
CZECH TECHNICAL UNIVERSITY IN PRAGUE 

 

DOCTORAL THESIS STATEMENT





Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Telecommunication Engineering

Ing. Alena Křivská

ANTENNA MODELLING FOR ION CYCLOTRON RESONANT HEATING OF 
TOKAMAK PLASMAS

Ph.D. Programme: Electrical Engineering and Information Technology

Branch of study: Telecommunication Engineering

 Doctoral thesis statement for obtaining the academic title of “Doctor”,

abbreviated to “Ph.D.”

Prague, April 2013 



The  doctoral  thesis  was  produced  in  combined manner  Ph.D.  study  at  the  department  of 
Telecommunication Engineering of the Faculty of Electrical Engineering of the CTU in Prague 

Candidate: Ing. Alena Křivská
Royal Military Academy
Laboratory for Plasma Physics - Euratom-Belgian state association
Avenue de la Renaissance 30 
1000 Brussels, Belgium

Supervisor: Prof. Ing. Boris Šimák CSc.
Department of Telecommunication Engineering
Faculty of Electrical Engineering of the CTU  in Prague

Technická 2, 166 27  Prague 6

Opponents: Dr. Roberto Cesario
Prof. Ing. Zdeněk Smékal, Csc.
Prof. Ing. Jan Vrba, CSc.

The doctoral thesis statement was distributed on ….......

The defence of the doctoral thesis will be held on …........  at …......  a.m./p.m. before the Board for the 
Defence of the Doctoral Thesis in the branch of study Telecommunication Engineering in the meeting 
room No.  …...... of the Faculty of Electrical Engineering of the CTU in Prague.

Those interested may get acquainted with the doctoral thesis concerned at the Dean Office of the 
Faculty of Electrical Engineering of the CTU in Prague, at the Department for Science and Research, 
Technická 2, Praha 6.

Chairman of the Board for the Defence of the Doctoral Thesis 

in the branch of study (to be specified) 

Faculty of Electrical Engineering of the CTU in Prague         

 Technická 2, 166 27  Prague 6.



ABSTRACT

The most successful current device for fusion research is the tokamak, a sort of big transformer where the  

secondary coil is hydrogen in plasma state enclosed in a toroidal chamber, in which the plasma is trapped by  

a static magnetic field and heated by strong current induced by the primary coil. The different machines  

operating so far have a plasma discharge time duration of order of 1 s – 10 s. An important mean to heat the  

plasma to thermonuclear fusion temperatures is using high power waves in the Ion Cyclotron Range of 

Frequencies (ICRF 30 – 80 MHz), as shown by experiment results performed for about two decades, from 

1985 to 2005.

However, more recently, ASDEX Upgrade (AUG) tokamak, which is pioneering the use of a tungsten 

(W) first wall, as useful for ITER, found not tolerable high impurity sputtering rates during ICRF power  

coupling. A similar failure in tokamak operations was found in early ICRF experiments (from 1980 to 1984) 

that  used  metallic  vessel.  In  this  thesis  it  has  been hypothesised that  the  improvement  of  the  ICRF 

operations,  later  obtained,  in  the  years  from 1985 to 2005,  would be not  attributed to  improvement  of 

antenna design, as generally believed but, mainly,  to the circumstance that these experiments used low-Z 

plasma faced components (PFCs), which reduce the impurity influx under high level of coupled ICRF power. 

Therefore, the failure of ICRF operation in ITER-relevant high-Z PFCs would be produced by phenomena of 

physics of the edge, like RF sheaths, which rectify the RF potential and accelerate plasma ions of the edge, 

thus enhancing the sputtering for impact on metallic obstacles. Consequently, it is necessary to assess the RF 

potential  in  realistic  condition  of  experiment,  in  order  to  produce  modelling  useful  for  interpreting  the 

observed  phenomenology,  and  address  the  solution  of  the  problematic  failure  in  the  ICRF  operations,  

occurring in recent reactor-relevant tokamak experiments.  

This  thesis  focuses  on  the analysis  and  comparison  of  performance  of  two ICRF antennas that  are 

currently installed on the AUG tokamak with the TOPICA (TOrino Polytechnic Ion Cyclotron Antenna) 

program, for various operational scenarios. The work aims at estimating distribution of the quantities that are 

considered as the main drivers for the impurity production:  E// and RF potentials in realistic conditions of 

antenna geometry and plasma loading. Further, rectified potentials are estimated based on the simple RF 

sheath models and also using more appropriate tool: asymptotic version of the numerical code SSWICH 

(Self-consistent Sheaths and Waves for IC Heating) that characterizes better the RF sheath mechanism. This 

analysis  is  necessary  for assessing phenomena responsible of producing impurity influx,  which prevents 

operations in reactor-graded condition of metallic vacuum chamber. The estimated values are compared with 

the sheath potential drops that correspond to the maximal measured values of tungsten sputtering yield at the 

antenna limiters for typical concentrations of light impurities that bombard W surface and that can be found  

in AUG. 

The unsuccessful ICRF experiment on the National Spherical Torus Experiment (NSTX) has been also 

considered, which did not produce any effect of the coupled RF power to the plasma bulk, but only parasitic  

deposition at  the very edge of  the plasma column.  In this regard,  the non-linear wave-plasma coupling 

phenomenon occurring at the edge has been studied, as example of a not proper transfer of the RF power 

coupled by the antenna to useful ICRF waves.



1. CURRENT SITUATION OF THE STUDIED PROBLEM 

Multi-megawatt ICRF power was successfully utilised in tokamaks with low atomic number (low-Z) 

plasma faced materials and obtained, for two decades, successful results of plasma ion heating. However,  

these operations became problematic in experiments on AUG and ALCATOR C-Mod tokamaks using a  

reactor relevant high-Z metallic vessel. A not sustainable ingress of impurities in the plasma was produced,  

indeed, at levels of RF power that were markedly lower than in previous operations with low-Z plasma 

facing  material  [1-5].  The  phenomenon  of  the  ingress  of  impurities  has  been  interpreted  in  terms  of  

sputtering by plasma ions accelerated by the RF electric field. This field is rectified in layers of plasma edge 

in which a line of the tokamak confinement magnetic field intercepts a metallic obstacle, in presence of a  

sufficiently intense RF electric field component aligned to the confinement magnetic field (E//). These RF 

sheaths  cause acceleration of  ions  impacting  on the obstacle  and,  consequently,  enhance sputtering and 

localised heat flux. The RF sheath rectification was described for the first time in [6] and later with respect to 

the ICRF antennas in [7,  8].  However it  still  needs to be corroborated from the experiments and better  

studied.

Ideally, the ICRF antenna is designed to launch a fast wave. In reality, the ICRF antenna can also launch  

a slow wave (either evanescent or propagating), that is linked with E// component, at the plasma edge when 

the magnetic field is  not  perfectly aligned with the antenna structure.  Additionally,  when the fast  wave  

encounters a material structure, the Maxwell equation boundary conditions require that it couples to the slow  

wave. The slow wave interacts with a material boundary (wall, antenna limiters, divertor, any obstacle or 

PFCs) and drive RF-enhanced sheaths there.

According to [9], parallel image RF currents j// flowing on the antenna structure plays the dominant role 

in the formation of antenna parallel near-fields.  Design of the ICRF antenna should be thus optimized in 

order to minimize this mechanism and improve ICRF heating compatibility with high-Z PFCs. Further, RF 

sheaths should occur also at large distances from the antenna, where a metallic obstacle (e.g., a limiters of  

the machine or limiters belonging to other antennas) is cut  by a confinement  magnetic line, and the E // 

component exceeds a certain threshold value. 

For fusion community, it is important to improve rather poor understanding the underlying mechanisms  

driving the wave-plasma interactions and to develop a quantitative modelling capability for experimental  

design and interpretation, which does not yet exist. A big effort is put in self-consistent accurate quantitative 

modelling of ICRF antennas and sheath effects which is an difficult  computational problem.  In order to  

calculate the RF sheath effects, it is necessary to have an accurate description of the launched RF waves and 

the RF sheath potential distribution over the boundary surface. 

 Because of the impossibility of testing these antennas in experiments with plasmas, an accurate and 

efficient simulation tools are necessary in order to analyse and optimize the ICRF antenna performance.  

These  needs  have  driven   development  of  codes  such  as  TOPICA  [10], FELICE  [11],  ICANT  [12], 

RANT3D[13] and others. These codes can include dielectric tensors of magnetized plasmas, but on the other 

hand they usually adopt only very simplified antenna geometries. Among these codes, TOPICA is the most 

advanced tool up to now because it can handle the realistic 3D geometry of ICRF antennas and it includes  

1D inhomogeneous hot plasma model. Non of these codes include any sheath model, i.e., perfect electric  



conductors are assumed in direct contact with the plasma.

The other option is to use the commercial  3D full-wave electromagnetic simulators such as ANSYS 

HFSS and CST MICROWAVE STUDIO. These programs allows to simulate realistic antenna description 

and results can be detailed. The main disadvantage of such codes is that none of them can account for a  

fusion plasma which is replaced by water or an unaxial medium. 

Related to  the  sheath modelling,  simple  RF sheath models  [7],  [8]  and several  more  self-consistent 

models  can  be  found in  the  literature  [14-21].  These  models  were  so  far  studied  only  in  very  simple 

geometries, and are not available for realistic antenna description. A more self-consistent approach requires 

including plasma in the region between the sheaths and modifying the boundary condition (BC) to take 

account of the sheath capacitance. The BC incorporates plasma dielectric effects and  is required for self-

consistency of computed RF fields and sheath potential.

Another example of self-consistent approach is the SSWITCH (self-consistent sheaths and waves for ion 

cyclotron heating)  program. In this program a minimal two-field fluid approach is used to describe RF wave 

propagation in the bounded SOL plasma of magnetic fusion devices self-consistently with direct current  

(DC) biasing of this plasma (both ends of open magnetic field lines). The RF and DC parts of the model are 

coupled by non-linear RF and DC sheath boundary conditions at both ends of open magnetic field lines [22]. 

The physical model include slow wave and lateral walls normal to the straight confinement magnetic field. 

The system is excited by 2D RF field map imposed at the outer boundary of the simulation domain in order  

to  simulate  a  complex  antenna  structure.  Further,  the  physical  model  allows  interaction  between 

neighbouring flux tubes via the exchange of self-consistent RF and DC currents.  The code is still under  

development.

As further problem met in experiment using ICRF power, any effect of penetration of the coupled RF  

power was not found in the NSTX tokamak in Princeton (USA) during experiments aimed at heating and 

driving current in the plasma [23]. The unsuccessful ICRF experiments are characterised by the deposition of 

the coupled RF at the very edge of the plasma column. This undesired effect is documented by the absence 

of any effect of heating of the plasma bulk, and by the occurrence of a particular frequency spectrum of the  

signal  collected by a  small  loop antenna  faced in  front  to  a  port  of  the  machine.  Namely,  besides  the  

operating frequency line, it was observed also a few lines down shifted by multiples of the ion-cyclotron  

frequency  near  the  edge.  These  side  band  waves  represent  signatures  of  a  non-linear  wave-plasma  

phenomenon, namely the parametric instability (PI), which is produced by the beating of the component of  

the RF electric field (E//) parallel to the confinement magnetic field with a mode of the thermal background 

of plasma density fluctuations, whose frequency lies in the range from about 100 kHz to a few megahertz. 

The component of the coupled RF power excites quasi-electrostatic waves, named lower hybrid (LH) waves, 

whose electric field is indeed quasi-aligned to the wave vector. 



2. AIMS OF THE DOCTORAL THESIS 

It  is impossible to reproduce completely the tokamak experimental  conditions and thus to verify the 

antenna  global  performance  by  proper  tests  performed  outside  the  tokamak.  Given  this,  an  accurate 

simulation of these conditions and prediction of the antenna performance is clearly crucial in the antenna 

design. A reliable simulation and prediction of at least some of the physical effects of a given ICRF antenna 

geometry is the key point for its successful optimization.  The TOPICA (Torino Polytechnic Ion Cyclotron 

Antenna)  software has  been utilised here  as  the  main  tool  for  modelling.  It  has  the  unique features  of  

handling the realistic conditions of geometry of the antennas and load that is represented by plasma modelled 

with sufficient accuracy. 

One of the main focuses of the thesis consist in showing that early experiments that tested for the first  

time the coupling of ICRF power in large tokamaks, at the beginning of the years ’80 of the last century,  

discovered that a strong ingress of impurity occurred, detrimental for useful plasma operations. The ICRF 

experiments became successful, instead, since the middle of the years ’80 and they maintained successful for  

two  decades.  This result  was attributed to have followed a more suitable antenna design in the utilised 

systems. However, recent experiments on AUG, have been characterised by the same failure that occurred in  

early experiments. It is highlighted here that to have used a metallic wall in early experiments and in AUG 

should be the more important cause of the observed strong impurity ingress induced by the coupled RF 

power, rather than different antenna configurations. Successful ICRF experiments occurred before AUG only 

by using walls coated by carbon or beryllium, i.e., low-Z materials.

To help the interpretation of  the  aforementioned phenomenology is  essential  for  enabling the ICRF 

power  to  become  a  robust  tool  for  the  modern  research  on  thermonuclear  fusion  energy based  on  the 

tokamak  concept.  Consequently,  the  thesis  focuses  also  on  producing  modelling  useful  for  helping  the 

interpretation of phenomenology discussed above, and to address the debate on how it should be overcome.  

In regard to the problematic extrapolation of ICRF experiments to regimes using reactor relevant metallic 

vessel, I show results based on numerical solution of the electromagnetic problem of the antenna, in realistic  

condition of the metallic vessel geometry and plasma loading. 

In order to address the understanding of the problems occurred in the recent ICRF power experiments on 

AUG, it is useful to analyse the performance of the two types of AUG ICRF antennas. The work aims at  

characterising the antennas in terms of conditions that they can produce in favouring impurity influx, which 

prevents operations in reactor-relevant condition of metallic vacuum chamber.

The main focuses of the work related in the thesis are:

a)  Comparison of the impedance matrix computation performed with the ANSYS HFSS and TOPICA 

microwave software, considering the flat AUG ICRF antenna. The results can provide also an  additional 

validation of the TOPICA software.

b) Computation and analysis of the following issues: i) scattering matrix, ii) coupled power, iii) induced 

currents on the antenna parts, iv) map of the RF field, in particular, the E// component useful for assessing the 

role of the RF sheath in producing impurity influx. This map should include layers located at large toroidal 



distance from the antenna. The work carried out here represents the basis for developing,  in future,  the 

assessment of the ICRF field structure at large distances form the antennas. The antenna coupling should be 

evaluated taking into account loads approximated by a dielectric, or using a more realistic plasma model.  

Moreover, the flat and the more realistic curved antenna geometries should be taken into account, together 

with different antenna phasing values of the RF power feeding the antennas. Further, a scan of the radial  

layer under test, used for evaluation of E// should be performed.

c) Evaluation of the RF rectified potentials assuming simple sheath model with independent flux tubes. A 

comparison of  the poloidal  distributions of  the rectified potential  with the  measured sputtering yield  of 

tungsten on the ICRF antenna should be performed. The sputtering yield is defined as the ratio of sputtered  

metallic flux over the incoming flux of deuterium. The rectified potential obtained by modelling should be  

compared to the potential  drop in the RF sheath, which corresponds to the measured value of tungsten 

sputtering yield on the ICRF antenna.

d) Providing  E// field map in front  of  the antenna mouth as input  for the asymptotic  version of the  

numerical code SSWICH (Self-consistent Sheaths and Waves for IC Heating)  that better characterizes the 

RF sheath mechanism. Parameters of the antenna with smaller dimensions, originally used in AUG, have 

been considered. The DC plasma potential, VDC, near the initial antenna side limiters, should be calculated in 

order to build hypothesis on how the sheath effects are poloidally distributed.

As further problem met in experiment using ICRF power, any effect of penetration of the coupled RF  

power was not found in the NSTX tokamak of Princeton (USA) during experiments aimed at heating and 

driving current in the plasma. Unexpectedly, only signatures of non-linear wave-particle interaction, namely 

parametric  instability,  were  observed  to  occur.  Further  aim  is  analytical  derivation  of  the  parametric 

instability dispersion relation. To solve this equation has been useful for interpreting the signatures, found on 

NSTX,  which  document  the  occurrence  of  non-linear  wave-particle  interactions,  which  accompany  the 

failure of penetration of the coupled RF power to the plasma core.  

3. WORKING METHODS

3.1 Overview of ICRF heating experiments in  metallic wall tokamaks

Relevant literature was studied to try to understand the problem why: a) early experiments that for the 

first time, in the years ’80 of the last century, tested the ICRF heating scenario in tokamaks that used metallic  

wall, obtained an impurity influx not tolerable for performing useful plasma operations, b) next experiments 

carried out for two decades (from about the years 1986 up to about 2005) obtained, instead, successful results 

of  plasma  heating  accompanied  by  small  impurity  influx,  c)  finally,  recent  results  on  AUG  (ASDEX 

Upgrade) tokamak found, instead, a much stronger impurity influx, which is similar to that occurring in early 

ICRF  experiments.  What  is  common  with  early  ICRF  experiments  has  been  identified  here  in  the  

circumstance that reactor-relevant metallic plasma faced material has been used in AUG. It has been shown,  



indeed, that ICRF experiments became successful not only, as generally believed, thanks to the utilised new 

antenna configuration but, more probably, by the use low-Z plasma faced materials, which have the intrinsic 

property of mitigating the ingress of impurity under RF power coupling to plasma. 

3.2 AUG ICRF antennas simulations

3.2.1 Comparison  of  impedance  matrix  computation  with  ANSYS  HFSS  and  TOPICA 
microwave software for flat AUG ICRF antenna

The  ANSYS HFSS  software  was  the  only  tool  routinely  used  in  the  past  for  AUG  ICRF  antenna 

performance  prediction  and  design  optimization.  A  more  accurate  and  efficient  modelling  would  be 

necessary to optimize the ICRF antenna design for realistic operation parameters. The TOPICA software  

would satisfy this need. Performing comparison in terms of Z matrix and was the first step on the way of 

utilizing the TOPICA software for AUG ICRF antennas. 

In order to compare both tools, it is necessary to set up the same input condition of the simulations.  

Simulations  are  performed  for  frequency 30  MHz which  is  typically  used  for  the  AUG ICRF heating 

experiments. Three different loads are considered for the comparison: vacuum (εr = 1), water (εr = 81) and 

lossy dielectric medium with real part of complex relative permittivity equal to relative permittivity of water  

and imaginary part (ε'' = σ/ωε0) corresponding to effective conductivity  σ =  4 S/m. This lossy dielectric 

medium was chosen because it had been routinely used for AUG ICRF antenna performance prediction and 

design optimization by the ICRF team of AUG tokamak. According to [9] such lossy dielectric mediums can 

preserve realistic coupling to the fast wave. 

Similar results of both programs would exclude any error in the geometry and meshing and provide  

validation of TOPICA against ANSYS HFSS, that has not been done before. Further, the results could be 

considered more trustworthy as the programs are based on different approach. This would encourage the use 

of programs like TOPICA and ANSYS HFSS for reliable prediction of some aspects of the ICRF antenna 

performance. 

3.2.2 TOPICA simulations 

The presented modelling results are focused on the antenna performance in terms of RF sheath effects  

that lead to enhanced impurity production. Antenna performance, with regard to impurity production, can be 

expressed with the RF sheath-driving potentials V//. Most of simulations presented in this section have been 

performed in presence of plasma, to keep the useful information about wave propagation which is lost when  

a dielectric load is assumed. 

Two types of ICRF antennas that are currently installed on the AUG tokamak have been considered: a) 

the narrow antenna configuration, early installed on AUG, and b) the partly optimized new antenna that has  

wider dimensions. Each step of modelling is outlined and the main assumptions are discussed.

The simple  RF sheath model,  assuming independent  flux tubes,  has  been taken into account  in this  

section. Within this simple model [6], each open flux tube of the confinement magnetic field is treated as 

double  Langmuir  probe.  Between extremities  of  the  open flux  tube,  powered  ICRF antenna  drives  RF 



potential

V// = ∫ E// dz   3.1 

where integration is performed over the open field lines that are extended toroidally far away on both sides  

of the antenna structure and connect (magnetically) the antenna vicinity with other PFC. As a response of the  

double probe to the sinusoidal RF drive  V// and due to the non-linear I-V electrical characteristic of the 

sheath, the flux tube gets biased to a DC rectified potential  VDC with respect to the material boundary as 

discussed in Chapter 3.

According to [24], assuming e∣V / /∣≫ k T e  and ω 0≪ω pi , VDC/|V//| ranges from 1/π to 0.5,  depending on 

the parametric domains. In this section of the thesis, formula coming from the simple RF sheath models [7]

     VCD = 0.4 |V//| 4.2

is  used.  Evaluation  of  V// according  to  Equation  4.1  is  not  self-consistent,  as  the  sheath  potentials  are 

estimated  from  E// component  without  considering  proper  sheath  boundary conditions.  Moreover  it  was 

proved that whenever nearby flux tubes are coupled, also the 2D (radial/poloidal) topology of rectified DC  

potentials transversally to the flux tubed can change. Nevertheless producing the maps of E//  component and 

|V//| gives a first important insight into the distribution of VDC. Regions with high E//  have also high rectified 

DC potentials. 

3.2.2.1 RF field mapping and plasma parameters
The first  step of the simulation process includes preparation and meshing of an antenna model  in a  

drawing and preprocessing tool. For the purposes of this thesis, the GiD preprocessor and post-processor [25] 

has been used. 

Figure 3.1: Flat models Curved models of (a) initial narrow ICRF antenna model and (b) partly optimized wide  

antenna configuration with thinner straps and asymmetric wider limiters.

The flat and curved models of the initial (narrow) and partly optimized (wide) AUG ICRF antennas have 

been assumed (see Figures 3.1 and 3.2). Flat models were drawn directly in GiD software. Curved models  

were imported from the technical drawings and, therefore, all the geometrical details of the antennas are 

included. All antenna models are meshed in boundary elements of triangular shape.

a) b)



Figure  3.2:  Curved  models  of  (a)  initial  narrow  ICRF  antenna  model  and  (b)  partly  optimized  wide  antenna  
configuration with thinner straps and asymmetric wider limiters. (To see better the radiating strap part of the Faraday  

screen was removed).

Figure 3.3: Shape and location of plasma boundary (aperture) and  surface where E// values are calculated provided  

curved antenna model.

In order to perform simulation in TOPICA software, an antenna model is placed into a recess and limited 

by aperture that follows curvature of the antenna limiters and represents load (plasma) boundary. The chosen 

shape of the plasma boundary corresponds to the plasma shape with low triangularity, which is defined for 

example in [26]. The plasma boundary is located 8 mm in front of the antenna limiters. In this position, the 

plasma  density is  already very low and therefore  it  is  reasonable  when the plasma is  approximated  by  

vacuum in the region between the plasma boundary and the antenna. In this vacuum region a surface for E// 

component calculation is defined. This surface follows the shape of the load (plasma) boundary (Figure 3.3). 

In addition, for a consistent comparison of both antennas the same mesh density and shape of load boundary 

and surface for E// field calculations are assumed to reduce any source of additional differences. 

Computation of the integral of E// component along the magnetic field lines is performed in MATLAB 

(Matrix Laboratory) numerical computing environment with adoption of an algorithm based on the Inverse 

Distance Weight. Further, a simple interpolating algorithm 'smooth' is applied. This algorithm is available in 

a) b)



MATLAB using a moving average filter. 

The average spatial resolution used for all simulations is 3.8 cm and 1.1 cm for the plasma boundary 

surface  and  the  surface  for  E// component  calculations,  respectively.  The  maximal  spatial  resolution  is 

dictated by the available computer resources. Only recently,  a more powerful computer system HPC-FF 

(High Performance Computing for Fusion) with computing power of 101 teraflop/s became available for 

European fusion community in Jülich in Germany. This circumstance allowed simulating detailed curved  

antenna models with reasonable resolution.

In all  plasma simulations, the typical radial profile of AUG tokamak magnetic equilibrium has been  

assumed (see Figure  3.4). The confinement magnetic field value at the antenna mouth is 1.49 T, and its 

direction  is  tilted  of  11°  with  respect  to  the  toroidal  direction.  Moreover,  all  plasma  simulations  are 

performed for the L-mode phase of confinement, with plasma consisting of 3% of hydrogen minority in  

deuterium, and for the typical operating frequency of 30 MHz used for the minority heating experiments on  

AUG.  All simulations have been performed without considering any tuning and matching  system, and the 

coupled power has been calculated assuming Vmax = 30kV, in infinite coaxial lines.

Figure 3.4: The confinement magnetic field profile used for the TOPICA simulations.

Plasma density and temperature radial profiles used for the simulations were either measured (Figure 3.5) 

or analytically derived from the measured data (Figure 3.6). The measured profiles were obtained from the 

Integrated Data Analysis [27]. This method allows to combine the measured data from heterogeneous and 

complementary  diagnostics  to  consider  all  dependencies  within  and  between  diagnostics  for  obtaining 

validated and more reliable results in transparent and standardized way. Data from the following diagnostics 

are taken into account:  lithium beam impact  excitation spectroscopy,  interferometers,  electron cyclotron 

emission measurements, Thomson scattering and reflectometers. The final plasma density and temperature 

profiles  used  for  simulations  with  TOPICA software  are  derived  by  averaging  the  experiment  profiles  

obtained during plasma discharges 25634, 25654, 25655, in which ICRF heating was used, and considering 

three time windows 2.65-2.8 s, 2.65-2.8 s; 3.0-3.2 s in each plasma discharge (Figure 3.5). 



Figure 3.5: Measure density (a) and temperature (b) profiles used for simulations. Cyan line represents the antenna  

cut-off density, magenta lines represent position of the plasma edge.

Figure 3.6: (a) Density profiles used for the sensitivity study. Magenta lines represent position of the plasma edge.

3.2.3  Preliminary results of SSWITCH simulations
The main aim of the SSWITCH simulations is to check qualitatively how the sheath effect is distributed  

poloidally. Only the narrow AUG ICRF antenna configuration has been assumed for simulation. This is due 

to the limitation of the SSWITCH program that does not allow including the width of the antenna limiters. 

The physical model implemented in the program already includes slow wave and lateral walls normal to the  

straight confinement magnetic field and, for this reason, the antenna model does not include any limiters.

As first step of simulation, near RF field maps are produced in the vicinity of the antenna using the 

TOPICA software. In order to remove any additional vacuum layer, the plasma edge is located 3 mm in front  

of the Faraday screen bars, following softly the poloidal curvature of the antenna with narrow configuration,  

and the E// field component is calculated directly at the plasma edge surface. The average spatial resolution 

used for the simulation is 3.8 cm boundary surface and also for E// calculations. Simulations were performed 

assuming an input forward voltage of 12kV applied at the antenna feeders which corresponds to 1M W of  

coupled power to plasma.

3.3 Interpretation of NSTX experiment results
The unsuccessful ICRF experiment on the National Spherical Torus Experiment (NSTX) has been also 

considered, which did not produce any effect of the coupled RF power to the plasma bulk, but only parasitic  

deposition at  the very edge of  the plasma column.  In this regard,  the non-linear wave-plasma coupling 

phenomenon occurring at the edge has been studied, as example of a not proper transfer of the RF power 

coupled by the antenna to useful ICRF waves.

a) b)



The ICRF experiment on  NSTX was characterised by the deposition of the coupled RF at the very edge 

of the plasma column. This undesired effect is documented by the absence of any effect of heating of the 

plasma bulk, and by the occurrence of a particular frequency spectrum of the signal collected by a small loop 

antenna  faced  in  front  to  a  port  of  the  machine.  Namely,  besides  the  operating  frequency line,  it  was 

observed also a few lines down shifted by multiples of the ion-cyclotron frequency near the edge.  These side  

band waves represent signatures of a non-linear wave-plasma phenomenon, namely the parametric instability 

(PI),  which  is  produced  by  the  beating  of  the  component  of  the  RF electric  field  (E //)  parallel  to  the 

confinement magnetic field with a mode of the thermal background of plasma density fluctuations, whose  

frequency lies in the range from about 100 kHz to a few megahertz. The component of the coupled RF power 

excites quasi-electrostatic waves, named lower hybrid (LH) waves,  whose electric field is indeed quasi-

aligned to the wave vector. 

We have analytically derived the parametric dispersion relation (PDR), i.e., the equation whose solutions 

determine the conditions for the onset of a PI, when a certain value of the coupled RF power density is  

exceeded, being fixed the local values of the plasma kinetic profiles and other parameters. Namely these  

parameters are: the toroidal magnetic field, refractive index of the launched (pump) wave and low frequency 

mode, operating RF frequency and antenna geometry. The PDR solutions give frequencies and growth rates 

of the non-linearly coupled modes of PI. 

4.  MAIN RESULTS

4.1 Comparison  of  impedance  matrix  computation  with  ANSYS  HFSS  and  TOPICA 
microwave software for flat AUG ICRF antenna

 It can be concluded that the programs are on average in a good agreement for vacuum, water and chosen 

dielectric in terms of Z matrix, assuming the flat narrow AUG ICRF antenna. The maximum difference for 

real part of self-terms is 6.5% and for imaginary part 3.1%. In case of mutual terms, the maximal difference  

is 6.1% and 6.8% for real and imaginary part respectively.  These differences can be due to the different  

approaches  between  the  programs,  mainly  in  meshing,  slightly  different  input  conditions  and  little 

geometrical discrepancies. This result provides an additional validation of TOPICA software.

4.2 TOPICA simulation results

Figures 4.1 and 4.2 present E// field map for the plasma the load, assuming the curved initial narrow and 

wide antenna configurations. An input forward voltage of 1V is applied at the antenna feeders which exhibit 

a characteristic impedance 25Ω (which corresponds to 0.02 W of incident power). The plane for E// solution 

calculation is situated 2 mm radially away from antenna limiters. Fields are in all cases predominantly real 

due to the chosen antenna phasing. It can be seen that special structures develop in the region of the antenna  

corners, and therefore locally high potentials are expected there. The presented E// field maps, which show 

that strong E// values can exist on all the structures surrounding the antenna, and in particular on the antenna  

limiters, that carry image currents of the antenna straps. The radially protruding limiters are the locations 



where E// component mostly appear due to intersection of the limiter with magnetic field lines. The electric  

fields  are  forced  to  be  perpendicular  to  the  protruding  surfaces  and  get  a  large  parallel  component.  

Depending on the alignment of the limiter curvature with respect to the magnetic field lines, either positive  

or negative E// values appear on the limiter sides.  It can be seen that, the E// values are less intense for the 

wide antenna configuration. This result is in agreement with assumptions that E// component can be reduced 

by putting the locations of the intersection of the protruding parts with magnetic field lines further away from 

the antenna. In this condition, the effect of the image currents and electric fields of the antenna is lower.

Figure 4.1: Distribution of real and imaginary part of E// for plasma load assuming the narrow antenna configuration.

Figure 4.2: Distribution of real and imaginary part of E// for plasma load assuming the wide antenna configuration.

Figure  4.3  presents  RF potentials  |V//|  for  input  forward  voltage  of  1V at  the  antenna  feeders  with 

characteristic impedance 25Ω (which corresponds to 0.02 W of incident power) and for 1MW of coupled 

power to the load.  (0,  π) phasing is assumed.  The  calculated values for vary along the vertical (poloidal) 

direction; the peak values are situated in the lower and upper parts of both antennas. The |V//| RF components 

are reduced approximately by a factor of 1.8 for the partly optimized wide antenna.

The detailed analysis indicates  that there are remarkable differences in RF potentials both in terms of  

peak amplitude and location. It can be concluded that a flat model can be a reasonably good approximation 

of a real curved launcher when the power coupled to plasma has to be computed. In order to study more 

b)



localised phenomena, such as RF potentials, a realistic antenna geometry is necessary, which should take 

into account even relatively small details that can however have  influence on the the result of parameters 

under study. 

Figure 4.3: |V// |  calculated for flat and curved antenna models for the input voltage of 1V at the antenna feeders (a)  
and for 1MW of coupled power to the plasma load (b).

Further, In order to estimate how E// and V// change with increasing radial distance from the antenna, the 

surface was moved to 4 and 6 mm in front of the antennas.  Figure  4.4 documents RF potentials |V//| for 

different radial distances assuming an input forward voltage of 1V for both antennas. We can conclude that 

the more intense E// values are localized in the antenna vicinity. 

Figure 4.4:  |V// |  calculated for different radial distances for the narrow antenna (a) and for the wide antenna (b)  

configuration, assuming  the forward voltage of 1V at the antenna feeders.

Further, considering the curved geometry,  the impact of the antenna phasing on the RF potentials has 

been assessed. For the narrow antenna, The highest impurity production can be expected for (0,0) phasing. 

The peak values for (0, π) and (0, π/2) seem to be comparable. Nevertheless for (0, π/2)  phasing, the area 

with higher values is larger, and slightly worse performance is expected to occur. The best performance is 

expected to  occur  instead using (0,  π)  phasing.  These results  are  in  good agreement  with experimental 

observations for the same operating conditions. For the wide antenna, the same bad performance of the wide 

antenna can be expected for (0, 0) phasing. This situation is improved using the (0, π/2) phasing, and the best 

performance is reached for (0, π) phasing.

I have also analysed the sensitivity of density profile on coupling performance, considering the case of  

b)

a)

a)



the curved antenna geometry.  The coupled power increases with decrease of the density gradient and with 

decrease of the antenna cut-off distance. For smaller antenna cut-off distance the evanescent region, through 

which the fast magnetosonic wave has to travel, is shorter and more power is transferred to plasma. Further,  

the coupled power is lower for the partly optimized wide antenna, likely due to thinner radiating straps. 

Differences between antennas appear to be higher for lower density gradient and smaller antenna cut-off 

distance.  

Keeping constant the antenna cut-off distance for both antennas, gradient sensitivity analysis shows that  

similar values of |V//| occur, except obtaining a larger peak in the bottom part of the narrow antenna, for the  

steepest density profile. The |V//| values result to be more sensitive to the antenna cut-off distance. Keeping 

constant the plasma density gradient, |V//| tends decreasing by increasing the antenna cut-off distance. This 

tendency is in agreement with experimental observations.

4.2  Indirect  comparison  with  experimentally  measured  values  for  the  narrow  antenna 

configuration

Calculated spatial distributions of RF potentials |V//| are in good agreement with poloidal variation of the 

floating potentials that were measured around ICRF antennas of Tore Supra tokamak, using reciprocating 

Langmuir probes [24] (Figure 5.33). Nevertheless, floating potential is not directly a measure of the plasma  

potential.  It  rather indicates that  the two flux tubes,  emerging from the two probe electrodes,  draw DC  

current from their neighbours. 

There is also agreement with poloidal distribution of the W sputtering yield that was spectroscopically 

monitored on the initial ICRF antenna limiter, during ICRF heating in AUG tokamak [5]. In this experiment, 

the array of spectroscopic measurements at one of the unpowered antennas with narrow configuration, was 

used  to  characterize  the  companion antenna.  The  latter  was  powered  and  connected  to  the  unpowered 

antenna via lines of the static magnetic field of the tokamak..

The maximal values of  W effective sputtering yield, around 1.8·10-4, were measured on the magnetic 

field lines passing the upper corner of the powered antenna. The measurements were done  for 1 MW of 

coupled ICRF power.  The maximal measured values of W sputtering yield, for typical concentrations and 

charge states of light impurities,  correspond to the sheath accelerating voltage. These values are slightly  

below 100V.

The estimated values of DC rectified potentials according to Equation 4.2 for selected plasma density 

profiles (presented in Figure 3.6) assuming both antennas are shown in Figure 4.5. The maximal values in 

the bottom and upper part of the antenna with narrow configuration lye in the range from 65 V to 110 V,  

which is far above the sputtering thresholds for W. The estimated values seem to provide correct order of 

magnitude with respect to values of accelerated voltage corresponding to the measured W sputtering yield.  

For the wide antenna configuration, the estimated values of rectified potentials are roughly a factor of two 

lower than for the narrow antenna configuration. The exact values depend on the actual plasma content and, 

for this reason, it is difficult to quantify the value precisely.



Figure 4.5: Calculated values rectified potential VDC  for selected density profiles for both antenna configurations.

4.3  Preliminary results of SSWITCH simulations
Figure  4.6 presents  2D  radial/poloidal  plots  of  the  DC  plasma  potential  obtained  with  SSWITCH 

program. It can be seen that, in the private SOL between the vertical limiters, the DC potentials are highest 

approximately 2 mm above the  antenna Faraday screen, and reach even the level of 300 V. At the radial 

position of antenna limiter (6 mm above the FS) , the values of the DC plasma potential reach levels in the  

range from 70-130V.  

Figure 4. 6: 2D radial/poloidal plots of the DC plasma potential from RF sheath rectification.

In agreement with TOPICA results, high VDC are present in the bottom part of the antenna. In contrast to 

the TOPICA results, no high peak is present in the upper part of the antenna. Further, poloidal variations that  

do not correspond to any physical  object are present.  This circumstance could be due to the used mesh 

resolution, but it needs to be better investigated in future work. 

4.4 Interpretation of NSTX experiment results

Unstable solutions have been found with significantly high growth rate (γ≥ω) at frequencies in the range 

from about 100 kHz to a few megahertz. High growth rates have been also found at around harmonics of the 

ion-cyclotron frequency of the edge. These results are consistent with the results of the spectrum of the 

signal collected by the Langmuir probe located at the edge. We can thus conclude that the phenomenon that 

accompanies  the  failure  of  the  penetration  of  the  coupled  RF  power  in  the  NSTX  experiments  is  the 

parametric instability. This mechanism can be thus retained responsible of the undesired parasitic absorption 



of the launched RF power at the edge. Further analysis should be required in order to assess the amount of 

the power carried by the daughter  waves,  and determine  the consequent  effect  of  parasitic damping on 

plasma particles at the edge.  This result indicates however that, in the NSTX experiment, a large fraction of 

the coupled RF power would excite waves with a too high E// component of RF field. This component is able 

to  excite  quasi-electrostatic  plasma  waves  rather  than  fully  electromagnetic  ICRF  waves,  which  are  

necessary for proper ICRF operations aimed at heating plasma ions and driving current. Consequently,  a 

more suitable antenna design, which would reduce the spurious LH wave coupling, should be recommended 

for making successful experiments.   

5. CONCLUSION 

To couple multi-megawatt Ion Cyclotron Range of Frequencies (ICRF) power to tokamak plasmas is in 

principle an important tool for research of thermonuclear fusion energy. For the assessment of this tool, it is  

necessary to understand why the ICRF power was successfully utilised for decades, in tokamaks with low-Z  

plasma  faced  materials,  whilst  the  extrapolation  of  these  experiments  to  conditions  of  reactor  relevant 

metallic vessel, performed more recently on ASDEX Upgrade AUG tokamak, resulted unexpectedly very 

problematic due to a not sustainable ingress of impurities in the plasma occurring also at relatively low ICRF 

coupled power.

In this thesis, I have considered the circumstance, indicated by experiments and calculations, that the  

phenomenon of RF sheath, which rectifies the RF potential and accelerates ions in regions of the plasma 

edge, would be cause of the undesired impurity injection. Consequently, this work has been mainly focussed 

on individuating and using the more appropriate modelling methods available so far, useful for assessing the 

RF potential, in realistic conditions of experiments, including plasma edge. This way, there are more chances  

of interpreting the unexpected results obtained by AUG, compared with previous successful experiments  

with low-Z plasma faced materials. 

For the flat AUG ICRF antenna, I have compared the impedance matrix of antenna as computed by two 

different modelling tools, namely the ANSYS HFSS and TOPICA microwave software. Consequently, it can 

be concluded that the codes are on average in a good agreement for vacuum, water and dielectric in terms of  

Z matrix, which have provided an additional validation of the TOPICA  software.

Further, I have used TOPICA for simulation of two types of ICRF antennas that are currently installed on 

the AUG tokamak have been considered: a)  the narrow antenna, early installed on AUG, and b) the partly  

optimized new antenna that has wider dimensions.

Consequently, strong E// fields exist on all structures surrounding the antenna and, in particular, on the 

antenna limiters, which carry image currents of the antenna straps. The radially protruding limiters represent  

the  locations  where  the  E// component  appear  more  pronounced,  as  the  limiter  intercepts  there  the 

confinement magnetic field lines. It  can be seen that special structures develop in region of the antenna 

corners and, therefore, locally high potentials are expected there. In all simulated cases, RF potentials vary 

along the vertical (poloidal) direction; the peak values are situated in the lower and upper parts of both 

antennas.  The  E// and  |V//|  RF  components  are  reduced approximately  by a  factor  of  1.8  for  the  partly 



optimized  wide  antenna.  The  obtained  spatial  distributions  of  the  RF  potentials  |V//|  result  in  a  good 

agreement with poloidal variation of the floating potentials measured around ICRF antennas of Tore Supra 

tokamak, using reciprocating Langmuir probes. There is also agreement with the poloidal distribution of the 

tungsten sputtering yield that was spectroscopically monitored on the initial ICRF antenna limiter, during 

ICRF heating in AUG tokamak.

I have carried out the analysis of the impact of antenna load on RF potentials evaluation for flat antenna 

geometries. Consequently, the coupled power is approximately 35% for the dielectric load, and the E//,  |V//| 

components are less intense assuming the real plasma condition than with a dielectric load used for test.

The antennas with both flat  and curved geometry have been also modelled,  considering the realistic  

condition of plasma load. Consequently, for curved geometry results to couple 7% more power than the flat  

one. The  |V//|  component is approximately 35% lower for the curved than for the flat geometry.  Detailed 

analysis  indicates  that  marked  differences  in  RF potentials  occur,  both in  terms  of  peak amplitude and 

location. From the obtained data of power coupled to plasma, the flat model results to represent a reasonably 

good  approximation  of  a  launcher  with  realistic  curved  geometry.  The  realistic  antenna  geometry  is 

particularly necessary for the considered main goal of the present thesis, consisting in assessing the role of  

the localized phenomena at  the plasma edge,  driven by the RF potentials,  where even apparently small  

details can influence the final result. 

I have made comparison of the narrow antenna, early installed on AUG, and the partly optimized new 

antenna  that  has  wider  dimensions.  The  coupling  performance  results  higher  for  the  narrow  antenna: 

compared to the wider antenna, for the considered kinetic plasma profiles,  the antenna coupling is 12% 

higher,  considering  the  dielectric  load,  and  14%  higher  with  the  plasma  load. Considering  the  curved 

geometry, the impact of the antenna phasing on the RF potentials has been assessed. For the narrow antenna, 

The highest impurity production can be expected for (0,0) phasing. The peak values for (0, π) and (0, π/2) 

seem to be comparable. Nevertheless for (0, π/2)  phasing, the area with higher values is larger, and slightly 

worse performance is expected to occur.  The best performance is expected to occur instead using (0,  π) 

phasing.  These  results  are  in  good  agreement  with  experimental  observations  for  the  same  operating 

conditions. For the wide antenna, the same bad performance of the wide antenna can be expected for (0, 0)  

phasing. This situation is improved using the (0, π/2) phasing, and the best performance is reached for (0, π) 

phasing.

I have analysed the sensitivity of density profile on coupling performance, considering the case of the 

curved antenna geometry. The coupled power increases by decreasing both the assumed density gradient and 

the radial distance of the antenna from the cut-off layer. Keeping constant the antenna cut-off distance for  

both antennas, gradient sensitivity analysis shows that similar values of |V//| occur, except obtaining a larger 

peak in the bottom part of the narrow antenna, for the steepest density profile. The  |V//| values result to be 

more  sensitive  to  the  antenna cut-off  distance.  Keeping constant  the plasma density gradient,  |V//|  tends 

decreasing by increasing the antenna cut-off  distance.  This  tendency is  in  agreement  with experimental  

observations.

After radial scan of E// and V//, the values of E// at the antenna corners are reduced by increasing the radial 

distance, for both antenna geometries. It can concluded that the more intense E// values are localized in the 

antenna vicinity. 



Preliminary results of SSWITCH (Self-consistent Sheaths and Waves for IC Heating) simulations show 

that, in agreement with TOPICA results, high VDC are present in the bottom part of the antenna. In contrast to 

TOPICA results, significantly high peaks are not present in the upper part of the antenna. The occurring 

poloidal  modulation of the potential  appears quite  problematic,  and this  issue should be investigated in  

future.

Finally, the problem of failure of penetration of the coupled RF power to the plasma core have been  

considered, which occurred on NSTX (National Spherical tokamak Experiment) during experiments aimed at 

heating and driving current in the plasma, operating at high harmonic of the ion-cyclotron frequency of 

Deuterium plasma. Only signatures of non-linear wave-particle interaction were observed to occur, which 

can be interpreted as effect of parametric instability produced by the E// component of the coupled RF power. 

This  mechanism  is  described  by  the  parametric  dispersion  equation,  whose  analytical  derivation  and 

solutions has been summarised here. Consequently, the instability is favoured by the relatively cold region of  

plasma periphery, an it is expected depleting significantly the RF power spectrum launched by the antenna,  

by side band waves that would produce the undesired deposition on particles of plasma edge. 

Further  work  is  necessary  to  be  carried  out  in  future,  for  fully  assessing  the  phenomena  that  are 

responsible of the unexpected strong impurity influx in ICRF heating experiments in machines with reactor-

relevant  metallic  walls,  and  the  failure  of  RF  power  penetration  to  the  plasma  core  in  current  drive 

experiments  operating at  high harmonic  of the ion-cyclotron frequency of Deuterium plasma.  The work 

presented in the thesis indicates how the map of the RF field should be extended, for realistic conditions of 

experiment, to regions of plasma edge located far from the antenna. This information is necessary to take 

into account the impurity production observed to occur also in regions that are toroidally located far from the 

antenna.  Moreover,  a  complete  assessment  of  the  RF  field  pattern  should  be  performed,  considering 

experiments  operating  at  high  harmonic  of  ICRF power.  The  analysis  has  been  indicated,  which  takes 

properly  into  account  non-linear  plasma-wave  interaction  phenomena.  This  work  can  address  a  more 

appropriate  antenna  design,  which  is  necessary  for  reducing  the  contribution  of  the  RF  coupled  E// 

component. 

6. SUMMARY 

The problem of the unsuccessful use of ICRF (ion cyclotron radio-frequency) power coupled to tokamak  

plasma in experiments aimed at heating or driving current has been considered here. Overcoming this issue is 

necessary for the progress of main thermonuclear fusion energy research. 

Original information have been provided showing that early experiments that tested for the first time, in 

the years ’80 of the last century, the ICRF heating scenario in tokamaks by using metallic wall, obtained the 

same not tolerable impurity influx that occurred, more recently, on AUG (ASDEX Upgrade) tokamak. In the  

latter experiment, conditions of reactor-relevant Tungsten plasma faced material have been used, indeed,  

similar  to  those  utilised  in  early  ICRF  experiments.  It  has  been  indicated  that  the  more  probable 

interpretation of the circumstance that, after the first attempts, the ICRF experiments became successful for  

two decades, since the middle of the years ’80, is not only due, as it was believed, to the use of a new 



antenna configuration but, rather, to the utilised low-Z plasma faced materials. These materials are, however,  

not relevant for a fusion reactor. For this reason it is absolutely timely the content of this thesis, which is  

mainly  focussed  on  the  interpretation  of  the  early and recent  ICRF experiments,  using  reactor-relevant  

metallic plasma faced materials.

In order to address the interpretation of the important problem of how enable the ICRF power to be a tool 

useful for a thermonuclear fusion reactor, I have considered the role of some phenomena of wave-plasma 

interaction at the plasma edge. Namely, I have taken into account the phenomena of RF sheaths, producing  

impurity influx, and parametric instability, producing parasitic damping at the edge of the RF power coupled 

by the antenna.  These phenomena  should be mitigated in  order to  enable  reactor-relevant  operations  in  

tokamaks, which require ICRF power for plasma heating and current drive.

I have produced new modelling work useful for assessing the RF field structure inside the main chamber  

of tokamak.  As necessary for performing useful  analyses  of wave-plasma interaction phenomena at  the  

plasma edge, this work has been carried out considering the complex conditions of both realistic geometry 

and antenna-plasma loading. These requirements are, indeed, necessary for assessing important details of the 

RF electric field pattern, useful for development of dedicated modelling and for comparing the expected 

antenna parameters with features measured during the experiments. 

The content of the thesis provides the basic elements necessary for producing, in future, further and more  

complex  modelling  and  experimental  works.  They  are  necessary  for  solving  the  important  problems  

individuated so far for enabling the ICRF power to become a robust tool for a future thermonuclear fusion 

reactor.  To assess the RF electric field behaviour, in realistic conditions of antenna geometry and plasma  

loading,  provides  essential  information  for  solving  the  problems  produced  by  parasitic  plasma-wave 

interaction phenomena.  In order to efficiently attack these problems,  it  is  necessary,  indeed,  to interpret  

available  data  of  experiments,  address  improvements  in  designing  new  antennas,  and  perform  further  

experiments that are necessary for testing formulated hypotheses, as useful in scientific method. These issues 

require, as essential condition, the methods for RF electric field assessment, in complex antenna geometries,  

shown in the thesis.
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10. ANOTACE

Nejúspěšnějším  zařízením  pro  výzkum  termojaderné  fúze  je  tokamak.  Pracuje  na  principu 

transformátoru, kde sekundární vinutí tvoří vodík ve stavu plazmatu uzavřený v prstencové komoře, ve které 

je  plazma  drženo statickým magnetickým polem a  zahříváno  silným proudem indukovaným primárním 

vinutím.  Jedním  ze  způsobu  dosažení  termojaderných  teplot  je  neinduktivní  ohřev  plazmatu  vlnami  s 

frekvencemi  v  oblasti  iontové  cyklotronní  rezonance  30–80 MHz,  jak  vyplývá  z  výsledků experimentů 

provedených v letech 1985-2005.

 Mezi problémy spojené s užitím této metody při vyzařování velkých výkonů (v řádu jednotek MW), je  

nárůst nečistot v plazmatu, pocházejících ze stěn komory tokamaku. Zřejmě díky přítomnosti lokálních a 

velmi  intenzivních  vysokofrekvenčních  (VF)  polí  v  blízkosti  antény  dochází  k  interakci  plazmatu  s 

materiálem stěn. Pokud jsou stěny komory tokamaku obloženy prvkem s nízkým atomovým číslem, jako je 

například berylium nebo uhlík,  nepředstavují  nečistoty do určité  míry závažný problém.  Obsahují-li  ale 

prvky s vyšším atomovým číslem (např. wolfram), pak tyto těžké atomy putují do centra plazmatu, kde silně 

vyzařují a způsobují tím ochlazení a ztrátu energie plazmatu. 

Tato práce je zaměřena na simulace chování a porovnání dvou antén pro iontově cyklotronní ohřev, které 

se nacházejí na tokamaku ASDEX Upgrade, který má vnitřní stěny z wolframu. Simulace jsou provedeny 

převážně v programu Topica (Torino Polytechnic  Ion Cyclotron  antenna)  pro různé provozní  scénáře  a 

kinetické profily. Práce se zabývá odhadem a distribucí velikostí veličin, které jsou považovány za hlavní 

příčinu tvorby nečistot: E// a VF potenciálů. 
Neúspěšný  experiment  NSTX byl  rovněž  vzat  v  úvahu.  Užití  vln  na  iontové  cyklotronní  frekvenci 

nevedlo k ohřevu plazmatu, ale pouze  k  parazitní interakci na okraji plazmatu. 
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