss here is the Missing Data dataset. The dataset contains two inter-

winded U shapes. From this dataset I have removed 50% values in the A1 attribute and then I

have supplied this dataset to the genetic search. I will continue to used the J48 Decision Tree

as model for this dataset.

The genetic search has selected the Missing data remover, the same preprocessing method which

was found by the exhaustive search in the previous section. I have visualised the first five sequences

in the last generation of the genetic search. You can see it on the Figure 7.2. All the sequences

contains the Missing data remover preprocessing method.

Figure 7.2: Five best individuals from the final generation of one of the runs.

To illustrate and compare the results of different data imputation methods I have preprocessed

the original dataset with different data imputation methods and I have shown the results on the

Figure 7.3a-e. The Figure 7.3a shows the original dataset – for better visualization I have replaced

the missing data with 0 value, it also illustrates results of Constant Replacer method. Figure

7.3e shows result of Missing Data Remover method. The remaining figures shows result of other

missing data imputing methods – Figure 7.3b Nearest Value imputer4, Figure 7.3c Median Value

imputer, Figure 7.3d Another Instance’s Value imputer.

I have also created a J48 Decision Tree model from all above variants of the dataset and I have

computed the accuracy of the model with given data. And I have calculated the accuracy of the

original dataset as well. The results are presented in the Table 7.4. The Missing data remover

method shows the best results and therefore IPT has selected the best method.

4Finds 5 nearest instances and replaces missing value with mean value of these 5 instances.
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Figure 7.3: Results of imputation methods. Part a shows original dataset with missing data
replaced with 0. It is also result of Constant Replacer method. Part b shows result of Nearest
Value imputer. Part c shows result of Median Value imputer. Part d shows result of Another
Instance’s Value imputer. Part e shows result of Missing Data Remover method – selected by
IPT.

7.4.2 Imbalanced dataset

Figure 7.4: Original Imbalanced dataset on the left. Dataset preprocessed by the SMOTE method
is on the right side.

This dataset contains two classes. One class is has much more instances than the other. To be

precise the dataset contains 219 instance of class 1 and 45 instances of class 2. You can see this

dataset on Figure 7.4 on the left. The correct solution of this problem is to use a data enrichment

algorithm – in this case the SMOTE method. The SMOTE algorithm (see Appendix A or [31])

adds some artificial instances of minor class to the dataset. The genetic search has fulfilled my

expectation and has selected the SMOTE algorithm. I have again extracted the five the best

individuals and you can examine them on the Figure 7.5. All of them contains the SMOTE

method as expected and in correspondence to the results of the exhaustive search.
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Table 7.5: Accuracy of J48 model with the original validation dataset, SMOTE method applied
2-times (the first sequence from the top in the example population) and SMOTE method applied
once (the last sequence in the example population).

Original
dataset

First sequence from
Fig. 7.5

Last sequence from
Fig. 7.5

Accuracy of J48
decision tree [%]

0.905 0.97 0.967

To confirm that applications of the SMOTE method brings better results, I have used the first

sequence form the Figure the it to the validation dataset and the result is shown on the Figure

7.5 to the validation part of the dataset. The result is shown on the Figure 7.4 on the right

side. The left side shows the original validation dataset. I have applied also other combination

of preprocessing methods on the validation dataset and the results are in the Table 7.5. It show

that the improvement in accuracy with preprocessed dataset in contrast to the original one is not

so big as in case of the Missing Data dataset but is still significant. The result also shows that if

the SMOTE method is applied several times, the results are not significantly improved.

Figure 7.5: Sample of the best individuals in the last generation.

7.4.3 Non Linear dataset

This dataset contains non-linear decision boundary and I want to use the linear regression model to

classify it. The dataset has to be preprocessed using a preprocessing method which straighten the

decision boundary. To make thinks more interesting, I have omitted the N-th Power Calculator and

I have replaced it with the Root Square Calculator method. In contrast to N-th Power Calculator

the genetic search has to select the Root Square Calculator methods several times. And you can

examine the results on the Figure 7.4.3. The left side of the Figure shows the original dataset and

the right side the preprocessed dataset.

Figure 7.6: Non Linear dataset – on the left the original dataset, on the right the dataset prepro-
cessed by several applications of Root Square Calculator method as found by the genetic search.

The preprocessed dataset is now easily classified by the Simple Logistic Classifer. To achieve this
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Table 7.6: Error of the Simple Logistic model with the original data, data preprocessed by Root
Square Calculator applied 3 times and data preprocessed by Root Square Calculator once.

Original
dataset

Root Square Calculator
applied once

IPT preprocessed dataset
(Root Square Calculator
applied 3 times)

Error of Simple Lo-
gistic classifier [%]

0.543 0.628 0.983

the genetic search has to create a sequence containing several Root Square Callculators. Since the

original dataset follows the x4 function, only one Root Square Callculator will not do. You can

examine the found sequences on the Figure 7.7. All of the uses three Root Square Callculators.

In total they are giving 6th power root. You can examine the results of application of the other

possible power root on the Table 7.2 in the previous section.

Figure 7.7: Example population – the top 5 individuals in one of the runs.

The Table 7.6 shows errors of models with original and preprocessed data. Errors were obtained

using 10 fold cross validation. Results confirms that simple logistic regression is unable to classify

the separate classes properly. In fact the training algorithm completly fails to train any meaningful

model. The accuracy is about 54.3% and confirms this conclusion. One application of the Root

Square Calculator method straightens the decision boundary but not enough for simple logistic

classifier and its training algorithm again fails to train any meaningful model. But repetitive

applications of the Root Square Calculator method further straightens the boundary. After three

applications of the method, the classes become linearly separable and the classification become

far more accurate.

7.4.4 Outlier dataset

This last artificial dataset shows the ability of IPT to remove outliers. The original dataset is

shown on the Figure 7.8a. The dataset consists of nucleus with very dense instances and a few

sparse outliers. The outliers harms the capability of the simple logistic classifier to find decision

boundary. The Figure 7.8b shows the dataset after application of the best individual found by the

genetic search in one of the runs. The individual contained the LOF preprocessing method applied

twice. The last Figure 7.8c shows the dataset after only one application of the LOF method. This

dataset is much closer to the original dataset with only real outliers removed (see discussion later

in this section).

The Figure 7.9 show the best sequences found by the genetic search algorithm and as was told

before, the sequences mainly contains the LOF preprocessing method.

The Table 7.7 shows the accuracy of the models trained with the preprocessed validation part of
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Figure 7.8: Original and preprocessed Outlier dataset. The part a shows the original dataset with
outlier. The part b shows dataset after application of LOF method twice (as in the best sequences
found). The part c shows the result of the one LOF application.

Figure 7.9: Example population – the top 5 individuals in one of the runs.

the dataset. The lowest accuracy shows the model with the original dataset. The reason is simple

– the training algorithm of the simple logistic classifier is confused by outliers and fails to learn.

The accuracy of the model with dataset preprocessed using only one LOF method is much better

but still is higher than the accuracy for the dataset with two LOF methods applied. The reason

lies in the way the fitness (and accuracy is calculated) – the validation dataset is randomly divided

into the training and the testing part, both parts are preprocessed and the model is trained on

the training part and the accuracy is computed, then the process is repeated several times and

the final fitness and accuracy presented here is the average of accuracies obtained in repeated

evaluations. And it may happen that in some repetitions the training and the testing sets are

divided less favourable way and the LOF fails to remove all the outliers and the model fails to

learn. In contrast if the two LOF methods are applied, all the outliers are removed and the model

always finds the correct decision boundary.

7.4.5 Conclusion

In this section I have demonstrated the genetic search on four artificial datasets. The datasets

were specially constructed to have only one data problem in it and also to be easily visualised.

The problems are – missing data, different number of instances of two classes, non-linear decision

boundary and outliers. The results show that the genetic search is able to find the proper data
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Table 7.7: Accuracy of the Simple Logistic model with the original data, data preprocessed by
LOF applied 2 times and data preprocessed by LOF once.

Original
dataset

Best sequence
found (LOF
method applied
2 times)

LOF method
applied once

Accuracy of Sim-
ple Logistic clas-
sifier [%]

0.441 0.974 0.936

preprocessing methods to address these problems – data imputation method for missing data,

data enrichment method for Imbalanced dataset, non-linear transformation for data with non-

linear decision boundary and method removing outliers for the outlier dataset. Another positive

outcome is that IPT works well with different modelling methods – J48 Decision Tree and Simple

Logistic Function in this case.

7.5 The Genetic Search Algorithm vs Another Search Algorithms

In this section I will compare results of the genetic search algorithm from the previous section

with another search algorithms. I will compare them on the same artificial datasets as in previous

section and the search algorithms should find sequences very similar to ones from the previous

section. I will test the following search methods:

• Exhaustive search algorithm – tries all possible combinations of the preprocessing methods

(see 5.2.1).

• Random search – randomly generates sequences of preprocessing methods (see 5.2.2).

• Steepest descent search algorithm – adds preprocessing methods one by one. At first tries

all preprocessing methods in all input attributes (subsequences) and selects the method and

the attribute with the highest fitness. Then adds in the same way the second preprocessing

method and so on (see 5.2.3).

• Simulated annealing search algorithm – classical simulated annealing algorithm (see 5.2.4).

I will compare the search algorithms using three criteria:

• How many fitness evaluations the search algorithm needs to finish the search (how long does

it take to finish the search). I will also discuss the scalability of the method.

• If it is able to find combination of preprocessing methods at least as good as the genetic

algorithm search from previous section.

• The last criterion will be the complexity of the best found sequence.
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7.5.1 Fitness Evaluation

At first I will discuss the number of fitness evaluations to finish the search. The fitness evaluation

is closely related to number of models which have to be learned. To calculate the fitness, one have

to train several models. All search methods have fixed number of generations and repetitions (or

at least their maximum number), I can give exact number of fitness evaluation and formula how

to calculate it.

I will measure the length of the search for optimal preprocessing methods in number of fitness

evaluation rather than in time. In addition to standard objections to time, there is one additional

objection – that is that time needed to preprocess the data, depends on the data and also on the

preprocessing methods and the model training time depends on preprocessed data.

Exhaustive Search Algorithm This algorithm generates all possible combinations of prepro-

cessing methods, which grows at exponential rate. There is also important parameter (Nmethods)

which determines how many preprocessing methods at most are in each subsequence (maximal

number of preprocessing methods).

The final formula to calculate number of fitness evaluation is following:

FE = (Nlocal + 1)Nmethods×Ninput × (Nglobal + 1)Nmethods

where

• Nlocal – number of local preprocessing5 methods.

• Nglobal – number of global preprocessing6 methods.

• Nmethods – maximum number of methods in the sequence (maximum number of preprocess-

ing methods for each attribute).

• Ninput – number of input attributes.

The number of trained models is following:

Nmodels = FE ×Nmodels

At first I have enabled all 15 local preprocessing methods and 18 global preprocessing method.

To be able to finish the calculation I have set the maximum number of methods in sequence

(Nmethods) to 1. Even with this limited settings the number of fitness evaluations for the artificial

datasets is 4,864 fitness evaluations (145,920 models created) for each restart.

If I change the maximum number of methods in sequence (Nmethods) to 2, the total number of

evaluations is 23,658,496 (709,754,880 models created), which is almost unsolvable. (Even if I am

able to evaluate 1 fitness in 1 second, it would take almost 274 days to finish the search).

5Methods working with and modifying only one attribute.
6Methods working with and modifying whole dataset.
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Steepest descent search algorithm This search algorithm adds preprocessing methods it-

eratively, one by one. It starts with empty sequences (no preprocessing method applied on the

data). Then it tries apply one by one all preprocessing methods on the first attribute, then tries to

apply all methods on the second attribute and so on and ends with the global attribute. When it

finishes, it selects the most accurate combination of the preprocessing method and the attribute.

Then in the same way tries to add the second preprocessing methods to the selected and so on

(see 5.2.3).

The number of evaluations depends on number of inputs, local and global preprocessing methods

and maximum number of preprocessing methods to add. The formula to calculate the number of

fitness evaluations is:

FE = (Nlocal ×Ninput +Nglobal)×Nmethods

where

• Nlocal – number of local preprocessing methods.

• Nglobal – number of global preprocessing methods.

• Nmethods – maximum number of preprocessing methods in all sequences (maximum number

of iterations).

• Ninput – number of input attributes.

I have again used 15 local preprocessing methods and 18 global. And I have decided to try 10

preprocessing methods at the most. In this setup the number of fitness evaluations is 480. Meaning

that I have to train 9600 models for each restart. This is much more reasonable number.

Simulated annealing algorithm The simulated annealing is the standard annealing algorithm

with restarts. When the algorithm stops after fixed number of cooling steps or when the fitness

stops to improve. After that the search start again from a new start point (restart).

The exact number of fitness evaluations is

FE = Nrestarts ×Nsteps

where

• Nrestarts – number of restarts of the search algorithm.

• Nsteps – number of cooling steps.

In my case – 20 simulated annealing restarts and 500 optimisation steps, the number of fitness

evaluation is 10,000 (200,000 models) for each IPT restart.
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Random search algorithm This algorithm simply generates random sequences of preprocess-

ing methods. This algorithm has very straightforward number of fitness evaluations – it is an

input parameter of the algorithm.

In my case I have used 5,000 evaluations (100,000 models) for each restart.

Genetic search algorithm The number of fitness evaluations in the genetic search algorithm

depends on number of repeating runs, number of generation and number of individuals. The exact

formula is:

FE = Ngeneration ×Nindividuals

where

• Ngeneration – number of generations of the genetic algorithm.

• Nindividuals – number of individuals in each generation.

In case of my experiments, I am using 50 generations and 50 individuals. So there were 2,500

fitness evaluations (giving 50,000 models) for each restart.

The numbers of fitness evaluations of above search methods are summarized in the Table 7.8.

Table 7.8: Summary of number of fitness evaluations for one restart and its order of growth with
respect to the number of input attributes.

Search method # fitness evalua-
tions

# models build Grow order with #
of input attributes

Exhaustive Search 4,864 97,280 exponential
Steepest descent
search

480 9600 linear

Simulated anneal-
ing

10,000 200,000 constant

Random search 5,000 100,000 constant
Genetic search 2,500 50,000 constant

7.5.2 Best Solutions Found

Now I will demonstrate ability of different search methods to find the optimal (or nearly optimal)

solution. The optimal solution for each dataset is described in the section 7.4. I have run the

above search methods with parameters described above.

The aim of this section is to compare results achieved by the genetic search method and the other

search methods. I will compare the best individuals found, the its fitness and the accuracy of

model trained using the preprocessed dataset.
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Table 7.9: Comparison of results of different search methods. The best fitness found indicates the
best fitness found in all 20 runs.

Search method Best fitness found Accuracy on the
validation set

Exhaustive Search 0.995 0.98
Steepest descent
search

0.995 0.98

Simulated anneal-
ing

0.997 0.98

Random search 0.992 0.98
Genetic search 0.998 0.98

7.5.2.1 Missing Data Dataset

The results show that it is easy for all search methods to find such sequence of the preprocessing

methods which produces the most accurate models. The difference in the fitness value is insignif-

icant and is caused by random splitting of training and testing sets. The Figure 7.10 shows the

best sequences found by different search methods.

Figure 7.10: The best sequences found for Missing Data dataset by different search methods.

To give better impression on distribution of the best fitnesses found by different search methods

in different restarts I have created a boxplot shown on the Figure 7.11.

Figure 7.11: The boxplot illustrating distribution of the best fitnesses found by different search
methods for the Missing data dataset. The red stripe in the middle shows the mean fitness, the
blue box covers 50% of values (range between 25th and 75th percentile) and the black lines covers
range between 5th and 95th percentile, covering 90% of values.

In general results show that all search methods are able to correctly add the Missing Instances

Remover to the sequence and as the first method preprocessing the A1 attribute. All other

preprocessing methods has either no or very little effect on the dataset. Eg. dealing with missing
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values when there are no values missing left.

The Figure 7.10 on the first line shows the best sequence found by the genetic search. Other lines

shows the best sequences created by another search algorithms.

The second line on the Figure 7.10 shows the sequence created by the Simulated Annealing. It has

several missing data imputation methods working with the first attribute (A1). But except the

first method (Missing Instances Remover method) they are useless because there are no missing

data. The preprocessing methods for the second attribute (A2) do some change to the dataset,

but the change is not significant for the result.

The Steepest Descent algorithm has found a little bit simpler sequence then Simulated Annealing

search. But there are also useless missing data imputation methods on already missing-data-free

attribute A1. And a data reduction method which removes redundant data from the training set.

The Exhaustive Search algorithm has found sequence which is quite similar to the optimal sequence

found by Genetic Search. The Cell Based Algorithm is an outlier removal method and in this

particular dataset does not anything useful.

The results of the search methods with the Missing dataset data show that all the search methods

are able to add the Missing Instances Remover preprocessing method to the final sequence for

attribute A1. Search methods other than the Genetic algorithm search have also added some

additional useless preprocessing methods. This is caused by fact that there are no other nearly

optimal individuals (sequences) competing for the first place. So if an individual (sequence)

with some useless extra preprocessing methods achieves slightly better fitness then the simpler

individual (sequence) eg. by lucky selection of instances to folds in one of rounds, there is no

individual to replace it in the next step (generation).

If you compare sequences found by different search methods, you will see that the sequence found

by the Genetic search is the simplest and contains only the Missing Instances Remover method,

which is the only useful preprocessing method. Results from different search methods contain

number of useless preprocessing methods which make results harder to understand and explain.

7.5.2.2 Imbalanced Dataset

The table 7.10 shows results of different search methods for the Imbalanced dataset. The genetic

search has achieved the best results. It is closely followed by other search methods, namely the

Simulated Annealing, which is only 1% less accurate. To find the reason for better performance

of the sequence found by the genetic search method, I had to examine the sequences found by

different search methods. The sequences are shown on the Figure 7.12. The main reason is that

the genetic search has added the SMOTE method twice. The others has added it only once. In

the case of the Exhaustive search it is mainly due to limitations set on the search. I have allowed

only one preprocessing method to be applied on each attribute. This limitation is set to finish the

search in reasonable time. See the section 7.5.1 for discussion.

The other search methods has ended in local optima and were unable to add the second run of

the SMOTE method.

To give better impression on distribution of the best fitnesses found by different search methods
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Table 7.10: Comparison of results of different search methods.
Search method Best fitness found Accuracy on the

validation part
Exhaustive Search 0.921 0.913
Steepest descent
search

0.919 0.904

Simulated anneal-
ing

0.946 0.94

Random search 0.916 0.91
Genetic search 0.97 0.966

Figure 7.12: The best sequences found for Imbalanced dataset by different search methods.

in different restarts I have created a boxplot shown on the Figure 7.13.

Figure 7.13: The boxplot illustrating distribution of the best fitnesses found by different search
methods for the Imbalanced dataset. The red stripe in the middle shows the mean fitness, the
blue box covers 50% of values (range between 25th and 75th percentile) and the black lines covers
range between 5th and 95th percentile, covering 90% of values.

7.5.2.3 Non Linear Dataset

The results for the Non Linear dataset shows that all search methods, with exception of Exhaustive

Search (see next paragraph for explanation), are again able, in terms of fitness and model accuracy,

to find very good sequence of preprocessing methods, as shown in the Table 7.11. In the end all

search methods have 3 times added Square Root Calculator method to the sequence for the A2

attribute. The Random search added the Square Root Calculator only twice and this is the reason

for the slightly lower accuracy.

As illustrated in Table 7.2, for successful classification at least 6th power root has to bee applied on

the A2 attribute. This means three repetitive applications of the Square Root Calculator method.
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The Exhaustive search method is restricted to only one preprocessing method for each attribute.

I have set this restriction to be able to finish the search in reasonable time as explained in 7.5.1.

And this is reason for so low fitness of the Exhaustive Search. If I would soften the limitation to

three preprocessing methods, the Exhaustive search would, no doubt, achieve results similar to

other search methods.

Table 7.11: Comparison of results of different search methods for the Non Linear dataset.
Search method Best fitness found Accuracy of on the

validation part
Exhaustive Search 0.748 0.73
Steepest descent
search

1.00 0.991

Simulated anneal-
ing

1.00 0.99

Random search 0.947 0.98
Genetic search 1.00 0.994

The Figure 7.14 shows the best sequence of preprocessing methods found by different search

methods. You can see that all search methods added the Square Root Calculator methods to

sequence for the A2 attribute. The sequence of preprocessing methods found by genetic search

method is again the simplest and does not contain any useless preprocessing methods.

Figure 7.14: The best sequences found for Non Linear dataset by different search methods.

To give better impression on distribution of the best fitnesses found by different search methods

in different restarts I have created a boxplot shown on the Figure 7.15.

Figure 7.15: The boxplot illustrating distribution of the best fitnesses found by different search
methods for the Non Linear dataset. The red stripe in the middle shows the mean fitness, the
blue box covers 50% of values (range between 25th and 75th percentile) and the black lines covers
range between 5th and 95th percentile, covering 90% of values.
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7.5.2.4 Outlier Dataset

The results achieved for the Outlier dataset by different search methods are summarized in the

Table 7.12 and the best sequences found by different search methods are illustrated on the Figure

7.16.

Table 7.12: Comparison of results achieved by different search methods for the Outlier Dataset.
Search method Best fitness found Accuracy of on the

validation data
Exhaustive Search 0.966 0.951
Steepest descent
search

0.97 0.964

Simulated anneal-
ing

0.957 0.948

Random search 0.925 0.92
Genetic search 0.991 0.982

The results shows that all five search methods are generally able to employ the LOF preprocessing

method in the sequence and the found sequences achieved the same accuracy in the independent

model. The inspection of the preprocessed data shows that all preprocessed datasets looks almost

the same. The difference in the fitness has to be attributed to the random split of the data to

the folds during the fitness evaluation and to the regularization penalty (namely in the case of the

Random search).

Figure 7.16: The best sequences found for Outlier Dataset by different search methods.

To give better impression on distribution of the best fitnesses found by different search methods

in different restarts I have created a boxplot shown on the Figure 7.17.

7.5.3 Conclusion

In this section I have compared different search methods to find the optimal sequence of prepro-

cessing methods. All search methods are generally able to add correct preprocessing methods to

the sequence. But the genetic search generally achieves the highest fitness value.

In addition, if you inspect the best sequences shown on the figures in this section, you will see that

the sequences found by the genetic search method, are generally the simplest and do not contain

any useless methods. The setups found by other search methods generally contains a number of

preprocessing methods which do not affect the dataset, eg. imputing missing data to attributes

without missing values, or computing power roots or normalisation where it is useless.

The conclusion of this section all search methods are able to find setups of preprocessing methods

which produces models with more or less comparable accuracy. To make a final choice, if you need
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Figure 7.17: The boxplot illustrating distribution of the best fitnesses found by different search
methods for the Outlers dataset. The red stripe in the middle shows the mean fitness, the blue
box covers 50% of values (range between 25th and 75th percentile) and the black lines covers range
between 5th and 95th percentile, covering 90% of values.

some result fast and you do not need to explain the operations in the preprocessing, you should

use the Steepest descent search method. But if you need the best results and simple and easy

to explain sequences, the Genetic search method is clearly the best choice.

7.6 More Complex Dataset

In the previous sections I have presented datasets which required only one preprocessing method

to successfully preprocess the data. In this section I will test ability of all search methods to find

solution for more complex dataset, which requires a combination of preprocessing methods to be

successful.

This artificial dataset I will use here is a combination of Non Linear and Imbalanced datasets.

The dataset is shown in the Table 7.13 on the lop left figure. And I will use the Simple Logistic

classification algorithm. The Simple Logistic model is the most accurate when the N-th Power

Calculator (or the Square Root Calculator) and the SMOTE methods are applied. The Table 7.13

shows the raw dataset, dataset preprocessed only by the N-th Power Calculator, dataset prepro-

cessed by SMOTE and the dataset preprocessed by both, N-th Power Calculator and SMOTE.

The table also contains accuracy of the Simple Logistic model.

The Table 7.14 shows the fitness and accuracy of independent models for the best sequences found

by the search methods. It shows that in the end all search methods has found correct sequence of

preprocessing methods (see the Figure 7.18 below). Almost all search methods has achieved very

good accuracy.

Figure 7.18: The best sequences found for Complex Dataset by different search methods.
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Table 7.13: Illustration of the Complex dataset and influence of the preprocessing methods.

Raw dataset without any preprocessing, accu-
racy of the Simple Logistic model = 84.34%

Dataset preprocessed by the N-th Power Cal-
culator calculating 8th power root, accuracy
of the Simple Logistic model = 98%

Dataset preprocessed by the SMOTE, accu-
racy of the Simple Logistic model = 60.72%

Dataset preprocessed by the N-th Power Cal-
culator and the SMOTE, accuracy of the Sim-
ple Logistic model = 100%
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Table 7.14: The fitness and errors of the independent models for the best sequences found for the
Complex dataset.

Search method Best fitness found Accuracy with the
validation part of
the dataset

Exhaustive Search 0.996 0.99
Steepest descent
search

1.00 1.00

Simulated anneal-
ing

0.998 0.95

Random search 0.917 0.912
Genetic search 1.00 1.00

The Figure 7.18 shows the best sequences found by different search methods. Again all the search

methods have found the sequences that are very similar. All the methods has successfully added

two SMOTE methods and the N-th Power Calculator. But the simplest are the sequences found

by the Steepest Descent and the Genetic Search. Both sequences achieve the highest fitness as

well. In this way results confirms the results from the previous section.

7.7 IPT vs IBM SPSS Modeler Automatic Preprocessing Node

The industry standard software – IBM SPSS Modeler – also contains a node for automatic prepro-

cessing. The node uses some simple rules to preprocess data and the rules are briefly explained in

the section 1.2 and in larger details in [25]. To compare the results of IPT and the SPSS Modeler’s

Automatic preprocessing node, I have loaded the data into the SPSS Modeler, preprocessed the

data with the node and stored the result. The I have created the independent model for each

dataset in the same way as in previous sections.

The results of the independent models are shown in the Table 7.15. The results show that the

Modeler’s automatic preprocessing node did very little to improve the accuracy. The accuracy of

the dataset preprocessed by the Modeler’s automatic preprocessing node is comparable with the

non-preprocessed (raw) datasets.

Table 7.15: Comparison of results achieved models for the datasets preprocessed by IPT and the
Automatic Preprocessing node in the IBM SPSS Modeler

Dataset SPSS Modeler prepro-
cessed dataset (classifica-
tion error in %)

IPT preprocessed dataset
(classification error in %)

Missing Data dataset 12.38 0.431
Imbalanced dataset 9.09 3.88
Non Linear dataset 45.67 0.17
Outliers dataset 57.97 1.96
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8 Search for the Optimal Parameters in the Sequence of

Preprocessing Methods

In the previous chapter, I have presented methods looking for the best sequence of the preprocess-

ing methods. The first experiment in the previous chapter has given ideas that the parameters of

the preprocessing methods are also quite important and I should optimise them as well. The first

possible approach is to set random values of parameters for each new individual and hope that

in the end I will generate correct values. I need something more sophisticated. In the Genetic

Search method one solution is obvious – extend the mutation operation to parameters as well. By

mutation I mean to change value of one or more parameters at random. But I am bound to test

other techniques if they do not achieve better performance or if they find the optimal parameter

values faster. All the approaches are described in the Chapter 5 on the page 21. In this chapter

I will demonstrate and test these approaches to parameter optimisation and I will select the best

one.

All the techniques share the idea of local optimisation [65]. I will generate a sequence of prepro-

cessing methods and the I will do several steps of parameter optimisation algorithm and try to

find optimal parameters for given sequence. This could shorten the overall number of steps of the

search for the sequence of preprocessing methods. And thus could possibly shorten running time

of the Inductive Preprocessing Technology.

To give example illustrating significance of correct values of parameters consider the Non Linear

dataset from the previous chapter, one has not only select the N-th Power Calculator but also

setup its parameter to calculate 8th power root, if I will calculate, say, 2nd root, the accuracy of

the model will be very low, although I have selected correct preprocessing method. To get idea

how parameters of the preprocessing methods influences the accuracy of the model, please check

Tables 7.1 (on page 40), 7.2 (page 42) or 7.3 (page 43). Tables shows data preprocessed with the

same sequence but with the different parameters and also shows accuracy of the final model.

The problem of the parameters values optimisation can not be detached from the problem of

searching optimal sequence. The choice of the best sequence depends on the values of method’s

parameters. As explained in Chapter 3 the search for the optimal is part of the ”mutation step”

of the search for the best sequences of the preprocessing methods.

There are many more or less sophisticated search methods I can choose from, but my search

problem is quite different from the classical numerical and discrete optimisation:

1. First, some of the parameters are continuous numbers and some are discrete and I am unable

to calculate gradient.

2. Second, the fitness is stochastic function and the exact value differs in repetitive evaluations.

(See 4 for more details).

3. Third, if you examine the search spaces in Appendix B, they are not too complex.

For these reasons I have decided to implement and test the simple optimisation methods – the

Random search, the Simulated annealing and the Steepest descent. I have decided also to test a
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genetic approach to optimisation and I have decided to to test the Differential Evolution algorithm

as well. For details about the methods see the chapter 5.

This chapter is divided into four parts. The first part visualises two example space of parameters

and illustrates progress of parameter optimisation methods. The second part compares ability of

different search methods to find the optimal values of parameters. The experiments in the third

part will try to find the minimal length of the optimal values search to find the optimal values of

parameters. And the third demonstrates influence of the optimal parameters search on the search

for the best sequences of preprocessing methods.

8.1 Visualisation of Search Spaces

This section visualises two example search spaces – one for the N-Power Calculator and the Non

Linear dataset. The second example are parameters of the SMOTE enrichment method applied

on the Imbalanced dataset.

Figure 8.1: Visualisation of the parameter values search space for the N-Power Calculator prepro-
cessing method and the Non Linear dataset. Blue marks shows positions examined by Random
search algorithm.

At first I will show the search space for N-Power Calculator and the Non Linear dataset. As

you can see on figures below, the parameters of the N-Power Calculator has very strong influence

on the final fitness of the model. To be able present fitness in the 2D space I have applied the

N-Power Calculator on both attributes – A1 and A2. The result is shown for example on the

Figure 8.1. The green color represents low values of fitness and red represents the higher values.

The search space is shown on the Figures 8.1, 8.2, 8.3, 8.4. The figures shows that there is a large

area with low fitness for positive values of the Power/Power root values in A1 attribute and there

are several equivalent optimal values. To be precise, there are four similar global maxima, I am

looking for – the first two use 4th power root in the A1 attribute and 1st power or 1st power root



SECTION 8. SEARCH FOR OPTIMAL PARAMETERS 63

(both mean identity) in the A2 attribute. The third and fourth extremes are for the 4th power in

the attribute A2 and the identity (1st power or 1st power root) in the A1 attribute. If you think

about it, these situations are equal and both leads to the linear separation border between classes.

The Figure 8.1 shows parameter values in the search space examined by the Random search. It

shows almost uniform spread of examined points and you can see that the search method hit one

of the global optima.

Figure 8.2: Visualisation of the parameter values search space for the N-Power Calculator pre-
processing method and the Non Linear dataset. Blue marks shows positions of the best-so-far
solution of the Simulated annealing search algorithm.

The Figure 8.2 shows the progress of the Simulated annealing. The dots now shows the positions

of the best-so-far solution in the Simulated annealing. The line connecting the positions of the

best-so-far individual shows its the movements during the progress of the algorithm. Note that

in the beginning of the Simulated annealing, it is probable that the best-so-far solution is moved

into areas with lower fitness value.

The Figure 8.3 shows the progress of the best-so-far solution in the Steepest descent search al-

gorithm. The dots again represents best-so-far solution and lines represent its movement. In

contrast to the Simulated annealing the Steepest descent shows lower number of movements of

the best-so-far solution, this is caused by fact, that the best-so-far solutions are moved only if the

new states with higher fitness.

The Figure 8.4 illustrates individuals in different generations of the Differential Evolution. In

the beginning of the differential evolution, the individuals are uniformly distributed in the search

space. After 50 generations, the individuals are more close together and all are in the area with

higher fitness. Individuals in the last generation are all quite close to one of the optimal solutions.

The search space presented on the Non Linear dataset and two N-Power Calculator methods is an

example of well defined search space with distinct and well defined optima. The second example

presented here is a Imbalanced dataset with single SMOTE method applied. The SMOTE has
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Figure 8.3: Visualisation of the parameter values search space for the N-Power Calculator pre-
processing method and the Non Linear dataset. Blue marks shows positions of the best-so-far
solution of the Steepest descent search algorithm.

two parameters, so I can produce a visualisation and are displayed on the Figure 8.5.

The search space in this case is complete mess. There are no regions of the high fitness and

low fitness and the local optima are occurring at random – to be more precise they occur in

places where the SMOTE algorithm has enriched the dataset in favourable way. This means that

the fitness depends more on randomly generated new instances then on the exact value of the

parameters. To confirm this conclusion, I have repeated the fitness calculation for all points in the

search space 10 times and I have averaged obtained fitnesses. You can examine the three examples

of the original search space and averaged space on the Figure 8.5. The single search space seems

to be complete mess, but if you take a look on the averaged figure, some interesting patterns

appears. In the first place the fitness value seems to be almost constant in the whole search space.

On the left margin (for value 0,1,2,3 of the How many times enrich... parameter), the fitness is

the lower than in the rest of the search space. The similar, but less significant, pattern appears for

the Number of nearest neighbours... parameter. The fitness is lower for low, less than 10, values of

this parameter and rises slowly with higher values of the parameter. The general conclusion of this

figure for the SMOTE and the Imbalanced dataset is that the only fact which influences fitness in

any larger degree, is if I do the data enrichment or not. The exact values of the parameters does

not influence the fitness value and the fitness is much more influenced by the random process of

enriching the dataset than by the parameters.

I have added visualisation of the progress of the parameter optimisation method. The left top

image shows places visited by the Random search parameter optimisation. The top right image

shows progress of the Simulated Annealing and the bottom left shows progress of the Steepest

descent.
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Figure 8.4: Visualisation of the parameter values search space for the N-Power Calculator pre-
processing method and the Non Linear dataset. Blue marks shows positions of the best-so-far
solution of the Differential Evolution search algorithm.



66
S
E
C
T
IO

N
8.

S
E
A
R
C
H

F
O
R

O
P
T
IM

A
L
P
A
R
A
M
E
T
E
R
S

Figure 8.5: Three different visualisations of the fitness for the Imbalanced dataset and the SMOTE preprocessing method in the repetitive runs
and the average of 10 search spaces on the bottom right. The non-average examples of the search spaces also shows the progress of the parameter
optimisation methods. The top left image shows points visited by the Random Search algorithm. The top right image shows progress of the Simulated
Annealing and the bottom left shows progress of the Steepest descent.
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I have investigated more search spaces and you can examine the visualisations of search spaces

of two parameters in the Appendix B. As you may examine there, some of the search spaces are

quite well defined, with single optimum (like B.14), others has several local optima (e.g. B.32,

B.31). In yet other cases, the parameters has no effect on the fitness value (as in B.10, B.7 or most

of figures for the Missing dataset – B.1). For each figure in the Appendix B I have written the

global minimum fitness and the global maximum fitness. And you can see that in a lot of cases the

difference between minimal and maximal fitness value is significant. This means that the random

generation of values for parameters is not enough. I can, for example, remove promising sequence

of preprocessing methods just because I have randomly generated wrong values for parameters.

Therefore I need to incorporate some search for the optimal parameter values to IPT.

8.2 Comparison of the Optimal Parameter Values Search Methods

To find out the best algorithm for the job, I will compare their performance on the artificial

datasets. In this section I will demonstrate ability of optimal parameter value search methods to

find optimal values for parameters of the preprocessing methods.

8.2.1 Setup of the Experiments

For the experiments I will use the same artificial dataset as in the previous chapter. For the

experiment I will randomly select some sequences I have saved in the previous chapter during the

search for optimal sequence of preprocessing methods. And I will search for optimal parameter

values 10 times in each sequence and then I will compare performance of the search methods on

the sequnces.

I will examine the ability of the search methods to achieve the best fitness and at least 95% or 99%

of the overall best fitness1. I will also examine average improvement of the fitness by the parameter

optimisation. This will show how much the optimisation method has improved the fitness of given

sequence. The last examined parameter is the average difference between overall best fitness

achieved by any optimisation method and the best fitness achieved by given optimisation method.

This shows how much is the optimisation method able to get near the optimum.

At this moment I do not know how many optimisation steps I need to finish the search. So I will

let all search method to make 100 optimisation steps and I will restart all search methods 5 times.

More detailed discussion about this will be in the next section.

8.2.2 Results

In this subsection I will present results of the optimisation method for artificial datasets.

Missing Data dataset The Table 8.1 shows how many times each parameter optimisation

search method has won. The most successful method is the Differential Evolution, which has

1Note that the selection of the training/testing set and the model learning process contains random part in it,
so it is unlikely, that I will get exactly same numbers.
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achieved the best fitness in 297 (62.3%) cases. The second is the Steepest Descent, which achieved

the best fitness in 90 cases. If count how many times each method has achieved nearly-best

solution – 99% respectively 95% of the best fitness, the gap in performance between Steepest

Descent and the Differential Evolution vanishes and both are able to achieve high fitness in almost

equal number of cases – 408 for the Differential evolution versus 405 for the Steepest Descent.

Other two methods achieve much worse results.

Table 8.1: Shows how many time given parameter optimisation method has found the best pa-
rameter values for random sequences found for the Missing Data dataset and how many times is
was able to get anywhere near to the best values.

Search method Best fitness achieved
times

Achieved at least
95% of best fitness
times

99% of best fitness
times

Differential Evolution 297x (62.3%) 408x 429x
Random Search 41x (9%) 316x 410x
Simulated Annealing 27x (5.9%) 326x 397x
Steepest Descent 90x (19.8%) 405x 442x

The Table 8.2 shows the improvement of the fitness during the parameter optimisation. The

first column (Average fitness improvement) shows the average difference between the fitness in

the first optimisation step and fitness in the last optimisation step. In other words it shows

the average improvement of the fitness during the parameter optimisation. The higher value, the

higher improvement was achieved during the optimisation. The second column (Average difference

between method’s and global best fitness) shows how close the optimisation method is to the best

found fitness. The lower value the better. It means that the parameter optimisation method is

able to produce setup that is closer to the most optimal setup found.

The highest average improvement in the Table 8.2 shows the Random Search method, but it also

shows higher value in the average difference between method’s and global best fitness. It means

that the Random search in average has improved fitness value the most, but still it is not enough.

In average the Differential Evolution and the Steepest Descent methods are able to get very close

to the best found value2.

Table 8.2: Average improvement for random sequences for the Missing Data dataset of the fitness
during the search for the optimal parameter values and average difference between the search
method’s best fitness and the best fitness found by any search method.

Search method Average fitness improvement Average difference between
method’s and global best fitness

Differential Evolution 0.022 0.005
Random Search 0.042 0.015
Simulated Annealing 0.037 0.021
Steepest Descent 0.038 0.006

2As an reminder – the improvements are calculated for the best so far setup of parameters in each step of
parameter optimisation. But for example in Differential evolution I pick the best so far setup among 10 different
individuals, in Random Search and Simulated Annealing, there is only one individual to pick from and in Steepest
Descent I have as many individuals as there is dimensions.
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Imbalanced dataset Table 8.3 shows data for the optimal parameter search in the Imbalanced

dataset. It shows that the Differential evolution was able to find the best values for parameters in

about 60% of cases. The Steepest Descent was successful in about 183 cases, that is about 31%.

The remaining two methods has found the best values of parameters in about 8% both. On the

other hand, all search methods were able to get over 95% threshold in almost all cases. But this

may be explained by small average improvement, as shown in the Table 8.4.

Table 8.3: Shows how many time given parameter optimisation method has found the best pa-
rameter values for random sequences found for the Imbalanced dataset and how many times is was
able to get anywhere near to the best values.

Search method Best fitness achieved
times

Achieved at least
95% of best fitness
times

99% of best fitness
times

Differential Evolution
Optimisation

355x (60.7%) 456x 516x

Random Search Opti-
misation

26x (4.4%) 265x 503x

Simulated Annealing
Optimisation

21x (3.6%) 247x 502x

Steepest Descent Opti-
misation

183x (31.3%) 377x 495x

For this dataset the Table 8.4 shows that the average difference between method’s best fitness and

the best found fitness is the same for all parameter value search methods. The explanation is, that

preprocessing methods used for this dataset depends very little on parameters of preprocessing

methods (see the Appendix B). The column Average fitness improvement is a little bit more

interesting. The it shows the biggest improvements for the Simulated Annealing. But it is caused

by the fact that in the beginning the Simulated annealing generates very poor values for parameters

and then it has big room for improvement.

Table 8.4: Average improvement for random sequences for the Imbalanced dataset of the fitness
during the search for the optimal parameter values and average difference between the search
method’s best fitness and the best fitness found by any search method.

Search method Average fitness improvement Average difference between
method’s and global best fitness

Differential Evolution 0.021 0.034
Random Search 0.037 0.046
Simulated Annealing 0.047 0.046
Steepest Descent 0.038 0.046

Non Linear dataset The results for the Non Linear dataset in the Table 8.5 shows again the

Differential Evolution as the best optimisation method. It wins in more the 65% of cases. The

next in a row is the Steepest Descent but the difference is huge. Steepest descent has won only

in 20% of runs. The remaining methods – the Random search and Steepest descent shows minor

win rate.

The Table 8.6 shows the improvement of fitness of the best so far individuals. The fitness improve-
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Table 8.5: Shows how many time given parameter optimisation method has found the best pa-
rameter values for random sequences found for the Non Linear dataset and how many times is
was able to get anywhere near to the best values.

Search method Best fitness achieved
times

Achieved at least
95% of best fitness
times

99% of best fitness
times

Differential Evolution
Optimisation

304x (65.4%) 401x 434x

Random Search Opti-
misation

42x (9%) 155x 370x

Simulated Annealing
Optimisation

23x (4.5%) 154x 341x

Steepest Descent Opti-
misation

96x (20.6%) 260x 435x

ments are almost equal for the Random, Simulated Annealing and Steepest Descent parameter

optimisation methods. The Differential Evolution shows a little bit lower average improvement,

but it may be attributed to the fact, that there are several individuals in each optimisation step

(generation).

The third column (the Average difference between method’s and global best fitness) only confirms

results concluded from the Table 8.6. The lowest difference is for the Differential evolution, the

second lowest is for the Steepest descent, followed by the Random Search and the Simulated

Annealing.

Table 8.6: Average improvement for random sequences for the Non Linear dataset of the fitness
during the search for the optimal parameter values and average difference between the search
method’s best fitness and the best fitness found by any search method.

Search method Average fitness improvement Average difference between
method’s and global best fitness

Differential Evolution 0.044 0.009
Random Search 0.052 0.025
Simulated Annealing 0.055 0.032
Steepest Descent 0.053 0.013

Outlier dataset The Table 8.7 shows that the Differential Evolution search method is again

the best. Although not so superior to others as in previous datasets (won only in 54% cases), it is

still far the best method. It is again followed by the Steepest Descent, who won in 28% of cases.

The Table 8.4 again shows the average fitness improvements for all methods and also difference

between method’s and global best fitness. The highest improvement was achieved by the Differen-

tial evolution and it is in average the closest to the best found solution. Also the Steepest Descent

method is in average quite close to the best found solution. Remaining two methods are quite

behind.

The conclusion of this part is that the Differential evolution is the best in finding optimal solution.

In all datasets the Differential Evolution is able to find the best setup of parameters in more the
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Table 8.7: Shows how many time given parameter optimisation method has found the best pa-
rameter values for random sequences found for the Outliers dataset and how many times is was
able to get anywhere near to the best values.

Search method Best fitness achieved
times

Achieved at least
95% of best fitness
times

99% of best fitness
times

Differential Evolution
Optimisation

352x (54.1%) 458x 519x

Random Search Opti-
misation

75x (11.5%) 113x 395x

Simulated Annealing
Optimisation

42x (6.5%) 133x 389x

Steepest Descent Opti-
misation

181x (27.8%) 291x 519x

Table 8.8: Average improvement for random sequences for the Outlier dataset of the fitness during
the search for the optimal parameter values and average difference between the search method’s
best fitness and the best fitness found by any search method.

Search method Average fitness improvement Average difference between
method’s and global best fitness

Differential Evolution 0.12 0.021
Random Search 0.072 0.045
Simulated Annealing 0.074 0.046
Steepest Descent 0.071 0.024

half of cases. Therefore from the highest fitness point of view the Differential Evolution is clearly

the best choice. The second in row is the Steepest Descent which is also quite successful in finding

optimal or nearly optimal setup of parameters.

8.3 Minimal Length

The previous section I have examined the ability of the optimal parameter search methods to find

the best possible solution. In this section I will examine number of optimisation steps needed to

achieve the best setup of parameters. The parameter optimisation is quite time consuming and I

want to make as little optimisation steps as possible.

To examine the number of steps needed, I will examine results of the same experiment as in

previous section.

8.3.1 Results

The Table 8.9 shows results for the Missing Data dataset. In the table you can examine the

average, median and 75th percentile number of steps needed to achieve the best solution. Eg.

the median for Differential Evolution of 52 steps means that 50% of optimal parameter searches

has found the best setup in less than 52 steps and 50% of parameter searches needed more the

52 steps to find the optimal values of parameters. The value of median of 52 steps is close to
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average number of steps (51.3 steps). Similarly for the 75th percentile, the 75% of the parameter

searches have found the best setup in less then 78 steps. The similar conclusions can be drawn

for all the parameter optimisation methods in the Table 8.9. To tell the truth, these results are

in a bit disappointing. I have expected that the search algorithm will find the best setup in some

number of steps and then it will keep searching but not finding the better and better setups. But

the results in the Table 8.9 show that the sequences keep finding new and better setups.

Table 8.9: Average, median and 75th percentile number of optimisation steps to achieve the best
fitness for the Missing Data dataset.

Search method Average steps to
achieve best

Median steps to
achieve best

75 percentile of
steps to achieve
best

Differential Evolution 51.3 52 78
Random Search 49 49 75
Simulated Annealing 49.2 53 74
Steepest Descent 47 49 71

Table 8.10: Average, median and 75th percentile number of steps to achieve the best fitness for
the Imbalanced dataset.

Search method Average steps to
achieve best

Median steps to
achieve best

75 percentile of
steps to achieve
best

Differential Evolution 47.29 47 75
Random Search 46.87 44 69
Simulated Annealing 44.92 48 75
Steepest Descent 44.84 43 69

Table 8.11: Average, median and 75th percentile number of steps to achieve the best fitness for
the Non Linear dataset.

Search method Average steps to
achieve best

Median steps to
achieve best

75 percentile of
steps to achieve
best

Differential Evolution 50.56 51 74
Random Search 45.79 47 70
Simulated Annealing 41.8 39 69
Steepest Descent 44.8 41 72

Non dataset The similar conclusions may be drawn from the Tables 8.10 and 8.11 for the

Imbalanced and the Non Linear datasets. There is a small exception in the Simulated Annealing

for the Non Linear dataset. For the Simulated Annealing, the 50% of the best parameters are

found in the 39 optimisation steps. But it is connected to the fact that the Simulated Annealing

gets stuck in some local optima and can not find any better parameter values.

The only dataset where the median number of steps needed to find the best values of the parameters

is the Outlier dataset. The median for Random Search, Simulated Annealing and the Steepest

Descend is quite low as well as the 75th percentile. The reason is the shape of the parameter
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search space, which is very flat and these methods tends to quickly end in some local optima. One

of the search spaces was presented on the Figure B.26. But the Differential Evolution though it

is improving constantly is in the end able to find better solution than the other search methods.

Table 8.12: Average, median and 75th percentile number of steps to achieve the best fitness for
the Outlier dataset.

Search method Average steps to
achieve best

Median steps to
achieve best

75 percentile of
steps to achieve
best

Differential Evolution 51.9 52 78
Random Search 30.19 20 58
Simulated Annealing 27.99 10 58
Steepest Descent 32.18 24 59

To put all above results into one big picture, the Simulated Annealing finds the optimal solution

in the lowest number of optimisation steps, but also achieves the lowest performance. On the

other hand the Differential Evolution needs the highest number of optimisation steps to find the

best values for parameters. This is the most visible in case of the Outlier dataset. All methods

have median number of steps less then 25 steps and the Differential needs in average more than

50 steps. This suggests that longer the Differential evolution runs, the better solution it produce

and the Differential Evolution should run as long as possible.

One possible explanation is that the Random Search, Simulated Annealing and Steepest Descend

are stuck in local optima and are unable to get out of it because they try only positions in

neighbourhood of current setup. While the Differential Evolution still generates new setups and

from time to time finds slightly better solution. If this is true, the results of the Differential

Evolution will improve greatly in the beginning and then, after some point, the fitness improves

only little. I will test this hypothesis in the next section.

8.4 Performance of Shorter Parameter Optimisation

As stated above, I presume that the improvements in parameter setups after some point are

mainly due to random initiation of model and selection of training and testing sets. Since the

parameter optimisation is only supplement to the search for optimal preprocessing methods and

will run many times, I want to keep the parameter optimisation as short as possible. To confirm

or reject my hypothesis, I will do only 1, 10, 25 and 50 optimisation steps and I supplement results

presented above.

In this section I will not be focused on exact numbers but more on trends and I will present the

results mainly in forms of graphs.

As usually I will begin with the Missing data dataset. The figure 8.6 shows number of cases in which

given optimisation method is able to achieve the highest fitness. Eg. after 10 steps the Differential

Evolution is able to find the setup of parameters with highest fitness in 228 cases, the Random

Search is able to do the same in 176 cases, the Steepest descend in 55 times and the Simulated

Annealing won only 8 times. The figure shows the following picture: in the beginning the Random
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Figure 8.6: Illustrates number of cases in which the given parameter optimisation method is able
to find the best setup.

Search is the most successful method. As the optimisation process progresses the Differential

Evolution quickly becomes the most successful. The highest point of the most successful count

is at 50 optimisation steps. The Simulation Annealing begins to gain a little, but the difference

between these two is enormous.

The Figure 8.7 shows progress of the fitness value in relation to the initial fitness and to the best

found fitness.

On the left side it is illustrated average difference between found fitness and the best fitness value

found in all 100 optimisation steps by any method for given setup of preprocessing methods. The

ideal value is 0.0. This value means that the parameter optimisation method is able to find the

best fitness every time. The values higher than zero indicates that the method sometimes failed

to find the best fitness.

The left part of the Figure 8.7 shows very important thing, that the highest improvement is in

the beginning – in the first 10 or 20 steps. After that point the improvement rate fells. In rough

terms about a half of improvement is done in the first 20 steps.

The right side of the Figure 8.7 is another progress measure. It shows the improvement from start.

In the beginning (the first step) is zero and as the optimisation progresses and finds better and

better setups, it rises until it reaches the best fitness. All curves in the figure are averages.

The conclusions from this figure is pretty much the same as for the left part. About a half of

improvement from the start is done in first 10-20 optimisation steps. The other half of fitness

improvement is done in the remaining 80 optimisation steps.

Very similar conclusions can be stated for all remaining datasets. You can examine the graphs on

the Figures C.3, C.4, C.5, C.6, C.7, C.8, C.9,C.10 and C.11 in the Appendix C on page 162.
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Figure 8.7: Fitness improvement for the Missing Data dataset. On the left is the difference between
average fitness in given optimisation step and the best fitness ever found (Lower values are better).
On the right is the improvement of fitness from the initial value in the first step (Higher value is
better).

8.5 Conclusion

The important conclusion of this chapter is that the parameters of preprocessing methods can

affect performance of the model and so affects the fitness value.

I have tested several parameter optimisation methods and the Differential Evolution able to find

the best solution in vast majority of cases. It is not the fastest method but produce the best

results, in terms of improvement of model accuracy and in its ability to find the best solutions.
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9 Search for Sequences with Parameter Optimisation

In the previous chapter I have tested and verified the very important fact, that the parameters

of data preprocessing methods influence resulting preprocessed data and in this way influence the

fitness value – in other words they influence the accuracy of the modelling method.

The Chapter 7 presented how the search for the preprocessing methods work. In this chapter I

will put these together and I will test an ability of Inductive Preprocessing Technology to find the

best preprocessing methods for data as well as optimal parameters.

9.1 Experimental Setup

It is very time consuming to compute results for the all combinations of parameter optimisation

methods and searches for optimal preprocessing methods. Therefore I will use only Differential

Evolution for parameter optimisation and compare it to Random parameter optimisation. For

search of preprocessing methods I will use the Genetic search, Steepest Descent search and Random

search.

In contrast to the experiment conducted in the Chapter 7, values of the parameters are not hard

coded to the correct values but IPT has to find the correct parameter values itself. In the beginning

of the search for sequence of preprocessing methods, all the parameters are set to random values.

Below is description how exactly incorporate the parameter optimisation into different search

methods.

As explained in the Chapter 8 the parameter optimisation can be relatively short, because the

biggest improvement is in the beginning of the parameter optimisation. Therefore I have decided

to make only a limited number of parameter optimisation steps. This number slightly differs in

different situations and is explained below.

To test which combination works the best I will measure the achieved fitness (model accuracy) as

well as a number of the preprocessing method search steps needed to achieve the best fitness. I

will repeat each combination 10 times to confirm the results.

To demonstrate that the parameter optimisation has any real influence in IPT, I will compare

above results with an experiment, where there will be no parameter optimisation and values of

the parameters will be random constant value. Its value will be determined at moment, when the

preprocessing method and its parameters are added to the sequence of preprocessing methods.

9.1.1 Parameter Optimisation in Genetic Search

The parameter optimisation can be very naturally fitted in the mutation step of the genetic

algorithm. The only drawback is the time needed to finish the optimisation, therefore it is not

possible to optimise parameters for all sequences of preprocessing methods in all generations.

I have decided to use following rules:
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• For all Elite individuals1 I will conduct 5 steps of the parameter value optimisation.

• For newly added individuals I will conduct 20 parameter optimisation steps.

• The parameter optimisation is conducted only if the given individual is selected for mutation.

In this case I will conduct 10 steps of the parameter optimisation.

• I will conduct 10 parameter optimisation steps for all individuals in the initial population.

9.1.2 Parameter Optimisation in Steepest Descent Search

In this search method, I have decided to conduct 5 parameter optimisation steps every time the

Steepest descent test a new preprocessing method. And after the Steepest Descent decides which

preprocessing method to use, it does 10 steps of the parameter optimisation.

9.1.3 Parameter Optimisation in Random Search

I will make 10 optimisation steps in every step of search for the sequences of preprocessing methods.

9.1.4 One Random Change

Apart of the parameter optimisation as described above and in the previous chapter I have decided

to test one more ”optimisation method”. It changes a randomly values of a selected parameters.

Although it is not an optimisation method in common sense it is fast, since there are no additional

fitness evaluation, and in case of the Genetic Search very natural approach.

9.2 Results

In this section I will present the results. There are two principal questions I want to answer

by these results. First I want to know if the accuracy of the models with randomly initialised

parameters and parameter values optimisation is comparable to the accuracy of the models with

preset parameters as in the Section 7.4. The second question is speed (number of generations) of

the search for the preprocessing methods and which parameter values optimisation methods is the

fastest or produces the most reliable results.

9.2.1 Missing Data Dataset

As usual at first I will describe the results for the Missing Data dataset. The Table 9.1 summarises

the results. The table shows the achieved accuracy as well as a number of search steps needed

to find it. The ideal solution is to find the combination of the search for optimal sequence and

parameter setup optimisation method which achieves the highest fitness (accuracy) in the smallest

number of steps.

1First 5 individuals with the highest fitness. See 5.2.5 for details.
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The results in the Table 9.1 contains a mean value for each variable and a range given by 3 times

standard deviation.

As you can see in the Table 9.1 the best accuracy is achieved by the Genetic Search. The same

results as was obtained the Table 7.9 (page 53). The other two search methods had achieved

slightly worse fitness. The Steepest descend achieves fitness about 0.015 worse than the Genetic

search, that is the models achieve about 1.5% worse accuracy. The Random search is even worse.

Its fitness is lower by 0.035 or 3.5% in accuracy. The values for the Random Search with the

Differential Evolution and the Random Search with the Steepest Descent are missing because IPT

has not finished in reasonable amount of time.

The parameter optimisation methods with the Genetic Search does not affect the fitness too much.

The difference in fitness is less than 0.005. The highest fitness is achieved by Genetic Search in

combination with the Differential Evolution parameter optimisation – 0.993 and the lowest is in

combination with the Random parameter optimisation – 0.99.

Table 9.1: Missing dataset – accuracy of the model on validation part of the dataset and estimated
number of fitness evaluations needed to find the best sequence.

Search method
Parameter Optimisation Method

Differential
Evolution

Random Pa-
rameter Search

One random
change

Steepest
Descent

Best fitness
[Steps]

Best fitness
[Steps]

Best fitness
[Steps]

Best fitness
[Steps]

Random Search NA
NA

0.955 ± 0.044
[193.8 ± 72.6]

0.955 ± 0.034
[160.6 ± 229]

NA
NA

Steepest
Descend

0.976 ± 0.048
[197.6 ± 333]

0.976 ± 0.011
[176.8 ± 159]

0.977 ± 0.011
[208 ± 279]

0.978 ± 0.011
[197.6 ± 116.7]

Genetic Search 0.993 ± 0.01
[600 ± 925]

0.99 ± 0.006
[470 ± 1125]

0.992 ± 0.011
[530 ± 505]

0.991 ± 0.007
[820 ± 1725]

I have some comments on number of steps needed to find the best sequence and optimal values

of parameters. Judging from values is a little bit tricky. For the Random Search, Simulated

Annealing and the Steepest Descent searches the number of steps correspond to a number of

fitness evaluations before the best parameters are found. For the Genetic Search the Table 9.1

presents a number of generations needed to find the sequence with the highest fitness value. But

each generation consists of 50 sequences of preprocessing methods. To get comparable numbers

I have multiplied the number of generations needed to find the best setup by the number of

individuals. The number of generations are summarised in the Table 9.2. As you can see the

number of individuals evaluated by the Genetic Search is enormous and the number of steps does

not involve the number of fitness evaluations needed to optimise the parameters.

Table 9.2: Number of generations in Genetic Search needed to find the optimal setup for the
Missing data dataset.

Search method
Parameter Optimisation Method

Differential
Evolution

Random Pa-
rameter Search

One random
change

Steepest
Descent

Generations Generations Generations Generations
Genetic Search 12 ± 18.5 9.4 ± 22.5 10.6 ± 10.1 16.4 ± 34.5
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Before I will pronounce my conclusion, I have to take into account yet another two factors. The

first is the complexity of the created optimal sequence. As shown in the Section 7.5 the Genetic

Search produces the sequences with the lowest number of preprocessing methods. The other

factor is that the Random Search and in lesser degree the Steepest Descend sometimes get stuck –

precisely sometimes they produce sequences which takes a very long time to preprocess the data.

For this reason takes much longer time to finish than the Genetic Search. For example they enrich

dataset several times and then applies for example the LOF outlier detection method with O(N2)

running time.

For these reasons I pronounce the Genetic search as the best method for the Missing Data dataset.

The results of the parameter optimisation methods are quite similar. But they differ in number of

generations needed to find the best sequence. The fastest is the Random Search followed by the

One Random Change.

9.2.2 Imbalanced dataset

The results for the Imbalanced dataset are shown in the Table 9.3. As above, the Genetic Search

has achieved the highest fitness or the best accuracy. The Random search has achieved fitness

lower in average by 0.02 and the Steepest Descend in average lower by 0.01 or by 2% in accuracy

for the Random Search and by 1% for the Steepest Descend.

Table 9.3: Imbalanced dataset – accuracy of the model on validation part of the dataset and
estimated number of fitness evaluations needed to find the best sequence.

Search method
Parameter Optimisation Method

Differential
Evolution

Random Pa-
rameter Search

One random
change

Steepest
Descent

Best fitness
[Steps]

Best fitness
[Steps]

Best fitness
[Steps]

Best fitness
[Steps]

Random Search 0.913 ± 0.007
[83.8 ± 85.7]

0.918 ± 0.005
[126.6 ± 150]

0.907 ± 0.014
[33.2 ± 69.8]

0.911 ± 0.008
[81 ± 251]

Steepest
Descend

0.918 ± 0.013
[135.2 ± 289.3]

0.92 ± 0.014
[218.4 ± 182]

0.917 ± 0.008
[145.6 ± 286]

0.922 ± 0.023
[197.6 ± 229]

Genetic Search 0.94 ± 0.014
[940 ± 1575]

0.937 ± 0.008
[490 ± 1100]

0.936 ± 0.002
[210 ± 305]

0.936 ± 0.009
[580 ± 1710]

To get better impression about distribution of best fitnesses achieved by different combinations

of the sequence search methods and the parameter optimisation methods I have created boxplots

presented on the Figure 9.1. It clearly shows that the best results are achieved by the Genetic

Search method for the best sequence of preprocessing methods.

The Table 9.3 also shows the number of sequences needed to examine before the search method

finds the best setup. The observations are quite similar to the Missing data dataset presented

above. The number of sequences sequences of preprocessing methods tested and examined is the

lowest for the Random Search and the highest for the Genetic Search. In the case of the Genetic

Search the Table Table 9.3 contains estimated number of the sequences tested before the Genetic

Search finds the best sequence. The numbers were obtained as in the previous case by multiplying
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Figure 9.1: The boxplot illustrating distribution of the best fitnesses found by different search
methods for the Imbalanced dataset.

the number of generations by number of individuals in the population (in this case 50). The

number of generations is shown in the Table 9.4.

Table 9.4: Number of generations in Genetic Search needed to find the optimal setup for the
Imbalanced dataset.

Search method
Parameter Optimisation Method

Differential
Evolution

Random Pa-
rameter Search

One random
change

Steepest
Descent

Generations Generations Generations Generations
Genetic Search 18.8 ± 31.5 9.8 ± 22 4.2 ± 6.1 11.6 ± 34.2

Again the conclusions is similar to the previous section. The highest fitness (or the most accurate)

is the Genetic Search, but it needs the most steps or sequence testings to find the best sequence.

The other two search methods usually need less then a half number of steps to finish. On the

other hand the Random Search and the Steepest Descend Search sometimes get stuck and needs a

very long time to finish. Therefore the best though not the fastest method is the Genetic Search.

9.2.3 Non Linear dataset

The Table 9.5 presents results for the Non Linear dataset. The best accuracy of the Simple

Logistic Regression Classifier with validation part of the dataset is achieved by the sequence found

by the Genetic Search in combination with the Differential Evolution parameter optimisation and

the Random Parameter Optimisation. The One Random Change parameter optimisation with

the Steepest Descent achieves slightly lower accuracy. The big number of cases where IPT did

not finish in a reasonable time (two days) is caused by the fact that the Simple Linear Regression

classifier can not fit the data. Therefore the training algorithm has to finish all the training

iterations and due to enormous number of models that has to be trained IPT takes very long time

to finish.

The Table 9.6 shows number of generations needed by the Genetic Search to find the best sequence

and its parameters.
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Table 9.5: Non Linear dataset – accuracy of the model on validation part of the dataset and
estimated number of fitness evaluations needed to find the best sequence.

Search method
Parameter Optimisation Method

Differential
Evolution

Random Pa-
rameter Search

One random
change

Steepest
Descent

Best fitness
[Steps]

Best fitness
[Steps]

Best fitness
[Steps]

Best fitness
[Steps]

Random Search NA 0.873 ± 0.084
183 ± 90.4

0.898 ± 0.112
[130 ± 262]

NA

Steepest
Descend

NA 0.965 ± 0.017
[176 ± 124.8]

0.988 ± 0.016
[280 ± 233.4]

NA

Genetic Search 0.986 ± 0.028
[720 ± 955]

0.986 ± n0.02
[690 ± 695]

0.985 ± 0.006
[1025 ± 1430]

0.984 ± 0.03
[1070 ± 920]

Table 9.6: Number of generations in Genetic Search needed to find the optimal setup for the Non
Linear dataset.

Search method
Parameter Optimisation Method

Differential
Evolution

Random Pa-
rameter Search

One random
change

Steepest
Descent

Generations Generations Generations Generations
Genetic Search 14.4 ± 19.1 13.8 ± 13.9 20.4 ± 28.6 21.4 ± 18.4

9.2.4 Outlier dataset

The Table 9.7 summarises the results for the Outlier dataset. Again the highest fitness (or accu-

racy) is achieved by the Genetic Search, its outperform the Steepest Descend by about 1% to 4%

in accuracy and the Random Search by 4% to 8%.

Table 9.7: Outlier dataset – accuracy of the model on validation part of the dataset and estimated
number of fitness evaluations needed to find the best sequence.

Search method
Parameter Optimisation Method

Differential
Evolution

Random Pa-
rameter Search

One random
change

Steepest
Descent

Best fitness
[Steps]

Best fitness
[Steps]

Best fitness
[Steps]

Best fitness
[Steps]

Random Search 0.935 ± 0.04
[110.2 ± 219]

0.93 ± 0.054
[151.4 ± 228.5]

0.892 ± 0.092
[98.6 ± 158.5]

0.92 ± 0.033
[114.8 ± 269.3]

Steepest
Descend

0.951 ± 0.057
[187.2 ± 425.5]

0.963 ± 0.069
[270 ± 268]

0.932 ± 0.036
[218.4 ± 182]

0.948 ± 0.012
[260 ± 382]

Genetic Search 0.967 ± 0.036
[1320 ± 1735]

0.964 ± 0.04
[880 ± 1500]

0.973 ± 0.055
[880 ± 1275]

0.988 ± 0.022
1075 ± 1555

To get better impression about distribution of best fitnesses achieved by different combinations of

the sequence search methods and the parameter optimisation methods I have created the boxplot

presented on the Figure 9.2. In this case the Genetic Search is clearly better than the Random

Search, but in the case of the Steepest Descent the situation is not so clear and in many cases the

Steepest descent is able to find fitness value as high as the Genetic Search.

The fastest method method to find its top fitness is in general the Random Search. But its best
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Figure 9.2: The boxplot illustrating distribution of the best fitnesses found by different search
methods for the Outlier dataset. The red stripe in the middle shows the mean fitness, the blue
box covers 50% of values (range between 25th and 75th percentile) and the black lines covers range
between 5th and 95th percentile, covering 90% of values.

sequences achieves the lowest fitness in comparison to sequences found by the Genetic Search and

the Steepest descend. On the other hand the Genetic Search has found the sequences with the

highest fitness (best accuracy) but needs the most number of evaluations to find it. In contrast to

other datasets the difference in fitness is relatively high, more than 0.08 (or 8% in accuracy).

Table 9.8: Number of generations in Genetic Search needed to find the optimal setup for the
Imbalanced dataset.

Search method
Parameter Optimisation Method

Differential
Evolution

Random Pa-
rameter Search

One random
change

Steepest
Descent

Generations Generations Generations Generations
Genetic Search 26.4 ± 34.7 17.6 ± 30 17.6 ± 25.5 21.6 ± 31.1

In spite of the number of steps to finish I favour again the Genetic Search. It achieves the highest

fitness and more it finds the sequences with lower number of preprocessing methods. The other

drawback of the Random and Steepest Descent searches is that they get stuck and are not able to

finish in a reasonable time.

9.2.5 Selection of the Parameter Value Optimisation method

As shown above, there is a clear answer to the question about the best sequence search method.

In case of the parameter value optimisation method the answer is not so clear. The number

of steps and achieved fitness for all parameter value optimisation methods and all datasets are

summarised in the Table 9.9. In the Table I have highlighted the most accurate method and the

one needing the least number of individuals to optimise. The best optimisation method seems to

be the Differential Evolution and the Random Parameter Search. The fastest are the One Random

Change and the Random Parameter Search.

The thing I have completely omitted from my descriptions and calculations in this chapter is

a number of fitness evaluations and number of models trained needed to finish the parameter

optimisations. In the Random Search and Steepest descend parameter optimisation one step means
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Table 9.9: Comparison of parameter optimisation methods performance in different datasets.

Search method
Parameter Optimisation Method

Differential
Evolution

Random Pa-
rameter Search

One random
change

Steepest
Descent

Best fitness
[Steps]

Best fitness
[Steps]

Best fitness
[Steps]

Best fitness
[Steps]

Missing Data
Dataset

0.993 ± 0.01
[600 ± 925]

0.99 ± 0.006
[470 ± 1125]

0.992 ± 0.011
[530 ± 505]

0.991 ± 0.007
[820 ± 1725]

Imbalanced
dataset

0.94 ± 0.014
[940 ± 1575]

0.937 ± 0.008
[490 ± 1100]

0.936 ± 0.002
[210 ± 305]

0.936 ± 0.009
[580 ± 1710]

Non Linear
Dataset

0.986 ± 0.028
[720 ± 955]

0.986 ± 0.02
[690 ± 695]

0.985 ± 0.006
[1025 ± 1430]

0.984 ± 0.03
[1070 ± 920]

Outlier Dataset 0.967 ± 0.036
[1320 ± 1735]

0.964 ± 0.04
[880 ± 1500]

0.973 ± 0.055
[880 ± 1275]

0.988 ± 0.022
1075 ± 1555

250 fitness evaluation that corresponds to training 5000 models. In the Differential Evolution one

step means 100 fitness evaluations2 or training of 1000 models. All this takes a lot of time. In

contrast the One Random Change does no optimisation and just randomly changes the values of

the parameters. And it is still able to find setup of parameters which is quite close to the best

found fitness. Therefore I will use this parameter ”optimisation” method from now on.

9.3 Conclusion

In this chapter I have tested the selected combinations of the parameter optimisation methods

with the best sequence search methods. In the end the Genetic Search shows ability to achieve

the highest fitness. But the Random Search and the Steepest Descend are able to find their best

fitness in lower number of steps. The difference in fitness is not big. Usually it falls between 0.02

and 0.08 in accuracy of the model trained with the preprocessed validation dataset. In a view of

such a big difference in number of steps needed to find its best fitness between the Random Search

and the Steepest Descend on one side and the Genetic Search on the other, it seems reasonable

to decide to use the Random Search or the Steepest Descend and let them run longer. But there

are two powerful reasons to reject the Random Search and the Steepest Descend and favour the

Genetic Search. The first is complexity of the found sequences of the preprocessing methods. The

sequences found by the Genetic Search are much simpler than the sequences found by the Random

Search or the Steepest Descend. The difference is illustrated for example on the Figures 7.10 or

7.14. The second reason is the speed of the search. The Random Search and the Steepest Descend

tends to generate complex sequences containing a large number of the preprocessing methods and

in some cases such sequences takes a long time to preprocess the dataset. Especially when the

dataset contains a lot of instances. The Genetic Search adds or removes preprocessing methods

one by one and if a combination of preprocessing methods does not work well, it is not used

anymore. And in this way the Genetic Search can finish faster, even though it uses higher number

of the fitness evaluations.

The second concern is about the parameter value optimisation methods. As shown in the results

210 individuals in 10 generations
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Tables above, the Differential Evolution and the Random Parameter Search achieves the highest

fitness. On the other hand, they needs a lot of steps of the optimisation algorithm to finish. The

One Random Change ”optimisation” method achieves only a bit worse results and it does not

need any more fitness evaluations and thus increases the speed of IPT.

So to summarise my selections – the best search method for the best sequence is the Genetic

Search and the One Random Change for the parameter optimisation method. And I will use them

in the remaining part of my thesis.
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10 Real World Datasets for Classification

So far I have presented results the Inductive Preprocessing Technique (IPT) has achieved with the

artificial datasets. In this chapter at last I will test the technique with the publicly available real

world datasets. The reason to use the artificial datasets in the previous part of my thesis is that I

exactly know the best solution for the datasets and the datasets can be easily visualised as well.

In the case of the real world dataset the correct preprocessing as well as the visualisation can not

be always easily obtained. It is also hard to demonstrate basic properties of my technique when

it is not clear what I want to achieve.

10.1 Selected Datasets

Through this chapter I will mainly use following publicly available datasets from the UCI Machine

Learning [66] repository.

• Bank – Or the Bank Marketing dataset is related with direct marketing campaigns of a

Portuguese banking institution. The marketing campaigns were based on phone calls. Often,

more than one contact to the same client was required, in order to access if the product (bank

term deposit) would be (or not) subscribed [67]. The dataset can be downloaded from [68].

• Breast-cancer-wiskonsin – the dataset was introduced by Dr. William H. Wolberg of the

University of Wisconsin Hospitals, Madison. This dataset contains Dr. Wolberg’s medical

cases. Each patient is represents one row in the dataset. Input variables represent charac-

teristic of a cell nucleus from the mammography image. The output is a result from long

term survey and indicates if the tumour is benign or malignant. For more information see

[69, 70]. Or the web page for this dataset in the repository is [71].

• CTG – The dataset consists of measurements of fetal heart rate (FHR) and uterine con-

traction (UC) features on cardiotocograms classified by expert obstetricians[72]. Web page

is [73].

• Ecoli – the aim of this dataset is to localise original place in cell for proteins. More informa-

tion about this dataset can be obtained in [74]. Web page for this dataset at the repository

is [75].

• Glass – the task is to distinguish type of glass from the chemical analysis [76], web page in

the UCI Machine Learning repository is [77].

• Ionosphere – this radar data was collected by a system in Goose Bay, Labrador. The

targets to track by the system were free electrons in the ionosphere. ”Good” radar returns

are those showing evidence of some type of structure in the ionosphere. ”Bad” returns are

those that do not; their signals pass through the ionosphere. Instances in this database are

described by 2 attributes per pulse number, corresponding to the complex values returned

by the function resulting from the complex electromagnetic signal [78], for web see [79].
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• Parkinson – This dataset is composed of a range of biomedical voice measurements from

31 people, 23 with Parkinson’s disease (PD). Each column in the table is a particular voice

characteristic, and each row corresponds to one of 195 voice recording from these individu-

als. The main aim of the data is to discriminate healthy people from those with PD [80],

information online [81].

• Satellite – The database consists of the multi-spectral values of pixels in 3x3 neighbourhoods

in a satellite image, and the aim is to classify type of ground in the image. Web page [82]

• Segment – Or the Image Segmentation dataset contains 3x3 pixels areas from 7 different

outdoor images. The task is to identify type of texture in the pixel. The types of texture in

the images were manually assigned. See [83].

• Spambase – The collection of spam e-mails came from a postmaster and some users who

had filed spam. The collection of non-spam e-mails came from filed work and personal e-

mails, and hence the word ’george’ and the area code ’650’ are indicators of non-spam. These

are useful when constructing a personalised spam filter. One would either have to blind such

non-spam indicators or get a very wide collection of non-spam to generate a general purpose

spam filter. See web page [84].

• Steel Faults – Identifies the common problems in steel surface from the images. More

details on the dataset can be found in [85, 86]. It may be downloaded from [87].

• Wine – this dataset contains 13 chemical characteristics of different wines. The goal is to

determine into which of 3 cultivars given wine belongs [88]. Web page in UCI Repository is

[89].

There is one more dataset I will use – the Teeth Age dataset. The goal is to estimate the real age by

the state of teeth mineralisation. The input attributes are development stages of the teeth on the

both sides of the mandible [90, 91]. The dataset was provided by the Faculty of Science, Charles

University in Prague in cooperation with the General University Hospital on Karlovo Namesti,

the Motol University Hospital and the Fakultńı Nemocnice Královské Vinohrady.

The presented datasets are quite well preprocessed. Some are well known for years and were

selected for being well transformed and suitable for the most of the modelling methods and for

benchmarking purposes. This is not true for the most datasets in the real world praxis. But it

is hard to obtain permission to publish real world datasets and obtained results. For this reason

I have examined several real world datasets I have been working with. Their common problems

were missing values, big difference in number of instances in different classes, random outliers and

non-standard distribution of values.

To simulate problems the above mentioned problems in my work I have introduced these problems

into the datasets. To be more specific I have artificially damaged randomly selected attributes in

the datasets by combination of:

• adding up to 40% of missing values,

• adding outliers,
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• non-linear transformations (powers, power roots, logarithms).

The reason to combine the problems is that they do not occur separately in the commercial praxis

but always in combination.

10.2 Experimental Setup

To be able to prove correctness of the best found sequence of preprocessing methods I will divide

each dataset into two parts – the training part and the validation part. These has the same

reason as in machine learning field. The training part is used to find the best sequence by IPT

and the validation part is to check that the found sequence really improves accuracy of the model

even on the unknown data with the same properties and the sequence is not ”overfitted”.

I will continue to use both models – the logistic regression classifier and the J48 decision tree – and

I will demonstrate the difference in the preprocessing methods needed to find the most accurate

model. I will repeat the search for the best sequences of preprocessing methods 20 times and I

will choose the best one among them.

To prevent the classifier overfitting I have set the splitmin parameter of the J48 Decision Tree to

10% of each training dataset before preprocessing.

10.2.1 Post Processing

As shown in the chapter 7, the Genetic search produces fairly clean sequences, but still there can

be preprocessing methods that has only a small effect on accuracy of the classifier or the sequence

preprocesses the attribute that is not used by it. This may happen because of cross over or

mutation operations in the few last generations. In this case the genetic search has no time to get

rid of these preprocessing methods. Such methods then complicate the understanding what the

sequence really does. For this reason I have implemented a simple post processing function to test

if it is possible to remove a preprocessing method from the sequence. The post processing tries to

disable one preprocessing method after another and tests if the fitness value of the sequence fells

below a threshold. If it does not, the preprocessing method does not help to improve the accuracy

and remains disabled.

10.3 Results

In this section I will present the results achieved by IPT on real world datasets. In the beginning

I will present an accuracy of the models trained on the original (not preprocessed) datasets and

I will compare their the accuracy to the models trained with the data preprocessed by the best

sequences found by IPT. Later I will describe the best found sequences and I will show how the

sequences improved the models.

The Table 10.1 presents accuracy of models for all real world datasets. The accuracies are measured

on both – datasets preprocessed with the best sequences found by IPT and original datasets

without preprocessing. The accuracy for the original dataset was obtained by 20 repetitive training
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Table 10.1: Comparison of an accuracy of the models on (original) not preprocessed dataset and
preprocessed by the best sequences found in repetitive runs of IPT.

Dataset name
J48 Decision Tree Simple Logistic Regression

Classifier
Not Pre-
processed
Dataset

Best Pre-
processed
Dataset

Not Pre-
processed
Dataset

Best Pre-
processed
Dataset

Bank 0.884 0.884 0.883 0.884
Breast Cancer Wis-
consin dataset

0.913 0.975 0.92 0.928

CTG dataset 0.81 0.838 0.887 0.905
Ecoli dataset 0.854 0.884 0.818 0.885
Glass dataset 0.43 0.487 0.554 0.603
Ionosphere dataset 0.763 0.814 0.885 0.895
Parkinson dataset 0.769 0.781 0.795 0.826
Satellite dataset 0.498 0.695 0.728 0.76
Segmentation
dataset

0.401 0.791 0.686 0.702

Spambase dataset 0.734 0.8 0.848 0.864
Steel Faults dataset 0.437 0.498 0.639 0.654
Teeth Age dataset 0.689 0.747 0.648 0.751
Wine dataset 0.842 0.913 0.787 0.926

of the models. The accuracy for the preprocessed dataset is an average of fitnesses of the best

sequences found in 20 repetitive runs of IPT. To give better impression about the differences in

accuracy between the model with original and preprocessed datasets I have created a boxplot for

each dataset and model. The boxplots for all datasets and the J48 Decision Tree are shown on

the Figure 10.1. The Figure 10.2 shows the boxplots for the Simple Logistic Regression Classifier

with the preprocessed and the original datasets.

The Table 10.1 and the Figures 10.1 and 10.2 show that IPT is able to find sequences which

transforms a dataset in a form that is easier for the modelling methods.

The improvement in accuracy of the model typically lies somewhere between 5% and 10 %. But

exceptions exists in both directions. The worst performance IPT shows on the Bank dataset. In

this case the accuracy is not improved at all. IPT is unable to find sequence which improves the

accuracy neigther for the J48 model nor for the Simple Logistic Regression model, this suggest

that the models perform with the original (not preprocessed) Bank dataset in the best possible

way. The accuracy improvement for the Parkinsons dataset and the J48 classifier is also minimal

but at least the average accuracy of the model with preprocessed dataset is a bit higher than the

accuracy for the original dataset. The last case with the minimal improvement is the Ionosphere

dataset with the Simple Logistic Regression classifier – in this case IPT has found a sequence of

the preprocessing methods which improve accuracy of the model by about 1.5%.

The opposite extreme represents the Segment dataset with the J48 Decision Tree. In this case

the accuracy was improved by about 39%. The second highest improvement was achieved for the

Wine dataset with the Logistic Regression Classifier. The accuracy improvement is about 15%.

The accuracy improvement for other datasets is lower than 10%.
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Figure 10.1: Comparison of the accuracies of the J48 Decision Tree. There are two boxes for
each dataset. One is marked as Original and represents accuracy with original (not preprocessed)
dataset. The second is Preprocessed and shows accuracy of models with dataset preprocessed with
the best sequences found by IPT.

10.4 Results for Selected Sequences

In the previosous text I have illustrated the ability of IPT is find the sequences of preprocessing

methods that transform the datasets in such way that model trained with the transformed datasets

are more accurate than the models with the original datasets. In this section I will discuss results

on the selected datasets and sequences in grater details. The sequences found by IPT for remaining

datasets are presented in the Appendix D on the page 168.

10.4.1 Glass dataset and J48 Decision Tree

The first dataset I want to present is the Glass dataset. Accuracy of the J48 Decision Tree model

with the non preprocessed dataset is about 43%. The improvement in accuracy of the model

preprocessed by the best sequences found by IPT (Seq 05) is about 5% – that is the model with

preprocessed dataset has accuracy slightly higher than 48%1.

The Figure 10.3 shows the boxplots for the all 20 best sequences found in all repetitive runs. The

label on the left side of the figure indicates the ID of the run in which the sequences were found.

The sequence with the highest fitness Seq05 indicates that the fifth run of IPT has found the best

sequence with the highest fitness among all best sequences found in all repetitive runs of IPT. The

best sequences found in the individual runs on the Figure 10.3 are sorted according to their mean

fitness, sequences with higher fitness are at the bottom. The value at the very bottom represents

an accuracy of the J48 model with the original dataset and is here mainly for easier comparison.

1There are six classes in the dataset.
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Figure 10.2: Comparison of the accuracies of the Simple Logistic Regression. There are two
boxes for each dataset. One is marked as Original and represents accuracy with original (not
preprocessed) dataset. The second is Preprocessed and shows accuracy of models with dataset
preprocessed with the best sequences found by IPT.

Figure 10.3: Accuracies of J48 Decision Tree classifiers trained on validation Glass dataset. The
validation dataset was preprocessed by the best sequences of preprocessing methods found in 20
repetitive runs of IPT. Sequences are sorted by mean accuracy of ”their” models. For easier
comparison the boxplot representing accuracies of model trained with original validation dataset
is on the bottom of the figure.



SECTION 10. REAL WORLD DATASETS FOR CLASSIFICATION 91

Mg

<= 13.641

Al

<= 0.358

windows float

> 0.358

windows non float

> 13.641

headlamps

Mg

<= 5.019

Al

<= 0.344

windows float

> 0.344

Mg

<= 0.106

windows non float

> 0.106

windows float

> 5.019

headlamps

Figure 10.4: Decision trees created for classification of the original Glass dataset on the left and
for the preprocessed Glass dataset by the sequence Seq05 on the right.

Figure 10.5: Scatter plot for the original Glass dataset at the top and preprocessed (in the bottom)
Glass dataset dataset.

The sequence Seq05 with the highest fitness is quite lonely in its performance, the other runs of

IPT has failed to find sequences which could improve the accuracy of the model over the accuracy

of the model with the original dataset.

You can examine all the best sequences found in repetitive runs on the Figure 10.6. The sequences

are again sorted according to their fitness, but in this case the sequences with the higher fitness

are at the top. The comparison of the two sequences with the highest fitness shows that the

transformation of the third attribute – the Mg – may be important. Both sequences use the
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Nearest Neighbour Missing Value Imputer preprocessing method which replaces missing values

with a mean of values from nearby instances. The both sequences significantly differ in a number

of nearest instances to use. The sequence Seq05 uses 10 nearest instances and the Seq09 uses

3 nearest. I believe that this is a property of this particular dataset and if I add some new

instances, the fitness will be lower. But nevertheless it is a property of the dataset and it leads

to the improvement of the fitness. It also shows that the one random mutation approach to the

optimisation of parameters does not guarantee that the best parameters of preprocessing methods

are always found.

The Figure 10.4 shows two J48 Decision Trees. The tree on the left side is generated from the

original, not preprocessed, dataset and the tree on the right was generated from the dataset

preprocessed by the Seq05. Both trees have the Mg attribute in the root, but the tree for the

preprocessed dataset on the right uses different values and the learning algorithm then divides the

rightmost note in the tree by the values of the Mg attribute.

The last Figure 10.5 shows the scatter plot of the attributes used in the decision tree. The upper

scatter plot represents the original dataset without any preprocessing, while the bottom scatter

plot represents the preprocessed dataset. The plot for the original dataset is missing some dots –

the ones with missing values in at least one of the Mg or Al attributes. This is also the reason

why the decision tree for the original dataset is one node shorter. The decision tree for the dataset

preprocessed by the sequence Seq05 has missing values replaced. And the imputed values, thanks

to other values in the dataset, puts the instances into places where they may be correctly classified.
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Figure 10.6: The best sequences found in repetitive runs of IPT for the Glass dataset and the J48 Decision Tree.
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10.4.2 Segment dataset and J48 Decision Tree

Figure 10.7: Accuracies of J48 Decision Tree classifiers trained on the validation Segment dataset.
The validation dataset was preprocessed by the best sequences of preprocessing methods found in
20 repetitive runs of IPT. Sequences are sorted by mean accuracy of ”their” models. For easier
comparison the boxplot representing accuracies of model trained with original validation dataset
is on the bottom of the figure.

This subsection discusses the Segment dataset with the J48 Decision Tree. I will again start with

the Figure 10.7. This figure illustrates fitness of all the best sequences found by all 20 repetitive

runs of IPT. The sequences with the highest fitness are again in the bottom. On the very bottom,

denoted as No Prep, is accuracy of the J48 model trained with the original dataset. The situation

here is better and in the case of the Glass dataset. The sequence with the highest fitness is closely

followed by other sequences with lower but similar fitness. It seems that the sequences up to

Seq16 should be similar, at least they achieve very high fitness.
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Figure 10.8: The best sequences found in repetitive runs of IPT for the Segment dataset and the J48 Decision Tree.
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The Figure 10.8 shows the sequences in details. In the number of attributes and subsequences in the

sequences, it is hard to find similar preprocessing methods. But at least the first two sequences, the

Seq12 and the Seq04, with the highest fitness value transform the hue mean attribute (second

from the right), which is important for the construction of the decision tree. Both sequences uses

the Nearest Neighbour Value Imputation method, but they differ in parameters. The Seq12 uses

also another preprocessing methods to transform the hue mean attribute. Unfortunately they

are all treating missing values which have been removed by the first of the preprocessing methods,

therefore they have no effect on the dataset. The main difference between the first two sequences

is the treating the rawblue mean attribute. While the Seq12 is transforming this attribute with

the Nearest Neighbour Value Imputation preprocessing method the Seq04 is not transforming it

at all and is transforming another attributes.

region centroid row

<= 418610

intensity mean

<= 31.63

hue mean

<= 0.129

foliage

> 0.129

brickface

> 31.63

sky

> 418610

grass

rawblue mean

<= 36.222

hue mean

<= 1.146

hue mean

<= 0.241

hue mean

<= −0.0194

foliage

> −0.0194

window

<= 0.241

bickface

> 1.146
grass

> 36.222

value mean

<= 4.5

region centroid row

<= 3.253

cement

> 3.253

path

> 4.5

sky

Figure 10.9: Decision trees created for classification of the original Segment dataset on the left
and for the preprocessed Segment dataset by the sequence Seq12 on the right.

The Figure 10.9 shows the decision trees for the original dataset (on the left) and the dataset

preprocessed by the Seq12. The treating of missing values in the rawblue mean and the change

in mean and scale in the hue mean attribute allows the training algorithm of the J48 Decision

Tree create much more accurate tree.

The Table 10.2 shows the confusion matrix for the model trained with the original, not prepro-

cessed, dataset on the left and the model trained with the dataset preprocessed by the sequence

Seq12 on the right. The rows represent real classes and the columns predicted classes. The inter-

section of a row and a column then show the number of instances of one of real classes which were

classified as a class. For example the number 178 in the top left cell tells that the 178 instances

which belong in reality to brickface class were (correctly) classifier as brickface class. The number

55 just left to the 178, tells that the 55 instances of the brickface class were (incorrectly) classified

as sky class.
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Table 10.2: Confusion matrices for the Segment and the J48 decision tree.
Original dataset Preprocessed dataset
Classified as Classified as

b
ri

ck
fa

ce

sk
y

fo
li

ag
e

ce
m

en
t

w
in

d
ow

p
a
th

gr
a
ss

In
re

a
li

ty

b
ri

ck
fa

ce

sk
y

fo
li

ag
e

ce
m

en
t

w
in

d
ow

p
a
th

gr
a
ss

178 55 0 0 75 0 0 brickface 295 0 0 6 7 0 0
1 236 74 0 0 0 0 sky 0 311 0 0 0 0 0
12 59 179 0 53 0 0 foliage 10 0 207 16 70 0 0
45 199 46 0 6 3 4 cement 5 2 3 237 26 29 1
68 50 119 0 65 0 0 window 58 0 45 10 189 0 0
16 97 13 0 4 76 100 path 0 0 0 71 4 231 0
82 17 1 0 26 98 80 grass 2 0 1 0 0 0 301

If you compare the both sides of the confusion matrix, the difference is enormous. The confusion

matrix on the left side for the original dataset shows very many misclassifications and the cement

class is completely ignored. The confusion matrix on the right side look much better. The most

of the instances are correctly classified and the cement class is classified.

The last thing I want to show here are the scatter plots for the original and the preprocessed

datasets. The scatter plots are shown on the Figure 10.10. The decision tree for the original

dataset uses mainly the Intesity mean and Region centroid row which do not discriminate the

classes well and the use of the hue mean attribute can not save the situation. On the other

hand the transformed attributes of the preprocessed dataset allows the training algorithm to use

attributes which discriminate the classes much more clearly.
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Figure 10.10: Scatter plot for the original (on the left) Segment dataset and preprocessed (on the
right) Segment dataset dataset.



SECTION 10. REAL WORLD DATASETS FOR CLASSIFICATION 99

10.4.3 Spambase dataset and J48 Decision Tree

Figure 10.11: Accuracies of J48 Decision Tree classifiers trained on validation Spambase dataset.
The validation dataset was preprocessed by the best sequences of preprocessing methods found in
20 repetitive runs of IPT. Sequences are sorted by mean accuracy of ”their” models. For easier
comparison the boxplot representing accuracies of model trained with original validation dataset
is on the bottom of the figure.

The last dataset to describe in combination with the J48 Decision Tree is the Spambase dataset.

This dataset present a typical situation where the accuracy of the J48 model is improved only by

7%. Again at first the Figure 10.11 shows fitness values for all the best sequences found in all 20

runs of IPT and at the bottom shows the accuracy of the J48 model for the original dataset. The

best of sequences is the Seq10. The model trained from the dataset preprocessed by this Seq10

achieves accuracy about 7% higher than the model with the original dataset. The Figure 10.14

shows the best sequences of found in repetitive runs of IPT.

char freq DOLAR

<= 0.029

Not Spam

> 0.029

Spam

word freq remove

<= −6.079

word freq make

<= −1.93

Spam

> −1.93

Not Spam

> −6.079

Spam

Figure 10.12: The J48 JDecision trees created for classification of the original Spambase dataset
on the left and for the preprocessed Spambase dataset by the sequence Seq10 on the right.

The Figure 10.12 shows difference between the decision tree for the original dataset on the left

and the decision tree for the preprocessed dataset on the right. For the original dataset the J48

training algorithm is able to use only the char freq DOLAR. After the preprocessing the decision
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tree is much bigger. The accuracy is not improved too much, but still the more complex decision

tree improves the accuracy by 7%. The decision tree for the preprocessed dataset uses frequencies

of words remove and make to achieve better fitness.

Table 10.3: Confusion matrices for the Spambase and the J48 decision tree.
Original dataset Preprocessed dataset
Classified as Classified as
Spam Not spam In reality Spam Not spam
641 1036 Spam 1249 456
136 2436 Not spam 385 2239

The Table 10.3 shows the confusion matrix for both the original and the preprocessed dataset.

The decision tree for the original dataset is very bad for classifying spam. The almost two thirds

of spam is classified as normal emails. Only few normal emails are classified as spam. The picture

for the preprocessed dataset is different. The spam and normal emails are generally far better

recognised. But the number of emails incorrectly classified for the spam and normal emails is

almost equal.

The 10.13 shows the scatterplot in the most important input attributes and you may check how

the decision trees divide the space.
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Figure 10.13: Scatter plot for the original (on the left) Spambase dataset and preprocessed (on
the right) Spambase dataset dataset.
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Figure 10.14: The best sequences found in repetitive runs of IPT for the Spambase dataset and the J48 Decision Tree.



SECTION 10. REAL WORLD DATASETS FOR CLASSIFICATION 103

10.4.4 CTG and the Simple Logistic Regression Classifier

This section open description of the datasets with the Simple Logistic Regression Classifier. The

first to describe is the CTG dataset. As shown on the Figure 10.15 more than a half of the

sequences found by IPT are better than the accuracy for the original dataset. But the best of

them Seq05 improves the accuracy only by about 2%. This is not much but the difference is

statistically significant.

Figure 10.15: Accuracies of Simple Logistic classifiers trained on validation CTG dataset. The
validation dataset was preprocessed by the best sequences of preprocessing methods found in 20
repetitive runs of IPT. Sequences are sorted by mean accuracy of ”their” models. For easier
comparison the boxplot representing accuracies of model trained with original validation dataset
is on the bottom of the figure.

The Figure 10.17 shows all the best sequences found by IPT. The sequence Seq05 does not

transforms too many attributes. The only ones the Seq05 preprocess are the Width, the AC

and the UC.

The Figure 10.16 shows equations representing the models for original dataset on the left and for

the preprocessed dataset on the right. In contrast to the J48 models presented above, it is much

harder to analyse changes in the Simple Logistic Classifiers. There is only some comments I can

make in connection with the analysis of Seq05 sequence. The UC does not appear in any of

formulas representing the model (see the Figure 10.16) and I regard it as useless. The Width

attribute does appear in the formula for the Class 2. But the most important of these three is the

attribute AC. This attribute is not present in the formulas for the original dataset and is present

in all formulas for the preprocessed model. More the Seq05 applies non-linear transformation

on the AC attribute. Since it had non-linear character, it was useless for the Simple Logistic

Classifier, but after transformation it introduce new information which add some percentages to

accuracy.
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Class 0 :−2105.79−1.21[ASTV ]+1.2[MSTV ]−
0.99[DP ] + 0.68[Width] + 425.53[A] + 1.38[D] +
2.18[AD] + 0.3[DE]− 4.81[FS]

Class 1 :−3055216869166.34 − 0.93[LB] +
1.29[ASTV ] − 0.7[MSTV ] + 0.02[MLTV ] +
0.15[DP ] + 3866482157.21[DR] − 0.27[Width] +
4.2[Median] − 369.41[A] − 2.53[D] + 2.03[E] −
0.75[AD]− 13.88[FS]

Class 2 : 635.81 + [ASTV ] − 0.23[MSTV ] −
0.15[MLTV ] + 0.52[DP ] − 0.04[Mean] −
10.68[Median]−113.9[A]−4.87[AD]−4.43[DE]−
0.02[LD] + 45.48[FS]

Class 0 : −1188.29 − 0.94[LBE] + 0.52[AC] −
1.19[ASTV ] + 1.24[MSTV ] − 1.03[DP ] +
0.53[Width] + 0.01[Mean] + 239.62[A] +
0.59[D]− 0.26[E] + 2.53[AD] + 0.87[DE]

Class 1 : 3372.23 + 3.16[LBE] − 1.85[LB] −
0.62[AC] + 1.1[ASTV ] − 0.13[MSTV ] +
0.36[DP ] − 0.39[Width] + 1.67[Median] −
677.18[A] − 2.43[D] + 1.47[E] − 0.26[DE] +
0.01[LD]− 11.19[FS]

Class 2 : 1903.31 − 0.52[AC] + 0.94[ASTV ] −
0.17[MLTV ] + 0.54[DP ] − 0.01[Mean] −
8.48[Median]−370.69[A]−4.29[AD]−4.73[DE]−
0.03[LD] + 37.98[FS]

Figure 10.16: Equations created for classification of the original CTG dataset on the left and for
the preprocessed CTG dataset by the sequence CTG on the right.

Table 10.4: Confusion matrices for the CTG and the Simple Logistic classifier.
Original dataset Preprocessed dataset
Classified as Classified as
Normal Suspect Patologic In reality Normal Suspect Patologic
1464 28 5 Normal 1466 24 7
98 165 3 Suspect 47 210 9
18 21 114 Patologic 17 15 121

The Table 10.4 shows the confusion matrices. For the model with the original dataset on the

left and for the preprocessed dataset on the right. The differences are not big. The biggest

improvement is in the suspect class where additional 45 instances is correctly classified. In total

there are 54 more instances correctly classified. This is not big number but since here we talk

about application in medicine, specifically about delivering babies, every small improvement in

accuracy helps.
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Figure 10.17: The best sequences found in repetitive runs of IPT for the CTG dataset and the Simple Logistic.
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10.4.5 Ecoli and the Simple Logistic Regression Classifier

Figure 10.18: Accuracies of Simple Logistic classifiers trained on validation Ecoli dataset. The
validation dataset was preprocessed by the best sequences of preprocessing methods found in 20
repetitive runs of IPT. Sequences are sorted by mean accuracy of ”their” models. For easier
comparison the boxplot representing accuracies of model trained with original validation dataset
is on the bottom of the figure.

The EColi dataset with the Simple Logistic Classifier represents another case with typical im-

provement in model accuracy. In this case the improvement is about 6%. You can examine the

performance of the sequences found by IPT on the Figure 10.18. The best of the is Seq07. But

the Seq15 and Seq14 are very close to the Seq07 and infact it seems that the differences between

them are statistically insignificant.

The Figure 10.20 shows the found sequences in details. The sequences with the highest fitness – the

Seq07,the Seq15 and the Seq14 are shown at the top. Their common sign is the transformation

of the alm1 attribute, the third from the right. All three sequences use methods treating missing

data but since there are no missing values, they have no effect. What has effect, is the N-th Power

Calculator method, the non-linear transformation. The sequences calculates 14th, 15th and 17th

power roots which makes them successful.

The Figure 10.19 shows equations for the original and the preprocessed datasets. But the changes

between them are only small and it is hard to identify ones caused by different initiation and the

ones caused by the transformed dataset. The biggest change is in the equation for the Class 2.

This is probably caused by the dataset transformations. I have two reasons for this – the first one

is that the structure of the equation has changed and now uses the transformed alm1 attribute.

The other reason lies in the confusion matrix in the Table 10.5. The equation for Class 2 assigns

instances into the IM class which shows the biggest change in numbers – see the Table 10.5.
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Class 0 : 5.67 − 1.59[mcg] − 11.28[gvh] −
12.38[aac] + 0.44[alm1]

Class 1 :−1.53 + 2.51[mcg] + 6.33[gvh] −
1.14[chg]− 8.53[aac]− 0.26[alm1]

Class 2 :−7.72 + 6.15[chg] + 4.71[aac] −
0.36[alm1] + 14.86[alm2]

Class 3 :4.58+5.49[mcg]+3.62[lip]+11.24[aac]−
12.62[alm2]

Class 0 :−62.22 − 6.45[mcg] − 3.03[gvh] −
19.99[aac] + 62.07[alm1] + 3.82[alm2]

Class 1 :−1.77 + 3.47[mcg] + 5.46[gvh] −
1.78[chg]− 13.61[aac] + 2.88[alm1]− 3.02[alm2]

Class 2 :88.99 + 6.53[chg]− 95.82[alm1]

Class 3 :49.81 + 6.22[mcg] + 17.52[aac] −
46.33[alm1]− 15.43[alm2]

Figure 10.19: Equations created for classification of the original Ecoli dataset on the left and for
the preprocessed Ecoli dataset by the sequence Ecoli on the right.

Table 10.5: Confusion matrices for the Ecoli and the Simple Logistic classifier.
Original
dataset

Preprocessed
dataset

Classified as Classified as

C
P

P
P

IM O
M

In
re

al
it

y

C
P

P
P

IM O
M

68 1 1 1 CP 70 1 0 0
3 19 2 1 PP 5 18 2 0
6 2 45 0 IM 0 3 49 1
2 4 0 7 OM 0 4 2 7
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Figure 10.20: The best sequences found in repetitive runs of IPT for the Ecoli dataset and the Simple Logistic.
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10.4.6 Wine Dataset and the Linear Logistic Regression

The last dataset I want to present here is the Wine dataset. Ihe IPT has improved the accuracy

by about 12%. The absolute value of the improvement is a bit tricky because there are not that

many instances in the validation part of the dataset, see the confusion matrix in the end of this

section. But first, the Figure 10.21 show the fitness values for all the sequences found by IPT

in all 20 runs. The best of them is the Seq06. All other sequences improve the accuracy of the

model as well but in lesser degree.

Figure 10.21: Accuracies of Simple Logistic classifiers trained on validation Wine dataset. The
validation dataset was preprocessed by the best sequences of preprocessing methods found in 20
repetitive runs of IPT. Sequences are sorted by mean accuracy of ”their” models. For easier
comparison the boxplot representing accuracies of model trained with original validation dataset
is on the bottom of the figure.

Class 0 : −29.19 + 1.95[Alcohol] −
1.1[Nonflavanoid phenols] +
0.92[OD280 OD315]

Class 1 : 70.09 − 4.34[Alcohol] − 12.47[Ash] −
0.41[Color intensity]

Class 2 : 4.62 − 2.21[Proanthocyanins] +
710.33[Hue]− 0.57[OD280 OD315]

Class 0 : −52.81 + 4.09[Alcohol] −
1.15[OD280 OD315 bin 0] +
1.16[OD280 OD315 bin 1]

Class 1 : 101.6− 7.06[Alcohol]− 13[Ash]

Class 2 : 5.85−1.1[Flavanoids]+200.28[Hue]−
1.21[OD280 OD315]

Figure 10.22: Simple Logistic classifier created for classification of the original Wine dataset on
the left and for the preprocessed Wine dataset by the sequence Seq06 on the right.

All the sequences of the preprocessing methods found by IPT are shown in the Figure 10.23. All the

sequences with the highest fitness value transforms the Flavanoids attribute. The transformation

is a non linear Square Root Calculator or N-th Power Calculator respectively. Both of them

do similar thing – calculate the power roots. The Square Root Calculator calculates only the
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second power root. The N-th Power Calculater has a parameter which tells which power root to

calculate. In case of this particular dataset, it calculates power roots between 3rd and 6th. The

other preprocessing methods are not present in all the sequences and therefore they do not have

so strong influence on the accuracy of the model.

The Figure 10.22 shows the models for the original dataset and the dataset preprocessed by the

Seq06. The biggest change in the structure of the model is in the equation for the Class 0 and

Class 2. The transformed Flavanoids attribute is used in the equation for the Class 2. Also the

equation for the Class 0 uses the transformed attribute – the discretised OD280 OD315 attribute

to be specific.

Table 10.6: Confusion matrices for the Wine and the Simple Logistic classifier.
Original dataset Preprocessed dataset
Classified as Classified as
Class 1 Class 2 Class 3 In reality Class 1 Class 2 Class 3
29 1 0 Class 1 30 0 0
4 35 3 Class 2 2 39 1
2 6 13 Class 3 1 1 19

The Table 10.6 shows the confusion matrix for Simple Logistic Classifier trained with the original

and transformed datasets. The differences between the matrices are small in absolute numbers but

because the size of the dataset itself is small, the small changes mean the big relative improvement.

The highest improvement in the number of correctly classified values is in the Class 2. Equation

for this class is the one which uses the transformed Flavanoids attribute and in this way confirms

the supposition that the non linear transformation of the Flavanoids dataset leads to the improved

accuracy.
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Figure 10.23: The best sequences found in repetitive runs of IPT for the Wine dataset and the Simple Logistic.
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10.5 Conclusion

This chapter presents core results of my thesis – the performance of IPT with the real world data.

I have used 13 publicly available datasets from the UCI Machine Learning Repository. Unfor-

tunately these datasets are very well prepared for the data mining and many people made their

best to transform so the data mining methods has the highest possible accuracy. For this reason

I have damaged the datasets with additional transformations. These transformations have intro-

duced missing values, different ranges, outliers and non-linear characteristics of the data. These

misshapen datasets are referenced throughout this chapter as the original or not preprocessed

datasets. This misshapen datasets are then used as the input for the Inductive Preprocessing

Technology.

In almost all cases I am able to improve the accuracy of models only by the transforming the

misshapen datasets. The typical improvement in accuracy of the model is about 5% to 10%, but

there are exception in both directions. The worst dataset is the Bank dataset which I am unable to

improve at all. The other extreme it the Segment dataset with the J48 Decision Tree. For selected

datasets I have also discussed the sequences found by IPT. In addition I have compared the models

for the original, not preprocessed, dataset with model for the transformed (preprocessed) dataset

and I have tried to identify preprocessing methods which improved the accuracy of the model.

The sequences found IPT and the boxplots showing their fitness for the remaining datasets and

models are shown in the Appendix D on page 168.
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11 Use of Meta Data to Speedup the Search

Until now, when the Inductive Preprocessing Technique started with a new dataset, it has to start

with a set of random sequences as it has no knowledge about the dataset. It has to undergo

the whole process of search of the best sequence of the preprocessing methods as described in

previous chapters. When I have preprocessed some datasets, I have gained some knowledge about

the dataset properties (meta data) and used preprocessing methods. I suppose that for similar

datasets, similar preprocessing methods will be useful. And I can use this information to guide

or speedup IPT. Therefore I will store and reuse the knowledge about the datasets I have pre-

processed. In other words, when IPT preprocesses a dataset, it also store its meta data (dataset

properties) and used preprocessing methods to the meta database (See the Chapter 6 for exact

algorithm).

At first I will discuss following – if I can find rules when to preprocess an attribute or even

which preprocessing method to used. If I am able to find at least one positive answer, it could

mean a great speed up of IPT. If I am able to find which attributes I should not preprocess,

I can omit these attributes for IPT and in this way I can limit the search space for the search

for preprocessing sequences. If can even create successful rules identifying when to use specific

preprocessing method, I can put such method to a subsequence of even I can omit IPT entirely

and I can use the rules to directly generate the best sequences of preprocessing methods.

The second experiment will show different approach. I will use the sequences stored in the meta

database to generate a new initial population for IPT. I expect that IPT should take an advantage

of these generated sequences and should find the best sequence in lower number of steps.

11.1 The Experiments and their Setup

I have build the meta database from the training parts of the same datasets I have used in the

previous chapter. For each attribute I have added to the meta database three subsequences from

the sequences with the highest fitness. To describe the dataset, or more precisely its attributes, I

will use the meta data described in the Chapter 6. Shortly the meta data are following:

• information entropy in the attribute,

• value range in the attribute,

• number of output classes,

• ratio between the most and the least numerous output class,

• portion of missing values in %,

• sample mean in the attribute,

• sample variance in the attribute,

• sample skewness in the attribute,
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• average absolute correlation of the attribute to the classes,

• accuracy of the J48 decision tree classifier using only the attribute,

• accuracy of the simple logistic regression classifier using only the attribute.

There are the four experiments I would like to present in this chapter. In the first experiment

I will try to find out if I can find rules when to use some preprocessing method.

The second experiment should demonstrate that the selected meta data and distance measure

are able to define distance of attributes properly. The next step in this experiment will be to

generate new sequences of preprocessing methods from the meta-database and I will calculate

accuracy of the generated sequences and to find out if these sequences are comparable in accuracy

of models to the sequences found by IPT.

To do the third experiment I will again transform the original data with different setup and I

will try to find out how many attributes are similar to their previous versions. And again I will

also generate sequences of preprocessing methods from the meta database. Later I will calculate

accuracy of the sequences and I will compare them to accuracy of models with the original dataset.

The fourth experiment is about the ability of the meta database to generate sequences for

datasets that were not seen before. I will introduce yet new datasets – the Credit Approval

[92, 93], Heart Disease [94, 95], Indian Liver Patient [96, 97] and Pima Indian Diabetes [98, 99])

datasets from the UCI Machine Learning repository [66]. I will again add some missing values

and outliers and so on and I will test if the meta database can supply sequences of preprocessing

methods which works well with completely unknown datasets. And in the end I will test if the

sequences produced by the meta database can speed up IPT, that is if IPT with generated initial

population can achieve the similar fitness on lower number of steps. I will produce 10 sequences

and I will put them into the initial population of the genetic search of IPT. I will IPT to run for 10

generations and I will repeat 20 runs as in the previous chapter. And I will compare the achieved

results with the results achieved by IPT starting from the random initial population and running

for 50 generations.

11.2 Building Rules for Selecting Preprocessing Methods

In this section I will try to find the rules when to apply a preprocessing method based on the

attribute’s metadata. The reason to try this is further possible speed up of IPT or even possibility

to skip it. If I could predict which attribute IPT should concentrate on and which to ignore, it

would narrow the search space and would be great help to the search method for sequences of

preprocessing methods and the resulting sequence of preprocessing methods will be even simpler.

11.2.1 Clustering Analysis of Meta Database

At first I will present results of a clustering analysis. The reason to use the clustering analysis is

to test if the meta data has sufficient power to discriminate attributes with different properties. I

will use the SOM map [100] as a clustering analysis.
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The visualisation of the clustering analysis, SOM map, is shown on the Figure 11.1 on the left side.

The similar regions in the map are blue and the boundaries between similar regions are yellow or

even red. There is a way how to divide the map into crisp cluster and they are shown on the same

figure on the right side. The black dots in the U-Matrix on the Figure 11.1 marks where are the

preprocessed attributes in all the datasets. In the end to so many attributes were preprocessed.

From 312 attributes only 52 were transformed.

Figure 11.1: The U Matrix visualisation of the SOM clustering on the left and the map divided into
clusters on the right. The picture gives ideas about distances in the SOM map. The blue regions
contains rows from meta database that are more similar and the yellow or even red regions shows
dissimilar regions. The regions with the different colours on the right side represents different
clusters.

The SOM map on the left side of the Figure 11.1 is divided nicely into distinct clusters. This

shows that there are different groups with different typical properties. It is important to know the

typical values for the individual SOM nodes (neurons). In the SOM map it can be obtained using

so called feature plots. The feature plot displays input variables separately and shows regions in

the map with higher (white) or lower (dark) values in the given variable. The Figure 11.2 shows

feature plots for selected metadata.

The feature plots shows for example that the attributes with more output classes should belong

into lower part of the map. The attributes with the high predictive power for the single-node

decision tree belongs to right top corner and the attributes from datasets with high inequality in

number of instances for different output classes are clustered on the right side of the map and so

on. The rules about regions with low or high values can not be used strictly. Sometimes other

meta data values forces an attribute for example with low mean into a region with high mean

value.

The next visualisation on the Figure 11.3 shows distribution of two datasets – the Bank and the

Breast Cancer – in the SOM map. The SOM map is the same and the positions of the attributes

in the map are shown by the black marks. The map shows that attributes for the Bank dataset

are mainly in the left-bottom part of the map, but there is a big number of exceptions, while
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Figure 11.2: The feature plot is showing the distribution of the typical metadata values in the
map.

attributes for the Breast Cancer dataset are generally more in the right half. But the big picture

is that the attributes are distributed all over the map. This shows that the attributes, though

they are from one dataset, do not have the same values in meta data.

The Figure 11.4 represents the last clustering visualisation. It shows attributes preprocessed by

the N-th Power Calculator preprocessing method on the left and by the Another Instance Value

Imputer on the right. Positions of the preprocessed attributes are shown by the black marks.

The first impression is that there are only few attributes preprocessed by these two preprocessing

methods. The Another Instance Value Imputer is used to preprocess 20 attributes and the N-th

Power Calculator is used 6 times out of 312 attributes. The Another Instance Value Imputer is

the most used preprocessing method but the typical number of method usages is closer to the N-th

Power Calculator.
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Figure 11.3: The distribution of attributes of the Bank on the left and the Breast Cancer on the
right Datasets in the SOM map.

11.2.2 Finding Rules

In this section I will try to extract some rules when to preprocess an attribute and which prepro-

cessing method to use.

The Figure 11.5 shows the text representation of the best found decision tree describing if to

preprocess an attribute or not. The input variables of the tree are the metadata values about the

individual attributes and the output is information if any preprocessing method was applied or

not. The not preprocessed attributes are more numerous than the preprocessed ones. For this

reason I have created a training set using about a half metadata for the preprocessed attributes

and the corresponding number of not preprocessed attributes. The remaining part of the meta

database is used for testing.

Table 11.1: Confusion matrices for model predicting I should apply any preprocessing method on
an attribute or not.

Classified as
In reality Preprocess Not Prepro-

cess
Preprocess 17 9
Not Preprocess 42 210

The results for the testing set are shown in the Table 11.1 in form of the confusion matrix. The

overall accuracy is about 81.6%, but usage of the results in IPT is questionable. The aim of this

experiment was to identify attributes, that should not be preprocessed and therefore left untouched

by IPT. This would allow the search for the preprocessing methods to concentrate on the attributes

that can be successfully preprocessed. But the confusion matrix shows that the decision tree makes

mistakes for both classes. About a third of should-be preprocessed attributes are marked as not-

to-be-preprocessed and about 16% of not-to-be-preprocessed attributes are marked as to should-be
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Figure 11.4: U Matrix with marks showing attributes preprocessed with the N-th Power Calculator
on the left and with the Another Instance Value Imputer on the right.

Number of classes

<= 0

Largest to smallest class ratio

<= 0.58

Mean of attribute

<= 0.006

Do not preprocess

> 0.006

Do preprocess

> 0.58

Do not preprocess

> 0

Number of classes

<= 0.6

Number of classes

<= 0.2

Skewness

<= 0.3

Do not preprocess

> 0.3

Skewness

<= 0.437

Do not preprocess

> 0.437

Do preprocess

> 0.2

Do preprocess

> 0.6

Average correlation

<= 0.07

Do preprocess > 0.07

Do not preprocess

Figure 11.5: Decision trees classifying if I should preprocess an attribute or not. Nodes in the tree
use the meta data from the database.

preprocessed. The second type of error – misclassification of the not-to-be-preprocessed attributes

– is not so serious, it would just slow down IPT a little. The other type of error is much worse,

because it means that I would omit some important attributes from IPT.
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I have tested a decision tree for predicting if I should apply the Another Instance Value Imputer

on an attribute. But the results are even less encouraging than in the case presented above. The

bias in the number of instances in classes is in this case enormous – 20 instances that should be

preprocessed using Another Instance Value Imputer versus 292 that should not be preprocessed.

I have tested several classifier but the bias in numbers is too big for all of them and none was able

to distinguish the attributes to be preprocessed. I have tested the stratified sampling and data

enrichment to balance the number of instances, but the results are equally as bad.

11.3 Building the Meta database and Its Performance on Validation

Data

In this section I will describe how to use of the meta database in the other way – to generate

meaningful sequences for the initial population on IPT. The generated sequences then can improve

results and mainly the speed of IPT. To generate the sequences of preprocessing methods I will

use nearest neighbours approach. I will find the most similar attributes and I will use them to

generate sequences in the initial population of IPT.

The meta database contains the metadata for each attribute and the sequences from the three

most accurate sequences of preprocessing methods as presented in the previous chapter and the

Appendix D. I have selected the three sequences because in general the first three sequences are

comparable in fitness (accuracy) to each other and therefore they contain useful preprocessing

methods. The attribute properties in the meta database are calculated from the training parts

from the previous chapter. The properties or meta data to calculate are discussed earlier in this

chapter and also in the chapter 6.

The very first part of this experiment verifies that the meta data describes the datasets properly.

I have calculated the meta data from the validation parts of the datasets and I will check if in

terms of meta data the validation attributes are similar to their training counterparts. I can not

expect the 100% match nor that the attribute from the validation part will always be the closest

match to its training part. The reasons for differences come from the fact, that the training parts

are in general shorter than validation parts and in case of outliers present in the validation part

of a dataset, the characteristics may change a lot. Especially the value range in the attribute, the

sample skewness and also the accuracy of the J48 decision tree classifier using only the attribute.

For this reason I will not concentrate only on the nearest (most similar) attribute but the three

nearest attributes. The other reason to use more than the nearest attributes is that more attributes

gives me more potentially useful sequences I can combine to create initial population for IPT.

The results are shown in the Table 11.2. The Number of attributes column shows the total number

of input attributes in each dataset. The Number of attributes within 3 most similar column shows

number of attributes in the validation part of a dataset that has the corresponding attribute from

the training part of the dataset among the three most similar attributes.

The Table 11.2 shows a bit disappointing results. Some datasets like Parkinsons or Wine works

well and the attributes from validation part are alike the attributes in the training part. But,

for example, the validation parts of the Steel Faults or Teeth Age datasets are not similar to the
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Table 11.2: Shows how many times is an attribute from the validation part of the dataset nearest
in terms of metadata to its training part counterpart.

Dataset Meta database for J48 decision
Tree Classifier

Meta database for Logistic Re-
gression Classifier

Number of
training part at-
tributes within
3 most similar
to the validation
part

Number of at-
tributes

Number of
training part at-
tributes within
3 most similar
to the validation
part

Number of at-
tributes

Bank 27 49 28 49
Breast Cancer Wis-
consin

9 10 7 10

CTG 32 33 30 33
Ecoli 8 8 8 8
Glass 8 10 10 10
Ionosphere 14 35 8 35
Parkinsons 23 24 19 24
Satellite 30 37 29 37
Segment 2 20 1 20
Spambase 42 57 42 57
Steel Faults 0 28 8 28
Teeth Age 0 17 0 17
Wine 12 13 10 13

training parts. The both meta databases performs more or less the same. So if attributes in

validation part of a dataset are similar to their training counterparts in one meta database, they

are also similar in the other meta database.

To discuss the difference between attributes in the training and the validation parts I have created

the Table 11.3 showing the attribute meta data for one selected typical situation. The shown

attribute is the CLDx attribute of the Teeth Age dataset. The training part of the CLDx attribute

is not among the 3 most similar attributes. The differences in distance are not big, but still there

two other CTG attributes who are closer to the CLDx. The main reason for this result are the

values in Portion of Missing Values, the J48 Decision Tree accuracy, the Log Number of Instances

and the Sample Variance. Do not forget that the values displayed in the Table 11.3 are not used

directly for the distance calculation, but they are normalised. So if there is a big difference shown

in the Table between values in the Number of Attributes, its contribution to the distance is much

smaller than is suggested here.

The difference in the number training part attributes among the three nearest to the validation

part attribute varies between the J48 meta database and the Simple Logistic Regression meta

database mainly due to J48 Decision Tree accuracy and the Logistic Regression accuracy meta

data. The difference in values is caused by the accuracy calculation process and model initiation

as discussed in this thesis many times before.
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Table 11.3: Example of metadata values for the CLDx attribute of the validation part of the
Teeth Age dataset. The table compares the meta data for validation part of the CLDx attribute
to training part and the training part of the DL attribute of the CTG dataset.

Teeth Age,
V, CLDx

Teeth Age,
T, CLDx

CTG, T, DL

Distance — 0.10769 0.095978
Information Entropy 2.95 2.86 2.03
Sample Mean 0.947 1.17 0.681
Log Value Range 0.845 0.845 0.903
Most to least numerous out-
put class ratio

0.0780 0.0806 0.149

Number of Classes 5.00 5.00 3.00
Portion of Missing Values 0.0051 0.0139 0.00
Sample Variance 0.634 0.563 0.638
Sample Skewness -0.487 -0.421 1.91
ø Abs Correlation to Classes 0.0360 0.0519 0.110
J48 Decision Tree accuracy 0.623 0.579 0.726
Logistic Regression accuracy 0.365 0.526 0.733

11.3.1 Performance of the Generated Sequences

So far, I have created the meta database and I have generated the sequences of the preprocessing

methods based on the properties of the validation part of the datasets. To generate new sequences

I will first select the three most similar attributes to each attribute in the new dataset. The meta

database for each of these attributes contains three subsequences1 attached to these attributes.

This selects the 9 subsequences to be used for generation. Then I will randomly select subsequences

for each attribute among the 9 subsequences found in the meta database. In this way I will

generate as many new sequences as needed. In this experiment I have generated 10 new sequences.

Plus I will combine a new sequence in following way: for each attribute I will select the most

similar attribute from the meta database. This most similar attribute in the meta database has 3

subsequences and one of them is a part of the sequence with the highest fitness value. And I will

use this subsequence as a part of the new, generated sequence.

Now is the time to test the performance of the generated sequences. I will calculate the fitness

value (and the accuracy of the models) using the same algorithm as in previous chapter (see the

Chapter 4). And as I use the same datasets as in the previous sections I can directly compare the

accuracy of the resulting models with the accuracy of the sequences found by IPT.

The results for the J48 Decision Tree model and corresponding sequences are shown on the Figure

11.6. The Figure compares accuracy for the original, not-preprocessed, dataset – denoted on the

Figure as No Prep – the accuracy of the generated sequence – denoted on the Figure as the

metaDB – and the sequence found by IPT – denoted as the Best IPT.

The Figure 11.6 shows that for four datasets (CTG, Glass, Satelite and Steel Faults) the best

generated sequences are comparable to the sequences generated by IPT. In other cases the fitness

of the generated sequences are better, in most of the cases even statistically better, than the

1The subsequence is a part of sequence of preprocessing methods and contains preprocessing methods which
should be applied to given attribute.



122 SECTION 11. USE OF META DATA TO SPEEDUP THE SEARCH

Figure 11.6: Comparison of the fitness (accuracy) of J48 Decision Tree model on original datasets,
sequences generated from the J48 meta database and the sequences generated by IPT.
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accuracy of the models with the original, not preprocessed, datasets, but they achieve lower fitness

than the best sequences found by IPT. Though it is not the best possible result it shows a very

good starting point. These generated individuals will be useful for the initial population and will

should provide additional information and guidance for IPT.

The fact that the training part of the attributes were not among the nearest attributes for val-

idation parts of the Teeth Age, Steel Faults or the Segmentat datasets obviously does not harm

the accuracy of the generated sequences. The generated sequences for the Steel Faults dataset is

comparable to the best sequence found by IPT and the generated sequence for the Teeth Age and

Segmentation achieve better accuracy of trained models than the models with not preprocessed

datasets.

The sequences generated from the Simple Logistic meta database shows the same results and it

would be waste of space to discuss them further. But you can examine its performance the Figure

E.1 on the page 182.

11.3.2 The Generated Sequences

In this subsection I will present some of the generated sequences and I will discuss their differences

to the best sequences found by IPT.

11.3.2.1 J48 Meta Database and the Generated Sequence for the Glass Dataset

Figure 11.7: Generated sequences for the Glass Dataset from the J48 Meta Database.

The first set of the sequences I want to present are the sequences generated for the Glass dataset

and the J48 Decision Tree. The seqquences are shown on the Figure 11.7. The figure shows 11

generated datasets and the three best sequences found for the Glass dataset by IPT in the previous

chapter. Both, the generated sequences and the best sequences found by IPT are sorted by the

their fitness value. The fitnesses of the both best sequences – generated and found by IPT – are

shown on the Figure 11.6 below and they are comparable.

The close examination of the sequences even show that the both best sequences are exactly the

same. The Figure 11.8 shows boxplots for the fitness values of the generated sequences. The

remaining sequences are more or less comparable to the to the original, not preprocessed, dataset.
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Figure 11.8: Fitness values for the sequences generated for the validation part of the Glass dataset
from the J48 meta database.

Based on the fitness values and the generated sequences, I can conclude that the preprocessing

methods leading to better accuracy of the resulting model are the N-th Power Calculator and the

Median Missing Value Imputer applied on the second attribute and the Nearest Neighbour Missing

Value Imputer applied on the third attribute. The Constant Missing Value Imputer has no effect

on the second attribute since there are no missing values left after the Nearest Neighbour Missing

Value Imputer is applied. The Example Preprocessor adds only a constant value to each value in

the attribute thus it also has very little practical importance.
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Figure 11.9: The example J48 Decision Trees for the Glass dataset. The left tree was created with
the dataset preprocessed by the best IPT sequence, the right tree was created from the dataset
preprocessed by the best generated sequence.

The third generated sequence from the top is quite similar to the best generated sequence but has

some preprocessing methods added. Although it may be seen as and advantage in fact it is not.
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The more preprocessed attributes causes the J48 training algorithm to select another attributes

for decision and in this way to harm the classification accuracy. The Figure 11.9 shows the decision

trees generated from the data preprocessed by those two sequences. On the left is the tree for the

data preprocessed by the first generated sequence and on the right the tree for the third sequence.

11.3.2.2 J48 Meta Database and the Generated Sequence for the Teeth Age Dataset

Figure 11.10: Generated sequences for the Teeth Age Dataset and the J48 Meta Database.

I will not discuss other sequences in that much details as the previous case. All the generated

sequences for the Teeth Age dataset are shown on the Figure 11.10. Again I have added the three

sequences with the highest fitness found by IPT. The accuracy of the J48 model with the training

data preprocessed by the best generated sequence is in between the accuracy of the J48 trained

with the non preprocessed and the accuracy of the model with the data preprocessed by the best

sequence found by IPT.

The generated sequences are completely different from the best sequences found by IPT. The

reason is in the fact that the meta data failed to match the training and the testing attributes

of the Teeth Age dataset. And in this case the supposition that the similar meta data values

brings the same preprocessing methods is not completely true. The generated sequence improves

accuracy of the model but the sequence found by IPT performs much better.

11.3.2.3 Logistic Regression Classifier Meta Database and the Generated Sequence

for the Breast Cancer Wisconsin Dataset

The generated sequences for the Breast Cancer Wisconsin dataset are shown on the Figure 11.11.

You can compare the performance of the best generated sequence and the best sequence found

by IPT on the Figure E.1 on the page 182. The figure shows that the performance of the fitness

value of the generated sequence is even slightly higher than the fitness of the best sequence found

by IPT.

The reason for the better performance lies in the N-th Power Calculator preprocessing method

applied to the 6th attribute and the absence of the Mean Value Normalizer and the Another
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Figure 11.11: Generated sequences for the Breast Cancer Dataset and the Logistic Regression
Classifier database.

Instance Value Imputerpreprocessing methods. But the difference in the accuracy is not too big,

just about a 1%.

11.3.2.4 Logistic Regression Classifier Meta Database and the Generated Sequence

for the Satellite Dataset

Figure 11.12: Generated sequences for the Satellite Dataset from the Logistic Regression Classifier
database.

The last set of sequences is shown on the Figure 11.12. The best generated sequences are quite

different from the best sequences found by IPT. But in terms of the fitness the generate sequences

are slightly better, see the Figure E.1 on the page 182.

The reason for the better performance lies in the fact that the best generated sequence preprocess

the first attribute. In fact the first three sequences from the top, the ones with the highest fitness

among the generated sequences, have comparable accuracy and all of them treat the first attribute

in the same way.
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11.4 Meta Database on Modified Datasets

Figure 11.13: Comparison of the fitness (accuracy) of original datasets and datasets preprocessed
by sequences generated from the meta database.
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In this section I will show results for the generated sequences on the modified datasets. The aim

of this experiment is to test generalisation capabilities of the meta database. In other words I

want to test if a relatively small change in properties of the datasets will result in a very different

generated sequences. And also if the generated sequences are able preprocess a dataset in a way

that it will achieve better fitness than the original, not preprocessed, dataset.

As I have said in the previous chapter I the real world datasets I use through this and previous

chapter are known to have quite good accuracy with many models. To give some room for

improvement of the accuracy I have transformed the datasets from the UCI (see 10.1 for details).

This gives me an opportunity to transform the datasets with different parameters, eg. introducing

different amount of missing values, doing different non-linear transformations and so on.

I have used the same meta database as before to generate the sequences. And then I have calculated

fitness of the generated sequences. The results of the best sequences in comparison to the non-

preprocessed dataset are shown on the Figure 11.13. I have not ran IPT for the datasets therefore

I compare only the generated sequences to the non preprocessed datasets. The results are for the

J48 Decision tree meta database and the J48 models.

The Figure 11.13 shows that even though I have changed the properties of the datasets, the

generated sequences are able to preprocess the changed dataset effectively and the models trained

with the preprocessed datasets in all cases achieve better fitness than the not preprocessed datasets.

The improvement in the accuracy is usually a bit smaller than in the previous case but still if there

was improvement in the accuracy of model in the previous section, the accuracy of the model with

the modified dataset is improved as well. Do not forget that the datasets here are different from

the datasets used in the previous section and even accuracy of models with the not preprocessed

can not be directly compared.

The results for the Simple Logistic Regression Classifier are very similar to the results presented

here. You can examine the results in the appendix on the Figure E.2 on the page 183.

11.4.1 Generated Sequences

Figure 11.14: The best sequences generated from the J48 meta database for the modified and the
original Ionosphere dataset.

Here I want to present and describe selected generated sequences and find its differences to the

sequences from the previous section. In contrast to the previous section I will compare only the

best generated sequences for the modified datasets, the best generated sequence for the original

dataset and the best sequence found by IPT.

I will present generated sequences for the Ionosphere and the Segment datasets were generated

from the J48 Meta Database and the generated sequences for the Breast Cancer and the Steel

Faults datasets.

The generated sequences are shown on the Figures 11.14, 11.15, 11.16 and 11.17. All the Figures
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Figure 11.15: The best sequences generated from the J48 meta database for the modified and the
original Segment dataset.

Figure 11.16: The best sequences generated from the Simple Logistic Regression meta database
for the modified and the original Breast Cancer dataset.

shows that the generated sequences for the modified datasets are not too similar to sequences for

the original datasets, not mentioning the sequences found by IPT. The sequences for the modified

datasets use the same subsequences of the preprocessing methods but for different attributes.

Figure 11.17: The best sequences generated from the Simple Logistic Regression meta database
for the modified and the original Steel Faults dataset.

The conclusion is that the generated sequences of the preprocessing methods looks differently for

the modified datasets. But the models trained with the preprocessed modified datasets achieve

better accuracy than the models with the not preprocessed datasets. And in some sequences the

difference between accuracy of the model with non preprocessed dataset and the preprocessed

dataset is even bigger than in the case of the original datasets presented above. Thus the meta

data show at least in some degree ability to generalise.

11.5 Meta Database on Unknown Datasets

The last experiment demonstrates the ability of the meta databases to find the generated sequences

on completely unknown datasets and ability to speedup IPT. I have downloaded from the UCI

Machine Learning Repository four datasets – the Credit Approval, the Heart Disease, the Indian

Liver Patient and the Pima Indian Diabetes. I have transformed the datasets with parameters yet

different from the previous sections.

The main aim of this experiment is to test the influence of the improved initial population to IPT.

Also I want to improve speed of IPT. To do this I will compare following values:

• the accuracy of a model with a non preprocessed dataset,

• accuracy of a model with dataset preprocessed with the best of the generated sequences,

• accuracy of model with the dataset preprocessed with the best sequence found by IPT after

10 generations from the random initial population,
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• accuracy of model with the dataset preprocessed with the best sequence found by IPT after

10 generations from the initial population with the generated sequences,

• accuracy of model with the dataset preprocessed with the best sequence found by IPT after

50 generations from the random initial population.

The results for the experiments are shown on the Figures 11.22 and 11.23. The Figures show very

similar story. The lowest accuracy of models achieve datasets without preprocessing, denoted on

the figures as No Preprocessing. The second worst result is achieved by the sequences generated

from the meta database. They are denoted on the figures as the Meta DB Sequences. The accuracy

of models trained with the dataset preprocessed with the generated sequences is only a small bit

better than the not preprocessed datasets. This shows that the new datasets are too different

from the datasets used to create the meta database. On the other hand, the small improvement

gives hopes that the generated sequences directs the search in the correct way.

Now I come to boxplots that interests me very much – the sequences found by IPT. The first

boxplot shows the best sequence found by IPT in only 10 steps of the sequence search algorithm,

with generated sequences in the initial population. This is denoted in the Figures 11.22 and 11.23

as IPT 10 Steps, Meta DB Init. The second boxplot shows the accuracy of the model trained

with the dataset preprocessed with the best sequence found in 10 steps of the sequences search

algorithm. But in contrast to previous boxplot the initial population for the search was randomly

generated. The boxplot is denoted as the IPT 10 Steps, Random Init. The last boxplot shows the

result of the full IPT with 50 steps of the sequence search algorithm. The boxplot is denoted as

IPT 50 Steps, Random Init. The initial population for this was again randomly generated.

The results show that when I add the generated sequences into the initial population of IPT, it

is able to find a good solutions faster. The generated sequences proved good starting point and

even though the generated sequences are not well performing, they can be easily improved in a few

search steps. For all datasets and both modelling methods, IPT with the generated sequences in

the initial population is in 10 steps able to find sequences comparable in fitness to the sequences

found in by IPT in 50 steps with the random initial population.

11.5.1 Selected Sequences

In this section I will present one set of the best generated sequences and compare them to the

best sequences found by the all three variants of IPT – that is sequences found in 10 and 50 steps

with random initial population and sequences found in 10 steps with generated sequences in the

initial population. And I will discuss the differences.

Figure 11.18: The best sequences found by different variants of IPT for the Heart Disease dataset
and the Simple Logistic Regression Classifier. The number on the left indicates the fitness value
of the sequence.
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The second set of sequences is for the Heart Disease dataset and the Simple Logistic Regression

Classifier. The best sequences for all four situations are shown on the Figure 11.18. The differences

in accuracy between the best sequences are small, still the sequence found by IPT with the

generated sequences in the initial population achieves the highest fitness. What differs more

in the best sequences is the structure of the sequences. The best sequences found by IPT in 50

steps with random initial population and by IPT in 10 steps with generated sequences in the initial

population are less complex than best sequence found by IPT in 10 steps with the random initial

population.

Figure 11.19: All generated sequences for the Heart Disease dataset for the Simple Logistic Re-
gression. The first two sequences at the top are empty – they do not use any preprocessing
method.

The best generated sequence does no preprocessing and returns the original dataset but the re-

maining generated sequences contains some useful data preprocessing methods, see the Figure

11.19. The Nth Power Calculator preprocessing method used un the best sequence found by

IPT with generated sequences in the initial population is repeated several times in the generated

sequences.

Figure 11.20: The best sequences found by different variants of IPT for the Credit Approval
dataset and the Simple Logistic Regression Classifier. The number on the left indicates the fitness
value of the sequence.

The best sequences for the Credit Approval dataset shows less favourable story. You can examine

the best sequences on the Figure 11.20. The sequence for IPT with generated individuals in the

initial population (denoted as IPT 10 steps, metaDB init) and the and the sequence for the full

IPT (denoted as IPT 50 steps, random init) are simple and preprocess only few attributes. On the

other hand the best sequence found by the shorter IPT in 10 steps with only random sequences

in the initial population is a complete mess and applies among useful preprocessing methods also

a lot of rubbish.

So far the results are nice, but when I start to examine the generated sequences (shown on the

Figure 11.21) I came to difficulties. Almost all the generated sequences are empty – only two of

the sequences contain some preprocessing method. So the high fitness and the simple sequences

are more the found by a chance than with help of the generated sequences. The most similar

attributes to the ones from the Credit Approval are the attributes from the Spambase dataset.

This dataset contains a lot of attributes but only few of them are preprocessed. The generated

sequences forces IPT to use only simpler sequences – the search algorithm can add only a limited
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Figure 11.21: All generated sequences for the Credit Approval dataset for the Simple Logistic
Regression. Almost all sequences are empty – they do not use any preprocessing method.

number of the preprocessing methods on each generation and in this way the sequences are kept

simple.

11.6 Conclusion

In this chapter I have experimented with the use of the properties of attributes or meta data to

speed up IPT. At first I have used the SOM clustering to show that the meta data I am calculating

have capability to separate different types of attributes. The results show that the clustering is

able to distribute attributes with different properties to different clusters.

The next experiment was to find rules to indicate if I should preprocess an attribute or not. The

results show that I am unable to find such rules. The problem is not in the overall accuracy of the

classifier, but in the fact that one third of attributes that should be preprocessed are misclassified

as not to be preprocessed. This would be problem when I remove such attributes from IPT and

IPT would fail to find meaningful sequences of preprocessing methods. I have also tested if I can

create rules saying when to use one specific preprocessing method. I have again failed. The reason

is a ratio between number of all attributes and number of attributes preprocessed using given

preprocessing method. To improve the results I have to collect metadata and find sequences of

preprocessing methods for more datasets.

In the next section I have tested the algorithm for generating sequences using the meta data. The

generated sequences for the set of datasets used to create the meta database are able to compete

with the best sequences found by IPT. The sequence generation for the initial population of IPT

is working. The generated sequences work well even though the datasets were modified, so the

meta data and the generated sequences seems to be robust enough. Then I have used the same

meta database to generate sequences for the completely new datasets, the performance were not

so great. Then I have mixed the generated sequences into the initial population and ran IPT in

with only 10 steps. The results of this shorter run are comparable to the results of IPT found in

50 steps with random initial population. Although the generated sequences do not perform well

they have given IPT useful starting points to use and IPT has found the great results in one fifth

of the time needed with random initial population.
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Figure 11.22: Comparisons of the accuracy of the J48 Decision Tree Classifier with the training data preprocessed by: sequences generated from the
meta database, sequences found by IPT in 10 steps with generated sequences in the initial population, sequences found by IPT in 10 and 50 steps
with random initial population.
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Figure 11.23: Comparisons of the accuracy of the Simple Logistic Regression Classifier with the training data preprocessed by: sequences generated
from the meta database, sequences found by IPT in 10 steps with generated sequences in the initial population, sequences found by IPT in 10 and
50 steps with random initial population.
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12 Thesis Conclusions, Contributions and Suggestions for

Future Work

12.1 Achieved Results

In the thesis I have presented novel approach to data preprocessing called the Inductive Prepro-

cessing Technology. The Inductive Preprocessing Technology (IPT) automates a part of the

data preparation for data mining. There are several other approaches to aid data miners with the

data preprocessing. The other approaches are based on ontology, hard coded rules or similarity

to a previously transformed dataset. The novelty of IPT lies in novel combination of idea of the

inductive modelling, data driven-approach and optimisation approach to the data preprocessing

field.

Similarly to the inductive modelling, IPT starts with no prior knowledge about the data. As IPT

progresses, it gets more information about the data and by adding, removing and modifying the

preprocessing methods, it is searching for the simplest sequence of the preprocessing methods that

achieves the highest accuracy of the classifier. IPT tries to find the sequence only as complex (and

contains only the preprocessing methods) as it is needed to preprocess the dataset correctly and

to maximise the accuracy of the classifier. The optimisation approach is used to find the correct

modification of the sequences of preprocessing methods to increase the accuracy of the classifier.

The main goal of this thesis has been accomplished. IPT is able to automatically find the best

sequences of the preprocessing methods for tested datasets. The accuracy of the classifier for real

world datasets is improved by 5% to 10%. The detailed experimental results are shown in the

next section.

12.2 Experimental Results

To test if IPT fulfils the goals, I have presented in the introduction, I have done following steps:

• in the Chapter 7 I have investigated that the preprocessing of a training set has really an

influence on the accuracy of the trained model. To test this I have created four artificial

datasets and showed accuracy of models with datasets preprocessed with different prepro-

cessing methods. Later I have tested ability of different search methods to find the expected

sequences of preprocessing methods and accuracy of the classifiers. The results shows that

the preprocessing really affects the accuracy of a classifier. Also they show that all the tested

search methods can find the expected preprocessing methods for all the artificial datasets.

But the genetic search regularly finds sequences with the lowest number of pre-

processing methods.

• in the Chapter 8 I have investigated the parameter values optimisation methods. Again at

first I investigated if at least some parameters of preprocessing methods have influence on the

accuracy of the trained classifier. The results show that at least in some cases the parameters

and their values have influence on accuracy of the model. Later I have tested performance

– the best achieved accuracy of the model and a number of iterations – of the optimisation
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methods on randomly selected sequences. The Differential Evolution optimisation is clearly

the best optimisation method.

• the Chapter 9 is the last chapter to work with the artificial datasets. It tests the performance

of the whole IPT – the search for the best sequences and the parameter optimisation. The

result is that the best sequences are found by the genetic search for the sequence search

method and the one random change for the parameter optimisation. The one random

change is a standard mutation in the genetic algoritm and randomly changes values of the

parameters.

• the Chapter 10 finally tests IPT with genetic search with the one random change and

their performance on the 13 publicly available real world datasets. The result shows that

the best found sequences are able to improve the accuracy of classifiers by about 5% to

10% on validation parts of the datasets. The base for improvement is accuracy of the

model achieved on the original, not preprocessed, validation part of a dataset. This is quite

interesting especially when you take into account that it is achieved only by transformations

of a dataset.

• the Chapter 11 looks for a way how to decrease a time needed to finish IPT. The typical

search for the best sequence lasts several hours so it would be great to find a way to reduce

time needed to finish. One of the ways is the supposition that similar attributes of datasets

should be preprocessed using similar preprocessing methods. I have decided to find similarity

of attributes using meta-data. I have created the meta database using results and the best

sequences found in the Chapter 10. When a new dataset arrives, the meta database is used

to generate initial population (sequences) of IPT. In this way I can use the past information.

I have used 4 more real world dataset to test the performance of the meta database. The

results show that with the generated initial population IPT in 10 steps can find

sequences with comparable accuracy to IPT with random initial population in

50 steps. I have also say that IPT in 10 steps with random initial population

achieves worse results that IPT in 10 steps with generated initial population.

12.3 The Contributions

The presented IPT shows great potential for real-world commercial applications. The data prepro-

cessing is the most time-consuming phase of the knowledge discovery process. It is estimated that

it takes about 80% of the whole data mining process. A significant part of the data preprocessing

– the data transformation – can be automated.

There are two commercially available approaches, but they are based on simple rules and do

very simple transformations. IPT is able to find preprocessing methods for much more complex

datasets. IPT allows the data miners to concentrate on the other stages of the knowledge discovery

process where the human expert’s insight and expertise is needed.

From the scientific point of view the thesis combines the inductive modelling and the optimisation

approach and applies them in the data preprocessing field. IPT also has potential to find new

”best-practises” for data preprocessing in different fields.
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12.4 The Future Work

I see several directions to continue with the research and development of IPT.

• To extend the use of IPT to regression problems.

• to extend the use of IPT to feature extraction from time signals. The classification of the

time signals are yet more complicated by the fact that a data mining expert has to extract

features from the signal. It is not clear which features of the signal to use. In many fields

there are gold-standard features, but for a new problems there are no guidelines how to

describe the signal and its properties properly. IPT could find the best combinations of the

feature extraction methods.

• to preprocess more real world datasets using IPT to obtain better and wider meta database

that can be used to generate rules if to preprocess attributes and even which preprocessing

methods to use.

• to polish the IPT implementation and to incorporate it into a data mining software like

Rapidminer. This would test IPT in much larger scale and for wide range of problems. The

results would be great for improving precision and accuracy IPT and to collect the real world

datasets for the meta database.
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[102] CH Chen and Adam Jóźwik. A sample set condensation algorithm for the class sensitive

artificial neural network. Pattern Recognition Letters, 17(8):819–823, 1996.

[103] D Randall Wilson and Tony R Martinez. Reduction techniques for instance-based learning

algorithms. Machine learning, 38(3):257–286, 2000.

[104] P.E. HART. The condensed nearest neighbour rule. IEEE Transactions on Information

Theory, 1968.

[105] David W Aha, Dennis Kibler, and Marc K Albert. Instance-based learning algorithms.

Machine learning, 6(1):37–66, 1991.

[106] Daeryong Lee, SeongJoon Baek, and Koengmo Sung. Modified k-means algorithm for vector

quantizer design. Signal Processing Letters, IEEE, 4(1):2 –4, jan. 1997.

[107] G.W. Gates. The reduced nearest neighbour rule. IEEE Transactions on Information The-

ory, 1972.

[108] JS Sánchez. High training set size reduction by space partitioning and prototype abstraction.

Pattern Recognition, 37(7):1561–1564, 2004.

[109] Dennis L Wilson. Asymptotic properties of nearest neighbor rules using edited data. Systems,

Man and Cybernetics, IEEE Transactions on, (3):408–421, 1972.

[110] Kevin Gimpel and Noah A Smith. Softmax-margin crfs: Training log-linear models with

cost functions. In Human Language Technologies: The 2010 Annual Conference of the

North American Chapter of the Association for Computational Linguistics, pages 733–736.

Association for Computational Linguistics, 2010.



SECTION 14. REFEREED PUBLICATIONS OF THE AUTHOR 145

14 Refereed publications of the author
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[A.6] Čepek, M. and Kord́ık, P. and Šnorek, M. The Effect of Modelling Method to the Induc-

tive Preprocessing Algorithm. In Proceedings of 3rd International Conference on Inductive

Modelling 2010, Ukr. INTEI, pp 131–138, 2010



146 APPENDIX A. IMPLEMENTED PREPROCESSING METHODS

A Implemented Preprocessing Methods

In this appendix you can find a list of implemented preprocessing methods, their names and

references to literature. Methods written in italics are global.

• Data Enrichment

– SMOTE Enrichement – is implementation of standard enrichment algorithm [31].

• Data Reduction1 (For details see [A.2]).

– All-KNN editing method [101]

– Chen’s condensing method [102]

– DROP3 reduce method [103]

– CNN - Hart’s condensing method [104]

– IB3 reduce method [105]

– KMeans data replacer – runs standard K-Means clustering algorithm to do the vector

quantisation [106] and then replaces instances in dataset by the centroids.

– RNN condensing method [107]

– RSP3 condensing method [108]

– Wilson’s editing method [109]

– Random data reducer – does random and stratified sampling.

• Discretisation

– Adaptive binning – unequal bin sizes, equal number of instances in each bin [34].

– Equal size binning – equal bin sizes, unequal number of instances in each bin [34].

• Non Linear Transformation

– N-th Power Calculator – according to parameter N calculates the power or power root.

If the N positive integer, the method calculates N th power and if N is negative integer,

the method calculates N th power root.

– Square Root Calculator – calculates the square power root of a value.

– Exponential Calculator – calculates exponential for a value (evalue).

– Principal Component Analysis – standard principal component analysis [35]. The orig-

inal dataset is replaced by the transformed dataset.

• Missing Data Imputation (for more details see the [A.1].)

– Another Instance Value Data Imputer – replaces missing value by a value from the

nearest instance in the dataset.

– Constant Missing Value Imputer – replaces missing value by a predefined constant.

1All the data reduction methods work with training set only.
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– Median Missing Value Imputer – replaces missing values in attribute by a mean of

no-missing values in the attribute.

– Nearest Neighbour Missing Value Imputer – finds K-nearest instances, according to

non-missing values, and replaces them by the mean value from values in attribute in

nearest instances.

– Missing instances remover – removes instances with missing values in attribute. Ap-

plied on training data only.

• Normalisation

– Cut off values – uses thresholding

– Linear normalizer – linearly normalises the values into specified range using following

formula: y = x−min(χ)
max(χ)−min(χ) , where x is actual values and χ represents the attribute.

– Mean value normalizer – shifts the dataset to have 0 mean.

– SoftMax normalizer – normalises values to given range using softmax function [110]

– Z-score normalizer – transforms attribute to have mean equal to 0 and standard devi-

ation equal to 1.

• Outlier Detection

– Local Outlier Factor – a standard LOF algorithm implementation [37].

– Basic Algorithm [36]

– Cell Based Algorithm [36]
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B Parameter Search Space Examples

This appendix supplements the section 8.1 and contains more examples of the parameters search

spaces of sequences of the preprocessing methods.

All example search spaces given here are generated for the sequences of preprocessing methods with

mainly two parameters. This limits the set of examples and sequences that can be presented here,

but on the other hand, there is no hidden parameter to influence the search space visualisation.

For each parameter search space I will present example of 1 individual search space and the average

of 10 search spaces. The reason is following – the fitness value is an accuracy of the model learned

from the preprocessed data. This accuracy is not always constant – for the training and testing of

model the different instances are use, the model is initialised in different way, and so on. Therefore

the averaged search space is useful to give better idea how the search space actually look like.

To give idea about global minimum and global maximum I have written them for each figure.

Please remember, that the fitness value can be zero. This does not mean that the underlying

model outputs exactly opposite prediction with the 100% accuracy. This means that the underlying

model can not be learned from the data preprocessed by given sequence of preprocessing methods

with give parameters (e.g. all instances were removed from the training dataset).

B.1 Missing Data dataset

Figure B.1: Search space example, Missing Data dataset
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Figure B.2: Search space example, Missing Data dataset

Figure B.3: Search space example, Missing Data dataset

Figure B.4: Search space example, Missing Data dataset
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Figure B.5: Search space example, Missing Data dataset

Figure B.6: Search space example, Missing Data dataset
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B.2 Imbalanced dataset

Figure B.7: Search space example, Imbalanced dataset

Figure B.8: Search space example, Imbalanced dataset
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Figure B.9: Search space example, Imbalanced dataset

Figure B.10: Search space example, Imbalanced dataset

Figure B.11: Search space example, Imbalanced dataset



APPENDIX B. PARAMETER SEARCH SPACE EXAMPLES 153

Figure B.12: Search space example, Imbalanced dataset

Figure B.13: Search space example, Imbalanced dataset

Figure B.14: Search space example, Imbalanced dataset
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Figure B.15: Search space example, Imbalanced dataset

Figure B.16: Search space example, Imbalanced dataset

Figure B.17: Search space example, Imbalanced dataset
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B.3 Non Linear dataset

Figure B.18: Search space example, Non Linear dataset

Figure B.19: Search space example, Non Linear dataset
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Figure B.20: Search space example, Non Linear dataset

Figure B.21: Search space example, Non Linear dataset

Figure B.22: Search space example, Non Linear dataset
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Figure B.23: Search space example, Non Linear dataset

Figure B.24: Search space example, Non Linear dataset

Figure B.25: Search space example, Non Linear dataset
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B.4 Outlier dataset

Figure B.26: Search space example, Outliers dataset

Figure B.27: Search space example, Outliers dataset
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Figure B.28: Search space example, Outliers dataset

Figure B.29: Search space example, Outliers dataset

Figure B.30: Search space example, Outliers dataset
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Figure B.31: Search space example, Outliers dataset

Figure B.32: Search space example, Outliers dataset

Figure B.33: Search space example, Outliers dataset
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Figure B.34: Search space example, Outliers dataset

Figure B.35: Search space example, Outliers dataset

Figure B.36: Search space example, Outliers dataset
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C Performance of Shorter Parameter Optimisation

Figure C.1: Illustrates number of cases in which the given parameter optimisation method is able
to find the best setup for the Missing Data dataset.
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Figure C.2: Fitness improvement for the Missing Data dataset. On the left is the difference
between average fitness in given optimisation step and the best fitness ever found (Lower values
are better). On the right is the improvement of fitness from the initial value in the first step
(Higher value is better).

Figure C.3: Illustrates number of cases in which the given parameter optimisation method is able
to find the best setup for the Imbalanced dataset.
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Figure C.4: Difference between average fitness in given optimisation step and the best fitness ever
found (Lower values are better) for the Imbalanced.

Figure C.5: Improvement of the fitness from the initial value in the first step (Higher value is
better) for the Imbalanced.
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Figure C.6: Illustrates number of cases in which the given parameter optimisation method is able
to find the best setup for the Non Linear dataset.

Figure C.7: Difference between average fitness in given optimisation step and the best fitness ever
found (Lower values are better) for the Non Linear.
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Figure C.8: Improvement of the fitness from the initial value in the first step (Higher value is
better) for the Non Linear.

Figure C.9: Illustrates number of cases in which the given parameter optimisation method is able
to find the best setup for the Outlier dataset.
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Figure C.10: Difference between average fitness in given optimisation step and the best fitness
ever found (Lower values are better) for the Outlier.

Figure C.11: Improvement of the fitness from the initial value in the first step (Higher value is
better) for the Outlier.
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D Search for the most Accurate Sequences



A
P
P
E
N
D
IX

D
.
M
O
S
T

A
C
C
U
R
A
T
E

S
E
Q
U
E
N
C
E
S

169

Figure D.1: Fitness of the best sequences found by IPT for the Bank
dataset and the logistic regression classifier in repetitive runs and their
comparison to the not preprocessed dataset.

Figure D.2: Fitness of the best sequences found by IPT for the Bank
dataset and the J48 Decision Tree in repetitive runs and their comparison
to the not preprocessed dataset.
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Figure D.3: Fitness of the best sequences found by IPT for the Breast
Cancer Wiskonsin dataset and the logistic regression classifier in repeti-
tive runs and their comparison to the not preprocessed dataset.

Figure D.4: Fitness of the best sequences found by IPT for the Breast
Cancer Wiskonsin dataset and the J48 Decision Tree in repetitive runs
and their comparison to the not preprocessed dataset.



A
P
P
E
N
D
IX

D
.
M
O
S
T

A
C
C
U
R
A
T
E

S
E
Q
U
E
N
C
E
S

171

Figure D.5: Fitness of the best sequences found by IPT for the CTG
dataset and the logistic regression classifier in repetitive runs and their
comparison to the not preprocessed dataset.

Figure D.6: Fitness of the best sequences found by IPT for the CTG
dataset and the J48 Decision Tree in repetitive runs and their comparison
to the not preprocessed dataset.
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Figure D.7: Fitness of the best sequences found by IPT for the Ecoli
dataset and the logistic regression classifier in repetitive runs and their
comparison to the not preprocessed dataset.

Figure D.8: Fitness of the best sequences found by IPT for the Ecoli
dataset and the J48 Decision Tree in repetitive runs and their comparison
to the not preprocessed dataset.
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Figure D.9: Fitness of the best sequences found by IPT for the Glass
dataset and the logistic regression classifier in repetitive runs and their
comparison to the not preprocessed dataset.

Figure D.10: Fitness of the best sequences found by IPT for the Glass
dataset and the J48 Decision Tree in repetitive runs and their comparison
to the not preprocessed dataset.
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Figure D.11: Fitness of the best sequences found by IPT for the Iono-
sphere dataset and the logistic regression classifier in repetitive runs and
their comparison to the not preprocessed dataset.

Figure D.12: Fitness of the best sequences found by IPT for the Iono-
sphere dataset and the J48 Decision Tree in repetitive runs and their
comparison to the not preprocessed dataset.
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Figure D.13: Fitness of the best sequences found by IPT for the Parkin-
sons dataset and the logistic regression classifier in repetitive runs and
their comparison to the not preprocessed dataset.

Figure D.14: Fitness of the best sequences found by IPT for the Parkin-
sons dataset and the J48 Decision Tree in repetitive runs and their com-
parison to the not preprocessed dataset.
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Figure D.15: Fitness of the best sequences found by IPT for the Segment
dataset and the logistic regression classifier in repetitive runs and their
comparison to the not preprocessed dataset.

Figure D.16: Fitness of the best sequences found by IPT for the Segment
dataset and the J48 Decision Tree in repetitive runs and their comparison
to the not preprocessed dataset.
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Figure D.17: Fitness of the best sequences found by IPT for the Spam-
base dataset and the logistic regression classifier in repetitive runs and
their comparison to the not preprocessed dataset.

Figure D.18: Fitness of the best sequences found by IPT for the Spam-
base dataset and the J48 Decision Tree in repetitive runs and their com-
parison to the not preprocessed dataset.
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Figure D.19: Fitness of the best sequences found by IPT for the Steel
Faults dataset and the logistic regression classifier in repetitive runs and
their comparison to the not preprocessed dataset.

Figure D.20: Fitness of the best sequences found by IPT for the Steel
Faults dataset and the J48 Decision Tree in repetitive runs and their
comparison to the not preprocessed dataset.
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Figure D.21: Fitness of the best sequences found by IPT for the Teeth
Age dataset and the logistic regression classifier in repetitive runs and
their comparison to the not preprocessed dataset.

Figure D.22: Fitness of the best sequences found by IPT for the Teeth
Age dataset and the J48 Decision Tree in repetitive runs and their com-
parison to the not preprocessed dataset.
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Figure D.23: Fitness of the best sequences found by IPT for the Wine
dataset and the logistic regression classifier in repetitive runs and their
comparison to the not preprocessed dataset.

Figure D.24: Fitness of the best sequences found by IPT for the Wine
dataset and the J48 Decision Tree in repetitive runs and their comparison
to the not preprocessed dataset.
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E Performance of the Sequences Generated from the

Logistic Regression Meta Database
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Figure E.1: Comparison of the fitness (accuracy) of the Simple Logistic Regression Classifier on original datasets, sequences generated from the
Simple Logistic meta database and the sequences generated by IPT.
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Figure E.2: Comparison of the fitness (accuracy) of the Simple Logistic Regression Classifier on original datasets and datasets preprocessed by
sequences generated from the meta database.


