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Abstract

This habilitation thesis presents advancements in multi-goal path planning for mobile
robotic problems arising from inspection, surveillance, exploration or data collecting mis-
sions. The main discussed approach is based on self-organizing map (an unsupervised
neural network) technique in which the path being found is represented by a sequence of
neurons’ weights. These weights are adapted to the goals requested to be visited by an
unsupervised learning procedure during which the neural network evolves in the prob-
lem domain. The simplicity of the adaptation rules provides a great flexibility to address
various problems of inspection planning in 2D environments, where the goals can be rep-
resented by points or areas of interest. In addition, the same technique is extended to
planning in 3D environments with considering kinematic constraints. This approach al-
lows to combine the task planning with a lower level motion planning in a unified way.

Moreover, a problem of path planning considering localization uncertainty of a mobile
robot during autonomous navigation is addressed by the same principle. The adaptation
procedure utilizes a mathematical model of evolution of the localization uncertainty in
a map-and-replay navigation. Based on the found principle of the uncertainty decreas-
ing, the self-organizing neural network finds a path to visit the given set of goals that
increases the precision of the goal visits and thus it increases reliability and robustness of
the autonomous navigation.

Finally, the multi-goal path planning problem is considered in exploration missions,
where it is employed to select the next goals for single or a group of mobile robots oper-
ating in an unknown environment. Although, the found plan is followed only for a mo-
ment due to re-planning when new information about the environment being explored
is collected, the proposed method improves performance of exploration missions in com-
parison with standard approaches that just consider only an immediate reward by con-
sideration of the visitation of a single goal.

Anotace

Tato habilita¢ni prace piedstavuje vysledky v feSeni problémii pldnovani cest pfes vice
cilt, které vychazeji z dloh inspekce, dohledu, priizkumu a sbéru dat mobilnim robotem.
Hlavni diskutovany pfistup je zaloZen na samo-organizujici neuronové siti, ve které je
pozadovana cesta reprezentovdna sekvenci vah neuronti. BEhem faze uleni sité jsou tyto
vahy adaptovany k poZadovanym cilim navstiveni podle jednoduchych pravidel samo-
organizace. Pravé jednoduchost modifikace téchto pravidel poskytuje flexibilitu pro feseni
rozli¢nych problémt planovani inspekce pro 2D prostfedi, ve kterém mohou byt cile re-
prezentovdny body nebo oblastmi zdjmu. Navic, identickd technika adaptace umoZiuje
rozsifeni tlohy na planovani ve 3D prostiedi a také zohlednéni kinematickych omezeni
mobilniho robotu. Tento p¥istup tak umozZnuje kombinovat planovani tloh s pldnovanim
pohybu.

Kromé toho lze stejny princip pldnovani cesty pfes vice cilti pouZit také pro feSeni
planovaciho problému zohlednujictho zdroje lokaliza¢ni nejistoty autonomni navigace
mobilniho robotu. Pfi planovéni je vyuZito matematického modelu vyvoje lokaliza¢ni
nejistoty v tzv. ,map-and-replay” navigaci, ve které je robot nejdfive proveden danym



prostfedim a nasledné mtize opakovat projeti naucené trasy plné autonomné. Tento pii-
stup vyuziva identifikovaného principu sniZovani lokaliza¢ni nejistoty v pribéhu nav-
igace a neuronové sit poskytuje cestu, kterd zvySuje pfesnost navstiveni cild. Nalezené

cesty tak vedou k vyssi spolehlivosti a robustnosti autonomni navigace v tlohach dohle-
du, ve kterych je tikolem periodicky navstévovat zadané cilové oblasti.

V z&véru préce je pak problém planovani cesty pfes vice cilti uvazovan v tloze prazku-
mu, kde je kli¢ovym problémem zvoleni dalsiho cile, ke kterému se robot (nebo skupina
robott1) naviguje tak, aby bylo prostfedi prozkoumano co mozna nejrychleji. V pribéhu
prazkumu jsou ziskdvany nové informace o prostfedi, a proto je vyhodné na zakladné
novych informaci opakované stanovovat nové cile. PfestoZe je v diisledku tohoto prepla-
novani nalezend cesta pfes vice cilli sledovdna pouze smérem k prvni cily, je vyslednd
doba priizkumu vyrazné kratsi, nez v piipadé pfistuptl, které uvazuji pouze okamzity
ocekdvany benefit pouze jediného cile, ke kterému robot smétuje.



“The human brain is incapable of creating
anything which is really complex.”
Kolmogorov
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1. INTRODUCTION

1 Introduction

Multi-goal path planning for mobile robots is a general problem arising from practical
robotic scenarios like inspection, patrolling, surveillance or data collecting tasks where
mobile robots are requested to (semi)autonomously visit a set of locations, e.g., to take
a sensor measurement. This class of problems can be characterized by a situation where
a mobile robot is requested to collect information about some object in a hazardous oper-
ational environment as quickly as possible. A basic variant of the multi-goal path planning
problem (MTP) is a problem to find the shortest path within a model of the robot’s work-
ing environment such that the robot navigated along the path will visit all the given goals
starting from some initial location and returning to the same location.

The complexity of the MTP can be easily seen for a case where the goals can be repre-
sented by points with precise positions known in advance. In this case, the MTP can be
directly formulated as the well-known traveling salesman problem (TSP), which is known to
be NP-hard and for which optimal and heuristic approaches have been developed in op-
erational research [45] 5]]. The computational complexity and more precisely the real com-
putational requirements are the main issues for a practical deployment of the methods
within a robotic mission. Although we can assume the plan can be prepared in advanced
prior the deployment, it is not necessarily the case for search and rescue missions where
a prompt response is desired. Moreover, it is also worth to remind that prior knowledge
about the environment can be more or less reflecting its current state and the planning is
typically based on several assumptions that can respect the complexity of the real world
only partially. Thus, an ability to reconsider new information about the current situation
and to quickly provide a new plan according to the most updated information is a de-
sirable feature of the mission planning system. Therefore, fast approximate approaches
are rather preferred for practical deployment than computationally demanding optimal
solvers because of the need for quick replanning.

Regarding the context of robotic missions, the basic variant of the MTP represents a
fundamental approach to solve the aforementioned robotic tasks. In this problem formu-
lation, we assume the goals are known a priori and the main problem is to determine
a sequence of the goals visits; hence, this problem is also called sequencing part of more
complex tasks, where the problem is also to determine the goals themselves [42]. Such a
complex mission can be a problem of collecting information about environment. A fea-
sible approach for this type of inspection tasks is to decouple the problem into two sub-
problems: 1) a problem of determining the most suitable sensing locations [43, 149, [31]];
2) and the sequencing part formulated as the MTP, which can be eventually solved by a
TSP solver. For example, this approach can be considered for robotic arms or vehicles that
are requested to perform a set of operations at the desired locations [83} [74]. In particu-
lar, problems where all paths between the goals can be pre-computed. Then, the problem
can be solved as the TSP approximately using the Chained Lin-Kernighan heuristic [4] or
exactly by a branch and bound method [57].

On the other hand, the current progress in robotic technology allows to consider a
larger set of particular application scenarios and wider practical deployments in areas
that are beyond limits of previous technologies, e.g., enabled by small unmanned aerial
vehicles. These novel scenarios are more challenging, as it is usually not sufficient to con-
sider the basic variant of the problem formulation, because the assumed constraints are
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not longer realistic and valid. Besides, it is also desirable to provide a better performance
(in standard problems) and thus it is necessary to include additional constraints to find a
solution that will be feasible in real deployment and provide expected benefits.

An example of such scenarios are problems where the goals (or their most suitable
locations) are not known a priori, as they depend on operational constraints and the con-
necting path itself. For example in the autonomous ship inspection [22} 24], the problem is
to cover a complex shape using an unmanned vehicle with a limited sensoric system. The
problem can be addressed by sampling-based planning of inspection paths in which a set
of candidate goals (from which a part of the ship is covered) are found first. Having the set
of candidate sensing locations, the path can be found using all candidates by a solution of
the TSP [17] or appropriate locations can be selected by an optimization method combin-
ing sensing and travel costs [90], which can provide a better solution if sensing locations
are determined independently from the path planning [42]. However, the problem of de-
termining the best sensing locations is a challenging problem itself [54]. The problem can
be considered as a variant of the art gallery problem or set cover problem, which are known
to be NP-hard.

In the decoupled approach, it is obvious that for increasing number of locations the
planning (the sequencing part of the problem) will be more computationally demanding
due to a larger search space. Thus, considering the problem as an integer programming
optimization or using traditional branch and bound algorithms will become quickly com-
putationally intractable [82]. In addition, a part of the problem is also determination of
goal-to-goal paths that can be demanding as well, especially for a high dimensional con-
figuration space, which is difficult to explicitly represent and a feasible approach is to
consider sampling based methods [58].

Moreover, additional constraints can be considered in order to find feasible and re-
alistic plans. Such constraints include sources of uncertainties in determination of goal
locations as well as in robot motion and navigation, limitations of sensory systems [75],
limited power sources, restricted communication, or changes of the environment, i.e., re-
specting dynamics of the environment like changes of obstacles, locations of the goals,
wind for aerial vehicles [85] or ocean currents for underwater vehicles [79].

The NP-hardness of the sequencing part of the problem (arising from the underlying
TSP-like formulation) together with determining (or selecting) appropriate goal locations
and finding goal-to-goal paths make the multi-goal path planning problem difficult to
address by standard approaches, especially regarding the required computational time.
This is also the reason why approximate solutions are considered to be a more practi-
cal than demanding optimal solutions, which can quickly become computationally in-
feasible. Practical needs to solve the discussed problems and limitations of classical op-
erational research approaches steer the robotic research in multi-goal path planning to
consider novel approaches developed in artificial intelligence domain. Relatively recently
developed soft-computing techniques provide a great flexibility to consider various oper-
ational constraints while still provide effective meta-heuristics to address complex large
scale problems. The techniques include genetic algorithms, e.g., considered in the multi-
goal planning for blasthole drill in [21]], ant colony optimization or neural networks already
applied for the MTP in mobile robot inspection tasks [23} 25].

The planning approach based on the self-organizing map (SOM), which can be also con-
sidered as an unsupervised neural network, has demonstrated its flexibility to address

2
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inspection planning problems including variants with discrete [32] and continuous sens-
ing [26] models. According to these results, this planning approach represents a promising
technique and its flexibility provides a ground for considering additional constraints and
more general problem variants. A contribution towards discovering the advantages in the
multi-goal path planning represents the main approach discussed in this thesis.

1.1 Contribution of the Habilitation Thesis

The aim of this habilitation thesis is to provide an overview and insights to the author’s
work on the topic of multi-goal path planning in mobile robotic tasks, which includes
inspection, surveillance or patrolling planning and exploration missions. The main results
achieved in this field can be summarized in two frameworks:

1. A unifying multi-goal path planning framework for mobile robot inspection plan-
ning in 2D environments.

2. Multi-goal path planning framework considering sources of localization uncertain-
ties providing a more reliable autonomous navigation.

Besides, contributions to the state-of-the-art in the related fields have been achieved
during the effort towards these two main results. Moreover, additional developments
have been made towards further extensions and generalization for a more general prob-
lem formulations also including consideration of additional constraints. However, these
achieved results can be considered as initial or preliminary, and therefore, they are not
denoted as a new framework yet. A significance of the contributions is supported by al-
ready published articles and papers and thus the thesis has a form of the collection of the
selected articles and papers accompanied by a commentary describing the main ideas and
results.

The commentary part is organized as follows. The core of the main results is based on
a self-organizing map technique for the TSP, which has been extended to provide a better
performance in multi-goal path planning problems. A brief overview of the proposed ap-
proach and the related state-of-the-art methods are presented in Section [2; however, the
progress beyond the previous work supported by the publications [27,128,29] is presented
in Section In Section |3, a unifying framework for inspection planning for point and
polygonal goals in 2D environments [36] is presented. Section [d]is dedicated to the plan-
ning of inspection tasks in 3D environment, which is enabled by supporting structures
for speeding up visibility queries in 3D [46]. A problem of multi-goal path planning for
autonomous surveillance or patrolling missions is introduced in Section 5| Here, the prob-
lem is augmented by consideration of precision of the goals’ visits during an autonomous
navigation [52]]; thus, the problem is to plan a path such that the mobile robot will period-
ically visit the given set of goals [30, 34]. Finally, the multi-goal path planning in mobile
robot exploration of unknown environment is presented in Section [} The results indicate
that considering the problem of selection of new goals as the multi-goal path planning
problem can improve the performance of the exploration significantly [56, 35].
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2 Self-Organizing Maps for Multi-Goal Path Planning

Self-organizing maps (SOM), also known as Kohonen’s unsupervised neural networks,
can be considered as a mechanism providing a conversion of nonlinear statistical rela-
tionships between high-dimensional data into a simpler (usually two dimensional) lat-
tice. SOM has been widely adopted by many researchers in various fields [50], and it has
also been applied to combinatorial problems, in particular to the traveling salesman prob-
lem (TSP) by Angéniol [2] and Fort [37] in 1988. Since that, many SOM based approaches
for the TSP have been proposed and extensive overviews can be found in [15} 16} 25]. Al-
though a description of the adaptation procedure can be found in literature, it is presented
here to improve readability of this text and to provide a reader the main principle used
for the developed planning approaches.

connection 1 goali
weights g :(g/] ’ g,z )
presented goal )
g :(%,1 18, ) : (r}/1 ,r}/z)
81 . 1 / J \
j
gﬂ
8,
m-1 ring of connected
nodes
m g+2
&
input layer output units

Figure 1: A schema of the two-layered neural network and associated geometric represen-
tation.

SOM for the TSP in a plane is a two-layered neural network. The network contains
two dimensional input vector and an array of output units that are organized into a uni-
dimensional structure. An input vector represents coordinates of a point goal and connec-
tions” weights (between the input and output units) represent coordinates of the output
units. Connections” weights can be considered as nodes representing a path, which pro-
vides direct geometric interpretation of neurons” weights. So, the nodes form a ring in the
plane because of the uni-dimensional structure of the output layer, see Fig.

The network learning process is an iterative stochastic procedure in which goals are
presented to the network in a random order. The procedure basically consists of two
phases: (1) selection of winner node to the presented goal; (2) adaptation of the winner
and its neighbouring nodes towards the goal. Although many SOM based approaches
for the TSP have been proposed, the approach proposed by authors of [80] represents a
straightforward algorithm, which also provides good results for instances of the TSP from
the TSPLIB [72] (used for benchmarking TSP solvers). That is why a slightly rephrased (to
improve clarity and readability) learning procedure [80] is depicted in Algorithm [1] to
show the main steps of the self-organizing adaptation.

The winner node is selected according to v* = argmin, |(g, v|), where |(., .)| denotes the
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Algorithm 1: SOM Procedure for the TSP

Input: G = {g1,...,9n} - set of goals

Input: (d, 0, 1, @) - parameters of SOM

Input: § — maximal allowable error

Input: 4,4, — maximal number of adaptation steps

Output: (v1,...,vy,) - sequence of node weights representing the city tour
init(v1,...,Vm) // set of neurons weights
140 // the adaptation step counter
repeat

error < 0

I+ 0 // a set of inhibited nodes

II(G) < a random permutation of the goals

foreach g € TI(G) do
v* <= argming, e g1 (v, 9|, // select winner node to g
error <— max{error, |v*, g|}
adapt(v*, g)

I+ Tu{v} // inhibit winner node
o+ (1—a)o // decrease the gain
14— 1+1 // increment the step counter

until error < dori > im0z

Euclidean distance between the goal g and the node v for the Euclidean TSP. The adap-
tation function (adapt) moves the winner node and its neighbouring nodes towards the
presented goal g according to the rule v; = v; + uf(o,d)(g — v;), where p is the frac-
tional learning rate. The movement of the nodes is defined by the neighbouring function
f(o,d) = exp(—d?/o?) for d < 0.2m and f(o,d) = 0 otherwise, where ¢ is the learn-
ing gain parameter, d is the cardinal distance measured along the ring (in the number of
nodes) and m is the number of nodes in the ring. Authors of [80] recommend the ini-
tial values of learning and decreasing rates and the learning gain: 4 = 0.6, & = 0.1 and
oo = 0.06 + 12.41n, respectively.

The algorithm is terminated after a finite number of adaptation steps (i;q. steps at
maximum); however, a stability of the learning rule has been shown in [88] using the
joint spectral radius. Moreover, the inhibition of the winners guarantees that each goal
has associated a distinct winner; thus, a sequence of all goals visits can be obtained by
traversing the ring at the end of each learning epoch.

Regarding the multi-goal path planning problem (MTP), the main difference of regular
SOM based approaches for the TSP is that the MTP stands in finding a cost-effective path
(the shortest one) visiting a given set of goals in an environment with obstacles. Thus,
it is necessary to deal with obstacles in the MTP while SOM for the TSP is usually con-
sidered in a plane, where distances between neurons” weights and presented goals are
simply computed as Euclidean distances. Although a naive approach based on using the
Euclidean distance provides a solution of the MTD, the final path is very poor. An example
of such a learning process is visualized in Fig.

The visualization of the learning process motivates to consider the length of the short-
est path from a node v towards the currently presented goal g as the distance metric for

5
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(a) step 20 (b) step 30 (c) step 40

(e) step 60 (f) step 70 () step 80 (end of the (h) final path (in black)

adaptation)
Figure 2: An evolution of SOM for the TSP using Euclidean distance. The nodes are rep-
resented as blue disks and the goals (cities) as the green disks. For a better visualization
of the evolution, the nodes are connected by a red straight line segments, which forms the
ring of nodes evolving in R?. The final path is determined from the sequence obtained
by traversing the final ring, where the winners (goals) are connected by the shortest path
among obstacles.

the winner selection instead of pure Euclidean distance. Then, the winner node can be
moved along the path towards the particular goal instead of a simple update of the neu-
ron weights. Even though this extension seems to be a straightforward and obvious, a
particular implementation depends on the determination of the shortest path among ob-
stacles, which is much more time consuming, e.g., using a visibility graph [25], than the
computation of the pure Euclidean distance |(v, g)|.

It was the computational cost, which prevented to use SOM for the multi-goal path
planning, as it has been noted by several authors in literature. However, recently, it has
been shown that a simple and computationally effective approximation of the shortest
path seems to be sufficient for convergence of the adaptation schema [32]. The approxi-
mation is based on a ray-shooting technique combined with the walking in triangulation
that is considered in the supporting convex partitioning of the polygonal representation
of the robot working environment. Using this technique, a shortest path query is typi-
cally answered in units of micro seconds using a standard single core cpu (e.g., running
at 2 GHz) and thus the approximation significantly reduces the required computational
time and allows to use the SOM adaptation technique for the multi-goal path planning.

The main idea of the approximation employed in the adaptation is that the approxima-
tion becomes a more precise as the nodes are closer to the goals. Thus, at the first steps,
the nodes are relatively far from the presented goals, and therefore, a rough estimation of
the node—goal distance is sufficient to select an appropriate winner to the particular goal.
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Later, the winners are closer to the particular goals; hence, in most of the cases the shortest
path is just a straight line segment connecting the goal and its winner node.

(d) step 50

(@) step 20 (b) step 30

(f) step 70 (g) step 80 (end of the (h) final path (in black)
adaptation)

(e) step 60

Figure 3: A visualization of the SOM evolution using approximate shortest path. The
nodes are represented as blue disks and the goals (cities) as the green disks. For a bet-
ter visualization of the evolution, the nodes are connected by a red straight line segments,
which forms the ring of nodes evolving in W.

The principle of the node—goal shortest path approximation can also be used for ap-
proximation of the shortest path between two nodes (details can be found in [25]), which
allows to visualize the path represented by the ring during the evolution of the self-
organizing map. An example of the visualization is shown in Fig. 3l Notice, it is not nec-
essary to determine the shortest path between two nodes during the learning process;
however, such a visualization provides an insight to the SOM evolution in the polygonal
domain W, which in fact is the main source of the inspiration for a further extension of
the approach to more general problems.

2.1 Progress beyond the previous work

The above described approximation of the shortest path has been introduced in [25, [32].
Therein, it is combined with relatively simple and straightforward SOM adaptation rules
proposed by Samerkae et al. in [80] and later used in multiple traveling salesmen [81] and
vehicle routing problems [64]. Although the achieved results in the multi-goal path plan-
ning problems with point goals are competitive to the heuristic approach GENIUS [32],
according to [15] the co-adaptive neural network provides better results in the Euclidean
TSP from the TSPLIB. Moreover, the so-called Co-adaptive net is also less computationally
demanding in these Euclidean problems, which is mainly caused by a less number of the
node-goal distance queries needed in the adaptation. Hence, it can be expected that the



2. SELF-ORGANIZING MAPS FOR MULTI-GOAL PATH PLANNING

adaptation schema of the Co-adaptive net can significantly improve performance of the
SOM based solution of the MTP because the most computationally demanding parts are
just the distance queries.

Beside the Co-adaptive net algorithm proposed in 2003, additional modifications of the
SOM adaptation rules have been proposed by several authors. For example, a convex
hull property has been studied in [13} 160, 93], geometrical properties of the ring in [6, 7],
initialization of neurons” weights in [8] or even neighborhood functions for decreasing
topological defects have been discussed in [66]. The aim of this effort is to improve so-
lution quality, which was partially achieved by novel modifications and extension of the
main adaptation principle proposed by Kohonen. On the other hand, a different direction
of the research focuses on simplifying the adaptation rules and also reduction of the re-
quired parameters that have to be hand tuned. In [89], the original Kohonen’s exponential
rules are studied, and the authors proposed simplified rules, which were later used and
extended in [94], where the authors proposed a set of particular parameters providing fast
convergence without affecting the quality of solutions.

The main disadvantage of the aforementioned variants is that they provide a partic-
ular improvement considering different aspect of the SOM evolution. A particular re-
duction of the computational cost leads to a bit worse solution, and therefore, additional
modifications are proposed to “compensate” this loss. In addition, it also happened that
a particular approach promising performance improvements is hard to replicate due to
missing details and specific values of all parameters in the original paper. In this sense,
the most elaborating paper about the performance of various SOM for the TSP is the work
of Cochrane and Beasley [15]. The authors consider the most relevant approaches (to the
date of that publication) and compare them. They also provide a study of particular pa-
rameters of the SOM adaptation to the quality of solution and required computational
time. Finally, a comparison of their Co-adaptive net algorithm, which can be considered
as the most complex SOM based approach for the TSP, with heuristic approaches from
the operational research is presented. In particular, Christofides heuristic algorithm (pro-
viding approximation ratio 3/2 of the optimum) and Helsgaun’s efficient implementa-
tion [45] of the Lin-Kernighan heuristic [61] are considered. Based on the comparison,
the authors note that SOM provides relatively poor performance regarding the heuristics.
Their Co-adaptive net provides competitive results to the Christofides heuristic in several
instances of the TSP, but the Lin-Kernighan heuristic provides results in one or two orders
of magnitude better while the computational cost is competitive to the SOM approach.

Regarding the performance of SOM, it is worth to mention that researchers studying
SOM advocate that the heuristics for the TSP have more than 20 years longer history than
SOM and for example one of the most powerful LK-heuristic was proposed in 1973 [61]
while the efficient implementation has been proposed relatively recently in 2000 [45]. On
the other hand, in [25, 26], it has been shown that SOM provides additional benefits in
routing problems where geometric or conceptual properties are involved, e.g., problems
that Shermer called hybrid visibility problems [77], which have direct relation to inspection
and exploration tasks studied in mobile robotics [42]. Despite to these comments, it is left
to the reader to consider the presented methods are suitable techniques for the discussed
class of problems.
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2.1.1 Performance improvement of SOM for the multi-goal path planning

The recent advancements of SOM for multi-goal path planning is a source of encourage-
ment for additional investigation of SOM performance using a more complex adaptation
rules and improved adaptation schemata. The aforementioned variants and simplified
adaption algorithms have been studied and compared in:

[27] — Faigl, J.: On the Performance of Self-organizing Maps for the Non-Euclidean
Traveling Salesman Problem in the Polygonal Domain. Information Sciences. 2011,
vol. 181, no. 19, p. 4214-4229. ISSN 0020-0255. IF=2.833. Authorship 100%. The

paper is attached on page

In this work, the previous approaches are combined and discussed. Based on the perfor-
mance evaluation of the approaches, variants of the winner selection procedure, adapta-
tion rules, parameters and initialization are proposed. The variants are considered in two
adaptation schemata, the Somhom’s approach [80] and the complex Co-adaptive net [15].
Contrary to previous comparisons of SOM approaches for the TSP, where only Euclidean
problems are considered, here, the performance of SOM is studied in multi-goal path
planning problems.

The studied problems are organized into three sets according to the number of goals n:
small problems n <50, middle problems n <200, and large problems n >200. The achieved
results can be considered as more than encouraging. The quality of found solutions by
the proposed modified SOM adaptation schemata is improved and also the computa-
tional cost is significantly decreased. In average, the found solutions are about units of
percents worse than the optimum while the computational requirements are competitive
to the Chained Lin-Kernighan algorithm [4] available in the CONCORDE framework [3].
Moreover, the best found solutions (considering several trials) are close to the average so-
lutions, which provides optimistic expectations about the methods’ performance in other
problems.

Regarding the initial results of SOM in the multi-goal path planning presented in [25],
the studied modifications of the adaptation rules lead to the adaptation procedure that is
up to two orders of magnitude faster, while the quality of solutions is almost preserved
(it is about tenths of the percentage points worse). The results also provide a ground
for reconsideration of SOM performance in comparison to other approaches. SOM in the
MTP provides better results (according to the optimal solutions of the TSP) than SOM in
the Euclidean TSP; thus, it seems the gab between heuristics from operational research
and SOM approaches is smaller for the TSP, where distances between the goals are not
pure Euclidean and paths among obstacles have to be taken into account.

The optimistic statement about SOM performance is supported by results for the large
problems [27]. For these problems, the computational cost of the SOM adaptation is in
several cases similar or lower than for the LK heuristic. In both approaches, there is an
initial phase where all goal-goal paths are determined, which needs similar computa-
tional time to find the solution itself. However, in the SOM approach, it is not necessary to
determine all the goal-goal paths as approximate shortest path can be used. Only paths
between all vertices of the polygonal map are necessary to support the approximation.
Hence, for problem instances with many goals representing a dense sensing locations, the
SOM approach can be even a less computationally demanding than the preparation phase
for a combinatorial heuristic. This observation provides interesting insight that combin-
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ing SOM with a simple approximation a relatively high quality sequence of goals’ visits
can be found while it is not necessary to determine the actual shortest paths between the
goals, which are required in the pure combinatorial approaches.

2.1.2 Improvement of SOM based inspection planning

The encouraging results of the improved SOM adaption schemata [27] for the TSP with
the point goals provide a ground for a further improvement of the inspection planning
also considering continuous sensing, a.k.a the watchman route problem, introduced in [25]].
Using the new adaption rules and novel initialization of the neurons” weights lead to a
faster convergence of the network and reduced computational burden without significant
influence to the solution quality. These new results are presented in:

[28] - Faigl, J. - Pfeucil, L.: Inspection Planning in the Polygonal Domain by Self-
Organizing Map. Applied Soft Computing. 2011, vol. 11, no. 8, p. 5028-5041. ISSN
1568-4946. IF=2.612. Authorship 90%. The paper is attached on page

2.1.3 A Parameter less SOM adaptation schema

The further work on SOM for the TSP has been not only in improving the performance,
but also in the simplification of the adaptation procedure itself. Inspired by recent adapta-
tion rules [94] and results achieved in [27), 28] the most suitable values of the initial learn-
ing gain and rate have been identified. The rules make the adaptation procedure almost
independent to the selection of these parameters in the considered problems; however,
the quality of solution and also the required computational time depends on the number
of neurons, which depends on the number of goals.

In literature, it is recommended to set the number of neurons to 2-3 times more than the
number of goals, which also corresponds with the formula experimentally established by
Samerkae et al. in [80]. A high number of neurons does not provide significant improve-
ments of the solution quality and it only increases the computational burden. On the other
hand, a lower number of neurons provides a faster selection of the winner as less num-
ber of node—goal distance queries have to be resolved. A less number of neurons than 2n,
where n is the number of goals, is not recommended because of convergence of the net-
work. The neurons have to spread among the problem domain and it is also desirable to
select a unique winner for each goal during the learning epoch, even though the inhibition
mechanism is not necessary.

In [70], the author proposes a mechanism for dynamic determination of neurons dur-
ing the learning. The approach is based on two heuristics. The first heuristic is a deletion
of neurons, which are not winners so often. On the other hand, the second heuristic is
basically responsible for creating new neurons. It is based on consideration of a segment
of the ring during the selection of the winner. So, instead of node-goal distance, a shortest
segment (defined by the two neighbouring nodes of the ring) to the particular goal pre-
sented to the network is determined. If the projection of the goal to the segment is a point
inside the segment (excluding the endpoints) a new node is created and it becomes the
winner that is then attracted towards the presented goals. The idea is visualized in Fig.[4al

Regarding the adaptation of SOM in the polygonal domain, there is another reason
to consider more neurons, it is the approximation of the shortest path. For the case of
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solving the watchman route problem, the path represented by the ring is used to deter-
mine the actual coverage from the ring. A path represented by a ring consisting of more
nodes (e.g., that are equidistantly placed along the path) is a more precise than a path
where the nodes are relatively far from each other. The algorithm for the approximation
of the shortest path provides exact shortest path if the endpoints of the path are placed at
the polygon’s vertices, because these paths are precomputed in advance. Besides, such a
query is answered instantaneously. Therefore, it is desirable to have neurons (beside the
winners) close to map vertices to support the approximation.

Based on this background, the approach [70], and adaptation rules [94] a new adaption
schema is proposed in:

[29] — Faigl, J. - Pfeucil, L.: Self-Organizing Map for the Multi-Goal Path Planning
with Polygonal Goals. In Proceedings of Artificial Neural Networks and Machine
Learning. Heidelberg: Springer, 2011, p. 85-92. ISBN 978-3-642-21734-0. Author-
ship 90%. The paper is attached on page

Determination of the shortest path from a point to a segment in the polygonal domain is
computationally demanding, and therefore, an approximate algorithm is rather used.

candidate point
-0

o candidate point

(a) point on the closest segment  (b) candidate points on the ring’s (¢) a new winner node on the
to the goal segment ring’s segment

Figure 4: A visualization of the approximation of the shortest point-segment path.

First, the closest segment to the particular goal is found considering Euclidean dis-
tance, which may provide a point on the segment as a result. Then, approximate point-
goal path is determined and if such a path is shorter than a path from an endpoint of the
segment to the goal, the path is considered as the shortest path of the goal to the segment.
Otherwise, a shorter path from the endpoints is used. The concept of the approximation
is visualized in Fig. 4

Having this approximation, a parameter less adaption schema is proposed as follows.
The initial number of neurons is set to 2n, where n is the number of goals. Then, new
neurons are created as a result of the shortest path to the segment. Besides, a new neuron
is also created in the case the closest neuron to the goal has been already selected as a
winner in the current epoch. In this case, the new neuron has the identical weights (i.e.,
the 2D coordinates of the node) and it is adapted towards the goal as a regular winner
together with its neighbouring nodes.

11
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(a) a path represented (b) preserved winners (c) connected winners (d) a path represented
by the old ring of the old ring (approx. shortest path) by the new ring

Figure 5: Ring regeneration preserving winners of the current learning epoch and intro-
duction of new neurons at the positions of the map vertices as vertices of the path that is
represented by the ring.

A ring regeneration mechanism is introduced to reduce the number of neurons and to
decrease the computational burden. At the end of each learning epoch, a new ring is cre-
ated as a path in WV using only the winner nodes of the current epoch, i.e., all other nodes
are removed. The path is a sequence of straight line segments (s,...,s,), which avoid
the obstacles. Additional nodes are created from the endpoints of each segment s; that do
not correspond to the winners, i.e., nodes corresponding to the path’s vertices. The ring
regeneration is visualized in Fig. |5 After the ring is regenerated, the adaptation parame-
ters are updated and if a stable solution has not been found the adaptation continues in a
new learning epoch.

This novel parameter less adaptation schema has been introduced in [29]. In fact, it is
based on a bit more complex segment-segment approximation, which provides a gener-
alization for polygonal goals. However, the main contribution presented in the paper is
the ring regeneration and the parameter less adaptation schema. The generalization of the
SOM based multi-goal path planning for point, segment, as well as polygonal goals has
been presented in [33], where several adaptation strategies are proposed. A more elabo-
rating description of this approach is in [36] and the particular commentary is presented
in the next section.

3 Unifying Multi-Goal Path Planning Approach

The multi-goal path planning problems with point goals represent a class of problems,
where it is required to visit particular locations to perform some action, e.g., precise op-
eration by means of a robotic arm. On the other hand, a mobile robot operating in a large
environment will unlikely visit the particular point location precisely using a global nav-
igation technique due to limited precision (i.e., based on satellite navigation systems like,
GPS, GLONASS, or Galileo). The robot will more likely reach the location within some
distance according to the precision of the navigation. Then, another (a more precise) local
navigation method can be used, e.g., based on visual servoing technique.

Moreover, there is a large class of problems in which it is sufficient to just reach a vicin-
ity of the goal location. For example, in autonomous data collecting scenarios, data can
be read from the sensor within the communication range providing a reliable connection

12
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with the sensors; thus, it is not necessary to reach the exact position of the sensor [86]].
This is also the case, for visual sensing scenarios, where it is sufficient to see the particular
object of interest from the distance providing an adequate level of details. Therefore, a
more general variant of the multi-goal path planning problem with polygonal goals can
be rather considered to find a cost effective solutio

THeleusent presented Presented goal
goal to the network
to the network
.

./ Goal segment !
s " p‘»’
Ring segmemo\o Ring segment Euclidean distance
P

(a) (b)

The current presented

Approximate goal to the network

Found the

5¢

shortest path i
o fr
Euclidean distance Winner neuron
12

Goal point

(©) (d)
Figure 6: Principle of approximate shortest path between two segments: (a) a segment
of the path represented by a ring and a segment forming a boundary of the polygonal
goal; (b) the shortest connection of the segments without considering obstacles; (c) the
approximate shortest path between two-points determined from the shortest connection
of the segments; (d) the final approximation of the shortest path between two segments
with a point on the particular segment.

In literature, there can be found several problem formulations and particular methods
to address them (even optimal algorithm); however, it is worth to mention that these

!This does not mean the problem formulation with the point goals should be abandoned. A solution of
such problems can be considered as a global plan providing a solution of complex missions, which, in fact, is
one of the motivations for this problem formulation.
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algorithms are only for restricted problem variants. For example goals form a disjoint set
of convex polygons attached to a simple polygon in the safari route problem [68], which can
be solved in O(n?) [84]. If the route enter to the convex goal is not allowed, the problem is
called the zoo-keeper problem, which can be solved in O(nlogn) for a given starting point
and the full shortest path map [11]. However, both problems are NP-hard in general.

Here, it should also be noted that for problems with disjoint convex goals that are
relatively far from each other, a sequence of the goals’ visits can be found as a solution of
the TSP for the centroids of the goals. Then, having the sequence of polygonal goals the
problem of finding the path connecting them can be formulated as the touring polygons
problem if the start and end points are given. In [18], a polynomial algorithm is proposed
for this type of problems where the convex goals are inside a simple polygon. However,
again, the touring polygons problem is NP-hard in general.

The point—point shortest path approximation can be considered as an enabling tech-
nique to use SOM for the TSP as a multi-goal path planner. On a similar base, approxima-
tion of the shortest path between two segments can be considered as an additional tech-
nique allowing to solve more general problems (e.g., inspection planning to visit a given
set of regions) using the identical adaptation procedure for the TSP with point goals. The
main principle of the approximation is depicted in Fig. 6}

The approximation is based on the point—point approximation. First, the shortest path
between two segments is determined without considering obstacles; so, just a shortest
straight line segment connecting the two segments is determined. A projection point on
each segment can be determined as a result of this query. These points are then used for
point-point shortest paths among obstacles connecting the points themselves or a com-
bination of the point and an endpoint of the particular segment. The shortest variant is
selected as the final approximation of the segment-segment shortest path.

Although the approximation is quite simple, its combination with the SOM based evo-
lution of the ring of nodes in a polygonal map is powerful enough to enable a solution
of a more general multi-goal path planning problems with polygonal goals, which is de-
scribed in:

[36] — Faigl J. - Vonasek V. - Preucil L.: Visiting Convex Regions in a Polygonal
Map. Robotics and Autonomous Systems, 2013, http://dx.doi.org/10.1016/
j.robot.2012.08.013, (in press), IF=1.056., Authorship 80%. The paper is at-

tached on page

In this paper, the multi-goal path planning problem is formulated as follows: find a
shortest path visiting a given set of polygonal goals (possibly overlapping each other) in
a polygonal map W. In particular, the main presented results are for convex polygonal
goals; however, the algorithm is general to also address the problems with non-convex
goals. The convexity of the polygonal goals is mainly considered because of related cov-
ering problems, where visual sensing is used. A convex polygonal goal with the size re-
stricted to the sensor range can be covered from any point of its border; hence, the con-
vexity of the polygonal goal is mainly assumed for this kind of problems.

The paper presents several modifications of the adaptation rules to deal with polyg-
onal goals. It starts from considering centroids of the goals as a point goals and simple
avoidance of the winner node adaptation towards such a point goal once the winner is
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already inside the region associated to the goal. The next extension considers an intersec-
tion point of the shortest path from a node to the point goal with the boundary of the
polygonal area. The intersection point is then used as a point towards which the winner
node is attracted instead of the centroid of the goal.

Finally, the last extension generalizes the adaptation using the shortest segment-seg-
ment paths. The ring of nodes is considered as a path consisting of a sequence of straight
line segments. Besides, each goal is also considered as a set of straight line segments form-
ing the border of the polygonal goal; however, only the segments do not intersecting with
the obstacles are considered. During the selection of the winner for the currently pre-
sented goal to the network, the aforementioned approximation of the shortest segment-
segment path is employed. Once the closest segment of the ring to the goal border is
determined, a new node can be created according to the rules proposed in [29]. Then, the
winner node is adapted towards the point on the particular segment of the goal region.

(a) point goals - traveling salesman (b) convex cover set - (¢) convex goals (covering
problem (TSP); n=68, T=0.35 s watchman route problem (WRP); rooms); n=21, T=0.10 s
n=106, T'=2.00 s
(d) polygonal goals; n=9, (e) polygonal goals; n=35, (f) polygonal (non-convex)
T=0.09 s T=0.84s goals; n=4, T=2 ms

Figure 7: Examples of found solutions of different variants of the multi-goal path planning
problem. The required computational time 7 is for the c++ implementation of the learning
algorithm running on a single core of the iCore7@3.4 GHz cpu.

A detailed evaluation of the self-organizing map based algorithms and a comparison

with a reference algorithm is presented in [36], and therefore, only selected solutions with
updated required computational time are presented in Fig. E The considered problem for-
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mulation allows overlapping polygonal goals and thus the algorithm is also able to solve
variants of the watchman route problem, which is shown in Fig. [/bl In Fig. [/d, particular
rooms are selected as goals and the algorithm finds the sequence of their visits. Notice
that this sequence can be found exactly as a solution of the TSP using the centroids of the
goal areas; however, the main point of this problem is a selection of the particular points
of each goal, from which a room is inspected. A more interesting problems are situated
in the bottom row of Fig.[7, where an additional problem with overlapping goals is in the
middle column.

The approximation of the shortest segment-segment path is the enabling underlying
technique that allows to address the generalized problems with polygonal goals. This
approximation inherits the approximation of the shortest point-segment as well as point-
point paths; hence, a SOM adaption using this approximation can be simply used to solve
multi-goal path planning problems with point or segment goals. The simplicity of the
extension based on this approximation demonstrates flexibility of the SOM based multi-
goal path planning and provides the foundations to a unifying multi-goal path planning
framework for various planning problems in 2D. The main feature of the SOM approach
is that both sub-problems of the inspection planning are solved simultaneously, i.e., the
particular sensing locations are determined during the solution of the sequencing part.

4 Inspection Planning in 3D

The unifying framework for various 2D routing problems, described in the previous sec-
tion, provides a ground for further extensions. Several extending directions can be identi-
fied; however, regarding the current challenges investigated by the research community;,
three directions seem to be the most important ones.

The first is a consideration of a motion planning for connecting the goals instead of
a simple path planning that provides a path consisting of straight line segments. From
a mission planning context, such a path can be sufficient for application scenarios where
mobile robots have differential drive and satisfy the holonomic constraints or when a path
is used to guide a human or robotic entity in a telematic system [55]]. On the other hand,
it is not the case for car-like robots or more complex robotic systems with many degrees
of freedom. It is also not the case if it is necessary to plan in an unstructured environment
(e.g., like in the search and rescue mission), where it is needed to consider 3D model of
the environment.

The second direction is a natural extension of the 2D planning framework for planning
in 3D environment. This is tightly coupled with the motion planning because planning a
path for a non-point robot is non-trivial [71} [62]; hence, motion planning techniques that
are able to provide a feasible path in high dimensional configuration spaces have to be
considered.

The third important extension is planning for a multi-robot team. This problem has
been partially addressed in [25], where the SOM approach for the multiple traveling
salesmen problem with minmax criterion [81] has been extended to the multi-robot multi-
goal path planning problem by using the aforementioned approximation of the shortest
path. The results provided by the SOM are competitive to the combinatorial heuristic [38]].
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Moreover, due to the nature of the SOM evolution in W, found solutions tend to be non-
crossing [25], which is a desirable feature for mutually collision free paths. However, it is
necessary to consider the time domain to guarantee the robots’ plans are collision free, and
therefore, a motion planning technique providing trajectories (i.e., paths parametrized by
time) have to be used instead of a simple path planning method.

Based on the aforementioned comments, it is desirable to firstly extend the unifying in-
spection planning framework for 3D environment with considering kinematic constraints
and a motion planning technique. However, the fundamental issue of the inspection plan-
ning is a determination of visibility (or coverage). In 2D case, a visibility graph or visibility
region from a particular point in the polygonal domain ¥ can be determined in a polyno-
mial time [69] but visibility queries in 3D are more computationally demanding [19, 67].

A feasible way to determine a coverage from a point in 3D is to use techniques from
computer graphics for 3D modeling. Regarding the context of the inspection planning,
where the particular sensing locations are not prescribed in advance, such a ray-casting
method is too computationally demanding to be considered during the SOM evolution
in 3D environment. Hence, inspired by the SOM based algorithm for the watchman route
problem, another approach has been proposed to deal with the 3D coverage queries. The
idea is based on discretization of the 3D free space of the robot’s working environment to
a tetrahedral mesh similarly as a triangular mesh has been used for 2D problems in [26].
On top of this tetrahedral mesh, a set of tetrahedra from which a particular object of inter-
est can be covered is determined in advance. Such a set can be then used during the SOM
evolution in 3D to answer if a configuration in a particular tetrahedra can cover the given
goal. This idea has been elaborated in the master thesis of Petr Janousek under supervi-
sion of the author. Later, the results of the thesis have been consolidated and published
in:

[46] — Janousek P. - Faigl J.: Speeding up coverage queries in 3D multi-goal path plan-
ning. In Int. Conf. on Robotics and Automation (ICRA), 2013, p. 5067-5072. Au-
thorship 50%. The paper is attached on page

The proposed approach is relatively simple and straightforward. It is studied in the
inspection planning problem that can be formulated as follows: having a set of objects
of interest M, find a shortest path such that all objects will be seen from the path with
the sensing range p. The problem is considered for an operational environment W C R?
that is defined by a set of triangles representing obstacles and the objects to be covered.
Without lost of generality, it is assumed that each object of interest m € M is sufficiently
small, i.e., surfaces of large objects are tessellated into smaller triangles.

For each m € M the subspace of VW from which m can be covered using the omnidirec-
tional sensor with sensing range p is found as an approximation consisting of tetrahedra
of the tetrahedral mesh. The subspace is called covering space and for the object of inter-
est m it is denoted as Cy,. The idea of C,, construction is based on incremental adding
of tetrahedra e for which a segment (p, p,,),p € e,py, € m do not intersect an obstacle.
A notion of transitive dependency of a tetrahedron being added to C,,, on other tetrahedra is
introduced together with building an auxiliary graph with information about the transi-
tive dependencies. Using this supporting graph, the searching for the possible tetrahedra
of C,, is effective and the complexity of the procedure to construct C,, is ©(n), where n
is the number of tetrahedra of the tetrahedral mesh. A visualization of the construction
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(b)

Figure 8: A construction of the covering space: (a) 3D environment represented by a set
of triangles, the object of interest m being covered is the red triangle in the middle; (b)
processed tetrahedra, the currently evaluated tetrahedron is in yellow, from the red tetra-
hedra coverage of m cannot be guaranteed; (c) created covering set C,.

process is shown in Fig. [§| and detailed information about the procedure can be found
in [46].

Having the supporting structure of C,, for each m € M, an application of the SOM
based approach for multi-goal path planning is straightforward. During the learning, the
goals are presented to the network in a random order and the winner node v* is selected
for each goal. For coverage of m it is not necessary to visit m as it is sufficient to visit any
point of the particular C,,; hence, during the winner selection, configurations of C,, are
considered and the possibly best configuration p is found together with the winner node
according to

(v*,p) = argmin,cy cec,, distance(v, centroid(e)). (1)

In general, any configuration of Cy, can be used; however, a centroid of each tetrahedron
e € Cp, is considered for simplicity in this initial feasibility study of the SOM based plan-
ning in 3D environment.

Moreover, centroids are also used to address the motion planning issue by planning on
a motion planning roadmap. In particular, the probabilistic roadmap method (PRM)
is used; however, instead of random configurations, the centroids of the tetrahedra are
considered as the vertices of the roadmap for simplicity. The roadmap is a graph Gprm,
where the vertices represent particular configurations of the robot and they are connected
by an edge only if a feasible path between the two incident configurations is found by
a local path planner. Then, the SOM adaptation on a graph proposed by Yamakawa et
al. [91] is used to adapt the network. Using this adaptation, position of each node (the
neuron’s weights) are restricted to the edges and vertices of Gy,,,; hence, the feasibility
of the path represented by the ring of the nodes is guaranteed according to the kinematic
constraints considered during the construction of G-

Considering the aforementioned building blocks, the proposed planning can be sum-
marized in five steps. First, a triangular mesh defining the surfaces of obstacles and objects
of interest is created. Then, a tetrahedral mesh of the free space of the environment is cre-
ated and on top of this mesh covering spaces are determined. After that, the motion plan-
ning roadmap is constructed from the centroids of the mesh’s tetrahedra. Finally, SOM
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N
(a) Triangular (b) Tetrahedral (c) Covering (d) Motion (e) soM
Mesh mesh spaces Planning Roadmap adaptation
Figure 9: Visualization of the particular steps of the SOM based multi-goal inspection path
planning in 3D environment.

adaptation is performed using the roadmap graph and covering spaces. A visualization
of the particular steps is shown in Fig.[9]

Figure 10: An example of 3D inspection planning problem, covering spaces and found
solution.

Regarding the visibility (or coverage) queries, the query ’if a goal m can be covered
from a particular configuration represented by the neuron’ is answered instantaneously,
because a node is always associated to some tetrahedron as its movement is restricted
to the edges of G),.,,. Hence, using the proposed simple approximation of the covering
spaces, the visibility queries are not a computational issue. An example of the visualized
problem, covering spaces and found solution is presented in Fig.

The ring evolution on the graph G, provides a straightforward way how to deal
with kinematic constraints. Instead of the PRM, other motion planning techniques can be
considered, which can even include kinodynamic constraints like the Rapidly-Exploring
Random Tree (RRT) [59]. Besides, novel probabilistically optimal algorithms proposed by
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UNCERTAINTY IN NAVIGATION

Sertac Karaman and Emilio Frazzoli [47] can be considered as well, e.g., PRM* or RRG. On
the other hand, huge and dense underlying graphs can lead to computationally demand-
ing determination of the shortest path in the graph. Due to a large number of vertices,
pre-computation of the distance matrix can be inefficient due to memory requirements.
The feasibility study [46] provides initial insights regarding this issue. The presented re-
sults for graphs with more than one hundred thousands of nodes seem to be promising
as the required relevant part of the distance matrix needs only 10 GB memory includ-
ing the storage of the particular shortest paths. However, the future work relies on an
efficient handling of the graph size, computation of the trajectories on demand and devel-
opment of a suitable approximation, which can speedup the winner selection as well as
decrease the required memory. According to the results achieved in 2D planning and this
early work [46], it is assumed it will be computationally feasibility using the nowadays
computers.

5 Surveillance Mission Planning with Considering Sources of
Uncertainty in Navigation

A robot that is autonomously navigated has to be localized within the operational envi-
ronment with a sufficient precision according to the task it is being to fulfill. It is clear the
precision is always limited due to imprecise sensors and noise. One of the popular ap-
proaches to localize the robot is the so-called SLAM method, from the simultaneous local-
ization and mapping, which stands in simultaneous building an environment model while
the model is also used to localize the robot within the created map [87]. SLAM approaches
are able to provide estimation of the robot position in cases where no prior information
about the environment is available in advance. Even though a significant progress has
been made in this approach and plethora methods have been proposed, a more reliable
navigation with a higher precision can be achieved using a prior map of the environment.

Imagine a situation where it is desired to monitor given areas of interests by a single
mobile robot. The mobile robot is requested to autonomously visit the given set of areas,
where sensor measurements can be taken. Therefore, one of the key problem is to ensure
that the robot will be in a sufficient distance from the requested location whenever the
robot’s localization system announces the robot reaches the location. Regarding a surveil-
lance scenario, the problem is to provide a periodical coverage of the areas of interest;
hence, the problem is to visit the areas as frequently as possible, which means to navigate
the robot along the shortest path connecting the areas while the robot position estima-
tion is sufficiently small. In such a scenario, the environment is known in advance, and
therefore, a map-and-replay technique can be a more appropriate because it can provide
a more reliable and precise information about the robot’s position.

The idea of such a navigation approach (e.g., [73} 76, 139]), is based on recognition
of visual features that are matched with the previously stored features forming a prior
map of the environment. The map is created during the initial mapping phase, in which
the robot can be manually driven along the desired path. Then, during the autonomous
navigation, the robot is requested to follow the previously learned path while the current
seen features are compared with the expected features stored in the map and the result of
the comparison is used to steer the robot control to follow the previously learned path.
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Figure 11: Examples of the detected landmarks, matching of the current and previously
learned landmarks and outdoor environments where the navigation method provides
reliable autonomous navigation.

Based on this idea, a similar autonomous navigation method has been proposed in:

[52] — Krajnik, T. - Faigl, J. - Vonasek, V. - Kosnar, K. - Kulich, M. - et al.: Simple,
Yet Stable Bearing-Only Navigation. Journal of Field Robotics. 2010, vol. 27, no. 5,
p- 511-533. ISSN 1556-4959. IF=2.244. Authorship 20%. The paper is attached on

pagePY
The method is based on detection of salient objects that are utilized for heading correc-
tions of the robot during its autonomous navigation along straight line segments. In par-

ticular, SURF (Speeded Up Robust Features) [10] descriptor is used; hence, the method is
called SURFNav.

The main idea of SURFNav is that the localization problem is decomposed into an in-
dependent estimation of the robot position along a line segment of the learned path and
an estimation of the robot’s heading towards the end of the current segment along which
the robot is navigated. The traveled distance is estimated using the robot’s odometry sys-
tem while the heading is corrected by the visual feedback of the currently seen landmarks
and previously learned landmarks along the path.

The learned path consists of a sequence of straight line segments and for each segment
a set of visual landmarks is remembered and the local length of the segment is measured
by the odometry. This local consideration of the odometry is advantageous as it avoids
the long-term accumulation of the error. During the replay phase, the robot is placed at
the starting segment and it is requested to travel the learned path. The histogram voting
method is used to implement the so-called visual compass and to steer the robot heading
during the navigation along a particular segment. Once the traveled distance reaches the
segment length, the robot is turned into the direction of the next segment by the compass,
and the next segment is traversed in the same manner.

Although the method seems to be simple, it provides robust and reliable navigation un-
der different lighting conditions for indoor as well as outdoor environments [51]. Exam-
ples of environments where the method has been successfully used are shown in Fig.
Moreover, contrary to other methods, a formal proof of its stability is provided in [52]. The
proof is based on evaluation of the localization error of the robot navigated along a closed
path and the stability condition is formulated as Lyapunov discrete equation for the co-
variance matrix of the robot’s position. Then, the bound of the robot’s position error at the
end of the closed path is determined for the case of the infinity number of the travelled
loops and convergence conditions are established. A detailed description and the formal
proof itself can be found in [52]. Here, it is worth to remind that the main principle of the
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bounded localization error is the independent estimation of the robot position along the
path and its heading corrections according to the detected and matched visual features.
In addition, it should also be mentioned, from a practical point of view, it is assumed that
the estimation of the heading is a more precise than odometry measurements.

Regarding the surveillance or inspection mission planning, the SURFNav method pro-
vides additional advantage over other methods. The formal proof provides mathematical
description of the position uncertainty evolution along the path consisting of straight line
segments. The uncertainty is in the term of the covariance matrix of the robot position.
Even though the model equations can be found in [52] they are presented here to improve
readability of this text. The covariance matrix A;; at the end of the segment i can be
computed using the formula:

A, 1 = R'M;R,A,RTM'R, + RTS;R;, ()
where
1 0 31-7]2 0
Mi—lo — ,Si—|: 0 7_2:|7 3)

s; is the length of the ith segment, R is the rotation matrix, p denotes an “average” distance
of the visible landmarks (a parameter of the operational environment) and 7, 7 represent
precision of the odometry and the heading sensor, respectively.

The model of the localization uncertainty described by (2) and (3)) can be considered in
the path planning in order to find a path with an eventually lower localization uncertainty
than planning just a shortest path. Contrary to approaches like planning in the joint space
of pose x uncertainties [14] or based on simulation of the localization withing the map that
are computationally demanding, the model of SURFNav is fast to compute. Moreover, it
also provides informative estimation of the real localization error and a mechanism of
the uncertainty reduction, which in fact is the source of the bounded error. These are the
main advantages of the method over other approaches. For example a simple model of
the increasing odometry error just leads to minimize the planned path length, but it does
not provide a way to “correct” the robot pose estimation. Therefore such model cannot be
efficiently used in a long-term planning.

The idea of the multi-goal path planning with consideration of the localization uncer-
tainty of the SURFNav method has been introduced in:

[30] — Faigl, J. - Krajnik, T. - Vonasek, V. - Pfeucil, L.: Surveillance Planning with Lo-
calization Uncertainty for UAVs. In 3rd Israeli Conference on Robotics,. Ariel: Ariel
University Center, 2010. Authorship 60%. The paper is attached on page

The main principle of the decreasing the localization uncertainty is schematically visual-
ized in Fig.|[12} where the corresponding covariance matrices are visualized as ellipses [78].

Consider a navigation of the robot from the location g; to the location g>. The localiza-
tion uncertainty is increased in the longitudinal direction due to the odometry error while
itis decreased in the lateral direction because of heading corrections during the navigation
towards g2. Now, imagine that an auxiliary navigation waypoint is visited prior g2. Then,
the localization uncertainty in the previous longitudinal direction is decreased because of
corrections during navigation from the waypoint to the goal, see Fig.
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Figure 12: A principle of the localization uncertainty decreasing.

This principle of the localization uncertainty decreasing is employed in the self-orga-
nizing adaptation and the multi-goal path planning problem is formulated as the problem
of finding a path that visits all the given goals while the length of the path as well as
localization uncertainty at the goals is minimized. This multi-modal optimization follows
the requirement of the precise visitation of the goals as an underlying problem of visiting
the goals as frequently as possible, which is the main requirement of the surveillance task.

Although for a straight line segment an optimal position of such an auxiliary naviga-
tion waypoint can be determined, i.e., a point on the Thales’ circle defined by the segment,
it is not the case of multi-goal path planning, where the particular path between two goals
consists of several straight line segments. In addition, the expected localization error also
depends on the sequence of the goals” visits. Therefore, the problem is transformed to a
variant of the traveling salesman problem with neighborhoods, where prior visitation of
each goal an auxiliary navigation waypoint within a specific perimeter is selected in order
to minimize the localization uncertainty at the goal.

Having a goal g and its neighborhood of the possible auxiliary navigation waypoints
P, the waypoint is determined according to minimization of the expected error at the
goal g:

DPgx = argminpel?q(”AgH2)7 4)

where ||A,||*> denotes the norm of the covariance matrix, i.e., the maximal eigenvalue of
A, AgT. The adaptation schema of SOM is modified as follows. A regular winner selection
is used to select the winner; however, the backward neighbouring nodes of the winner
are adapted to the selected p, while the winner and its forward neighbouring nodes are
adapted towards the goal g.

Notice, that in this case the ring is oriented because determination of the covariance
matrices depends on the path traveled from the robot starting position. The flexibility of
SOM allows to include the orientation of the ring straightforwardly by “disconnecting”
the ring. It means that only forward neighbouring nodes are adapted for the first nodes
of the ring, while for the last nodes of the ring only the backward neighbouring nodes
are adapted. Besides, at the beginning (or end) of each learning epoch the first node and
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the last node of the output layer (ring) are adapted towards the robot’s initial locations
without selection of the winner, which provides a closed final path.

The proposed adaptation rule is called dadapt and it has been proposed in [30], where
the navigation method is employed in the autonomous navigation of micro aerial vehicles
(quad-rotor helicopter) in the surveillance task. Regarding the achieved results the pro-
posed SOM based multi-goal path planning provides a path that leads to a more reliable
autonomous surveillance, where the task is to capture an image of each goal area and to
identify a marker from the image. In the terms of absolute numbers, the reliability has
been increased from 82.2% to 95%, for a further details see [30] attached on page

(@) possible auxiliary (b) simple multi-goal path (¢) planning with auxiliary
navigation waypoints around planning, L=416 m, navigation waypoints,
the goal locations Frmaz=123m L=425m, F,,4,=0.7 m

Figure 13: An example of auxiliary navigation waypoints and found solution without and
with considering the evolution of the localization uncertainty. The path length is denoted
as L and the maximal expected error of the robot position at the goal locations is denoted
as Enaz.

Later, the planning method has been considered for ground robotic vehicles in:

[34] — Faigl, J. - Krajnik, T. - Vondsek, V. - Pfeucil, L.: On Localization Uncertainty in
an Autonomous Inspection. In Proceedings of 2012 IEEE International Conference
on Robotics and Automation. Piscataway: IEEE, 2012, p. 1119-1124. ISBN 978-1-
4673-1405-3. Authorship 40%. The paper is attached on page

In addition, the model of the localization has been extended to consider not only an “aver-
age” distance of the visible landmarks but also to use a local model of visible landmarks
based on a map of the landmarks, which allows to include non homogeneous spatial
distribution of the features among the environment. For example, explicit consideration
of visible objects that can be used for the vision based navigation. In comparison to the
planning method introduced in [30], where the auxiliary navigation waypoints have been
selected from a set at a specific perimeter, the approach [34] is extended to environment
with obstacles and it does not rely on a single perimeter. Particular waypoints are se-
lected from a larger set of the possible waypoints including several perimeters and thus
the approach can be considered as a more general. An example of auxiliary navigation
waypoints and found solutions is depicted in Fig.

Based on the results presented in [30, 34], it seems that the trade-off between the pre-
cision of the goal visits and the total length of the path is proportional, i.e., a path with
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auxiliary navigation waypoints is about 30% longer than a path connecting just the goals
while the visitation of the waypoints improve precision of the localization at the goals
also about 30%.

Although the expected improvement corresponds with the real measured precision.
The absolute values of the error are different, which is mainly due to the estimated pa-
rameters of the navigation method. However, it is expected that a local model of visible
landmarks introduced in [34] should provide a more precise estimation of the expected
localization error. This is a subject of future work on consolidation of the achievements

Here, it should be mentioned that regarding the detection of the landmarks, it seems
that BRIEF features and descriptor are more suitable for navigation than SURF, according
to the recent results presented in [53].

6 Multi-Goal Path Planning in Mobile Robot Exploration

The multi-goal path planning can be considered as a planning regarding a longer horizon
of the mission execution than just a pure path planning from the initial location to the goal
location. In the inspection planning, it is assumed the model of the environment is known
in advance and the whole mission is prepared prior the robot deployment. Even though a
replanning can frequently occur during the mission execution, in inspection task, it makes
sense to consider the whole plan in order to find a cost effective solution and the eventual
benefit of the multi-goal path planning is evident.

On the other hand, planning in mobile robot exploration seems to be a more reactive,
as no information about the environment is known in advance. Just to remind, the ex-
ploration task is a problem of building a map of an unknown environment by a single
robot or a group of mobile robots and first approaches to address this problem have been
proposed in eighties. In mobile robot exploration, the main problem is to determine the
next goals towards which the robots are navigated to collect new information about the
environment.

The fundamental method how to generate goal candidates is the frontier-based ap-
proach [92]. A frontier is an area between unknown and already explored space; hence, it
is a good candidate to be the next goal because the robot will likely explore the unknown
space during navigation towards such a goal. Frontiers can be easily determined in a grid
based map, and therefore, the frontier-based exploration is usually combined with the oc-
cupancy grid for a straightforward integration of new sensor measurements [65]. Thus,
the frontier-grid-based exploration is one of the most popular exploration approaches
because of its simplicity and several extensions have been proposed since the original
Yamauchi work, e.g., see an overview of the approaches in the recent work [9].

During the exploration, robots are navigated towards goals assigned in the next-best-
view manner [44]. The goals are iteratively selected from the actual goal candidates (e.g.,
frontier cells) according to the selected optimization criterion. A unifying concept of how
to evaluate candidate positions is based on the goal utility. Although various utility func-
tions have been proposed, all of them basically combine information gain (or expected
benefit [12]]) together with the required travelling distance to the goal [1]. Then, the robot’s
next goal is repeatably selected from the next goal candidates.
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The next-best-view approach can be considered as a greedy approach aimed to the
immediate reward, i.e., the selection of the next robot goal without considering further
robot movements. This makes sense regarding the current available information about
the working environment, which is a natural subject of change during the exploration,
and therefore, the replanning can use the most new available information. However, the
problem of the exploration can be stated differently. Instead of determining just the next
robot goal, the exploration can be formulated as a problem of visiting all the current fron-
tiers; hence, a variant of the multi-goal path planning problem.

Even though this formulation of visiting the given set of all goal candidates has been
discussed in [95, [12]], the formulation took relatively little attention by research commu-
nity, probably due to complexity of the problem. Regarding this, the most elaborating
study of this TSP like formulation has been presented recently in:

[56] — Kulich, M. - Faigl, J. - Pfeuéil, L.: On Distance Utility in the Exploration Task.
In Proceedings of 2011 IEEE International Conference on Robotics and Automa-
tion. Madison: Omnipress, 2011, p. 4455-4460. ISBN 978-1-61284-386-5. Author-
ship 20%. The paper is attached on page[I35|

(a) greedy goal selection (b) TSP distance cost selection

Figure 14: An example of the goal selection using pure greedy approach (left) and the TSP
distance cost (right). The selected next goal is emphasized by the green ring.

The idea of the TSP based evaluation of the robot’s goal candidates is shown in Fig.
The evaluation is based on the length of the shortest path connecting the current set of goal
candidates. So, a longer planning horizon is considered rather than the immediate next
goal. Notice, the determined path is open, while the TSP is formulated for a closed path.
However, a transformation of the problem to the TSP is straightforward, just a “virtual”
vertex is added to the graph representation of the problem. The vertex has to be visited
as the last vertex prior the route return to the vertex representing the robot’s current po-
sition, which is the natural starting and ending vertex of the TSP route. This visitation of
the vertex can be supported by the cost of the edges connecting the virtual vertex with
other vertices; thus, the vertex is connected with the starting vertex by an edge with zero
cost, while the cost of the edges to other vertices is a large value, see [56] for a further

26



6. MULTI-GOAL PATH PLANNING IN MOBILE ROBOT EXPLORATION

description.

The computational complexity of the associated TSP is addressed by reducing the
number of goal candidates and instead of all frontier cells only selected representatives
are considered. The selection is performed as follows. First, all frontier cells are orga-
nized into a set of single connected components, i.e., the so-called free edges [44]. Then,
the idea is to use only few goal candidates representing the free edges and from which
all particular frontier cells would be covered (if a robot would visit the representatives).
The representatives of the free edge are means of n, clusters that are found for each free
edge using the K-means clustering algorithm. The number of clusters n, is determined
considering the range of the sensor p, (in the number of grid cells), see [56]. Beside this
significant reduction of the possible goal candidates, the TSP is solved approximately us-
ing the Chained Lin-Kernighan heuristic [4], and therefore, it is computationally feasible
even for real-time planning.

The main results presented in [56] is that using the proposed TSP distance cost, the
time needed to explore the whole environment is reduced up to about 30% in comparison
with the greedy selection of the robot’s next goal from the current goal candidates. These
results are promising especially with regards to the fact that the TSP distance cost does
not include any kind of expectations about possible coverage of unexplored areas and
which is solely based on the distances between the candidates. Based on these findings,
the developed TSP distance cost has been considered in the multi-robot exploration in:

[35] — Faigl, J. - Kulich, M. - Pfeucil, L.: Goal Assignment using Distance Cost
in Multi-Robot Exploration. In Proceedings of 2012 IEEE/RS] International Con-
ference on Intelligent Robots and Systems. Piscataway: IEEE, 2012, vol. 1, p.
3741-3746. ISBN 978-1-4673-1735-1. Authorship 60%. The paper is attached on
page

According to the taxonomy [40], the multi-robot exploration is formulated as the opti-
mal assignment problem studied in operational research. The problem is to find the best
assignment of n goals to m robots maximizing the overall utility, i.e., to find one goal
for each robot. In the case of linear optimization criterion, the problem can be solved in
polynomial time using the Hungarian algorithm, which has been applied in multi-robot
exploration by authors of [63], where Voronoi Graphs of the current known environment
are used to explore a single room by one robot.

In [35], the assignment problem is formulated as the multiple traveling salesman prob-
lem (MTSP) that is solved approximately using the (cluster first, route second) heuristic.
The clusters are found by the K-means algorithm and the next goal is selected from the
particular cluster according to the TSP distance cost [56]. The presented results indicate
that this formulation provides a shorter exploration time than using the Hungarian al-
gorithm. An example of travelled trajectories during the exploration is shown in Fig.
These results are obtained by a developed multi-robot exploration framework, which sup-
port study and evaluation of the performance of exploration strategies. The framework
follows recommendations of benchmarking exploration strategies [1] and it provides a
ground for focused study of the decision mechanisms without influence of other parts
of the real navigation system, which may affect the performance significantly. Besides, it
also allows to evaluate the results statistically using thousands of simulations, which are
unlikely possible with real robots.
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MTSP 50.0 metJ

Figure 15: An example of multi-robot exploration strategies. The maximal travelled dis-
tance is 62.1 meters using the Hungarian assignment (left) while for the proposed MTSP
based strategy, the maximal travelled distance by a robot is 50 meters.

5| 50.2' meters]
S 26 second§
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Figure 16: Example of traveled paths during the multi-robot exploration strategies. The
total mission time needed to explore the whole environment is 274 seconds for the Hun-
garian assignment (left) and 226 seconds for the MTSP based exploration strategy.

An example of exploration trajectories in a more realistic deployment using the Play-
er/Stage framework [41] is shown in Fig. In this type of evaluation, the whole control
stack for autonomous navigation is employed and the reactive based SND navigation [20]
is used for a low-level control of the robot motion. Contrary to the previous evaluation
using the developed framework, which allows to set the replanning period precisely, in
this deployment, the robots are continuously navigated towards their actual goals, while
the re-planning is performed as fast as possible. Therefore, a more computationally de-
manding method, e.g., the MTSP strategy, has a longer replanning period, while simpler
techniques can take an advantage of faster replanning considering new information about
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the environment being explored. However, also in this deployment, the proposed MTSP
exploration provides better results and thus the results support the idea of the multi-goal
path planning in exploration missions.

Regarding the SOM based approach for the multi-goal path planning, which demon-
strates competitive results in the inspection tasks, the current approach for the MTP in the
exploration relies on combinatorial heuristic for the TSP. For the current formulation of the
exploration strategy, SOM does not provide suitable solutions. Having a fast re-planning
loop, the found paths can be significantly different, which may lead to oscillation of the
robot between two goals. In fact, this issue can also occur in utility based strategy combin-
ing distance cost with the expected information gain as it is commented in [44]. However,
the future intention is to reformulate the exploration strategy as a coverage problem con-
sidering a continuous sensing, i.e., the problem of determining paths from which all the
frontiers cells would be covered instead of selection of frontier cells towards which the
robots are navigated.

7 Concluding Remarks and Future Work

The presented introduction to multi-goal path planning for mobile robots and the com-
mentary to the author’s work in this field is mostly based on the self-organizing maps.
Prior the presented work, this technique took a little attention for these types of problems
by the community, especially in robotic research. From the pragmatical point of view, it is
apprehensible as the SOM technique for the TSP provides generally worse results and it
was even more computationally demanding than heuristics from operational research.

On the other hand, with a relatively little effort, the SOM based multi-goal path planner
provides solution of huge class of problems and represents a general approach for inspec-
tion planning including sensor models with discrete and continuous sensing. During the
last years of promoting the developed approaches, the author receive positive feedbacks
from the research community in this sense. The proposed algorithms are “incredibly” sim-
ple; however, the provided solutions have competitive quality to the specialized and in
several cases also significantly more complex approaches.

The main principle proposed can be summarized in a combination of simple support-
ing structures (like the approximation of the shortest path) with a self-organizing prin-
ciple, which can also be considered as simple. The achieved results provide an insight
that for solving the addressed problems, which are motivated by inspection planning,
the self-organizing map discovers the approximation of the problem topology that rep-
resents a solution of the problem. Hence, the natural evolution process considering only
local properties is able to provide a solution according to the global optimization crite-
rion. This insight provides a ground for a future work on distributed solution of large
problems based on self-organizing principles.
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In this paper, two state-of-the-art algorithms for the Traveling Salesman Problem (TSP) are
examined in the multi-goal path planning problem motivated by inspection planning in the
polygonal domain W. Both algorithms are based on the self-organizing map (SOM) for
which an application in W is not typical. The first is Somhom’s algorithm, and the second
is the Co-adaptive net. These algorithms are augmented by a simple approximation of the
shortest path among obstacles in Y. Moreover, the competitive and cooperative rules are
modified by recent adaptation rules for the Euclidean TSP, and by proposed enhancements
to improve the algorithms’ performance in the non-Euclidean TSP. Based on the modifica-
tions, two new variants of the algorithms are proposed that reduce the required computa-

tional time of their predecessors by an order of magnitude, therefore making SOM more
competitive with combinatorial heuristics. The results show how SOM approaches can
be used in the polygonal domain so they can provide additional features over the classical
combinatorial approaches based on the complete visibility graph.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The self-organizing map (SOM) also known as Kohonen'’s unsupervised neural network, was first applied to the Traveling
Salesman Problem (TSP) by Angéniol et al. [1] and Fort [19] in 1988. The TSP is probably the most famous combinatorial
problem studied by the operational research community for more than five decades [10]. The problem is to find a route
for visiting a given set of n cities (goals) so that the length of the route is minimized. In SOM, the output neurons are orga-
nized into a unidimensional structure (cycle), and a solution is represented by synaptic weights that are adapted to the cities
during the self-adaptation process. After the adaptation, the neurons are associated to the cities, and because of the unidi-
mensional structure, the final city tour can be retrieved by traversing the cycle.

The SOM adaptation schema for the TSP consists of two phases. A city is presented to the network, and a winner neuron is
selected in the competitive phase. For a planar TSP where cities represent points in R?, the neurons’ weights can be consid-
ered as points in the plane that are called nodes in this paper. So, the winner neuron is the node with the smallest distance to
the city. Then, the adaptation can be described as a movement of the winner node together with its neighboring nodes to-
ward the city. The adaptation is called a cooperative phase, as neighboring nodes also move, although by a shorter distance.
After the complete presentation of all cities (one adaptation step), the procedure is repeated until the termination condition
is not met, e.g., when the winner nodes are sufficiently close to the cities.

Several SOM approaches have been proposed [9,8,6,7,36,34,3,35,4,11] in the history of the SOM application to the TSP. In
these approaches, the adaptation rules have been modified [37,39], heuristics have been considered [30], and combinations
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with genetic algorithms [26], memetic [12] or immune system [27] approaches have been proposed. Even though these new
approaches improve the performance of SOM for the TSP, SOM is still not competitive with the combinatorial approaches to
the TSP in both aspects: the solution quality and required computational time [12]. It should also be noted that all of the
above mentioned SOM approaches consider only the Euclidean variant of the TSP, i.e., distances between cities are Euclidean,
while combinatorial approaches generally work with graphs.

Herein, the TSP is considered in the context of inspection planning, where cities represent sensing locations in the
polygonal domain W [17,21]. The problem is to find a path for a mobile robot so that the robot will “see” the whole work-
ing space. The practical motivation of the problem is a search and rescue mission in which possible victims need to be
found quickly [25]. The problem can be formulated as the TSP, i.e., a problem to find a path that visits the given set of
sensing locations, where measurements of the robot’s vicinity are taken. The robot’s working space is represented by a
polygonal map that may contain obstacles, therefore collision-free paths among obstacles (geodesic paths) have to be con-
sidered [32]. It is also the case of the SOM adaptation procedure where the geodesic paths (distances) between nodes and
cities have to be considered rather than Euclidean distances, otherwise a poor solution would be found. The node-city
distances are used in the competitive phase, in which a winner node is selected. Shortest paths are then used in the coop-
erative phase where nodes are adapted toward a city along a particular path, i.e., the node is placed at a new position on
the path closer to the city.

It is clear that a determination of the shortest path among obstacles is more computationally intensive than a direct
usage of the Euclidean distance. From this perspective, the complexity of SOM algorithms increase in ¥ because the adap-
tation rule has to be augmented by an algorithm to find geodesic paths. However, combinatorial approaches based on a
graph problem representation can be directly used in ¥V without any modifications. The costs of edges between cities are
lengths of the shortest paths between cities, and the graph can be constructed from the visibility graph by Dijkstra’s algo-
rithm. Therefore, the gap between SOM and combinatorial heuristics seems to be wider for the TSP in the polygonal
domain.

In [18], a simple, yet sufficient approximation of the shortest path in W has been used in SOM adaptation rules to decrease
the computational burden. Although this approximation enables the application of SOM principles in W, the required com-
putational time of self-organization is still significantly higher (hundreds of times) than for the Euclidean-TSP. The main is-
sue of the conventional SOM is the high number of node-city distance queries in the competitive phase, and also the
relatively high number of node-city path queries in the cooperative phase. In this performance study, the computational
requirements of these adaptation phases are examined in two different ways. First, technical aspects of the queries are con-
sidered, i.e., the required computational time is reduced by informing the competitive selection procedure and assuming
practical approximations in the cooperative phase. The second way aims to decrease the number of queries considering re-
cent adaptation rules; these reduce the required number of adaptation steps, and effectively decrease the size of the winner
node neighborhood. The rules are closely related to the initialization of adaptation parameters; therefore, various initializa-
tions are considered as well.

The rest of the paper is organized as follows. Section 2 describes the notation and terminology used related to the
geometrical structures supporting the shortest path queries and adaptation procedure. Related work is acknowledged
in Section 3. In Section 4, a brief description of the SOM adaptation procedures used herein and an approximation of
the shortest path in the polygonal domain W is presented. Section 5 presents proposed modifications and combinations
of published competitive and cooperative rules to decrease the required computational time possibly without affecting
the solution’s quality. Experimental results are presented in Section 6. Finally, the concluding remarks are presented in
Section 7.

2. Terms used and notation

The SOM adaptation is considered in the polygonal domain, i.e., a polygonal map; therefore, a few terminology notes are
presented in this section to clarify the terms used and symbols for supporting geometrical structures.

A world is represented by a polygonal map W consisting of Ny vertices; thus, W is a closed, multiply connected region,
whose boundary is a union of Ny line segments, forming h + 1 closed polygonal cycles, where h is the number of holes (obsta-
cles). A distance between two points inside W is a length of a path among obstacles that can be a straight line segment or
consisting of vertices. Thus, a path between two points s and t consists of a finite number of line segments joining the points
and vertices.

W can be divided into a set of non-overlapping convex polygons that are formed from vertices. Such convex polygons are
called cells and represent a convex polygon partition of W, i.e., each cell C forms a closed polygonal cycle of line segments
joining vertices. A line segment is called diagonal if it connects two non-adjacent vertices and if it is contained in . A point
inside W is always inside a cell, and a collision-free path between two points s € C; and t € C; can be constructed from the
shortest path between vertices of Cs and C,. Weights of the ith neuron represent a point v; (called node) that lies in W; there-
fore, v; is always inside a cell. Such a cell of the node v is denoted as C,. An example of a polygonal map, its convex partition,
and a path from a node to a city is shown in Fig. 1.
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Fig. 1. An example of path refinement, the gray segments represent diagonals of the convex partition, small disks are cities, and a node is connected with
the city by the approximation of the shortest path (red segments). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

The symbols used are as follows.

w the polygonal domain representing the working space to be inspected, W c R?
Ny the number of vertices of W

n the number of cities

m the number of nodes (neurons)

s, t| the Euclidean distance between points s and t

[SCui, 1) the length of the shortest path (among obstacles) between two vertices 2 and v in
P a set of convex polygons

U a vertex of the polygonal domain W

\ a node representing the weights of the ith neuron

Gy the cell of P in which node v lies

G the learning gain (also called the neighborhood function variance)

u the learning rate

o the gain-decreasing rate

d the number of neighboring nodes of the winner node

3. Related works

The first application of SOM principles to the TSP [1] follows constructive heuristics and starts with one node. In that ap-
proach, a node is duplicated if it is the winner for two different cities, and it is deleted if it is not selected as the winner for
three complete presentations of cities to the network. Growing ring structure has also been used in FLEXMAP proposed in
1991 [20]; however, the deletion mechanism was omitted. The maximal number of required nodes has been close to
2.5n, where n is the number of cities, up to a problem with 2392 cities. In [6], Budinich used the same number of nodes
as cities, and the inhibition was replaced by a real value derived from the winner node and its neighboring nodes. The tour
is constructed from an ordered sequence of cities according to the value.

An inhibition of frequently selected winner nodes has been used in the Guilty net algorithm [9]. The inhibition mecha-
nism was substituted by the vigilance parameters in the Vigilant Net presented in [7] where the initialization of weights
is discussed. Superior results are reported for starting positions of nodes as the convex hull approximation of the cities. Aras
used the geometrical properties of the connected nodes forming a ring and the topology of cities in his KNIES algorithm [3].
This algorithm uses a regular adaptation of the winner node, which moves toward the city. In addition, nodes that are not in
the activation bubble (set of neighboring nodes), do not move closer to the city, but move in a way that allows the preser-
vation of the global statistical properties of the data points. The proposed algorithm has been used to solve large TSP in-
stances by the decomposition of the problem into several clusters [4].

Probably the most complex and powerful SOM algorithm for the TSP is the Co-adaptive net introduced in [11]. This
algorithm uses a higher number of nodes than the number of cities, and it utilizes an adaptive neighborhood of the
winner node that is updated after each adaptation step. The learning process is divided into competition and
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co-operation phases. The co-operation phase is based on winner nodes or their neighbors not moving more than once.
The algorithm also uses the near-tour to tour construction, which creates a complete tour if the current winner nodes
are not distinct. The best tour is kept during the adaptation, and it is used if the final solution is worse. The authors
presented a huge set of results and comparisons with other approaches, and reported that their approach outperforms
other variants and together with [36] provides better results than Aras’s KNIES [3], which uses the statistical properties
of the data points.

Even though the statistical approach (KNIES) has been outperformed, the convex hull property has been studied in the
expanding SOM variant called ESOM [26]. To follow the convex hull property and to design an appropriate learning rule that
considers the global parameters of the problem, Intergrated SOM (ISOM) uses an evolutionary principle and combines SOM
with a genetic algorithm [22]. The convex hull property is also studied in [38], where the authors considered a more con-
servative learning rule than ESOM: the movement of the nodes, which follows the expansion to preserve the convex hull
property is restricted. This algorithm provides almost identical results as those of ESOM, but the learning rule is much
simpler.

Another research direction studied is the initialization of neuron weights and the setting of adaptation parameters:
the learning rate y, the learning gain G, and the gain-decreasing rate o. An initialization of weights was studied in [5],
where authors examined four initialization methods: random, small circle around centroid of the cities, a tour found by
the nearest neighborhood algorithm, and a random initialization of nodes on a rhombic frame located to the right of
the cities’ centroids. The fourth initialization method is reported as the most suitable technique. Kohonen’s exponential
evolution of the adaptation rules is studied in [37]. To reduce the number of parameters, the authors proposed simpli-
fied adaptation rules based only on the number of performed adaptation steps k. The learning rate is defined as
u=1/Vk and the learning gain as G=G(1 - 0.01k) with initial value Go=m/32, where m is the number of neurons.
They used initial weights representing nodes on a rectangular frame around the cities, and the authors reported supe-
rior results in the selected TSPLIB [31] instances in comparison with the SOM approaches [19,1,9]. These simplified
rules have also been applied in [39], where the authors proposed to use g =1/vk and the initial value of the gain
Go=10. For small values of G, the value of the neighborhood function is very small; thus, the neighboring nodes are
negligibly moved. Considering this fact, the authors recommended to gradually decrease the neighborhood of the win-
ner node after each adaptation step. It decreases the computation burden while not affecting the quality of solution.
The recommended initial size of the neighborhood is d = 0.4 m, which is decreased by d = 0.98d at the end of each adap-
tation step.

In [28], Murakoshi and Sato applied multiple scale neighborhood functions to decrease topological defects that may occur
during the self-adaptation. The functions have a form

2

F(G,1) = pype 57, (1)

where f; and y; are the gain and width factors of the jth neighborhood function. The authors used six functions f; = 273l and
Y= 2-G=) forje{1,2,...,6). These functions have been incorporated into the SOM adaptation procedure [1], where a func-
tion has been randomly chosen during the adaptation. The authors reported up to 42.65 % less kinks than in the original ver-
sion of the procedure [1].

4. Self-organizing maps for the Traveling Salesman Problem

Two state-of-the-art SOM adaptation procedures are considered in this performance study as the primal algorithms
being modified. The SOM algorithms have been selected regarding the results presented in [11], where these approaches
provide the best performance. Although more recent approaches increase the quality of solution, the improvement is not
significant, and such approaches are also more computationally demanding. That is why Somhom’s algorithm introduced
in [36] and the Co-adaptive net algorithm [11] have been selected for evaluation of their performance for problems in the
polygonal domain W. The performance of these algorithms is improved by the proposed modifications and by the com-
bination of selected approaches (briefly described in the previous section), and therefore, the original algorithms are de-
scribed in more detail in the next subsections. Moreover, an overview of the used shortest path approximation in W is
presented in Section 4.3.

4.1. Somhom’s algorithm

The algorithm presented in [36] by Somhom et al. uses an inhibition mechanism, i.e., a neuron can be a winner only for
one city during a single adaptation step. In the rest of this paper, Somhom'’s algorithm is denoted as SME. The basic schema of
the algorithm is similar for both SOM algorithms considered. The schema is shown in Algorithm 1.
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Algorithm Self-organizing map for the TSP

Input: C={cy,...,c,} — a set of cities
Input: (d,G, u, ) - the parameters of SOM
Input: 5 - the maximal allowable error

Input: i, - the maximum number of adaptation steps
Output: (v4,...,vy) — a sequence of node weights representing city

tour

init(\’l, N VM)

i—0

repeat

error — 0

I—190

II(C) < a random permutation of cities

foreach c € I1(C) do
V¥ — select winner(node to c), v ¢1)
error — max{error,|v",c|}
adapt(v’,c)
I—Tu{v*}

G—(1-a)G

i—i+1

// an initial set of neurons weights
// the adaptation step counter

// the set of inhibited nodes

// call the select winner procedure

// call the adapt procedure

// inhibit winner node

// decrease the gain

// increment the adaptation step

counter

until error <6 or i > inay

The algorithm works as follows. The ring of nodes is initialized as a small ring around one of the cities. The adaptation
procedure consists of a sequence of adaptation steps in which all cities are randomly presented to the neural network.
For each presented city, the winner node is selected according to v* = argmin, |c, v|, where |-,-| denotes the Euclidean distance
between the city c and the node v for the Euclidean TSP. The adaptation procedure (adapt) moves the winner node and its
neighboring nodes toward the presenting city ¢ according to the rule v; = v; + uf (G, l)(c — v;), where p is the learning rate.
The neighboring function is f(G,1) = exp( — [2/G?) for I < d and f(G,]) = 0 otherwise, where G is the gain parameter, | is the dis-
tance in the number of nodes measured along the ring, and d is the size of the winner node neighborhood that is set to
d=0.2m, where m is the number of nodes. The initial value of G is set proportionally to the problem size
Gp =0.06 + 12.41n. The values of learning and decreasing rates are u = 0.6 and o = 0.1, respectively.

The original termination condition is based only on the maximal distance of a winner node to the city that is less than a
given 6. However, in the case of poor convergence, e.g., due to the used approximation, the adaptation procedure is termi-
nated after a given number of adaptation steps i,,qx. The city tour can be reconstructed from the ring of nodes because each
city has a distinct winner. The used value of acceptable error is 6 = 0.001, and the used maximal number of steps is i,,qx = 180.

4.2. Co-adaptive net

The Co-adaptive net algorithm [11] also uses a randomization of the presented cities, but it does not use the inhibition
mechanism. Instead, the winning number w; is maintained for each neuron during the adaptation step. The required com-
putational time of the select winner procedure is decreased by considering the restricted set of neighboring nodes of the pre-
vious winners. To avoid degenerate solutions, after every K adaptation steps, the winner is selected from the whole set of
nodes.

One of the two adaptation procedures is selected according to the value of the gain G. In the case of G < G,ss, the winner
node v* and its neighboring nodes are moved toward the city if and only if w,. = 0. For G > G, the winner and the neigh-
bors (for w., = 0), or only the neighbors (for w,. = 1) are moved; otherwise, none of nodes is adapted. The neighboring func-
tion is similar to the one used in the SME algorithm, but a node-specific gain is used g; = G(1 — |v;,c|/v2). The gain G is
changed after each adaptation step by G « (1 — )G for G < Gross5/2, and G « (1 — 2a)G otherwise.

Another important part of the Co-adaptive net is a construction of the city tour because the inhibition is not used. If a tour
constructed from the winner nodes with w; =1 contains at least min{n — 100,0.98n} cities after an adaptation step, winner
nodes are found for the cities not in the tour considering the inhibition. The city tour may be constructed after each adap-
tation step, and the best-found tour (the shortest one) is returned as the solution of the TSP.

The adaptation is terminated if the winner nodes are sufficiently close to the cities (similar to the SME approach), if the
neurons are in the same positions as they were at the end of the previous adaptation step, or if the current gain is small
(G <£0.01), which is equivalent to the maximal number of adaptation steps.
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(e) step 41 (f) step 47 (g) step 56 (h) step 68

Fig. 2. An example of ring evolution in the environment jh; the small green disks represent cities, and the blue disks are nodes.

Based on the results presented in [11] the following parameters are used as default settings of the Co-adaptive net in this
paper: m = 2.5n, Go = 11/3, Geross = 10, o0 = 0.02, 1t = 0.626, the size of the restricted set of nodes in the select winner proce-
dure is C* = 250, the full search is performed after every 10 adaptation steps, and the size of the neighborhood in the adapt
procedure is set to min{2G + 1,200,m/2}.

The authors of the Co-adaptive net use the center of the cities as the point around which a ring is initialized. Such a point
can lie in an obstacle for the TSP in W; therefore, alternative initializations are considered.

4.3. Approximation of the shortest path in the polygonal domain

A simple approximation of the shortest path based on a convex partition of the polygonal domain W has been used in
[18]. The approximation is based on a refinement of a primary path found in a convex partition of W. A convex partition
P is a set of convex cells C;, P={C;,C,,...,C} such that the union of the cells is W, Uf-‘zlc,- = W. Cells are induced by the
diagonals of W, and each cell is formed from a sequence of »V vertices. A node v is inside ¥V during the adaptation; thus,
it is always inside some cell C,. The initial approximate path from v to the city c is found as the shortest path S(w,c) over
vertex w of Gy to ¢ such that w = argmin,,, ., [V, wi| + [S(w;, )|, where |-, -| denotes the Euclidean distance between two points,
and |S(.,.)| is the length of the shortest path between two vertices, or vertex and city, see Fig. 1(a).

The problem of finding the cell C, is a point-location problem, which can be solved in O(logv) or in the average complexity
0(1) by the “bucketing” technique [14]. Alternatively, the cell can be determined during the node movement toward the city
by the walking technique similar to [13]. The complexity of such cell determination is bounded by O(logn,), where ng is the
number of passed diagonals of the used convex polygon partition.

The initial path can be improved by the following refinement procedure. Assume a node v inside the cell C, and the
approximation of the path from v to the vertex v as a sequence of vertices (7o, ¢1,. . ., %), %o € C,. A refinement is an exam-
ination of a direct visibility test between v and #;. The visibility test is similar to [23], a convex partition is used instead of a
triangulation. If a straight line from v to the vertex v, crosses only diagonals or lies entirely in the same cell, then the vertex
v is visible, and all vertices v; for i < k can be removed from the sequence. Examples of a refined path are shown in Fig. 1.

The shortest paths from vertices to cities can be pre-computed by Dijkstra’s algorithm in O(n + elog(Ny + n)), where n
is the number of cities, Ny is the number of vertices, and e is the number of visible pairs (city-city, city-vertex, and
vertex-vertex) of the complete visibility graph. The number of edges is bounded by e < Ny + Nyn. The graph can be found
in O((Ny + n)?) by the algorithm [29].

The adaptation process using the approximate path is visualized in Fig. 2. The nodes are connected by the approximate
shortest paths between two nodes, which uses the same principle as the node-city paths, the vertices of the nodes’ cells are
considered. The path between nodes is not needed in the adaptation process; it is used only for the visualization.

46



Appendix 1 - Faigl, ].: On the Performance of Self-organizing Maps for the Non-Euclidean
Traveling Salesman Problem in the Polygonal Domain [27], referenced on page

4220 J. Faigl/ Information Sciences 181 (2011) 4214-4229
5. Modifications used and proposed
5.1. Approximation of the shortest path

Three variants of the refinement procedure of the approximate shortest path described in Section 4.3 have been consid-
ered in the experimental evaluation of the modified SOM algorithms. The refinement using only one vertex of the primary
path over the vertex of the node cell is denoted as the va-1 variant. Two additional variants are va-0, which does not use the
refinement procedure, and pa, which represents the complete refinement of all vertices on the primary path.

Based on the results presented in [18], the va-1 variant provides the best trade-off between the quality of the solutions
and the required computational time. The va-0 variant is faster, but the network does not converge in some cases due to
imprecise approximations.

5.2. Select winner procedure

A path among obstacles in W has to be found to determine the winner node of the current presented city to the network,
which means m node-city distance queries have to be performed for each presented city. However, the required computa-
tional time can be reduced if the Euclidean distance of the node to the city is considered before the node-city distance is
queried. If the Euclidean node-city distance is longer than the Euclidean distance of the current winner candidate, it is
not necessary to determine the path among obstacles. This Euclidean pre-selection is denoted as the euclid-pre select winner
method in the experimental part of this paper.

Moreover, after several adaptation steps, the winners are preserved over the steps. Thus, the previous winner to the
city can be used as the initial winning candidate. Such an initial selection of the winner candidate can avoid unnecessary
computations of the shortest path. In the final adaptation steps, winners are very close to cities, and a city and its winner
node are typically in the same cell; in other cases, the shortest path can be just a straight line segment. Therefore, the
determination of node-city distance can be very fast, and the Euclidean distance is sufficient to confirm that the previous
winner is really the closest node to the city. This winner selection method with the Euclidean distance pre-selection is
denoted as informed.

These improvements can be considered technical, because they do not affect the quality of the solution found and only
decrease the required computational time at the cost of a more complex algorithm.

5.3. Adaptation rule

The adapt procedure is more complex than the select winner procedure because a path has to be retrieved in the
node-city path query and the adapted node is moved towards the city, i.e., a particular straight line segment of the path
has to be determined. The node v is moved closer to the city ¢ proportionally to the node-city distance D(v,c), learning rate,
and neighboring function. The distance of v to c is decreased about gD(v,c), where # has the form f = pexp(—I?/G?). The value
of § decreases with the increasing distance of the neighboring node. It also decreases with each adaptation step, as the learn-
ing gain G decreases. If § is very small, the movement can be negligible; therefore, once the f is under a given threshold, the
adaptation of neighboring nodes can be omitted. This modification of the adaptation rule is called -condition in this paper,
and it can be used for rules without decreasing the neighborhood size. The influence of this modification has been experi-
mentally examined for the SME and Co-adaptive net algorithms.

An additional speed improvement of the adapt procedure can be based on the usage of the winner path to the city ¢
for the neighboring nodes. If nodes are close to each other, and if a path contains a map vertex (avoiding an obstacle), a
path from the neighboring nodes will likely pass the same vertex. Thus, the neighboring node v can be moved along the
same path as the winner node v*, while the distance is decreased by the Euclidean distance between v* and v, i.e., v is
placed at the position of v* before its movement and adaptation toward c. The situation is schematically shown in
Fig. 3. This modification of the adaptation rule is called approx. adapt, and it is combined with the p-condition
modification.

neighboring nodes
@ _winner node ) el )
city city
&/ T~ ~0— /previous path
winner—city path neighboring nodes  winner node

(a) before adaptation (b) after adaptation

Fig. 3. Utilization of the winner-city path for the neighboring nodes.
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Fig. 4. Examples of the hull initialization, the green disks are cities, small blue disks are nodes, and the bold black line segments represent a connected ring
of nodes.

5.4. Adaptation parameters

Beside the original adaptation parameters of the SME and Co-adaptive net algorithms, the following modifications are
considered as well. The rules proposed in [39] and denoted as Zhang-Bai-Hu rules are also used in SME. Furthermore, the
original SME adaptation rule is complemented by the decreasing size of the winner node neighborhood, i.e., the size d is up-
dated to d = 0.98d at the end of each adaptation step.

The multiple scale neighborhood functions used by Murakoshi and Sato in [28] are utilized in the Co-adaptive net; this
modification is denoted by the abbreviation MSNF for short.

5.5. Initialization

Due to obstacles, the initialization of the nodes used for the Euclidean TSP described in [5] cannot be directly used in the
polygonal domain W. That is why the following initializations are considered in the experimental examination of the mod-
ified algorithms.

The first initialization method is called first because the first city is used to initialize the ring of nodes as a circle with a
small radius (5 mm) around the city. The small radius ensures that the nodes are placed in W, as cities are always placed at a
greater distance from the obstacles.

The second method uses the closest city to the centroid of cities, and a ring is also created as a small circle with the same
radius like in the first method. The method is called center in this paper.

The third initialization is similar to the center method, but the center of the circle is selected as the city with the smallest
standard deviation of the distances to other cities. The method is called dev.

Inspired by approach [7], the last examined initialization method is called hull because it is based on the convex hull of
the cities. The cities at the border of the convex hull are connected by the shortest paths. The connected cycle is then used to
initialize nodes equidistantly along the cycle. Examples of the hull initialization are shown in Fig. 4.

6. Performance evaluation

The performance of the SOM algorithms is evaluated for a set of inspection planning problems.! The environments are
represented by polygonal maps. The name of the environment with a subscript denoting the visibility range p in meters rep-
resents the particular TSP. It means that a robot performing measurement at the city position senses its surrounding environ-
ment in the distance p [17]. Parameters of the environments are shown in Table 1, where Ny is the number of vertices, Ny is the
number of holes, and N¢ is the number of convex cells of the supporting convex partition. Environments jh, pb, ta, and h2 rep-
resent maps of real buildings; thus, they provide a representative problem in size. In particular, maps jh, pb, and ta have been
used as experimental sites for search and rescue scenarios in the PeLoTe project [24].

The algorithms have been implemented in C++ and compiled by the G++ 4.2 with the —02 optimization flag. All results
have been obtained within the same computational environment using single core of the Athlon X2 CPU running at 2 GHz,
1 GB RAM, and FreeBSD 8.1. Thus, all required computational times presented can be directly compared.

The cities are applied to the network in a random order in all examined algorithms, and therefore, each particular algo-
rithm variant is executed twenty times for each problem, and average values are determined. The quality of solutions is eval-

! The problems with necessary supporting structures are available at http://purl.org/faigl/tsp/.
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Table 1

Testing environments with obstacles.
Name Dimensions Area Ny Ny N¢

[m x m] [m?]

jari 45x%x4.9 20 48 1 14
complex2 20.0 x 20.0 322 40 3 21
m1 48 x 4.8 20 51 4 26
m2 48 x4.8 15 51 6 20
map 4.8 x 4.8 14 68 8 36
potholes 20.0 x 20.0 367 153 23 75
rooms 20.0 x 20.0 351 80 0 33
a 8.9 x 14.1 71 99 6 22
dense 21.0 x 21.5 299 288 32 150
m3 48 x4.8 17 308 50 120
warehouse 40.0 x 40.0 1192 142 24 83
jh 20.6 x 23.2 455 196 9 77
pb 133.3 x 104.8 1453 89 3 41
ta 39.6 x 46.8 731 74 2 30
h2 84.9 x 49.7 2816 2062 34 476

uated as the percentage deviation to the optimum tour length of the mean solution value, PDM = (L — Lyy)/Lopc - 100%, and as
the percentage deviation from the optimum of the best solution value (PDB), where L, is the length of the optimal solution
found by the Concorde solver [2]. The PDM and PDB have variances due to randomization, therefore a tolerance between a
half and one percent is considered in the quality evaluation of solutions found by the particular modified algorithm.

The speed improvement of a particular algorithm variant is measured as the ratio of the average required computational
times of the original algorithm and its modified variant. The required computational time consists of the preparation time
Tinic and the time needed to adapt the network Tuqqp. The preparation phase is a creation of supporting structures: the convex
polygon partition, visibility graph, and shortest paths between cities and map vertices. The convex partition is found in tens
of millisecond using Seidel’s algorithm [33], and the construction of the complete visibility graph takes 41 ms for the largest
problem h2, with 575 cities and 2062 map vertices. These times are negligible according to the total required computational
time, and they are not included in the presented time values. The most time consuming preparation part is determination of
the shortest path between cities and vertices. This time is included in the presented total required computational time de-
noted as T. Regarding the preparation time the speed improvement of a particular algorithm variant is computed from Tagqp:.

The adaptation procedure itself is composed of the selection of winners and adaptation toward cities. The particular re-
quired computational times in these parts are useful for determining the most computationally intensive part of the algo-
rithm. Therefore, %T; and %T, denote computational times spent in the particular part of the adaptation procedure
(select winner and adapt respectively) in percentages of the total adaptation time Taqapt.

To avoid presentation of many detailed results, the examined problems are organized into three sets according to the
number of cities, see Table 2. In the overall comparison of the examined algorithms’ modifications, Tqqqp: for the original algo-
rithm is the reference computational time, i.e., an average computational time for each problem of the reference algorithm is
divided by the average Tqqqp: for the algorithm variant. The speed improvement, denoted as Sp., is computed as an average
value of improvements over all problems in the set.

6.1. The SME algorithm

The original Somhom'’s adaptation procedure has been augmented by the algorithm to find the approximate shortest path
in W. The pa refinement variant and the pure geodesic winner selection are used. Besides, the tour length at each adaptation
step is computed, and the best tour found during the adaptation is used as the found solution. This algorithm variant is used

Table 2
Problems sets.
Small set Middle set Large set

problem name n problem name n problem name n
jari 6 dense, 53 potholes; 282
complex2 8 potholes, 68 jhy 356
m1 13 m3; 71 pbis 415
m2 14 warehouse, 79 h2, 568
map 17 jhy 80 ta; 574
potholes 17 pby 104
rooms 22 ta, 141
a 22 h2s 168
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Table 3
The SME algorithm - improvements of the select winner procedure with the va-1 refinement.
Problems select winner - geodesic select winner - euclid-pre select winner - informed
PDM PDB Sp. Steps PDM PDB Sp. Steps PDM PDB Sp. Steps
small 1.71 0.00 1.2 64 1.10 0.01 2.0 64 1.36 0.01 2.0 64
middle 494 2.18 1.3 84 4.77 2.00 2.1 84 4.61 2.38 2.1 84
large 3.94 2.99 13 100 4.16 3.04 2.2 100 4.00 3.05 2.1 100
Table 4
The SME algorithm - adaptation rule modifications.
Problems original adaptation rule p-condition modification approx. adapt.+-condition
PDM PDB Sp. Steps PDM PDB Sp. Steps PDM PDB Sp. Steps
small 1.36 0.01 2.0 64 1.29 0.01 24 64 1.62 0.01 24 64
middle 4.61 2.38 21 84 4.58 2.46 33 84 5.23 2.86 3.2 84
large 4.00 3.05 2.1 100 4.03 2.87 4.0 100 4.65 3.63 3.9 100

as the reference algorithm in the presented experimental results of SME algorithm modifications. This variant is used as the
base algorithm for other examined modifications as follows.

First, the select winner methods described in Section 5.2 have been considered with the va-1 refinement variant, the re-
sults are presented in Table 3. The Sp. column shows how many times the performance of the algorithm has been improved
in comparison to the reference algorithm with the pa refinement and the pure geodesic winner selection. In the case of the
geodesic winner selection, the algorithm spent about forty five percentage points in the select winner procedure, and about
fifty five percentage points in the adapt procedure. After applying the Euclidean pre-selection of winner node candidates,
the dominant algorithm part is the adapt procedure. Consideration of the previous winner does not significantly reduce the
required computational time, and the results are pretty much similar to the euclid-pre variant. The PDM variances of the se-
lect winner methods are below 0.5 % threshold; thus, the overall quality of solutions is considered to be same.

The most time consuming part of the SME algorithm with the informed select winner procedure is the adapt proce-
dure, therefore, modifications of the procedure have been examined. The experimental results with modified adaptation
rules described in Section 5.3 are presented in Table 4. The informed select winner method and the va-1 refinement are used,
and the p-condition is set to f=10">. The p-condition effectively decreases the active neighborhood of the winner node,
which decreases the required computational time without noticeable degradation of the solution quality. The approx. adapt
modification does not provide any improvements, and the solution quality is also worse. In all cases, solutions are found in
the same average number of the adaptation steps, see the column Steps.

Additional speed improvement is achieved using modifications of adaptation parameters described in Section 5.4. The
experimental results are shown in Table 5. For the small and middle sized problems decreasing the size of the winner node
neighborhood leads to an algorithm three times faster, but the solution quality is worse and a higher number of adaptation
steps is needed. The results indicate that for these problems the restriction of the neighborhood is too strong, mainly at the
beginning of the adaptation. However, for large problems the initial number of nodes seems to be sufficiently high (possibly
unnecessarily high), as the solution quality is preserved. The Zhang-Bai—-Hu rules dramatically reduces the required compu-
tational time for problems with a higher number of cities, although the solution quality is more than two times worse for
larger problems.

The poor solution quality of the Zhang-Bai-Hu rules is improved by the hull initialization, see results for the path refine-
ment variants presented in Table 6. The most significant improvement in the solution quality and also in the required com-
putational time is for large problems. Other initialization methods do not increase the solution quality, which is also the case
for other examined modifications of the SME algorithm. The significant reduction of the number of the shortest path queries
allows consideration of the full path refinement variant, although the benefit is not evident from the presented results. The
algorithm with the modifications used has the select winner and adapt parts almost equally computationally intensive
regarding %T; =46 % and %T, = 49 % for large problems.

Table 5
Influence of the adaptation parameters to SME with the va-1, informed, and S-condition modifications.
Problems original adapt. param. orig. with decreasing d Zhang-Bai-Hu rules
PDM Sp. Steps PDM PDB Sp. Steps PDM PDB Sp. Steps
small 1.29 2.4 64 4.53 0.36 8.1 163 5.71 0.13 9.1 160
middle 4.58 33 84 8.16 4.36 7.6 168 6.15 2.52 213 71
large 4.03 4.0 100 3.99 3.14 6.5 100 9.21 4.17 86.4 49
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Table 6
SME with the va-1 refinement, informed, g-condition modifications, Zhang-Bai-Hu rules, and hull initialization.
Problems va-0 refinement va-1 refinement pa refinement
PDM Sp. Steps PDM PDB Sp. Steps PDM PDB Sp. Steps
small 6.03 9.8 177 5.62 0.08 8.3 166 5.96 0.16 8.3 160
middle 6.93 30.8 89 5.00 2.60 222 63 4.80 2.86 20.7 65
large 12.55 116.5 64 4.44 3.51 105.7 43 4.33 3.02 99.4 43
Table 7
Influence of adaptation rule modifications to the Co-adaptive net with the va-1 refinement and informed select winner procedure.
Problems Original adaptation rule p-condition p-condition + MSNF
PDM PDB Sp. Steps PDM PDB Sp. Steps PDM PDB Sp. Steps
small 1.49 0.46 1.1 174 1.33 0.11 1.1 175 1.22 0.07 1.1 196
middle 6.28 3.05 1.2 290 6.59 3.20 12 290 4.56 2.13 1.0 311
large 6.60 4.89 1.2 388 6.64 4.87 1.2 389 5.39 4.10 1.0 390

The additional speed improvements can be achieved by a more restricted size of the winner node neighborhood. How-
ever, using initial size m/8 only decreased the solution quality without significant speed improvement. The multiple scale
neighborhood functions do not improve the solution quality; thus, these results are not presented.

6.2. The co-adaptive net algorithm

The informed select winner procedure with the pa refinement is used in the Co-adaptive net algorithm. Even though
authors of the Co-adaptive net algorithm initialized the ring as a small circle around cities’ centroid, the four initialization
methods described in Section 5.5 do not provide significant differences in the solution quality nor the computational require-
ments, and therefore, the first initialization method is used as default. This algorithm variant is the reference algorithm (of
the required computational time) in the overall comparisons of its examined modifications.

Similarly to the SME algorithm, the va-1 refinement does not provide noticeable changes in the solution quality in com-
parison with the full path refinement; however, the performance is improved by about more than ten percentage points. The
original adaptation rule is modified to consider the s-condition, then the rule is combined with the Multi Scale Neighborhood
Functions (MSNF). The results for the three problems sets are presented in Table 7. Notice, the Co-adaptive net requires a
higher number of adaptation steps than the SME algorithm. However, the total required computational time is lower because
less nodes are involved in the select winner and adapt procedures. Considering MSNF increases the solution quality and
the number of required adaptation steps. Here, it should be noted that the network adaptation has been terminated by the
G <0.01 condition in all algorithm variants. The minimal distance of the winner node to the city is significantly higher than in
the SME algorithm, i.e., by units or tens in comparison to Somhom’s § = 0.001.

The used gain-decreasing rate o = 0.02 is relatively small, and the computational burden can be decreased by a higher
value. The experimental results for various « are presented in Table 8. The original Co-adaptive net algorithm is very sensi-
tive to changes of o while MSNF provides significantly better results. The value o = 0.1 provides almost the same solution
quality (about one or two percent worse) as the original algorithm, and it is more than four times faster. Also in this case,
another initializations of the ring do not provide any significant improvements.

6.3. Algorithms comparison

Based on the examination of described modifications two new variants of the SME and the Co-adaptive net algorithms are
selected as successors of their originals. The applied modifications are selected as the best trade-off between the solution
quality and required computational time, mainly concerning the h2, problem. Particular parts of the original algorithms
and the proposed modifications are as follows.

Table 8
An influence of the gain-decreasing rate o to the Co-adaptive net with the va-1 refinement and informed select winner procedure.
Problems original adaptation rule p-condition + MSNF
o=0.05 o«=0.1 =02 o=0.05 x=0.1 =02
PDM Sp. PDM Sp. PDM Sp. PDM Sp. PDM Sp. PDM Sp.
small 2.59 2.6 3.49 4.8 431 8.8 2.03 2.6 2.59 4.6 4.47 8.6
middle 7.93 29 8.36 5.6 10.10 114 5.30 2.6 6.58 51 7.87 10.0
large 743 3.0 10.27 5.8 23.05 124 6.08 2.5 6.94 5.1 8.87 104
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Table 9
Proposed modifications of the original algorithms.

A part of the adaptation procedure Modified SME Modified co-adaptive net

Initialization hull center

Select winner informed informed

Adaptation rule p-condition p-condition

Neighbourhood function(s) - MSNF

Adaptation parameters/rule Zhang-Bai-Hu a=0.1

Table 10
The algorithms performance.
Name n Lop[m] The SME algorithm The Co-adaptive Net
original modified original modified
PDM  PDB  T[s] PDM  PDB  Tls] PDM  PDB  Tls] PDM  PDB  Ts]

jari 6 13.6 0.00 0.00 0.02 1.06 0.00 0.01 0.00 0.00 0.03 0.10 0.00 0.01
complex2 8 58.5 0.00 0.00 0.04 8.77 0.00 0.01 0.00 0.00 0.05 1.30 0.00 0.01
m1 13 17.1 0.00 0.00 0.09 4.64 0.00 0.02 0.05 0.00 0.07 0.63 0.00  0.02
m2 14 19.4 8.64 532 0.10 13.12 0.00 0.02 2.25 0.00 0.08 6.97 0.00 0.03
map 17 26.5 1.98 0.00 0.17 10.31 0.00 0.04 3.22 0.00 0.14 3.81 0.00 0.05
potholes 17 88.5 1.11 0.00 0.31 3.65 0.00 0.10 0.94 0.00 0.24 1.99 0.00 0.11
a 22 52.7 0.01 0.00 0.38 1.95 0.00 0.06 0.30 0.00 0.22 0.79 0.00 0.08
rooms 22 165.9 0.60 0.08 0.36 4.18 1.27 0.06 3.47 1.02 0.23 4.14 2.26 0.06
densey 53 179.1 1540 9.12 295 1214 7.28 0.53 1022 476 1.29 1248 8.08 051
potholes, 68 154.5 5.21 3.37 4.51 5.55 3.54 0.42 497 1.54 1.39 7.08 4.19 0.42
m3; 71 39.0 6.23 425 5.05 6.88 4.72 0.69 8.89 3.63 1.85 8.86 5.54 0.69
warehousey 79 369.2 5.26 2.19 554  5.69 327 049 7.16 2.76 1.66 7.23 260 048
jhy 80 201.9 1.63 0.28 6.26 1.82 0.43 0.51 5.50 3.58 1.80 3.68 2.26 0.54
pb4 104 654.6 1.00 0.02 7.24 0.70 0.04 0.37 0.84 0.15 2.26 1.58 0.10 0.54
ta, 141 3280 322 2.33 1344 333 243 0.46 5.60 3.73 3.69 431 244  0.86
h2s 168 943.0 1.70 0.91 46.58 2.26 117 5.73 7.10 4.54 15.29 4.08 2.55 7.14
potholes; 282 2773 5.97 3.93 89.42 6.55 4.00 1.80 7.22 4.89 17.44 8.82 7.25 4.66
jhq 356 363.7 3.97 3.03 140.75  4.50 3.06 239 6.59 3.59 27.01 6.51 4.49 7.26
pbis 415 839.6 2.10 132 133.99 1.84 1.38 2.07 2.96 1.68 24.97 331 2.34 6.07
h2, 568 1316.2 2.29 1.20 516.90 2.79 1.74 12.35 9.11 7.30 89.89 6.41 432 28.29
ta; 574 541.1 5.48 424 25938 5.99 493 3.68 6.85 4.72 39.14 8.65 7.21 9.70

The full path refinement pa and the pure geodesic variant of the select winner procedure are used in the original SME
algorithm. The nodes are initialized around the first city. The pa refinement is also used in the proposed successor of the SME
algorithm, as the computational burden is only slightly increased in comparison with the va-1 variant. The informed select
winner procedure, the hull initialization method, g-condition, and the Zhang-Bai-Hu adaptation rules are utilized. In both
Co-adaptive net algorithms, the informed modification of the select winner procedure with the pa path refinement are uti-
lized. The initial size of the winner neighborhood is set to m/2. In the case of the original Co-adaptive net, the parameters
described in Section 4.2 are used, and nodes are initialized by the method dev, which provides the highest solution quality
for large problems. Nodes are initialized by the center initialization method in the modified Co-adaptive net algorithm that
uses the p-condition with MSNF. The only changed parameter is the gain-decreasing rate o = 0.1, which decreases the com-
putational burden without significant solution quality changes. The proposed modifications of the particular part of the
adaptation procedures are depicted in Table 9, where ‘-’ denotes the original part the algorithm.

Detailed performance results of the original and the modified algorithms are presented in Table 10. To provide an over-
view of the algorithms’ performance, average values of the required computational time and the solution quality measured
by the PDM are shown in Fig. 5 as histograms of the problem size. Selected solutions found by the modified SME algorithm
are presented in Fig. 6.

Regarding the presented results the modified SME algorithm provides superior results for middle and large problem sets.
For problems with less than fifty cities the modified Co-adaptive net algorithm provides better results. This can be caused by
a fewer number of neighboring nodes used in the SME algorithm in comparison to the Co-adaptive net algorithm. Besides,
the Co-adaptive net uses the winning number, and the algorithm avoids adaptation of the winners and neighboring nodes,
which means the nodes are moved with less frequency than in the SME algorithm. The performance of the Co-adaptive
net algorithm in the examined large non-Euclidean TSP is quite surprising. Even though several modifications and parameter
settings have been used, the algorithm does not provide competitive results to the modified SME algorithm. The original SME
algorithm provides solutions with significantly higher quality, which is not the case of the TSPLIB problems presented in [11].
The applied modifications to Somhom’s algorithm significantly decrease the required computational time, and make penal-
ization by the shortest path determination less important. From a certain point of view, the modified algorithm in the non-
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Fig. 5. Average values of the required computational time and the solution quality.

Euclidean problem starts to be competitive to the original algorithm in the Euclidean problem, e.g., according to results pre-
sented in [15].

6.4. Modified SME algorithm discussion

A detailed insight into the performance results of the modified SME algorithm gives several interesting observations, as is
shown in Table 11. The worst performance of the algorithm in the small problems is related to the poor convergence as can
be seen from the number of required adaptation steps. The presented results are average values over twenty runs; thus, the
problems with 180 steps do not converge at all. The reason for this may be an excessively small value of the learning gain G
together with the decreasing size of the neighborhood. However, the final found route (the length is denoted as Ly.s) is found
very early, in Spes: Steps. So, worse solutions are found in the consecutive steps. The tour found in the last step is about units
of percentage points worse than the best found tour, which is indicated in the column PDM,q,. Although this is not the
expected behaviour, the computational requirements are lower than for the original algorithm. These results indicate further
potential improvements of the algorithm.

The minimal distance of winners to the cities is also affected by the poor convergence. Notice the Error values are in cen-
timeters, due to default units of the maps used. Even though this error is not too important in the combinatorial TSP, as the
solution can be considered as a sequence of cities, the error is crucial in other routing problems in the polygonal domain, e.g.,
the watchman [16] or safari route problem [15]. The difference is that in these problems, the ring may be the route itself, and
not a representation of a route over cities. Here, it is worth mentioning that for the Co-adaptive net algorithm the error is
negligible for small problems, and equals to tens of centimeters for larger problems.

The columns T, Tini, and Tqaqpe Show the total required computational time, and particular times spent in the initialization
and adaptation procedures. All shortest paths between cities and also from all map vertices to the cities are determined in

el

(a) m3;, L=409 m (b) warehouse4, L=381.3 m (c) h2;, L=1339.1m

Fig. 6. Selected solutions found by the modified SME algorithm, the small green disks represent cities that are connected by the shortest path among
obstacles using the complete visibility graph.
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Table 11
Detail performance results of the modified SME algorithm.
Name n Lope Lpest Steps Shest PDM PDMqs¢ Error T Tinit Tadapt Tk
[m] [m] [cm] [s] [s] [s] [s]

jari 6 13.6 13.70 97 1 1.06 2.87 5.7860 0.01 0.006 0.004 0.001
complex2 8 58.5 63.59 164 1 8.77 11.09 46.8591 0.01 0.004 0.008 0.001
m1 13 171 17.85 124 4 4.64 6.06 3.3118 0.02 0.007 0.009 0.001
m2 14 194 21.99 172 5 13.12 14.75 21.1784 0.02 0.007 0.014 0.001
map 17 26.5 29.26 180 6 10.31 11.79 18.0338 0.04 0.014 0.019 0.001
potholes 17 88.5 91.78 180 7 3.65 4.01 61.3482 0.10 0.074 0.019 0.001
a 22 52.7 53.77 180 9 1.95 2.67 39.7323 0.06 0.024 0.031 0.001
rooms 22 165.9 172.83 180 9 4.18 4.81 59.9355 0.06 0.021 0.032 0.091
densey 53 179.1 200.86 44 16 12.14 12.27 0.0008 0.53 0.286 0.235 0.018
potholes, 68 154.5 163.13 42 16 5.55 5.58 0.0007 0.42 0.119 0.295 0.028
m3; 71 39.0 41.74 47 16 6.88 7.05 0.0102 0.69 0.332 0.358 0.029
warehousey 79 369.2 390.18 139 16 5.69 5.76 1.4492 0.49 0.099 0.383 0.040
jhy 80 201.9 205.61 42 16 1.82 1.87 0.0008 0.51 0.174 0.328 0.045
pb4 104 654.6 659.18 45 18 0.70 0.73 0.0008 0.37 0.068 0.297 0.239
ta, 141 328.0 338.94 43 17 3.33 335 0.0008 0.46 0.085 0.368 0.681
h2s 168 943.0 964.24 119 19 2.26 231 0.9978 5.73 4417 1.278 0.947
potholes; 282 2773 295.51 42 17 6.55 6.56 0.0008 1.80 0.633 1.144 0.233
jhq 356 363.7 380.07 42 18 4.50 4.50 0.0008 2.39 0.837 1.526 0.867
pbis 415 839.6 855.03 43 19 1.84 1.85 0.0008 2.07 0.585 1.458 1.978
h2, 568 1316.2 1352.89 44 20 2.79 2.80 0.0008 12.35 8.004 4280 4.396
ta; 574 541.1 573.52 43 20 5.99 6.00 0.0008 3.68 1434 2.201 0.935

the initialization. In several cases, Tin; is similar to Tyqape. The initialization time is even greater than the adaptation time for
the problem h2;. The last column T;x shows average values of the required computational time to find a solution by the
linkern algorithm from the Concorde package [2], which uses the Chained Lin-Kernighan heuristic. The algorithm utilized
a distance matrix that is found in time T;,;; thus, the last two columns can be used to compare the computational burden of
SOM and the combinatorial heuristic. In three cases, the SOM adaptation procedure is less computationally expensive than
the heuristic approach. These results are particularly interesting because the used path approximation is a relatively com-
plex algorithm in comparison with the usage of the distance matrix in the combinatorial heuristic.

Regarding Tinic and Tqqap for the h2;, problem, the most intensive part of the algorithm is the preparation of all the shortest
paths. These paths are not involved in the adaptation process, and therefore, an additional speed improvement can be based
on omitting the paths pre-computation, and consideration of approximate paths determined during the adaptation. The
solution quality can decrease; so, the idea would need further investigation.

6.5. Discussion

Two state-of-the-art SOM algorithms have been examined for the non-Euclidean TSP in the polygonal domain W. The
algorithms have been improved in several ways by already published modifications of the adaptation rule, and also by
new proposed improvements. One of the main issues of SOM application in W is determination of node-city path, which
is computed many times. The presented modifications significantly reduce the number of node-city path queries, and reduce
the required computational time up to one hundred times.

The improvements are mostly visible for problems with a high number of cities. However, SOM approaches for the Euclid-
ean TSP are able to solve problems with thousands of cities. In the presented results, the largest examined problem has
“only” about five hundreds cities. From the practical point of view, the largest examined problems are the inspection plan-
ning problems within real environments and quite small visibility range.? The considered problems represent a realistic upper
bound of the problem size because for a higher number of cities the visibility range has to be unrealistically small, or the envi-
ronments have to be significantly larger. The visibility range and the size of the environment relate with a structure of cities
(sensing locations in the inspection planning) in an environment, which can affect the solution quality. Cities that are relatively
close to each other make the local search for a shorter route more important, which is a quite difficult task for a conventional
SOM; mainly because of the decreasing learning rate during the adaptation. In these cases, the proposed hull initialization im-
proves the quality because the adaptation starts with a spread ring. The modified algorithms have been examined only in W and
it is expected that the benefit of the presented modifications will not be significant in the Euclidean problems due to relatively
inexpensive computation of node-city distances.

An additional performance improvements can be based on consideration of smaller or dynamic number of nodes. In
literature, 2.5 times more nodes than cities has been reported as the most suitable. Also for the examined problems and
algorithms, different numbers of nodes decrease the solution quality. The idea of the approx. adapt modification does not
provide expected improvement. However, in early adaptation steps, nodes are often moved over map vertices that mean

2 The visibility range in meters is denoted as the subscript of the problem name.
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the neighboring nodes of the winner node are placed at the same shortest path from the particular map vertex to the city. In
these cases, new nodes can be created and adaptation can start with only a very small number of nodes, which is an idea for
future work.

One remark about the Co-adaptive net algorithm and the proposed improvements has to be mentioned. The algorithm is
quite complex, which can be considered as a weak point of an eventual massive parallelization. This is also a weak point of
the determination of the geodesic path, and the applied improvements to the select winner procedure, which can increase
the complexity of a parallel implementation. Thus, it seems that one of the SOM features is lost in W.

Another point of the Co-adaptive net algorithm is its relatively strict orientation to the routing optimization, which, in
fact, is not an issue for the TSP. The modified SME algorithm provides much better performance in this aspect, i.e., the max-
imal distance of the winner nodes to cities. From this perspective, the modified Somhom’s adaptation schema with the
Zhang-Bai-Hu adaptation rules is more suitable for other routing problems in W. Consideration of the ring evolution in
W provides opportunity to find a solution of the watchman route problem [16] or other inspection problems where cities
are not explicitly prescribed, which is one of the main SOM benefits over the classical combinatorial approaches [15].

7. Conclusion

Improved self-organizing map-based algorithms for the TSP in the polygonal domain have been proposed. The required
computational time of the algorithms has been decreased by the proposed S-condition adaptation rule and the informed se-
lect winner procedure in combination with the approximate shortest path in W. In addition, the performance of the SME
algorithm has been improved using a combination of the Zhang-Bai-Hu adaptation rules with the new hull initialization
technique. The successor of the Co-adaptive net algorithm utilizes the MSNF adaptive rule with the center initialization to
improve the quality of solutions.

The algorithms have been examined in several instances of the inspection planning task in the polygonal domain W. The
proposed algorithms move the performance of the SOM algorithms in W to the next level, and allow their further application
in other routing problems in the polygonal domain. The complexity of non-Euclidean distance determination is indicated in
the SOM literature as a drawback. The encouraging results presented in this paper, and the significant performance improve-
ments can be motivation for a further investigation of SOM applications in other variants of routing problems, not only in the
polygonal domain but also in high-dimensional spaces with obstacles, where approximate paths between nodes and goals
(cities) are necessary, e.g., route planning in 3D environments or in high-dimensional configuration spaces.
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1. Introduction

Inspection planning deals with finding a shortest inspection
path such that all points of the workspace W are “seen” from the
path. The problem is studied in mobile robotics in which a path
for a mobile robot performing the inspection is planned in a priori
known map of the environment. The map can be represented by
the polygonal domain, which makes the problem close to computa-
tional geometry. A practical consideration of mobile robot sensing
capabilities leads to two types of sensing: discrete and continuous.
These sensing models are motivated by the cost of sensing and the
cost of motions. The continuous sensing is suitable for problems
where the cost of the sensing is relatively cheap in comparison
to the cost of the motion. Contrary to the discrete sensing model,
where the cost of the sensing is dominant, and the cost of the
motion can be ignored. The combination of both costs is a difficult
problem and it remains largely unexplored [1].

The inspection planning problem formulations can be found in
computational geometry. The problem with continuous sensing can
be formulated as the Watchman Route Problem (WRP) [2]. The WRP
is a problem of finding a closed shortest path in the polygonal
domain W such that all points of W are visible from at least one
point at the path. Even though optimal algorithms for restricted
class of polygons have been proposed, the WRP is NP-hard for W,
and probably the first heuristic approach has been introduced in
[3].

* Fax: +420 224357224.
E-mail address: xfaigl@labe.felk.cvut.cz (J. Faigl).

1568-4946/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.as0c.2011.05.055

A decoupled approach can be used to address the inspection
planning with discrete sensing. The problem is decomposed into
the set cover problem and the consecutive multi-goal path planning
problem. For the polygonal domain W, the set cover problem can
be formulated as the Art Gallery Problem (AGP). The AGP stands to
find a minimal number of guards to cover W. The guards represent
sensing locations, and each guard covers a part of the environment
by its star-shaped visibility polygon. The AGP is NP-hard even for a
polygon without holes [4]. The multi-goal path planning problem
can be formulated as the well-known Traveling Salesman Problem
(TSP) if all paths between sensing locations are known [5,6].

The AGP and WRP are studied in the computational geometry
domain for an unrestricted model of visibility. However, sensing
(visibility) of real sensors (cameras or range finders) is limited,
e.g., in sensing range and frequency. To distinguish the restricted
visibility, authors of [1] call the problem of finding sensing loca-
tions sensor placement rather than the AGP. Similarly, the WRP
with restricted visibility range to a distance d is called d-Watchman
Route Problem (d-WRP) [7]. These variants of the problems with the
restricted visibility range also belongs to the NP class; thus, approx-
imate solutions are more suitable for real application to get “good”
solutions with “reasonable” computational requirements.

The decoupled approach provides a feasible solution of the
inspection planning, and has been used in robotic tasks [8,9]. Sens-
ing locations for restricted visibility range can be found by different
techniques [10]. The TSP can be solved by various approaches from
the operational research [11], or by soft computing techniques like
ant colony system [12], Self-Organizing Map (SOM) approaches
[13], or immune system [14]. On the other hand, the WRP in W
has been addressed (to the best of our knowledge) only by the
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Nomenclature

w the polygonal domain representing the robot
workspace, W c R?

v the number of vertices of W

h the number of holes of W

p the number of convex polygons of the convex par-
tition of W

n the number of goals

d the visibility range

Ny the number of triangular mesh vertices

Nr the number of triangles

N¢ the number of convex polygons of the cover set of

w

the visible area from a triangle

agoal,geW

a node (neuron weights), ve W

an approximate path fromvto g

the number of nodes (neurons)

the neighbouring factor

the size of the winner node neighbourhood

the learning gain (neighbouring function variance)

the neighbouring function

the gain-decreasing rate

learning rate

the node moving activity threshold

the minimal allowable error

» »e R %? Q ™3 <09

heuristic approach presented in [3]. The algorithm is based on a
set of static guards that are used to determine the minimum span-
ning tree from the pairwise shortest paths between guards. The
tree is split to construct a route that is shortened by vertex sub-
stitutions and removing of redundant vertices. Even though the
approach is based on guards, solutions have been presented only
for an unrestricted visibility range. In [15], a SOM based approach
for the d-WRP has been presented; thus, SOM provides solutions
for both inspection planning variants. However, the main difficulty
of SOM application in the polygonal domain is determination of
the shortest paths among obstacles, which is more computation-
ally demanding than a pure computation of the Euclidean distances
between neurons’ weights and an input vector.

In this paper, SOM is applied to the inspection planning problem
with discrete and continuous sensing in the polygonal domain. A
new adaptation schema is proposed and compared with an already
available schema for the TSP [16] in a set of problems created from
a map of real environments and several visibility ranges. The main
contribution of this paper is new adaptation schema for the multi-
goal path planning problem in the polygonal domain that can be
used to addressed the non-Euclidean TSP and d-WRP, i.e., inspec-
tion planning with continuous sensing.

The rest of this paper is organized as follows. The next section
provides overview of the addressed problem. The related work is
presented in Section 3. The proposed adaptation schema for the
multi-goal path planning problem is presented in Section 4. Then,
the schema is applied to the inspection planning with continu-
ous sensing in Section 5. Experimental results of the proposed
algorithms are presented in Section 6. Concluding discussion and
remarks of the future work are presented in Section 7. The list of
the used symbols is presented in Nomenclature.

2. Problem statement

An environment to be inspected by a mobile robot is a priori
known, and a polygonal map of the environment is available. The

5029

robot is equipped with an omnidirectional sensor with a sensing
range restricted to a distance d. The notion of d-visibility is assumed
as follows. Two points p and q in a polygon P are called d-visible, if
the line segment joining them is contained in P, and if the segment
length is less or equal to d. The sensor coverage is modeled by a disk
with the radius d. A point robot is assumed, and a path between two
points in the polygonal domain W consists of sequence of straight
line segments joining the points and vertices of W, and all segments
are entirely inside W. The addressed variants of the inspection plan-
ning are following.

Discrete sensing: The whole environment is covered by perform-
ing a finite number of measurements with the range d at sensing
locations. A set of such sensing locations G is given, and all locations
are reachable by the mobile robot. The problem is to find a closed
path (possibly a shortest one) connecting all sensing locations. The
problem is the multi-goal path planning problem that is considered
as the non-Euclidean TSP in the polygonal domain.

Continuous sensing: Measurements can be taken along a path in
the continuous sensing problem variant, therefore, sensing loca-
tions are not explicitly prescribed. The problem is to find a closed
(possibly a shortest one) path such that each point of the envi-
ronment is d-visible from some point of the path. The problem is
formulated as the d-WRP in the polygonal domain.

Even though the cost of the sensing and the cost of the motion
can be considered in the inspection planning, only the length of the
inspection path is used as the quality metric in this paper. Mainly
because a SOM approach for the multi-goal path planning provides
an approximate solution of the related TSP, and a shorter path is
a plus. Besides, the decoupled approach can also be used for the
d-WRP. Having a prescribed set of sensing locations, eventually the
smallest set, only the length of the path can be minimized. There-
fore, the length of the inspection path as the only metric makes
sense for both inspection variants.

3. Related work
3.1. Reference algorithm

To compare the solution quality of the examined algorithms the
following decoupled approach is used to find a reference solution.
A deterministic sensor placement algorithm [17] is used to find a
set of sensing locations. The algorithm is based on a decomposition
of W into a set of convex polygons. First, Seidel’s algorithm [18] is
used to find the primal convex partition. Convex polygons of the
partition are eventually divided into convex sub-polygons if a con-
vex polygon cannot be covered from one point with the d-visibility.
The required computational time is proportional to the number of
found sensing locations [17].

The inspection path is found as the solution of the TSP on a
graph G(V, E), where V stands for sensing locations, and E is the
set of edges with costs computed as the length of the shortest path
between the sensing locations. The paths are found by Dijkstra’s
algorithmin O(nn, log(n + v)) on the visibility graph, which s found
in O((n+ v)z) [19], where v denotes the number of polygon ver-
tices, n is the number of sensing locations, and n, is the number of
edges of the visibility graph. Without loss of generality G(V, E) is
assumed to be complete. An optimal solution of the TSP is found by
the concorde solver [20].

3.2. SOM procedures for the TSP

The basic idea of SOM for the TSP is based on Kohonen’s
two-layered unsupervised neural network in which the first layer
represents coordinates of the presented goals to the network. The
second layer consists of neurons organized in a cycle (ring), and

58



Appendix 2 - Faigl, ]. - Pfeucil, L.: Inspection Planning in the Polygonal Domain by
Self-Organizing Map [28]], referenced on page

5030
a b goali (8.8
&1 v vl
& ®
&2 4
P

-

ring of connected
nodes

Fig. 1. Schema of the two-layered neural network and associated geometric repre-
sentation.

each neuron is connected with the first layer. The weights of the
connections represent coordinates of the node, see Fig. 1. The
adaptation schema is an iterative two phases procedure. At each
iteration, goals are presented to the network in a random order,
and a winner node is found for each goal in the competitive phase.
The winner selection uses the Euclidean distance of a node to the
goal. The winner node and its neighbouring nodes are adapted
towards the goal in the cooperative phase. The adaptation process
is typically terminated if winner nodes are sufficiently close to the
goals.

The TSP has been addressed by several SOM approaches during
the last two decades. The pioneering work of Angéniol etal.[21] and
Fort [22] in 1988 has been followed by particular improvements in
the quality of found solutions and required computational time.
An inhibition mechanism, which prevents nodes to win too often,
has been used in [16]. In [23], authors consider creation/deletion of
nodes, and selection of winners based on the shortest path to the
segment joining two neighbouring nodes. Several nodes initializa-
tions have been examined in [24,25].

Probably the most complex algorithm is the Co-adaptive net that
is extensively evaluated in [13]. The authors of the Co-adaptive net
reported that their approach together with [16] provide superior
results in various instances of the TSP from the TSPLIB [26]. How-
ever, the high number of the Co-adaptive net parameters can be
considered as a drawback.

The algorithm proposed by Somhom et al. [16], denoted as
SME in this paper, is particularly interesting. It provides compet-
itive quality of solutions to the Co-adaptive net algorithm, but it
is less complex, and it depends on a less number of parameters.
In this paper, the SME algorithm is considered as the reference
adaptation schema for the initial application of SOM to the inspec-
tion planning in W. The algorithm works as follows. Nodes are
initialized as a small ring around the center of the goals. The win-
ner node is selected according to v*=argmin,|g, v|, where |., .|
denotes the Euclidean distance between the goal g and the node
v for the Euclidean TSP. Each node can be a winner only once in
each adaptation step; thus, a winner is inhibited after its selec-
tion. The inhibition is cleaned at the begin of the next iteration,
i.e,, new presentation of goals to the network. The adaptation rule
moves the winner node and its neighbouring nodes towards the
presenting goal g according to v]i = vj + uf(o, I)(g — vj), where pu
is the fractional learning rate. The neighbouring function is f(o,
I)=exp(— 2/0?) for 1<§, and flo, 1)=0 otherwise, where o is the
gain parameter, [ is the distance in the number of nodes measured
along the ring, § is the size of the winner node neighbourhood that
is set to § =0.2m, where m is the number of nodes set to m=2n forn
goals. The initial value of o is set proportionally to the problem size
09=0.06+12.41n, and it is decreased at the end of each adaptation
step according to o =o(1 — ), where « is the gain-decreasing rate.
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The values of learning and decreasing rates are 1 =0.6 and o =0.1
[27], respectively. The adaptation is terminated if all winners are in
a distance less than £=0.001.

Regarding the number of parameters authors of [28] proposed
alternative adaptation rules to Kohonen’s exponential evolution.
To avoid initial values of the learning and gain-decreasing rates,
the authors proposed simplified adaptation rules based only on
the number of performed adaptation steps k. The learning rate is
defined as . = 1/3/?, and the learning gain as 0 =o(1 — 0.01k). The
initial value of the gain is oo =10. For small values of o, the value
of the neighbouring function is very small; thus, the neighbour-
ing nodes are negligibly moved. To decrease the computational
burden, the authors recommended to gradually decrease the neigh-
bourhood of the winner node after each adaptation step. The
recommended initial value of the neighbourhood is § =0.4m that
is decreased according to §=0.985 at the end of each adaptation
step.

3.3. Approximation of the shortest path in W

The main difficulty of SOM application to problems in the polyg-
onal domain W is a determination of the shortest path among
obstacles, which can be computationally intensive. In [29],a simple,
yet sufficient approximation has been applied to the self-organizing
adaptation procedure. It is based on a convex partition of W. The
partition P is a set of disjoint convex cells P={Cy, C, ..., C;} such
that the union of the cells is W. The cells are induced by the diag-
onals of W, and each cell is formed from a sequence of W vertices.
During the adaptation, nodes are inside W, and therefore, they are
always inside some cell. A collision free path for two points p; and
p> that are inside cells p; € C; and p, € C; can be found as a path
over the cells’ vertices v; € C; and v, € G,. The vertices are selected
to minimize the length of the path |p1, v1| + |S(v1, 12)| + |v2, P2l,
where |., .| denotes the Euclidean distance of two points, and |S(.,
.)| is the length of the shortest path between two vertices. Such
a path can be further refined by consideration of direct visibility
from the particular point to a vertex of the path. The used direct
visibility test is similar to the method [30], a convex partition is
used rather than a triangulation. An additional improvement of the
approximate path can be achieved if vertices of obstacle edges that
intersect the direct line segment from p; to p, are considered in
the construction of the primal path. An example of the primal path
and its refined variants is shown in Fig. 2.

The used supporting structures are a convex partition of W, and
all shortest path between v vertices of W. A convex partition can be
found in O(v log v) [18]. The shortest path can be pre-computed by
Dijkstra’s algorithm using the visibility graph. The problem of find-
ing the cell C, is the point-location problem, which can be solved in
O(log v). Besides, the cell can be determined during the node move-
ment towards the goal by the walking technique similar to [31].
The complexity of such cell determination is bounded by O(log ny),
where ny is the number of passed diagonals of the used convex
polygon partition.

In the TSP, goals are fixed, and therefore, all shortest path from
the map vertices to the goals can be pre-computed, which reduces
the required computational time for the adaptation at the cost of
higher memory requirements. For large sets of goals, the approach
visualized in Fig. 2 can be more appropriate, as it provides approx-
imate path for two arbitrarily placed points in W, and its space
requirements depends only on the number of W's vertices.

3.4. SOM procedure for the TSP in W
An application of the SME adaptation schema to the TSP in W

has been presented in [32]. The main difference to the algorithm
for the Euclidean TSP is in consideration of the approximate path
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Fig. 2. Approximate path between two points; (a) rough approximate path over cells’ vertices, (b) refined path, and (c) refined path with consideration of detected obstacle’s

vertices.

found by the above described procedure, in particular using the
pre-computed shortest paths from the vertices to the goals. The
path is used in the select winner part to determine distance of the
node to the presented goal, and during the adaptation when nodes
are moved towards the goal. Besides, the following modifications
have been applied.

The termination condition also considers a maximal number of
adaptation steps. An error of the path approximation can cause that
the winner-goal distance is not effectively decreased during the
adaptation, which can lead to a distance higher than the required
e. Even though such a convergence issue has been observed only
for the rough path approximation, the maximal number of the
iterations is advantageous as it guarantees termination of the
algorithm.

A practical implementation of the select winner procedure
can utilize the Euclidean distance to inform the winner search-
ing process, and to decrease the computational burden. During the
searching, all non inhibited nodes are examined, and the closest
node is selected as the winner. Let vg be an actual winner candi-
date to the presented goal g. A distance of a node v to g as a length
of the path among obstacles is determined only if the Euclidean
distance |v, g| is shorter than the distance of |vg, gl. This technical
improvement does not affect the quality of solution. However, it
has been observed that it provides solution up to two times faster
for the SME adaptation schema.

In the original SME algorithm [16], the initial values of nodes
are placed around a center of goals, which cannot be used in the W
because such a center can be in an obstacle. Based on experimental
results with various initialization it has been observed that the SME
schema is insensitive to the initial point around which the ring is
created. Thus, to ensure that nodes are placed in W they are placed
around the first goal as a small ring with the radius 0.5 cm. The
sufficient free space around the first goal is assumed. In the case
of inspection planning the space around the goal is ensured by the
sensor placement algorithm.

3.5. SOM procedure for the WRP in W

The SOM procedure for the WRP has been presented in [15].
The main idea of the procedure is that the ring of nodes repre-
sents the watchman route itself, and the nodes are adapted towards
uncovered parts of W. Determination of the ring coverage is based
on approximation of the continuous sensing along a straight line
segment using a convex cover set. The cover set consists of a
set (possibly overlapping) convex polygons, which dimensions are
restricted to respect the limited visibility range d. A triangular mesh
of Wis used to support fast determination of incident convex poly-
gons with a segment. A convex cover set is found on top of the
mesh, i.e., a convex polygon of the set consists of mesh vertices, see
Fig. 3a.

It is not required to have a minimal number of the convex poly-
gons, because the cover set is used as follows. Each triangle is
associated with at least one convex polygon, and each convex poly-
gon has associated a set of triangles that are entirely inside the
polygon. For a straight line segment lying in W, all incident trian-
gles are found by the walking in triangulation technique [31]. From
these triangles, all associated incident convex polygons are found,
and the coverage along the segment is determined as a union of all
triangles associated to the incident convex polygons, see Fig. 3b. The
coverage of theringis determined from the sequence of straight line
segments joining each neighbouring nodes found by the approxi-
mation of the shortest path between two points in W.

The adaptation procedure follows the SME schema for the TSP
in W. Centroids of the mesh triangles are used as goals presented
to the network. However, a winner node is found only for triangles
that are not covered. A coverage from the ring is determined at the
beginning of each adaptation step. During the adaptation, the cov-
erage is updated by adding all triangles associated to the convex
polygons that are incident with the presented triangle (centroid)
after the winner node adaptation towards the centroid. The addi-
tional modification of the adaptation rule relates to the visibility
nature of the WRP. To see the presented triangle from the ring, it is
sufficient if the winner reaches some of the incident convex poly-
gons associated to the triangle. Thus, an alternate goal is found from
the intersection of the path from the node to the triangle centroid
with the incident convex polygons, see Fig. 3c.

The adaptation is terminated if the ring covers all triangles or
after 180 adaptation steps, which can lead to an incomplete cover-
age.

4. Proposed adaptation schema for the multi-goal path
planning

In this section, a new adaptation schema for the multi-goal path
planning problem is proposed. The schema follows the SME adap-
tation schema, particularly the algorithm described in Section 3.4,
but the main difference is in the winner selection rule. The selec-
tion utilizes a creation/deletion mechanism, which is similar to the
one used in [21], nevertheless it is also inspired by the approach
[23]. Beside the selection rule, particular parts of the algorithm
have been improved considering modifications of the aforemen-
tioned approaches proposed by several authors, and experimental
evaluation of adaptation parameters settings. The proposed selec-
tion rule together with the improvements lead to a new adaptation
schema for the inspection planning with discrete sensing that pro-
vides better solutions, and has lower computational requirements
than the former schema. To provide an overview of the proposed
algorithm the adaptation schema is depicted in Algorithm 1. The
selection rule and the particular improvements are described in
the following sections.
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Fig. 3. Supporting structures for the WRP; (a) a convex cover set and an underlying triangular mesh, (b) an incident convex polygons with a straight line segment, and (c) an

alternate goal.

Algorithm 1. SOM adaptation schema for the TSP.
Input: G = {g1,...,ga} - a set of goals
Input: (m,o,u,o,d,s) - the adaptation parameters
Input: € — the maximal allowable error
Input: ¢,,;, — the minimal allowable o

init(vy,...,vn) // initial set of neurons weights
10 // set the adaptation step
repeat

error < 0

I+10 // set of inhibited nodes

II(G) < a random permutation of goals

foreach g € II(G) do
v* + select winner(node to g),v* ¢ I)
error « max{error, [v*, g|}
adapt(v*, g) // call the adapt procedure
I« TuU {ll*} // inhibit winner node

k+—k+1 // increment the adaptation step
update_adaptation_parameters(o, §)
until error < eoro < opin

4.1. Initialization

Several initialization of the neurons weights have been pro-
posed by various authors, e.g., a small ring around centroid of the
goals [16], a tour found by the nearest neighbourhood [25], or
convex hull of the goals [33]. In the polygonal domain, these ini-
tialization methods cannot be directly used, as the initial weights
must be inside W. Based on experimental results, superior solutions
have been achieved by the following modifications of the convex
hull initialization. First, a convex hull of the goals is found with-
out consideration of obstacles. After that, goals forming the hull,
i.e., goals that are at the hull border, are connected by the shortest
paths found using the visibility graph. So, a tour over the forming
goals is constructed. Finally, nodes are equidistantly placed at the
tour, starting at a random point of the tour. Examples of connected
initial rings of nodes are shown in Fig. 4.

4.2. Winner selection

An idea behind the proposed winner selection method is based
on consideration of a path between two nodes. The principle is
shown in Fig. 5a for a problem without obstacles. The closest seg-
ment connecting two nodes is found instead of the closest winner.
Then, the closest point at the segment is determined. If the point is
different from the segment endpoints a new node is created with
the point coordinates and added to the ring. Otherwise the clos-
est node is a candidate to be the winner. If the winner candidate

is inhibited a new node is created with the identical values of the
winner weights. The newly created node becomes the winner of
the current selection. The winner node is then adapted towards
the presented goal.

The above described procedure can be effectively used for prob-
lems without obstacles, but determination of the closest segment
to a point in W is more complex. That is why the following approx-
imation is used. A regular winner node candidate is found using
the approximation of the shortest path from a node to the goal.
Then, two paths connecting the winner with its neighbouring nodes
are determined as approximate paths between two points in W.
For each of the paths, the closest segment point to the goal is
determined using the Euclidean distance. These two points become
candidates to be a winner of the current selection, see Fig. 5b. Due
to obstacles, the candidate points can be farther than the winner
candidate. Therefore a path from each candidate point to the goal is
determined. If the length of the path for one of the points is shorter
than the winner candidate distance to the goal, the corresponding
point is used to create a new node. If it is not the case a new node is
created if the winner node candidate is inhibited. The newly created
node is the winner, otherwise the winner node candidate becomes
the winner.

New nodes are created during the selection of winners, which
can increase the computational burden. To remove unnecessary
nodes a deletion mechanism is based on moving activity of nodes.
The nodes that are not moved (adapted) in the last s adaptation
steps are removed from the ring.

4.3. Adaptation

A winner node and its neighbouring nodes are moved towards
the goal in the adapt procedure. A node v is moved along the
approximation of the shortest path S(v, g) to the goal g by a dis-
tance BIS(v, g)|, where B=puf(o, I). The value of flo, I) decreases
with increasing distance of the node from the winner (in the
number of nodes) and the number of adaptation steps, as o is
decreased. In final adaptation steps, the value of § is very small,
and the movement can be negligible. Considering this observation
the neighbouring nodes of the winner node are moved towards the
goal only if 8>10-3. This adaptation rule is denoted as B-condition
in this paper.

Performed experiments show that this modification does not
decrease the solution quality and increases speed of the algorithm
two times for problems with about 500 goals. Even though a dis-
tance from a node to the goal is determined in the select winner
procedure, the movement of the node is more computationally
demanding. A path as a sequence of W vertices is not needed in the
distance query, but it is required for the node movement, where a
new node position at the path is determined. Therefore, the path is
found in the adapt procedure before the node adaptation.
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Fig. 4. Examples of initial rings of nodes in environments jh, potholes and ta; green disks represent goals and blue disks are nodes. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of the article.)
4.4. Adaptation parameters

Zhang et al. [28] proposed adaptation rules that are derived
from the number of performed adaptation steps, which dramati-
cally decrease the required number of adaptation steps to find a
stable solution. However, for problems in W and with combina-
tion of the select winner procedure described in Section 4.2 better
solutions are achieved with a slower decreasing o. Also the solu-
tion quality is increased for a fixed value of the learning rate p. The
algorithm performance is also affected by the size of the winner
node neighbourhood denoted as § in this paper. Due to the used
node creation/deletion mechanism, the number of nodes varies
in each adaptation step. Rules that derive é from the number of
nodes can lead to a large winner’s neighbourhood, and the pro-
posed decreasing § in [28] is not effective. So, the maximal value
of § is restricted to 8, =2n/8, which corresponds to m=2n initial
nodes and the neighbouring factor f=8.

A summary of the used adaptation parameters is as follows.
The initial values of the parameters are: 0 =10, £ =0.6, m=2n, f=8,
8=m/f,a=0.1,5=8.Values of § and o are changed (in the procedure
update_adaptation_parameters) after each complete presenta-
tion of goals as follows:

e 0 < 0(1-0.001k) - decrease the learning gain,
¢ d <099 min {11, 28},

where m is the actual number of the nodes and k the actual number
of the performed adaptation steps.

4.5. Termination condition
The initial value of the learning gain o is independent to the

problem size. Therefore, instead of a maximal number of adapta-
tion steps the adaptation procedure can be terminated if o is below

‘winner segment

new winner node
candidate point

w_candidate point

winner segment

candidate points

given threshold o ;. The selected value is o i, =104, for which
the value of the neighbouring function is small, and the neighbour-
ing nodes are practically not moved. This termination condition is
more intuitive and problem size independent contrary to the used
maximal number of steps for the SME schema. Even though the
adaptation is terminated before error is below the selected ¢, the
inhibition mechanism guarantees that all goals have associated dis-
tinct nodes. So, the final inspection tour over the goals is retrieved
by traversing the ring.

4.6. Discussion

A collection of the presented adaptation rules provides new
adaptation schema in which the number of nodes is not explic-
itly restricted, which is one of the benefit over the SME adaptation
schema. Here, it should be mentioned that the particular rule (mod-
ification) can be used in other SOM approaches, e.g., the proposed
B-condition. The rules can decrease the computational burden;
however, they do not necessary improve the solution quality. Dur-
ing the evaluation of the rules, it has been observed that the
proposed hull initialization does not improve solutions if the SME
adaptation parameters are used. Moreover, the SME schema seems
to be insensitive to the initial values of neurons’ weights. The eval-
uation has been performed for a set of 21 inspection problems that
represent instances of the non-Euclidean TSP. After this evaluation,
the parameters presented in Section 4.4 have been selected.

5. Adaptation schema for the inspection planning with
continuous sensing

The adaptation schema proposed in Section 4 has been applied
to the algorithm for the d-WRP [15] briefly described in Section
3.5. The proposed schema has to be modified, because the solu-
tion of the d-WRP is represented by the ring of nodes itself, i.e.

winner node

Fig. 5. A principle of the proposed winner selection rule.
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Fig. 6. An example of nodes initialization; (a) visualization of the triangle coverage, the highest coverage is in red (light), while the triangles that are incident with the
smallest number of convex polygons are in blue (dark); (b) selected triangles (centroids) with highest coverage; (c) initial ring created from the convex hull of the selected
triangles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

a sequence of straight line segments connecting the nodes. This
aspect is considered in the following schema adjustments.

5.1. Initialization

Triangles, or more concretely their centroids, of the supporting
triangular mesh are used as goals presented to the network. The
nodes can be very close to the border polygon of W if a convex hull
of the all centroids is used for the initial construction of the ring. It is
because small triangles are typically located at corners. In addition,
once a part of W is covered by some nodes, a winner is not selected
to the particular goal, and the nodes lying in the part are moved only
as neighbourhoods of another winner node. Such initially placed
nodes can lead to an unnecessary long inspection path. To avoid
such initialization only selected triangles are considered for the
convex hull construction. The selection is based on an idea that if
a ring starts from parts that are visible from large portion of W,
then nodes will be attracted to other locations, and the parts will
be covered by the segments connecting two neighbouring nodes.

First, for each triangle an area visible from the triangle is deter-
mined from the associated convex polygons of the cover set. The
area is the sum of the areas of all triangles associated to the poly-

a b

adaptation step 4 adaptation step 13

adaptation step 30 adaptation step 35

gons. A visualization of the triangles visible areas is shown in Fig. 6a.
Centroids of triangles with the largest visible area are selected for
the convex hull construction, see Fig. 6b. Let the visible area of the
ith triangle be a;, and amax be the largest visible area. All triangles
with a; > amax — a; are selected. After the selection, a convex hull of
the triangles’ centroids is created, and the centroids at the hull bor-
der are connected by the approximate shortest paths. Then, nodes
are placed at the paths like in Section 4.1, see Fig. 6¢c.

The threshold value a; can be set individually for a particular
problem, as the triangular mesh provides only approximation of
the coverage. However, the median of the visible areas provided
the best results in the experimental evaluation. The initial number
of nodes m is set to m=0.1n, where n is the number of centroids
(triangles), because n is typically higher than the number of sensing
locations in the discrete inspection planning.

5.2. Three phases adaptation
The WRP algorithm tries to cover all triangles, and the adap-
tation is terminated if all triangles are covered. The adaptation

procedure avoids selection of winner nodes for triangles that are
already covered by nodes, or are covered from a path connecting

d

adaptation step 20 adaptation step 25

adaptation step 43 final solution, step 55

Fig. 7. An example of ring evolution and its coverage in the WRP, environment jh and visibility range 5 m.
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Table 1

Map properties.
Name Dimensions (m x m) Area (m?) v h p
jari 4.5x4.9 20 48 1 14
complex2 20.0 x 20.0 322 40 3 21
m1 4.8x4.8 20 51 4 26
m2 48x4.8 15 51 6 20
map 48x4.38 14 68 8 36
potholes 20.0x20.0 367 153 23 75
rooms 20.0 x20.0 351 80 0 33
a 8.9x14.1 71 99 6 22
dense 21.0x21.5 299 288 32 150
m3 48 x4.8 17 308 50 120
warehouse 40.0 x 40.0 1192 142 24 83
jh 20.6 x 23.2 455 196 9 77
pb 133.3x 104.8 1453 89 3 41
ta 39.6 x 46.8 731 74 2 30
h2 84.9 x49.7 2816 2062 34 476

the nodes. This is an important distinction in comparison to the
multi-goal path planning. Also nodes deletion can decrease the ring
coverage, and in a consequence it can lead to a convergence issue.
In final adaptation steps, o becomes low, and if some nodes are
deleted the network does not effectively adapt to cover all triangles,
because the adaptation is terminated due to o;,. Therefore the
deletion rule cannot be simply used during the whole adaptation.

The following three phases adaptation is proposed to increase
coverage of the final solution:

J

. The creation/deletion rule described in Section 4.2 is used until
85% of triangles are covered.

. The creation rule is used without the deletion until 95% coverage
is reached.

. The only winner node is selected without node creation in the
final adaptation steps.

N

w

In the first phase, the ring is spread around the environment to
cover most of the space while only the active nodes are preserved.
The second phase is typically active only for several adaptation
steps in which the number of nodes is increased. To decrease the
computational burden, the number of neighbouring nodes § is not
increased in the second phase. The value of § is computed as §; = m;/[f,

where m; is the number of nodes in the last step of the first phase
after the deletion. Nevertheless, § is regularly decreased after each
adaptation step by the rule §=0.99%5;. The newly created nodes in
the second phase support local searching that is finalized in the
third stage.

An example of the ring evolution and the ring coverage is
depicted in Fig. 7. Notice that the space is almost covered in the
step 43; however, additional 12 steps are needed to achieve the
full coverage. The advantage of the proposed adaptation rules is
that these steps are performed very quickly, because the network
adapts only to the uncovered triangles.

6. Experiments

The proposed SOM adaptation schema has been evaluated in
a set of inspection planning problems for two types of sensing.
The discrete sensing is considered as the multi-goal path planning
problem formulated as the TSP, and the d-WRP formulation is used
for the continuous sensing. The proposed algorithms are compared
with the SME adaptation schema, in particular the schema s used in
the TSP algorithm [32] and the d-WRP algorithm [15]. However, the
Euclidean pre-selection (Section 3.4) and the B-condition (Section
4.3)are considered in the algorithms to decrease the computational

Table 2
Experimental results for the multi-goal path planning.

Problem n Lope (M) Tinit () SME Proposed

m PDM PDB 5% Ta(s) m PDM PDB 5% Ta(s)
jari 6 13.6 0.001 12 0.00 0.00 0.00 0.007 6 0.81 0.00 1.38 0.002
complex2 8 58.5 0.003 16 0.00 0.00 0.00 0.014 19 0.00 0.00 0.00 0.005
m1 13 17.1 0.006 26 0.03 0.00 0.09 0.029 17 0.07 0.00 0.14 0.016
m2 14 194 0.005 28 7.29 0.00 3.25 0.035 19 9.16 6.02 1.86 0.018
map 17 26.5 0.010 34 213 0.00 2.61 0.062 29 3.08 0.00 2.15 0.029
potholes 17 88.5 0.046 34 0.83 0.00 0.85 0.074 31 0.75 0.00 1.66 0.034
a 22 52.7 0.022 44 0.11 0.00 0.25 0.118 36 0.04 0.00 0.15 0.047
rooms 22 165.9 0.016 44 0.83 0.141 0.170 0.141 25 1.36 0.17 0.79 0.058
densey 53 179.1 0.198 106 13.76 5.85 3.77 1.092 188 8.85 4.85 2.02 0.299
potholes; 68 154.5 0.092 136 5.61 2.75 1.20 1.461 154 4.43 2.37 113 0.424
m31 71 39.0 0.245 142 7.06 434 1.21 3.327 396 5.82 4.51 1.11 0.456
warehouse, 79 369.2 0.074 158 6.27 2.20 2.39 2.091 233 4.57 2.28 1.27 0.534
jhy 80 2019 0.116 160 1.63 0.35 0.67 2122 228 1.48 0.43 0.71 0.534
pbs 104 654.6 0.043 208 0.64 0.05 0.28 2.846 443 0.10 0.00 0.11 0.578
ta2 141 328.0 0.070 282 3.04 2.11 0.49 5.154 421 3.21 2.14 0.65 0.918
h2s 168 943.0 3.413 336 2.06 119 0.52 28.972 263 1.95 1.03 0.63 2.999
potholes; 282 2773 0.498 564 6.07 4.75 0.65 28.475 814 5.25 3.82 0.73 2.563
jhy 356 363.7 0.644 712 3.87 2.84 0.36 49.823 1066 3.90 2.76 0.69 3.410
pb1.5 415 839.6 0.446 830 221 1.21 1.50 50.553 1436 143 0.91 0.24 3.360
h2, 568 1316.2 6.107 1136 2.69 2.00 0.43 337.014 1352 2.26 1.61 0.43 9.096
ta; 574 541.1 1.065 1148 5.59 4.55 0.56 100.442 1367 5.08 435 0.54 4.195
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Fig. 8. Average values of the solution quality for the multi-goal path planning prob-
lems.

burden without noticeble changes to the solution quality. Besides,
the reference solutions of the examined problems are found as
solutions of the decoupled approach using the concorde solver, see
Section 3.1. The full path refinement of the approximate shortest
path in W is used in all algorithms; the node-goal paths are used
for the TSP while approximate shortest paths between two points
are used for the d-WRP.

The SOM algorithms are randomized, and therefore, 20 solutions
are found for each problem and particular algorithm. The quality of
solution is measured as the percent deviation to the reference path
length of the mean solution value, PDM = (L — Lyef)/Lyes - 100%, and
as the percent deviation from the reference of the best solution
value (PDB), where Ly is the length of the reference path. Besides,
s.% is denoted to the percent sample variance of the path length to
the mean solution value.

All algorithms have been implemented in C++ and compiled by
the G++ 4.2 with the —02 optimization flag. All results have been
obtained within the same computational environment using single
core of the Athlon X2 5050e CPU at 2.6 GHz and 2 GB RAM running
FreeBSD 8.1. Thus, all presented required computational times can
be directly compared.

The proposed adaptation schema has been studied in a set of
multi-goal path planning problems, the experimental results for
the final found parameters are presented in the next subsection.
Then, the parameters found in the evaluation of the multi-goal
path planning have been used in the experimental evaluation of
the inspection planning problems for various visibility ranges. The
results are presented in Section 6.2.

6.1. Multi-goal path planning — the non-Euclidean TSP

The examined multi-goal path planning problems consist of
polygonal maps and a set of goals (sensing locations). The maps
represent real and artificial environments used for examination of
path and motion planning approaches. The used approximation of
the shortest path depends on the numbers of vertices and convex
polygons, therefore, to provide an overview of maps’ relation to the
algorithm performance, the basic maps properties are depicted in
Table 1. Moreover, all paths from vertices to goals are pre-computed
for the node-goal path approximation.

J. Faigl, L. Pfeutil / Applied Soft Computing 11 (2011) 5028-5041
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Fig. 9. Average values of the required computational time for the multi-goal path
planning problems.

Detailed experimental results of the SME schema and the pro-
posed adaptation schema are shown in Table 2. The most time
consuming preparation step is computation of all shortest paths
from vertices to all goals, the time is denoted as Tj,; in the table.
Construction of the supporting convex partition, and the visibil-
ity graph is negligible in comparison to the required computation
time of the adaptation Ty. For the largest problem h2; the convex
partition is found in 220 ms, and the visibility graph is found in
150 ms.

The proposed adaptation schema provides solutions with a
higher quality than the SME schema. The required computational
times are not significantly different for small problems, but for
larger problems the proposed algorithm provides better solution
in less computational time. An overview of the algorithms per-
formance as average values of the solution quality measured by
the PDM, and average values of the required computational time
including Tj,;; are shown in Figs. 8 and 9 as histograms for the
number of goals. Examples of found solutions are depicted in Fig. 10.

Here, it should be noted that for SME schema various initial-
ization have been considered. Also the number of nodes has been
increased up to m=3n. However, the changes of the solution qual-
ity are below s;, and only the computational requirements are
increased for higher values of m. Based on these observations, 2n
nodes are initialized as a small ring around the first goal for the SME
algorithm in the all presented experimental results.

b

denseyq, L=187.8 m

potholesy, L=158.2 m

Fig. 10. Examples of the best solutions of the multi-goal path planning problem
found by the proposed adaptation schema.
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ta, d=10 m, L=145.3 m

pb, d=10 m, L=513.1 m
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jh, d=3 m, L=168.2 m
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jh, d=2 m, L=259.4 m

ta, d=3 m, L=305.2 m

ta, d=2 m, L=412.9 m

pb, d=3 m, L=726.7 m

pb, d=2 m, L=859.5 m

Fig. 11. Best found d-WRP solutions by the proposed adaptation schema.

6.2. Inspection planning with restricted visibility range

Three maps of real environments! denoted as jh, ta and pb are
used for discrete and continuous sensing evaluation. The examined
visibility ranges are from the set { inf, 10.0, 5.0, 4.0, 3.0, 2.0, 1.5,
1.0} meters, where inf denotes the unrestricted visibility range. The
experimental results of the proposed algorithms are presented in
the following sections.

6.2.1. Inspection planning with discrete sensing
A set of sensing locations is found by the sensor placement algo-
rithm [17] for each polygonal map and the visibility range d. The

1 The maps represent real testing environments of the search and rescue mis-
sion experiments of the IST-2001-FET project number 38873 — PeLoTe - Building
Presence through Localization for Hybrid Telematic Systems [34].

algorithm has been selected mainly due to its similarity to the used
supporting triangular mesh in the d-WRP algorithm. The sensing
locations are goals in the multi-goal path planning problem that is
solved as the TSP like in the previous experiments.

Detail experimental results are presented in Table 3. Notice the
higher number of nodes m for the proposed schema. However, the
required computational time is approximately 30 times lower for
the largest problem. Moreover, the solution quality is better or
competitive to the SME schema.

The results show that the proposed adaptation schema provides
better results in less computational time. Even though the solution
quality improvements are only in units of percents, the speedup
improvements are in tens. The proposed schema typically finished
the adaptation with a higher number of nodes (about more than
20%) than the SME algorithm. The higher number of nodes together
with lower computational requirements indicate that alower num-
ber of nodes is actually adapted. The proposed adaptation rules
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Table 3

Experimental results for the inspection planning with discrete sensing.
Map d(m) n Lyes (m) Tinit (S) SME Proposed

m PDM PDB 1% Ta(s) m PDM PDB 1% T, (s)

jh inf 77 1933 0.12 154 1.55 0.51 0.57 2.0 213 1.04 0.59 0.47 0.6
jh 10.0 78 194.6 0.12 156 2.07 0.94 0.91 2.1 216 1.67 0.51 0.80 0.6
jh 5.0 85 2043 0.12 170 1.98 0.81 0.67 26 254 1.64 0.84 0.61 0.7
jh 4.0 89 207.9 0.14 178 232 1.02 0.84 2.8 248 1.55 0.59 0.60 0.7
jh 3.0 100 215.5 0.14 200 2.09 0.96 0.75 3.6 297 2.04 0.42 1.40 0.8
jh 20 180 295.5 0.23 360 3.12 212 0.48 11.7 445 2.84 1.62 0.70 1.8
jh 1.5 282 359.0 0.44 564 347 2.63 0.48 29.1 673 2.78 1.88 0.55 2.7
jh 1.0 563 485.0 1.48 1126 4.10 3.54 0.34 125.5 1678 4.19 3.54 0.46 5.7
ta inf 46 215.6 0.03 92 1.74 0.34 1.61 0.6 137 117 0.00 137 0.2
ta 10.0 47 2169 0.03 94 2.74 0.66 220 0.6 131 1.05 0.11 0.78 0.2
ta 5.0 70 256.8 0.4 140 1.52 0.44 0.83 15 210 0.57 0.19 0.34 0.4
ta 4.0 93 291.3 0.06 186 2.19 1.56 0.53 2.6 238 2.79 1.46 1.06 0.6
ta 3.0 138 335.6 0.08 276 1.42 1.00 0.32 6.1 397 1.86 0.98 0.73 1.2
ta 20 255 427.0 0.21 510 3.95 3.36 0.37 220 707 4.20 2,67 0.52 2.0
ta 1.5 432 538.5 0.64 864 5.56 4.65 0.54 62.0 1068 5.40 4.65 0.45 3.2
ta 1.0 934 774.3 3.48 1868 6.24 5.48 0.36 327.1 2207 5.77 4.61 0.45 8.9
pb inf 50 554.9 0.05 100 3.81 0.10 4.19 0.7 150 234 0.00 3.48 0.2
pb 10.0 76 615.9 0.07 152 1.06 0.29 211 1.6 235 0.37 0.18 0.09 0.4
pb 5.0 134 687.2 0.11 268 0.68 0.37 0.19 5.0 650 0.15 0.00 0.10 0.9
pb 4.0 165 7219 0.13 330 215 0.78 2.29 78 526 0.73 0.42 0.31 1.2
pb 3.0 244 781.6 0.21 488 1.80 0.52 212 17.6 732 0.76 0.53 0.15 1.7
pb 20 473 919.0 0.68 946 2.54 142 2.09 68.3 1418 1.62 133 0.17 3.7
pb 1.5 870 1158.2 230 1740 2.79 241 0.63 2415 2581 245 1.97 0.26 8.2
pb 1.0 1845 1606.6 1333 3690 4.15 3.71 0.22 1186.4 4368 3.78 3.17 0.33 414

with decreasing o and § based on the number of performed adap-
tation steps decrease the computational burden. However, the rules
also decrease the solution quality that is “compensated” by the
proposed winner selection method.

The utilized approximate shortest path uses pre-computed
paths from map vertices to the all goals. The required memory foot-
print of the algorithm is about 330 MB for the largest problem pb
withd=1m.Atypical value of the required memory by the program
without the pre-computed paths is about 20 MB, which provides
an estimation of the real space requirements of the supporting
structures.

6.2.2. d-WRP - inspection planning with continuous sensing

The proposed d-WRP algorithm utilizes a triangular mesh
and a convex cover set build on top of the mesh triangles.
The number of triangles and convex polygons of the cover
set has influence to the algorithm performance. For each map
and a particular visibility range a triangular mesh has been
created individually by the quality mesh generator triangle
[35] for the required minimal angle 32.5°, and 25.0° for the
map jh, and a selected maximum triangle area. The area is
experimentally set according to the circumscribed circle of the
triangle, which radius is derived from the restricted visibility
range d. Particular properties of the used meshes are depicted in
Table Al.

In the d-WRP algorithm, path queries are resolved by the
approximation of the shortest path between two points in W using
the convex partition of W. Because of the relatively small number
of vertices in the examined maps, the initialization of the short-
est path between map vertices is not computationally demanding
like in the TSP algorithm. Nevertheless, the time is included in the
presented results like in the discrete sensing. Construction of the
triangular mesh, the convex polygon partition, and the visibility
graphsis done in a fraction of second. Also a convex cover set for the
largest problem, regarding the number of triangles, is found in hun-
dreds of milliseconds. In comparison to the required computational
time of the adaptation procedure the required times to create the
supporting structures are negligible. Moreover, in comparison to
the decoupled approach of the inspection planning the problem of

determining a set of sensing locations can be more computationally
demanding [10].

In the algorithm based on the SME schema, the number of nodes
is set individually according to the number of triangles of used tri-
angular mesh, see Table A1 and m in Table 4. For the proposed
adaptation schema, the initial number of nodes is set to the tenth
of the number of triangles, m=0.1Nr.

Detail experimental results are presented in Table 4. The pro-
posed adaptation schema provides solution in a less computational
time. However, in several cases, the found solutions have worse
quality than solutions provided by the SME schema. Regarding the
PDB the proposed algorithm provides shorter inspection paths than
the reference solutions in all cases. Also for small visibility ranges
the proposed adaptation schema provides better results than the
SME schema. In all cases, the found solutions provide full coverage
of W, and the convergence issue has not been observed.

Examples of the best found solutions for the selected visibility
ranges d are presented in Fig. 11. Notice the self-crossing route in
Fig. 11hthatis caused due to avoidance of the winner node selection
to the already covered area. Once the corner is covered, the network
does not adapt to that part. Also, such a crossing can be caused by
the deletion of inactive nodes, because the shape of the ring can be
significantly changed after removing the nodes, and self-crossing
can suddenly occur.

The memory footprint of the d-WRP algorithm is smaller than
for the multi-goal path planning, because only the vertex-vertex
paths are pre-computed. The required memory is about 24 MB for
the problem pb with d=1m.

During the experimental verification of the algorithm, a sensi-
tivity to the initialization of the nodes has been observed for the
proposed d-WRP algorithm. An initialization as a small ring around
a point gives similar results, however in several cases the found
solutions were worse than the reference solutions in units of per-
cents. Although the proposed hull initialization provides overall
best results, it can also stick the found route in a local solution. The
reason for that is similar to self-crossings. Once triangles are cov-
ered, the restricted set of the neighbouring nodes does not spread
nodes to other parts; thus, the nodes remain close to their pre-
vious positions. In the presented results, this can be observed for

67



Appendix 2 - Faigl, ]. - Pfeucil, L.: Inspection Planning in the Polygonal Domain by
Self-Organizing Map [28], referenced on page m

J. Faigl, L. Preucil / Applied Soft Computing 11 (2011) 5028-5041 5039
Table 4
Experimental results for the inspection planning with continuous sensing — d-WRP.
Map d(m) Lres (m) SME Proposed
m PDM PDB s1% T(s) m PDM PDB si% T(s)

jh inf 193.3 87 —48.99 —49.79 1.88 2.33 129 —45.29 —49.58 9.05 031
jh 10.0 194.6 87 —48.96 —50.03 3.04 2.36 128 —46.97 —49.65 4.40 0.31
jh 5.0 204.3 87 —46.95 —49.32 3.22 2.59 154 —43.23 —48.33 5.45 0.34
jh 4.0 207.9 174 —40.62 —44.40 2.83 6.25 206 -33.73 —38.65 5.57 0.40
jh 3.0 215.5 186 —24.43 —25.94 1.21 11.02 321 -17.75 -21.95 4.19 1.29
jh 2.0 295.5 381 -13.30 —14.91 1.08 45.27 831 —7.54 —12.20 3.64 6.44
jh 1.5 359.0 682 -6.20 -7.57 0.85 146.43 1585 -1.75 —5.40 2.90 17.95
jh 1.0 485.0 1701 0.96 -0.29 0.79 948.87 3684 233 —0.74 2.80 114.40
ta inf 215.6 101 —34.77 -35.23 0.45 0.53 112 -33.27 —34.59 3.45 0.08
ta 10.0 2169 101 -32.84 -33.11 0.20 0.79 103 -32.03 -33.01 0.66 0.08
ta 5.0 256.8 101 —16.65 -18.64 1.84 2.40 120 —14.86 -17.96 273 0.24
ta 4.0 291.3 203 -13.23 —16.96 1.55 7.70 227 -9.81 —13.82 2.61 0.40
ta 3.0 335.6 376 -11.56 -14.14 1.65 26.21 427 —4.78 -9.08 3.05 1.38
ta 2.0 427.0 778 -3.25 —4.63 0.96 132.46 1263 0.29 -3.31 1.78 9.90
ta 1.5 538.5 1247 —2.05 -3.98 1.06 408.80 2419 —1.64 —4.40 1.09 48.29
ta 1.0 774.3 3522 1.07 1.0 0.74 2993.48 5570 -0.13 -1.47 0.68 347.47
pb inf 554.9 240 -22.25 -23.73 3.82 2.87 254 —20.51 —22.49 4.66 0.59
pb 10.0 615.9 240 —13.08 -15.11 275 5.26 244 —14.63 -16.69 1.17 0.48
pb 5.0 687.2 240 —7.92 -9.33 1.63 11.55 267 —7.66 -9.31 1.46 1.23
pb 4.0 7219 481 —5.92 -8.31 3.19 3591 318 —6.82 -7.87 0.72 2.51
pb 3.0 781.6 616 —6.38 -7.34 0.61 86.75 811 -6.27 —7.02 0.56 10.22
pb 2.0 919.0 1408 —4.73 -5.37 043 503.42 2145 -5.40 —6.47 0.56 56.10
pb 1.5 1158.2 2858 —2.86 —4.24 0.61 2092.47 4614 -3.25 —-4.06 0.51 282.68
pb 1.0 1606.6 5785 —0.08 -0.75 0.40 11357.65 11316 -1.40 -2.05 0.44 2239.71

small visibility ranges in the maps jh and ta, which contain several
rooms, and does not occur in the map pb. Despite this issue, the
found solutions are competitive with the SME schema.

6.3. Comparison of discrete and continuous sensing

An overall comparison of the solution quality for the discrete
and continuous sensing approaches is presented in Fig. 12 as a his-
togram of average values for the visibility distances. Due to shorter
paths of the d-WRP solutions than the reference solutions, the PDM
isincreased about 100%, i.e., 100% is the length of the reference path.
The discrete sensing inspection solved as the multi-goal path plan-
ning is denoted as the TSP in the figure. Even though the histogram
bins represent average values over all maps and particular selected
visibility ranges, the histogram shows increasing quality of the d-
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Fig. 12. Average values of the solution quality for the multi-goal path planning
problems.

WRP solution over the TSP for higher visibility ranges. With regard
to the required computational time, see Fig. 13, the proposed d-
WRP algorithm provides the best results (according to the PDM) in
hundreds of milliseconds for high values of d. For small visibility
ranges, a density of the sensing locations in the map is high, and
d-WRP solutions are only about units of percents shorter.

6.4. Discussion

Regarding the experimental results the found inspection paths
for the d-WRP are shorter than for the decoupled approach with
the same visibility range d. However, it cannot be clearly stated
that the continuous sensing is better than the discrete approach,
because the sensing and motion costs have to be taken into account.
Considering the available d-WRP algorithms and the presented
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Fig. 13. Average values of the required computational time for the multi-goal path
planning problems.
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Table A1
Parameters of supporting structures for the WRP.
d(m) Map jh Map ta Map pb
Ny NT Nc¢ Ny Nt Nc¢ Nn NT Nc¢
inf 576 872 100 638 1014 46 1630 2403 52
10.0 576 872 108 638 1014 70 1630 2403 111
5.0 576 872 130 638 1014 152 1630 2403 262
4.0 576 872 169 638 1014 209 1630 2403 373
3.0 608 931 258 776 1252 357 2018 3078 714
20 1183 1904 480 1151 1944 757 2955 4692 1564
1.5 1392 2272 852 1788 3117 1320 4319 7144 2787
1.0 1988 3401 1800 3849 7044 2955 8250 14462 6188
experimental results, it seems that for small visibility ranges the Acknowledgements

decoupled approach is appropriate. Moreover, a more sophisti-
cated sensor placement algorithm can provide a lower number
of sensing locations leading to shorter inspection paths [10]. For
higher visibility ranges, the proposed d-WRP algorithm may be
used for finding a solution of the sensor placement. Because
the found path of the d-WRP is shorter than for the TSP, it is
expected that such a solution provides overall better solution
for both costs (sensing and motion). The final position of the
winner nodes can be used as primal sensing locations, and to
achieve complete coverage additional points at the final ring can be
selected.

The problem of selection of the smallest set of points at the
watchman route is called Vision Points problem in computational
geometry. A combination of the proposed d-WRP algorithm and
selection of the sensing locations can provide a suitable mech-
anism to combine the cost of motion with the cost of sensing
based on SOM. This problem is tightly related with the problem of
nodes deletion in the proposed adaptation schema, because nodes
that may not be deleted are eventual candidates to be sensing
locations. Even though the proposed three phases adaptation pro-
vides “good” solutions in less computational time, this problem
needs future investigations that can open new application areas
of SOM in the field of visibility problems studied in computational
geometry.

7. Conclusion

New adaptation schema for the inspection planning has been
presented in this paper. The schema uses new winner selec-
tion rule that considers a path between two nodes utilizing a
node creation/deletion mechanism. Besides, the schema comprises
particular SOM improvements proposed by several authors. The
schema has been applied to the discrete and continuous sensing
variants of the inspection planning. Both sensing variants are con-
sidered with the restricted visibility range. The discrete variant
is the multi-goal path planning formulated as the non-Euclidean
TSP, and the continuous sensing variant is formulated as the d-
WRP.

The schema has been experimentally verified in a set of prob-
lems representing the non-Euclidean TSP and the d-WRP. The
presented experimental results show that the proposed adaptation
schema is faster than the SME schema, it provides better solutions
for discrete sensing, and competitive solutions for the d-WRP.

For high visibility ranges, the proposed d-WRP algorithm pro-
vides significantly shorter inspection paths in comparison with the
solutions for the discrete sensing. During the solution of the d-WRP
the winner nodes can be considered as the sensing locations that
makes the SOM algorithm applicable to the inspection planning
with combination of the sensing and motion costs. Such a combi-
nation opens future applications of SOM principles to the similar
visibility based routing problems.

The work has been supported by the Ministry of Education of
the Czech Republic under Project No. 1IM0567 and partially under
Project No. 7E08006 and by EU Project No. 216342.

Appendix A. Parameters of the support triangular meshs
for the WRP

See Table Al.
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Self-Organizing Map for the Multi-Goal Path
Planning with Polygonal Goals

Jan Faigl and Libor Pfeucil

Czech Technical University in Prague - Department of Cybernetics
{xfaigl,preucil}@labe.felk.cvut.cz

Abstract. This paper presents a self-organizing map approach for the
multi-goal path planning problem with polygonal goals. The problem is
to find a shortest closed collision free path for a mobile robot operating in
a planar environment represented by a polygonal map W. The requested
path has to visit a given set of areas where the robot takes measure-
ments in order to find an object of interest. Neurons’ weights are consid-
ered as points in W and the solution is found as approximate shortest
paths connecting the points (weights). The proposed self-organizing map
has less number of parameters than a previous approach based on the
self-organizing map for the traveling salesman problem. Moreover, the
proposed algorithm provides better solutions within less computational
time for problems with high number of polygonal goals.

1 Introduction

A problem of finding a collision-free path for a mobile robot such that the robot
visits a given set of goals is called the multi-goal path planning problem (MTP).
The problem arises in various robotic tasks and one of them is an inspection
task in which model of the robot work space is a priori known. A model can be a
building plan that can be represented as the polygonal domain, i.e., a polygonal
map with obstacles. In such a map, a goal can be a single point or a polygonal
region. Goals represent places in the environment where a mobile robot takes
measurements. A practical motivation for this type of problems are searching
missions where a mobile robot has to inspect the environment to find an object
of interest, e.g., victims in search&rescue missions [7].

The planning problem for point goals can be formulated as the well-known
traveling salesman problem (TSP), and for which many self-organizing map
(SOM) approaches have been proposed since the first work of Angéniol and
Fort. In the case of polygonal goals, the problem formulation can be found as
the safari route problem [8], or the zookeeper problem [2]. These problems can
be solved in a polynomial time for particular restricted problem formulations,
e.g., problems without obstacles, with a given starting point, and polygonal goals
attached to the boundary. However, these problem variants can be formulated
as the traveling salesman problem with neighborhoods (T'SPN) [6]. Although
approximation algorithms for restricted variants of the TSPN exist [3,1], in gen-
eral, the TSPN is APX-hard and cannot be approximated with a factor 2 — €,
where € > 0, unless P=NP [9].

T. Honkela et al. (Eds.): ICANN 2011, Part I, LNCS 6791, pp. 85-92, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Here, it is worth to mention that SOM approaches for the TSP are focused
on its Euclidean variant, i.e., distances between nodes and goals are determined
as the Euclidean distances between two points. The main difference of the MTP
is that a path between two goals (or node—goal path) has to be collision free;
thus, geodesic paths (distances) avoiding the collision with obstacles have to be
considered in the self-organizing procedure, which increases the complexity of
the adaptation process.

In this paper, new SOM adaptation procedure for the MTP with polygo-
nal goals is proposed. The approach follows standard SOM adaptation schema
for the TSP that has been extended to the polygonal domain using approxi-
mate shortest path in [5]. The adaptation uses new winner selection procedure
that finds and creates new neurons using a distance to a segment of the goal.
Moreover, practical aspects of the adaptation process in the polygonal map are
considered to decrease the computation burden of the adaptation. In addition,
simplified adaptation rules based on [11] are used and together with the novel
winner selection procedure they lead to less number of adaptation parameters.
The proposed procedure is also able to deal with point goals. As such, it provides
a unified way to solve various modifications of the MTP, which includes safari
route problem and also the watchman route problem as a variant of the MTP
where goals are polygons of a convex cover set of W [4].

2  Self-Organizing Map for Multi-Goal Path Planning
with Polygonal Goals

The problem addressed in this paper can be defined as follows. Having a polyg-
onal map W and a set of goals G = {g1,...,9n}, the problem is to find a
closed shortest path such that the path visits at least one point of each goal
gi € G. A goal can be a single point, or a polygonal region, and all goals
entirely lie in W. A polygonal goal g is represented as a sequence of points
g=(pi,...,pj), which forms a border of g represented as a set of straight line
segments dg = {s{,s9,...,s7}, where s/ is a straight line segment inside W,
s) = (pf,p{.,) for 0 <i <k, and s} = (py,p}).

The proposed adaptation procedure is based on two-layered competitive neu-
ral network. The input layer consists of two dimensional input vector. An array
of output units is the second layer, and it forms a uni-dimensional ordered struc-
ture. The neuron’s weights represent coordinates of a point in W, which is called
node, and denoted as v in this paper. Connected nodes form a ring that rep-
resents the requested path. In SOM for the TSP (for example [10]), goals are
presented to the network in a random order and neurons compete to be the
winner using the Euclidean distances between them and the goal. Then, the
winner node is adapted towards the presented goal. However, in the MTP, a
collision free path has to be determined because of obstacles in WW. The adapta-
tion process may be considered as a node movement along the node-goal path
towards the goal, i.e., the node (neuron’s weights) is placed on the path closer
to the goal while it travels distance according to the neighbouring function f.
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An approximation of the shortest path may be used for the node—goal path
determination [5].

Novel winner selection procedure is proposed to address polygonal goals. The
procedure is based on consideration of the ring as a sequence of straight line
segments in W. Again, due to obstacles in W, such a sequence is found using an
approximate shortest path between two points (point—point path) in W [4].

Let the ring r be a sequence of line segments r = (s7, s5,...,s]). The winner
node is found as a “closest” point of the ring to the set of segments representing
the goal g. The exact shortest path between two segments in W is substituted by
the following approximation. First, the Euclidean distance between the segments
s; and s? is determined; thus, two points on the segments are found, p, € s
and p, € sg . The point—point path for these points is found to approximate the
shortest path between two segments in W. So, a pair (p,, py) with the minimal
length of the approximate shortest path between p, and p, is the result of the
winner selection procedure. The point p, is used for creating new node if a node
with the same coordinates is not already in the ring. The found point p, at the
goal segment is used as a point goal towards which nodes are adapted using the
point—point path. In the case of a point goal g, a similar procedure is used for
approximating shortest segment—point path and p, is the point goal itself.

The adaptation is an iterative stochastic procedure starting with an initial
creation of m nodes, where m = 2n and n is the number of goals. The neurons’
weights are set to form a small circle around the first goal g;, or around the
centroid of ¢g; for the polygonal goal. The used neighbouring function is f(o,d) =
exp(—d?/a?) for d < 0.2m, and f(o,d) = 0 otherwise, where o is the learning
gain (the neighbouring function variance) and d is the distance of the adapted
node from the winner node measured in the number of nodes (the cardinal
distance). The adaptation process performs as follows.

1. Initialization: For a set of n goals G and a polygonal map W, create 2n nodes
around the centroid of the first goal. Let the initial value of the leaning gain
be o = 10, and adaptation parameters be p =1, 8 =105 and i = 1.

2. Randomizing: Create a random permutation of goals IT(G).

3. Winner Selection: For a goal g € II(G) and the current ring r as a path
in W find the pair (p,,py) using the proposed winner selection procedure.
Create a new node v with coordinates p, if such a node does not already
exist. A node at the coordinates p,. is the winner node v*.

4. Adapt: If g is a point goal or v* is not inside the polygonal goal ¢:

— Let the current number of nodes be m, and N be a set of v*’s neighbor-
hoods in the cardinal distance less than or equal to 0.2m.

— Move v* along approximate shortest path S(v*,p,) towards p, by the
distance |S(v*,pr)|p, where |S(.,.)| is the length of the approximate
path.

— Move nodes v € N for which pf(o,d) < 8 towards p, along S(v,p,) by
the distance |S (v, p,)|pf (o, d), where f is the neighbouring function and
d is the cardinal distance of v to v*.

Remove ¢ from the permutation, IT(G) = II(G) \ {g}, and if |[IT(G)| > 0 go
to Step 3.
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5. Ring regeneration: Create a new ring as a path in W using only the winner
nodes of the current adaptation step, i.e., remove all other nodes. Make
nodes from the endpoints of s € r that do not correspond to the winners,
i.e., nodes correspond to the sequence of path’s vertices.

6. Update adaptation parameters: Set i = i+1, 0 = (1—0.001i)o, and g = 1//i.

7. Termination condition: If all polygonal goals have particular winner inside
the polygonal goal, and if all point goals have the winner in a sufficient
distance, e.g., less than 1073, or ¢ < 10~* Stop the adaptation. Otherwise
go to Step 2.

8. Final path construction: Use the last winners to determine the final path
using point—point approximate path in W.

It is clear that the proposed adaptation procedure considering ring as a collision
free path in YW with the closest ring—goal segments selection is more computation-
ally demanding than a consideration of node—goal points, which does not require
determination of shortest path between two nodes. The adaptation performed
only if pf(o,d) < B (called 8 — condition rule) decreases the computational
burden without significant influence to the solution quality. Also the used evo-
lution of o, u [11] provides fast convergence. However, it decreases the solution
quality in few cases in comparison to Somhom’s parameters [10] used in [5,4].
An experimental comparison of these algorithms is presented in Section 3.

Regarding the necessary parameters settings the main advantage of the pro-
posed procedure is that it does not require specific parameters tuning. Based
on several experiments the procedure seems to be insensitive to changes of
the initial values of o and p. Also the used size of the winner neighborhood
(0.2m) provides the best trade-off between the solution quality and computa-
tional time.

It is worth to mention that the used approximation of the shortest path be-
tween two points (described in [4]) is more computationally demanding, and it
is less precise than the node—goal path approximation. However, it requires less
memory. It is because precomputed shortest paths from all map vertices to the
goals are used in the node—goal path queries. Thus, lower memory requirements
and a faster initialization are additional advantages of the proposed method.

3 Experiments

The proposed adaptation procedure has been experimentally verified in two sets
of problems with polygonal goals, and compared with the SOM approach for
the watchman route problem (WRP) [4]. The first set represents a “general-
ized” safari route problem, where convex polygonal goals, possibly overlapping
each other, are placed in W. The second set represents the WRP with re-
stricted visibility range presented in [4]. Moreover, the proposed procedure has
been compared with the SOM approach for the TSP in W [5] where goals are
points.
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R

denses-A h2s5-A

Fig. 1. Selected solutions of the safari route problems, light polygons are goals, small
disk at convex goal are the last winner nodes, black lines are found paths

) potholesz-A

The WRP algorithm adapts nodes towards centroids of the convex polygonal
goals!. An alternate point is determined at the polygon border using node-
centroid path to avoid placement of nodes too close to the polygon centroid, i.e.,
the node movement towards the centroid is stopped at the border. For the safari
route problem, the WRP algorithm has been modified to do not consider the ring
coverage, and to adapt nodes towards the determined alternate points. Besides,
the WRP and the TSP algorithms has been modified to use the g — condition
rule and the Euclidean distance for pre-selection of winner nodes candidates,
i.e., approximate node—goal path is determined only if the Euclidean node—goal
distance is less than the distance of the current winner node candidate to the
goal. These two modifications are technical, as they do not affect the solution
quality; however, they decrease the computational burden several times.

The examined algorithms have been implemented in C++, compiled by the
G++ 4.2.1 with the -O2 optimization, and executed within the same computa-
tional environment using single core of the i7-970 CPU at 3.2 GHz, and 64-bit
version of the FreeBSD 8.2. Thus, the presented average values of the required
computational times 7" can be directly compared.

The SOM algorithms are randomized, and therefore, each problem has been
solved 50 times, and the average length of the path L, the minimal found path
length L, and the standard deviation in percents of L denoted as s;,% are used
as the quality metrics. Reference solutions from [4,5] are used for the WRPs and
the TSPs, and the solution quality is measured as the percent deviation to the
reference path length of the average path length, PDM = (L—Lycf)/Lycs-100%,
and as the percent deviation from the reference of the best solution, PDB =
(Lyin—Lyes)/Lyes-100%. All presented length values are in meters. The number
of goals is denoted as n in the presented tables.

The experimental results for the safari route problems are presented in Ta-
ble 1 and selected best solutions found by the proposed algorithm are depicted
in Figure 1. The proposed procedure provides better solutions for most of the
problems. The procedure is more computationally demanding for complex envi-
ronments like the problem h25-A because shortest paths have many segments.
This is also the case of the jhig-coverage problem, which is an instance of the
WRP with many overlapping convex goals.

!In [4], triangles of a triangular mesh are used to support determination of ring
coverage, which is not necessary for safari route problems.
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Table 1. Experimental results for the safari route problems

SOM for WRP [4] Proposed

Probl
roblem L $.% Lmin T [8] L 1% Lmin T [8]

dense-small 35 114.2 3.45 105.63 0.34 113.7 3.99 102.80 0.98

denses-A 9 62.6 1.96 60.66 0.14 59.0 2.77 58.05 0.23
h2s5-A 26 407.2 0.98 399.34 1.22 405.2 0.88 396.07 2.12
jh-rooms 21 88.3 0.76 87.84 0.13 88.1 0.10 87.83 0.15

jhio-doors 21 67.6 1.34 66.11 0.16 63.7 1.43 61.99 0.15
jhio-coverage 106 106.9 1.34 103.89 1.49 97.9 6.20 92.99 2.66

jha-A 16 61.1 1.86 58.71 0.33 57.3 1.32 56.59 0.32
jhs-corridors 11 65.8 1.87 62.77 0.14 59.7 0.35 59.53 0.20
pbs-A 7 275.8 4.47 265.29 0.31 271.7 4.36 264.70 0.31

potholesa-A 13 71.9 1.91 70.37 0.04 71.6 2.08 70.09 0.08

Table 2. Experimental results for the WRP

Ma n Lyey SOM for the WRP [4] Proposed
P [m] [m] PDM PDB s.% T[] PDM PDB Ly, s.% T [s]
jh inf 100 207.8 -52.67 -53.39 1.53 1.45 -53.71 -54.17  95.27 2.78 2.40

jh 10.0 108 207.3 -51.84 -53.02 3.27 1.95 -50.65 -54.02  95.30 6.89 2.64
jh 5.0 130 216.4 -48.67 -51.75 3.39 1.27 -51.54 -53.06 101.56 4.18 5.75
jh 4.0 169 219.9 -43.48 -46.34 3.22 2.97 -48.38 -49.42 111.22 2.71 9.21
jh 3.0 258 225.5 -27.92 -30.60 1.61 5.18 -35.04 -37.04 142.01 2.27 13.12

jh 2.0 480 281.9 -8.99 -11.09 1.06  20.68 -17.25 -19.85 225.91 1.64 23.16
jh 1.5 852 350.3 -3.81 -5.51 1.02 109.81 -14.56 -15.68 295.39 0.74 100.40
jh 1.0 1800 470.8 3.96 2.36 0.59 430.88 -9.06 -10.25 422.50 0.55 452.03

pb inf 52 533.3 -18.11 -22.26 4.98 1.44 -16.18 -23.18 409.69 5.70 1.28
pb 10.0 111 612.7 -12.48 -14.86 3.92 2.57 -15.46 -17.94 502.78 4.73 3.46

pb 5.0 262 682.9 -7.35 -9.34 2.45 5.56 -7.01 -10.62 610.38 4.45 15.23
pb 4.0 373 720.1 -6.17 -8.78 3.25 16.80 -7.46 -10.09 647.41 3.16  20.37
pb 3.0 714 774.8 -5.62 -6.72 0.55 42.52 -3.04 -9.54 700.81 6.95 114.08
pb 2.0 1564 901.9 -2.88 -4.41 1.02 244.72 -0.30 -9.40 817.12 4.53 373.74
pb 1.5 2787 1115.9 1.03 0.07 0.54 997.68 -9.12 -12.12 980.59 2.27 1078.42
pb 1.0 6188 1564.2 2.55 1.90 0.41 5651.06 -12.52 -13.89 1346.87 0.78 3276.43

ta inf 46 203.6 -30.99 -31.48 0.52 0.28 -33.67 -33.94 134.52 1.69 0.76
ta 10.0 70 202.6 -28.11 -28.80 0.28 0.41 -28.36 -28.89 144.08 1.45 1.63
ta 5.0 152 254.1 -15.68 -17.97 1.81 1.26 -19.61 -20.35 202.39 0.83 6.39

ta 4.0 209 272.2 -7.39 -9.91 1.36 3.69 -15.70 -16.65 226.90 0.85 11.64
ta 3.0 357 315.0 -6.28 -8.75 1.61 12.61 -13.46 -14.42 269.57 1.30 15.58
ta 2.0 757 408.3 1.09 -1.20 0.87 66.48 -10.97 -12.52 357.18 1.00  59.00
ta 1.5 1320 522.1 1.06 -1.18 0.97 194.25 -12.81 -13.63 450.92 0.59 251.08
ta 1.0 2955 743.6 5.21 3.80 0.57 1398.71 -12.45 -13.54 642.89 0.57 987.77

The results for the WRP are presented in Table 2, where d denotes the
restricted visibility range. Also in this type of problems, the proposed proce-
dure provides better solutions. Although the procedure is more computationally
demanding for small problems, it provides significantly better results with less
required computational time for problems with d=1 m, which have many convex
polygons. The results indicate that the proposed procedure scales better with
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Table 3. Experimental results for the TSP

P Lycy SOM for the TSP [5] Proposed
roblem n

[m)] PDM PDB s5:.% T [s] PDM PDB s.% T [s]
jari 6 13.6 0.36 0.00 0.55 0.01 0.23 0.00 0.15 0.01
complex2 8 58.5 -0.00 -0.00 0.00 0.01 0.47 -0.00 1.60 0.02
ml 13 17.1 0.31 0.00 1.15 0.02 0.17 0.00 0.20 0.03
m2 14 19.4 9.52 0.00 3.50 0.03 10.76 5.32 3.16 0.04
map 17 26.5 5.92 0.73 4.39 0.05 6.87 0.73 4.37 0.07
potholes 17 88.5 4.58 2.37 2.17 0.06 5.56 2.37 2.48 0.06
a 22 52.7 0.89 0.31 1.00 0.09 1.58 0.31 2.37 0.11
rooms 22  165.9 1.02 0.00 0.86 0.11 0.12 0.00 0.11 0.15
densey 53 179.1 15.04 8.33 3.16 0.68 18.17 9.00 2.38 0.68
potholesa 68 154.5 6.12 2.50 2.01 0.65 7.54 3.11 2.23 0.35
m3; 71 39.0 6.71 2.29 1.53 1.41 8.72 4.80 1.64 1.00
warehouses 79 369.2 5.97 2.42 2.13 1.92 8.47 2.87 2.68 0.81
jha 80 201.9 1.94 0.48 0.64 0.95 2.04 0.67 0.66 0.71
pba 104 654.6 1.06 0.01 1.34 1.53 1.95 0.51 3.05 0.84
tas 141 328.0 2.97 1.69 0.69 2.27 3.69 2.19 0.75 1.11
h2s 168 943.0 2.85 2.00 0.60 8.75 2.42 1.65 0.53 6.70
potholes; 282 277.3 6.84 4.91 1.02 10.47 6.97 4.19 0.91 2.71
jh1 356  363.7 4.02 2.74 0.56 22.29 4.32 3.23 0.46 7.05
pbi.s 415 839.6 2.60 1.12 2.25 24.13 10.40 1.47 5.21 6.62
h2, 568 1 316.2 2.81 1.87 0.51 87.61 3.00 1.97 0.46 32.19
tag 574 541.1 5.51 4.63 0.41 38.11 6.39 4.88 0.73 10.86

increasing number of goals. The reason for this is in the number of involved neu-
rons. While the algorithm [4] derives the number from the number of goals, the
proposed procedure dynamically adapts the number of neurons using shortest
path in W. Thus, for very large problems in the same map, additional neurons do
not provide any benefit, and only increase the computational burden. The worse
average results for the map pb, d=3 and d=2 are caused by the used point—point
shortest path approximation, which provides unnecessary long paths in several
cases. Nevertheless, the proposed procedure is able to find significantly better
solutions, regarding the PDB, than the WRP algorithm [4].

The results for the TSP are presented in Table 3. The proposed procedure
provides competitive results to the algorithm [5]. Worse average solutions are
found for several problems. In these cases, the point—point path approximation
provides longer paths than the point—goal path used in the TSP algorithm. The
used schema of parameters evolution [11] leads to faster convergence, which
“compensates” the more complex winner selection. However, the schema is the
main reason for the worse performance of the proposed procedure than the TSP
algorithm [5] with parameters’ evolution [10].

4 Conclusion

Novel winner selection procedure for self-organizing maps has been proposed in
this paper. The proposed adaptation procedure is able to deal with variants of
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the multi-goal path planning problem including the TSP, the WRP and the safari
route problem. Moreover, the procedure can be considered as parameterless, as
the number of neurons is determined during the adaptation process. It provides
a unified approach to solve various routing problems in the polygonal domain W.

Although the proposed algorithm provides outstanding results in many cases,
both the required computational time and the solution quality may be improved
as the former algorithms for the WRP and the TSP provide better results in
particular problems. Both these aspects are related to the evolution of the adap-
tation parameters, e.g., o, u, or size of the winner node neighborhood. Besides,
the utilized approximation may be improved. Shortest path approximation and
investigation of adaptation schemata with different evolution of parameters are
subjects of the further work.
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research program II” by Project No. 2C06005.
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This paper is concerned with a variant of the multi-goal path planning in which goals are represented
as convex polygons. The problem is to find a closed shortest path in a polygonal map such that all goals
are visited. The proposed solution is based on a self-organizing map (SOM) algorithm for the traveling
salesman problem. Neurons’ weights are considered as nodes inside the polygonal domain and connected
nodes represent a path that evolves according to the proposed adaptation rules. In addition, a reference
algorithm based on the solution of the traveling salesman problem and the consecutive touring polygons
problem is provided to find high quality solutions of the created set of problems. The problems are
designed to represent various inspection and patrolling tasks and can form a kind of benchmark set for
multi-goal path planning algorithms. The performance of the algorithms is examined in this problem set,
which includes an instance of the watchman route problem with restricted visibility range. The proposed
SOM based algorithms provide a unified approach to solve various visibility based routing problems in
polygonal maps while they provide a competitive quality of solutions to the reference algorithm with

significantly lower computational requirements.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A problem to find a path visiting a set of given goals by a robot
is called the multi-goal path planning problem (MTP). In particular,
the MTP stands for finding a shortest path connecting a given set of
goals located in a robot working environment. Approaches for the
MTP are motivated by practical problems that include planning for
arobotic arm [1,2], where the found path leads to minimization of
the execution time providing a better utilization of the tools, or, in
the case of a mobile robot, inspection planning [3], e.g., motivated
by a search and rescue mission [4], where the time to find possible
victims is critical.

A robot working environment can be represented by the
polygonal domain ‘W and goals may be represented by points.
In such a case, the MTP can be formulated as the traveling
salesman problem (TSP) [5]. Thus, the MTP becomes a combinatorial
optimization problem to find a sequence of goals’ visits, e.g., using
all shortest paths between goals found in a visibility graph by
Dijkstra’s algorithm.

A more general variant of the MTP can be more appropriate
if objects of interest may be located in certain regions of ‘W, e.g.,
when it is sufficient to reach a particular part of the environment
to “see” or measure the requested object. A practical example of
such a problem is collecting samples from particular areas, e.g.,

* Corresponding author. Tel.: +420 224 357 384; fax: +420 224 357 224.
E-mail address: faiglj@fel.cvut.cz (J. Faigl).

0921-8890/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2012.08.013

taking snapshots of objects or measuring concentration levels of
substances’ in regions or ponds, which are accessible from various
directions.

In such a problem formulation, a goal is a polygonal region
rather than a single point. Several algorithms addressing this
problem can be found in the literature; however, only for its
particular restricted variant. For example goals form a disjoint set
of convex polygons attached to a simple polygon in the safari route
problem [6], which can be solved in O(n?) [7]. If the route entry to
the convex goal is not allowed, the problem is called the zoo-keeper
problem, which can be solved in O(n log n) for a given starting point
and the full shortest path map [8]. However, both problems are NP-
hard in general.

A combinatorial approach [2] can be used for the MTP with
partitioned goals, where each goal is represented by a finite
(small) set of point goals. However, combinatorial approaches are
unsuitable for continuous sets because of too many possibilities
how to connect the goals.

In this paper, we present a self-organizing map (SOM) based
algorithm for the general variant of the MTP with polygonal
goals. The algorithm is based on SOM for the TSP in W [9].
Contrary to combinatorial approaches or other soft-computing
techniques [10], a geometrical interpretation of SOM evolution
in ‘W allows easy and straightforward extensions to deal with
polygonal goals. To show the flexibility of the SOM approach,
several modifications of the adaptation rules are proposed and
evaluated in a set of problems, which also demonstrate a geometric
relation between the learning network and polygonal goals.

Please cite this article in press as: J. Faigl, et al., Visiting convex regions in a polygonal map, Robotics and Autonomous Systems (2012), doi:10.1016/j.robot.2012.08.013
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The main advantage of the approach proposed is the ability to
address general multi-goal path planning problems in ‘W (not only
in a simple polygon) and with goals not necessarily attached to W;
thus, the approach provides a unifying framework to solve various
MTP variants.

Beside the SOM based algorithms, we present an alternative
approach to address the MTP with polygonal goals that provides
a reference solution of the problems solved. It is based on the
solution of the TSP with point goals and a consecutive solution
of the touring polygons problem (TPP). Although a polynomial
algorithm for the TPP in a simple polygon has been proposed
in [11], our reference algorithm is able to solve problems in ‘W
(not only in a simple polygon) and it also does not require disjoint
convex goals. In addition, it is also probably easier to implement;
thus, it represents a suitable reference algorithm for a comparison.

The rest of this paper is organized as follows. The next section
provides an overview of the related work and similar problem
formulations. Besides, it also contains a brief description of the
SOM adaptation schema for the TSP in ‘W, because the proposed
algorithms for the MTP with polygonal goals are its extensions.
The addressed problem formulation and evaluation methodology
of the solution quality and algorithms’ comparison is presented
in Section 3. A reference algorithm based on the solution of the
related TSP and the consecutive TPP is presented in Section 4.
In Section 5, the proposed modifications of the SOM's adaptation
rules to deal with the polygonal goals are presented. The results
and comparisons of the proposed algorithms and discussion of the
results achieved are presented in Section 6. Concluding remarks
are presented in Section 7.

2. Related work

In this section, we present an overview of approaches to address
the visibility based routing problems, i.e., various formulations of
the MTP. Mainly because once a point robot is assumed, W directly
represents the robot configuration space and many visibility based
approaches can be applied to solve such a variant of the MTP. As
the proposed approach is based on the SOM algorithm for the TSP,
its brief description is presented in Section 2.1.

The multi-goal path planning can be considered as a type of path
planning under visibility constraints [12]. The goals in the MTP can
represent sensing locations, where a robot takes measurements.
Such locations can be found by a sensor placement algorithm that
aims to find a minimal set of locations from which the whole W is
covered (“seen”) by a robot sensing device.

The sensor placement problem is related to the art gallery prob-
lem (AGP), which is a classical problem studied in computational
geometry. The AGP was posed by Klee in 1973 and its most ba-
sic form is [13]: “What is the smallest number of guards needed to
guard an art gallery?”. The guards are static in the AGP and sev-
eral problem variants for segment guards representing patrolling
guards have been proposed [14,15]. Besides, a patrolling route for
a single robot can be found as a solution of the traveling salesman
problem (TSP) where guards’ locations become cities that have to
be visited [5]; hence, the problem becomes the MTP. Even though
optimal algorithms for the AGP have been proposed for a restricted
class of polygons [16,17], the AGP is known to be NP-hard for a
polygon with holes [18], and therefore approximate algorithms are
prefered to find guards [ 19,20]. Moreover, additional visibility con-
straints can be considered, which is the reason why the authors
of [12] call the problem the sensor placement problem rather than
the AGP. The constraints can restrict the visibility to a distance d, or
an incident angle that regards a situation where a guard prefers to
watch a scene directly rather than under an unsuitable angle [21].
Several approximate algorithms have been proposed to address

the sensor placement problem, e.g., based on deterministic con-
vex partitioning [22] or randomized approaches [23,3]. Once a set
of guards covering the environment is determined, the problem to
be solved is (again) the TSP.

The aforementioned approaches (consisting of finding the
guards and the consecutive solution of the TSP) represent the so-
called decoupled approach of the inspection planning to cover
the whole W. In the decoupled approach, the sensing of the
environment is performed at discrete places, i.e., at the guards’
positions, and therefore, the problem of guarding/searching W by
one robot leads to minimize the visiting period of the sensing
places. Regarding the cost of sensing and the cost of motion the
number of places is minimized in the AGP part while the length
of the path is minimized in the TSP. Due to independent solutions
of the AGP and TSP, the decoupled approach is suitable for cases
where the sensing cost is dominant over the motion cost [12].

A continuous sensing can be assumed if the motion cost is
dominant and the sensing cost is relatively cheap. For such a case
the problem can be formulated as the watchman route problem
(WRP) that is a problem to find a closed shortest path such that all
points of W are visible from at least one point of the path [24]. The
WRP is NP-hard for the polygonal domain and similarly to the AGP,
polynomial algorithms have been proposed for a restricted class of
polygons [25]. The main difficulty of the problem is that the sensing
locations are not explicitly prescribed, therefore approaches based
on the TSP cannot be directly used as they will lead to the
decoupled approach. Here, it is worth mentioning that a problem
of finding a minimal set of guards lying on the shortest watchman
route is called the vision points problem and is NP-hard [26].

A multi-robot variant of the WRP is the m-watchman routes
problem (MWRP) that aims to find a route for each of m watchmen
such that each point of the polygon W is visible from at least one
route. For m = 1 the problem is the WRP and if m is so large that
the total length of the routes is zero, the problem is the stationary
AGP. Nilsson proved that the MWRP is NP-hard even in simple
polygons [27].

Probably the first heuristic approach for the MWRP in a polygon
with holes has been proposed by Packer in [28]. The approach
is based on a set of static guards S found by the heuristic A;
of [20] and constructing the minimum spanning tree of S. Distances
between two guards are found as the length of the shortest
path from the visibility graph. The tree is split into m sub-trees
(for m watchmen) and Hamiltonian routes on each sub-tree are
independently constructed. Vertices along a route are substituted
by others that shorten the length of the route and maintain the
full coverage. Finally, redundant vertices of the route are removed.
Although this approach is based on a solution of the AGP, only
unrestricted visibility range has been considered by the author.

If a visibility range is restricted to a distance d, two variants of
the WRP can be found in the literature [7]. The d-watchman route
problem is a variant to see only the boundary of the polygon, while
the d-sweeper route problem aims to sweep a polygonal floor using
a circular broom of radius d, so that the total travel of the broom is
minimized [6]. An approximate algorithm for the MWRP with the
d-visibility has been presented in [29].

The aforementioned safari route [6] and zoo-keeper route [30]
problems introduced in Section 1 are also motivated by the WRP
with restricted visibility range. These problems are variants of the
MTP with polygonal goals, as in both of them the problem is to
find a route inside a polygon P that visits a given collection of
sub-polygons of P. Also in both original problem formulations the
sub-polygons are convex and are entirely inside the polygon P.
Although these problems are very close to the problem addressed
in this paper, the main difference is that their original formulations
are only for a simple polygon, for which the polynomial algorithms
have been proposed, but the problems are NP-hard for the
polygonal domain.

Please cite this article in press as: ]. Faigl, et al., Visiting convex regions in a polygonal map, Robotics and Autonomous Systems (2012), doi:10.1016/j.robot.2012.08.013
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Fig. 1. A schema of the two-layered neural network and the associated geometric
representation.

Routing problems with polygonal goals can be considered as
variants of the TSP with neighborhoods (TSPN) [31]. The TSPN
is studied for graphs or as a geometric variant in a plane but
typically without obstacles. Approximate algorithms for restricted
variants of the TSPN have been proposed, e.g., the TSPN with
arbitrary connected neighborhoods with comparable diameters
and for disjoint unit disk neighborhoods [32], or disjoint convex
fat neighborhoods of arbitrary size [33]. However, the TSPN is APX-
hard and cannot be approximated to within a factor 2 — ¢, where
€ > 0,unless P = NP [34].

Having a sequence of polygonal goals (Py, P,, ..., P), one can
ask for a shortest path visiting in order at least one point of each
polygon in the sequence. This problem is called the touring polygons
problem [31], and it is a strict generalization of the safari, zoo-
keeper, and watchman route problems in a simple polygon [11].
In a case of convex polygons in a plane, and given start and target
points, an O(kn log(n/k)) algorithm for disjoint polygons has been
proposed by the authors of [11], where n is the number of vertices
specifying the polygons. Besides, the authors also proposed an
0(nk? log n) algorithm for arbitrarily intersecting polygons lying
in a simple polygon. If polygons are non-convex, the TPP is NP-
hard [11].

In [35], an approximate algorithm for the TPP in a plane is
proposed. The algorithm is based on an iterative procedure refining
the path until the selected accuracy € is achieved. In each iteration,
a new point at a polygon p; is eventually computed to shorten
the path connecting three consecutive polygons p;_1, p;, and pj;1.
Once the length of the new path is shorter than the previous path’s
length (about less than €), the refinement is terminated. A proof
that the algorithm finds a global solution of the TPP is based on
an approximate algorithm for solving the Euclidean shortest path
problem in a three dimensional polyhedral space presented in [36].

2.1. SOM for routing problems in ‘W

A SOM algorithm for routing problems, in particular the SOM for
the TSP in ‘W [9], is Kohonen’s type of unsupervised two-layered
learning neural network. The network contains a two dimensional
input vector and an array of output units that are organized into a
uni-dimensional structure. An input vector represents coordinates
of a point goal, and connections’ weights (between the input
and output units) represent coordinates of the output units.
Connections’ weights can be considered as nodes representing
a path, which provides direct geometric interpretation of the
neurons’ weights. So, the nodes form a ring in ‘W because of the
uni-dimensional structure of the output layer, see Fig. 1.

The network learning process is an iterative stochastic proce-
dure in which goals are presented to the network in a random or-
der. The procedure basically consists of two phases: (1) selection

of the winner node to the presented goal; and (2) adaptation of the
winner and its neighboring nodes toward the goal. The learning
procedure works as follows.

1. Initialization. For a set of n goals G and a polygonal map W,
create 2n nodes .V around the first goal. Let the initial value
of the learning gain be 0 = 12.41n + 0.06, and adaptation
parameters be © = 0.6, « = 0.1.

2. Randomizing. Create a random permutation of goals I7(G).

3. Clear inhibition. I < (.

4. Winner selection. Select the closest node v* to the goalg € I1(G)
according to:

v* « argmin |S(v, g)],

venN,vel

where |S(v, g)| is the length of the shortest path among

obstacles S(v, g) fromv to g.

5. Adapt. Move v* and its neighboring nodes along a particular
path toward g:

e Let the current number of nodes be m,and N (N € &) be a
set of v*'s neighborhoods in the cardinal distance less than or
equal to 0.2 m.

e Move v* along the shortest path S(v*, g) toward g by the
distance [S(v*, g)|u.

e Move nodes v € N toward g along the path S(v, g) by
the distance |S(v, g)|uf (o, l), where f is the neighboring
function f = exp(—I?/o?) and I is the cardinal distance of
vtov*.

e Update the permutation: I7(G) < I1(G) \ {g}.

e Inhibit the winner: I <— I U {v*}.

If |[IT(G)| > 0 go to Step 4.

6. Decrease the learning gain. 0 < (1 — a)o.

7. Termination condition. If all goals have the winner in a sufficient
distance, e.g., less than 1073, or & < 107 Stop the adaptation.
Otherwise go to Step 2.

8. Final path construction. Use the last winners to determine a
sequence of goals’ visits.

The algorithm is terminated after a finite number of adaptation
steps as o is decreased after presentation of all goals to the
network. Moreover, the inhibition of the winners guarantees that
each goal has associated a distinct winner; thus, a sequence of all
goals’ visits can be obtained by traversing the ring at the end of
each adaptation step.

The computational burden of the adaptation procedure de-
pends on determination of the shortest path in ‘W, because 2n?
node-goal distance queries (Step 4) and (0.8n + 1)n node-goal
path queries (Step 5) have to be resolved in each adaptation step.
Therefore, an approximate shortest path is considered using a sup-
porting division of W into convex cells (convex partition of W) and
pre-computed all shortest paths between map vertices to the point
goals. The approximate node-goal path is found as a path over ver-
tices of the cells in which the points (node and goal) are located.
Then, such a rough approximation is refined using a test of direct
visibility from the node to the vertices of the path. Details and eval-
uation of refinement variants can be found in [9].

Beside the approximation, the computational burden can be
decreased using the Euclidean pre-selection [37], because only the
node with a shorter Euclidean distance to the goal than the distance
(length of the approximate shortest path) of the current winner
node candidate can become the winner.

In Fig. 2, a ring of nodes connected by an approximate shortest
path between two points is shown to provide an overview of the
ring evolution in ‘'W.
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(b) Step 29.

(d) Step 49.

(e) Step 58.

(c) Step 40.

(f) Step 78.

Fig. 2. An example of the ring evolution in a polygonal map for the MTP with point goals, small green disks represent goals and blue disks are nodes. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

3. Problem statement

The problem addressed in this paper can be formulated as
follows. Find a closed shortest path visiting a given set of goals
represented as convex polygons (possibly overlapping each other) in a
polygonal map ‘W. The problem formulation is based on the safari
route problem [6]; however, it is more general in three aspects.
First, polygons can be placed inside a polygon with holes. Also, it
is not required that convex polygons are attached to the boundary
of ‘W like in the original safari route problem formulation. Finally,
polygons can overlap each other, and therefore, such polygons can
represent a polygonal goal of an arbitrary shape.

The proposed problem formulation comprises the WRP with
restricted visibility range d. The set of goals can be found as a
convex cover set of W, i.e., a set of convex polygons whose union is
‘W. The advantage of an algorithm solving the formulated problem
is that it is not required to have a minimal cover set. The restricted
convex polygons to the size d can be found by a simple algorithm
based on a triangular mesh of ‘W [29].

3.1. The quality of solution

The studied SOM based algorithms in this paper are randomized
algorithms; therefore to examine the quality of found solutions
100 trials of each particular problem is considered. The solution
quality can be then measured as the percent deviation from the
reference path’s length of the mean solution value (PDM)

L—L
PDM = —— . 100%, (1)
ref
and as the percent deviation from the reference of the best solution
value (PDB)

Ly — Lyer

PDB = - 100%, 2)

ref

where L is the length of the reference path, and L and L; are the
average and the shortest path lengths from all the trials of the
algorithm for the particular problem, respectively. The PDM and
PDB provide an overview of the algorithm quality. The PDM can be
interpreted as an expected solution quality and the PDB as what
can be achieved by the algorithm.

It is expected that the reference value would always be lower
than L and Ls; however, it may happen that it would not be the
case, because the reference solution is also only an approximation
as an optimal algorithm for the general MTP is not available.
Therefore, negative values of the PDB and PDM indicate that the
evaluated algorithm provides better solutions than the selected
reference algorithm. An algorithm providing the reference solution
is described in the next section.

3.2. Algorithm comparison

Due to randomized nature of the SOM based algorithm, it is
desired to compare the performance and results of the proposed
modifications of SOM for the TSP statistically. Therefore, for
each modified variant of the SOM algorithm and each particular
problem 100 trials are performed in order to obtain representative
samples of the two evaluated distributions. The distributions are
the required computational time of the SOM adaptation procedure,
and the length of the path found. The algorithm comparison
is based on statistical tests using a null hypothesis Hy, i.e.,
Hp represents that the algorithms provide statistically identical
results (regarding the required computational time, or the path
length), and the alternative hypothesis is that the results are
different.

The required computational time is evaluated using the
Wilcoxon test of the null hypothesis, because the distributions of
the time are not Gaussian. The algorithms are considered different,
i.e,, one is faster than the other, if the p-values obtained by the
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Wilcoxon test are less than 0.001. In such a case, the difference
between the required computational times of the compared
algorithms is statistically significant.

The comparison according to reference paths is evaluated in
a different way. It is because the reference path is found using a
deterministic algorithm, which always provides the same solution,
while paths found by the SOM-based algorithm differ due to
randomization. Therefore, the one-sample Wilcoxon test is used
as it is suggested by the authors of [38]. Similarly to the above
comparison, once the p-values of the test statistics are less than
0.001, the null hypothesis is rejected; thus, the paths provided by
the algorithms differ.

It is expected the SOM algorithm would provide a bit worse
solution (in terms of path length) than the reference algorithm, and
therefore an interesting question is how much are the solutions
found by SOM worse than the reference solution. The one-sample
Wilcoxon test is used to find such a qualitative measure. It is
performed as follows. The reference path’s length is iteratively
increased by a given percentage level p;, and such a length is
compared with the distribution of the paths found by the SOM
algorithms. Once the null hypothesis is accepted, the iterative
procedure is terminated, and the current value of p; denotes
the desired qualitative measure. In a case that a basic quality
of solution indicator (e.g., PDM) is negative, the reference path’s
length is decreased in a similar manner, and the qualitative
measure p; indicates how much the SOM based solution is better
than the reference one.

4. Reference algorithm

The multi-goal path planning problem is de facto the TSP once
the paths between goals are known. Therefore, for a point goals,
approximate algorithms guaranteeing the solution quality of the
TSP can be used for a particular restricted problem variant of the
MTP. However, the authors of [39] note that approximate factors
characterize algorithms in the worst case, which are often several
times worse than the optimal solution, and such loose bounds are
not valuable in real-world situations.

Similarly, the main drawback of the approaches addressing
the safari or zoo-keeper route problems is their focus only on
the particular restricted problem variant. Also a more general
MTP formulation as the TSPN does not really help due to the
complexity of the general TSPN. For restricted variants of the
TSPN, the situation is similar to the safari route problems, i.e., the
approaches are considered only in a plane.

The aforementioned reasons lead us to propose a practical
approach to find a reference solution of the MTP, which will
provide a solution “good” enough for comparing it with the SOM
based approaches, and which will also be easy to implement.
The main idea of the reference algorithm proposed is based on a
transformation of the MTP to the TPP using the optimal solution of
the underlying TSP. The algorithm is as follows.

4.1. Transformation of the MTP with polygonal goals to the TPP

The main difference between the MTP and the TPP is that in the
TPP, the sequence of goals visits is known; however, the difficulty
is how to connect the consecutive goals, i.e., which point of each
goal has to be visited in order to minimize the total distance
traveled. Therefore, the TPP is obtained by solving the MTP as the
TSP with point goals. Thus, for each polygonal goal a single point
representative is determined.

Convex goals are assumed in the problem addressed, therefore
a centroid of each polygonal goal can be used as a point goal in the
TSP. More formally, let G = {g1, g2, ..., g} be a set of n convex
goals in the polygonal map W with v vertices, and c(g) denotes

the centroid of the goal g. Then, all shortest paths between the
centroids are found using Dijkstra’s algorithm and the complete
visibility graph that is found in O((n + v)?) [40]. Such an instance
of the TSP with n point goals is solved exactly by the concorde
solver [41]. The found solution of the TSP is then used to retrieve a
sequence of the goals’ visits for the consecutive TPP.

4.2. Approximate solution of the TPP

Even though approaches for optimal [11] or approximate
solution of the TPP [35] have been proposed, their main drawback
is that they consider goals only in a plane or in a simple polygon.
Therefore, a simple approximate algorithm to deal with goals in
the polygonal domain is proposed here. The algorithm is inspired
by the iterative procedure proposed in [35] while the obstacles are
addressed by sampling the boundary of each polygonal goal into
a finite set of points. For simplicity, the sequence of goals’ visits
obtained from the solution of the TSP is (g1, £, ..., &) in the rest
of this section.

Having a given sampling distance p and each polygonal goal g
represented by a set of straight line segments S; = {s1,s2, ..., Sk},
the sampling is performed as follows. First, for each goal only
segments entirely lying inside ‘W are considered, as the path never
goes through an obstacle. Then, each such segment s is sampled
using its end points. If the length of the segment |[s| is less than
2p then a middle point is an additional representative point of s,
otherwise additional points are sampled equidistantly using p. At
the end of the sampling, each goal g; has associated a set of the
representative points P;.

The reference solution of the MTP with polygonal goals is found
as a path over the goals using the sequence of representative
points. The path is found by the following refinement procedure.

1. Initialization. Construct an initial touring polygons path using
the first representative points of each polygonal goals. Let the
path be defined by Path = (p1, pa2, ..., pn), where p; € P; is the
selected representative point of the ith goal, and let L = |Path|
be the length of the shortest path induced by Path, e.g., found
using the visibility graph of the points P; in ‘W.

2. Refinement.

e Fori=1,2,...,n
- Findp} € P; minimizing the length of the path d(p;_1, p})+
d(p}, pi+1), where d(py, py) is the length of the shortest
path (among obstacles) from py to p;, po = pp, and ppy1 =

P1-
- If the total length of the current path over point p; is
shorter than over p;, replace the point p; by p;.
e Compute new path length L., using eventually refined
representative points.
3. Termination condition. If Lyew — L < € Stop the refinement.
Otherwise L <— Ly, and go to Step 2.
4. Final path construction. Use the last sequence of the representa-
tive points of the goals and construct the path using the shortest
paths among obstacles between two consecutive points.

The refinement procedure is repeated until the change of the
path length is not significant (smaller than the value €). The value
of € can be set arbitrarily, but it is clear a smaller value improves the
solution quality. Similarly a smaller value of the sampling distance
p can provide a better path; however, it also increases the number
of representatives, thus increases the computational burden. The
algorithm has been used to find a reference solution of the problem
set presented in Section 6.1. During the computation, € = 0 has
been used and it has also been observed that the quality of found
solutions is almost independent of the value of p, e.g., for less
than 0.1 m (except the jh;o-coverage problem). It is caused mainly
because the convex goals are formed from segments that typically
contains several segments with length about 0.1 m, because the
goals are created on top of a triangular mesh of the polygonal maps.
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b

Fig. 3. An example of the shortest between goals, (a) problem denses-A, and (b) shortest paths between consecutive goals.

4.3. Comments

An eventual issue of the proposed reference algorithm could
be the high computational requirements for a high number of the
representative points. This is mainly related to the computation
of the visibility graph and determination of the shortest paths
among obstacles. Moreover, if the distance matrix (or paths)
are pre-computed and stored in memory, the algorithm can
be computationally infeasible due to memory requirements. In
particular, this is the case of the jh,-coverage problem, which
represents an instance of the WRP.

These issues can be resolved using the approximate shortest
path between two points in ‘W [29], which is principally similar
to the node-goal path described in Section 2.1. For the problems
examined in this paper the approximation provides the same
paths, while it is up to two orders of magnitude faster than the pre-
computation of the required shortest path and construction of the
complete visibility graph using the approach [40], because of the
saved initialization phase.

Here, it should be noted that the number of required paths is
relatively small, as only paths between two consecutive goals need
to be determined. In Fig. 3, polygonal goals of the denses-A problem
and particular paths between each consecutive goal are presented.

The optimal solution of the TSP can be computationally
demanding, therefore a heuristic algorithm like the Chained
Lin-Kernighan approach [42] can be a more practical approach.
However, the optimal solution together with the proposed solution
of the TPP provide a strictly deterministic approach, which does
not require statistical evaluation of the reference solutions; thus,
it simplifies the algorithms’ comparison a bit.

Convexity of the goals and randomization

Although the convexity of the goals is used for determining the
representative points for the TSP as the centroids of the polygonal
goals, the convexity is not mandatory. Alternatively any point can
be used as a representative of the polygonal goal, because the
sequence of polygons’ visits is retrieved from the TSP; thus, each
point is associated to the selected polygon.

The reference algorithm proposed is strictly deterministic;
however, it can be straightforwardly randomized. First, the initial
path can be created from a randomly selected sampled point of
each polygon. Besides, each loop of the refinement can be started
from a random goal. Such a randomization has been extensively
evaluated and its significant benefit has not been observed as it
mainly affects the number of required refinements to find the same
final path. It is because the refinement itself is very fast, while the
initialization phase using the visibility graph and pre-computed
shortest path is computationally demanding.

5. Adaptation rules for polygonal goals

Although it is obvious that a polygonal goal can be sampled into
a finite set of points and the problem can be solved as the MTP
with partitioned goals, the aforementioned SOM procedure can be
straightforwardly extended to sample the goals during the self-
adaptation. Thus, instead of explicit sampling of the goals three
simple strategies of how to deal with adaptation toward polygonal
goals are presented in this section. The proposed algorithms are
based on SOM for the TSP using centroids of the polygonal goals
as point goals, see Section 2.1. However, the select winner and
adapt phases are modified to find a more appropriate point of the
polygonal goal and to avoid unnecessary movement into the goal.
Therefore, a new point representing a polygonal goal is determined
during the adaptation and used as a point goal, which leads to
computation of a shortest path between two arbitrary points in
‘W. Similarly to the node-goal queries an approximate node-point
path is considered to decrease the computational burden. The
approximation is also based on a convex partition of ‘W and the
shortest path over cells’ vertices (a detailed description can be
found in [29]).

5.1. Interior of the goal

Probably the simplest approach (called goal interior here) can be
based on the regular adaptation to the centroids of the polygonal
goals. However, the adaptation, i.e., the node movement toward
the centroid, is performed only if the node is not inside the
polygonal goal. Determination if a node is inside the polygonal goal
with n vertices can be done in O(n) computing the winding number
or in O(logn) in the case of a convex goal. So, in this strategy,
the centroids are more like attraction points toward which nodes
are attracted because the adaptation process is terminated if all
winner nodes are inside the particular polygonal goals. Then,
the final path is constructed from a sequence of winner nodes
using the approximate shortest node-node path. An example
of solutions using the new termination condition and with the
avoiding adaptation of winners inside goals is shown in Fig. 4.

This adaptation strategy clearly demonstrates one of the SOM’s
advantages that is its ability to reflect local properties of the
environment during the adaptation, which, in this case, is the test
if a node is inside the polygonal goal.

5.2. Attraction point

The strategy described above can be extended by determination
of a new attraction point at the border of the particular polygonal
goal toward which is being adapted. First, a winner node v* is found
regarding its distance to the centroid c(g) of the goal g. Then, an
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(a) A path found using termination of the
adaptation if all winners are inside goals,
L=78.4m.

(b) A path found with avoiding adaptation of
winners inside goals, L = 65.0 m.

Fig. 4. Examples of found paths without and with consideration of winners inside the goals. Goals are represented by yellow regions with small green disks representing
the centroids of the regions. Winner nodes are represented by small orange disks. The length of the found path is denoted as L. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

the winner node

the intersection point

(a) An intersection point.

(b) A path found, L = 59.5 m.

Fig. 5. Examples of an intersection point and a path found using the attraction algorithm variant, blue disks are nodes. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

intersection point p of g with the path S(v, c(g)) is determined.
The point p is used as a point goal to adapt the winner and its
neighboring nodes. This modification is denoted as attraction in the
rest of this paper.

An example of determined intersection point p and the final
path found is shown in Fig. 5. The path is about five meters shorter
than a path found by avoiding adaptation of winner nodes inside
the goals. Determination of the intersection point increases the
computational burden, and therefore an experimental evaluation
of the proposed algorithm variants is presented in Section 6.

5.3. Selection of alternate goal point

A polygonal goal can be visited using any point of its border. The
closest point at the goal border to a node can be determined in the
winner selection phase. To find such a point, straight line segments
forming the goal are considered instead of the goal centroid.
Moreover, a goal can be attached to the map, and therefore only
segments lying inside the free space of ‘W are used. Let §; =
{s1, 52, ..., Sk} be the border segments of the polygonal goal g that
are entirely inside ‘W. Then, the winner node v* is selected from a
set of non-inhibited nodes regarding the shortest path S(v, s) from
a point v to the segment s, s € S,. Beside the winner node, a point
p at the border of g is found in the winner selection procedure

as a result of determination of S(v, s). The border point p is then
used as an alternate point goal for the adaptation, therefore this
modification is denoted as alternate goal.

Determination of the exact shortest point-segment path
can be too computationally demanding, therefore the following
approximation is considered. First, the Euclidean distance between
the node v and the segment s is determined. If the distance is
smaller than the distance of the current winner node candidate,
then the resulting point p of s is used to determine an approximate
path among obstacles between p and v. If [S(p, v)| is shorter than
the path length of the current winner node candidate to its border
point, v becomes the new winner candidate and p is the current
alternate goal (border) point.

Even though this modification is similar to the modification
described in Section 5.2, it provides sampling of the goal boundary
with a shorter distance of the goal point to the winner node; thus,
a shorter final path can be found. An example of found alternate
goal point and the path found is shown in Fig. 6.

6. Results
6.1. Problems description

The proposed adaptation rules in Section 5 have been
experimentally verified in a set of problems. Due to a lack of
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the alternate goal
(border) point

(a) An alternate goal point.

(b) A path found, L = 57.4 m.

Fig. 6. An example of the alternate goal point and the final path found. Red straight line segments around the goal regions denote parts of the goal border inside the free
space of ‘W. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1

Properties of environments and their polygonal representation.
Map Dimensions (m x m) No. vertices No. holes
jh 20.6 x 23.2 196 9
pb 133.3 x 104.8 89 3
h2 84.9 x 49.7 1061 34
dense 21.0 x 21.5 288 32
potholes 20.0 x 20.0 153 23

commonly available multi-goal path planning problems with
polygonal goals several problems have been created within a map
of real and artificial environments." An overview of the basic
properties of the environments is shown in Table 1. Maps jh, pb, and
h2 represent real environments (building plans), and maps dense
and potholes are artificial environments with many obstacles.

Sets of polygonal obstacles have been placed within the maps in
order to create representative multi-goal path planning problems.
The name of the problem is derived from the name of the map,
considered visibility range d in meters written as a subscript,
and particular problem variant, e.g., the problem name is in the
form mapy-variant. The value of d restricts the size of the convex
polygonal goal, i.e., all vertices of each goal are closer than d. An
unrestricted visibility range is considered in problems without the
subscript. The convex polygonal goals are found on top of the
triangular mesh, details about the procedure used can be found
in [29].

The problems have been designed in order to create representa-
tive problems particularly focused on specific characteristics. Here,
a short description of the motivation behind their design is pro-
vided to present the main aim of the problems. The problems are
visualized in Fig. 7, where the centroids of the convex goals and ref-
erence paths found are showed as well. The map jh represents an
office-like environment with many rooms. Therefore, several prob-
lems within this map are created with a motivation of patrolling
or inspection tasks. The jh,-A problem variant is a general problem
with goals in a few rooms and partially trespassing to corridors. In
the jhs-corridors and jh-rooms problems, the expected path should
not enter rooms. Thus, the aim of these problems is to demonstrate
the ability of the evaluated algorithms to take an advantage of the
polygonal goals, as the centroids are located relatively far from the
border, and visitations of the centroids unnecessary increase the
path.

T Al problems and supporting materials are available at http://purl.org/faigl/
safari

The jh,o-coverage problem represents an instance of the WRP
with restricted visibility range, and therefore the algorithm’s
performance in this problem can indicate a flexibility of the
approach tested.

The problem h2s-A is within a large map, and it is included in
the problem set mainly because of the map’s complexity; thus, it
serves as a load and study of the algorithm’s performance in maps
with many vertices, e.g., to study the influence of the supporting
algorithms like the approximate shortest path. The pbs-A problem
is a very simple problem; however, a solution can stuck in a local
optima, due to the goal in the middle of the map. The dense map is a
complicated environment, and therefore several alternative paths
connecting the goals exist, e.g., see Fig. 3. In addition, the dense-
small problem contains several goals that are inside another goal.
These goals can show the ability to avoid focus of the algorithm on
the larger goals, as the visit of the inside goals is mandatory. Finally,
the problem potholes,-A contains many small obstacles, which are
relatively sparse. The “right” sequence of goals visit is relatively
easy to find; however, the final path length depends on a proper
selection of the points at the border of the polygonal goals.

6.2. Results

Each problem of the aforementioned problem set has been
solved using the reference algorithm described in Section 4
and three SOM based algorithms proposed in Section 5. Due to
randomization of the SOM based algorithms, 100 trials have been
performed for each algorithm and problem; thus, the total number
of found solutions by the SOM’s approaches is 3000 for all problems
of the problem set.

All the results have been obtained using the same computa-
tional environment consisting of a C++ implementation of the al-
gorithms compiled by G++ version 4.6 with -O2 optimization, a
single core of the i7-970 CPU at 3.2 GHz, 12 GB RAM, and 64-bit
version of FreeBSD 8.2. Therefore, all the required computational
times presented can be directly compared.

The basic quality indicators (described in Section 3.1) are
presented in Table 2. Regarding the PDM values presented, it is
clear that a more sophisticated adaptation rule provides better
results. However, it seems it is not the case of the computational
complexity indicated by the column T, where the average of the
required computational time of the adaptation is presented. A
statistical evaluation of the results is presented in Table 3, where
two algorithms are compared using the null hypothesis approach
described in Section 3.2. Once the null hypothesis is rejected
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(a)jhy —A,n =16, Lef = 56.6 m.  (b) jhs-corridors,

1= 11, Lt = 59.5m.

(e) jhyo-coverage,
n = 106, L = 108.9 m.

(f) h25-A, n = 26, Lyer = 395.0 m.

(h) dense-small,
n =35, Ler = 103.5 m.

(i) denses-A,n = 9, Lyes = 57.9 m.

(c) jhyo-doors,
=21, Le = 62.1m.

(d) jh-rooms,
n =21, Le = 87.6m.

(8) pbs-A,n =7, Ler = 263.7 m.

(j) potholes,-A, n = 13, Lrer = 68.4 m.

Fig. 7. The problems examined and the reference solutions found, n is the number of goals, Ly is the length of the reference path, yellow regions are polygonal goals, and
small green disks are the goals’ centroids. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2

Results of the proposed SOM adaptation rules.
Problem n Lres (M) Goal interior Attraction Alternate goal

PDM PDB T, (ms) PDM PDB T, (ms) PDM PDB T, (ms)

denses-A 9 579 17.30 10.87 12 7.11 3.62 16 1.81 0.24 23
dense-small 35 103.5 14.69 7.99 171 10.54 3.90 205 8.58 —0.13 274
h2s-A 26 395.0 6.89 3.95 130 2.98 1.06 160 1.89 0.22 210
jhyo-coverage 106 108.9 2291 15.40 872 —2.63 —7.62 1040 —13.75 —14.53 1578
jhyo-doors 21 62.1 14.86 851 35 8.79 553 38 0.38 —0.04 63
jhy-A 16 56.6 16.95 11.34 24 743 3.18 28 0.69 0.18 45
jhs-corridors 11 59.5 17.06 12.02 13 10.38 7.01 16 0.84 0.12 21
jh-rooms 21 87.6 17.75 13.82 53 0.78 0.18 68 0.61 0.21 73
pbs-A 7 263.7 4.18 1.23 5 2.87 0.17 7 3.42 0.07 1
potholes,-A 13 68.4 7.58 4.57 18 3.12 0.91 23 3.01 0.53 29

(the statistics are not the same), an additional null hypothesis is
evaluated to determine if one algorithm is statistically better than
the other one, i.e., using the average required computational time
T, and the average length of the path found L. The adaptation rules
proposed are incremental, and therefore the attraction variant
is compared against the goal interior variant, and similarly the
alternate goal is compared against attraction. Because all the
p-values are very small, characters ‘—’, ‘4, and ‘ =’ are used to

denote that an algorithm is slower, a solution is better, or the
performance indicators are statistically identical.

The results show that the reference algorithm provides better
solutions (except for the problem jh,,-coverage). Table 4 presents
a deeper insight into the performance characteristics of the
reference and SOM based algorithms. First, an estimation of the
approximate factor of the SOM based algorithm is shown in the
column p;%, viz Section 3.2. For the alternate goal algorithm, this
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Table 3 Table 5
Comparison of SOM based algorithms. Required computational times for preparing supporting structures.
Problem a;: a: Map No. convex polygons Tpartition (MS) Tuisibility (MS)
Attraction goal interior Alternate goal attraction jh 77 12 4.0
Length Time Length Time pb 41 10 0.7
p " h2 476 65 24.0
d::?;mn : - i - dense 150 12 18
h2s-A M B M - potholes 75 8 0.7
jhyo-coverage + - + -
J_Emfoors i - i - p = 0.05 and it rapidly increases for a lower p, which makes
j’h:—corridors M _ i - this approach unsuitable for a high number of representative
jh-rooms + _ - _ points. On the other hand, the approximation of the shortest
pbs-A + - = - paths used in the SOM based algorithms can also be used for
potholes,-A + - = = the approximate TPP algorithm. In Table 6, basic performance

+— the algorithm a, provides better paths than a,.

factor is mostly less than one percent; however, the required
computational time is significantly smaller (more than three
orders of magnitude) than for the reference algorithm. Note the
time T of the reference algorithm does not include the time needed
to find the optimal solution of the TSP. The computational burden
of the reference algorithm is caused by the computation of the
visibility graph and all shortest paths between points of two
consecutive goals. The number of the points used is denoted by
n, in the table, and it is significantly higher than the number of
goals due to sampling of the goals’ borders. The refinement itself
is very fast as all required distances are pre-computed, therefore
only the total time to solve the TPP is presented in the column T.
On the other hand, the required computational time T of the SOM
based algorithms consists of the time to initialize the supporting
structures (for the approximate shortest path) Tiy;;, which is shown
as a number of percentage points of T in the column Ti,;%, and the
adaptation time T,. The initialization itself consists of construction
of the convex partitioning and visibility graphs, and computation
of all shortest paths between the map vertices (and centroids
of the convex goals).? The required computational times of the
constructions are presented in Table 5 and are negligible regarding
the time to compute the shortest path, which is indicated by Ty;.
The partition is found by Seidel’s algorithm [43] and the number of
convex polygons utilized in the approximation of the shortest path
is presented in the second column. The visibility graph is found
using [40].

The computational requirements of the reference algorithm
using the pre-computed shortest paths are very high. This is
especially significant for the problem jh,,-coverage. Beside the
required computational time, the required memory footprint to
store the pre-computed paths and distances is about 6.5 GB> for

2 Note these shortest paths are also required for the optimal solution of the TSP.
3 Using a regular implementation of the distance matrix.

Table 4
Comparison of the reference algorithms with the SOM based algorithms.

indicators are presented for variants based on the exact shortest
paths using the visibility graph and approximate shortest paths.
In both variants, the sampling distance p is set to 0.1 m. Notice
the refinement itself is very fast, and it is done in a fraction of
the initialization time, e.g., in units of microseconds. Although the
approximation reduces the initialization time (indicated in the
column Ti,; %), the initialization is still a significant part of the
total required computational time as the initialization is a pre-
computation of all shortest paths between map vertices and only
several refinement steps are needed to find a final solution. The
approximation provides the same results as the exact shortest path
except for the problem jh,,-coverage, where the final path found
is about three percentage points worse due to limited precision
of the approximation. However, the total required computational
time and also required memory are significantly smaller. Thus, the
approximation seems to be sufficient for these problems.

Based on the results, the best solutions found for each
problem and over all approaches have been selected for a further
comparison. The lengths of the best paths are depicted in Table 7.

6.3. Discussion

The presented results provide a performance overview of the
proposed adaptation rules. The principle of the attraction and
alternate goal algorithm variants are very similar; however, the
alternate goal variant provides better results. The advantage of
alternate goal is sampling of the goals’ borders. Even though a
simple approximation of the shortest path between a node (point)
and a goal's segment is used, the precision of the approximation
increases with node movements toward the goal, and therefore,
a better point of the goal is sampled. This is an import benefit
of the SOM adaptation, which allows usage of a relatively rough
approximation of the shortest path.

On the other hand, the attraction algorithm variant is more
straightforward, as the path to the centroid is utilized as a path
to the fixed point goal. The fixed point goals allow us to use
pre-computed all shortest paths from map vertices to the goals,
which improves the precision of the approximate node-goal path.

Problem Reference (TPP part) Goal interior Attraction Alternate goal
n, L(m) T (s) % T(s) Tinit% pu% T(s) Tinic% pu% T(s) Tinic%

denses-A 2470 57.9 42 16.5 0.06 80 6.1 0.06 74 0.7 0.06 63
dense-small 7857 103.5 91.7 139 0.22 22 9.3 0.25 19 8.0 0.33 17
h2s-A 10873 395.0 216.7 6.2 0.89 85 29 0.93 83 0.9 0.92 77
jhyo-coverage 23720 108.9 30334 221 0.90 3 -2.0 1.06 2 —13.8 1.60 1
jhyo-doors 12733 62.1 552.0 135 0.06 39 7.9 0.06 38 0.3 0.08 19
jhg-A 6773 56.6 979 15.8 0.03 25 6.8 0.04 33 0.6 0.06 24
jhs-corridors 4757 59.5 424 16.3 0.03 54 95 0.04 59 0.7 0.04 51
jh-rooms 989 87.6 0.7 17.0 0.07 22 0.5 0.08 18 0.5 0.10 23
pbs-A 3664 263.7 111 23 0.01 46 0.8 0.01 37 0.5 0.01 27
potholes,-A 3050 68.4 16.3 6.5 0.03 43 20 0.04 38 1.9 0.04 33
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Table 6
Comparison of the reference algorithms for the TPP.

Problem n n, Visibility graph Approx. shortest path
L(m) T(s) Tinic % L(m) T(s) Tinic%

denses-A 9 546 57.9 0.35 100 57.9 0.08 76

dense-small 35 1733 1035 271 100 1035 0.07 54

h2s-A 26 2285 395.0 7.34 100 395.0 0.86 92

jhyo-coverage 106 12274 110.0 499.93 100 1135 0.54 4

jhyo-doors 21 2684 62.1 8.60 100 62.1 0.10 21

jhy-A 16 1458 56.6 2.14 100 56.6 0.05 45

jhs-corridors 11 1015 595 1.05 100 59.5 0.02 37

jh-rooms 21 227 87.7 0.08 99 87.7 0.03 84

pbs-A 7 784 263.7 0.32 100 263.7 0.01 29

potholes,-A 13 644 68.4 051 100 68.4 0.02 63
Table7 the TSP is worse. However, the dense-small problem also indicates
Best solutions found. that a bit better solution can be achieved for a different sequence.

Problem n Liese (m) Notice, the solutions in Fig. 9 are almost identical, except the

denses-A 9 57.9 part approximately in the middle of the map. These examples

dense-small 35 10347 demonstrate an advantage of the SOM based approach that

F;S’ﬁovmge 132 332& includes the solution of the TSP and selection of the appropriate

10~ . . s . .

jhyg-doors 21 62.0° points of visits in a single unified way. )

jha-A 16 56.6 It should also be noted that an optimal solution of the TSP can

jhs-corridors 1 59.5 be computationally demanding due to NP-hardness of the TSP.

ﬂ;m:ms 25 22;5 Therefore, regarding the results, the overall comparison of the

PDs- . . . . . .

potholes,-A 13 68.4 solution quality, and the required computational time the alternate

2 The solution is found by the alternate goal algorithm.

Besides, such an approximation is less computationally intensive
in the cost of higher memory requirements. However, this benefit
is not evident from the results, because the alternate goal variant
provides a faster convergence of the network.

The statistical comparison of the SOM based algorithms
provides a strong statistical evidence (as the p-values obtained
by the Wilcoxon test are almost always less than 0.001)
that the variants proposed are different. In particular, a more
sophisticated rule provides better solutions. Even though the
required computational times also increase, the differences
between the attraction and alternate goal variants are small and in
a few cases statistically identical.

The reference algorithm provides better results than average
solutions of the SOM based algorithms, except for the problem
Jjhqo-coverage, which is an instance of the WRP with a restricted
visibility range. In this particular problem, the path based on the
optimal solution of the related TSP does not provide a competitive
solution to the paths found by the SOM approach (regarding the
PDM as well as p; %), see Fig. 8. This indicates unsuitability of the
pure combinatorial approaches for the WRP.

On the other hand, a worse average performance of the alternate
goal algorithm is in the dense-small problem. In this problem,
the SOM based solver was stuck at a local optima due to many
obstacles; however, the best solution found over 100 trials is better
than the reference solution. The best solutions are pretty much
similar as can be seen in Fig. 9. In other problems, the differences
in the final path length are very small and they are caused by
sampling of the convex goals’ boundary, i.e., a small change of the
final visiting point can decrease the path a bit. Besides, the final
path of SOM based solutions are determined using the approximate
shortest path; thus, the approximation can also affect the solution
quality.

The above two examples of solutions demonstrate that better
solutions are obtained for a different sequence of goals’ visits
than the sequence prescribed by the optimal solution of the
TSP for the centroids. In the jh,y-coverage problem, many goals
overlap each other, and therefore, centroids are not a suitable
representation; thus, it is not surprising the solution based on

goal approach provides an acceptable trade-off between these
two performance indicators. Besides, it also provides a greater
flexibility than the reference algorithm based on a solution of the
TPP, as it scales better for more complex problems with many goals,
and it also includes an approximate solution of the TSP.

6.3.1. Non-convex goals

Although convex goals are assumed in the problem formulation,
the presented adaptation rules do not depend on the goal
convexity. The convex goals are advantageous in visual inspection
tasks (covering tasks), because the whole goal region is inspected
by visiting the goal at any point of the goal. Also a point
representative of the convex goal can be simply computed as the
centroid. If a goal is not convex a point that is inside the goal has
to be determined for the goal interior and attraction algorithms.
Basically any point inside the goal can be used, but a bias toward
the point can be expected. The alternate goal algorithm variant
uses a set of segments representing the goal, and therefore this
algorithm can be directly used for problems with non-convex goals
(see Fig. 10), which is an additional advantage of the SOM based
approach for the MTP.

7. Conclusion

A self-organizing map based algorithm for the multi-goal path
planning problem in the polygonal domain has been presented.
Three variants of the algorithm addressing polygonal goals have
been proposed and experimentally evaluated for a set of problems
including an instance of the WRP with restricted visibility range
(jhqo-coverage). Even though the solution quality is not guaranteed
because of SOM, regarding the experimental results the algorithms
provide high quality solutions. The advantage of the proposed
alternate goal algorithm is that it provides a flexible approach
to solve various routing problems including the TSP, WRP, safari
route problems, and their variants in the polygonal domain, and
eventually with non-convex goals.

From a practical point of view, the SOM algorithms proposed are
based on relatively simple algorithms and supporting structures,
which is an additional benefit. The SOM adaptation schema is not a
typical technique used for routing problems motivated by robotics
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(a) The reference algorithm, L = 108.9 m.

(b) The alternate goal algorithm, Lyes = 93.1 m.

Fig. 8. The best solutions of jh,,-coverage found by the reference and alternate goal algorithms, the optimal solution of the related TSP is in red. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

i

(a) The reference algorithm, L;ef = 103.5 m.

o

(b) The alternate goal algorithm, Lpesy = 103.4 m.

Fig. 9. The best solutions found for the problem dense-small by the reference and alternate goal algorithms.

e

a) The jh environment.

b) The potholes environment.

Fig. 10. Solutions found by the alternate goal algorithm for problems with non-convex goals.

applications. The results presented demonstrate flexibility of SOM
based algorithm; thus, they may encourage roboticists to consider
SOM as a suitable planning technique for other multi-goal path
planning problems.

Beside the SOM approaches, a simple and straightforward
reference algorithm has been presented. It provides an easily
reproducible reference solution of the examined problems with
polygonal goals. Therefore additional problems can be proposed

to create a set of problems for benchmarking further multi-goal
path planning algorithms. An initial set of such problems is provide
together with the reference solutions found by the proposed
approaches.

Although the proposed algorithms are able to deal with non-
convex goals, the adaptation rules needs a further development
and an additional evaluation in such problems, which is a subject
of our future work.
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Appendix A. Nomenclature

w A polygonal map representing the robot workspace,
W CR?

G A set of (polygonal) goals to be visited

g Agoal,g C W

n A number of goals, n = |G|

S Segments forming the goal g

n, A number of points representing all goals (for the

reference algorithm)
c(g) A centroid of the goal g

S(p,g) Anapproximate path fromptog

|S(p, g)| Alength of the approximate path S(p, g)

L A length of the path found

Lres A length of the reference path

Lpest A length of the best path found

N A set of nodes

v A node (neuron weights),v € W,v € N

o A learning gain (neighboring function variance)

f(o,D)  Aneighboring function

o A gain decreasing rate

" A learning rate

PDM The percent deviation from the reference path’s
length of the mean solution value

PDB The percent deviation from the reference of the best
solution value

pi% An estimation of the approximate factor of SOM
based solutions to the reference solution

T The required computational time (or its average
value in the case of SOM algorithms)

Ta The required computational of the adaptation phase

Tinit% The part (in percent) of T spent in the initialization

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.robot.2012.08.013.
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Speeding Up Coverage Queries in 3D Multi-Goal Path Planning

Petr Janousek, Jan Faigl

Abstract—In this paper, we present a supporting structure
for speeding up visibility queries needed for a 3D multi-goal
path planning arising from a robotic coverage problem where
goals are sensing locations from which an object of interest
can be covered. Although such coverage problems can be
addressed by a decomposed approach where sensing locations
are determined prior finding the sequence of their visits, the
proposed approach is motivated by a solution of the problem in
which sensing locations are simultaneously determined together
with evaluation of the path connecting them in order to provide
a cost effective inspection path. The proposed structure divides
the space into elements that support determination of suitable
sensing locations to cover the objects during solution of the
multi-goal path planning.

I. INTRODUCTION

A wide range of practical robotic applications can be
formulated as the multi-goal path planning problem, which
stands to determine the cost effective path visiting a set of
goal locations. Then, the robot is requested to travel along
the found path and perform its operation at the goals [1].
However, planning problems originated from inspection or
surveillance missions also include a problem of determining
the goal locations. Thus, the problem is to determine the most
suitable locations according to the mission objective while
the path connecting them will be feasible and cost effective.

In inspection or surveillance missions, the goals are lo-
cations from which an object of interest is measured using
the sensoric system, which has usually limited range, and
therefore, the mission task can be formulated as a variant
of the robotic coverage problem. An applicable approach to
address the coverage problem is to decompose the problem
into an independent determination of the sensing locations
and the consecutive multi-goal path planning [2], [3] that
connects the locations providing the required coverage. For
view planning applications where it is necessary to consider
both the motion and sensing costs [4], the sensing locations
should be selected simultaneously with the path planning,
otherwise a poor solution would be found [5].

However, even an independent determination of the mini-
mal number of sensing locations is computationally demand-
ing [6], as the problem can be formulated as a variant of
the art gallery problem that is NP-hard for polygonal maps.
The sequencing part of the problem is a variant of the
traveling salesman problem (TSP), which is also NP-hard.
Thus, considering all possible sensing locations in the se-
quencing part of the planning is computationally intractable
and regular branch-and-bound or state space search methods

Jan Faigl is with dept. of Computer Science and Engineering, Czech
Technical University in Prague, Technickd 2, 166 27 Prague, Czech Republic
faiglj@fel.cvut.cz

978-1-4673-5642-8/13/$31.00 ©2013 IEEE

are not applicable because of very large search space. There-
fore, approximate algorithms are preferred and sampling
based methods are utilized to determine possible sensing
locations considering particular visibility constraints [7], [8]
for which a connecting path can be found using efficient
heuristics for the TSP, e.g., [9]. Here, it is worth to mention
that planning a path connecting two locations in a high-
dimensional configuration space is a challenging problem
itself [10], and therefore, also in this part of the problem,
sampling based approaches are usually considered for high-
dimensional configuration spaces together with lazy path
evaluation techniques [11].

In this paper, we aim to address the coverage planning
problem of determining a feasible and cost effective path
from which a given set of objects will be covered using
a camera with a limited visibility range, i.e., we do not
consider explicitly prescribed sensing locations. The problem
is a variant of the covering salesman problem [12] that can
be decomposed to the set cover problem and consecutive the
TSP [13], [14]. Contrary to such approaches, we rather aim
to simultaneously determine the suitable sensing locations
together with optimization of the path.

The proposed approach is motivated by the recent ap-
proximate algorithm for the watchman route problem (WRP)
based on the self-organizing neural network [15]. The main
idea of the algorithm is that a path is represented by a
neural network that evolves in the problem domain, where
it is adapted towards not covered parts of the environment
while the coverage from the path is maintained during the
evolution. This approach requires a lot of visibility queries
that can be computational expensive and to avoid this issue
a supporting structure based on a cover set built on top of
a triangular mesh is utilized in [15], which speeded up the
process significantly and make it computationally feasible.

The main contribution of this paper is to provide a
step further to extend the principles used in the algorithm
developed for the WRP in a plane to a more general 3D
environment, where visibility queries can be computationally
demanding [16], [17]. Therefore, in this paper, we propose
a simple algorithm to built a supporting structure providing
information what can be covered from a single point and
estimation of the space from which a particular object can
be covered. The approach is based on dividing the free
space into n elements and associating information about
possible coverage of the objects. In particular, the query
about possible coverage of objects from a particular element
has complexity O(1) and having an object to be covered,
the query about possible covering regions has complexity
O(k), where k is the size of the query output. It is worth
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to mention that the aim of the proposed structure is not to
provide precise information about visibility according to all
visibility constraints, e.g., a limited field of view. It should
be rather considered as a supporting structure to restrict the
search space where suitable sensing locations can be found.

Although visibility queries are part of various 3D frame-
works and it is a fundamental problem in computer graphics,
there is not a similar structure (to the best of our knowledge)
and the frameworks are not directly applicable unless a kind
of ray-tracing technique is used, which seems to be too slow
for the proposed approach.

The proposed planning method is mostly similar to [14].
We also consider a general representation of the environ-
ment, where 3D objects are tessellated into a triangular
mesh, where particular triangles have to be covered from
the inspection path being found. Our approach mainly dif-
fers in the way how the sensing locations are determined.
In [14], the sensing is considered at discrete locations,
which are determined prior finding a path connecting the
needed locations. In our approach, we consider a larger space
(but still restricted) where sensing locations are determined
during solution of the sequencing part of the planning.
Thus, the proposed planning procedure can be considered
as a determination of the path guaranteeing coverage of all
goals. Then, the path can be further processed to determine
particular discrete sensing locations, a.k.a. solution of the
vision points problem. However, the determination of the
locations is inherently included in the utilized process of
neural network evolution. Hence, the sensing locations are
found simultaneously with the path.

The paper is organized as follows. The problem definition
providing an application context of the proposed speeding up
structure is presented in Section II together with an overview
of the proposed planning method. An algorithm to construct
the supporting structure is presented in Section III. In Sec-
tion IV, the proposed multi-goal path planning approach
with the supporting structure is described with a use case
of its application. Finally, concluding remarks are presented
in Section V.

II. PROBLEM DEFINITION

Our motivational problem is planning a surveillance mis-
sion for a micro aerial vehicle (MAV) operating in a com-
bined indoor/outdoor environment, where it is requested to
periodically take a snapshot of Objects of Interest (Ools);
hence, the robot needs to avoid obstacles. It is worth to
remind that in this paper we are concern the structure
supporting the visibility (or coverage) queries. The aim of the
structure is to restrict the search space for determining sens-
ing locations that provide the requested coverage. Therefore,
we consider several assumptions and an abstract formulation
of the problem to make the description of the proposed
structure and planning approach more straightforward.

The considered problem is planning an inspection path
for a mobile robot equipped with a camera with the limited
visibility range p that is requested to see a given set of
Ools. Here, as the first step of the proposed planning

TABLE I
USED SYMBOLS

Symbol Description

w the robot working space W C R3?

C the configuration space of the robot

P the visibility distance range of the sensor (camera)

Wy CW  free space of W

T a triangular mesh of obstacles of W, T = (Vyy, Tyy)

M all parts of the objects’ surfaces to be covered M C Ty,

o the number of objects 0o = | M|

m an object to be covered m € M

Gprm a graph representing roadmap Gprm = (Vprm, Eprm)

E a tetrahedral mesh of Wy

n the number of tetrahedra in the mesh n = |E|

e; a tetrahedron of E, ¢; € E

Se a surface (triangle) of the tetrahedron e

Cm a covering space of m with respect to p, Cp, C
Wy, Cm C E

C a union of all covering spaces C = U,,,cps Cm

(e,m,T)  visibility dependency of e with respect to m, where T are

surfaces of e € E with respect to m € M supporting
coverage of m from a point p € e

Va a set of all visibility dependencies for each e; € E with
respect to m, Vg(m) = {(e1,m,T),...,(en,m,T)}

approach, we assume omnidirectional vision, e.g., realized
by camera heads attached to the robot. The operational
environment YW C R? is represented by a set of vertices V'
connected to triangles T'yy representing obstacles. Without
lost of generality we assume the triangular mesh 7 =
(Vw,Tyw) of the obstacle surfaces is sufficiently dense.
Let Wy be the free space of W, Wy C W. Each triangle
considered in this paper is defined by a sequence of three
vertices defining the triangle (surface) normal that is oriented
towards W;. All objects to be covered form a set M C T'yy;
so, the objects are represented by a set of triangles.

We consider a mobile robot capable of moving in 3D
environment (e.g., MAV) and for its point-to-point motion
planning we consider the notion of the configuration space
C and the Probabilistic Road Map (PRM) planner [18].

For each object m € M we define a covering space
Cp, € Wy from which m can be seen using the sensor with
the distance range p. C,, is found by the algorithm proposed
in Section III. Although C can be a high dimensional
configuration space, we consider the visibility in 3D, and
therefore, we divide Wy into a set of tetrahedra considering
the triangular mesh 7, e.g., using [19]. We assume that for
each tetrahedron the ratios of the lengths of tetrahedron’s
edges is as small as possible, which pragmatically means
the tetrahedral mesh is sufficiently dense and the centroid of
each tetrahedron is inside the tetrahedron. We consider the
tetrahedral mesh F as a set of tetrahedra e, where each e
consists of four triangles, without a formal introduction of
tetrahedral mesh vertices and triangles to make the text more
readable. The particular point of our interest are tetrahedra
incident with m € M as such a tetrahedron is the initial
step for building C,. An example of visualization of the
environment W and objects M is shown in Fig. 1.

C is linked with VW using the centroids of the tetrahedra
FE and vertices of the roadmap find by the PRM method. For
simplicity, we consider centroids as the initial configurations
for building the roadmap, instead of a random sampling C.
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(a) environment and objects of interest — W, M

Fig. 1.
red triangles denote the particular objects (part of them) of interest.

Then, we discard all tetrahedra without connected centroids
with the roadmap; hence, for each tetrahedron, we have at
least one feasible configuration. In the rest of the paper, we
assume that all e € E have at least one feasible configuration
and there exists a feasible path to other tetrahedra (their
associated configurations). The built roadmap forms a graph
Gprm = (Vprm, Eprm), Where each vertex v € V., is
associated to a configuration ¢ € Cyy.c., which projection to
R3 is the centroid of the particular e € E.

The used notation is depicted in Table 1. Having the above
defined preliminaries, the planning problem can be defined
as follows. Find the shortest closed inspection path I in the
graph Gppm, I = (v1,02,...0,),01 = Vg, v; € Gprym Such
that all objects M will be seen from I by the sensor with the
visibility range p, i.e., for each m € M there exists v; € I
such that v; € C,y,.

A. Planning Method Overview

The planning problem is basically a selection of con-
figurations from V., that are in the covering spaces C
such that the path connecting them is the shortest one,
which is the problem addressed by the self-organizing map
(SOM) for the WRP [15] and later used for finding the path
connecting a set of convex goals in 2D [20]. Considering
such a selection technique is available, the planning approach
can be summarized in the following steps:

1) Tetrahedralization of the working environment (e.g.,

using [19]);
2) Generation of the motion planning roadmap (e.g., using
the PRM method [18]);

3) Construction of covering spaces C,,, for each m € M;

4) Determination of the inspection path using SOM;
The first two steps are straightforward. The construction of
the covering spaces is presented in the next section and a
brief description how the SOM technique can be utilized is
presented in Section IV.

III. CONSTRUCTION OF COVERING SPACES

The covering space C,,, of the object m consists of a set of
tetrahedra and represents a part of Wy from which the whole
object m can be seen with respect to the limited visibility
range p. Thus, for each m we are looking for tetrahedra C,,
such that distance of vertices of each tetrahedron e € C,,

(b) covering spaces — E

Example of the environment representation, tetrahedralization of the freespace, objects of interest (red triangles) and their covering spaces. The

from the vertices of m is less or equal to p. However, we
have to deal with obstacles, as for each point of C,, the
visibility of the whole m must be guaranteed. The proposed
construction algorithm for determining C,, is based on an
iterative procedure that inserts a new tetrahedron e to C,,
while the fundamental constraint of the visibility of m from
p € e is preserved.

(a)
Fig. 2. Examples of the visibility dependency of the tetrahedron e with
respect to m; (a) (e,m, T) = {se}; (b) (e,m, T) = {se,s.}.

The visibility means that for any point p € e the ray
connecting p with any point of m does not intersect an
obstacle. Hence, the key point for keeping the visibility of
m from e are surfaces of e that can be intersected by such
a ray. We denote such surfaces as T' C e with respect to
m and define a notion of visibility dependency (e, m,T),
which assign T to e regarding m. For each m € M and
tetrahedron e € E we find the set of surfaces T' by testing
if a vertex of m is on the opposite side of the plane defined
by se € e than a point inside e. The test is performed as
a scalar product of the s. normal and ray (pe,pm). The
principle is schematically depicted in Fig. 2. The complexity
of determination of all visibility dependencies is ©(no),
where n is the number of tetrahedra (n = |E|) and o is
the number of objects o = | M.

Having the visibility dependencies (e,m,T') for each
e € E and m € M, the building of C,, is relatively straight-
forward as we basically consider each tetrahedron e and test
if the visibility constraint will be satisfied after insertion of
e into C,,. However, the tetrahedra can be inserted in an
arbitrary order, and therefore, we define a notion of transitive
dependency of e on other tetrahedra that must be inserted to
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Algorithm 1: Construction of covering space C,

Input: m — an object to be covered

Input: E,V,;(m) — tetrahedral mesh and all visiblity
dependencies with respect to m

Output: C,,, — the covering space for the object m

1 eqp; < get e such that e € E A s € e Aincident(s, m);

2 Cp, < {eans};

3 Ef'r'ee —FE \ Cm;

4 Eclase — 0;

5

6

7

while Je € Efcc A enpr € Cp, Aldncident(e, eppy) do
G(Eg, H) + get_dependency(m, C,, (e,m,T));
Cy, + add_tetrahedra(C,,, G(Eq, H));

C,, in order to satisfy the visibility of m from e. So, during
the iterative insertion we construct an auxiliary graph G with
information about the transitive dependency. In addition, we
maintain two sets FE.,s. containing tetrahedra transitively
dependent on obstacle or closed tetrahedron and E ... with
all not yet processed tetrahedra. For the incremental construc-
tion of (), we need a relation of neighbouring tetrahedra
(or incident triangles), and therefore, we define the Boolean
operator incident(eq, e3) that is true if e; and ey share the
same triangle (except its orientation) and false otherwise.
The construction procedure is depicted in Algorithm 1 and
the sub-procedures get_dependency and add_tetrahedra in
Algorithm 2 and Algorithm 3, respectively.

Algorithm 2: Construction of the dependency graph G
Input: m — an object to be covered
Input: ey — tetrahedron being added to C,
Input: E,V,;(m) — tetrahedral mesh and all visiblity
dependencies for e; € E with respect to m
Output: G(E ¢, H) — the dependency graph for eg

1 Eypp < {e|e € E Nincident(eg, e)} U{eo};

2 H «

3 while E;,,, N Efcc # 0 do

4 e; < get e such that e € Eyp,p ANe € Ejpee;

5 Efree — Efree \ {ei};

6 Treigh < {t|t € (e;,m,T) Aincident(e;, t)};

7 if Theigh N Ty # O then

8 Eg + EcgU{e;}// e is incident with obstacle;
9 L Eclose — Eclose U {ei};

10 else

11 for ecign € {ele € EAt € Thpeign At € €} do
12 Etmp — Etmp ) (Efrcc n {encigh)};

13 Eqs <+ EgU {eneigh};

14 H < HU{(e;,encigh)}// add the relation;

15 Gie G(Eq, H),

In Algorithm 2, the auxiliary graph G = (Eg, H) is
determined. G represents all tetrahedra on which e being
added to C,, is transitively dependent, i.e., each vertex of
G represents a tetrahedron and an oriented edge h € H
between e; and e indicates the transitive dependency of e;
on es. The tetrahedron e can be added to (), only if it is

not dependent on a tetrahedron that is in FEj,s. Or it is not
incident with an obstacle. The procedure is repeated until
all transitively dependent tetrahedra are processed (Line 3).
Then, G is used for adding all tetrahedra that are not incident
with an obstacle or closed tetrahedron into C,, using the
procedure add-tetrahedra, see Algorithm 3.

Algorithm 3: Adding tetrahedra to C,,
Input: m — an object to be covered
Input: G(E¢, H) — the current dependency graph
Output: C,,, — the covering space for the object m
1 Eact — Eclose
2 while |E,.:| > 0 do
3 eqct < get a tetrahedron from FE .
4 Eclose <~ Eclose U {eact};
5 Eact — Eact \ {eact};
6
7

// test all close tetrahedra;

Edep — {€|€ ¢ Eclose A (e7eact) S H}9
Eact — Eact ) Edep;

8 Cy + Cy U(Eq \ Eciose) // add non closed dep. tet.;

Fig. 3.  An example of the transitive dependency, triangles represent
surfaces’ of tetrahedra. The orange tetrahedra are tested for being added
to Cyp, the green triangles are tetrahedra already in C,y,, and gray triangles
are not yet processed tetrahedra. The red triangles are tetrahedra from, which
visibility to segment (AB) of m cannot be guaranteed. In the left figure, the
tetrahedra can be added to C',, while for the right case, T is transitively
dependent on 73 with respect to m and visibility of m from Tj cannot be
guaranteed because 73 is incident with an obstacle.

An example of the transitive dependency is shown in
Fig. 3 using triangles (2D slice of tetrahedron) for a clarity.
Although the proposed construction of the covering space
C,, is only approximation, the crucial point of C,, is that it
guarantees coverage of m within the limited sensor range p.

A. Computational Complexity and Queries

The computational complexity of Algorithm 2 is O(n) as
in the worst case all tetrahedra can be processed. It is also
the case of Algorithm 3 where up to O(n) elements can
be examined. Thus, the total complexity of the construction
algorithm is ©(no).

Regarding a usage of the structure, it provides O(1)
queries for test if a point in a particular tetrahedron can cover
an object. For a general point, the complexity depends on the
finding the particular tetrahedron for the point, which can be
based on the kd-tree using centroids of the tetrahedra. Such a
query can be answered in the average complexity O(logn).
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TABLE 11
CONSTRUCTING TIMES FOR TETRAHEDRAL MESH COVERING SPACES

Parameter Scene 1  Scene 2 Scene 3  Scene 4
No. of triangles 1280 1280 2444 2444
No. of tetrahedra 2538 10 852 27 071 113 505
Tetrahedral mesh [ms] 90 351 809 3 705
Covering spaces [ms] 33 46 271 746

However, the closest centroid does not guarantee the point
is inside the particular tetrahedron for a weakly constructed
tetrahedral mesh. Then, for such a case a local search
method can be applied. On the other hand, the proposed
planning approach considers configurations with associated
information about its tetrahedron; hence, it is not necessary to
perform the finding query and the information about covering
is available instantly.

We consider four scenes with different number of tetra-
hedra to provide an overview of the real computational
requirements using a computer with iCore7 3.4 GHz CPU.
Scene parameters and construction times are depicted in
Table II. In all cases, 10 covering spaces are constructed.

In addition, we consider 100 000 random queries in the
Scene 2, where the average query time to find a tetrahedron
for a random point is about 94 115 using an exhaustive search.

IV. MULTI-GOAL INSPECTION PLANNING

The planning algorithm for determining the inspection
path I is inspired by the self-organizing map (SOM) ap-
proach for the WRP [15], which is based on SOM adaptation
schema for the TSP [21]. However, rather than SOM for the
polygonal domain, we utilize a SOM variant for a graph
input [22] and use the roadmap G/, as the graph.

The planning algorithm is basically an unsupervised learn-
ing procedure for two-layered competitive neural network.
An input vector is a vertex of G, representing an object
being covered. The output layer consists of & units represent-
ing neuron weights. The output units are organized into a uni-
dimensional structure N' = (vq,...,1%), which is called a
ring in the rest of this paper. Hence, the ring represents a path
evolving in the graph G,,,. The weights are coordinates in
C; however, restricted to the roadmap G-

The learning process is an iterative procedure in which
objects m € M are presented to the network in a random
order. For simplicity, we can assume that each object m
has associated a particular vertex v,, € V.. First, a
winning neuron v* with the shortest distance to vy, is
determined in the competitive phase. Then, v* together
with its neighbouring nodes are adapted towards v,,. The
adaptation is terminated if each object has its winner neuron
in a sufficiently small distance. Using the graph input, the
learning process can be described as an evolution of a path
(ring) in the problem domain defined by the G)p,. The
adaptation of nodes can be interpreted as their movement
towards the presented goal along paths found in the G,
e.g., using Dijkstra’s algorithm. The neurons’ weights repre-
sent the inspection path I and the order of object visits can
be retrieved by traversing the output layer (ring).

The procedure is relatively simple but its simplicity pro-
vides a great flexibility to address variant of inspection
planning. First, we introduce usage of the covering space
Cy,. The modification of the standard TSP algorithm is
straightforward. In the competitive phase, we consider C,
to select not only the winning neuron v* but also a new
goal towards which the winner will be updated; thus, the
competitive rule is as follows

(v*,p) ¢ argmin, ¢\ occ,, (distance(v, centroid(e)),

where p is a point of the particular e, e.g., the centroid
of e. Then, v* and its neighbouring neurons are adapted
towards p instead of v,,. The idea is that instead of direct
planning to visit the object, we rather prefer to find some
point from which the object will be covered. Here, we
employ the constructed covering space C,,, which allows the
proposed straightforward extension without any performance
lost related to compute the coverage.

Notice, it is not necessary to consider all tetrahedra in C,,
for evaluation of the best possible goal p. We can sample only
few of them or we can use other techniques. The advantage
of Cy, is that it provides explicit representation of possible
goal candidates from which the object can be covered.

A. Use Case

The feasibility of the proposed planning approach based
on the covering spaces C,, has been verified in a city like
environment represented by 2 444 triangles, see Fig. 1. We
consider restricted visibility range p=2. The objects to be
covered are 10 triangles representing 7 physical objects of
interest. One object is represented by 3 incident triangles that
is located at the bottom right part of the environment. Two
underlying graphs with 27 071 and 113 505 nodes (for two
tetrahedral meshes) are used to provide an overview of real
computational requirements.

TABLE III
COMPUTATIONAL TIMES OF PARTICULAR PLANNING PARTS

Tet. PRM Covering SOM SOM SOM

mesh spaces epoch=20 epoch=40 epoch=60
0.8s 0.7 s 210 ms 0.6 min 1.1 min 1.4 min
37s 28s 352 ms 3.3 min 6.5 min 8.4 min

Particular required computationally times of each part of
the proposed planning method are depicted in Table III for
a single core CPU running at 3.4 GHz. The final solution
has been found after 60 learning epoch of the SOM learning
procedure. However, SOM provides a solution at the end of
each epoch and for example after 40 epochs the path length
was 38.6 while the final solution after 60 epoch has length
27.3. In the case of a finer tetrahedral mesh (with 113 505
tetrahedra) the lengths are 35.2 and 26.3, respectively. An
example of found solution is visualized in Fig. 4.

During the learning, particular distances and paths be-
tween nodes are computed on demand and saved for a
latter usage, therefore, the complete distance matrix is not
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Fig. 4. An example of found solution in the city-like scenario.

computed. The memory footprint is about 1 GB and 10 GB,
respectively, which is significantly lower than a required
storage for the complete distance matrix. It should be noted
that herein presented results are part of the feasibility study
of the proposed covering space structure and the planning
method, and we consider the distance matrix for simplicity.

V. CONCLUSION

In this paper, we present an algorithm for construction
supporting structures to avoid computing covering queries
in the proposed 3D inspection planning and demonstrate
how it can be utilized in multi-goal inspection planning.
The structure can be considered as an enabling technique
for applying self-organizing map (SOM) based planning
principles in 3D environments. SOM provides interesting
results for inspection planning in planar environments where
they are able to solve multi-goal path planning problems with
point or polygonal goals [20] and even problems without
explicitly prescribed goals [15].

The proposed structure of covering spaces is our early
results towards applying self-organizing principles in a high-
dimensional space. Although the current problem formula-
tion assume an omnidirectional vision, the proposed prin-
ciples provide a different mechanism of searching the state
space than regular branch and bound algorithms or decom-
posed approaches. It allows a simultaneous determination
of suitable goal locations during solving the sequencing
part of the multi-goal path planning. Therefore, additional
constraints can be considered during the self adaptation of
the used neural network, e.g., a coverage from the ring can
be computed according to the robot’s orientation. Hence, we
expect the proposed framework will allow to consider not
only sensor with a limited field of view, but additional motion
constraints of the robot. In addition, it is not necessary to
precompute roadmap using centroids of all tetrahedra. Lazy
motion planning such as [14] can be combined with the

covering spaces. Such further developments are subject of
our current work.
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This article describes a simple monocular navigation system for a mobile robot based on the map-and-replay
technique. The presented method is robust and easy to implement and does not require sensor calibration or
structured environment, and its computational complexity is independent of the environment size. The method
can navigate a robot while sensing only one landmark at a time, making it more robust than other monocular
approaches. The aforementioned properties of the method allow even low-cost robots to effectively act in large
outdoor and indoor environments with natural landmarks only. The basic idea is to utilize a monocular vision
to correct only the robot’s heading, leaving distance measurements to the odometry. The heading correction
itself can suppress the odometric error and prevent the overall position error from diverging. The influence of
a map-based heading estimation and odometric errors on the overall position uncertainty is examined. A claim
is stated that for closed polygonal trajectories, the position error of this type of navigation does not diverge.
The claim is defended mathematically and experimentally. The method has been experimentally tested in a set
of indoor and outdoor experiments, during which the average position errors have been lower than 0.3 m for

paths more than 1 km long. © 2010 Wiley Periodicals, Inc.

1. INTRODUCTION

The fundamental problem of mobile robotics is to au-
tonomously navigate a mobile robot along a given path.
To fulfill this task efficiently, a robot should maintain some
knowledge about its surrounding environment, especially
its position relative to the path or desired destination. Such
knowledge may be represented in the form of a map, which
can be used to estimate the robot position as well as for mo-
tion planning. The map is either known a priori and the
robot performs localization or is created online and the mo-
bile robot performs so-called simultaneous localization and
mapping (SLAM).

The solid mathematical background of the Kalman
filter (Kalman, 1960) allowed the research community to
establish a sufficient theoretical framework for extended
Kalman filter (EKF)-based SLAM. Proof of EKF conver-
gence (Dissanayake, Newman, Clark, Durrant-Whyte, &
Csorba, 2001) and lower bounds (Gibbens, Dissanayake, &
Durrant-Whyte, 2000) on robot position uncertainty have
been formulated. Upper bounds are discussed in the pa-
per by Mourikis and Roumeliotis (2004), where the au-
thors emphasize the importance of robot heading precision
during the mapping process. To our knowledge, there is
no other paper concerning upper bounds of EKF position
estimation. Unfortunately, optimality of the Kalman filter
is proven only for linear systems and therefore the main

A multimedia file may be found in the online version of this article.

weakness of EKF methods lies in the linearization. The pa-
pers by Julier and Uhlmann (2001) and Martinelli, Tomatis,
and Siegwart (2005) indicate that due to errors introduced
in linearization, EKF methods might provide inconsistent
results. Although the linearization process poses a signifi-
cant threat to the consistency of the position estimation, it
can be elegantly avoided using the inverse depth represen-
tation (Civera, Davison, & Montiel, 2008; Montiel, Civera,
& Davison, 2006).

1.1. Vision-Based Navigation

The theoretical solutions of bearing-only SLAM have
gained importance as the computational power of today’s
computers allows real-time image processing. The nature
of visual information allows us to build sparse maps from
well-distinguishable landmarks (Lowe, 1999, 2004), which
are relatively easy to register. However, the range informa-
tion is not provided directly by standard cameras. Some
bearing-only methods use stereovision in order to obtain
immediate range information (Kidono, Miura, & Shirai,
2000). Other methods substitute stereovision by motion and
use a single monocular camera (Davison, Reid, Molton, &
Stasse, 2007; Holmes, Klein, & Murray, 2008; Montiel et al.,
2006).

Most monocular approaches are computationally com-
plex and achieve low operational speeds when mapping
large-scale environments. This problem can be solved by
dividing a large global map into smaller maps with mu-
tual position information (Bosse, Newman, Leonard, &

Journal of Field Robotics 27(5), 511-533 (2010) © 2010 Wiley Periodicals, Inc.
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Teller, 2004; Clemente, Davison, Reid, Neira, & Tardds,
2007; Estrada, Neira, & Tardds, 2005; Williams, Cummins,
Neira, Newman, Reid, et al., 2009).

A different approach is to build an environment
map in advance and then use the map for localization
(Blanc, Mezouar, & Martinet, 2005; Chen & Birchfield, 2009;
Matsumoto, Inaba, & Inoue, 1996; Royer, Lhuillier, Dhome,
& Lavest, 2007; Segvic, Remazeilles, Diosi, & Chaumette,
2007). In Royer et al. (2007), a monocular camera is car-
ried through an environment and a video is recorded. The
recorded video is then processed (in a matter of several
minutes) and subsequently used to guide a mobile robot
along the same trajectory. Chen and Birchfield (2006, 2009)
present an even simpler form of navigation in a learned
map. Their method utilizes a map consisting of salient im-
age features remembered during a teleoperated drive. The
map is divided into several conjoined segments, each asso-
ciated with a set of visual features detected along it and a
milestone image indicating the segment end. When a robot
navigates a segment, its steering commands are calculated
from positions of currently recognized and remembered
features. The robot using this method moves forward with
a constant speed and steers right or left with a constant ve-
locity or does not steer at all. In Chen and Birchfield (2006),
the segment end was detected by means of comparing the
milestone image with the current view. The improved ver-
sion (Chen & Birchfield, 2009) of the qualitative navigation
uses a more sophisticated method to determine the seg-
ment end. The method takes into account the odometry,
the current heading, and the similarity of the current and
the milestone images. Still, the authors mention some prob-
lems with detection of the segment end. We claim that the
segment end can be detected solely by the odometry and
the comparison with the milestone image is not always nec-
essary. Comparison with the milestone image increases ro-
bustness of the navigation method in cases of wheel slip-
page and other odometry errors.

The map-and-replay approach is closely related to vi-
sual servoing, in which the control of a robot is based on vi-
sual measurements (Chaumette & Hutchinson, 2006, 2007).
Control inputs are either computed directly by a compar-
ison of the current and reference images (Remazeilles &
Chaumette, 2007; Segvic, Remazeilles, Diosi, & Chaumette,
2009) or by a computation of camera coordinates in the
world reference frame (DeMenthon & Davis, 1992; Wilson,
Hulls, & Bell, 1996). Normally, the visual servoing relies on
a geometrical approach to calculate relations of map land-
marks to the current image salient points (Segvic et al.,
2009). These relations are used to calculate an interaction
matrix (Chaumette & Hutchinson, 2006), which links obser-
vations to control inputs of the robot. The robot’s control in-
put can be computed from the Jacobian (Burschka & Hager,
2001), which relates world and image points, or from ho-
mography or fundamental matrices (Guerrero, Martinez-
Cantin, & Sagiiés, 2005; Remazeilles & Chaumette, 2007),

which relate coordinates between actual and reference im-
ages. A strong reliance on the geometrical representation
requires either camera calibration (Burschka & Hager, 2001;
Remazeilles & Chaumette, 2007; Segvic et al., 2009) or struc-
tured environment (Guerrero et al., 2005; Remazeilles &
Chaumette, 2007). A more detailed overview of visual ser-
voing approaches related to the field of mobile robotics
is presented in Chen and Birchfield (2009) and Segvic
et al. (2009). Contrary to the visual servoing approach, our
method does not require a calibrated camera and does not
rely on the environment structure.

1.2. Motivation

The target of our efforts is to create a system that would be
able to reliably navigate a mobile robot in an unstructured
environment of any size. To achieve this challenging goal,
we have decided that the navigation system should have
the following properties:

® Scalability: Its computational complexity should be in-
dependent of the environment size.

® Simplicity: The method should be as simple as possi-
ble, because complex systems are more likely to contain
errors.

® Swiftness: It has to satisfy real-time constraints.

Standardness: It should use off-the-shelf equipment.

® Stability: The position uncertainty should not diverge
with time.

The basic idea of the map-and-replay technique is sim-
ilar to that of the industrial practice of programming sta-
tionary robots. One of the basic methods to program a
stationary robot is by means of (tele)operation. A skilled
operator guides the tip of the robot arm in order to perform
a certain task (e.g., painting, welding). The robot records
signals from its built-in receptors—typically incremental
rotation sensors at its joints. During the robot operation,
the recorded sequences serve as inputs for the robot’s con-
trollers. Though well established and efficient, this method
is not applicable to mobile robots in unstructured environ-
ments due to the uncertainty in the robot—environment in-
teraction. A typical example would be the use of odometry
in a mobile robot localization—the uncertainty caused by
wheel slippages tends to accumulate, which does not make
odometry suitable for long-term localization and naviga-
tion. To effectively cope with the uncertainty in the robot’s
position, a mobile robot must use exteroreceptors to sense
the surrounding environment. A mobile robot position and
its heading can be estimated through measurements of the
surrounding environment.

Several authors of SLAM algorithms acknowledge the
fact that the uncertainty of robot heading is a crucial factor
affecting the quality of the map and subsequently the qual-
ity of position estimation in the localization step. The in-
fluence of the heading estimation has been evaluated both
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theoretically and practically (Frese, 2006). We extend the
idea of heading estimation importance and claim that for
long-term mobile robot localization it is sufficient to use ex-
teroceptive sensors for heading estimation and the Carte-
sian coordinate estimation can be based just on propriocep-
tive sensors.

1.3. Paper Overview

A minimalistic approach to monocular localization and
mapping is presented in this paper. We claim that for the
navigation in a known environment, a robot needs a map
just to estimate its heading and can measure its position
by odometry. Formulating this particular instance of the
navigation mathematically, we provide a formal proof of
this claim. Furthermore, several large outdoor experiments
confirm the expected system performance. We think that
the most important contribution of our paper is not the
presented method but the convergence proof presented in
Section 3. The proof would apply to several other methods
(Chen & Birchfield, 2009; Guerrero et al., 2005; Zhang &
Kleeman, 2009) that use vision to correct heading and lat-
eral position errors.

The rest of this paper is organized as follows. The
proposed minimalistic navigation method is described in
the next section. A mathematical model of this naviga-
tion method is outlined and its properties are examined
in Section 3. A theorem that claims that this method pre-
vents position uncertainty divergence is formulated and
proven in the same section. The theoretical analysis is fol-
lowed by a discussion on the practical issues of the navi-
gation method. Experimental results verifying whether the
system retains the expected properties are described in
Section 5. A conclusion briefly discusses the properties
of the proposed navigation method and outlines possible
future improvements.

2. NAVIGATION SYSTEM DESCRIPTION

The proposed navigation procedure is based on the map-
and-replay technique. The idea is simple: a robot is man-
ually driven through an environment and creates a map
of its surrounding environment. After that, the map is
used for autonomous navigation. A similar technique for
autonomous navigation based on computation of a robot
steering from positions of remembered features has been
described in Chen and Birchfield (2006), Royer et al. (2007),
and Zhang and Kleeman (2009). To minimize the robot sen-
sor equipment and to satisfy the “standardness” property
mentioned in Section 1.2, we consider the most available
sensors. The fundamental navigation property of a mobile
vehicle is the traveled distance, which can be estimated by
odometry. The odometric error is cumulative and therefore
can be considered precise only in the short term. Another
standard available sensor that does not require additional
infrastructure is a compass. A fusion of data from the com-

Journal of Field Robotics DOI 10.1002/rob

pass and odometry can provide position estimation but is
still unsuitable for long-term navigation, because it lacks
sufficient feedback from the robot’s surrounding environ-
ment. To increase robot ability to sense the environment,
one of the most advantageous sensors is a camera, which
can provide lots of information.

Using these three main sensors, we have proposed the
following simple navigation strategy:

® The robot is navigated along a sequence of straight line
segments.

® At each segment start, the robot is turned to a direction
according to the compass value.

® The steering control along the straight segment is com-
puted from matched visual features providing a so-
called visual compass.

® The end of each segment is recognized according to the
traveled distance, which is measured by odometry.

The crucial component of the proposed navigation proce-
dure is a map, which is created by guiding the robot along
a path consisting of straight-line segments. Each segment
has its own landmark map L;, consisting of salient fea-
tures detected in images captured by the robot’s forward-
looking camera, the initial robot orientation « and the seg-
ment length s. Once the map is created, the robot can travel
autonomously within the mapped environment. During
the navigation along a segment, the robot establishes cor-
respondences of the currently seen and previously mapped
landmarks and computes differences in the expected and
recognized positions for each such correspondence. The
robot steers in a direction that reduces those differences
while moving straight at a constant speed until its odom-
etry indicates that the current segment has been traversed.
At the end of the segment, the robot switches to the next
learned segment, turns to a direction of the initial orienta-
tion of the segment, and traverses the segment while keep-
ing its direction according to matched features.

The next section describes the robot equipment and
image processing. The algorithm for the map creation dur-
ing the learning phase is described in Section 2.2, and the
navigation algorithm is depicted in Section 2.3.

2.1. Robot Equipment

The proposed method has been verified on the P3AT robot
with the Unibrain Fire-i601c camera, the TCM2 compass,
and the HP 8710p laptop; see Figure 1(a). At first, the cam-
era was equipped with a 7-mm objective with an electron-
ically driven iris to prevent sunlight dazzle. The objective
was replaced by a new one with a 4.5-mm focus length
in 2008. At the same time, the electronically driven iris
was substituted by a software exposure control. The lap-
top has Core2 Duo CPU running at 2.00 GHz and 1 GB
of memory. Image processing is computationally demand-
ing, and therefore the additional UPC70 battery had been
used for longer experiments. To increase the robot action
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(a) Robot configuration for experiments

Figure 1.

radius, the three original batteries (connected in parallel)
were replaced by one high-capacity battery and the robot’s
internal PC was disabled. The navigation system was im-
plemented in C/C++ as a stand-alone Linux application.

The image processing algorithm is a critical compo-
nent of the navigation system. The vision system must pro-
vide enough information to steer the robot in the right
direction. Furthermore, it should be robust to real-world
conditions, i.e., changing illumination, minor environment
changes, and partial occlusions, and of course its perfor-
mance should allow for a real-time response.

We have decided to use the speeded up robust features
(SUREF) (Bay, Tuytelaars, & Van Gool, 2006) method to iden-
tify landmarks in the image. The algorithm provides im-
age coordinates of the salient features together with their
descriptions. The SURF method is reported to perform bet-
ter than most SIFT (Lowe, 1999) implementations in terms
of speed and robustness to viewpoint and illumination
changes. To achieve an additional speedup, the CPU imple-
mentation of the algorithm was adjusted to use both proces-
sor cores for parallel image processing. The captured image
is horizontally divided, and the parts are processed in par-
allel. Later, we switched to the GPU (Cornelis & Van Gool,
2008) version of the algorithm. The GPU version has better
real-time performance but is less distinctive than the CPU
implementation (Svab, Krajnik, Faigl, & Preucil, 2009). Nor-

d

(b) Image captured by robot camera and detected
SURF positions

i\ O Segment ID
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Robot platform, detected features, and navigation graphical user interface (GUI).

mally, the recognition of a 1,024 x 768 grayscale image pro-
vides descriptors of 150-300 features and takes 100-500 ms.
The outdoor environment is usually richer in detected fea-
tures, and image processing tends to be slower than in-
doors. A typical outdoor processed image with highlighted
feature positions is shown in Figure 1(b).

2.2. Learning Phase

In the learning phase, the robot is manually guided through
an environment in a turn-move manner and creates a map
consisting of several straight segments. Each segment is de-
scribed by its length s, its azimuth «, and a set of detected
landmarks L. A landmark / € L is described by the tuple
(e, k,u,v, f, g), where e is the SURF descriptor and k in-
dicates the number of images in which the landmark was
detected. Vectors u and v denote positions of the landmark
in the captured image at the moment of its first and last de-
tection, and f and g are the distances of the robot from the
segment start in these moments.

The procedure that creates a map of one segment is
shown in Algorithm 1. Before the robot starts to learn a
segment, it reads compass data to establish the segment
azimuth o and resets its odometric counters. After that,
the robot starts to move forward, tracks detected features,
and inserts them to the set L until the operator requests

Journal of Field Robotics DOI 10.1002/rob
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Algorithm 1. Learn one segment

Input: o — an initial robot orientation (compass value)

Output: («, s, L) — the data associated to the segment, where s is the traveled distance and L is a set of landmarks, a landmark is the
tuple (k, e, u, v, f, g), where e is the SURF descriptor, & is a counter of feature detection, u and v are positions of the features
in the image (at the moment of their first, resp. last occurrence), f and g denote distance from the segment start according

to u, resp. v.
L<¢ // a set of learned landmarks
T <0 // a set of tracked landmarks
o < compass value // a robot orientation at the beginning of segment learning
repeat

d < current distance from the segment start

foreach t; = (e;, ki, u;, vi, fi, &) € T do
(g, €,) < argmin{||e;, e(s)|| |s € S}

if [|(e;, e < [l(e;, €5)]| then
t; < (ei ki + 1, ui, u,, fiyd)
S« S\ {(uy, e}

else
T < T\{t}

L L« LU{t;}

foreach (u, ¢) € S do
L T« TU{(e,1,u,u,d d)}

until operator terminates learning mode
s <—d
L« LUT

S <« extracted features with associated image position, (u, e) € S, u position, e feature descriptor

// select the best matching descriptor from S to ¢
(up, €,) < argmin{||e;, e(s)|| |s € S\ {(u,, e,)}}// select the next best matching descriptor

// update matched landmark

// remove matched feature from the current set of detected features

// remove t; from the set of tracked landmarks
// add t; to the set of learned landmarks

// add new feature to the set of tracked landmarks

// the total traveled distance along the segment
// add the current tracked landmarks to the set of learned landmarks

to stop. Images are continuously captured and processed
during the movement. For each currently tracked landmark
t; (from the set 7'), two of the best matching features from
the set of new features are found. If these two pairs are
distinguishable enough (Bay et al., 2006), the best match-
ing feature is associated to the tracked landmark, which is
updated (values k, v, g). Each new feature is added to the
set of tracked landmarks 7', and its u and v are set to the
value of the current distance from the segment start and
the counter of the feature detection & is set to one. The seg-
ment description is saved at the end of the segment, and the
operator can turn the robot to another direction and initiate
mapping of a new segment. The format of the file, which
stores the segment description, is shown in Table I.

2.3. Autonomous Navigation Mode

In the autonomous navigation mode, an operator enters
a sequence of segments and indicates whether the robot
should travel repeatedly. The robot is placed at the start of
the first segment, loads the description of the segment, and
turns itself to the segment azimuth and starts moving for-
ward. The navigation procedure is shown in Algorithm 2.
The relevant landmarks for the current robot position (i.e.,
according to the distance from the segment start) are se-
lected from the set of the learned landmarks L. Correspon-
dences between the mapped and the currently detected

Journal of Field Robotics DOI 10.1002/rob

landmarks are established in the same way as in the learn-
ing phase. A difference in horizontal image coordinates of
the features is computed for each such couple. A modus
of those differences is estimated by the histogram voting
method. The modus is converted to a correction value of the
movement direction, which is reported to the robot’s steer-
ing controller. After the robot travels a distance greater than
or equal to the length of the given segment, the next seg-
ment description is loaded and the procedure is repeated.
During the navigation, the robot displays the relevant states
(mapped and recognized landmarks, recognition success
ratio, etc.) on its graphical interface; see Figure 1(c).

An important aspect of this navigation algorithm is the
fact that it does not need to explicitly localize the robot or
to create a three-dimensional map of detected landmarks.
It should also be noted that the proposed method is able
to work in real time. Even though the camera readings are
utilized only to correct the robot direction and the distance
is measured by the imprecise odometry, the position un-
certainty does not accumulate if the robot changes direc-
tion often enough. The stability of the proposed navigation
method is discussed in the next section.

3. STABILITY OF BEARING-ONLY NAVIGATION

First, we describe in an informal way how the robot po-
sition uncertainty is changed as the robot travels a closed
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Table l. A part of a segment map in a text file.
Record Value Meaning
Initial azimuth and length 2.13,7.03 a, s
Landmark 0
First position 760.74, 163.29 uy,
Last position 894.58, 54.44 Vi,
Max visibility 128 ki,
First and last visible distance 0.00, 4.25 Sio» &l
Descriptor 1, 0.116727, —0.000254, 0.000499, 0.000352, ... ey,
Landmark 1
First position 593.32,381.17 uy,
Last position 689.89, 377.23 Vi,
Max visibility 125 ki,
First and last visible distance 0.00, 6.73 S 8&n
Descriptor —1,0.070294, —0.006383, 0.012498, 0.006383, . .. ey,

Algorithm 2. Traverse one segment

Input: («, s, L) — the data associated to the segment, where « is an initial angle of the robot orientation at the segment start, s is the
traveled distance and L is a set of landmarks, a landmark is the tuple (e, k, u, v, f, g), where e is a SURF descriptor, k is a
counter of feature detection, u and v are positions of feature in the image (at the moment of the first, resp. last, occurrence),
f and g denote distances from the segment start according to u, resp. v.

Output: o — a steering speed

turn(a)

d < current distance from the segment start
whiled < s do
T <0

H <9

d < current distance from the segment start

foreach l; = (e;, ki, u;, v;, fi, g) € L do
if f; >d > g; then
| T<TUl}

while |T| > 0 do
(i, ki, u;, v;, fi, gi) < argmax
(U4, e,) < argmin{|le;, e(s)|| |s € S}
(uy, €;) < argmin{|le;, e(s)[| |s € S\ {(ug, e.)}}
if ||(e;, )| < [(ei, €,)]| then
p < —u)d— f)/(g — f)+ui —u,
H <~ HU{p,}
T <« T\ {(ei, ki, ui, v, fiy 8}

® < modus(H)
report w to steering controller

// turn robot in the direction «

// a set of current tracked landmarks
// a set of differences (horizontal position in the image) of matched features

S < extracted features with associated image position, (u, e) € S, u position, e feature descriptor

// add landmark to the tracked landmarks according to the traveled distance

rerk“) // get landmark with maximal number of occurrences k
// select the best matching descriptor from S to ¢

// select the next best matching descriptor

// estimate angle to the matched landmark

// add horizontal difference to set of differences

// discard used landmark

// determine new robot steering velocity

path. This should help to interpret the mathematical for-
malism describing the robot position uncertainty in geo-
metrical terms and make the rest of this section more com-
prehensible. After that, we lay down a formal description
of the proposed navigation method and analyze its stabil-
ity. We outline a model of the robot movement and depict

equations allowing the computation of the robot position
uncertainty. Next, we use these equations to compute the
robot position uncertainty for a closed path. Finally, we ex-
amine the properties of the proposed model and establish
conditions ensuring that the robot position error does not
diverge.
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3.1. Geometrical Interpretation

Suppose that the learned path is a square and the robot has
to travel it repeatedly. The robot is placed at a random [two-
dimensional (2D) Gaussian distribution with zero mean]
position near the first segment start; see Figure 2. The ini-
tial position uncertainty can therefore be displayed as a cir-
cle in which the robot is found with 90% probability. The
navigation procedure is executed, and the robot starts to
move along the first segment. Because it senses landmarks
along the segment and corrects its heading, its lateral po-
sition deviation is decreased. However, owing to the odo-
metric error, the longitudinal position error increases. At
the end of the segment, the circle denoting position uncer-
tainty becomes an ellipse, with a shorter axis perpendicular
to the segment. Heading corrections are dependent on the
value of the lateral deviation (see Section 3.2): the greater
the deviation, the stronger the effect of heading corrections
and therefore the lateral error decreases by a factor i for
every traversed segment. The odometry error is indepen-
dent of the current position deviation and is affected only
by the length of the traversed segment, and therefore it can
be modeled as an additive error o.

After the segment is traversed, the robot turns by
90 deg and starts to move along the next segment. The
uncertainty changes again, but because of the direction
change, the longer ellipse axis shrinks and the shorter is
elongated due to the odometry error. This repeats for every
traversed segment; the size of the uncertainty ellipse con-
verges to a finite value. Because this particular trajectory
is symmetric, axis lengths a, b of the “final” ellipse can be

“k
— Learned path
-2222+ Initial position uncertainty
<> Position uncertainty
= = Robot trajectory example
e

Figure 2. Position uncertainty evolution for a simple symmet-
ric path.
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easily computed by the equations

a = hb,
™
b=a+o,

where £ is the coefficient of the lateral error reduction and
o0 is the odometric error. The position error for o = 1 and
h = 0.25 is shown in Figure 2. Though simple, this particu-
lar symmetric case gives us a basic insight into the problem.
Now we will derive a broader mathematical model of the
navigation, examine its properties, and show that the un-
certainty does not diverge for nonsymmetrical trajectories
as well.

3.2. Navigation

The proposed navigation method is based on the following
assumptions:

® The robot moves in a plane.

® The map already exists in the form of a sequence of con-
joined linear segments with landmark description.

® At least two segments of the mapped path are not
collinear.

® The robot can recognize and associate a nonempty sub-
set of mapped landmarks and determine their bearing.

® The robot can (imprecisely) measure the traveled dis-
tance by odometry.

® The camera is aimed forward, i.e., in the direction of the
robot movement.

The path P consists of a sequence of linear segments p;. The
robot moves in a plane, i.e., its state vector is (x, y, ¢). The
robot we consider has a differential, nonholonomic drive,
and therefore x = v cos(p) and y = vsin(p). For each seg-
ment p;, there exists a nonempty subset of landmarks and a
mapping between the robot position and the expected bear-
ing of each landmark is established. At the start of each
segment, the robot resets its odometry counter and turns
approximately toward the segment end to sense at least
one of the segment landmarks. The robot establishes corre-
spondences of seen and mapped landmarks and computes
differences in expected and recognized bearings. The robot
steers in a direction that reduces these differences while
moving forward until its odometry indicates that the cur-
rent segment has been traversed.

Definition 1 (Closed-path stability property). Assume
that a robot navigates a closed path several times. Furthermore the
robot is using an environment map only for heading corrections
and measuring the distance by odometry. Then a path for which
the robot position uncertainty does not diverge has the closed-
path stability property.

Theorem 1. A path consisting of several conjoined segments
retains the closed-path stability property if the assumptions in
Section 3.2 are satisfied.
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3.3. Movement along One Segment

First, let us examine how a robot moves along one segment.
We will focus on the position before and after traversing
one segment and establish mapping from the robot position
error at the segment start to the robot position error at the
segment end.

To keep the model simple, we assume that the robot
as well as the landmarks are positioned in a plane. We will
consider having a map consisting of a single segment of
length s with d landmarks, with positions represented as
vectors u;. Because the robot is equipped with a forward-
heading camera, learned landmark positions u; are not
assumed to be distributed uniformly along the path but
rather shifted in the direction of the robot movement by a
distance p. We can assume that p ~ % Zﬁl:_ol uyi, where d
is the number of mapped landmarks. Let us place the seg-
ment start at the coordinate origin and the segment end at
the position [s, 0]7. We designate the robot position prior to
the segment traversal as a = [ay, a),.]T and the final robot
positionas b = [by, hy]T ; see Figure 3. Let us assume that at
every moment during the segment traversal, the robot rec-
ognizes a nonempty subset W of previously learned land-
marks and the robot heads in a direction that minimizes the
horizontal deviation of expected and recognized landmark
positions. We denote the intersection of the robot heading
with the learned segment axis as w. At the beginning of
the segment traversal, this position equals approximately
[p, 01" (e, w= [p,0]7). As the robot traverses the seg-
ment, it loses sight of nearby landmarks and recognizes
new ones. As new, more distant landmarks appear in the
robot field of view and nearby landmarks disappear, the
set W changes and the point w moves along the segment.
It can be assumed that the point w moves approximately at
the speed of the robot and therefore it is always ahead of
the robot by the distance p.

Based on these premises, the robot position [x, y]T in
terms of y = f(x) can be established. The robot movement
can be characterized by the following differential equation:

dx P

—=— 2
p— @

y a a —robot start position b - robot final position
X — robot current position § —segment end
>« robot heading *x — mapped landmarks
X
| ~.
I N N x
x 1% N * x X p . x
| px —N— T .
x X N WX xS o« x X
x X x x

Figure 3. Robot movement model for a single path segment.

Solving Eq. (2) gives us a trajectory along which the robot
moves:

y= ce /P,

Considering a boundary condition a, = f(ay), the constant
¢ equals
ay
= =l

Considering that the range of the robot’s sensor is higher
than the robot position uncertainty and that the segment
length is higher than the robot lateral distance from the seg-
ment start (i.e., p > ay, s > |ayl), the constant ¢ equals ap-
proximately a, and the traveled distance is approximately
equal to the segment length. Therefore, we can estimate the
robot position after traveling a segment of length s by the
following equations:

by = ax +s,

3)

by = ay e3P,

We can transform Egs. (3) to the matrix form

-6 )

Equation (4) is valid for an error-free odometry. If the
odometry error is modeled as a multiplicative uncertainty,
the equation changes to

by _ 1 0 ay N 1+v ®)
by) \o e¥/?)\ay * 0 ’

where v is a random variable drawn from the Gaussian dis-
tribution with the zero mean and the variance €. Account-
ing for the heading sensor noise, Eq. (5) changes to

by B 1 0 ay N s+ sv ©
by “\o e/p ay 3 ’

where & is a random variable of the Gaussian distribu-
tion with the zero mean and the variance . Consolidating
Eq. (6), we can state

b=Ma+s.

The aforementioned movement model holds for a segment
aligned with the x axis. For a segment with an arbitrary
orientation «, the movement model becomes

b = RTMRa + RTs, @)
where
cosa sina 1 0 1 0
R= . s M= = .
—sina  cosa 0 es/° 0 m

Equation (7) corresponds to aligning the segment with the
x axis, applying M, adding the odometric and the sensor
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noise, and rotating the segment back to the direction .
In the following text, we use N = RTMR, which shortens
Eq. 7)) to

b=Na+RTs. ®)

All the aforementioned assumptions about the surrounding
environment (landmark shift equal to p, p > ay, etc.) can be
relaxed as long as m < 1 for s > 0.

3.4. Position Uncertainty

Now, the dependence of the robot position uncertainty at
the segment end to its uncertainty at the segment start can
be examined. Consider that the robot position a before the
segment traversal is a random variable drawn from a 2D
normal distribution with the mean 4 and the covariance
matrix A. To compute the robot position uncertainty after
the segment traversal, we apply Eq. (8) to a. Because the
robot movement model in Eq. (8) has only linear and ab-
solute terms, the robot position uncertainty after the seg-
ment traversal will constitute a normal distribution with
the mean b and the covariance matrix B.

We denote a = 4 + i, where i is the mean of a and a
is a random variable of a normal distribution with the zero
mean and the covariance A. Similarly, we can denote b =
b +b. Thus, we can rewrite Eq. (7) as follows:

b = RTMRi + RTs.
We can claim that
56T = RTMRi + RT3)(RTMR3 + RT3)T.
Because § and i are independent and do not correlate,
bbT = RTMRaaTRTMTR + RT&5TR,
which rewritten in terms of covariance matrices is

B = RTMRAR™MTR + RTSR, )

s2¢2 0
S-( 0 t2>'

Equation (9) allows us to compute the robot position uncer-
tainty after traversing one segment.

where

3.5. Traversing Multiple Segments

Let us consider a path consisting of n chained segments de-
noted by i € {0, ..., n — 1} with the end of the last segment
equal to the start of the first segment, i.e., the considered
path is closed. We denote length and orientation of the ith
segment as 5; and «;. The robot position before and after
traversing the ith segment is noted as a; and b;. Because the
robot position at the end of the ith segment equals its start
position at the segment i + 1, we can state that a; 1 = b;.

Journal of Field Robotics DOI 10.1002/rob

The movement model (9) for the ith traveled segment

Aij1 = Bi = R'MiRARIMIR; + RIS;R;.  (10)

Considering N; = R;rMiRi and defining T; = R?SiRi, we
can rewrite Eq. (10) as

Ajiq = NiAiN? + T;.

One can compute the robot position uncertainty in terms
of the covariance matrix after traversing i path segments in
the following terms:

0 i-1
T
Ai=1|T] Nj) Ao (TN
j=i-1 j=0
i-1 j _q [iz1
-1 T T
+301 | T N | Ny (Ni) []NE
=0 | \k=i-1 k=j
1)
To examine how the robot position uncertainty changes af-

ter the robot travels the entire learned path i times, we de-
fine C; = Ajn (e.g., C1 = An). Moreover, we denote

j=n—1
and
n—1 j _q [n1
5 -1 T T
=y Nic | N (N) O TINE || a2
j=0 | \k=n-1 k=j
and rewrite Eq. (11) as
Ciy1 = NGNT + T (13)

By proving that C; converges to a finite matrix as i grows
to infinity, we prove Theorem 1.

3.6. Convergence Conditions

Expression (13) is the Lyapunov discrete equation
(Lyapunov, 1992). If all eigenvalues of N lie within a
unit circle and T is symmetric, then lim;_, C; is finite
and equal to Cs, which can be obtained by solution of the
algebraic equation

Co = NCooNT + T. (14)

Because the matrix S; is symmetric, Tj = R;rSiRi is also
symmetric. The product XT;XT is symmetric for any X and
therefore all addends in Eq. (12) are symmetric. Addition
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preserves symmetry and therefore the matrix

. n-1 j _q (=1
T=3" (| T ™| N'T (N]T) []NE
=0 | \k=n-1 k=j

is symmetric.

To prove that the eigenvalues of N lie within a unit
circle, we exploit the positiveness of the matrices M; and
R;. Because M; is positive, N; = RiTMiRi is also positive.
Moreover, as every N; equals RiTMiRi, its eigenvalues are
the same as those of M; and eigenvectors are columns of
R;. The eigenvalues of N; therefore correspond to one and
e~%/Pi Because the product XY of a positive definite matrix
Xand a symmetric positive definite matrix Y is positive def-
inite, the matrix Nis positive definite as well. Moreover, the
dominant (maximal) eigenvalue of the product XY is lower
than or equal to xy, where x and y are dominant eigenval-
ues of X and Y. Because the dominant eigenvalue of every
N;j is one, all eigenvalues of N are smaller than or equal
to one. The dominant eigenvalue of N is equal to one if
and only if the dominant eigenvalue of the product Nj1Nj
equals 1 for all i. Conditions satisfying that the eigenval-
ues of a product Nj1N;j are lower than one ensure the ex-
istence of a finite solution of Eq. (14). Therefore, we have
to find those conditions to support the closed-path stability

property.

3.7. Convergence Proof

We will exploit the fact that a product of matrix eigenvalues
equals the matrix determinant and the sum of eigenvalues
equals matrix trace. Let us denote eigenvalues of the matrix
product Nj;1Nj as A 1 and the smaller eigenvalue of Nj as
n; (n; = e~%/P). For our convenience, we denote j =i + 1.
Therefore

det (NjN;j) = detNj detNj = Agr1 = nin;. (15)
If 10,1 € (0, 1), we can state that
(1 =201 —41) =0, (16)
and therefore
Aot —Ao— A1 +12>0. a17)
Combining Eq. (15) and inequality (17), we obtain
1+ninj > xo+ A1.

Considering that the sum of eigenvalues equals matrix
trace, we get

trace (RiTMiRiRiTMiRi) <1+4mn;. (18)

Because trace(AB) is equal to trace(BA), we can rewrite in-
equality (18) as

trace(M; (RiRT) TMiRiRT) <1+ nin;. 19)

Both matrices R; and R; represent rotations. The matrix R;
denotes rotation by the angle «;, and R; denotes rotation

by the angle «;. Their product RiR].T denotes rotation by
a; —aj. If we denote 8 = o; —a; and Rg = RiR;r, inequal-
ity (19) is changed to

trace (MiR}-MiRﬂ) <1+n;n;j. (20)

By expanding matrices M; R;g, we obtain

cos —nj sin
MiRE = . p i p
sinf  njcosp
and
cos i sin
MR, = ' B n; B )
—sinf  njcospf

Inequality (20) can be rewritten to
(1 +ninj)cos? B+ (n; +nj)sin® B <1+ nin;
and further reduced to
1+nnj—0—n; —n; +n,~n,-)sin2/3 <1+nin;.
Finally, we get
(1 —n;)(1 —n;)sin’ B > 0. @1

Because n; = e /P, n; € (0,1) and nj € (0, 1), and inequal-
ity (21) is strict for sin g # 0. This fact implies that inequal-
ity (16) is strict as well, which means that both 19 and 2;
are lower than one. Therefore both eigenvalues of the ma-
trix product (N;Nj) are smaller than one if 8 # nx|n € N.
The matrix N has both eigenvalues smaller than one if and
only if at least two conjoined segments of the path form an
angle different from 0 or .

Because all eigenvalues of N lie within a unit circle
and T is symmetric, the covariance matrix Co denoting the
robot position uncertainty at the start of the first path seg-
ment is finite and obtainable by a solution of the algebraic
equation

Coo = NCooNT + T.

3.8. Convergence Proof Overview

We have established Eqs. (7) describing the movement of
a robot using a navigation method, which is described in
Section 2. Equation (10) allowed us to examine the robot
position uncertainty evolution as the robot travels through
a known environment. Modifying Eq. (10) to closed trajec-
tories, we could rewrite it as Eq. (13). By examining the con-
ditions under which Eq. (13) has a finite solution, we have
proven Theorem 1 for closed paths that have at least two
noncollinear segments. The existence of a finite solution of
Eq. (13) means that if a mobile robot traverses repeatedly a
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closed polygonal path using our method, its position error
at every point of the traversed trajectory will stabilize at a
certain value.

4. PRACTICAL ISSUES

The theoretical proof of convergence stands on several as-
sumptions, which might not always be met. In this section,
we will outline possible issues that might arise from incor-
rect assumptions and discuss their impact on navigation
stability and accuracy. Moreover, we will discuss method
requirements in terms of computational power, memory,
and disk storage.

4.1. Convergence Proof from an Engineer’s
Point of View

Though elegant and useful, mathematical models and for-
mal proofs are often based on a simplification of reality. A
good mathematical model picks out the essence of the mod-
eled problem and concentrates on an examination of the
model properties. Some properties of the real system are
not included in the model and therefore are not considered.
An experienced engineer must be aware of these properties
and realize the difference between math and reality. This
applies to the proof presented in Section 3 as well.

In practice, extremely elongated (imagine a rectangle
with sides 1,000 and 0.001 m long) paths will not retain the
closed-path stability property because the movement along
the shorter side will not compensate odometry errors ac-
cumulated over the long side. Moreover, the model does
not cover the probability that the robot will not establish
enough correct correspondences because its position error
would grow too high. This might easily happen in case the
robot has to avoid large obstacles as well as for paths with
very long segments.

Moreover, the fact that the position error does not di-
verge might not be really useful in real robotic systems. In
practice, the real precision is more important. The precision
can be estimated using Eq. (13) if the learned path shape,
landmark distribution p, camera noise r, and odometry
noise € are known. Using p = 20 (i.e., most of the sensed
landmarks are 20 m in front of the robot), the sensor noise
7 = 0.1, and the odometry noise ¢ = 0.0005 for a square, 1-
km-long path, the predicted navigation repeatability (i.e.,
computed from eigenvalues of Co) is 0.15 m. This value is
in good accordance with the experimental results presented
in Section 5, where the measured repeatability in outdoor
scenarios was 0.14 m.

4.2. Reliance on Odometry

Odometry is regarded as unsuitable for long-term local-
ization due to cumulative errors. Its error model is usu-
ally multiplicative with a precision around 1%. The error
of the odometric pose estimation is caused mainly by the
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fact that the robot heading cannot be properly determined.
On the other side, odometry can be very precise for trav-
eled distance measurements. Moreover, an odometric error
is usually systematic, which can be solved by precise cali-
bration. Our experience with the P3AT robot shows that re-
peatability of its odometric measurements of the traveled
distance on paved roads is better than 0.1%. This means
that in the case of precise heading estimation, the robot
would be able to travel 1 km with a position error lower
than 1 m.

Our approach relies on the fact that the robot changes
direction often enough. If the robot would travel in a
straight direction for a long distance, its position error
might grow beyond an acceptable level. This might be
avoided either by forcing the robot to change directions
during the learning phase or by complementing the dis-
tance measurement by methods without a long-term drift.
An example of such a method might be global positioning
system or a vision-based localization used in methods in
Chen and Birchfield (2009), Royer et al. (2007), and Zhang
and Kleeman (2009).

4.3. False Correspondences

The most troublesome issue is that correct correspondences
might not be established. However, our algorithm works
even in cases of a large number of outliers. Consider a situ-
ation in which the system is navigating and all of its estab-
lished correspondences are false. The horizontal position
deviation of detected and mapped features would be basi-
cally a random variable. Therefore a histogram H, which is
built in order to establish the robot turning speed, will have
its bins (approximately) equally filled. The robot turning
speed will therefore be random. Now consider that there
are a few correctly established correspondences. Each cor-
rectly established correspondence increases the value of the
bin, which corresponds to the robot’s true heading devi-
ation. Therefore the probability that the correct bin has a
maximal value increases with each correct correspondence.

This is different from the work presented in Chen and
Birchfield (2009) and Segvic et al. (2007), where the au-
thors choose a mean of horizontal differences instead of the
modus. The modus is more invariant to the incorrect corre-
spondences than the mean, which makes our method more
precise and robust.

In reality, we get 80%-90% correctly established corre-
spondences if the navigation phase follows mapping im-
mediately. As the map gets older, the ratio of correct cor-
respondences tends to drop. The rate of “map decay”
depends on the environment and is caused mainly by two
factors: short-term lighting changes caused by a change in
the position of the sun and the current weather conditions
and long-term environment changes caused by seasonal
factors. Both illumination and long-term changes are not so
significant in indoor environments, because lighting is typ-
ically artificial and seasonal changes do not happen. So it
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is expected that illuminations and seasonal changes would
play an important role in outdoor environments.

To evaluate the system robustness to lighting changes,
we made an all-day experiment in which the robot tra-
versed a 1-km-long path in an outdoor environment; see
Section 5.5. To evaluate our system robustness to seasonal
environment changes, we mapped a 50-m-long path in a
park. The path was autonomously navigated and then re-
learned one month later. This was done in five consecutive
months; see Section 5.4. The results of both experiments
show that the system is robust to both long-term and short-
term environment changes.

Dynamic objects and occlusions cause only a tempo-
rary and slight decrease in the ratio of correctly established
correspondences. During the experiments, we did not no-
tice any problems with moving objects in the robot field of
view.

4.4. Obstacle Avoidance

The proposed navigation method itself does not include
obstacle avoidance. However, it can be complemented by
a collision avoidance module, which takes control of the
robot whenever an obstacle in the robot’s course is de-
tected. Such a module guides the robot around the obsta-
cle until the area between the robot and its path is clear
again. After that, the visual-based navigation takes control
and guides the robot by Algorithm 2.

Because obstacles have finite dimensions, the robot po-
sition error will grow by a finite value every time it passes
an obstacle. From the theoretical point of view, random ob-
stacles in the robot path can be modeled by the addition
of a random vector with a zero mean to s in Eq. (8). Al-
though the addition will increase the matrix S in Eq. (9), the
symmetry of S will be preserved. Obstacles would there-
fore increase the matrix T in Egs. (13) and (14), but because
T remains symmetric, Eq. (14) will have a unique solu-
tion. However, the robot position uncertainty, represented
by the matrix C, will increase. Therefore, obstacle avoid-
ance would decrease the precision of the robot navigation,
but it should remain stable. This assumption is experimen-
tally verified in Section 5.3.

It is clear that there exists a size of obstacles for which
the algorithm will fail, because after circumnavigating the
obstacle, the robot will not find previously mapped fea-
tures.

4.5. Systematic Errors

Because the navigation algorithm relies on two sensors,
there are two sources of systematic errors in our algorithm:
the odometry and the camera.

The systematic error of the odometry means that if the
robot traverses the distance d, it will report that the trav-
eled distance is d(1 + n). Let us consider that the robot has
900% odometric error, i.e., n = 9. During mapping phases,

the error will cause the segment lengths s and landmark
data f and g to be 10 times higher in the map than in real-
ity. However, in the navigation phases, the odometry error
will give 10 times higher values of the robot distance from
the segment start, and therefore errors in the map and robot
position error will suppress each other.

The systematic error of the camera might be caused by
the misalignment of the camera optical axis and the robot
body. This causes the positions of landmarks u, v in the
map to be different from a case with an ideal camera. How-
ever, when the robot encounters the same location, detected
landmark positions will be shifted the same way as in the
learning phase. The systematic error will therefore cancel
out as in the previous case.

A different case would be a change of the odometric
error n or the camera angle 6 between the learning and
navigation phases. From a theoretical point of view, this
would cause a change of the vector s. Unlike in the pre-
vious case, the vector s will not be modified by a random
vector but a fixed one. This means that § will remain the
same and matrix T will preserve symmetricity. Systematic
errors would cause the robot to traverse a trajectory slightly
different from the learned one but should not affect naviga-
tion stability. However, the algorithm will fail to establish
correct correspondences between the mapped and detected
features if the systematic errors are too high.

The experimental evaluation of the influence of sys-
tematic errors on the navigation stability is described in
Section 5.2. Even though the systematic errors were set to
high values during the experimental evaluation, the navi-
gation stability was preserved.

4.6. Necessity of a Compass

Relying on only a compass for heading estimation was
shown to be a weak point during experiments performed in
2008 and 2009. During learning phases, the compass noise
caused an incorrect azimuth estimation of some segments.

Therefore, we considered replacing the absolute az-
imuth measurements by relative ones. So, instead of record-
ing «; for the ith segment in the learning phase, the az-
imuth relative to the previous segment (i.e., A; = o; — otj_1)
is recorded in the map. The relative azimuth A; can be es-
timated either by odometry or by tracking of the features
during transitions to the next segment. This approach is
applicable in cases in which a robot is taught a path that
is supposed to be traversed later. However, sometimes it
is necessary to create a more complex, graph-like map; see
Section 5.7.

In more complex cases, the robot creates a map of the
large environment in several mapping runs and traverses
the given sequence of segments in an order different from
the mapped sequence. In this case, sole knowledge of the
relative segment azimuths is not sulfficient, because angles
between nonconsecutive segments are not known to us. Of
course an angle between the ith and (i + j)th segments can
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be estimated by summing all relative angles between seg-
ments i and i + j, but because every A; contains a small
error, the error of the sum is too large for high ;.

To deal with these more complex cases, we have im-
plemented a simple Kalman filter, which fuses data from
odometry and compass. The filter suppresses the compass
noise and causes the absolute heading measurements to be
more reliable. However, the filter was implemented at the
end of 2009, so in the previous experiments the compass
noise caused trouble.

4,7. Computational and Storage Requirements

To estimate computational and storage requirements,
we have used data from the experiment described in
Section 5.5.

We evaluated the computational requirements in terms
of required computational time spent in various stages of
the algorithm. The most computationally intensive stage of
the algorithm is the feature extraction, which takes 260 ms
on average. About 30 ms is taken by establishing proper
correspondences. The histogram voting time is less than
1 ms. During experiments, the camera image and addi-
tional parameters of the algorithm were displayed for de-
bugging purposes. Drawing these data on a computer
screen takes about 60 ms. Thus, the entire control loop takes
about 350 ms.

The average landmark density is about 140 landmarks
per meter of the path. The map is stored on the hard drive
in a text format (see Table I), and one landmark occupies
about 800 bytes. Therefore, the disk storage needed for 1 km
of path is about 112 MB. Once loaded to the computer mem-
ory, a landmark is represented in binary and occupies less
than 300 bytes. Thus, a segment 1 km long would take
42 MB of computer memory.

5. EXPERIMENTS

The assumptions formed in Sections 3 and 4 were verified
in several real-world experiments. The experimental eval-
uation was performed in seven different scenarios examin-
ing the following:

1. Convergence for two types of paths—with and without
the closed-path stability property

2. The impact of systematic errors to the navigation preci-
sion

3. Feasibility of complementing the method by the colli-
sion avoidance module

4. Robustness to environment changes and variable light-
ing conditions

5. Performance in environments with landmark deficiency

6. Navigation efficiency for long paths in an outdoor envi-
ronment with diverse terrain

7. Real deployment of the navigation procedure in Robo-
Tour 2008 and RoboTour 2009 contests (ISa & Dlouhy,
2010)

Journal of Field Robotics DOI 10.1002/rob

During these scenarios, the robot autonomously traversed
more than 3 km of indoor and more than 25 km of outdoor
paths. The P3AT platform with the configuration described
in Section 2 was used in all testing scenarios.

The robot learned different closed paths and was re-
quested to navigate these paths several times in the first six
scenarios. The relative position ¢; of the robot to the path
start was measured every time the robot completed the ith
path loop. To evaluate the quality of the navigation algo-
rithm, accuracy and repeatability values as in Chen and
Birchfield (2009) were used. The accuracy eacc and the re-
peatability erep are computed as the rms of the Euclidean
distance or the standard deviation of the robot’s final posi-
tions from the path start:

] n
—— Y il erep =
n—yj Py

€acc =

1 n
> e — uli?,
i=j

n—j#
(22)

where ¢; is the robot position relative to the path start
after completing the ith loop and p = Z;':j ci/(n—j). In
most scenarios, the initial robot position was intentionally
changed to be 1.5 m apart from the learned path start. In
these cases, we do not set j to 1 but wait five loops until
the initial position error diminishes. Thus, the repeatability
and the accuracy are computed for j = 5, n = 20 in the first
four scenarios.

5.1. Stability of Robot Position for Different
Types of Paths

The scenario examines Theorem 1 for paths with and
without the closed-path stability property. The conclusions
made in Section 3 indicate that paths with all collinear
segments do not retain the closed-path stability property,
whereas other paths do. The following paths have been
considered: a path with only two collinear segments (i.e.,
a “back and forth” line path) and a square path. At first,
the robot was taught these closed paths in an indoor hall.
After that, the robot was placed either directly at the path
start or 1.5 m away and requested to navigate along the
learned path 20 times. The robot position ¢; was measured
after each completed loop.

The first (degenerate) path was formed of two
collinear, 5-m-long, segments. The square path was com-
posed of four segments, each 5 m long, with the end of the
last segment identical to the segment at the start of the path.
The distance of the robot from the path start after each loop
(i.e., lIcill) is shown in Figure 4.

The values indicate that for square trajectories, the
robot was able to correct the position error that was in-
troduced at the beginning of navigation along the learned
path. Only was the error in the y coordinate (i.e., the co-
ordinate axis normal to path segments) partially corrected
for collinear trajectories, while the x coordinate remained
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Figure 4. The position error for paths without and with the stability property.
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Figure 5.

uncorrected. These experimental results confirm the the-
oretical assumptions described in Section 3.8, stating that
the navigation is unstable for paths with only collinear seg-
ments.

The robot traversed more than 1.8 km in this scenario.
Both the accuracy and the repeatability for the 20-m-long
square paths were 0.10 m.

5.2. Effect of Systematic Errors

The effect of the systematic errors on navigation precision
was evaluated in this scenario. Two sources of systematic
errors were considered: the camera and the odometry. An
error of the camera can be caused by its optical axis devi-
ation, and an odometric error can be caused by a tire pres-
sure change. To show the effect of the parameter change, it
is necessary to modify these parameters between the learn-
ing and the navigation phases; otherwise a path is learned

Systematic errors effect: the position error for different types of systematic errors.

with the systematic errors, and therefore the errors do not
have an effect.

The following experiments were performed to verify
that small-scale systematic errors do not affect navigation
stability. At first, the robot camera was panned by 10 deg,
and the robot was requested to traverse the square path
learned during scenario 5.1 20 times. Then, a 10% sys-
tematic odometry error was introduced.! Finally, the robot
was requested to traverse the path 20 times with both 10%
odometry and 10-deg camera bias. As in the previous cases,
the robot position ¢; was measured each time the robot
reached the learned path start. The measured distances
from the path start are shown in Figure 5.

This was done in software—a distance of the robot from the seg-
ment start measured by odometry was multiplied by a factor of 1.1
before it was passed to the navigation algorithm.

Journal of Field Robotics DOI 10.1002/rob
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Figure 6. Obstacle avoidance experiment: the position errors with and without obstacles.

The results show that the odometric and the camera
biases cause errors in robot positioning but the error does
not diverge. After a few loops, the position error does
not grow anymore and the system reaches a steady state.
The overall accuracy is lower than without the system-
atic errors, but repeatability remains similar to the previous
scenarios.

The robot traversed more than 1.2 km in this scenario.
The average accuracy with the camera bias was 0.58 m, and
the odometry bias caused the accuracy to change to 0.34 m.
When both the odometry and the camera were biased, the
accuracy was 0.55 m. The average repeatability was lower
than in the previous scenario, i.e., 0.06 m.

5.3. Obstacle Avoidance

A simple collision avoidance module (based on the robot
sonars) was activated in this scenario. The collision avoid-
ance is based on the Tangent Bug algorithm with a finite
range sensor (Choset, Lynch, Hutchinson, Kantor, Burgard,
et al.,, 2005). When the robot detects an obstacle on its
course, the visual-based navigation is suppressed and the
robot starts to circumnavigate the detected obstacle. Dur-
ing the circumnavigation, odometry is used to determine
the robot position and the sonar data are used to estimate
the obstacle position. The visual navigation algorithm is re-
sumed when the path between the robot and the end of the
current segment is clear.

The robot was taught a square path similar to the one
used in scenario 5.1. After that, one obstacle> was placed
on each path segment, and the robot navigated the path 20
times. The robot autonomously navigated approximately
0.4 km with an accuracy of 0.16 m and a repeatability

*Obstacle dimensions were approximately half of the robot size.
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of 0.08 m. It is clear that the position precision was affected
but did not diverge. See Figure 6.

5.4. Environment and Lighting Changes

The effects of variable lighting conditions and long-term
environment changes were examined in this scenario. At
first, the robot was taught a closed, 50-m-long path consist-
ing of five segments in the Stromovka park located in the
city of Prague. One month later, the robot was placed 1.5 m
away from the path start and was requested to navigate the
path 20 times. This procedure was repeated five times, i.e.,
the test was done every month from November 2009 un-
til April 2010. In each experiment, the robot used a map
created in a previous month. The measured distances are
shown in Figure 7.

Not only did the lighting conditions differ every time
but also the environment went through seasonal changes.
To document these changes, a picture from the onboard
camera was stored every time the mapping was initiated;
see Figure 8. There were considerably fewer correct corre-
spondences between recognized and learned features. With
a map created just before the navigation, the robot usually
correctly recognizes 70%-90% of learned landmarks. Using
a 1-month-old map, the ratio of the correctly recognized
landmarks drops to 10%—-40%. Nevertheless, the robot was
able to correct its initial position error and was able to tra-
verse the path faultlessly in all cases.

The robot autonomously navigated more than 6 km
with an average accuracy of 0.24 m in this scenario. Un-
like in previous scenarios, we did not measure the robot
position ¢; after completion of each loop; we recorded the
robot distance only from the path start, i.e., ||c;||. Therefore,
the repeatability cannot be calculated by Egs. (22). Except
for winter months, pedestrians regularly crossed the robot
path and moved into the robot’s field of view.
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5.5. One-Day Outdoor Experiment

The system performance for long paths was evaluated in
a realistic outdoor environment. The experiment was per-
formed around the Probostov pond® in Probostov, Czech
Republic, at the end of March 2010. The robot was taught a
1-km-long path around the pond in the morning. The path
went through a variable nonflat terrain with asphalt paths,
dirt roads, footpaths, and grass terrain in an approximately
equal ratio (see Figure 9). After the path was taught, the

350°39'58.716"N, 13°50'18.35"E.

(d) February 2010

(f) March 2010
Figure 8. Long-term experiment: the view from the robot’s camera at the path start in different months.

robot was placed 1.5 m away from the path start and re-
quested to traverse it repeatedly. Every time it reached the
path start, its position was measured and its batteries re-
placed (the robot was not moved during the battery ex-
change). It took approximately 1 h for the robot to tra-
verse the learned path, and the battery replacement took
15 min. The weather changed from cloudy/light rain to
partly cloudy/sunny during the experiment. In the after-
noon, a lot of pedestrians showed up and either entered the
robot’s field of view or crossed its path.

Nevertheless, the robot was able to complete the
learned path six times before nightfall. The robot traversed

Journal of Field Robotics DOI 10.1002/rob
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Figure 9. One-day experiment: the path around Probostov pond and the dirt road terrain example.
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Figure 10. The position errors of the one-day experiment.

6 km with an accuracy* of 0.26 m and a repeatability
of 0.14 m. The experiment was repeated (without the learn-
ing phase) 1 week later, and the robot traversed the path
six times with an accuracy of 0.31 m and a repeatability
of 0.20 m. The measured distances are shown in Figure 10.

5.6. Landmark Deficiency Experiment

We have claimed that the system is able to operate in an
environment that contains a low number of landmarks. To
verify this assumption, we taught the robot an outdoor
path during night and let it navigate using only street-
lamp lights. The robot was taught a 0.3-km-long path on
paved roads in a residential area. The onboard camera iris
was fully opened, and the camera exposure time was set
to 0.37 s. The path was taught at midnight, so more than

“In this case, &, and &, were computed with j =3 and n = 6 in
Egs. (22).
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90% of the mapped landmarks were streetlamps and illu-
minated windows.

After the path was learned, the robot was placed 1.5 m
from the path start and requested to traverse it 10 times. As
opposed to in the daytime experiments, in which the robot
detected typically 150-300 landmarks, during the night-
time, the typical number of landmarks was 3. The robot tra-
versed 3 km with an accuracy® of 0.32 m and a repeatability
of 0.16 m. See Figure 11.

5.7. The RoboTour Outdoor Delivery Challenge

The RoboTour contest (Dlouhy & Winkler, 2009; 13a &
Dlouhy, 2010) is an international autonomous robot deliv-
ery challenge organized by robotika.cz. The participating

®In this case, £,cc and &, were computed with j =3 and n =10 in
Egs. (22).
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Figure 12. RoboTour 2008/2009 pathway maps.

teams are mostly from Czech and Slovak universities. The
competition is a perfect event for an independent verifica-
tion of system functions and comparison with other naviga-
tion methods. However, not only are the navigation meth-
ods evaluated, but also the complete systems including all
hardware parts are tested.

Fully autonomous robots have to travel a random path
in a park, stay on the pavements, and detect randomly
placed obstacles in this challenge. A map of the park with
its pathways (designated by letters) is given to the teams in
advance. The competition consists of several rounds, each
with a different path. Thirty minutes before each round, ref-
erees choose a random closed path and announce it as a se-
quence of letters. Competing teams place their robots at the
starting positions and execute their autonomous navigation
algorithms. Robots must travel without leaving the path-

way and without colliding with any random obstacles. The
robot score is determined according to its traveled distance.
In 2008, the competition was held in Stromovka park® in
Prague, Czech Republic. One year later, the contest moved
to park Luzanky” in Brno, Czech Republic.

The Stromovka park pathways were mapped 2 days
prior to the competition. The competition had five rounds
with different pathways; see Table II and Figure 12(a). The
robot completed the required path four times of these five
attempts. During two of these attempts, the robot did not
leave the pathway at all, and during two others, the robot
had partially left (i.e., with two side wheels) the pathway. In

©50°6'18.778”N, 14°25'33.395"E.
749°12'25.516"N, 16°36'29.81"E.
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Table Il. RoboTour 2008 and 2009 paths.
Pathway sequence length (m)

RoboTour 2008 RoboTour 2009
ABCW 250 ALKOJIR 800
ORQPMK]JIH 850 BESQDGHJ0Y 1,050
ABCHGFDCW 500 34PWTMLA 750
HGFEAWOUVW 600 0YR34SFH]J 600
UTSROCDEBCW 700
Total 2,900 Total 2,200

cases when the robot left the pathway partially, it was left to
continue moving (without additional scores) and reached
the goal area. One failed attempt was caused by a battery
failure.

The competition in Luzdnky park was performed in
a larger part of the environment; hence the mapping took
3 days. The total length of the mapped pathways was 8 km;
the map consisted of approximately one million landmarks,
which took 834 MB of disk space. The competition had four
rounds; see Table II and Figure 12(b). The robot was able to
complete the required paths two times. One attempt failed
due to a wrong compass reading during the path learning,
but after a manual correction of the robot heading, the robot
caught up and reached the goal area. The other failed at-
tempt was caused by a human factor.

Although the performance was not perfect, the robot
was able to travel the required trajectory, and our team
reached the first rank for both events in 2008 and 2009.

5.8. Experiment Summary

The results of the aforementioned experiments not only
confirm theoretical assumptions stated in Section 3, but
they also show that our method is feasible for use in real-
world conditions. The proposed method is able to cope
with diverse terrain, dynamic objects, obstacles, systematic
errors, variable lighting conditions, and seasonal environ-
ment changes. The summary of experiments in Table III
indicates that the localization precision of our method is

slightly worse than in closely related methods presented in
Royer et al. (2007) and Zhang and Kleeman (2009). Lower
precision is probably caused by heavy reliance on odome-
try and suboptimal use of visual information.

Compared to the similar method presented in Chen
and Birchfield (2009), our method accuracy and repeata-
bility is better in outdoor environments. A probable rea-
son for this is that we used a modus to determine robot
heading. Chen and Birchfield (2009) use a mean of hori-
zontal deviations, which is less robust to data association
errors.

6. CONCLUSION

A simple navigation method based on bearing-only sensors
and odometry was presented. In this method, a robot navi-
gating a known environment uses a map of the environ-
ment and a camera input to establish its heading, while
measuring the traveled distance by odometry. We claim
that this kind of navigation is sufficient to keep the robot
position error limited. This claim is formulated as a closed-
path stability property and proved for polygonal paths
with at least two noncollinear segments. The property al-
lows us to estimate the robot position uncertainty based on
the landmark density, robot odometry precision, and path
shape.

The proposed method was experimentally verified by
a mobile robot with a monocular camera. The robot builds
a SURF-based (Bay et al., 2006; Cornelis & Van Gool, 2008)
landmark map in a guided tour. After that, it uses the
aforementioned method to autonomously navigate in the
mapped environment.

We conducted experiments indicating that theoretical
results and assumed conditions are sound.

The proposed navigation method has surprising prop-
erties different from the properties of other navigation and
localization methods, mainly the following:

® The robot can perform 2D localization by heading esti-
mation, which is a one-degree-of-freedom method.

® [f the robot travels between two points, it is better to use
a “zigzag” trajectory rather than a straight one.

® Traveling a closed trajectory might reduce the robot po-
sition uncertainty.

Table lll. Proposed method accuracy and repeatability in various scenarios.
Indoor Outdoor
Clear Obstacles Long term 1 day Night
Accuracy (m) 0.10 0.16 0.24 0.25 0.32
Repeatability (m) 0.10 0.08 N/A 0.14 0.16
Loop length (m) 20 20 50 1,040 330
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We believe that the convergence proof does not apply only
to our system but is valid for many other algorithms. The
proof suggests that any algorithm that decreases the lateral
position error of a robot is stable for closed polygonal tra-
jectories. This might be the case for even simpler and faster
methods, such as the one presented in Zhang and Kleeman
(2009). However, this is merely a hypothesis, which needs
to be thoroughly examined.

The fundamental limitation of our method is its re-
liance on odometric measurements. Other visual-based
navigation methods use odometry only as an auxiliary
measurement or do not require odometry at all. There-
fore, these methods would perform better in scenarios
in which wheel slippages have to be taken into account.
Although our method is limited in application and its
precision is lower compared to methods presented in
Royer et al. (2007) and Zhang and Kleeman (2009), we
believe that it is interesting from an academic point of
view.

In the future, we would like to test our algorithm
with robots that have only imprecise odometry or inac-
curate dead reckoning. The preliminary tests conducted
with the AR-Drone quadrotor helicopter, which esti-
mates the traveled distance by accelerometers, seem to be
promising.

7. APPENDIX A: INDEX TO MULTIMEDIA
EXTENSIONS

The video is available as Supporting Information in the on-
line version of this article.

Extension Media type Description

1 Video Algorithm 1 implemented on a UAV

8. APPENDIX B

This Appendix presents values measured during experi-
ments.

8.1. Stability of Robot Position for Different Types
of Paths

Table B.I contains data measured during the first experi-
mental scenario presented in Section 5.1. It shows the mea-
sured positions for the paths that do and do not retain the
stability property. Note that line (degenerate) paths do not
correct the longitudal position deviation, which is in accor-
dance with the convergence proof presented in Section 3.

Table B.l. Convergence for degenerate and normal paths: indoors.
Position relative to start (m)

Line (degenerate) path Square (normal) path
Loop doo do1s di5,0 do o dos di5,0
00 0.00, 0.00 0.00, 1.50 1.50, 0.00 0.00, 0.00 0.00, 1.50 1.50, 0.00
01 —0.02, 0.00 0.05,0.55 1.46, —0.24 0.08, —0.02 0.12,0.58 0.32, —0.06
02 —0.03, —0.04 —0.03,0.27 1.49, —0.30 0.02, 0.04 0.02,0.23 0.05, —0.02
03 —0.03, —0.02 —0.06,0.14 1.53, -0.32 —0.02,0.11 0.04, 0.06 0.10,0.12
04 —0.05,0.03 —0.03,0.13 1.53, -0.25 0.10, 0.07 —-0.07, —0.03 0.05,0.15
05 —0.05, 0.00 —0.03,0.10 1.56, —0.27 0.10,0.11 —0.01, 0.00 0.05,0.09
06 —0.04, 0.03 —0.03,0.10 1.55, -0.25 0.08, 0.00 —0.02, 0.02 0.00, -0.16
07 —0.05, 0.04 —0.05,0.16 1.53, -0.22 0.01, 0.07 0.04, —0.12 —0.03, 0.00
08 —0.05, 0.06 —0.05, 0.00 1.54, -0.25 0.00, —0.01 0.05,0.11 0.07, 0.04
09 —0.04, 0.05 —0.06, 0.02 1.53, -0.15 —0.01, 0.02 0.05, —0.05 0.07, 0.06
10 —0.04,0.08 —0.05,0.13 153, -0.21 0.00, —0.04 —0.08, —0.16 0.09,0.13
11 —0.06, —0.09 —0.04,0.16 1.54, -0.25 —0.04, —0.14 0.02, -0.11 0.12,0.02
12 —0.05, 0.01 —0.04, —0.07 1.54, —-0.31 0.02, —0.02 0.05,0.02 0.02, —0.11
13 —0.05, 0.04 —0.08, 0.06 1.55, -0.27 0.03, —0.06 0.00, 0.06 —0.01, —0.12
14 —0.04, 0.05 —0.06, 0.02 1.53, -0.31 0.06, 0.04 —-0.09, —0.10 0.02, —0.09
15 —0.05, —0.04 —0.06, 0.06 1.55, -0.21 —0.01, —0.15 —0.01, 0.09 0.01, 0.00
16 —0.04, 0.00 —0.05, —0.03 1.54, -0.24 —0.02, -0.12 —0.05,0.01 0.01, 0.05
17 —-0.03,0.10 —0.07,0.02 152, -0.21 —0.03, -0.19 0.07,0.08 0.05, —0.06
18 —0.04, 0.04 —0.09, —0.05 155, -0.24 0.02, —0.22 0.09, 0.05 0.01, 0.03
19 —0.03, 0.09 —0.11, 0.05 1.56, —0.10 —0.02, -0.10 0.08, 0.04 0.07,0.09
20 —0.04, 0.08 —0.07,0.02 1.54, —0.07 0.01, -0.15 0.02, 0.07 0.04, —0.11
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Table B.l. Effect of systematic errors on navigation Table B.IIl. Positioning errors with and without obstacles.
convergence.

Position relative to start (m)

Position relative to start (m)

Systematic error (bias) Loop Clear path Obstacles
Loop None Camera Odom. Both 00 0.00, 0.00 0.00, 0.00
01 0.08, —0.02 0.24,0.22
00 0.00, 0.00 0.00,0.00  0.00, 0.00 0.00, 0.00 02 0.02, 0.04 0.12, 0.06
01 0.08, —0.02  —0.30,0.37 0.08,0.09 —0.16,0.28 03 —0.02,0.11 0.17,0.08
02 0.02, 0.04 —0.28,0.39  0.09,0.13 —0.15,0.38 04 0.10, 0.07 0.11, —0.08
03 —0.02, 0.11 —0.35,044 013,024 —0.16,0.46 05 0.10,0.11 0.15, —0.08
04 0.10, 0.07 -0.29,0.38  0.15,0.30 —0.15,0.50 06 0.08, 0.00 —0.05, —0.07
05 0.10,0.11 -0.31,0.50 0.17,0.35 —0.03,0.53 07 0.01,0.07 0.14, —0.12
06 0.08, 0.00 —0.33,0.52 013,032 —0.24,0.49 08 0.00, —0.01 0.15, —0.12
07 0.01, 0.07 —0.34,049 019,030 —0.14,0.52 09 —0.01, 0.02 0.02, —0.12
08 0.00, —0.01 —0.32,046 0.13,0.31 —0.18,0.49 10 0.00, —0.04 0.14, —0.07
09 —0.01, 0.02 —0.33,049 0.12,030 —0.13,0.50 11 —0.04, —0.14 0.17, —0.13
10 0.00, —0.04 —0.36,049 0.10,0.26  —0.14,0.49 12 0.02, —0.02 0.20, —0.04
1 —0.04, —0.14 —0.35,0.50 0.13,0.39 —0.33,0.47 13 0.03, —0.06 0.08, —0.06
12 0.02, -0.02 —0.32,0.50 0.18,0.44 —0.39,0.49 14 0.06, 0.04 0.19, —0.03
13 0.03, -0.06 —0.35,045 0.13,0.31 —0.38,0.48 15 —-0.01, —0.15 0.14, —0.03
14 0.06, 0.04 —0.33,049 0.14,0.34 —0.18,0.49 16 —0.02, —0.12 0.13, 0.04
15 -0.01,-0.15 —0.32,045 0.14,0.29 —0.13,0.50 17 —0.03, —0.19 0.15, —0.03
16 —-0.02, -0.12 —0.31,040 0.11,0.25 —0.12,0.49 18 0.02, —0.22 0.02, —0.13
17 -0.03,-0.19 —0.36,044 0.11,0.29 —0.16,0.51 19 —0.02, —0.10 0.17, —0.06
18 0.02, -0.22 —0.31,046 0.11,024 -0.15,0.54 20 0.01, —0.15 0.14, —0.01
19 -0.02, -0.10 —0.35,042 0.12,0.26 —0.21,0.53
20 0.01, -0.15 —0.32,0.44 0.13,0.27 -0.12,0.53

Table B.IV. Long-term algorithm reliability.

8.2. Effect of Systematic Errors
Distance to path start (m)

Table B.II contains data from the experimental scenario in
Section 5.2, in which effects of the camera and the odometry Loop Nov Dec Jan Feb Mar Apr
bias were measured.

00 1.50 1.50 1.50 1.50 1.50 1.50
01 0.70 0.92 0.90 0.87 0.83 1.15
8.3. Obstacle Avoidance 02 0.30 0.55 0.60 0.50 0.62 0.83
03 0.13 0.38 0.45 0.22 0.28 0.41
Table B.III contains data from the experiment scenario de- 04 0.12 0.33 0.38 0.12 0.15 0.39
scribed in Section 5.3, in which we verified the methods 05 0.03 0.27 0.28 0.18 0.14 0.33
ability to deal with obstacles. 06 0.18 0.20 0.27 0.21 0.09 0.12
07 0.06 0.28 0.22 0.23 0.19 0.07
08 0.09 0.24 0.26 0.24 0.28 0.26
8.4. Environment and Lighting Changes 09 0.10 0.29 0.24 0.22 0.23 0.40
Table B.IV contains data from the experiment scenario de- 10 0.02 0.27 0.28 0.21 0.26 0.38
scribed in Section 5.4, in which the algorithm was tested n 0.23 0-20 0.24 0.22 0.29 0.32
. Y . . 12 0.08 0.20 0.20 0.23 0.23 0.37
in an outdoor environment with long-term environment 13 0.22 0.28 0.20 0.29 0.27 0.27
changes. 14 0.14 0.29 0.25 0.27 0.26 0.29
15 0.24 0.29 0.21 0.27 0.11 0.46
16 0.40 0.27 0.24 0.27 0.31 0.28
8.5. One-Day Outdoor Experiment 17 0.42 0.22 0.24 0.22 0.23 0.23
Table B.V contains data from experiment scenario 5.5, in 12 83; g;g g;g 8;3 g}g 8;:
which the algorithm was tested in an outdoor environment 20 0.45 0.20 021 0.28 0.4 0.36

with variable terrain.
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Table B.Y. One-day outdoor experiments.

Position relative to start (m)

by map age

Loop Up to date 1 week
00 0.00, 1.50 0.00, 1.50
01 —0.07,0.03 0.63,0.15
02 —0.21,0.18 0.59, 0.11
03 —0.34,0.15 0.53,0.17
04 —0.05, —0.14 0.32,0.19
05 0.34,0.05 —0.09, 0.22
06 —0.25,0.06 0.15,0.20
Table B.VI. Landmark deficiency experiment.
Loop Position relative to start (m)
00 0.00, 1.50
01 —-0.13, —0.29
02 0.21, —0.43
03 —0.09, —0.34
04 —0.32, —0.20
05 0.12, —0.14
06 —0.08, —0.32
07 —0.05, —0.13
08 —0.29, —0.24
09 —0.09, —0.33
10 —0.10, —0.36

8.6. Landmark Deficiency Experiment

Table B.VI contains data from the experiment scenario de-
scribed in Section 5.6, in which the algorithm was tested
during night in low-visibility conditions.
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Abstract—

This paper presents a new multi-goal path planning method
that incorporates the localization uncertainty in a visual in-
spection surveillance task. It is shown that the reliability of the
executed found plan is increased if the localization uncertainty
of the used navigation method is taken into account during the
path planning. The navigation method follows the map&replay
technique based on a combination of monocular vision and
dead-reckoning. The mathematical description of the navigation
method allows efficient computation of the evolution of the robot
position uncertainty that is used in the proposed path planning
algorithm. The algorithm minimizes the length of the inspection
path while the robot position error at the goals is decreased.
The effect of the decreased localization uncertainty is examined
in several scenarios.

The presented experimental results indicate that probability
of the goals visits can be increased by the proposed algorithm.
Thus, the proposed approach opens further research directions
in the increasing reliability of the autonomous navigation by
the path planning using efficient and sufficiently informative
heuristics of the localization error evolution.

I. INTRODUCTION

The problem of autonomous navigation of a mobile robot
is addressed by various localization methods in order to
achieve sufficiently reliable navigation. The methods use
various techniques based on different assumptions and en-
vironment constraints. One of the popular technique is the
so-called SLAM in which no prior information about the
environment is known and the localization is performed on
the basis of the simultaneously created map. Even though a
significant progress has been made in this field, more reliable
localization techniques use a priori known map of the robot
surrounding environment. Moreover, the authors of SLAM
algorithms tends to consider only the immediate localization
error, and it is not exceptional that robots are navigated
manually during SLAM examination. On the other side of
the navigation methods, higher precision and reliability (in a
long term) is achieved at the cost of the previously created
map. In this sense, reliable navigation methods are based
on the visual servoing techniques using the map&replay
scenario [1], [2].

Beside improvements of the localization methods, the
reliability of the autonomous navigation may be increased
by consideration of environment properties and the localiza-
tion/navigation method in the preparation of the plan/path
for the navigation. The idea is simple: the robot identifies
areas, where the localization method would be too imprecise
and avoids these places. Although the idea is simple, the

problem is not easily tractable as it depends on appropriate
(realistic) environment models. Moreover the problem do-
main has to be extended by the “uncertainty” dimensions
(e.g. pose xuncertainties [3]) that increase the computational
complexity of the planning methods. Models of the uncer-
tainty evolution have to be sufficiently informative otherwise
the intended plan will be more likely useless. For example
a model of the increasing odometry error simply leads
to minimization of the planned path length, but it does
not provide a way to “correct” the robot pose estimation.
Therefore such model cannot be efficiently used in a long-
term planning. The models based on performing a simulation
of the localization within the map of the robot surrounding
environment are too computationally intensive and therefore
approximations have to be used. However, such simplified
models may lead to violate the required stability assumptions
of the localization methods [4], [5], [6].

In this paper, we consider a heuristic function describing
the evolution of the localization uncertainty in a surveillance
path planning problem that deals with visiting a set of areas
of interest (Aols). The function is derived from the model of
a simple navigation principle [7] that uses the map&replay
technique. The principle is based on a detection of salient
objects and dead-reckoning measurements, e.g. an odometry,
and it is similar to [8], but its localization error is bound and
theoretically proven. The heuristic function is used in the
modified competitive rule of the self-organizing map (SOM)
approach for the Traveling Salesman Problem (TSP) [9]
that is applied to the multi-goal path planning problem, i.e.
the problem of finding a shortest path visiting given set of
goals [10]. The proposed method finds a path with lower
localization uncertainty at the visited Aols than in the case
of methods minimizing only the path length.

This paper is organized as follows. The localization uncer-
tainty model and the derived heuristic function are described
in Section II together with an overview of the used SOM
scheme. The problem formulation is presented in Section III
The proposed planning method is presented in Section IV.
Experimental results of the proposed method are presented
in Section V. A discussion of the proposed approach and
remarks about future work are presented in the conclusion.

II. RELATED WORK

A. Navigation Method and Uncertainty Model

The used navigation method [7] is based on heading cor-
rections only while the traveled distance is estimated by a rel-
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atively imprecise odometry. The heading corrections utilize
salient objects (Speeded Up Robust Features (SURF) [11])
recognized in the environment in the map&replay approach.
At first, the robot is tele-operated in the environment along
straight line segments in the mapping phase. For each
segment a set of visual landmarks is remembered and the
local length of the segment is measured by the odometry,
thus the long term instability of the odometry is not an
issue. In the replay phase, the robot is placed at the starting
segment and requested to travel the learned path. The current
visible landmarks are matched with the learned ones by the
histogram voting method, which realizes the so-called visual
compass. Based on the heading deviation the control law
steers the robot in the desired direction. Once the traveled
distance reaches the segment length, the robot is turned
into the direction of the next segment by the compass, and
the next segment is traversed in the same manner. Even
though the navigation method is very simple, it allows the
robot to continuously travel closed paths more than one
kilometer long in real outdoor environments in variable
lighting conditions and seasonal changes, see experimental
results in [7].

To establish the localization uncertainty model a simple
case of a robot navigating along a single segment aligned
with the x axis can be considered, see Fig. 1. Let the robot

YT [a, a,] initial robot position
\ current robot position
final robot position

+ * (b,b]

+

current robot
heading + +

C

p * learned larmarks +

Fig. 1: Robot navigation model

start at position [a,, a,] and learned landmarks are in front of
the robot. During the robot movement, the nearby landmarks
disappear and more distant landmarks become visible, and
therefore landmarks can be considered in a constant distance
p ahead of the robot. The robot movement can be character-
ized by the differential equation dz/dy = p/ — y. Assuming
¢ ~ a, and boundary conditions the final robot position is
[bs,by] = [az + s, ay exp(—s/p)]. The model of the robot
movement can be augmented by an odometry error v and
heading sensor noise ¢ (random variables drawn from the
Gaussian distribution with the zero mean and the variances
n and 7 respectively) resulting in

by | |1 0 [ s+ sv
=l S]] o

which rewritten to a matrix form denotes b = Ma + s. For
an arbitrary orientation of the segment the matrix equation
can be complemented by the rotation matrix R:

b=R'MRa+ R"s. )

The evolution of the robot position uncertainty for a single
segment is based on consideration of the robot position as a

random variable drawn from 2D normal distribution with
the mean a and the covariance matrix A. Due to linear
and absolute terms of Equation (2) the uncertainty at the
segment end is a normal distribution with the mean b and
the covariance matrix B. To investigate the evolution of the
robot position covariance matrix, the robot position can be
denoted to a = a + a, where a is the mean of a and
a denotes a random variable with the zero mean and the
covariance matrix A. Regarding to independence of § and a

b5 — RTMRaa’R"TMTR+ RT35TR.  (3)

For a sequence of segments, the end of the segment ¢ is the
start of the segment ¢ + 1, i.e. a;4+1 = b; = R?M,-Riai +
RT's;. The evolution of the uncertainty is a recurrent form
of Equation (3) that is in terms of covariance matrices

Ay =RTM;R,A;,RTMTR, + RTS;R;, (4

1 0 22 0
Mi—[o e—%’:|asi_|: 0 72

where

The length of the traveled segment is s;, p represents density
of the landmarks in the environment (an “average” distance
of the landmarks to the robot), n and 7 represent precision
of the odometry and the heading sensor.

Equation (4) provides estimation of the robot position
uncertainty at the particular segment end and can be used
as a heuristic function of the uncertainty evolution in a
path planning algorithm. The stability (boundness) of the
navigation method for closed paths consisting of several
conjoined straight line segments is proven in [7] for a
robot moving in a plane with an imprecise measurements
of the traveled distance, a forward aimed camera capable
recognizing a nonempty subset of mapped landmarks and
paths with at least two noncollinear segments.

B. Self-Organizing Map Based Multi-Goal Path Planning

The multi-goal path planning problem is formulated as
the TSP, which allows to use any TSP solver. However,
self-organizing map (SOM) approach is useful, because it is
flexible enough to consider the evolution of the localization
uncertainty in a straightforward way. The SOM algorithm for
the TSP [9] has been selected as the main adaptation schema
being modified. The algorithm is Kohonen’s unsupervised
neural network in which nodes are organized into a cycle
and a solution of the TSP is represented by synaptic weights
of nodes that are adapted to the goals (cities) during the
self-adaptation process.

The adaptation consists of two phases: competitive and
cooperative. In the competitive phase, goals are presented to
the network in a random order. For each goal a winner (the
closest) node is found according to its Euclidean distance
to the goal. The cooperative phase is an adaptation of nodes
(weights) to the presented goal. A winner node and its neigh-
bouring nodes are adapted (moved) towards the presenting
goal g by the adaptation rule v; = v; + uf(o,1)(g — v;),
where v; and g are coordinates of the node and the presented
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goal, p is the fractional learning rate and f(o, 1) is the neigh-
bouring function. The function is f(o,l) = exp(—1%/0?)
for [ < d and f(o,l) = 0 otherwise, where o is the gain
parameter (also called the neighbourhood function variance),
[ is the distance in a number of nodes measured along the
ring, d is the size of the winner node neighbourhood that is
set to d = 0.2m, where m is the number of nodes. After
the complete presentation of all goals (one adaptation step)
the gain is decreased by o = (1 — )0, where « is the gain
decreasing rate. The adaptation process is repeated until the
distance of a winner to the city is lower than given threshold,
e.g. 0.001. An inhibition mechanism [9] is used to avoid
nodes to win too often. The initial value of o is set according
to 0g = 0.06 + 12.41n, where n is the number of goals. The
learning and decreasing rates are p = 0.6, o = 0.1. The
number of nodes m is set to m = 2.5n.

III. PROBLEM STATEMENT

The problem addressed in this paper is motivated by an
instance of the inspection task that is a problem of visiting
given set of goals. The goals’ positions in the environment
are known in advance. A mobile robot is requested to repeat-
ably visit the goals, due to its restricted sensing capabilities,
i.e. all goals are not visible from a single place. The problem
is to find a sequence of goals visits with a minimal inspection
period. The robot is capable to be navigated by the method
described in Section II-A. The robot uses imperfect sensors,
therefore its position estimation is imprecise.

Even though the stability of the used navigation method
has been theoretically proven and experimentally verified in
real-world environments, it does not mean that the local-
ization error is sufficiently low. Therefore, to increase the
probability of visiting the requested goals, the localization
uncertainty at the goal positions should be as small as
possible.

For simplicity, the environment is assumed to be obstacle
free, thus a path can be composed from straight line segments
connecting the goals. Once a path is found, the robot is
navigated along the path in the tele-operated manner in order
to create a map of the environment. After that, the robot is
requested to periodically visit the goals using the mapped
path.

IV. PLANNING WITH LOCALIZATION UNCERTAINTY

The proposed multi-goal path planning algorithm com-
bines Equation (4) and the SOM adaptation schema for
the TSP. The idea is based on evolution of the localization
uncertainty that depends on particular values of 7, 7 and p.
The imprecise odometry increases the error in the direction
of the robot movement, while the error is suppressed by
heading corrections in the lateral direction. For a robot
with single forward looking camera, it means that a lower
localization uncertainty is achieved by a moving along “zig-
zag” trajectories instead of a single straight line segment.
So, the direction from which the robot arrives to the goal
is crucial in the uncertainty decreasing process. In other
words, a simple straight line segment path between two goals

g1 and g9 increases the error in the segment (longitudinal)
direction due to the imprecise odometry. To decrease the
uncertainty at go caused by the odometry, the robot can be
navigated to an auxiliary navigation point close to gs. From
a point at some perimeter around go, the robot movement
to go diminishes the previously increased error in the g;—
g2 longitudinal direction. The situation is demonstrated in
Fig. 4. A radius of the perimeter can be selected according
to the odometry error and profuseness of landmarks in the
environment that is represented by p.

Based on the observation the planning problem is formu-
lated as the following modification of the TSP. Each goal g
is represented by a group of points Py = {pg1,...,pgx}
at the perimeter d,, and the problem is to select a single
point from each group such that the uncertainty at each
goal is minimized and the total route length is minimized as
well. The SOM competitive and cooperative adaptation rules
are modified to consider the evolution of the localization
uncertainty using Equation (4). The ring of nodes must be
oriented in order to used the equation during the adaptation
process. It is achieved by the adaptation of the first and the
last ring nodes (in fact any two neighbouring nodes can be
used) to the selected starting goal prior presentation of other
goals to the network. During the ring evolution, each node
has associated the localization uncertainty represented by the
covariance matrix A, . The covariance matrix at the first node
is computed from the connection of the node with the starting
goal by a straight line segment. The initial uncertainty at
the starting goal is set to zero. The matrix A,, is computed
from A,, , directly by Equation (4) where s is the Euclidean
distance between the nodes v;_1, ;. The modified rules are
as follows.

The winner node to a goal g is selected from not inhibited
nodes according to the Euclidean distance between a node
and the goal. The orientation of the ring defines forward
and backward neighbourhoods of the winner node, which are
utilized in the cooperative phase. The backward neighbouring
nodes of the winner node v* are adapted to the perimeter
point p, ., while v* and its forward neighbouring nodes are
adapted towards g. The perimeter point py , is selected from
P, according to

pg,* = arglnianPg(HAgH2)7 (5)

where ||A,4||?> denotes the norm of the covariance matrix,
i.e. the maximal eigenvalue of AgAZ. The particular matrix
A, is computed from the straight line segments (v*1, Dg,.)
and (pg,.,g), where v*~! is the first backward node of the
winner. After the adaptation, the nodes v* and 1 are
marked as inhibited for the rest of the current adaptation step.
The proposed algorithm is called dadapt from the “double
adaptation”, because of two performed adaptations: towards
Pg,« and g.

The final path can be constructed by two methods. The
first variant is called dadapt-ring, because it directly uses the
ring as the final path. The second variant consider only the
winner nodes associated to the goals and their first backward
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nodes associated to the perimeter points, the variant is called
dadapt-perim.

V. EXPERIMENTS

The proposed multi-goal path planning algorithm has
been experimentally verified in several scenarios. Four path
construction variants are considered in the algorithm exam-
ination. The first variant is a solution of the TSP without
consideration of the localization uncertainty and it is refereed
as simple. The second variant represents straightforward
decreasing of the longitudinal error and it is used as a
reference method to examine quality of SOM solutions. The
path is constructed from a TSP solution where an additional
perimeter point p is placed before each visited goal. The
point is placed at the perimeter in such a way, that line
segments (g;—1,p and (p,g;) form the right angle and one
of the two solutions is randomly selected. Finally two SOM
algorithm variants dadapt-perim and dadapt-ring are used.

The quality of solution is characterized by the length of
the found path L and the maximal localization uncertainty
at the visited goals E, computed from the covariance matrix

(Il Ag[[%)-

Due to randomization of the SOM algorithm fifty solutions
are found by the particular algorithm variant and the quality
metrics are computed as average values. Besides, the best
solution with the lowest Fjs; is used to estimate algorithm
capability to find good solutions.

Enae = maXgea

Fig. 2: AR Drone quadcopter.

The considered robot is the AR Drone quadcopter [12]
shown in Fig. 2. The following values for the outdoor
environment have been set: 7=0.1 m, 7=0.1 m and p=20 m.
In the case of an indoor environment, landmarks are closer,
therefore p = 5.5 has been used. The used SOM parameters
are 09 = 12.14n + 0.6, = 0.6, = 0.1, = 0.001,d =
0.2m, where n is the number of goals and m is the number
of nodes that is set to m = 4n. To examine the effect of the
perimeter, solutions have been found for several perimeter
radiuses. Each goal perimeter is sampled by 48 equidistantly
placed points in the proposed SOM algorithm with dual
adaptation.

A. Planned paths for Outdoor Environments

Experimental results for the square scenario are depicted
in Fig. 3 and examples of found paths for perimeter radius
19 meters are shown in Fig. 4. The results indicate that
considering localization uncertainty leads to more than two
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Fig. 3: Influence of the perimeter to the solution quality,
square scenario, n = 0.1,7 = 0.1, p = 20.

(a) simple, (b) single-perim, (c) dadapt-
L=200 m, L=261 m, ring, L=261 m,
Emaz=5m Emaz=2 m Emaez=2 m

Fig. 4: Solutions for the square scenario, perimeter at 19 m.
The green disks are goals, the green circles denote perime-
ters, the found path is in red and ellipses denote localization
uncertainty at goals (yellow) and perimeter points (blue).

times lower localization uncertainty at the goals, while the
length of the path is about thirty percents longer. The
proposed SOM algorithm with the dual adaptation provides
competitive results to the single-perim variant in this simple
scenario. The lowest FE,,,,=1.94 m is achieved for the
perimeter at 19 m. The variances of the computed quality
metrics are very small due to simple configuration of the
goals, the highest values are for the dadapt variants, but
they are typically less than one meter for L and they are
in hundredths for E,, ...

o 5 0 5 n o 5 0 5 o»  »
Perimeter radius [m] Perimeter radius [m]

(b) Epaz of the best found

solution

(a) maximal localization uncer-
tainty Emax
Fig. 5: Influence of the perimeter to the solution quality,
square scenario, n = 0.1,7 = 0.1, p = 20.

To examine capabilities of the proposed algorithm in a
larger environment fourteen goals have been placed within
Charles’s Square location. Experimental results are presented
in Fig. 5. The dadapt algorithms provide worse average
solutions up to perimeter around twelve meters. However,
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consideration of the best found solution provides interesting
observation. The dadapt-ring algorithm provides better so-
lutions for perimeters between ten and fourteen meters. In
these cases, the found solutions have localization uncertainty
about one meter lower than for the single-perim variant. The
perimeter at 18.5 m provides the lowest values of E, ...
The best solution found by the dadapt-ring algorithm for
additional twenty new runs and perimeter at twelve meters is
depicted in Fig. 6. The best solution provided by the single-
perim algorithm variant has quality metrics L=641.5 m with
Erpaz=3.65 m.

Fig. 6: The best found solution for Charles’s square scenario,
dadapt-ring,d,=12 m,L=674.4 m, E,=2.85 m.

B. Computational Requirements

The algorithms have been implemented in C++, compiled
by the G++ 4.2 with the *-O2’ optimization flag and executed
at workstation with 2 GHz CPU. The simple and single-perim
algorithms variants provide solution in units of milliseconds
(including the solution of the TSP). The dadapt algorithm
is more computationally intensive due the used number of
perimeters points, particularly solutions for the square sce-
nario have been found in tens of milliseconds and less than
four hundred milliseconds in the case of Charles’s square
scenario. Even though the covariance matrix is computed
for each node after each adaptation of the winner node, the
simplicity of Equation (4) allows to plan several paths and
select the best found solution or plan in real-time.

C. Real Indoor Experiments

Two scenarios have been used in real experiments within
indoor environment. In these scenarios, a white color card
with dimensions 85.6x 54 mm has been placed at each
goal. The AR drone has been manually navigated along the
given path, then it has been requested to traverse the closed
path autonomously. The drone has been placed at the last
goal approximately in the directions of the first goal or the
perimeter point at each run. At each goal (over the card)
the bottom camera has been used to take a snapshot of the
card. The success of the navigation has been measured by
the number of observed cards, i.e. a detected card in the
snapshot over the goal area. The view angle of the vertical
camera is approximately sixty degrees and the high of the
drone has been in 1.0 - 1.5 m above the goal.

Scenario A - In the first scenario, goals form a rectangle
with dimensions 6.25 x 3.75 m. Experimental results from
five runs are presented in Table 1. The simple path is a direct

connection of the goals, while perimeter points have been
manually set before each goal in the perim path.

TABLE I: Scenario A

Path Planning Method Success Rates%

g1 g2 g3 ga overall
simple 20 20 40 40 30
perim at 1.77m 60 60 40 20 45

Scenario B - A rectangle with 3.750 x 4.375 m and
perimeter at 2.2 m has been used in this scenario. Beside
the simple path, the best found solution by the method
dadapt-perim has been used. Several snapshots of the goal
area have been taken for the card detection, because of
the following control issue. The images from the on-board
cameras are transfered to the laptop for the image processing,
i.e. SURF computation and landmark matching. The WiFi
connection with the AR Drone caused unpredictable delays.
These delays did not significantly affect the main navigation
loop, however the command to take a snapshot of the goal
area has been sometimes delayed. Even though the AR Drone
tries to stabilize its position, under certain circumstances it is
slightly moved. Thus, to avoid possible miss detection of the
goal area from a single snapshot, several images have been
captured and the goal visit has been considered as successful
if the card has been detected in at least one snapshot.

The used paths are shown in Fig. 7. Notice that the
perimeter point is needed only for the last goal g4. The first
perimeter point lies on the straight line segment from the start
goal the g;. In other cases the perimeter points are at distance
30 cm from the straight line segment, which in fact is very
close to the expected localization precision. Success rates of
the detected goals from tens runs are presented in Table II.
The AR Drone during experiments is shown in Fig. 8.

(a) simple, Eq:=0.58m

(b) dadapt-perim, Epq:=0.45m

Fig. 7: Found paths by the simple and dadapt-perim al-
gorithm variants and for the perimeter at 2.2 m in the
scenario B.

The single-perim algorithm variant is not suitable for this
scenario as distances between goals are relatively small and
perimeter points are not necessary for first goals. The best
found solutions has F,,,,=0.5 m and is about three meters
longer than the dadapt-perim solution.
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TABLE II: Scenario B

Path Planning Method Success Rates%

91 g2 g3 ga overall
simple 100 100 60 70 82.5
dadapt-perim 100 100 90 90 95.0

(c) detected landmarks

\

(a) goal snapshot (b) front camera view

Fig. 8: The AR Drone during experiment, the user interface
overlays the real scene, the small picture is from the AR
drone on-board cameras.

VI. DISCUSSION AND CONCLUSION

The presented results show that the expected localization
uncertainty can be decreased by consideration of heuristic
function describing evolution of the localization error. The
used heuristic function is based on simple and stable naviga-
tion method, thus regarding to its real performance [7] and
presented experimental results it seems that the function is
computationally efficient and sufficiently informative. The
proposed multi-goal path planning algorithm shows how
the function can be used in the path planning task. Even
though the results show uncertainty reduction, the benefit of
the used SOM schema is mainly in providing solution of
the multi-goal path planning problem. The straightforward
single-perim variant provides better results in most cases
with less required computational times. The efficiency of
perimeter point placement by the single-perim method is
caused by the dominant longitudinal error, because the right
angle constraint is sufficient to decrease this type of error. In
a general case, consideration of other orientation of the error,
i.e. axes of the error ellipse, can lead to higher reduction.
Also the axes directions depend on the order of goals in
the path, thus the post-processing procedure can provide
sub-optimal solutions. From this point of view, the best
found solution found by the dadapt algorithm can be a
motivation for further investigation of SOM application in
the formulated multi-goal path planning problem. Moreover,
for the small indoor environment, the dadapt method is able
to find solutions in which all perimeter points are not needed.
The expected benefit of SOM is in its flexibility to deal with
various problem variants, e.g. considering obstacles in the
environment [13], restrictions of directions to reach goals or
in the case of several mobile robots [14].

Our future intention is to examined the proposed method
in a real-world outdoor scenario!. The main idea of the

'We have planed experiment in Charles Square park, however due to
weather conditions and low turbine power of the UAV it was not possible.
Even small wind made the robot control unpredictable.

uncertainty reduction is to increase the reliability of the
inspection. The found plan represents only expected localiza-
tion uncertainty, thus it is clear that real performance will be
different and a robot will unlikely be navigated precisely to
the goal position. On the other side, it is sufficient if the robot
is navigated to the goal vicinity, because a robot can be then
locally navigated to the goal by another navigation method.
For an UAV, it means that forward looking camera can be
used for the navigation to the goal vicinity, while the vertical
camera is used for the local navigation to the goal. The
execution of the plan has one important aspect relating to the
localization uncertainty. If the goal is successfully recognized
and its position is known, it can be used to localize the
robot. Thus, additional reduction of the localization error is
achieved, which increases the probability of the next goal
visit. These ideas will be investigated in our future work.
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Abstract—

This paper presents a multi-goal path planning framework
based on a self-organizing map algorithm and a model of the
navigation describing evolution of the localization error. The
framework combines finding a sequence of goals’ visits with a
goal-to-goal path planning considering localization uncertainty.
The approach is able to deal with local properties of the
environment such as expected visible landmarks usable for
the navigation. The local properties affect the performance of
the navigation, and therefore, the framework can take the full
advantage of the local information together with the global
sequence of the goals’ visits to find a path improving the
autonomous navigation. Experimental results in real outdoor
and indoor environments indicate that the framework provides
paths that effectively decreases the localization uncertainty;
thus, increases the reliability of the autonomous goals’ visits.

I. INTRODUCTION

This paper concerns a problem of finding a reliable path
for an autonomous mobile robot in the inspection task, i.e.,
a problem of finding a path to visit a set of goals. Having
a model of the robot’s workspace the required mission
objective is to maximize the frequency of the goals’ visits,
which leads to minimize the inspection path length. However,
due to a localization uncertainty, the path length is not
the only criterion, and a precision of navigation is also
considered during the path planning. The proposed approach
follows the basic idea of the planning approaches considering
robot position uncertainty that is to design a sequence of
robot’s actions to fulfill the desired mission objective while
minimizing the position uncertainty. Let us briefly review
previous approaches in this field.

The motion planning problem with uncertainty has been
addressed using the “Sensory Uncertainty Field” notion
in [1]. The approach provides estimation of possible errors
in robot position computed by the localization function for
every possible robot configuration. Then, a combination of
the expected error with the path length is minimized during
the path planning. In [2], authors formulate a problem of
bearing-only target localization as an optimization problem
of finding an optimal observer trajectory. Their approach is
based on the Fisher information matrix (FIM) representing
information contained in a sequence of measurements.

Authors of [3] proposed a path planning algorithm that
finds a safe path in an uncertain-configuration space using a
localization function based on the Kalman filter technique
(EKF). Safe paths are also studied in [4], where authors
address the problem of computationally intractable stochastic

Authors are with the dept. of Cybernetics, Faculty of Electrical Engineer-
ing, Czech Technical University in Prague, Technickd 2, 166 27 Prague,
Czech Republic {xfaigl}@labe.felk.cvut.cz

978-1-4673-1404-6/12/$31.00 ©2012 IEEE

control problem as a path planning problem in a Bayesian
framework using extended planning space that is created as a
Cartesian product of robot poses and covariances. A safe path
is determined by a state space searching algorithm, which
finds a path as a sequence of state transitions using FIM.
Although the approach is well formalized, the authors noted
it is computationally demanding if states in the open list
cannot be easy discarded due to a dominated state, i.e., the
case in which states are a totally ordered set, and therefore,
all relations have to be evaluated.

High computational requirements are also the case
of the general framework for planning with uncertainty
based on the partially observable Markov decision process
(POMDP) [5]. On the other hand, sampling based techniques
based on an extension of the configuration space by an
“uncertainty dimension” seem to provide computationally
feasible solution [6]. However, the key issue is an efficient
determination of the collision probability with position un-
certainty [7].

An alternative to the belief space planning approach
has been presented in [8], where Belief Roadmap (BRM)
approach is proposed. The BRM is a variant of the Prob-
abilistic Roadmap algorithm for linear Gaussian systems,
where nodes of the graph built have associated information
about belief estimation. Thus, the roadmap allows to plan a
trajectory regarding its length and uncertainty along it.

The aforementioned planning approaches consider uncer-
tainty in sensors’ measurements or in a robot position estima-
tion using a regular localization function, e.g., based on the
update step of the EKF. In the proposed approach, we rather
consider a model of the localization uncertainty evolution
based on a mathematical formulation of the navigational
method [10]. The main advantage of the proposed approach
is an efficient determination of the robot position uncertainty
along a path consisting of a sequence of straight line seg-
ments. The basic formula describing the position uncertainty
is a simple matrix equation that allows us to consider the
path planning problem as an instance of the multi-goal
path planning problem (MTP). The MTP is formulated as
the well-know Traveling Salesman Problem (TSP) [11], [9],
which is known to be NP-hard. The TSP stands to find a best
sequence of goals visits; however, an order of goals’ visits
affects the precision of the goals’ visits. Thus, we propose
a planning framework for the MTP with the localization
uncertainty. Although the graph based TSP solver can be
eventually used with the BRM, the framework proposed does
not require explicit construction of a graph before solving the
TSP; thus, a solution found does not depend on sampling
strategy as PRM based approaches.
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We introduced the initial idea of the framework in [12],
where the Parrot AR.Drone has been utilized in the verifica-
tion of the main principle of the proposed MTP solver. The
real experimental results show that the proposed planning
improves the success rate of the goals’ visits from 82.5 %
to 95 %. However, this initial work is rather limited, and
therefore, in this paper, we extend the framework to deal
with environments with obstacles. Moreover, we generalize
the model of the autonomous navigation to consider local
properties of the environment and develop local models of
visible landmarks used for the navigation. The generalized
framework and its experimental verification in real outdoor
environment are the main contribution of this paper.

The paper is organized as follows. The problem addressed
is specified in the next section. In Section III, the main
idea of the localization uncertainty decreasing is presented.
The proposed MTP framework is described in Section IV.
The experimental results are presented in Section V, and
concluding remarks are dedicated to Section VI.

II. PROBLEM STATEMENT

The problem addressed is an instance of the inspection
path planning for a mobile robot operating in a planar
environment. The map of the environment is a priori known,
and it is represented as a polygon with holes Y. Obstacles
of W are enlarged to respect dimensions of the robot and
the required clearance. It is assumed the robot has differential
drive; thus, a point robot model is considered in W. A set
of n goals G = {g1,...,9,} representing areas of interest
to be visited is given, and each goal g € G is reachable by
the mobile robot, g € W. The considered multi-goal path
planning problem is as follows: Find a closed shortest path
in W visiting all goals of G while the localization error of
the robot at the goals is minimized. Without loss of generality
the starting point is assumed to be g, € G.

The problem addressed is a variant of the well-known
Traveling Salesman Problem (TSP), in which not only the
path length is considered, but also the localization error is
taken into account. As two criteria are minimized, it is clear
that only Pareto optimality can be achieved. The problem is
how the length of the path and the localization uncertainty
at the goals relate, and what improvements can be achieved.

A. Models of the Localization Uncertainty

An efficient and informative heuristic function is needed to
incorporate the localization uncertainty into the path planning
algorithm. We assume that the mobile robot performing the
inspection is navigated by the method presented in [10],
where a proof of stability of the method and its experimental
validation can be found. The method uses a map of salient
objects of the environment, and matches the current seen
objects to steer the robot in the desired direction. Assuming
distance and heading estimations are independent and not
correlated (e.g., using odometry for distance measurement
and vision based heading estimation), the position uncer-
tainty can be expressed in terms of covariance matrices [10].
For a robot navigated along a straight line segment (with the

length s;) from the position a;, the covariance matrix A;;1
at the end of the segment ¢ (position a; 1) can be computed
using the formula':

A1 =R/M;R, A, RTMTR, + R S;R;, (1)
where

2
M, = 1 0}’512{817] 0}’

0 m(ai,aHl,M) 0 T2

m(a;, ai+1, M) represents a model of visible landmarks
used for the navigation, R is the rotation matrix, and 7, 7
represent precision of the odometry and the heading sensor,
respectively.

1) Global model of visible landmarks: For homoge-
neously distributed landmarks the model can be characterized
using a single parameter p representing an “average” distance
of the landmarks ahead of the robot. In this case, the function
m can be expressed as [10]:

m(a;, ait1, M) = e ?2)

2) Local model of visible landmarks: Alternatively a map
of the landmarks M can be utilized to compute expected
distance of the closest landmark to the robot traveling from
the position a; towards the position a;,;. Let the distance
of such a landmark be d. Then, the model can have a form:

d

m(a;, aiy1, M) = s +d
2

3)
which describes position of the robot moving towards a
particular landmark. A particular value of d can be computed
using various approaches depending on the representation of
M, e.g., point or polygonal map of landmarks. An expected
benefit of the local model is a more precise estimation of
the localization uncertainty; however, it is clear that it can
be more computationally demanding than the global model.

B. Solution Quality Metrics

A natural quality metric of the inspection path visiting
the given goals is a length of the path L. However, a
robot can miss the goal due to imprecise navigation. Hence,
an additional quality metric can be the maximal expected
localization uncertainty at the goals. Using the navigational
method [10], the uncertainty can be described by Eq. 1, and
the expected position error at a goal g can be computed using
the maximal eigenvalue of the matrix A,. Thus, the maximal
localization error is

Enae = maXgeG 1/ (HAGH2) “

Beside the quality metrics L and FE,,,, of an inspection
path found, the real performance of the autonomous inspec-
tion can be measured by real distances of the robot to the
goals, when the robot announces that it reaches the particular
goal. The real distances are examined in the experimental
evaluation of the proposed planning method in Section V.

"Here, it is worth to mention that s; in S; is not in power of two, which
is accidentally presented in [10].
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III. PRINCIPLE OF UNCERTAINTY DECREASING

A principle of the uncertainty decreasing utilized in the
proposed multi-goal path planning is based on a geometrical
interpretation of Eq. 1. The idea is as follows. Assume a
robot moving from a goal g; to a goal g, along a straight
line segment. The error in the longitudinal direction caused
by the odometry is increased, while the error in the lateral
direction is decreased due to heading corrections, see Fig. la
where the corresponding covariance matrices A; and Ao are
visualized as ellipses [13]. In Fig. 1b, it is shown how the
error can be decreased by an auxiliary navigation waypoint
placed at a selected perimeter around go.

position
uncertainty

position
uncertainty

& &
auxiliary navigation
waypoint

increased uncertainty
in longitudial direction

&

(a) direct connection of goals (b) auxiliary navigation waypoint

1: A principle of the localization uncertainty decreasing.

This principle motivates us to consider visitation of an
auxiliary navigation waypoint prior each goal visit. The
auxiliary waypoint should be placed at a location that will
suppress the error in a direction corresponding to the eigen-
vector of the maximal eigenvalue of the matrix A;. However,
due to non-linearity of Eq. 1, such a location is not easy to
compute. Moreover, the location can be unreachable due to
obstacles. Therefore, eventual auxiliary waypoints are spread
around each goal, and an appropriate waypoint is determined
during the multi-goal path planning.

IV. MULTI-GOAL PATH PLANNING WITH LOCALIZATION
UNCERTAINTY

Herein, we extend the approach [12] to problems with
obstacles using the algorithm [14]. The planning algorithm
proposed is a type of unsupervised learning procedure that is
a two-layered competitive learning network. An input vector
i represents coordinates (gi1,¢:2) of the goal g;, and m
output units form the output layer where neurons’ weights
(vj1,v42) of the node v; are points in JV. The output units are
organized into a unidimensional structure that prescribes a
sequence of nodes representing a path in J in which the first
node ;1 and the last node v, denote the orientation of the
path. For each goal g a set of auxiliary navigation waypoints
is created, e.g., using a perimeter with radius d,, like in [12],
but in this case only points inside WV are associated to the
goal, Py ={py.ilpgi € W}.

During the learning, the goals are presented to the network
in a random order, and for each goal a winning neuron
is found using the length of approximate shortest path
in W [14]. To ensure a path will be closed at the desired
final goal ¢,,, the end nodes (v; and v,,) are adapted to

gn, without competition. The node v, and its neighbouring
nodes v; (for j > 1) are adapted by a regular adaptation to
gn, while v,,, and its neighbouring nodes are adapted by the
double adaptation rule, called dadapt.

The dadapt rule adapts nodes to the presented goal and
a particular auxiliary navigation waypoint. Each node has
associated the localization uncertainty represented by the
covariance matrix A,. The matrix A,, is computed from
A,, , by Eq. 1, where a path among obstacles between
two nodes is considered, i.e., the path between the nodes
is a sequence of straight line segments; thus, each segment
of the path is considered using Eq. 1. The matrix A4,, is
computed from the approximate path from g, to the node
because v; can be far from g, during the adaptation. The
initial uncertainty for g,, is set to zero. For a winner node
v* of the goal g, the dadapt rule is performed as follows.
The backward neighbouring nodes of v* are adapted to the
perimeter point py ., while v* and its forward neighbouring
nodes are adapted to g. A point pg , is selected from the
set P, to minimize the dominant eigenvalue of A,. Because
the adaptation changes positions of the nodes, the covariance
matrices are recomputed prior each selection of the perimeter
point.

An example of the network evolution is shown in Fig. 2.
In all presented figures in this paper, the error ellipses are
four times enlarged to show the effect of the uncertainty
decreasing.

(a) perimeter points (b) step 3 (c) step 10

(d) step 22

(e) step 45 (f) step 64

2: An example of the path evolution, the green disks rep-
resent goals, blue disks are nodes associated to the auxiliary
navigation waypoints, the error ellipses are drawn for the
winner nodes. The starting point (g,,) is shown as the brown
disk.

The advantage of the propose algorithm is the ability
to deal with obstacles while minimizing the both quality
metrics. The obstacles cause that a path between two goals
consists of several segments, which can eventually increase
the precision of the navigation. However, the real benefit
is not clear, and therefore, the performance of the real au-
tonomous navigation using the proposed planning algorithm
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is compared with a simple solution of the TSP (without
localization uncertainty) in the experimental part of this

paper.

A. Placement of Auxiliary Waypoints

In [12], we place auxiliary waypoints at a selected perime-
ter and an influence of perimeter radius to the solution quality
has been shown. Also in the presence of obstacles, the radius
affects the solution quality. Although an appropriate radius
can be found experimentally (i.e., solving the problem indi-
vidually for selected perimeters several times), the flexibility
of the underlying self-organizing map algorithm allows to
consider a general set of waypoints at various perimeters.

B. Local Models of Visible Landmarks

Eq. 3 pre-scribes how visible landmarks affect the localiza-
tion uncertainty. A practical implementation of the formula
can be based on a polygonal map of the visible landmarks or
point landmarks can be directly used. In the first case, visible
objects form obstacles and the distance d to the closest
visible landmark can be found using an intersection of the
supporting line of the path’s segment with a segment forming
the polygonal representation of the landmarks M,;,,. An
example of the superimposed landmark map is shown in
Fig. 3, the map has been created from the ortophotomap
shown in Fig. 4. Thus, the obstacles in this landmark map
represent objects, where eventual landmarks can be seen.

3: An example of the polygonal map representing land-
marks; the blue polygon is a boundary polygon of the
surrounding area and the green polygons represents visible
objects within the experimental site, e.g., trees.

Alternatively, landmarks can be represented by a set of
points. In this case, it is necessary to consider a field of view
(FoV) of the forward looking camera used for the navigation
because a point landmark will not likely be placed exactly at
the supporting line. An example of such a model is visualized
in Fig. 6.

Similarly, the FoV can be considered also for M,y 4. As-
sume a path segment (a;, a;+1), then the expected landmark
is found as an intersection point p of a half-line started at
a;+1 with a segment of M,,,,,. Such a point p must also
be within the FoV defined by the segment (a;, a;+1), which
provides a rough approximation of the expected landmark.
The distance d in (3) is computed as d = |[|(ai,p)||.
Moreover, this model allows additional visibility constraints,
e.g., distance constraints regarding a texture of the objects.

It may happened that an expected landmark is not found
by the proposed models due to local properties of the
environment model M around the position a;. In such a
case, the function m has value 1, which corresponds to a
landmark placed at infinity, regarding (2).

C. Computational requirements

The complexity of the proposed planning algorithm is
proportional to the square of the number of goals multiplied
by a number of navigational waypoints associated to one
goal. The solutions presented in this paper are typically found
in tens of milliseconds for waypoints on a single perimeter
and in hundreds of milliseconds for several perimeters using
C++ implementation and 3 GHz single core workstation.

V. EXPERIMENTS

The idea of the uncertainty decreasing presented in Sec-
tion III has been examined in real experiments with two types
of robots, see Fig. 4b and Fig. 4d. All robots have been
navigated using the method [10]. First, the benefit of the
proposed planning method in real environment with obstacles
(a city park) has been examined. Then, the effect of the local
models has been examined in a simple scenario using four
goals.

In all experiments, the parameters of the navigational
model have been estimated for the particular robot and envi-
ronment. Two paths visiting the given set of goals are used
in each experimental scenario. The first path is a solution of
the TSP without localization uncertainty denoted as simple.
The second path is found using the proposed algorithm that
is denoted as dadapt. For each method, the robot is taught
the found path first. Then, the robot is requested to traverse
the path several times while its position to the particular
goal has been measured whensoever the robot announced
it reached the goal. Supplementary materials describing the
experiments can be found in [15].

A. Scenario 1 - Autonomous Navigation in a City Park

The P3AT mobile robot has been used to verify the
proposed method in a real outdoor experiment in which five
goals have been placed within the Charles Square location,
see Fig. 4. For each algorithm variant twenty solutions have
been found for parameters p=15, 7=0.001, €=0.05, d,=5 m,
and a polygonal map created on top of the park orthophoto-
map. Impassable terrain has been marked as obstacles, which
have been enlarged by a small distance to reflect the robot’s
dimensions and its possible localization error. The best found
paths (regarding F,,..) are depicted in Fig. 5. After the
planning, the robot position at the goals’ locations has been
marked on the ground by a chalk during the path learning.
Then, the robot has been requested to traverse the path
autonomously for five times. Average robot distances to the
goals are presented in Table I. The sample variances of the
distances are 0.37 m and 0.32 m for the simple and dadapt
methods respectively.

In this experimental scenario, the robot autonomously
traveled about two kilometers. Although the path is found
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(a) a map of the Charles Square park in Prague,
the goals are represented by small yellow disks

(b) the P3AT mobile robot during experiment

(c) indoor testing site

;

Vi din
(d) MMP-5 platform

4: The outdoor and indoor experimental sites.

R 3 (Ho-F

(a) simple, L=184 m, Eq,4=0.57,
Emaz=0.63

(b) dadapt, L=202 m, FE4y,4=0.35,
Enaz=0.37

5: Best solutions found for the Charles Square scenario,
dp=5 m, and the global landmarks model.

I: Real P3AT distances to the goals

Planning method Average distances to the goals [m]

g1 g2 g3 94 9gs overall
simple 071 092 094 097 093 0.89
dadapt 033 061 071 055 070 0.58

regarding the dimensions of the robot (using the Minkowski
sum), the robot leaved the pathway occasionally due to
imprecise localization. These errors do not cause a collision
with obstacles, as far landmarks are used for the navigation,
and a grass terrain is mostly around the pathways. The robot
has been manually moved to the pathway only once and
just its lateral position has been changed, i.e., the navigation
has been paused, the robot has been moved, and requested
to continue the navigation without any additional settings.
In this particular case, the robot has been completely on
the grass, in other cases at least one wheel remains on the
pathway.

B. Scenario 2 - Small Low-Cost Wheeled Mobile Robot

The second experiment has been performed in an indoor
environment without obstacles with a MMP5 platform shown
in Fig. 4d. A single camera is used for the navigation with
the on-board processing using the NVidia ION platform.
The identified parameters of the navigational model are p=7,
7=0.05, and 7=0.01 meters. The goals form a rectangle
with 3.750 x 4.375 m and the proposed dadapt method
provides the same best paths regarding the lowest E,,,, over
several runs and selected perimeters regardless models of
landmarks described in Section IV. However, the expected
values of F,,,. are different for different landmarks models,
and generally the local models provide lower values than
the global model. The best found path is visualized in
Fig. 6. Real average distances of the robot positions from
the goals computed over 10 runs of autonomous navigation
are presented in Table II.

& & & % °e o8

&
& 2@
& ®
®

&
®
. % *® & 0% Lo g0 S &

6: The best path found using point based local model of
landmarks. The blue disks represent landmarks.

II: Real MMS5 distances to the goals

Planning method Average distance to the goal [cm]

91 92 93 g4  overall
simple 129 143 204 187 16.6
dadapt 97 126 128 162 12.8
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The expected ratio of the localization uncertainty decrease
is about 0.7 using E,,,, for the paths found by the single
and dadapt methods, while the achieved ratio is 0.8. The
real average localization errors are 24.8 cm and 20.2 cm for
the single and dadapt paths, respectively, and the maximal
errors over all goals and runs are 34 cm and 27 cm, respec-
tively. The cost of the uncertainty decrease is a bit longer
path, which is approximately proportional to the uncertainty
decrease, i.e., the length ratio is about 1.3.

C. Discussion

Although the expected uncertainty decrease (ratio of the
Enax for the single and dadapt methods) differs from the
real achieved ratio, the experimental results confirms the
benefit of the planning method providing a path leading to
a more precise visitations of the goals (about 20 %). The
results show that even in the environment with obstacles,
the proposed planning is beneficial.

The differences between the expected and achieved results
are caused by several factors. First, all the parameters are
only estimated. In addition, the global model is only a rough
estimation providing average expected results, which in part
holds also for the local models. Besides, it’s clear that the
real robot path cannot be exactly the planned path, unless
precise (that means expensive and unpractical) navigation is
used for learning the path. Despite that the planned paths
provide real valuable guideline suggesting an order of the
goals visits and the navigation waypoints.

On the other hand, the proposed generalizations of the
planning method considering more auxiliary waypoints and
local models of the landmarks do not provide significant
benefit in a comparison with a single selected perimeter and
the global model. This is mainly due to considered scenarios,
which are rather simple. However, these generalizations
form fundamental extensions towards a planning framework
allowing to consider local properties of the environment
and specific sensing device used for the navigation. It is
expected that a proper local model will provide a more
precise estimation of E,,,,, which will be closer to the
really achieved error, as a more sophisticated model can
be proposed. For example in the current local model, the
expected visible landmark for a segment of the path is found
using the segment end. It is assumed that such a landmark
will be visible during the traversing the segment. The robot
is navigated towards the landmark, and therefore, its distance
to the landmark is decreasing. It is obvious that for a very
long segment, this approximation is only rough, and a more
sophisticated local models can be proposed, e.g., considering
the fact that, in reality, closer landmarks along the segment
are often used for the navigation. In addition, the eigenvalue
used for E,,,, is not exactly the distance measured in real
experiments.

VI. CONCLUSION

An extension of the multi-goal path planning with local-
ization uncertainty for environments with obstacles has been
presented. Moreover, generalization of our previous work to

deal with a local model of landmarks has been introduced.
The planning algorithm can use more navigational waypoints
at different perimeters allowing to automatically find the best
perimeter waypoint individually for each goal. The proposed
approaches have been experimentally verified in real outdoor
and indoor scenarios. Although the expected characteristics
of the navigation for the planned path differ from the real
performance, the benefit of the approaches to uncertainty
decrease is evident from the results. All together, the gener-
alized approach presented forms a suitable framework (with
low computational requirements) for a further research in
path planning with focus on surveillance tasks.

Our future aim is to improve the model of landmarks to
achieve closer expected and real performance characteristics
of the autonomous navigation to provide more realistic
expectations.
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Abstract— Performance of exploration strategies strongly
depends on the process of determination of a next robot goal.
Current approaches define different utility functions how to
evaluate and select possible next goal candidates. One of the
mostly used evaluation criteria is the distance cost that prefers
candidates close to the current robot position. If this is the
only criterion, simply the nearest candidate is chosen as the
next goal. Although this criterion is simple to implement and
gives feasible results there are situations where the criterion
leads to wrong decisions. This paper presents the distance
cost that reflects traveling through all goal candidates. The
cost is determined as a solution of the Traveling Salesman
Problem using the Chained Lin-Kernighan heuristic. The cost
can be used as a stand-alone criterion as well as it can
be integrated into complex decision systems. Experimental
results for open-space and office-like experiments show that
the proposed approach outperforms the standard one in the
length of the traversed trajectory during the exploration while
the computational burden is not significantly increased.

I. INTRODUCTION

The exploration can be understood as a process of au-
tonomous navigation of a mobile robot in an unknown
environment in order to build a model of the environment. An
exploration algorithm can be defined as an iterative procedure
consisting of a selection of a new goal and a navigation
to this goal. Such an algorithm is terminated whenever the
defined condition (mission objective) is fulfilled. In this
paper, the mission objective is building of a complete map
of the environment. Besides, the usage of resources (e.g. the
exploration time, the length of the trajectory) is optimized.
In other words, the exploration strategy determines the next
robot goal in each exploration iteration (one exploration
step) with respect to the actual robot position, the current
knowledge of the environment, and a selected optimization
criterion.

Several exploration strategies have been proposed over last
decades. The strategies differ in the way how candidates for
the next goal are generated and in the criterion how the best
candidate is selected. Yamauchi [1] introduced a frontier-
based strategy that guides the robot to the nearest frontier, i.e.
the boundary between a free and an unexplored space. It has
been shown [2], [3] that this strategy produces reasonably
short trajectories for graph-like environments with upper
bound O(|V|log(]V])), where |V| is the number of vertices
of the graph. The authors of [4] discussed two simple
heuristics improving Yamauchi’s approach. The first one
uses Voronoi diagrams to prefer exploration of the whole

The authors are with Department of Cybernetics, Faculty of
Electrical Engineering, Czech Technical University in Prague, Tech-
nicka 2, 166 27 Prague 6, Czech Republic {kulich, xfaigl,
preucil}@labe.felk.cvut.cz

978-1-61284-380-3/11/$26.00 ©2011 IEEE

room in office-like environments before leaving it, while
the second one repetitively re-checks whether the currently
approached goal is still a frontier. When it is not, a new
goal is determined. A strategy selecting the leftest candidate
according to a robot position and orientation with a defined
distance to obstacles is described in [5].

Other works generate several candidates in a free space
(typically near to frontiers) and combine the distance cost
(the utility evaluating effort needed to reach the goal) with
other criteria. This concept has been introduced in [6] where
measure A(g) of an unexplored region of the environment,
which is potentially visible from the candidate ¢, is combined
with the distance cost L(q) to get the overall utility of ¢:

9(q) = A(q)e M@,

where ) is a positive constant. A utility of the next action
as the weighted sum of the distance cost and expected
information gain computed as a change of entropy after
performing the action is presented in [7]. Another strategy
taking into account the distance cost and the information
gathered (based on the relative entropy) is introduced in [8]
together with solid mathematical foundations. The strategy
in [9] samples points near each candidate and filters samples
according to selected criteria. The candidate with the highest
number of samples that passed the filters is then chosen.
Moreover, the localization utility can be integrated into the
overall utility to prefer places traveling to them improves
information about the robot pose [10]. Criteria forming
the overall utility are not typically independent. General
approach that reflects dependency among the criteria based
on multi-criteria decision making is used in [11].

The aforementioned approaches evaluate the distance cost
simply as the length of the trajectory from the current robot
position to the next goal position. Such defined cost prefers
candidates close to the robot without considering subsequent
actions. In this paper, we present more sophisticated ap-
proach that is based on the observation that the robot should
pass (or go nearby) all the goal candidates and define the
distance cost for a candidate ¢ as a minimal length of the
path starting at the current robot position, continuing to the
candidate ¢ at first and then to all other candidates. We
show that the introduced cost can reduce the exploration time
significantly and leads to more feasible trajectories.

A similar approach is described in [12] where several
exploration steps ahead are also considered. The state space
of all possible paths consisting of several exploration steps is
searched for the best alternative using the branch and bound
algorithm. The branch and bound is a general technique
that greedily searches relatively large state spaces without
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(a) (b)

Fig. 1: Next goal selection by (a) the greedy approach, (b)
taking into account all goal candidates.

a priory information about the solved problem. It can be
therefore time consuming and the quality of found solutions
heavily depends on the defined depth of pruning.

In our approach, we define the distance cost as the Trav-
eling Salesman Problem (TSP). The problem formulation
is described in the next section. Fast evaluation of the
proposed distance cost is addressed by a heuristic algorithm
for the TSP that finds a feasible solution quickly. Thus, the
required computational time to solve the TSP is negligible in
comparison to other parts of the exploration as it is shown in
Section III presenting the experimental results. Finally, the
concluding remarks are presented in Section IV.

II. EXPLORATION WITH THE TSP DISTANCE COST

Let the robot be equipped with a distance sensor with
a fixed range (e.g. laser rangefinder) and the map the robot
builds during exploration be modeled as the occupancy grid.
The proposed exploration strategy is based on Yamauchi’s
frontier based approach. The key idea of the approach is to
detect frontier cells, i.e. the reachable free grid cells (the
cells representing free regions) that are adjacent with at
least one cell that has not been explored yet. The frontier
is a continuous set of frontier cells such that each frontier
cell is a member of exactly one frontier. Once all frontiers
are detected, the most appropriate frontier cell is selected
as a new robot goal according to the defined criteria. This
process is executed repeatedly at defined time steps until
there is a frontier cell reachable by the robot.

As mentioned above, the current approaches compute the
distance cost as the length of the path from the current robot
position to the next goal, which can lead to selection of
an inappropriate goal. An example of such a selection is
demonstrated in Fig. 1a). In the shown situation, the robot
moves down (the trajectory represented by the green curve)
and a new goal has to be determined. The greedy approach
selects the nearest frontier cell using the path showed as the
black straight-line segment. It is obvious that in this situation
a much better selection is to travel to the left first and then
continue as it is illustrated in Fig. 1b).

Unfortunately, the described situation is not rare, and
therefore the greedy approach produces superfluously long
trajectories, see Fig. 2. To avoid this behavior, we propose
a more informed approach to the distance cost using the TSP
distance cost and consisting of two steps.

(a) (b)
Fig. 2: Typical trajectories for the greedy approach.

At first, frontier cells are filtered to get a set of repre-
sentatives approximating the frontier cells such that each
frontier cell is detectable by the robot sensor from at least
one representative. This guaranties that all frontiers will be
explored (i.e. it will be detected whether frontier lies in a free
space or in any obstacle) after visiting all representatives. An
algorithm for selection of representatives based on k-means
is depicted in Algorithm 1.

Algorithm 1: Representatives selection for occupancy
grids
Input: Q = {Q1,Q2,...,Q,} - the set of frontiers
Input: D - the range of the used sensor (in grid cells)
Output: R = {ry,...,r,} - the set of representatives
R=1{
foreach Q; do
Set an appropriate number of‘ representatives:
_ Q
N=1+55
Find N means using k-means clustering:
A = k-means(Qy, N)

R=RUA

Having the representatives, the second step is to decide in
which order they will be visited with respect to the minimal
length of the traveled trajectory. Let the robot position be
s0, the set of representatives S = {s1,...,S,}, and d(a,b)
denote the length of the path between cells a and b. The aim
is to find a permutation IT = {my,...,m,} of Z ={1,...,n}
such that d(so, $x,)+ 31 U5z, Sr.,,) is minimal over all
permutations of Z. The representative s, is then selected as
the next robot goal.

The problem to find the best permutation is similar to
the TSP that is known to be NP-hard [13]. While finding
an optimal solution of the TSP can be computationally
demanding, there are many approximate algorithms. One
of the most powerful ones is the Chained Lin-Kernighan
heuristic, which gives near-optimal results (up to 1% of
the optimum) in a reasonable time [14]. The TSP can be
defined on a graph G(V, E), where V is a set of vertices
and E are edges connecting the vertices and representing
the connection cost. The objective is to find a closed tour
with the minimal cost connecting all vertices in V.

A straightforward approach to formulate the permutation
problem as the TSP is to construct G(V, E), where V is the
set of representatives, and E is the set of the all shortest
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paths between the representatives. £ can be computed by
n calls of Dijkstra’s algorithm on the adjacency graph of
cells in the occupancy grid. Note that the TSP is formulated
to find the best closed tour on the graph while a sequence
of representatives ending in an arbitrary representative is
requested for the distance cost. This discrepancy can be
addressed by adding a fictive vertex so, to V' together with
edges to all other vertices in V, whereas d(s~, s0) = 0 and
Vi € {1,n} : d(5x0,8i) = w, and w is a large number (i.e.
larger than the longest possible tour). This ensures that the
TSP solver finds a solution where sy and s, are neighbors
in the tour. A solution of the permutation problem is found
as a part of the tour starting from the sy and removing s,
and both its adjacent edges.

Algorithm 2: Frontier based exploration with the TSP
distance cost.
repeat
Get the updated map built from sensor readings
Detect all frontiers from the actual map
Select representatives
Build the graph G(V, E)
Solve the TSP on G(V, E)
Set the neighbor of s( other than s., as the next
goal
until accessible frontier found

If the TSP distance cost is the only criterion for the goal
selection it can be used as described above. An overview
of the exploration procedure with this cost is depicted in
Algorithm 2. In the case, the distance cost is combined
with other costs (localizability, information gain) like in [10]
[15], evaluation of the TSP distance cost is needed for each
representative. Therefore a solution of the TSP for each
representative s; has to be found in order to compute the
distance cost. The cost for s; is determined using the graph
G,(V;, E;) that is constructed in the following way:

1) V;={s1,...,5n, 500}, 1.e. V; does not contain s.

2) d(So,sj) =0and Vi € {1,n}\{j} : d(s0c, ;) = 0.

3) Costs of all other edges represent shortest paths be-

tween adjacent vertices.
In other words, G; is constructed similarly to the previous
case, however s; has the role of sy. The distance cost for s;
is simply computed as the sum of d(so,s;) and the length
of the sequence created from the TSP result in the similar
way as in the previous case.

III. EXPERIMENTAL RESULTS

Performance of the proposed distance cost has been eval-
uated and compared to the standard greedy approach in two
types of environments in simulations using the Player/Stage
framework [16]. The first one is an open space represented
by the cave map, which has been scaled to 25x20 m. The
second one is an office-like environment represented by
a map of the Autonomy Lab (autolab) scaled to 35x35 m.
The environments are visualized in Fig. 3. Five positions
where the robot starts the exploration have been chosen for
each environment as shown in Fig. 3 and described in Tab. 1.

1]
I ]

- U

(b) Autolab

L)

5

js
U
-

_4"

i

(a) Cave

Fig. 3: Testing environments. The numbers correspond to the
starting positions presented in Table I

All experiments were performed within the same compu-
tational environment: a workstation with the Intel®Core2
Duo CPU E6850 at 3 Ghz, 4 GB RAM running Sabayon
5.2 operating system with the Linux kernel 2.6.35. The
algorithms have been implemented in C++ as client programs
for the Player/Stage in version 3.0 and compiled by the GCC
4.4.2 with -O2 optimization flag. Simulation of the Pioneer
2DX robot equipped with SICK LMS200 with 180° field
of view has been used as the robotic platform, while the
occupancy grid with cell size 0.1x0.1 m has been chosen to
represent the working environment. VFH+ algorithm [17]
implemented in the Player has been used to control the
robot motion and to avoid obstacles. The TSP solver used
is the Chained Lin-Kernighan heuristic from the Concorde
package [13].

TABLE I: Description of robot start positions in testing
environments. The positions are in meters, the orientation
of the robot is 0° for all positions.

Map 1 2 3 4 5
Cave (16,8]  [2,16] [20,16]  [4,4]  [8,8]
Autolab  [12,18] [2,12] [22,26] [28,10] [4,16]

The algorithm for the new goal selection (i.e. the body of
the loop in Algorithm 2) is run every 1000 ms. It means that
a new goal can be selected before the old one is reached.
Moreover, the sensor range has been limited to 2, 3, and 5
meters. For each experimental setup consisting of the map,
the starting robot position and the range, 30 runs have been
performed for both the greedy approach and the proposed
distance cost, which gives 1800 experiments in total. The
particular experiment run took from 4 minutes for the cave
map with 5 m range up to about 15 minutes for the autolab
map and 2 m sensor range.

The experimental results are depicted in Tab. II for the
cave map and in Tab. III for the autolab map. The solution
quality is measured as the ratio of avgrsp/avggreedy -
100%. Furthermore, the best found solutions of the proposed
algorithm are shown in Fig. 6 and Fig. 7. The results
show that the proposed TSP based approach outperforms the
greedy selection in all cases. Generally speaking, the best
improvement is achieved for smaller sensor ranges. The only
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exception is for the open space and high sensor range where
the trajectories generated by the TSP approach can be shorter
up to 72% comparing to the greedy approach. The greedy
approach is not able to explore the space systematically, it
leaves some places unexplored and they have to be visited
later, which is not the case of the TSP based approach.
Another interesting observation is that the standard deviation
for the TSP case is significantly smaller than for the greedy
approach. It is an expected result, because the TSP is more
robust to small local changes in representatives’ positions as
demonstrated in Fig 5.
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Fig. 4: The number of frontiers (upper) and the required

computational time for the particular parts of the algorithm

(bottom) during the exploration.

The required computational time of particular parts of
the exploration algorithm in the autolab map and 2 m
range is shown in Fig. 4. The blue curve, almost identical
to the x-axis, denotes the computational time of the TSP
solver. Regarding the times, the solution time of the TSP is
negligible to other parts of the exploration algorithm.

Fig. 5: If several goal candidates (the black disks) are in the
similar distance to the robot and another one is far enough,
small changes in goal candidates’ positions do not change
the shape of the TSP solution and thus the next goal will be
preserved.

IV. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

In this paper, we present a novel approach to determine
the distance cost in the exploration task. The key idea of
the proposed approach is to select an appropriate set of
goal candidates (representatives), which are expected to be
visited by the robot. Then, the near optimal tour connecting

all the representatives is found from which the next robot
goal is determined. Although the introduced evaluation of the
distance cost is primarily intended as a standalone criterion,
a variant of the cost to be used as one of many criteria in
complex systems has been presented as well.

A huge set of experiments has been performed in two dif-
ferent environments. These show that the presented method
provides better results then the widely used greedy approach.
The approach was presented for occupancy grids as the
working environment representation. However a modification
for a geometrical representation is straightforward.

B. Future Works

To the best of our knowledge there is no comprehensive
comparison of exploration strategies in literature. Some at-
tempts were made for example in [4], [11], [18], and [19].
Unfortunately, experiments in these papers are performed
in different environments, with different robots and sensors
and the number of experimental runs is relatively small.
Moreover, the description of the experimental setup is not
complete in many cases, which does not allow to repeat
and compare described experiments. Therefore a detailed
comparison of the current approaches (including the one
presented in this paper), which can be repeated and enhanced
by everyone, is one of our future goals.

The presented cost has been designed for a single-robot
exploration. The next natural step is to extend the cost
evaluation for the case of multiple robots that leads to solving
a variant of the TSP called the Multiple Traveling Salesman
Problem with MinMax criterion.

Finally, we would like to verify the results obtained in
a simulation by experiments performed with real robots in
the SyRoTek system [20].
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TABLE II: Comparison of the greedy approach and the proposed algorithm for cave environment. Pose numbers correspond
to Table I.
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TABLE III: Comparison of the greedy approach and the proposed algorithm for autolab environment. Pose numbers

correspond to Table I.

Range Pose Greedy TSP Ratio
[m] number avg[m] min[m] max[m] stdev[m] avg[m] min[m] max[m] stdev[m] %
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Abstract—In this paper, we discuss the problem of goal
assignment in the multi-robot exploration task. The presented
work is focused on the underlying optimal assignment problem
of the multi-robot task allocation that is addressed by three
state-of-the art approaches. In addition, we propose a novel
exploration strategy considering allocation of all current goals
(not only immediate goal) for each robot, which leads to the
multiple traveling salesman problem formulation. Although the
problem is strongly NP-hard, we show its approximate solution
is computationally feasible and its overall requirements are
competitive to the previous approaches. The proposed approach
and three well-known approaches are compared in series of
problems considering various numbers of robots and sensor
ranges. Based on the evaluation of the results the proposed
exploration strategy provides shorter exploration times than
the former approaches.

I. INTRODUCTION

The mobile robot exploration is a complex task in which
a mobile robot is autonomously navigated in an unknown
environment in order to create a map of the environment. The
exploration can be defined as an iterative process determining
a new goal for the robot and its navigation towards the goal.
The process is terminated whensoever a complete map of the
environment is created. Having a team of robots, an efficient
allocation of exploration targets among the team is a natural
way how to reduce the required time to collect information
about an unknown environment.

The problem of Multi-Robot Exploration (MRE) is a kind
of the Multi-Robot Task Allocation (MRTA) [1] in which
tasks are new goal locations towards which robots are nav-
igated. The fundamental way how to determine candidates
for goal locations is the frontier based approach proposed
by Yamauchi in 1998 [2] and further extended by many
researchers later, e.g., see one of the recent work [3].

Having a set of candidate positions the robot’s next goal
can be determined regarding a selected criteria. A unifying
concept of how to evaluate candidate positions is based
on the goal utility. Although various utility functions have
been proposed, all of them basically combine information
gain (or expected benefit [4]) together with the required
travelling distance to the goal [5]. Then, the robot’s next
goal is repeatably selected from goal candidates. Such an
assignment of the next robot goal is called a next-best-
view approach and it represents the fundamental stream in
exploration [6].

The next-best-view approach can be formulated as the op-
timal assignment problem studied in operational research [1].

Authors are  with the dept. of Cybernetics, Faculty
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The problem is to find the best assignment of n goals to m
robots maximizing the overall utility, i.e., to find one goal
for each robot. The problem can be solved in polynomial
time using the Hungarian algorithm. The algorithm has been
applied to MRE in [7], where authors use Voronoi Graphs
of the current known environment to explore a single room
by one robot.

A distributed assignment algorithm called Broadcast of
Local Eligibility (BLE) has been proposed in [8]. A pair
(robot, task) with the highest utility is considered to assign
the task to the robot without tasks. The BLE algorithm works
iteratively until each robot has assigned a task; thus, the
algorithm 1is also called iterative assignment.

Another stream of distributed MRE solutions is based
on market (or auction) based approaches in which a robot
(auctioneer) offers a task and other robots bid. If any robot
bids with a higher price than the auctioneer’s offer, the task
is exchanged. This approach is used in [9], where a robot
considers its goals in a tour and new (exchanged) goal is
inserted into the tour regarding minimization of the tour’s
cost, i.e., the problem is a variant of the traveling salesman
problem (TSP).

A selection of the next navigational goal considering
the TSP distance cost has been studied in our previous
work [10]. The cost is computed as the length of the shortest
path connecting the robot with the candidate goal and all
remaining goals. The Chained Lin-Kernighan heuristic [11]
is considered to find a solution of the TSP, which provides
sufficiently good solution without expensive computational
requirements. Considering visitation of all current goals leads
to about 30 percentage points shorter exploration path than
using the standard greedy approach.

In this paper, we examine the TSP approach in MRE
as the multiple traveling salesman problem (MTSP). The
encouraging results presented in [10] motivate us to consider
similar approach also in MRE; however, here, the key issue
is how to determine and assign particular set of all goals
to each robot in order to compute the distance cost as the
length of the tour visiting all goals in the set using a solution
of the related TSP. We propose to cluster the goals into m
clusters first, where m is the number of robots. After that,
a (cluster,robot) pair is evaluated using the TSP distance
cost [10] for determining the next robot’s goal.

The proposed approach is similar in the TSP aspect with
the approach [9]. The main difference is that our approach is
focused on the explicit MTSP formulation and the proposed
solution is compared with the greedy approach [12], iterative
assignment [8], and the Hungarian algorithm [7], which (to
the best of our knowledge) has not been published yet.
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Moreover, during an experimental verification of the tested
approaches we have found out that the studied performance
metric significantly depends on particular components of
the whole navigational system, especially on a local path
planner. Therefore, inspired by the methodology described
in [13] we designed a multi-robot exploration framework in
which we can isolate the assignment problem and fix the
navigation issues. In consequence, the framework provides
same conditions for all evaluated methods during the whole
exploration process. However, it is clear that real benefits
of the exploration strategy should be verified in real exper-
iments. Therefore, the methods have been also evaluated in
selected problems using the Player/Stage framework [14],
like in the aforementioned approaches.

The reminder of the paper is organized as follows. The
problem statement is presented in Section II and a brief
description of the examined methods in Section III. In
Section 1V, the MRE framework used in the evaluation is
described. The proposed solution of the assignment problem
based on the MTSP formulation is presented in Section V.
Evaluation of the results and discussions of the MRE issues
are presented in Section VI. Finally, Section VII is dedicated
to concluding remarks.

II. PROBLEM STATEMENT

Although the evaluated approaches are general and not
necessarily restricted to the particular sensors or map build-
ing techniques, we consider laser range finder sensor and
occupancy grid approach for building a map of the unknown
environment. The addressed problem of the multi-robot ex-
ploration (MRE) stands for building a map of the unknown
environment using a team of m identical robots equipped
with a laser range finder. The map M is formed from the
occupancy grid using threshold values for probability that
the grid’s cell is occupied or free [2]. Thus, a cell in the
navigational grid represents freespace, obstacle, or unknown
part of the environment.

The exploration algorithm is an iterative procedure that
is terminated once the navigational grid does not contain a
reachable cell with an unknown value. At each exploration
step, the robots’ goals are determined from a set of candidate
positions that are found as representatives of frontier cells.

The goals are assigned to robots using the exploration
strategy that can be formalized as follows. Let the current
n goals be located at positions G = {g1,...,gn} and the
current robot poses be R = {r1,...,rm}. The problem is
to determine a goal g € G for each robot v € R that will
minimize the total required time, which can be approximated
by the maximal travelled distance by an individual robot, to
explore the whole environment. The assignment is performed
according to the particular strategy using defined utility and
cost functions. In this paper, we consider only a distance cost
L for evaluating the goal assignment; however, the examined
assignment strategies are general and can also be used with
a combined value of distance and utility costs.

For the standard strategies (described bellow) the distance
cost L(g;,r;) (where g; € G and r; € R) is the length of

the shortest collision free path from the robot r; to the goal
gi, e.g., found by the Distance Transform algorithm [15].
The proposed MTSP based assignment strategy utilizes the
TSP distance cost [10].

In this paper, we consider the total distance travelled by a
robot as the performance metric. The main motivation for
utilizing several robots is expected reduction of the total
required time to explore the whole environment, therefore
we are looking for the maximal distance travelled as short as
possible. Thus, having m robots with the distances travelled
, L the distance metric is L = max{ly,l2, ..., 1}

III. STANDARD GOAL ASSIGNMENT STRATEGIES

li,la,. ..

Greedy Assignment — The greedy assignment is based
on the approach proposed by Yamauchi in [12]; however,
it is modified to avoid assignment of the same goal to two
robots because a centralized approach is considered here.
The modification is that a random permutation of the robots
II(R) is created first. Then, for each robot from r € II(R)
the best not assigned goal from G is found. The complexity
of this assignment algorithm can be bounded by O(nm).

Iterative Assignment — The iterative assignment follows
the BLE algorithm [8], but for simplicity it is also imple-
mented in a centralized manner. First, all robot-goal pairs
p = (r,g) are created and ordered using the distance cost
L,ie., L(p1) < L(p2),... < L(pi). After that, the ordered
sequence is traversed starting from its first element, and the
first not already used goal is iteratively assigned to a robot
without the goal. The complexity of the iterative assignment
can be bounded by O((nm)log(nm)).

Hungarian Method — The Hungarian algorithm provides
the optimal assignment of the n goals to m robots with the
time complexity O(n?) for n > m. Similarly to the iterative
assignment the cost matrix is determined using the distance
cost £, where rows stand for robots and columns for goals. In
particular we consider the C implementation of the algorithm
developed by Cyrill Stachniss [16].

IV. MULTI-ROBOT EXPLORATION FRAMEWORK

Similarly to the approach [13] we consider a simulator
for a focused investigation of exploration strategies. The
simulator is based on a grid map that provides discrete
timing of navigation and sensing operations. In particular,
the motion consists of independent turning and moving steps
using the grid cells (e.g., a robot visits all grid cells during
its motion along a straight line segment) while the sensing is
performed at each such a motion step. The framework also
allows to easily switch the simulator with some robot control
framework like Player/Stage or ROS; thus, MRE strategies
developed can be easily deployed to control real robots.

A schema of the exploration loop is depicted in Algo-
rithm 1. First, the initial robots surroundings are sensed and
the occupancy grid is updated accordingly (Line 3). Then,
the navigation grid is created from the occupancy grid and
all frontiers are detected. The frontiers are particular grid
cells (a set of freespace cells that are incident with cells
with the unknown value using 8-neighbourhood) that form a
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Algorithm 1: MRE Framework
Input: R - a set of m robots
Input: s,,,, - the maximal number of the performed
navigation steps before new assignment
Output: M - a map of the explored environment

1 Initialization of the occupancy grid Occ
2 M=0 // the environment is unknown
3 foreach r; € R do update(Occ, robot_sense(r;))

4 repeat

5 M = create_navigation_grid(Occ)
6 F = detect_all_frontiers(M)

7 G = determine_representatives(F)

8 | ((r1,gn)s- s (Fmns gr,)) = assign_goal (R, G, M)
9 fix_assignment(G, (r1, Gr, ) - - - (T'ms Gr,, )

10 Create navigation plan P; for each pair (r;, gr,).
1 I =min{|P4],...,|Pm|}// the plan length
12 k = min{l, $ymaz }

13 for i = 1..k do

14 foreach r; € R do

15 move(r;, P;(i))

16 L update(Occ, robot_sense(r;))

17 until |G| ==

set of connected components. The goals for the assignment
are found as representatives of the connected components
using the K-means algorithm. The number of representatives
n, of a single component F' with f = |F| frontier cells is
determined as

f
nr71+L.SD+O.5J, (@))
where D is the sensor range (in grid cells). A detailed
description of the selection procedure can be found in [10].

Once the goals are determined the selected exploration
strategy (Line 8) is used to assign a goal to each robot. It
may happen that in the resulting assignment a robot can be
without the associated goal, e.g., for |G| < m. In such a
case, the assignment is fixed (Line 9) using the closest goal
to the robot, because it is desirable to utilize all the robots
for the whole exploration period in order to minimize the
total required time of the exploration (here, we assume the
explored environment is a single connected component).

The assigned goals are used to determine the execution
plan consisting of simple operations. The plan is then exe-
cuted up to S;q. steps (Lines 13—16). This part of the loop
is replaced by adding goals to a local path planner if the
algorithm is used with real navigation system, e.g., using the
Player framework. Finally, the exploration loop is terminated
if all reachable parts of the environment are explored.

It should be noted that the set G contains only repre-
sentatives that are reachable by at least one robot, i.e., a
collision free path exists in M. The paths are found using the
Distance Transform algorithm [15] that are then simplified by
a greedy ray-shooting method using Bresenham’s algorithm.
The simplification does not affect the length of the path (on
a grid) but the path is smoother.

V. PROPOSED MTSP BASED ASSIGNMENT

The proposed exploration strategy is based on formulation
of the goals’ assignment problem as the MTSP. Having the
set of goals G and m robots at positions r; € R fori = 1..m,
the problem is to find m tours starting at the robots positions
r; such that each goal g € G is contained in at least one tour
and the length of the longest tour is minimal. It is known
the MTSP problem is NP-hard, and therefore, we consider
approximate solution of the problem based on an assignment
of m clusters of the goals to robots, i.e., a kind of cluster-
first, route-second heuristic approach. The proposed MTSP
based assignment can be summarized in the following steps.

1) Find m clusters C = {C4,...,Cy,}, where C; C G.

2) Determine the TSP distance cost for each pair (C;, 7;),
where C; € C and r; € R.

3) Extract the first goal g € G of the TSP tour from each
non-empty cluster C; assigned to the robot ;.

4) Fix goals’ assignment if there is an empty set C;.

Although the proposed clustering based solution of the
MTSP is fairly common, we suggest (regarding the context
of MRE) the following particular solutions of the clustering
and a direct assignment of the clusters to the robots.

A. Goals Clustering

Various methods of clustering can be used. One of the
popular algorithms is K-means; however, a regular variant
of this algorithm is based on the Euclidean distance between
samples. The distances between goals on frontiers in the map
of the environment being explored are rather geodesic due
to presence of obstacles (or missing information). Therefore,
using the Euclidean distance provides clusters for which real
paths to the goals are significantly longer than the expected.

Regarding this fact a more general variant of the K-
means algorithm can be used, e.g., [17]. Alternatively, goals
can be transformed to the Euclidean space where their
mutual distances are preserved using SAMCOF (Scaling by
Maximizing a Convex Function) [18]. Then, a regular K-
means algorithm can be used. In this paper, we consider

(a) regular K-means (b) K-means with SAMCOF

Fig. 1. An example of the found clusters within the ji environment using
a regular K-means algorithm on goals and transformed goals. The goals in
the clusters are shown as red, blue, and orange disks. Unknown parts of
the environment are in gray. The current robot positions are shown as green
disks and the green circle highlights the effect of SAMCOF utilization.
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the SAMCOF transformation and an example of the found
clusters can be seen in Fig. 1. The K-means algorithm is
initialized using position of the robots, and therefore, also the
robots’ positions are transformed using SAMCOF as well.

B. Fixing Goals’ Assignment

The utilized initialization of the K-means algorithm results
to the clustering where a cluster C; is formed in the vicinity
of r;. Thus, the clustering prefers assignment of goals that
are close to the robot, which follows the greedy strategy that
is advantageous in the case of separable clusters and robots
faraway each other. On the other hand, it may happen that
two robots are close, and therefore, one cluster dominates
over the other, which results in a situation when all the goals
are in the first cluster and the second cluster is empty. In
such a situation, it is important that the robot with an empty
cluster is moved towards unexplored part of the environment.
Otherwise (e.g., when the robots stops its motion), it will be
more and more far from new goals, which may result the
robot will not actively participate on the exploration.

Various strategies how to determine a goal for a robot with
an empty cluster can be proposed. Regarding the considered
TSP distance cost, we proposed to assign a goal according to
the expected time when the goal will be visited. Therefore,
once a tour visiting all goals in the cluster is determined
for each robot r; with C; > 0, a length of the path from
the particular robot to the goal (along the tour) denotes the
expected time of visit. Then, the goals are ordered using the
time and goals with higher times are sequentially assigned
to the robots without already assigned goal.

This procedure assigns a goal to each robot, and therefore,
it replaces the fix_assignment in Algorithm 1 (Line 9).

VI. RESULTS

Three standard approaches and the proposed MTSP based
approach have been evaluated in the developed MRE frame-
work first. The framework allows focused study of explo-
ration strategies that can be fully controlled by the trial
setup. Herein presented experimental evaluation has been
performed using a map of the environment (called jh)
representing a real administrative building with dimensions
21 mx24 m. The environment is large enough to exhibit
performance of the MRE using several robots while it
also contains cycles and long corridors with several rooms.
Thus, it provides representative office-like environment for
verifying feasibility of the proposed MTSP strategy.

We followed recommendations of benchmarking the ex-
ploration strategies presented in [13] and considered small
perturbations in the initial positions of the robots forming 20
variants of each problem defined by the sensor range p, the
number of robots m, and the maximal planning period given
by Smaz- The iterative assignment and Hungarian exploration
strategies are completely deterministic, while the Greedy
and the proposed MTSP methods are stochastic. Therefore
for each problem variant a single trial is considered for
the deterministic ones and 20 trials are performed for the
stochastic methods. The studied performance metric is then

computed over all perturbations (problem variants) and trials
as average values (denoted as L) and standard deviations
(sr,). All presented distance values are in meters.

The used sensor is a laser range finder HOKUYO
with 270° field of view. The occupancy and navigational
grids (map) have identical dimensions with the cell size
0.05 mx0.05 m.

A. Comparison of the Assignment Strategies

The exploration strategies are compared using S,,.,=7 that
provides a good trade-off between the quality of solution
and computational requirements, see Fig. 3. The considered
numbers of robots are m € {3, 5, 7,10} and the sensor range
is selected from the set p € {3,4,5} meters, which results
in 10 080 trials in total for this evaluation.

TABLE 1
MAXIMAL TRAVELLED DISTANCE, Smaz=7

Greedy Iterative Hungarian MTSP
P L st L sr, L sr, L sL,
3.0 3 948 189 819 81 814 66 696 43
3.0 5 68.0 94 556 53 561 45 477 33
3.0 7 582 64 504 30 497 30 445 3.0

30 10 688 124 407 1.8 379 14 425 24

4.0 3 904 154 749 66 770 47 589 35
4.0 5 852 523 536 80 485 40 462 33
4.0 7 772 420 493 57 475 39 441 34
40 10 68.0 137 400 1.6 371 1.6 406 28

5.0 3 722 88 669 63 651 25 546 14
5.0 5 707 68 586 31 568 32 454 21
5.0 7 68.6 87 517 30 496 28 432 3.1
50 10 642 134 397 16 371 1.2 409 25

The results are shown in Fig. 2 and detailed results in
Table 1. The MTSP provides shorter exploration paths than
other strategies; however, with increasing m the benefits of
the MTSP strategy is not evident from the average values.
Therefore we performed statistical evaluation using a null
hypothesis that the algorithms provide statistically identical
results. We consider the Wilcoxon test for the evaluation,
because we assume the distributions are not Gaussian (based
on the Shapiro-Wilk test).

The strategies are considered different if the P-values
obtained by the Wilcoxon test are less than 0.001, which
indicates the difference between L is statistically significant
and a strategy providing lower L is considered as providing
better results. Results of the statistical comparison are shown
in Table II. All the p-values are very small, therefore char-
acters '—’, ’+’, and ’=" are used to denote that the particular
strategy provides longer, shorter or statistically identical L.

Regarding the results the considered range does not sig-
nificantly affect L because of relatively small open parts
while the rooms must be explicitly visited. Notice the stan-
dard deviation s;, for the greedy strategy. It indicates the
performance is varying and sometimes the solution can be
very close to the solution found by the MTSP. However, in
average, it is worse than all other strategies. Although, the
Greedy strategy is stochastic, we found that the performance
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Fig. 2. Scaling of the exploration strategy with the increasing number of robots and for laser range p.

depends on the initial conditions, i.e., a small perturbation
leads to significantly different performance. This is not the
case of the other methods, and especially for the MTSP,
which provide more stable solutions as sy, is low.
TABLE 1I
COMPARISON OF THE MRE STRATEGIES

Iterative Hungarian MTSP
p m vs \ \

Greedy Iterative Hungarian
3.0 3 + = +
3.0 5 + = +
3.0 7 + = +
30 10 + + -
4.0 3 + = +
4.0 5 + = =
4.0 7 + = +
40 10 + + -
5.0 3 + = +
5.0 5 + = +
5.0 7 + = +
50 10 + + -

1) Influence of the planning period: The influence of
Smaa to the performance of the exploration is depicted
in Fig. 3. The results have been obtained for m=7 and
p=3 m, and for each value of s,,,; all problem variants
have been considered as well as 20 trials for each problem
variant and the stochastic strategy. The total number of the
performed trials in this evaluation is 14 280. The results
indicate that a smaller value of s,,,, generally provides
better results, but for all tested values of s,,4, the pro-
posed MTSP method provides superior results. Regarding the
required computational time the simple greedy or iterative
strategies are computationally less intensive, but due to a
longer exploration time, all the methods are competitive in
the total required computational time.

B. Results using real navigational framework

Performance of the tested exploration strategies have also
been evaluated using Player/Stage framework, in which addi-
tional components of the navigational architecture play role.
The robot configuration and the environment is same as in

80 -
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Fig. 3. Influence of the planning period smqs: to the exploration

performance for m=7 and p=3 m; upper: average values of the maximal
travelled distance; bottom: average values of the required computational
times using C++ and a workstation with 3.2 GHz CPU running FreeBSD 9.

the previous tests. The main difference is that a robot is
controlled using the SND driver [19] for the robot motion
and obstacle avoidance.
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TABLE IIT
PERFORMANCE OF THE STRATEGIES USING PLAYER/STAGE AND p=3 m
m Greedy Iterative Hungarian MTSP
L sr L sr L sL L SL,
3 738 98 665 46 652 48 560 7.1
5 555 93 470 82 492 90 492 7.0

In this test, the replanning frequency has not been re-
stricted, i.e., it is limited only by the hardware used. There-
fore, the presented results provide estimation of the real
benefits of more computational demanding methods over
simple and faster methods. The results are shown in Table III.

C. Discussion

The presented results indicate that the proposed MTSP
method provides more efficient tasks allocation than the
former approaches. Hence, the results support the idea to
consider a longer planning horizon rather than just an imme-
diate goal. However, for ten robots the benefit of the method
is not evident from the presented results. It is probably due
to a relatively small environment and the used clustering
initialized by the robots’ position, which can lead to few
dominant clusters and a greedy assignment.

Performance of the Hungarian and Iterative strategies is
very similar, therefore, the main advantage of the Iterative
strategy is its simpler implementation. Besides, the Iterative
strategy can also be easily deployed in a distributed envi-
ronment, which is not the case of the Hungarian algorithm.
On the other hand, computational requirements of the more
sophisticated Hungarian and MTSP approaches are compet-
itive to the simple greedy algorithm; thus, they should be
preferred in the applicable scenarios.

During the experimental evaluation, we have noticed,
the navigational framework, in particular the local planner,
affects the performance of the exploration. This is mostly
visible in a situation where a robot is approaching a narrow
passage (e.g., doors), where its velocity is slow. Differences
in the robot average velocities affect the total required time.
Therefore, the expected distance cost to reach the goal is
only approximation, which in consequence means that the
exploration strategy does not provide the expected benefit.

VII. CONCLUSION

In this paper, we further developed our previous work on
exploration strategy using the TSP distance cost to the multi-
robot exploration. The proposed strategy is compared with
three standard approaches and the results show the proposed
novel multi-robot exploration provides better results while its
total computational requirements are competitive. Although
only relatively small number of robots has been considered,
the results indicated that for a higher number of robots the
Iterative and Hungarian algorithms provides similar results
to the proposed MTSP based strategy.

Regarding the found insights, the real performance of
exploration is not affected only by the used strategy, but also
by the low-level motion control. Therefore, we are aiming
to consider more realistic estimation of the travelling cost
towards the goal in the assignment problem. Besides, we

also intend to evaluate different exploration strategies using
real robots to verify the results presented in this paper.
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